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Abstract

Path constraints have been studied in [3, 8, 9] for semi-structured data. In this paper, we
investigate path constraints for structured data. We show that there is interaction between
path constraints and type constraints. In other words, results on path constraint implication
in semistructured databases may no longer hold in the presence of types. We also investigate
the class of word constraints for databases of two practical object-oriented data models. In
particular, we present an abstraction of the databases in these models in terms of first-order
logic, and establish the decidability of word constraint implication in these models.

1 Introduction

Path constraints and their associated implication problems have been studied in [3, 8, 9] for
semistructured data. In these papers, semistructured data is represented as a rooted edge-labeled
directed graph, as in other semistructured data models (e.g., OEM [18, 2] and UnQL [7]. See [1] for
a survey). Specifically, [8, 9] model semistructured databases as (finite) first-order logic structures

of the signature
o=(r, E).

Here r is a constant and F is a finite set of binary relation symbols, which denote the root node
and the edge labels in the graph representation of a database, respectively. For example, the graph
in Figure 1, which is taken from [9], depicts a school database represented by a structure of the

signature
(r, {Students, Courses, Taking, Enrolled, Name, C Name}).

In this graph model, a path, i.e., a sequence of edge labels, can be represented as a first-order logic
formula «(z,y), where z and y indicate the tail and head nodes of the path, respectively. The path
constraint language investigated in [8, 9], P, is the class of all the logic formulas of either the form

Vzy(a(r,z) AB(z,y) = v(z,y)),

or the form
Vay(alr,z) AB(z,y) = v(y, z)),
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Figure 1: Representation of a school database

where «, 3,y are paths, r is the constant mentioned above, and z, y are variables. A proper subclass
of P, called word constraints, was introduced and investigated in [3]. A word constraint can be
represented as

Yy (B(r,y) = v(ry)),

where 8 and v are paths. As an example, consider the path constraints below, which are taken
from [9]. They are constraints of P for the database depicted in Figure 1.
Extent Constraints. The constraints

Ve (s (Students(r,s) A Taking(s,c)) — Courses(r,c))
Vs (Je (Courses(r,c) A Enrolled(c,s)) — Students(r, s))

are examples of word constraints, which state that any course taken by a student must be a course
that occurs in the database “extent” of courses, and any student enrolled in a course must be a
student that similarly occurs in the database.

Inverse Constraints. The inverse relationship between Taking and Enrolled is expressed as:

Vs ¢ (Students(r,s) A Taking(s,c) — Enrolled(c,s))
Ve s (Courses(r,c) A Enrolled(c,s) — Taking(s,c))

Such constraints are common in object-oriented databases [10].

The ability to reason about path constraints is useful for optimizing query evaluation and for
adding structure to semistructured data (see [6, 16, 17] on this subject). In the context of semistruc-
tured data, a number of results on path constraint implication have been established. In [8], it is
shown that the implication problems for P are undecidable. However, [9] identifies several frag-
ments of P, and shows that each of these fragments properly contains the set of word constraints
and possesses decidable implication problems. In [3], it is shown that the implication problems for
word constraints are decidable in PTIME.

In the same spirit of [4, 11], the graph data model discussed above can also be used to represent
structured data, by which we mean data constrained by a schema. Similarly, path constraints can
also be defined for structured data.

There are good reasons for wanting to study path constraints and their associated implication
problems for structured data. First, many referential integrity constraints can be expressed as path



constraints. For structured data, checking and maintaining these referential integrity constraints are
central to performing updates, optimizing queries and loading databases. Second, these referential
integrity constraints also play an important role in database integration and transformation [15, 8].
Third, some fundamental semantic relations commonly found in object-oriented databases can be
captured by path constraints. Including these constraints in new data models helps incorporate
object-oriented features into these models.

In this paper, we consider the implication problems for path constraints in the context of struc-
tured data. What is the difference between path constraint implication in the context of semistruc-
tured data as opposed to structured data? In structured databases, path constraint implication
is restricted by a schema. More specifically, the implication problem for path constraints over a
schema A is the problem of determining, given a finite set ¥ U {¢} of path constraints, whether all
the database instances of A that satisfy 3 are also models of ¢. Here an instance of the schema
A has a particular structure specified by A. In other words, an instance of A must satisfy certain
type constraints imposed by A. In contrast, a semistructured database is free of type constraints.

Here we address the question whether there is interaction between type constraints and path
constraints. We show that some results on path constraint implication in semistructured databases
no longer hold in the presence of types. For example, consider the implication problems for the
path constraint language P described above. In semistructured databases, as established by [8],
the implication problems are undecidable. In the typed context, however, the implication problem
for P over a schema is decidable as long as the schema does not contain recursive types, i.e., self-
referential data structures. This is because in any instance of such a schema, there are only finitely
many navigation paths. In other words, the language P over the schema has only finitely many
sentences up to equivalence, and therefore, its associated implication problem is decidable.

As another example to illustrate the impact of type constraints, consider the implication prob-
lems for word constraint introduced in [3]. A proof of the decidability of word constraint implication
in semistructured databases was also presented there. However, we will show that this proof breaks
down in the context of an object-oriented data model.

Because of the interaction between type constraints and path constraints, there is need for
investigating path constraint implication in the presence of types. In this paper, we focus on
the class of word constraints, which is properly contained in every fragment of P studied in [9]
that possesses decidable implication problems. We investigate the class of word constraints for
databases in two practical object-oriented data models. One of the models has a “generic” type
system. The other is an object-oriented model based on ACeDB [19] which, while it is often
considered a semistructured model [1, 7], has in fact a separate type system that allows more
flexibility than object-oriented types, and is popular with biologists. In the next two sections, we
present an abstraction of databases in these models in terms of first-order logic, and establish the
decidability of word constraint implication in these models.

2 Word Constraints in a Generic Object-Oriented Model

In this section, we investigate word constraint implication in an object-oriented data model. We
first describe the data model, and present an abstraction of the databases in the model in terms of
first-order logic. We then formally define word constraints in the model. Finally, we show that in
the context of this model, the proof of the decidability of word constraint implication given in [3]
breaks down. However, we establish several decidability results on word constraint implication in
this context.



2.1 An object-oriented model

We begin with the definitions of database schemas and their instances, and continue with an
abstraction of database instances.

The data model
Assume a fixed countable set of labels, £, and a fixed finite set of base types, B.

Definition 2.1: Let C be some finite set of classes. The set of Types over C, Typest, is defined by
the syntax:

t == b | C

T ou= t | {t} | [t ..., ity
where b € B, C € C, and [; € L. The notations {t} and [ly : t1, ..., l, : t,] represent set type and
record type, respectively. We reserve 7 to range over Types©. ]

Definition 2.2: A schema is a triple A = (C, v, DBtype), where
e ( is a finite set of classes,
e v is a mapping: C — Types® such that for each C € C, v(C) ¢ BUC, and

e DBtype € Types® \ (BUC). L]

Here we assume that every database of a schema has a unique (persistent) entry point, and D Btype
in the schema specifies the type of the entry point.

