
Path Constraints in the Presence of TypesPeter Buneman�peter@central.cis.upenn.edu Wenfei Fanywfan@saul.cis.upenn.edu Scott Weinsteinzweinstein@linc.cis.upenn.eduDepartment of Computer and Information ScienceUniversity of PennsylvaniaOctober 1997AbstractPath constraints have been studied in [3, 8, 9] for semi-structured data. In this paper, weinvestigate path constraints for structured data. We show that there is interaction betweenpath constraints and type constraints. In other words, results on path constraint implicationin semistructured databases may no longer hold in the presence of types. We also investigatethe class of word constraints for databases of two practical object-oriented data models. Inparticular, we present an abstraction of the databases in these models in terms of �rst-orderlogic, and establish the decidability of word constraint implication in these models.1 IntroductionPath constraints and their associated implication problems have been studied in [3, 8, 9] forsemistructured data. In these papers, semistructured data is represented as a rooted edge-labeleddirected graph, as in other semistructured data models (e.g., OEM [18, 2] and UnQL [7]. See [1] fora survey). Speci�cally, [8, 9] model semistructured databases as (�nite) �rst-order logic structuresof the signature � = (r; E):Here r is a constant and E is a �nite set of binary relation symbols, which denote the root nodeand the edge labels in the graph representation of a database, respectively. For example, the graphin Figure 1, which is taken from [9], depicts a school database represented by a structure of thesignature (r; fStudents; Courses; Taking;Enrolled;Name;CNameg):In this graph model, a path, i.e., a sequence of edge labels, can be represented as a �rst-order logicformula �(x; y), where x and y indicate the tail and head nodes of the path, respectively. The pathconstraint language investigated in [8, 9], P , is the class of all the logic formulas of either the form8x y (�(r; x) ^ �(x; y)!
(x; y));or the form 8x y (�(r; x) ^ �(x; y)!
(y; x));�This work was partly supported by the Army Research O�ce (DAAH04-95-1-0169) and NSF Grant CCR92-16122.ySupported by an IRCS graduate fellowship.zSupported by NSF Grant CCR-9403447. 1

Name

C1 S2S1 C2

Students Courses Students Courses

"Phil4""Smith" "Chem3" "Jones"

CName CNameName

Taking

Enrolled

Taking

Enrolled

Taking

Enrolled

r

Figure 1: Representation of a school databasewhere �; �;
 are paths, r is the constant mentioned above, and x; y are variables. A proper subclassof P , called word constraints, was introduced and investigated in [3]. A word constraint can berepresented as 8 y (�(r; y) !
(r; y));where � and
 are paths. As an example, consider the path constraints below, which are takenfrom [9]. They are constraints of P for the database depicted in Figure 1.Extent Constraints. The constraints8 c (9 s (Students(r; s) ^ Taking(s; c)) ! Courses(r; c))8 s (9 c (Courses(r; c) ^Enrolled(c; s))! Students(r; s))are examples of word constraints, which state that any course taken by a student must be a coursethat occurs in the database \extent" of courses, and any student enrolled in a course must be astudent that similarly occurs in the database.Inverse Constraints. The inverse relationship between Taking and Enrolled is expressed as:8 s c (Students(r; s) ^ Taking(s; c) ! Enrolled(c; s))8 c s (Courses(r; c) ^Enrolled(c; s)! Taking(s; c))Such constraints are common in object-oriented databases [10].The ability to reason about path constraints is useful for optimizing query evaluation and foradding structure to semistructured data (see [6, 16, 17] on this subject). In the context of semistruc-tured data, a number of results on path constraint implication have been established. In [8], it isshown that the implication problems for P are undecidable. However, [9] identi�es several frag-ments of P , and shows that each of these fragments properly contains the set of word constraintsand possesses decidable implication problems. In [3], it is shown that the implication problems forword constraints are decidable in PTIME.In the same spirit of [4, 11], the graph data model discussed above can also be used to representstructured data, by which we mean data constrained by a schema. Similarly, path constraints canalso be de�ned for structured data.There are good reasons for wanting to study path constraints and their associated implicationproblems for structured data. First, many referential integrity constraints can be expressed as path2

constraints. For structured data, checking and maintaining these referential integrity constraints arecentral to performing updates, optimizing queries and loading databases. Second, these referentialintegrity constraints also play an important role in database integration and transformation [15, 8].Third, some fundamental semantic relations commonly found in object-oriented databases can becaptured by path constraints. Including these constraints in new data models helps incorporateobject-oriented features into these models.In this paper, we consider the implication problems for path constraints in the context of struc-tured data. What is the di�erence between path constraint implication in the context of semistruc-tured data as opposed to structured data? In structured databases, path constraint implicationis restricted by a schema. More speci�cally, the implication problem for path constraints over aschema � is the problem of determining, given a �nite set �[f'g of path constraints, whether allthe database instances of � that satisfy � are also models of '. Here an instance of the schema� has a particular structure speci�ed by �. In other words, an instance of � must satisfy certaintype constraints imposed by �. In contrast, a semistructured database is free of type constraints.Here we address the question whether there is interaction between type constraints and pathconstraints. We show that some results on path constraint implication in semistructured databasesno longer hold in the presence of types. For example, consider the implication problems for thepath constraint language P described above. In semistructured databases, as established by [8],the implication problems are undecidable. In the typed context, however, the implication problemfor P over a schema is decidable as long as the schema does not contain recursive types, i.e., self-referential data structures. This is because in any instance of such a schema, there are only �nitelymany navigation paths. In other words, the language P over the schema has only �nitely manysentences up to equivalence, and therefore, its associated implication problem is decidable.As another example to illustrate the impact of type constraints, consider the implication prob-lems for word constraint introduced in [3]. A proof of the decidability of word constraint implicationin semistructured databases was also presented there. However, we will show that this proof breaksdown in the context of an object-oriented data model.Because of the interaction between type constraints and path constraints, there is need forinvestigating path constraint implication in the presence of types. In this paper, we focus onthe class of word constraints, which is properly contained in every fragment of P studied in [9]that possesses decidable implication problems. We investigate the class of word constraints fordatabases in two practical object-oriented data models. One of the models has a \generic" typesystem. The other is an object-oriented model based on ACeDB [19] which, while it is oftenconsidered a semistructured model [1, 7], has in fact a separate type system that allows more
exibility than object-oriented types, and is popular with biologists. In the next two sections, wepresent an abstraction of databases in these models in terms of �rst-order logic, and establish thedecidability of word constraint implication in these models.2 Word Constraints in a Generic Object-Oriented ModelIn this section, we investigate word constraint implication in an object-oriented data model. We�rst describe the data model, and present an abstraction of the databases in the model in terms of�rst-order logic. We then formally de�ne word constraints in the model. Finally, we show that inthe context of this model, the proof of the decidability of word constraint implication given in [3]breaks down. However, we establish several decidability results on word constraint implication inthis context.
3

