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ABSTRACT

INCREASING TRANSPARENCY AND PRESENCE IN
TELEOPERATION THROUGH HUMAN-CENTERED DESIGN

Rebecca M. Pierce

Katherine J. Kuchenbecker

Teleoperation allows a human to control a robot to perform dexterous tasks in re-

mote, dangerous, or unreachable environments. A perfect teleoperation system would

enable the operator to complete such tasks at least as easily as if he or she was to

complete them by hand. This ideal teleoperator must be perceptually transparent,

meaning that the interface appears to be nearly nonexistent to the operator, allowing

him or her to focus solely on the task environment, rather than on the teleoperation

system itself. Furthermore, the ideal teleoperation system must give the operator a

high sense of presence, meaning that the operator feels as though he or she is phys-

ically immersed in the remote task environment. This dissertation seeks to improve

the transparency and presence of robot-arm-based teleoperation systems through a

human-centered design approach, specifically by leveraging scientific knowledge about

the human motor and sensory systems.

First, this dissertation aims to improve the forward (efferent) teleoperation control

channel, which carries information from the human operator to the robot. The tra-

ditional method of calculating the desired position of the robot’s hand simply scales

the measured position of the human’s hand. This commonly used motion mapping

erroneously assumes that the human’s produced motion identically matches his or
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her intended movement. Given that humans make systematic directional errors when

moving the hand under conditions similar to those imposed by teleoperation, I pro-

pose a new paradigm of data-driven human-robot motion mappings for teleoperation.

The mappings are determined by having the human operator mimic the target robot

as it autonomously moves its arm through a variety of trajectories in the horizontal

plane. Three data-driven motion mapping models are described and evaluated for

their ability to correct for the systematic motion errors made in the mimicking task.

Individually-fit and population-fit versions of the most promising motion mapping

model are then tested in a teleoperation system that allows the operator to control

a virtual robot. Results of a user study involving nine subjects indicate that the

newly developed motion mapping model significantly increases the transparency of

the teleoperation system.

Second, this dissertation seeks to improve the feedback (afferent) teleoperation

control channel, which carries information from the robot to the human operator.

We aim to improve a teleoperation system a teleoperation system by providing the

operator with multiple novel modalities of haptic (touch-based) feedback. We describe

the design and control of a wearable haptic device that provides kinesthetic grip-force

feedback through a geared DC motor and tactile fingertip-contact-and-pressure and

high-frequency acceleration feedback through a pair of voice-coil actuators mounted

at the tips of the thumb and index finger. Each included haptic feedback modality is

known to be fundamental to direct task completion and can be implemented without
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great cost or complexity. A user study involving thirty subjects investigated how these

three modalities of haptic feedback affect an operator’s ability to control a real remote

robot in a teleoperated pick-and-place task. This study’s results strongly support the

utility of grip-force and high-frequency acceleration feedback in teleoperation systems

and show more mixed effects of fingertip-contact-and-pressure feedback.
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Chapter 1

Introduction

Teleoperation allows an operator to complete tasks that require human-level intelli-

gence in environments where a human’s physical presence is not possible or is highly

undesirable. For example, traditional open surgery requires a large incision through

healthy tissue to let the surgeon to see the operation site and manipulate it with his or

her hands. Alternatively, the surgeon can complete the operation with a teleoperated

robotic minimally invasive surgical system that requires only tiny incisions and gives

the surgeon a high level of dexterity [33]. In another example, a search-and-rescue

worker can use a teleoperated robot to look for survivors in the wake of a natural

or man-made disaster, such as a nuclear power plant meltdown [8, 15]. The rescue

worker can drive robots over the disaster field from a safe location to look for sur-

vivors. Once a survivor is located, the rescue worker can teleoperate a manipulator

on the rescue robot to help free the survivor without being exposed to the disaster’s
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hazards. Teleoperation is useful not only in these and other high-stakes applications,

but also in everyday tasks such as allowing a telecommuter to control a robotic agent

at the office.

Although the uses of teleoperation vary widely, the basic components of all tele-

operators are the same [69]. The human operator interacts with a master interface to

send motion commands to the robot over the forward communication channel, akin

to the efferent channel of the human nervous system. The slave robot, located in the

remote environment, executes the received motion commands, while simultaneously

measuring information about its environment. The robot sends this information back

to the operator via the feedback communication channel, akin to the afferent channel

of the human nervous system. The master interface relays information back to the

operator via visual, auditory, and/or haptic cues. The control system calculates the

desired behavior of the slave robot based on input from the human operator. Depend-

ing on the control architecture, the slave robot can have varying levels of autonomy.

In direct control, which is the focus of this dissertation, the human operator fully con-

trols the movement of the slave robot, without any autonomous actions performed

by the slave robot. The control system also regulates the flow of information back to

the human operator based on data measured by sensors attached to the slave robot.