Example 2.1: An example schema is (C, v, D Btype), where

e C consists of a single class Person,

e v maps Person to a record type [name : string, spouse : Person], and

e DBtype is { Person}. L]
Definition 2.3: A database instance of schema (C, v, DBtype) is a triple I = (7, u, d), where

e 7 is an oid assignment that maps each C' € C to a finite set of oids, w(C), such that for all
C,C' e,
n(C)N=(C") =0 if C # C";

e for each C' € C, p maps each oid in 7(C) to a value in [v(C)],, where

[[b]]ﬂ = Dy,
[Clx = =(C),
{7}z = {V |V Clrlx, V is finite},
I :m,enln i mlle = i v1, e ly s vn] | vi € [Ti]n, 1 € [1,0]}

here D; denotes the domain of base type b;

e d is a value in [DBtype],, which represents the (persistent) entry point into the database
instance.



We denote the set of all database instances of schema A by Z(A). ]

Example 2.2: An instance of the schema given in Example 2.1 is (7, u, d), where

. W(PBTSOTL) = {p1,p2,p3ap4}a

e i : w(Person) — [[name : string, spouse : Person]], is defined by:

p(p1) +—  [name: “Smith”, spouse : ps]
pu(p2) +  [name: “Mary”, spouse : p1]
pu(ps) = [name: “Joe”, spouse : py]
pu(ps) + [name: “Maria”, spouse : p3]
e d={p1,p2,p3,pa}- n

Abstraction of databases

We next present an abstraction of databases in the object-oriented model. Since structured
data can be viewed as semistructured data further constrained by a schema, along the same lines of
the abstraction of semistructured databases described in the last section, we represent a structured
database as a first-order logic structure satisfying certain type constraint determined by its schema.
Such a structure can also be depicted as an edge-labeled rooted directed graph.

We assume the standard notations used in first-order logic [12].

We first define the first-order signature determined by a schema. Two components of the signa-
ture are described as follows.

Definition 2.4: Given a schema A = (C, v, D Btype), we define the set of binary relation symbols
and the set of types determined by A, denoted E(A) and T'(A), respectively, to be the smallest sets
having the following properties:

e DBtype € T(A) and C C T'(A);
e if DBtype = {t} (or for some C € C, v(C) = {t}), then ¢ is in T(A) and * is in E(A);

e if DBtype = [y : t1, ..., Iy : ty] (or for some C € C, v(C) = [l; : t1, ..., Iy, : t,]), then for
each i € [1,n], t; is in T'(A) and [; is in E(A). L]

Note here we use the distinguished binary relation * to denote the set membership relation.
Obviously, both E(A) and T'(A) are finite. In addition, every type in T'(A) except DBtype is
either a class type or a base type. That is,

T(A) CCUBU{DBtype}.

Definition 2.5: The signature determined by schema A, o(A), is a triple
(r, E(A), R(A)),

where r is a constant (denoting the root), E(A) is the finite set of binary relations (denoting the
edge labels) defined above, and R(A) is the finite set of unary relations (denoting the sorts) defined
by {R,; | T € T(A)}. ]

For example, the signature determined by the schema given in Example 2.1 is (r, E, R), where

e 1 is a constant, which in each instance (7, p, d) of the schema intends to name d;



e E = {x, name, spouse}; and

e R= {RDBtypea RPersona Rstm’ng}-

We next define the type constraint determined by a schema. The type constraint can be formu-
lated as a sentence in two-variable logic with counting [14, 5], C2. Two-variable logic, FO?, is the
fragment of first-order logic consisting of all relational sentences with at most two distinct variables
[13], and C? is the extension of FO? with counting quantifiers. In particular, below we use the
counting quantifier 3!, whose semantics is described as follows: structure G satisfies 3!z )(x) if
and only if there exists a unique element a of G such that G = ¢(a).

Definition 2.6: Let A be a schema. For each 7 in T'(A), the constraint determined by T is the
sentence V x ¢, (x) defined as follows:

e if 7 =5, or if for some C € C, 7 = C and v(C) = b, then ¢,(z) is

R(z) > Vy( N\ —l(zy));
IcE(A)

e if for some C € C, 7 = C and v(C) = {t} (or 7 = DBtype = {t}), then ¢.(z) is

Ri(z) =Vy( N\ —lzy) AVy(x(z.y) = Re(y));
leB(A)\{+}

o ifT =CforsomeC € Candv(C) =[l; : t1,...,1l, : t,] (or 7 = DBtype = [ly : t1, ..., 1, : t]),
then ¢, (z) is

Ry (z) > Vy ( A Slay) AN\ @lyli(zy) AVy iz, y) = R, ()
leE(AN{l1, . ln} i€[1,n]

The type constraint determined by schema A is the sentence

@(A) :RDBtype(r) N /\ V$¢T($) N V.’E( \/ RT(:E) N /\ (RT(x) - /\ _'R’r’(x)))'

TET(A) TET(A) TET(A) T ET(AN{} "

Note here for simplicity, we assume that for each base type b € B, the domain of b, Dy, is infinite.
If Dy is finite, i.e., the cardinality of Dj is some natural number n, then we define the constraint
determined by b to be the following sentence in C:

Vaop(x) AN 7"z Ry(z).

Here ¢p(z) is the formula given in Definition 2.6 and 3=" is another counting quantifier. The
semantics of 37" is described as follows: a structure satisfies 37"z ¢(z) if and only if there are
exactly n elements in the structure satisfying ¢». We substitute this constraint for V z ¢p(z) in ®(A).

Using the type constraint defined above, we present an abstraction of databases in the object-
oriented model as follows. Its justification will be given later in the paper.

Definition 2.7: An abstract database of a schema A is a finite structure G of the signature o(A)
such that G = ®(A). We denote the set of all abstract databases of a schema A by Up(A). (]

We use U(A) to denote the set of all the structures of signature o(A) satisfying the following
conditions: for each G € U(A),

e G = ®(A); and
e for each set type 7 € T(A) and each o € RY, there are only finitely many o’ in G such that
G |= %(0, 0'). That is, each node in G has finitely many outgoing edges.

An example structure is depicted in Figure 2. This structure corresponds to the database
instance given in Example 2.2.
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Figure 2: An example of a structure

2.2 Word constraints

In this section, we define word constraints in the object-oriented model, and justify the abstraction
of databases given above by considering word constraint satisfiability.

Paths

We first define paths and types of paths over a schema.

Definition 2.8: Given a schema A = (C, v, DBtype), the set of paths over schema A, Paths(A),
and the type of path « in Paths(A), type(a), are defined inductively as follows:

e the empty path € is in Paths(A) and type(e) = D Btype;
e for any o € Paths(A), where type(a) = T,

— if for some C € C, 7 = C and v(C) = {t} (or 7 = DBtype = {t}), then - * is a path in
Paths(A) and type(a - x) = t;

— if there exists C' € C such that 7 = C and v(C) = [l1 : t1,...,1ln : tp] (or 7 = DBtype =
[ly :t1, ..., Iy : t,]), then for each i € [1,n], a-{; is in Paths(A) and type(a-1;) =t;. »

As in semistructured data, path a can be represented by a formula a(z,y), where z and y denote
the tail and head nodes of the path, respectively. The formula «(z,y) is defined by:

ifa=c¢

T=y
a(z,y) =4 Jz(B(z,2) Ax(z,y)) fa=p-x*
2(0B(w,2) N(z,y)) ifa=p-1

Here f((x, z) is a formula representing the path [.