2.1 An object-oriented modelWe begin with the de�nitions of database schemas and their instances, and continue with anabstraction of database instances.The data modelAssume a �xed countable set of labels, L, and a �xed �nite set of base types, B.De�nition 2.1: Let C be some �nite set of classes. The set of Types over C, TypesC , is de�ned bythe syntax: t ::= b j C� ::= t j ftg j [l1 : t1; : : : ; ln : tn]where b 2 B, C 2 C, and li 2 L. The notations ftg and [l1 : t1; : : : ; ln : tn] represent set type andrecord type, respectively. We reserve � to range over TypesC .De�nition 2.2: A schema is a triple � = (C; �; DBtype), where� C is a �nite set of classes,� � is a mapping: C ! TypesC such that for each C 2 C, �(C) 62 B [C, and� DBtype 2 TypesC n (B [C).Here we assume that every database of a schema has a unique (persistent) entry point, and DBtypein the schema speci�es the type of the entry point.Example 2.1: An example schema is (C; �; DBtype), where� C consists of a single class Person,� � maps Person to a record type [name : string; spouse : Person], and� DBtype is fPersong.De�nition 2.3: A database instance of schema (C; �; DBtype) is a triple I = (�; �; d), where� � is an oid assignment that maps each C 2 C to a �nite set of oids, �(C), such that for allC;C 0 2 C, �(C) \ �(C 0) = ; if C 6= C 0;� for each C 2 C, � maps each oid in �(C) to a value in [[�(C)]]�, where[[b]]� = Db;[[C]]� = �(C);[[f�g]]� = fV j V � [[�]]�; V is �niteg;[[[l1 : �1; :::; ln : �n]]]� = f[l1 : v1; :::; ln : vn] j vi 2 [[�i]]�; i 2 [1; n]g;here Db denotes the domain of base type b;� d is a value in [[DBtype]]�, which represents the (persistent) entry point into the databaseinstance. 4

We denote the set of all database instances of schema � by I(�).Example 2.2: An instance of the schema given in Example 2.1 is (�; �; d), where� �(Person) = fp1; p2; p3; p4g,� � : �(Person)! [[[name : string; spouse : Person]]]� is de�ned by:�(p1) 7! [name : \Smith"; spouse : p2]�(p2) 7! [name : \Mary"; spouse : p1]�(p3) 7! [name : \Joe"; spouse : p4]�(p4) 7! [name : \Maria"; spouse : p3]� d = fp1; p2; p3; p4g.Abstraction of databasesWe next present an abstraction of databases in the object-oriented model. Since structureddata can be viewed as semistructured data further constrained by a schema, along the same lines ofthe abstraction of semistructured databases described in the last section, we represent a structureddatabase as a �rst-order logic structure satisfying certain type constraint determined by its schema.Such a structure can also be depicted as an edge-labeled rooted directed graph.We assume the standard notations used in �rst-order logic [12].We �rst de�ne the �rst-order signature determined by a schema. Two components of the signa-ture are described as follows.De�nition 2.4: Given a schema � = (C; �; DBtype), we de�ne the set of binary relation symbolsand the set of types determined by �, denoted E(�) and T (�), respectively, to be the smallest setshaving the following properties:� DBtype 2 T (�) and C � T (�);� if DBtype = ftg (or for some C 2 C, �(C) = ftg), then t is in T (�) and � is in E(�);� if DBtype = [l1 : t1; : : : ; ln : tn] (or for some C 2 C, �(C) = [l1 : t1; : : : ; ln : tn]), then foreach i 2 [1; n], ti is in T (�) and li is in E(�).Note here we use the distinguished binary relation � to denote the set membership relation.Obviously, both E(�) and T (�) are �nite. In addition, every type in T (�) except DBtype iseither a class type or a base type. That is,T (�) � C [B [fDBtypeg:De�nition 2.5: The signature determined by schema �, �(�), is a triple(r; E(�); R(�));where r is a constant (denoting the root), E(�) is the �nite set of binary relations (denoting theedge labels) de�ned above, and R(�) is the �nite set of unary relations (denoting the sorts) de�nedby fR� j � 2 T (�)g.For example, the signature determined by the schema given in Example 2.1 is (r; E; R), where� r is a constant, which in each instance (�; �; d) of the schema intends to name d;5

� E = f�; name; spouseg; and� R = fRDBtype; RPerson; Rstringg.We next de�ne the type constraint determined by a schema. The type constraint can be formu-lated as a sentence in two-variable logic with counting [14, 5], C2. Two-variable logic, FO2, is thefragment of �rst-order logic consisting of all relational sentences with at most two distinct variables[13], and C2 is the extension of FO2 with counting quanti�ers. In particular, below we use thecounting quanti�er 9 !, whose semantics is described as follows: structure G satis�es 9 !x (x) ifand only if there exists a unique element a of G such that G j= (a).De�nition 2.6: Let � be a schema. For each � in T (�), the constraint determined by � is thesentence 8x�� (x) de�ned as follows:� if � = b, or if for some C 2 C, � = C and �(C) = b, then �� (x) isR� (x)! 8 y (^l2E(�):l(x; y));� if for some C 2 C, � = C and �(C) = ftg (or � = DBtype = ftg), then �� (x) isR� (x)! 8 y (^l2E(�)nf�g:l(x; y)) ^ 8 y (�(x; y) ! Rt(y));� if � = C for some C 2 C and �(C) = [l1 : t1; : : : ; ln : tn] (or � = DBtype = [l1 : t1; : : : ; ln : tn]),then �� (x) isR� (x)! 8 y (^l2E(�)nfl1;:::;lng:l(x; y)) ^ ^i2[1;n](9 ! y li(x; y) ^ 8 y (li(x; y) ! Rti(y))):The type constraint determined by schema � is the sentence�(�) = RDBtype(r) ^ ^�2T (�)8x�� (x) ^ 8x (_�2T (�)R� (x) ^ ^�2T (�)(R� (x)! ^� 02T (�)nf�g:R� 0(x))):Note here for simplicity, we assume that for each base type b 2 B, the domain of b, Db, is in�nite.If Db is �nite, i.e., the cardinality of Db is some natural number n, then we de�ne the constraintdetermined by b to be the following sentence in C2:8x�b(x) ^ 9=n xRb(x):Here �b(x) is the formula given in De�nition 2.6 and 9=n is another counting quanti�er. Thesemantics of 9=n is described as follows: a structure satis�es 9=n x (x) if and only if there areexactly n elements in the structure satisfying . We substitute this constraint for 8x�b(x) in �(�).Using the type constraint de�ned above, we present an abstraction of databases in the object-oriented model as follows. Its justi�cation will be given later in the paper.De�nition 2.7: An abstract database of a schema � is a �nite structure G of the signature �(�)such that G j= �(�). We denote the set of all abstract databases of a schema � by Uf (�).We use U(�) to denote the set of all the structures of signature �(�) satisfying the followingconditions: for each G 2 U(�),� G j= �(�); and� for each set type � 2 T (�) and each o 2 RG� , there are only �nitely many o0 in G such thatG j= �(o; o0). That is, each node in G has �nitely many outgoing edges.An example structure is depicted in Figure 2. This structure corresponds to the databaseinstance given in Example 2.2. 6

r

* * **

p1 p4p2 p3

name

"Smith" "Mary" "Joe" "Maria"

name name

spouse

spouse

spouse

spouse

name

Figure 2: An example of a structure2.2 Word constraintsIn this section, we de�ne word constraints in the object-oriented model, and justify the abstractionof databases given above by considering word constraint satis�ability.PathsWe �rst de�ne paths and types of paths over a schema.De�nition 2.8: Given a schema � = (C; �; DBtype), the set of paths over schema �, Paths(�),and the type of path � in Paths(�), type(�), are de�ned inductively as follows:� the empty path � is in Paths(�) and type(�) = DBtype;� for any � 2 Paths(�), where type(�) = � ,{ if for some C 2 C, � = C and �(C) = ftg (or � = DBtype = ftg), then � � � is a path inPaths(�) and type(� � �) = t;{ if there exists C 2 C such that � = C and �(C) = [l1 : t1; : : : ; ln : tn] (or � = DBtype =[l1 : t1; : : : ; ln : tn]), then for each i 2 [1; n], � � li is in Paths(�) and type(� � li) = ti.As in semistructured data, path � can be represented by a formula �(x; y), where x and y denotethe tail and head nodes of the path, respectively. The formula �(x; y) is de�ned by:�(x; y) = 8><>: x = y if � = �9z(�(x; z) ^ �(z; y)) if � = � � �9z(�(x; z) ^ l(z; y)) if � = � � lHere �(x; z) is a formula representing the path �.In the sequel, we assume that all the paths in Paths(�) are in the form of the formulas de�nedabove.The concatenation of paths �(x; z) and �(z; y), denoted �(x; z) ��(z; y) or simply � ��, is de�nedby: �(x; z) � �(z; y) = 8><>: �(x; y) if � = ��0(x; u) � 9z(�(u; z) ^ �(z; y)) if �(x; z) = 9u(�0(x; u) ^ �(u; z))�0(x; u) � 9z(l(u; z) ^ �(z; y)) if �(x; z) = 9u(�0(x; u) ^ l(u; z))7

The length of path �, j�j, is de�ned by:j�j = 8><>: 0 if � = �1 + j�j if � = � � �1 + j�j if � = � � lThe de�nition of word constraintsDe�nition 2.9: A word constraint ' over schema � is a sentence of the form8x (�(r; x) ! �(r; x));where � and � are in Paths(�), and type(�) = type(�). We denote �, � as lt(') and rt('),respectively.We denote the set of all word constraints over schema � as Pw(�).Obviously, Pw(�) is a language with vocabulary �(�).We borrow the standard de�nitions of models and implication from �rst-order logic [12]. Let Gbe a structure in U(�) and ' a constraint in Pw(�). Then we write G j= ' if G is a model of '.Given a �nite subset � of Pw(�) and ' 2 Pw(�), we use � j= ' to denote that � implies '. Thatis, for every structure G 2 U(�), if G j= �, then G j= '. Similarly, we use � j=f ' to denote that� �nitely implies '. That is, for every structure G 2 Uf (�), if G j= �, then G j= '.Example 2.3: The sentences� = 8x (�(r; x) ! � � spouse(r; x))' = 8x (� � spouse(r; x)! �(r; x))are word constraints over the schema given in Example 2.1. Let G be the structure given in Figure 2.It is easy to verify that G j= � and G j= '.In any instance (�; �; d) of the schema, � and ' are interpreted as8x (x 2 d! 9 y (y 2 d ^ y:spouse = x));8x (9 y (y 2 d ^ y:spouse = x)! x 2 d);respectively. Here, abusing the type terms, y:spouse stands for the projection of record y atattribute spouse, and d is a subset of �(Person). The constraint � states: \each person in the setd is the spouse of someone in d", and ' states: \if a person is the spouse of someone in d, then theperson is in d".Justi�cation of the abstractionAs illustrated by the example above, word constraints over a schema � can be naturally inter-preted in database instances of �. Likewise, the notion \I j= '" can also be de�ned for an instanceI of � and a constraint ' of Pw(�).The agreement between databases and their abstraction with respect to word constraints isrevealed by the following lemma, which justi�es the abstraction of structured databases de�nedabove.Lemma 2.1: Let � be a schema. For each I 2 I(�), there is G 2 Uf (�), such that(y) for any ' 2 Pw(�), I j= ' i� G j= ':8

Similarly, for each G 2 Uf (�), there is I 2 I(�), such that (y) holds.Proof: Let � = (C; �; DBtype).(1) We de�ne a function f : I(�)! Uf (�) such that for each I 2 I(�) and ' 2 Pw(�), I j= 'i� f(I) j= '.Given I 2 I(�), where I = (�; �; d), let IB be the set of all the base type values occurring inI. That is, a base type value v is in IB if and only if either v occurs in d, or there is C 2 C ando 2 �(C), such that v occurs in �(o). LetV = fdg [IB [[C2C�(C):For each v 2 V , let o(v) be a distinguished node. We then de�ne f(I) to be G = (jGj; rG; EG; RG),where� jGj = fo(v) j v 2 V g;� rG = o(d);� for each o(v) 2 jGj and � 2 T (�), G j= RG� (o(v)) i� v is of type � ;� for all o(v); o(v0) 2 jGj,{ G j= �(o(v); o(v0)) i� v0 2 v,{ for each l 2 L\E(�), G j= l(o(v); o(v0)) i� v0 = v:l. Here v:l means the projection of vat attribute l, i.e., the l component of v.It is straightforward to verify the following:� G 2 Uf (�); that is, G is a �nite �(�)-structure and G j= �(�);� for each ' 2 Pw(�), G j= ' i� I j= '. This can be easily veri�ed by reductio.(2) Next, we de�ne g : Uf (�)! I(�) such that for each G 2 Uf (�) and ' 2 Pw(�), G j= ' i�g(G) j= '.Let G 2 Uf (�), where G = (jGj; rG; EG; RG). For each base type b 2 T (�), we de�ne aninjective mapping gb : RGb ! Db, where RGb is the unary relation in G denoting the sort b, and Dbis the domain of b. By the de�nition of the constraint determined by b given earlier and since Gsatis�es the constraint, such a mapping always exists. We substitute gb(o) for each o in RGb . Wethen de�ne g(G) to be I = (�; �; d), where� for each C 2 C, �(C) = RGC ;� for each o 2 �(C),{ if �(C) = [l1 : �1; : : : ; ln : �n], then �(o) = [l1 : o1; : : : ; ln : on], where for each i 2 [1; n],oi 2 jGj and G j= li(o; oi);{ if �(C) = f�g, then �(o) = fo0 j o0 2 jGj; G j= �(o; o0)g;� if DBtype = [l1 : �1; : : : ; ln : �n], then let d = [l1 : o1; : : : ; ln : on], where for each i 2 [1; n],oi 2 jGj and G j= li(r; oi); if DBtype = f�g, then let d = fo0 j o0 2 jGj; G j= �(r; o0)g.
9

Note that this is well-de�ned since G j= �(�). It is easy to verify that I 2 I(�), and G j= ' i�I j= '.This proves Lemma 2.1.From the lemma follows immediately the corollary below.Corollary 2.2: Let � be a schema and �[f'g a �nite subset of Pw(�). There is I 2 I(�) suchthat I j= V� ^ :' if and only if there is G 2 Uf (�) such that G j= V� ^ :'.Proof: Suppose that there is I 2 I(�) such that I j= V� ^ :'. By Lemma 2.1, there is G inUf (�), such that for each 2 � [f'g, I j= i� G j= . Therefore, G j= V� ^ :'.Conversely, suppose that there is G 2 Uf (�) such that G j= V� ^ :'. Again by Lemma 2.1,there is I 2 I(�), such that for each 2 � [f'g, G j= i� I j= . Therefore, I j= V� ^ :'.2.3 Word constraint implicationIn this section, we study the implication and �nite implication problems for word constraintsin the object-oriented data model. We �rst describe the problems and show that the proof ofthe decidability of word constraint implication given in [3] breaks down here. We then prove thedecidability of word constraint implication in the context of the object-oriented model. In addition,we show that in two special cases, word constraint implication is decidable in PTIME.The implication problemBy Corollary 2.2, we can describe word constraint implication as follows.The (�nite) implication problem for Pw(�) over schema � is the problem of determining, givenany �nite subset � [f'g of Pw(�), whether � j= ' (� j=f ').As observed by [3], every word constraint can be expressed by a sentence in two-variable logic.Recently, [13] has shown that the satis�ability problem for FO2 is NEXPTIME-complete by es-tablishing that any satis�able FO2 sentence has a model of size exponential in the length of thesentence. The decidability of the implication and �nite implication problems for word constraintsin semistructured data follows immediately. In fact, [3] directly establishes (without reference tothe embedding into FO2) that the implication problems for word constraints are in PTIME.In contrast, in the presence of types, implication for word constraints cannot be stated in FO2.This is because in the (�nite) implication problem for Pw(�) over schema �, each structure con-sidered must satisfy �(�), which is in C2 but is not in FO2.In the object-oriented model, the proof given in [3] also breaks down. The proof is established byshowing that a set of inference rules, IAV , is sound and complete for word constraint implication.This set consists of the following three rules.� re
exivity: 8x (�(r; x) ! �(r; x))� transitivity: 8x (�(r; x) ! �(r; x)) 8x (�(r; x) !
(r; x))8x (�(r; x) !
(r; x))� right-congruence: 8x (�(r; x) ! �(r; x))
 is a path8x (� �
(r; x) ! � �
(r; x))10