In the sequel, we assume that all the paths in Paths(A) are in the form of the formulas defined
above.

The concatenation of paths a(z, z) and §(z,y), denoted a(z, z) - 5(z,y) or simply «- 3, is defined
by:

B(z,y) fa=e
a(z,z) - B(z,y) =  (x,u) Fz(x(u,z) A B(z,y)) if a(z,z) = Fu(d (z,u) A *(u, 2))
OZI(JL‘,’U,) ' Elz(l(uaz) N ﬁ(zay)) if Oé(:L‘,Z) = EI,LL(O/(:L‘/U') A l(uaz))



The length of path «, |«|, is defined by:

0 ifa=c¢
la| = 1+ |0 ifa=0 %
1+ P ifa=p0"1

The definition of word constraints

Definition 2.9: A word constraint @ over schema A is a sentence of the form
Vz (a(r,z) — B(r,x)),

where o and (8 are in Paths(A), and type(a) = type(B). We denote «, S as lt(y) and rt(p),
respectively.
We denote the set of all word constraints over schema A as P, (A). (]

Obviously, P,(A) is a language with vocabulary o(A).

We borrow the standard definitions of models and implication from first-order logic [12]. Let G
be a structure in U(A) and ¢ a constraint in P,(A). Then we write G = ¢ if G is a model of ¢.
Given a finite subset ¥ of P, (A) and ¢ € P,(A), we use X = ¢ to denote that ¥ implies ¢. That
is, for every structure G € U(A), if G = £, then G |= ¢. Similarly, we use ¥ =¢ ¢ to denote that
¥ finitely implies . That is, for every structure G € Uy (A), if G |= X, then G = ¢.

Example 2.3: The sentences

¢ =V (x(r,z) — * - spouse(r, ))
w =V (x- spouse(r,z) = *(r,x))

are word constraints over the schema given in Example 2.1. Let G be the structure given in Figure 2.
It is easy to verify that G = ¢ and G = .
In any instance (m, p, d) of the schema, ¢ and ¢ are interpreted as

Vz(xred— Jy(y € dAy.spouse = x)),
Vz(Jy(y € dAy.spouse =1x) = x € d),

respectively. Here, abusing the type terms, y.spouse stands for the projection of record y at
attribute spouse, and d is a subset of w(Person). The constraint ¢ states: “each person in the set
d is the spouse of someone in d”, and ¢ states: “if a person is the spouse of someone in d, then the
person is in d”. [

Justification of the abstraction

As illustrated by the example above, word constraints over a schema A can be naturally inter-
preted in database instances of A. Likewise, the notion “I = ¢” can also be defined for an instance
I of A and a constraint ¢ of P, (A).

The agreement between databases and their abstraction with respect to word constraints is
revealed by the following lemma, which justifies the abstraction of structured databases defined
above.

Lemma 2.1: Let A be a schema. For each I € Z(A), there is G € Uy(A), such that

(1) for any ¢ € P,(A), I = ¢ iff G E .



Similarly, for each G' € Uy (A), there is I € Z(A), such that (f) holds. ]

Proof: Let A = (C, v, DBtype).

(1) We define a function f : Z(A) — Us(A) such that for each I € Z(A) and ¢ € P,(A), I = ¢
i 1 (1) = .

Given I € Z(A), where I = (7, u, d), let I be the set of all the base type values occurring in
1. That is, a base type value v is in Ig if and only if either v occurs in d, or there is C' € C and
o € w(C), such that v occurs in p(0). Let

V={dyulzu |Jn(C).
cecC

For each v € V, let o(v) be a distinguished node. We then define f(I) to be G = (|G|,r%, E¥, RY),
where

. (6] ={olv) | v e V}:
e 1% =0(d);
e for each o(v) € |G| and 7 € T(A), G = R%(o(v)) iff v is of type T;
e for all o(v),0(v") € |G/,

— G |= x(o(v), o(v")) iff v’ € v,

— foreach I € LN E(A), G = l(o(v), o(v")) iff v' = v.l. Here v.l means the projection of v
at attribute [, i.e., the [ component of v.

It is straightforward to verify the following:
e G € Uy(A); that is, G is a finite o(A)-structure and G = ®(A);
e for each p € Py (A), G = ¢ iff I |= ¢. This can be easily verified by reductio.

(2) Next, we define g : Us(A) — Z(A) such that for each G € Uf(A) and ¢ € P, (A), G = ¢ iff
9(G) |= ¢

Let G € Uf(A), where G = (|G|,r% EY RY). For each base type b € T(A), we define an
injective mapping g : RbG — Dy, where R,? is the unary relation in G denoting the sort b, and D,
is the domain of b. By the definition of the constraint determined by b given earlier and since G
satisfies the constraint, such a mapping always exists. We substitute g;(0) for each o in R,?. We
then define ¢(G) to be I = (m, p, d), where

e for each C € C, 7(C) = RE;
e for each o € 7(C),

— ifv(C) =[lh: 71,...,lp : ], then (o) =[l1 : 01,...,1, : 0,], where for each i € [1,n],
0; € |G| and G = l;(0, 0;);
— if v(C) = {7}, then p(o) = {0 [ o' € |G|, G |= %(0,0") };

e if DBtype = [l1 : 71,...,0l, : 7], then let d = [l; : 01,...,1, : 0], where for each i € [1,n],
0; € |G| and G [ l;(r,0;); if DBtype = {7}, then let d = {0’ | o' € |G|, G |= *(r,0')}.



Note that this is well-defined since G = ®(A). It is easy to verify that [ € Z(A), and G = ¢ iff

IE .
This proves Lemma, 2.1. [

From the lemma follows immediately the corollary below.

Corollary 2.2: Let A be a schema and X U {p} a finite subset of Py, (A). There is I € Z(A) such
that I = A X A - if and only if there is G € Up(A) such that G = A X A —o. L]

Proof: Suppose that there is I € Z(A) such that I = A X A —¢. By Lemma 2.1, there is G in
Us(A), such that for each ¢y € XU {¢}, I =4 iff G = 1. Therefore, G = AX A —¢p.

Conversely, suppose that there is G € Uy(A) such that G = A X A —p. Again by Lemma 2.1,
there is I € Z(A), such that for each ¢ € YU {p}, G = iff I = 1. Therefore, = AXA—-¢p. =

2.3 Word constraint implication

In this section, we study the implication and finite implication problems for word constraints
in the object-oriented data model. We first describe the problems and show that the proof of
the decidability of word constraint implication given in [3] breaks down here. We then prove the
decidability of word constraint implication in the context of the object-oriented model. In addition,
we show that in two special cases, word constraint implication is decidable in PTIME.