However, the lemma below shows that the proof no longer holds in the context of the object-orientedmodel.Lemma 2.3: In the object-oriented model, IAV is not complete for word constraint implication.Proof: Consider the constraints � and ' given in Example 2.3. By induction on the length ofproof, it can be shown that ' is not provable from � using IAV . More speci�cally, it can be shownthat if ' were provable from � using IAV , then the length of lt(') would be strictly less than thelength of rt(').However, by the type constraint imposed by the schema given in Example 2.1, f�g j= ' indeedholds. More speci�cally, consider an instance I of the schema satisfying �, where I = (�; �; d).Let s = fx:spouse j x 2 dg and let jdj, jsj denote the cardinalities of d and s, respectively. By thetype constraint imposed by record type, jsj � jdj. By I j= �, d � s. Hence d = s, and therefore,I j= '.The decidability of word constraint implicationNext, we show that in the object-oriented model, word constraint implication is indeed decidable.Proposition 2.4: Over any schema � in the object-oriented model, the implication and �niteimplication problems for Pw(�) are decidable.The decidability of the �nite implication follows from the decidability of the �nite satis�abilityproblem for C2, which was established by [5], since the type constraints are expressible in C2 andall the word constraints are in FO2.By this result, for the decidability of the implication problem it su�ces to show that the im-plication and �nite implication problems coincide. That is, over arbitrary schema � and for each�nite subset � [f'g of Pw(�), if V� ^ :' has a model in U(�), then it has a model in Uf (�).This is established by the lemma below.Lemma 2.5: Let � be a schema in the object-oriented model. For each �nite subset � [f'g ofPw(�), if V� ^ :' has a model in U(�), then it has a model in Uf (�).Proof: Given �[f'g � Pw(�) and model G of V�^:' in U(�), we construct a �nite structureG0 such that G0 2 Uf (�) and G0 j= V�^:'. To do so, we �rst de�ne the notion of k-neighborhoodof a structure, as follows.For each structure G in U(�) and natural number k, the k-neighborhood of G is the substructureGk of G with its universejGkj = fo j o 2 jGj; G j= �(r; o) for some � 2 Paths(�) with j�j � kg:Given � and ' as described above, letk = maxfjlt()j; jrt()j j 2 � [f'gg + 1;and let Gk be the k-neighborhood of G. Then we construct G0 as follows. For each � 2 T (�), leto(�) be a distinct node, and let G0 = (jG0j; rG0 ; EG0 ; RG0), where� jG0j = jGkj [fo(�) j � 2 T (�)g,� rG0 = rGk ,� for each � 2 T (�), RG0� = (RG� \ jGkj) [fo(�)g,11

� EG0 is EGk augmented with the following:{ for each o 2 RG� \ jGkj, where � = [l1 : �1; :::; ln : �n], and for each i 2 [1; n], if for everyo0 2 jGkj, Gk 6j= li(o; o0), then let G0 j= li(o; o(�i));{ for any � 2 T (�), if � = [l1 : �1; :::; ln : �n], then for each i 2 [1; n], letG j= li(o(�); o(�i)).We now show that G0 is indeed the structure desired.(1) G0 2 Uf (�).Since G 2 U(�), each node in jGj has �nitely many outgoing edges. Hence by the de�nition ofGk, jGkj is �nite. In addition, T (�) is �nite. Therefore, by the construction of G0, jG0j is �nite. Inaddition, by the de�nition of G0, it can be easily veri�ed that G0 j= �(�).(2) G0 j= V� ^ :'.The following can be easily veri�ed by reductio:Claim: G j= V� ^ :' i� Gk j= V� ^ :'.By the claim, it su�ces to show that Gk is also the k-neighborhood of G0. To do so, assumefor reductio that there exist o(�) 2 jG0j and � 2 Paths(�) such that j�j � k and G0 j= �(r; o(�)).Without loss of generality, assume that � has the shortest length among such paths. Then by theconstruction of G0, there is o 2 jGkj, such that� � = �0 � l and G0 j= �0(r; o) ^ l(o; o(�));� there is � 2 T (�) such that � = [l : �; :::] and o 2 RG� , and for any o0 2 jGkj, Gk 6j= l(o; o0);and� Gk j= �0(r; o). This is because for each � 2 T (�), o(�) does not have any outgoing edge toany node of jGkj.By G 2 U(�), there is o0 2 jGj such that G j= l(o; o0). By the argument above, o0 62 jGkj.Hence by the de�nition of k-neighborhood, there is no path � 2 Paths(�) such that j�j < k andG j= �(r; o) ^ l(o; o0). Therefore, �0 must have a length of at least k. That is, j�j > k. Thiscontradicts the assumption. Hence Gk is indeed the k-neighborhood of G0.Therefore, G0 is indeed the structure desired. This proves Lemma 2.5.The complexity of word constraint implication remains open. However, we show below that intwo special cases, word constraint implication is decidable in PTIME.Word constraint implication over record schemaWe next investigate word constraint implication over record schema, by which we mean a schemathat does not contain any set type.Proposition 2.6: Over any record schema � in the object-oriented model, the implication and�nite implication problems for Pw(�) are decidable in PTIME in the size of the implication andthe size of the schema.The proof of the proposition follows closely to the argument given in [3] for the PTIME de-cidability of word constraint implication in semistructured data. To present the proof, we �rstintroduce a set of inference rules, Ir, over record schema �. This set consists of the following rules.� Re
exivity: � 2 Paths(�)8x (�(r; x) ! �(r; x))12