The implication problem

By Corollary 2.2, we can describe word constraint implication as follows.

The (finite) implication problem for Py(A) over schema A is the problem of determining, given
any finite subset X U {¢} of P,(A), whether X |= ¢ (X |=f ).

As observed by [3], every word constraint can be expressed by a sentence in two-variable logic.
Recently, [13] has shown that the satisfiability problem for FO? is NEXPTIME-complete by es-
tablishing that any satisfiable FO? sentence has a model of size exponential in the length of the
sentence. The decidability of the implication and finite implication problems for word constraints
in semistructured data follows immediately. In fact, [3] directly establishes (without reference to
the embedding into F'O?) that the implication problems for word constraints are in PTIME.

In contrast, in the presence of types, implication for word constraints cannot be stated in FO?.
This is because in the (finite) implication problem for P, (A) over schema A, each structure con-
sidered must satisfy ®(A), which is in C? but is not in FO?.

In the object-oriented model, the proof given in [3] also breaks down. The proof is established by
showing that a set of inference rules, Z,y, is sound and complete for word constraint implication.
This set consists of the following three rules.

e reflexivity:

Vo (a(r,z) = a(r,x))

e transitivity:
Vo (a(r,z) = B(r,x))  Vz (B(r,z) — vy(r,x))
Vo (a(r,z) — v(r,z))

e right-congruence:
Vz (a(r,z) — B(r,z)) -+ is a path
vz (a : FY('ru LE) — 5 : ")’(’I“,ZE))

10



However, the lemma below shows that the proof no longer holds in the context of the object-oriented
model.

Lemma 2.3: In the object-oriented model, Z 4y is not complete for word constraint implication.
[

Proof: Consider the constraints ¢ and ¢ given in Example 2.3. By induction on the length of
proof, it can be shown that ¢ is not provable from ¢ using Z4y. More specifically, it can be shown
that if ¢ were provable from ¢ using Z4y, then the length of I£(¢) would be strictly less than the
length of rt(y).

However, by the type constraint imposed by the schema given in Example 2.1, {¢} | ¢ indeed
holds. More specifically, consider an instance I of the schema satisfying ¢, where I = (m, p, d).
Let s = {z.spouse | z € d} and let |d|, |s| denote the cardinalities of d and s, respectively. By the
type constraint imposed by record type, |s| < |d|. By I = ¢, d C s. Hence d = s, and therefore,
IE . ]

The decidability of word constraint implication

Next, we show that in the object-oriented model, word constraint implication is indeed decidable.

Proposition 2.4: Over any schema A in the object-oriented model, the implication and finite
implication problems for P, (A) are decidable. (]

The decidability of the finite implication follows from the decidability of the finite satisfiability
problem for C?, which was established by [5], since the type constraints are expressible in C? and
all the word constraints are in FO2.

By this result, for the decidability of the implication problem it suffices to show that the im-
plication and finite implication problems coincide. That is, over arbitrary schema A and for each
finite subset ¥ U {¢} of P,(A), if AX A —¢ has a model in U(A), then it has a model in U(A).
This is established by the lemma below.

Lemma 2.5: Let A be a schema in the object-oriented model. For each finite subset ¥ U {¢} of
P,(A), if AX A = has a model in U(A), then it has a model in Uy (A). (]

Proof: Given X U{¢p} C P,(A) and model G of A XA -y in U(A), we construct a finite structure
G' such that G' € Uy(A) and G’ = A XA —¢p. To do so, we first define the notion of k-neighborhood
of a structure, as follows.

For each structure G in U (A) and natural number k, the k-neighborhood of G is the substructure
G}, of G with its universe

|Gk| = {0 | 0 € |G|, G |= a(r,o0) for some a € Paths(A) with |a| < k}.
Given ¥ and ¢ as described above, let

k= maz{[lt(Y)], [rt(Y)] | Y€ BU{pt} + 1,

and let G, be the k-neighborhood of G. Then we construct G’ as follows. For each 7 € T(A), let
o(7) be a distinct node, and let G' = (|G|, %", EY", RE"), where
o |G| =[G U{o(7) | T € T(A)},
el G

L =T

e for each 7 € T(A), RS = (RS N |Gy|) U {o(7)},
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e E is EG+ augmented with the following:

— for each 0 € RY N |Gy, where 7 = [Iy : 71, ..., I : 7], and for each i € [1, n], if for every
o' € |Gykl, Gy £~ 1i(0,0'), then let G' = 1;(0,0(7;));

— forany 7 € T(A), if 7 =[l; : 71,...,{ : 7], then for each i € [1, n], let G = l;(o(7), o(7;)).

We now show that G’ is indeed the structure desired.

(1) G" e Up(A).

Since G € U(A), each node in |G| has finitely many outgoing edges. Hence by the definition of
G, |Gy is finite. In addition, T'(A) is finite. Therefore, by the construction of G', |G'| is finite. In
addition, by the definition of G', it can be easily verified that G’ |= ®(A).

(2) G = NS A .

The following can be easily verified by reductio:

Claim: G = ANX A —p iff Gy =AXA -

By the claim, it suffices to show that Gy is also the k-neighborhood of G'. To do so, assume
for reductio that there exist o(7) € |G'| and « € Paths(A) such that |a| < k and G’ = «a(r, o(7)).
Without loss of generality, assume that « has the shortest length among such paths. Then by the
construction of G’, there is 0 € |G/, such that

e a=da' -land G' =/ (r, 0) Al(o, o(T));

e there is 7 € T(A) such that 7 = [ : 7, ...] and 0 € RY

&, and for any o' € |G|, G [~ (o, 0);
and

e Gj = d/(r, 0). This is because for each 7 € T(A), o(7) does not have any outgoing edge to
any node of |Gy].

By G € U(A), there is o' € |G| such that G = (o, 0'). By the argument above, o' ¢ |G|
Hence by the definition of k-neighborhood, there is no path 8 € Paths(A) such that || < k and
G |= B(r, o) Al(o, 0'). Therefore, o/ must have a length of at least k. That is, |«| > k. This
contradicts the assumption. Hence Gy, is indeed the k-neighborhood of G'.

Therefore, G’ is indeed the structure desired. This proves Lemma 2.5. [

The complexity of word constraint implication remains open. However, we show below that in
two special cases, word constraint implication is decidable in PTIME.

Word constraint implication over record schema

We next investigate word constraint implication over record schema, by which we mean a schema
that does not contain any set type.