� Transitivity: 8x (�(r; x) ! �(r; x)) 8x (�(r; x) !
(r; x))8x (�(r; x) !
(r; x))� Right-congruence:8x (�(r; x) ! �(r; x)) � �
 2 Paths(�) and � �
 2 Paths(�)8x (� �
(r; x) ! � �
(r; x))� Commutativity: 8x (�(r; x) ! �(r; x))8x (�(r; x) ! �(r; x))Here for simplicity, we assume that the domain of each base type has at least two elements.Given a �nite subset �[f'g of Pw(�), we use � `Ir ' to denote that there is an Ir-proof of 'from �, i.e., ' is provable from � using Ir.The proof of Proposition 2.6 requires the following two lemmas. The second lemma is borrowedfrom [3]. It involves IAV , the set of inference rules mentioned previously.Lemma 2.7: Over any record schema �, Ir is sound and complete for �nite implication for Pw(�).Lemma 2.8 [3]: Let � be a �nite set of word constraints and � a path. The setRewriteTo(�) = f� j � `IAV 8x (�(r; x) ! �(r; x))gis a regular language recognized by an nfsa constructible in polynomial time from � and �. Inparticular, whether � `IAV 8x (�(r; x) ! �(r; x)) can be decided in PTIME.These two lemmas su�ce. To see this, for any record schema � and �nite subset � of Pw(�),let �0 = � [f8x (�(r; x) ! �(r; x)) j 8x (�(r; x) ! �(r; x)) 2 �g:It is easy to verify that for each ' 2 Pw(�), � `Ir ' if and only if �0 `IAV ' and ' 2 Pw(�). Inaddition, it can be veri�ed that whether ' is in Pw(�) can be decided in PTIME in the size of �and the size of '. Hence by Lemma 2.8, whether � `Ir ' can be decided in PTIME in the size of� and the size of �[f'g. By Lemma 2.7, � j=f ' i� � `Ir '. By Lemma 2.5, we also have � j= 'i� � `Ir '. Therefore, the implication and �nite implication problems for Pw(�) are decidable inthe size of � and the size of � [f'g.We next show Lemma 2.7.Proof of Lemma 2.7: The soundness of Ir can be veri�ed by a straightforward induction on thelength of Ir-proof.For the proof of the completeness, it su�ces to show the following claim.Claim 1: Given any record schema � and �nite subset � [f'g of Pw(�), there is G 2 Uf (�)such that G j= �, and in addition, if G j= ', then � `Ir '.First assume that for each base type b 2 T (�), the domain of b is in�nite. We prove Claim 1by constructing the structure G desired. Letk = maxfjlt()j; jrt()j j 2 � [f'gg + 1:We �rst construct the k-neighborhood of G, Gk, and then construct G from Gk.The construction of Gk. Let 13

� Pathsk(�) = f� j � 2 Paths(�); j�j � kg;� � be the equivalence relation on Pathsk(�) de�ned by� � � i� � `Ir 8x (�(r; x)! �(r; x)) and � `Ir 8x (�(r; x)! �(r; x));� b� denote the equivalence class of path � and A = fb� j � 2 Pathsk(�)g;� type(b�) = type(�), where type(�) is the type of path � determined by �. This is well-de�nedsince if � and � are in the same equivalence class, then by De�nition 2.9, type(�) = type(�).We construct Gk as follows.� For each b� 2 A, let o(b�) be a distinct node and let jGkj = fo(b�) j b� 2 Ag.� Let rGk = o(b�).� For each � 2 T (�), let RGk� = fo(b�) j b� 2 A; type(b�) = �g.� For each o(b�), if type(b�) = [l1 : �1; : : : ; ln : �n] and there is � 2 b� with j�j < k, then foreach i 2 [1; n], let Gk j= li(o(b�); o(d� � li)). Note that this is well-de�ned by Transitivity andRight-congruence in Ir.The construction of G. For each � 2 T (�), let o(�) be a distinct node. Let G = (jGj; rG; EG; RG),where� jGj = jGkj [fo(�) j � 2 T (�)g;� rG = rGk ;� for each � 2 T (�), RG� = RGk� [fo(�)g;� for each label l 2 E(�), if Gk j= l(o; o0), then G j= l(o; o0). Moreover,{ for each o(b�) 2 jGkj, if type(b�) = [l1 : �1; :::; ln : �n] and for some i 2 [1; n], o(b�) doesnot have any outgoing edge labeled with li, then let G j= li(o(b�); o(�i));{ for every � 2 T (�), if � is of the form [l1 : �1; :::; ln : �n], then for each i 2 [1; n], letG j= li(o(�); o(�i)).We next show that G is indeed a structure described in Claim 1.(1) G 2 Uf (�).Obviously, jGj is �nite since Pathsk(�) and T (�) are �nite. We next show that G j= �(�).That is, we show that for each o 2 jGj, if o 2 RG� , then G j= �� (o). We examine the following cases.Case 1: o = o(�).By the construction of G, it is obvious G j= �� (o(�)).Case 2: o = o(b�).If type(b�) = b for some base type b, then by the construction of Gk, o(b�) does not have anyoutgoing edge. Thus G j= �� (o(b�)).If � = [l1 : �1; : : : ; ln : �n], we have two cases to consider.First, if for each � 2 b�, k � j�j, then by the construction of G, for each i 2 [1; n],G j= li(o(b�); o(�i));and moreover, these are all the outgoing edges of o(b�). Clearly, o(�i) 2 RG�i . Hence G j= �� (o(b�)).14

Second, suppose that there is � 2 b�, such that j�j < k. Then by the construction of Gk, foreach i 2 [1; n], G j= li(o(b�); o(d� � li)):By De�nition 2.8, type(d� � li) = type(� � li) = �i. That is, o(d� � li) 2 RG�i . Moreover, by Right-congruence, for each
 2 b�, we have � � li �
 � li. Hence o(b�) has a unique outgoing edge labeledwith li. Therefore, G j= �� (o(b�)).This proves that G 2 Uf (�).(2) Gk is the k-neighborhood of G.By the property of record schema and the de�nition of G, we have the following claim:Claim 2: For each � 2 Pathsk(�), G j= �(r; o(b�)). In addition, if there is o 2 jGj such thatG j= �(r; o), then o = o(b�).This claim can be veri�ed by a straightforward induction on j�j. This shows that Gk is indeedthe k-neighborhood of G.(3) G j= �.For each 2 �, where = 8x (�(r; x) ! �(r; x)), we have �; � 2 Pathsk(�) by the de�nitionof k. By Commutativity, we have � � �. Therefore, o(b�) = o(b�). By Claim 2, o(b�) is the onlynode in G to which there is an � path from r. Therefore,G j= 8x (�(r; x) ! �(r; x)):Hence G j= �.(4) If G j= ', then � `Ir '.Let ' = 8x (�(r; x) ! �(r; x)). By the de�nition of k, we have that �; � 2 Pathsk(�). Moreover,by G j= ' and Claim 2, o(b�) = o(b�). By the construction of G, there must be b� = b�. Hence bythe de�nition of �, we have � `Ir '.This shows that if the domain of each base type in T (�) is in�nite, then Claim 1 holds.Now suppose that some base types in T (�) have �nite domains (as mentioned previously, weassume that each of these �nite domains has at least two elements). We construct a structure G0which has all the properties described in Claim 1 as follows.Let G be the structure de�ned above. For each base type b 2 T (�) with a �nite domain andfor all b�, b� in A, we identify o(b�) with o(b�) in jGj if all the following conditions are satis�ed:� type(b�) = type(b�) = b;� if dlt(') 6= drt('), then none of the following holds:{ b� = dlt(') and b� = drt('),{ b� = drt(') and b� = dlt(').In addition, we equalize o(�) with o(b�) for some b� 2 A such that b� 6= drt('). If such b� does notexist, then let o(�) be a distinct node as before.Let G0 be the structure constructed from G by equalizing nodes in jGj as described above.Clearly, jG0j � jGj, and for each base type b 2 T (�), if the domain of b is �nite, then RG0b has atmost two elements. In addition, by the de�nition of G0, it is easy to verify the following claims.Claim 3: G0 j= �(�).Claim 4: For each � 2 Pathsk(�) and o 2 jG0j, if G j= �(r; o), then G0 j= �(r; o).Claim 5: If G0 j= ', then G j= '. 15