Proposition 2.6: Over any record schema A in the object-oriented model, the implication and
finite implication problems for P,(A) are decidable in PTIME in the size of the implication and
the size of the schema. [

The proof of the proposition follows closely to the argument given in [3] for the PTIME de-
cidability of word constraint implication in semistructured data. To present the proof, we first
introduce a set of inference rules, Z,., over record schema A. This set consists of the following rules.

e Reflexivity: )
a € Paths(A
Vz (ar,z) = a(r,z))

12



e Transitivity:
Vz (a(r,xz) — B(r,z)) Vz (B(r,z) = y(r,x))
Vo (a(r,x) = y(r,z))

e Right-congruence:

Vo (a(r,z) = B(r,x)) «-v € Paths(A) and -y € Paths(A)
Vo (o y(r,z) = - (r,z))

e Commutativity:
Vo (a(r,z) — B(r,x))
Vo (B(r,z) — a(r,x))

Here for simplicity, we assume that the domain of each base type has at least two elements.
Given a finite subset X U {p} of P, (A), we use ¥ 7, ¢ to denote that there is an Z,-proof of ¢
from 3, i.e., ¢ is provable from ¥ using Z,.
The proof of Proposition 2.6 requires the following two lemmas. The second lemma is borrowed
from [3]. It involves Zy, the set of inference rules mentioned previously.

Lemma 2.7: Over any record schema A, Z, is sound and complete for finite implication for P, (A).
]

Lemma 2.8 [3]: Let ¥ be a finite set of word constraints and a a path. The set
RewriteTo(a) = {6 | ¥ Fz,, Vz (a(r,z) — B(r,z))}

is a regular language recognized by an nfsa constructible in polynomial time from 3 and «. In
particular, whether ¥ 7, Vz (a(r,z) — B(r,z)) can be decided in PTIME. (]

These two lemmas suffice. To see this, for any record schema A and finite subset ¥ of P, (A),

let
¥ =XU{Vz (B(r,z) = a(r,z)) | Yz (a(r,z) = B(r,z)) € L}.

It is easy to verify that for each ¢ € P,(A), ¥ bz, ¢ if and only if ¥' F7,,, ¢ and ¢ € P,(A). In
addition, it can be verified that whether ¢ is in P,(A) can be decided in PTIME in the size of A
and the size of . Hence by Lemma 2.8, whether ¥ -7, ¢ can be decided in PTIME in the size of
A and the size of XU {¢}. By Lemma 2.7, ¥ |=; ¢ iff ¥ -7, ¢. By Lemma 2.5, we also have X |= ¢
iff ¥ k7, . Therefore, the implication and finite implication problems for P, (A) are decidable in
the size of A and the size of ¥ U {¢}.

We next show Lemma 2.7.

Proof of Lemma 2.7: The soundness of Z, can be verified by a straightforward induction on the
length of Z,-proof.

For the proof of the completeness, it suffices to show the following claim.

Claim 1: Given any record schema A and finite subset ¥ U {¢} of P, (A), there is G € Us(A)
such that G = X, and in addition, if G |= ¢, then X F7, ¢.

First assume that for each base type b € T(A), the domain of b is infinite. We prove Claim 1
by constructing the structure G desired. Let

k = maz{|lt()], [rt($)] | »eXU{p}} + 1.
We first construct the k-neighborhood of G, Gg, and then construct G from Gy.

The construction of Gj.. Let
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Paths*(A) = {a | a € Paths(A), |a| < k};

e =~ be the equivalence relation on Paths®(A) defined by

axf iff ¥k, Vz (a(r, z) = B(r, x)) and X bz, Vz (B(r, ) = a(r, ©));

@ denote the equivalence class of path a and A = {& | a € Paths®(A)};

type(a) = type(a), where type(«) is the type of path « determined by A. This is well-defined
since if & and (3 are in the same equivalence class, then by Definition 2.9, type(a) = type(S).

We construct G as follows.

e For each @ € A, let o(@) be a distinct node and let |G| = {o(@) | @ € A}.
e Let 79 = o(e).

e For each 7 € T(A), let RS = {o(a) | & € A, type(a) = 7}.

Iy : 71,...,l, : 7] and there is 8 € a with |8 < k, then for

/\

e For each o(@), if type(a) =
li(o(a ) ( -1;)). Note that this is well-defined by Transitivity and

each i € [1,n], let G |=
Right-congruence in Z,.

The construction of G. For each 7 € T(A), let o(7) be a distinct node. Let G = (|G|, r%, EY, RY),
where

o |G| =[Gkl U{o(7) | T € T(A)};

o r¢ =Gk,

e for each 7 € T(A), RY = RE U {o(7)};
e for each label [ € E(A), if Gy = (o, 0'), then G |= (0, 0'). Moreover,

— for each o(a) € |G|, if type(@) = [l1 : 71, ..., Iy, : 7,] and for some i € [1, n], o(@) does
not have any outgoing edge labeled with /;, then let G |= l;(o(@), o(7;));
— for every 7 € T'(A), if 7 is of the form [l; : 7y, ..., I, : 7], then for each i € [1, n], let

G = li(o(7), o(T;)).

We next show that G is indeed a structure described in Claim 1.

(1) G eUs(A).

Obviously, |G| is finite since Paths*(A) and T(A) are finite. We next show that G = ®(A).
That is, we show that for each o € |G|, if o € R, then G = ¢, (0). We examine the following cases.

Case 1: 0 = o(1).

By the construction of G, it is obvious G' = ¢, (o(7)).

Case 2: 0 = o(a).

If type(a) = b for some base type b, then by the construction of G, o(@) does not have any
outgoing edge. Thus G = ¢, (o(a)).

Ifr=1[1:7m,...,ln: 7], we have two cases to consider.

First, if for each 0 € @, k < |{], then by the construction of G, for each i € [1,n],

G = li(o(@), o(Ti)),

and moreover, these are all the outgoing edges of o(a). Clearly, o(r;) € RE. Hence G = ¢, (o(@)).
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Second, suppose that there is § € @, such that |$| < k. Then by the construction of Gy, for
each i € [1,n], -
G = li(o(a), o(B - 1;)).

By Definition 2.8, type(ﬂ/-\li) = type(B - l;) = 7;. That is, o(ﬂ/-\li) € Rg. Moreover, by Right-
congruence, for each v € @, we have - 1; = 7 -1;. Hence o(@) has a unique outgoing edge labeled
with l;. Therefore, G = ¢, (o(a@)).

This proves that G € Up(A).

(2) Gy is the k-neighborhood of G.

By the property of record schema and the definition of G, we have the following claim:

Claim 2: For each a € Paths*(A), G = a(r, o(@)). In addition, if there is 0 € |G| such that
G = a(r, 0), then 0 = o(@).

This claim can be verified by a straightforward induction on |a|. This shows that G is indeed
the k-neighborhood of G.

(3) G =X.

For each ¢ € 3, where 1) = Vz (a(r,z) — B(r,z)), we have o, 8 € Paths®(A) by the definition
of k. By Commutativity, we have o ~ . Therefore, o(@) = o(). By Claim 2, o(a) is the only
node in GG to which there is an « path from r. Therefore,

G =V (a(r,z) = B(r, z)).
Hence G = 3.

(4) If G |= ¢, then X F1, .

Let ¢ = Vz (a(r,z) — B(r,z)). By the definition of k, we have that «, 3 € Paths*(A). Moreover,
by G |= ¢ and Claim 2, o(a) = o(B). By the construction of @, there must be & = 3. Hence by
the definition of ~, we have X 7, ¢.

This shows that if the domain of each base type in T'(A) is infinite, then Claim 1 holds.

Now suppose that some base types in T'(A) have finite domains (as mentioned previously, we
assume that each of these finite domains has at least two elements). We construct a structure G’
which has all the properties described in Claim 1 as follows.

Let G be the structure defined above. For each base type b € T(A) with a finite domain and
for all @, 3 in A, we identify o(@) with o(3) in |G| if all the following conditions are satisfied:

o type(d) = type(B) = b;

o if lt(p) # rt/(ro), then none of the following holds:

— —

() and B = ri(yp),

—

— a=rt(p) and f = lt/(;)

-

—

In addition, we equalize o(7) with o(@) for some & € A such that a # rt(yp). If such & does not
exist, then let o(7) be a distinct node as before.

Let G' be the structure constructed from G by equalizing nodes in |G| as described above.
Clearly, |G'| C |G|, and for each base type b € T'(A), if the domain of b is finite, then RbG' has at
most two elements. In addition, by the definition of G’, it is easy to verify the following claims.

Claim 3: G' |= ®(A).
Claim 4: For each a € Paths*(A) and o € |G'|, if G = a(r,0), then G’ = a(r,0).
Claim 5: If G' |= ¢, then G = .
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These suffice for a proof of Claim 1. For by Claim 3, G' € Us(A). Using Claim 4, it is easy to
verify that G' |= 3 by reductio. By Claim 5, if G’ |= ¢, then by the proof above, ¥ F7, ¢
This completes the proof of Lemma 2.7. ]

Implication for word constraints having the x-form

Next, we consider word constraints of the form:
Vz(a(r,z) = B *(r,z)).

We refer to such a constraint as a constraint having the x-form. Implication ¥ = ¢ (¥ = ¢) is
called x-form (finite) implication if every constraint in ¥ U {¢} has the x-form.

Proposition 2.9: Over any schema A in the object-oriented model, the *-form implication and
finite implication problems for P,(A) are decidable in PTIME in the size of the implication and
the size of the schema. [

To show the proposition, let Z, be the subset of Z, consisting of Reflexivity, Transitivity and
Right-congruence. As in the proof of Proposition 2.6, it suffices to show the following lemma.

Lemma 2.10: Over any schema A in the object-oriented model, Z, is sound and complete for
finite implication for P, (A). ]

Proof: The proof of the lemma is similar to that of Lemma 2.7.
The soundness of Z, can be verified by a straightforward induction on the length of Z,-proof.
For the proof of the completeness, it suffices to show the following claim.
Claim 1: Given any schema A and finite set X U {¢} of *-form constraints in P, (A), there is
G € Uy(A) such that G |= ¥, and in addition, if G |= ¢, then X k7, ¢

We first assume that for each base type b € T'(A), the domain of b is infinite. As in the proof
of Lemma 2.7, we define the natural number k. We construct the structure G described in Claim
1 in two steps: we first define GG and the construct G from Gy,.

The construction of Gj,. As in the proof of Lemma 2.7, we define Paths*(A), =, &, A and type(Q).
In addition, we define a partial order on A as follows:

a<p iff Lk Vo (alr, z) = B(r, z)).

Note that this is well-defined by Transitivity in Z,.
Let Gj, = (|G|, r%, B9 RY), where |G|, r®* and R%* are defined in the same way as in the
proof of Lemma, 2.7. The binary relations in E@* are populated as follows.

Iy : 71,...,l, : 7] and there is 8 € a with |8 < k, then for

/\

e For each o(a), if type(a) =
li(o(a ) ( -1;)). Note that this is well-defined by Transitivity and

each i € [1,n], let Gy |=
Right-congruence in Z,.

e For each o(@), if type(a) = {7} and there is 8 € a with || < k, then for each 7 < ﬂ/-\*, let
G = *(o(@), o(7)).

The construction of G. The structure GG is defined in the same way as in the proof of Lemma 2.7,
except the following: for each o(a) € |Gy, if type(a) = {7}, then let G = x(o(@), o(7)).

We now show that (G is indeed a structure described in Claim 1.
1. Ge Uf(A).
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It is easy to verify that |G| is finite. We next show that for each o € |G|, if o € RY, then
G = ¢-(0). The arguments for the following cases are the same as in the proof of Lemma 2.7.

Case 1: 0o =o(7) and 7 is either a base type or a record type.

Case 2: o = o(@) and type(a) is either a base type or a record type.

We next examine the cases involving set types.

Case 3: o = o(7) and 7 = {7'}.
Clearly, G |= ¢, (o(7)) since o(7) does not have any outgoing edge by the construction of G.

Case 4: o = o(@) and type(a) = {7'}.

If for each 8 € a, k < |B|, then by the construction of G, G E *(o(a),o(7')). In addition, o(a)
does not have any other outgoing edge. Clearly, o(7') € RY. Hence G |= ¢,(0(@)) in this case.

Now suppose that there is § € & with |B| < k. Then by the definition of G, for each v in
Paths®(A), if ¥ < -, then G = %(0(@), 0(7)). Moreover, G = *(o(@), o(7')). These are all the
outgoing edges from o(@). Therefore, o(@) has finitely many outgoing edges, which are all labeled
with x. In addition, clearly o(7') € RG Moreover, by 4 < 3 - *, we have type(7y) = type(ﬁ x) =1’
Hence o(7) € RY. Thus G = ¢, (o(@ ))

This proves that G |= ®(A), and consequently, G € Us(A).

2. GEYX
It suffices to show the following claim.
Claim 2: For each o € Paths*(A), let

obj(a) = Ao |A0 EA\Gk|, GA|: a(r, 0)};
inf(a) = {o(B)|BEA B=<a}l
Then obj(a) = inf(a).

To see this, assume for reductio that there is ¢p € X, where ¢ =V (a(r, ) — 8- *(r, z)), such
that G [~ 1. That is, there is 0 € |G|, such that G = a(r, o) A =0 - *(r, 0).

If o € |Gg|, then o € obj(a). By X bz, 9, we have a < ﬁ/\* Hence inf(a) C inf([ - *).
Therefore, by Claim 2, obj(«) C 0bj(/3 - ). Hence o € obj(f - x). That is, G = - *(r,0). This
contradicts the assumption.

If o € |G|\|Gkl, i.e., 0 = o(7) for some T € T(A), then by Definition 2.9, type(8-*) = type(a) = 7.
By Definition 2.8, we have type(8) = {7}. Since o(ﬁ) € inf (), by Claim 2, o(ﬁ) € obj(B). That
is, G = B(r, o(3)). By the construction of @, G = *(0(3), o(7)). Hence G |: B - *(r, o(r)). This
contradicts the assumption.

Hence G = X

We next show Claim 2 by induction on |

Base case: o = €.