These su�ce for a proof of Claim 1. For by Claim 3, G0 2 Uf (�). Using Claim 4, it is easy toverify that G0 j= � by reductio. By Claim 5, if G0 j= ', then by the proof above, � `Ir '.This completes the proof of Lemma 2.7.Implication for word constraints having the �-formNext, we consider word constraints of the form:8x (�(r; x) ! � � �(r; x)):We refer to such a constraint as a constraint having the �-form. Implication � j= ' (� j=f ') iscalled �-form (�nite) implication if every constraint in � [f'g has the �-form.Proposition 2.9: Over any schema � in the object-oriented model, the �-form implication and�nite implication problems for Pw(�) are decidable in PTIME in the size of the implication andthe size of the schema.To show the proposition, let I� be the subset of Ir consisting of Re
exivity, Transitivity andRight-congruence. As in the proof of Proposition 2.6, it su�ces to show the following lemma.Lemma 2.10: Over any schema � in the object-oriented model, I� is sound and complete for�nite implication for Pw(�).Proof: The proof of the lemma is similar to that of Lemma 2.7.The soundness of I� can be veri�ed by a straightforward induction on the length of I�-proof.For the proof of the completeness, it su�ces to show the following claim.Claim 1: Given any schema � and �nite set � [f'g of �-form constraints in Pw(�), there isG 2 Uf (�) such that G j= �, and in addition, if G j= ', then � `I� '.We �rst assume that for each base type b 2 T (�), the domain of b is in�nite. As in the proofof Lemma 2.7, we de�ne the natural number k. We construct the structure G described in Claim1 in two steps: we �rst de�ne Gk and the construct G from Gk.The construction of Gk. As in the proof of Lemma 2.7, we de�ne Pathsk(�), �, b�, A and type(b�).In addition, we de�ne a partial order on A as follows:b� � b� i� � `I� 8x (�(r; x)! �(r; x)):Note that this is well-de�ned by Transitivity in I�.Let Gk = (jGkj; rGk ; EGk ; RGk), where jGkj, rGk and RGk are de�ned in the same way as in theproof of Lemma 2.7. The binary relations in EGk are populated as follows.� For each o(b�), if type(b�) = [l1 : �1; : : : ; ln : �n] and there is � 2 b� with j�j < k, then foreach i 2 [1; n], let Gk j= li(o(b�); o(d� � li)). Note that this is well-de�ned by Transitivity andRight-congruence in I�.� For each o(b�), if type(b�) = f�g and there is � 2 b� with j�j < k, then for each b
 � d� � �, letGk j= �(o(b�); o(b
)).The construction of G. The structure G is de�ned in the same way as in the proof of Lemma 2.7,except the following: for each o(b�) 2 jGkj, if type(b�) = f�g, then let G j= �(o(b�); o(�)).We now show that G is indeed a structure described in Claim 1.1. G 2 Uf (�). 16

It is easy to verify that jGj is �nite. We next show that for each o 2 jGj, if o 2 RG� , thenG j= �� (o). The arguments for the following cases are the same as in the proof of Lemma 2.7.Case 1: o = o(�) and � is either a base type or a record type.Case 2: o = o(b�) and type(b�) is either a base type or a record type.We next examine the cases involving set types.Case 3: o = o(�) and � = f� 0g.Clearly, G j= �� (o(�)) since o(�) does not have any outgoing edge by the construction of G.Case 4: o = o(b�) and type(b�) = f� 0g.If for each � 2 b�, k � j�j, then by the construction of G, G j= �(o(b�); o(� 0)). In addition, o(b�)does not have any other outgoing edge. Clearly, o(� 0) 2 RG� 0 . Hence G j= �� (o(b�)) in this case.Now suppose that there is � 2 b� with j�j < k. Then by the de�nition of G, for each
 inPathsk(�), if b
 � d� � �, then G j= �(o(b�); o(b
)). Moreover, G j= �(o(b�); o(� 0)). These are all theoutgoing edges from o(b�). Therefore, o(b�) has �nitely many outgoing edges, which are all labeledwith �. In addition, clearly o(� 0) 2 RG� 0 . Moreover, by b
 � d� � �, we have type(b
) = type(d� � �) = � 0.Hence o(b
) 2 RG� 0 . Thus G j= �� (o(b�)).This proves that G j= �(�), and consequently, G 2 Uf (�).2. G j= �.It su�ces to show the following claim.Claim 2: For each � 2 Pathsk(�), letobj(�) = fo j o 2 jGkj; G j= �(r; o)g;inf(�) = fo(b�) j b� 2 A; b� � b�g:Then obj(�) = inf(�).To see this, assume for reductio that there is 2 �, where = 8x (�(r; x)! � � �(r; x)), suchthat G 6j= . That is, there is o 2 jGj, such that G j= �(r; o) ^ :� � �(r; o).If o 2 jGkj, then o 2 obj(�). By � `I� , we have b� � d� � �. Hence inf(�) � inf(� � �).Therefore, by Claim 2, obj(�) � obj(� � �). Hence o 2 obj(� � �). That is, G j= � � �(r; o). Thiscontradicts the assumption.If o 2 jGjnjGkj, i.e., o = o(�) for some � 2 T (�), then by De�nition 2.9, type(���) = type(�) = � .By De�nition 2.8, we have type(�) = f�g. Since o(b�) 2 inf(�), by Claim 2, o(b�) 2 obj(�). Thatis, G j= �(r; o(b�)). By the construction of G, G j= �(o(b�); o(�)). Hence G j= � � �(r; o(�)). Thiscontradicts the assumption.Hence G j= �.We next show Claim 2 by induction on j�j.Base case: � = �.Since all the constraints in � have the �-form, by the de�nition of I�, it is easy to see that foreach � 2 Pathsk, if b� � b�, then � = �. Therefore, inf(�) = fo(b�)g = frGg = obj(�).Inductive step: Assume Claim 2 for j�j < m.We next show the claim holds for � �K, where K is either � or some record label l.(1) inf(� �K) � obj(� �K).Let o be a node in inf(� �K).If K 6= �, then by De�nition 2.8, type(b�) is some record type with �eld K. In addition, bythe de�nition of inf , there is � 2 Pathsk(�) such that o = o(b�) and b� � d� �K. Since all theconstraints in � have the �-form, by the de�nition of I�, there must be �0 2 Pathsk(�) such that� = �0 �K and b�0 � b�:17

This can be veri�ed by a straightforward induction on the length of I�-proof of the constraint8x (�(r; x) ! � �K(r; x)) from �. Thus o(b�0) 2 inf(�). By the induction hypothesis, we have thato(b�0) 2 obj(�). That is, G j= �(r; o(b�0)):Since j�0j < j�j < k and type(�0) = type(�), by the de�nition of G,G j= K(o(b�0); o(d�0 �K)):Therefore, o(b�) 2 obj(� �K). That is, o 2 obj(� �K).If K = �, then by De�nition 2.8, type(b�) = ftype(� � �)g. In addition, there is � 2 Pathsk(�)such that o = o(b�) and b� � d� � �. By the induction hypothesis, o(b�) 2 inf(�) = obj(�). That is,G j= �(r; o(b�)):Since b� � d� � �, by the construction of Gk,G j= �(o(b�); o(b�)):Hence o(b�) 2 obj(� � �). That is, o 2 obj(� � �).Therefore, inf(� �K) � obj(� �K).(2) obj(� �K) � inf(� �K).For each o 2 obj(� �K), there is o0 2 obj(�), such that G j= K(o0; o).If K 6= �, then type(�) is some record type with �eld K. By the the induction hypothesis,inf(�) = obj(�). Thus o0 2 inf(�). Hence there is some � 2 Pathsk(�), such that b� � b� ando0 = o(b�). Since o 2 jGkj and G j= K(o(b�); o), by the construction of Gk, there must be
 2 b�such that j
j < k and o(d
 �K) = o:Since b
 = b� and b� � b�, by Right-congruence,d
 �K � d� �K:Hence o(d
 �K) 2 inf(� �K). That is, o 2 inf(� �K).If K = �, then type(�) = ftype(� � �)g. By the induction hypothesis, inf(�) = obj(�). Thuso0 2 inf(�). Hence there is � 2 Pathsk(�) such that b� � b� and o0 = o(b�). By De�nition 2.9,type(b�) = ftype(� � �)g. Since o 2 jGkj and G j= �(o(b�); o), by the construction of Gk, there mustbe
 2 b� such that j
j < k. Hence d
 � � 2 A. In addition, there must be � 2 Pathsk(�) such thatb� � d
 � � and o(b�) = o:Since
 2 b�, we have b
 = b�. Since b� � b�, by Right-congruence, d
 � � � d� � �. By Transitivity,b� � d� � �:Hence o(b�) 2 inf(� � �). That is, o 2 inf(� � �).Therefore, obj(� �K) � inf(� �K). This proves Claim 2.3. If G j= ', then � `I� '.Let ' = 8x (�(r; x) ! � � �(r; x)). Since � and � � � are in Pathsk(�) and G j= ', we haveobj(�) � obj(� � �). Hence by Claim 2, we have inf(�) � inf(� � �). Since o(b�) 2 inf(�),o(b�) 2 inf(� � �). Therefore, b� � d� � � by the de�nition of inf . Hence � `I� '.This shows that if the domain of each base type in T (�) is in�nite, then Claim 1 holds.18