Since all the constraints in ¥ have the x-form, by the definition of Z,, it is easy to see that for
cach 8 € Paths*, if B < €, then 3 = €. Therefore, inf(e) = {o(€)} = {r¢} = obj(e).

Inductive step: Assume Claim 2 for |a| < m.

We next show the claim holds for « - K, where K is either * or some record label .

(1) inf(a- K) C obj(a - K).

Let o be a node in inf(a- K).

If K # , then by Definition 2.8, type(a) is some record type with field K. In addition, by
the definition of inf, there is 3 € Paths*(A) such that o = O(B) and 8 < o - K. Since all the
constraints in 3 have the %-form, by the definition of Z,, there must be 8’ € Paths*(A) such that

B=p@" K and B < a.
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This can be verified by a straightforward induction on the length of Z.-proof of the constraint
Ve (6(r,z) = a-K(r,z)) from X. Thus o(ﬁA’) € inf(a). By the induction hypothesis, we have that
o(B') € obj(a). That is, R

G = afr, o(f").

Since | 8| < |B] < k and type(s') = type(a), by the definition of G,

G K(o(B),0(8 - K)).

Therefore, o(3) € obj(a - K). That is, 0 € obj(c - K).
If K = %, then by Definition 2.8, type(@) = {type(a - ¥)}. In addition, there is 8 € Paths*(A)
such that o = o(8) and 3 < @~ *. By the induction hypothesis, o(@) € inf(c) = obj(c). That is,

G E a(r, o(a)).

Since E < «a - *, by the construction of Gy,

G = *(0(@), o(B)).

Hence o(f) € obj(a - %). That is, 0 € obj(a - *).
Therefore, inf(a- K) C obj(a - K).

(2) obj(or K) Cinf(a- K).

For each o € obj(a - K), there is o' € obj(«), such that G = K(d', o).

If K # *, then type(a) is some record type with field K. By the the induction hypothesis,
inf(c) = obj(e). Thus o' € inf(c). Hence there is some 3 € Paths®(A), such that 8 < & and
o' = o(f). Since o € \Gg| and G |= K(o (B), 0), by the construction of Gy, there must be v €
such that |y| < k and

o(y-K)=o.

Since v = B and B < @, by Right-congruence,
v K <a K.

Hence o(y - K) € inf(a - K). That is, o € inf(a - K).

If K = %, then type(a) = {type(a - *)} By the induction hypothesm inf(a) = obj(a). Thus
o' € inf(a). Hence there is 3 € Paths¥(A) such that 8 < @ and o/ = o(B). By Definition 2.9,
type(S ) = {type(a - x)}. Since o € \Gk| and G = x(o(B), 0), by the construction of Gk, there must
be vy € 3 such that |y| < k. Hence 7% € A. In addition, there must be p € Paths®(A) such that

p<v-% and o(p) = o.

Since v € B, we have = B. Since 3 < @, by Right-congruence, v+ * < a - . By Transitivity,
p=ax*
Hence o(p) € inf(a - *). That is, 0 € inf(a - *).
Therefore, obj(a - K) Cinf(a- K). This proves Claim 2.

3. If G = ¢, then X F1, .

Let ¢ = Va (a(r,z) — 8- *(r,z)). Since @ and (- * are in Paths®(A) and G = ¢, we have
obj(a) C obj(B - x). Hence by Claim 2, we have inf(a) C inf(8 - *). Since o(@) € inf(a),
o(a) € inf(B - *). Therefore, a < ﬁ/\* by the definition of inf. Hence ¥ k7, ¢.

This shows that if the domain of each base type in T'(A) is infinite, then Claim 1 holds.
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Now suppose that some base types in T(A) have finite domains (as mentioned previously, we
assume that each of these finite domains has at least two elements). We construct a structure G’
which has all the properties described in Claim 1 as follows.

Let G be the structure defined above. For each base type b € T(A) with a finite domain and
for all &, 3 in A, we identify o(@) with o(8) in |G| if all the following conditions are satisfied:

o type(@) = type(B) = b;

o if lt/(;) A rt/(g\o), then none of the following holds:

—

— It(p) < @ and B =< rt/(?p),
— 1t(p) < B and @ < It(p).

In addition, we equalize o(7) with o(@) for some @ € A such that a # rt(<p). If such @ does not
exist, then let o(7) be a distinct node as before.

Let G’ be the structure constructed from G by equalizing nodes in |G| as described above. It is
easy to show that Claim 3, 4 and 5 in the proof of Lemma 2.7 also hold here. Thus Claim 1 also
holds in this case.

This completes the proof of Lemma 2.10.

3 Word Constraints in an ACeDB Model

We next consider word constraint implication in an object-oriented model based on ACeDB [19].

The ACeDB based model does not have an explicit set construct, and in addition, it does not
interpret a record type as a function from attributes to corresponding domains. More specifically,
a value of a record type [ly : t1, ..., Iy : t,] is a finite subset of

{}y > Do . U} x [ta]),

where [¢;] denotes the domain of ¢;. In graph representation, a node of this record type may have
finitely many outgoing edges labeled with [; for each i € [1,n].

This ACeDB model is defined in the same way as the object-oriented model given in the last
section, except the difference aforementioned. Similarly, the abstraction of the databases and word
constraints in the model can be defined, except that the constraint Vz ¢, (z) imposed by a record
type 7 =[l1 1 t1, ..., I : ty] is now defined by:

¢r(z) = Rr(z) = Yy ( A Wz, ) A N\ Yy(li(z,y) = Ri(y))-
LEE(A)\{l1,..ln } i€[1,n]

Given a schema A in the ACeDB model, we assume the definitions of E(A), T(A), o(A),
®(A), Py(A), Up(D) and U(D) used in the object-oriented model defined in the last section. For
simplicity, we assume that P,(A) does not include constraints of the following form (see [3] for an
argument for this assumption):

VYV (a(r,z) — €e(r,z)).

The proposition below establishes the decidability of word constraint implication in the ACeDB
model.

Proposition 3.1: Over any schema A in the ACeDB model, the implication and finite implication
problems for P, (A) are decidable in PTIME in the size of the implication and the size of the
schema. -
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To prove this proposition, recall Z,, the set of inference rules given in the last section. The
lemma below shows that Z, is also sound and complete for word constraint implication in the

ACeDB model.

Lemma 3.2: Over any schema A in the ACeDB model, Z, is sound for both the implication and
finite implication problems for P, (A), and is complete for the finite implication problem for P, (A).
[

From Lemma 3.2 and Lemma 2.8 follows immediately the PTIME decidability of the finite
implication problem for word constraints in the ACeDB model. In addition, by Lemma 3.2, the
implication and finite implication problems for word constraints coincide in the ACeDB model. To
see this, consider a finite subset ¥ U {¢} of P,(A). Obviously, if X |= ¢, then 3 |= ¢. Conversely,
if ¥ =; ¢ then by the completeness of Z, for finite implication, ¥ Fz, ¢. Since Z, is also sound
for implication, we have ¥ = . From this argument also follows the PTIME decidability of the
implication problem for word constraints in the ACeDB model.