Now suppose that some base types in T (�) have �nite domains (as mentioned previously, weassume that each of these �nite domains has at least two elements). We construct a structure G0which has all the properties described in Claim 1 as follows.Let G be the structure de�ned above. For each base type b 2 T (�) with a �nite domain andfor all b�, b� in A, we identify o(b�) with o(b�) in jGj if all the following conditions are satis�ed:� type(b�) = type(b�) = b;� if dlt(') 6� drt('), then none of the following holds:{ dlt(') � b� and b� � drt('),{ dlt(') � b� and b� � dlt(').In addition, we equalize o(�) with o(b�) for some b� 2 A such that b� 6= drt('). If such b� does notexist, then let o(�) be a distinct node as before.Let G0 be the structure constructed from G by equalizing nodes in jGj as described above. It iseasy to show that Claim 3, 4 and 5 in the proof of Lemma 2.7 also hold here. Thus Claim 1 alsoholds in this case.This completes the proof of Lemma 2.10.3 Word Constraints in an ACeDB ModelWe next consider word constraint implication in an object-oriented model based on ACeDB [19].The ACeDB based model does not have an explicit set construct, and in addition, it does notinterpret a record type as a function from attributes to corresponding domains. More speci�cally,a value of a record type [l1 : t1; : : : ; ln : tn] is a �nite subset of(fl1g � [[t1]]) [: : : [(flng � [[tn]]);where [[ti]] denotes the domain of ti. In graph representation, a node of this record type may have�nitely many outgoing edges labeled with li for each i 2 [1; n].This ACeDB model is de�ned in the same way as the object-oriented model given in the lastsection, except the di�erence aforementioned. Similarly, the abstraction of the databases and wordconstraints in the model can be de�ned, except that the constraint 8x�� (x) imposed by a recordtype � = [l1 : t1; : : : ; ln : tn] is now de�ned by:�� (x) = R� (x)! 8y (^l2E(�)nfl1;:::;lng:l(x; y)) ^ ^i2[1;n]8y (li(x; y)! Rti(y)):Given a schema � in the ACeDB model, we assume the de�nitions of E(�), T (�), �(�),�(�), Pw(�), Uf (D) and U(D) used in the object-oriented model de�ned in the last section. Forsimplicity, we assume that Pw(�) does not include constraints of the following form (see [3] for anargument for this assumption): 8x (�(r; x) ! �(r; x)):The proposition below establishes the decidability of word constraint implication in the ACeDBmodel.Proposition 3.1: Over any schema � in the ACeDB model, the implication and �nite implicationproblems for Pw(�) are decidable in PTIME in the size of the implication and the size of theschema. 19

To prove this proposition, recall I�, the set of inference rules given in the last section. Thelemma below shows that I� is also sound and complete for word constraint implication in theACeDB model.Lemma 3.2: Over any schema � in the ACeDB model, I� is sound for both the implication and�nite implication problems for Pw(�), and is complete for the �nite implication problem for Pw(�).From Lemma 3.2 and Lemma 2.8 follows immediately the PTIME decidability of the �niteimplication problem for word constraints in the ACeDB model. In addition, by Lemma 3.2, theimplication and �nite implication problems for word constraints coincide in the ACeDB model. Tosee this, consider a �nite subset �[f'g of Pw(�). Obviously, if � j= ', then � j=f '. Conversely,if � j=f ' then by the completeness of I� for �nite implication, � `I� '. Since I� is also soundfor implication, we have � j= '. From this argument also follows the PTIME decidability of theimplication problem for word constraints in the ACeDB model.We next show Lemma 3.2.Proof of Lemma 3.2: The proof below is similar to that of Lemma 2.10.The soundness of I� can be veri�ed by a straightforward induction on the length of I�-proof.For the proof of the completeness, it su�ces to show Claim 1 below:Claim 1: Given any schema � in the ACeDB model and �nite set � [f'g of constraints inPw(�), there is G 2 Uf (�) such that G j= �, and in addition, if G j= ', then � `I� '.We �rst assume that for each base type b 2 T (�), the domain of b is in�nite. As in the proofof Lemma 2.7, we de�ne the natural number k. We construct the structure G described in Claim1 in two steps: we �rst de�ne Gk and the construct G from Gk.The construction of Gk. As in the proof of Lemma 2.10, we de�ne Pathsk(�), �, b�, A, type(b�)and �. Let Gk = (jGkj; rGk ; EGk ; RGk), where jGkj, rGk and RGk are de�ned in the same way asin the proof of Lemma 2.7. The binary relations in EGk are populated as follows: for each o(b�),if type(b�) = [l1 : �1; : : : ; ln : �n] and there is � 2 b� with j�j < k, then for each i 2 [1; n] and each
 2 A such that b
 � d� � li, let Gk j= li(o(b�); o(d
 � li)):The construction of G. Let G = (jGj; rG; EG; RG), where jGj, rG and RG are de�ned in the sameway as in the proof of Lemma 2.7. Let EG be EGk augmented as follows: for each o(b�) 2 jGkj, iftype(b�) = [l1 : �1; :::; ln : �n], then for each i 2 [1; n], letG j= li(o(b�); o(�i)):We now show that G is indeed a structure described in Claim 1.1. G 2 Uf (�).It is easy to verify that jGj is �nite. We next show that for each o 2 jGj, if o 2 RG� , thenG j= �� (o). The arguments for the following cases are the same as in the proof of Lemma 2.7.Case 1: o = o(�) and � is either a base type or a record type.Case 2: o = o(b�) and type(b�) is a base type.We next examine the following case.Case 3: o = o(b�) and type(b�) = [l1 : �1; : : : ; ln : �n].If for each � 2 b�, k � j�j, then by the construction of G, for each i 2 [1; n], G j= li(o(b�); o(�i)).These are all the outgoing edges of o(b�). Clearly, o(�i) 2 RG�i . Hence G j= �� (o(b�)) in this case.20

If there is � 2 b� such that j�j < k, then by the construction of Gk, for each i 2 [1; n] and eachb
 � d� � li, G j= li(o(b�); o(b
)):In addition, G j= li(o(b�); o(�i)):These are all the outgoing edges of o(b�). Clearly, o(�i) 2 RG�i . By De�nition 2.8, it is easy to seethat type(d� � li) = type(� � li) = �i. Moreover, by De�nition 2.9, we have that for each b
 � d� � li,type(b
) = type(
) = type(� � li). Hence o(b
) 2 RG�i . Therefore, G j= �� (o(b�)).This proves that G j= �(�), and therefore, G 2 Uf (�).2. G j= �.It su�ces to show Claim 2 given in the proof of Lemma 2.10.To see this, assume for reductio that there is 2 �, where = 8x (�(r; x) ! �(r; x)), suchthat G 6j= . That is, there is o 2 jGj, such that G j= �(r; o) ^ :�(r; o).If o 2 jGkj, then o 2 obj(�). By � `I� , we have b� � b�. Hence inf(�) � inf(�). Therefore,by Claim 2, obj(�) � obj(�). Hence o 2 obj(�). That is, G j= �(r; o). This contradicts theassumption.If o 2 jGj n jGkj, i.e., o = o(�) for some � 2 T (�), then type(�) = � . By the assumptionon Pw(�), 1 � j�j. Let � = �0 � l. Since � 2 Pathsk(�), �0 2 Pathsk(�). By Claim 2,o(b�0) 2 inf(�0) = obj(�0). Hence G j= �0(r; o(b�0)):By De�nition 2.9, type(�) = type(�) = � . By De�nition 2.8, type(�0) is a record type [l : �; : : :].Hence by the construction of G, G j= l(o(b�0); o(�)):Thus G j= �(r; o). This contradicts the assumption.Hence G j= �.We next show Claim 2 by induction on j�j.Base case: � = �.By the assumption on Pw(�), it is easy to see that for each � 2 Pathsk, if b� � b�, then � = �.Therefore, inf(�) = fo(b�)g = frGg = obj(�).Inductive step: Assume Claim 2 for j�j < m. We next show that the claim holds for � � l.(1) inf(� � l) � obj(� � l).For each o 2 inf(� � l), there is b�, such that b� � d� � l and o = o(b�). By � � l 2 Pathsk(�), b� 2 A.Hence by induction hypothesis, o(b�) 2 inf(�) = obj(�). That is, G j= �(r; o(b�)). In addition, byDe�nition 2.8, type(b�) must be a record type with �eld l. Since b� � d� � l, by the construction ofG, G j= l(o(b�); o(b�)). Thus o 2 obj(� � l).Therefore, inf(� � l) � obj(� � l).(2) obj(� � l) � inf(� � l).For each o 2 obj(� � l), there is o0 2 obj(�), such that G j= l(o0; o). By induction hypothesis,o0 2 inf(�). Hence there is � 2 Pathsk(�), such that b� � b� and o0 = o(b�). Since o 2 jGkj andG j= l(o(b�); o), by the construction of G, there is
 2 b� such that j
j < k. Hence d
 � l 2 A. Inaddition, there must be � 2 Pathsk(�) such thatb� � d
 � l and o(b�) = o:Clearly, b
 = b�. Since b� � b�, by Right-congruence, d
 � l � d� � l. By Transitivity,b� � d� � l:21

Hence o(b�) 2 inf(� � l). That is, o 2 inf(� � l).This proves Claim 2.3. If G j= ', then � `I� '.Let ' = 8x (�(r; x) ! �(r; x)). Since � and � are in Pathsk(�) and G j= ', we have thatobj(�) � obj(�). Hence by Claim 2, we have inf(�) � inf(�). Since o(b�) 2 inf(�), o(b�) 2 inf(�).Therefore, b� � b� by the de�nition of inf . Hence � `I� '.This shows that if the domain of each base type in T (�) is in�nite, then Claim 1 holds. As inthe proof of Lemma 2.10, it can be shown that Claim 1 also holds if some base types in T (�) have�nite domains.This completes the proof of Lemma 3.2.4 ConclusionsWe have investigated the path constraints introduced and studied in [3, 8, 9] for typed data. Thetype system or schema de�nition can be viewed as imposing a type constraint on the data. Wehave shown that the type constraints interact with the path constraints. As a result, in general wecan no longer expect results developed for semistructured data to hold when a type is imposed onthe data. Indeed, we have shown that the proof given in [3] for the decidability of word constraintimplication in semistructured data breaks down in the presence of type constraints, and only inrestricted type systems do we have decidability results on word constraint implication.In particular, we have investigated word constraint implication in two restricted yet practicalobject-oriented models: a \generic" object-oriented type system and a type system based on ACeDB[19]. In these models, we have presented abstractions of the databases in terms of �rst-order logic,and we have established the decidability of word constraint implication.Acknowledgements. The authors thank Victor Vianu, Val Tannen and Susan Davidson forhelpful discussions.References[1] S. Abiteboul. \Querying semi-structured data". In Proc. ICDT , 1997.[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner. \The lorel query language forsemistructured data". Journal of Digital Libraries, 1(1), 1997.[3] S. Abiteboul and V. Vianu. \Regular path queries with constraints", In Proc. ACM Symp. onPrinciples of Database Systems, 1997.[4] C. Beeri. \A formal approach to object-oriented databases". IEEE Trans. on Knowledge andData Engineering , 5: 353-382, 1990.[5] E. B�orger, E. Gr�adel, and Y. Gurevich. The classical decision problem. Springer, 1997.[6] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. \Adding structure to unstructureddata". In Proc. ICDT , 1997.[7] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. \A query language and optimizationtechniques for unstructured data". In Proc. ACM SIGMOD International Conf. on Manage-ment of Data, pp. 505-516, 1996. 22

[8] P. Buneman, W. Fan, and S. Weinstein. \Some undecidable implication problems for path con-straints". Technical Report MS-CIS-97-14, Department of Computer and Information Science,University of Pennsylvania, 1997.[9] P. Buneman, W. Fan, and S. Weinstein. \The decidability of some restricted implicationproblems for path constraints". Technical Report MS-CIS-97-15, Department of Computerand Information Science, University of Pennsylvania, 1997.[10] R. G. G. Cattell (ed.). The object-oriented standard: ODMG-93 (Release 1.2). Morgan Kauf-mann, San Mateo, California, 1996.[11] U. Dayal. \Queries and views in an object-oriented data model". In Proc. 2nd DBPL, pp.80-102, 1989.[12] H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.[13] E. Gr�adel, P. Kolaitis, and M. Vardi. \On the decision problem for two-variable �rst-orderlogic". Bulletin of Symbolic Logic, 3(1): 53-69, March 1997.[14] E. Gr�adel, M. Otto, and E. Rosen. \Two-variable logic with counting is decidable". Preprint,1996.[15] Anthony Kosky. Transforming databases with recursive data structures. PhD thesis, Depart-ment of Computer and Information Science, University of Pennsylvania, 1995.[16] S. Nestorov, S. Abiteboul, and R. Motwani. \Inferring structure in semistructured data". InWorkshop on Management of Semistructured Data, 1997.[17] S. Nestorov, J. Ullman, J. Weiner, and S. Chawathe. \Representative objects: Concise rep-resentations of semistructured, hierarchical data". In Proc. Thirteenth International Conf. onData Engineering , 1997.[18] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. \Object exchange across heteroge-neous information sources". In Proc. Eleventh International Conf. on Data Engineering , pp.251-260, March 1995.[19] J. Thierry-Mieg and R. Durbin. \Syntactic de�nitions for the ACEDB data base manager".Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology, Cambridge, CB22QH, UK, 1992.

23