We next show Lemma 3.2.

Proof of Lemma 3.2: The proof below is similar to that of Lemma 2.10.
The soundness of Z, can be verified by a straightforward induction on the length of Z,-proof.
For the proof of the completeness, it suffices to show Claim 1 below:
Claim 1: Given any schema A in the ACeDB model and finite set ¥ U {¢} of constraints in
Py (A), there is G € Uy(A) such that G |= X, and in addition, if G = ¢, then X F7, .

We first assume that for each base type b € T'(A), the domain of b is infinite. As in the proof
of Lemma, 2.7, we define the natural number k. We construct the structure G described in Claim
1 in two steps: we first define GG}, and the construct G from Gy.

The construction of Gj. As in the proof of Lemma 2.10, we define Paths*(A), =, a, A, type(a)
and <. Let Gy = (|G|, r%, E9 R9), where |G|, r%* and R are defined in the same way as
in the proof of Lemma 2.7. The binary relations in E* are populated as follows: for each o(a),
if type(a) = Iy : 71,...,1l : 7] and there is § € & with || < k, then for each i € [1,n] and each
v € A such that 7y < mi, let -

Gr = li(o(@), o(y - 1;)).

The construction of G. Let G = (|G|,r%, EY, RY), where |G|, 7% and R are defined in the same
way as in the proof of Lemma 2.7. Let E¢ be E®* augmented as follows: for each o(a) € |G}|, if
type(@) = [l1 : T4,y ooy by : 7], then for each i € [1,n], let

G = li(o(a), o(m;)).

We now show that GG is indeed a structure described in Claim 1.

1. Ge Uf(A).

It is easy to verify that |G| is finite. We next show that for each o € |G|, if o € RY, then
G = ¢-(0). The arguments for the following cases are the same as in the proof of Lemma 2.7.

Case 1: 0o =o(7) and 7 is either a base type or a record type.

Case 2: o = o(@) and type(a) is a base type.

We next examine the following case.

Case 3: 0 = o(a) and type(@) = [l1 : T1,...,lp = T

If for each € @, k < |f]|, then by the construction of G, for each i € [1,n], G = l;(o(@), o(7;)).
These are all the outgoing edges of o(a). Clearly, o(7;) € Rg. Hence G = ¢;(o(@)) in this case.
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If there is 8 € @ such that || < k, then by the construction of Gy, for each i € [1,n] and each
=Bl
G |= li(o(a), o(7))-
In addition,
G = li(o(@), o(7i)).
These are all the outgoing edges of o(a). Clearly, o(7;) € Rg. By Definition 2.8, it is easy to see
that type(ﬁf-\li) = type(B - l;) = ;. Moreover, by Definition 2.9, we have that for each 5 < ﬂi,
type(3) = type(y) = type(B - 1;). Hence o(y) € RE. Therefore, G = ¢.(o(a)).
This proves that G = ®(A), and therefore, G € Uy(A).

2. GEX.

It suffices to show Claim 2 given in the proof of Lemma 2.10.

To see this, assume for reductio that there is ¢p € X, where ¢» = Vz (a(r, ) — B(r, z)), such
that G [~ 1. That is, there is 0o € |G|, such that G = «(r, 0) A =8(r, 0).

If o € |Gy/|, then o € obj(a). By X Fz, 1, we have & < E Hence inf(a) C inf(8). Therefore,
by Claim 2, obj(a) C 0bj(8). Hence o € obj(). That is, G = B(r,0). This contradicts the
assumption.

If o € |G|\ |G|, i.e., 0 = o(7) for some 7 € T(A), then type(a) = 7. By the assumption
on P,(A), 1 < |B]. Let B = ' -1. Since B € Paths*(A), B € Paths®(A). By Claim 2,
o(B) € inf(B) = obj(B'). Hence ~

G = B'(r, o(3))-
By Definition 2.9, type(8) = type(a) = 7. By Definition 2.8, type(S’) is a record type [ : 7,...].
Hence by the construction of G, R
G = 1(o(8), o(T)).
Thus G = B(r,0). This contradicts the assumption.
Hence G = 3.

We next show Claim 2 by induction on |

Base case: o = €.

By the assumption on P,(A), it is easy to see that for each 8 € Paths®, if B < €, then 0 = e.
Therefore, inf(e) = {0(€)} = {r%} = obj(e).

Inductive step: Assume Claim 2 for |a] < m. We next show that the claim holds for o - .

(1) inf(a-1) Cobj(a-1).

For each o € inf(a-l), there is B, such that E <a-lando= o(a). By a-l € Paths*(A), a € A.
Hence by induction hypothesis, o(a@) € inf(a) = obj(a). That is, G |= a(r, o(@)). In addition, by
Definition 2.8, type(a@) must be a record type with field I. Since B < 07-\1, by the construction of
G, G = l(o(@), o(B)). Thus o € obj(a - 1).

Therefore, inf(a-1) C obj(a-1).

(2) obj(ac-1) C inf(ac-1).

For each o € obj(a - 1), there is o' € obj(«), such that G = I(¢', 0). By induction hypothesis,
o' € inf(). Hence there is 3 € Paths®(A), such that 8 < @ and o = o(B). Since 0 € |G| and
G = l(o(ﬁ), 0), by the construction of G, there is v € ﬁ such that |y| < k. Hence ’y/\l €A In

addition, there must be p € Paths®(A) such that

—

p=<v-1 and o(p) = o.
Clearly, vy = B Since B < @, by Right-congruence, ’y/\l <a-l By Transitivity,

—

p=a-l
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Hence o(p) € inf(a-1). That is, o € inf(a-1).
This proves Claim 2.

3. If G = ¢, then X F1, .

Let ¢ = Vz (a(r,z) — B(r,z)). Since o and § are in Paths®(A) and G |= ¢, we have that
obj(a) C obj(). Hence by Claim 2, we have inf(a) C inf(8). Since o(a) € inf(a), o(a@) € inf(5).
Therefore, a < B by the definition of inf. Hence X Fz, .

This shows that if the domain of each base type in T'(A) is infinite, then Claim 1 holds. As in
the proof of Lemma 2.10, it can be shown that Claim 1 also holds if some base types in T(A) have
finite domains.

This completes the proof of Lemma 3.2. [

4 Conclusions

We have investigated the path constraints introduced and studied in [3, 8, 9] for typed data. The
type system or schema definition can be viewed as imposing a type constraint on the data. We
have shown that the type constraints interact with the path constraints. As a result, in general we
can no longer expect results developed for semistructured data to hold when a type is imposed on
the data. Indeed, we have shown that the proof given in [3] for the decidability of word constraint
implication in semistructured data breaks down in the presence of type constraints, and only in
restricted type systems do we have decidability results on word constraint implication.

In particular, we have investigated word constraint implication in two restricted yet practical
object-oriented models: a “generic” object-oriented type system and a type system based on ACeDB
[19]. In these models, we have presented abstractions of the databases in terms of first-order logic,
and we have established the decidability of word constraint implication.
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