The utility of teleoperation has led to vibrant research on improving the usability

of teleoperators to facilitate task completion in the remote environment. Research

in this domain can be categorized either as improving the efferent filter, which maps
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information from the human operator to the remote robot, or as improving the afferent

filter, which sends information from the remote robot back to the human operator

[90]. Research on improving the efferent (forward) filter has been focused either

on creating devices that can more effectively gather motion data from the human

operator, such as [4,52,74,98], or on creating better control laws to enable the remote

robot to follow the operator’s motion commands more closely, as reviewed by [40,73].

Improvements to the afferent (feedback) filter are often made by the creation of new

teleoperation interfaces that are meant to immerse the human operator in the remote

environment. A rich field of study aimed at understanding human perception via

visual, auditory, and haptic sensory channels has allowed engineers to create better

two-dimensional and three-dimensional visual displays, auditory displays, and haptic

interfaces. Systems created to immerse users in remote environments, as well as

virtual environments, are reviewed extensively in [3, 35,63,93,94].

Sections 2.1 and 4.1 give a more complete review of prior work in teleoperation as

it relates to this dissertation. However, even given the significant body of work seeking

to improve teleoperators, many control interfaces are still difficult and nonintuitive

to use [9].

1.1 Motivation

The field of teleoperation began in 1947 when Raymond C. Goertz created a system

that allowed scientists to conduct experiments on nuclear materials while remaining
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behind the safety of a nuclear shield [24]. The master interface of this first teleop-

eration system consisted of on-off switches that controlled the individual degrees of

freedom of the slave manipulator. Although this control interface was functional,

Goertz and colleagues found that this teleoperation system was too hard to operate

to be of practical use in the laboratory setting. Although this teleoperation system

was developed before the formal adaptations of the terms, Goertz describes his orig-

inal system as unusable due to its low transparency and low presence. Goertz states

that the on-off switches were clumsy and awkward to use, indicating that the orig-

inal system had low transparency. A teleoperation system with high transparency

appears to be nearly nonexistent to the operator, meaning that he or she needs to

invest little or no cognitive effort to control the slave robot [58, 82]. Goertz states

that the operator needed to use extreme care when handling the dangerous nuclear

materials because he or she was not able to feel the remote object, indicating that the

original system also offered low levels of presence. A teleoperation system provides

a high sense of presence to the operator if he or she feels physically immersed in the

remote environment [5, 42,90,91,110].

To address the shortcomings of the original design, Goertz created a new system

in which the master interface was physically connected to a kinematically identical

slave manipulator [25]. When the operator moved the master interface, his or her

motion was almost identically reproduced by the slave robot. The physical linkage

between the master and slave also allowed the operator to feel forces acting on the
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slave manipulator. The new system was easy to use, and videos of operators using

the device show that it had high levels of transparency and presence. Similar systems

are still in use today for hazardous material handling.

The advantages of higher levels of transparency and presence achieved by physi-

cally connecting the master and the slave are usually outweighed by the limitations

imposed on the maximum possible separation between the master and the slave.

Therefore, many current teleoperation master interfaces consist of buttons, switches,

and knobs, e.g. [78,109]. However, starting with Goertz himself [26], many researchers

have designed master interfaces that measure natural human motion. These systems

often consist of large, heavy, expensive, force-reflecting exoskeletons that must be

customized to the user and the remote robot and are thus not appropriate for the

majority of telerobotic applications, e.g., [59, 74]. Although many of my findings

translate to force-reflecting master interfaces, this dissertation specifically focuses on

lightweight wearable control interfaces that do not provide grounded force feedback.

The decision to focus on lightweight, wearable master interfaces is supported by

the recommendations of Casper and Murphy, who tested teleoperated rescue robotic

platforms in the aftermath of the terrorist attacks on September 11, 2001, assisting

with search and rescue at Ground Zero in New York City. Casper and Murphy

reported these experiences and recommended a variety of improvements for rescue

robotics technology, including significant changes to the human-machine interfaces [8].

First, they state that rescue robots must be transportable and controllable by one
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person to minimize the number of people at risk during a mission. Furthermore, the

danger of carrying large objects across hazardous environments requires all equipment

to be transportable via wearable containers. Second, rescue workers usually do not

sleep during the first forty-eight hours on the scene, and they sleep for no more than a

few hours per day thereafter. Therefore, Casper and Murphy suggest that the control

interfaces for rescue workers need to be made as intuitive as possible to account

for the lower cognitive capacities that arise under extreme sleep deprivation. These

guidelines strongly support investigation of wearable control interfaces that measure

natural human motion and provide sensory cues to facilitate teleoperation.

1.2 Thesis Overview and Contributions

The main hypothesis of this dissertation is that taking a human-centered design ap-

proach by leveraging previous scientific discoveries about the human motor and sen-

sory systems will improve the usability of teleoperation systems that measure natural

human motion to control a remote robot. A high-level overview of the work completed

in this dissertation is shown in Figure 1.1. In Chapter 2, I propose implementing data-

driven motion mappings to calculate the desired robot position from the measured

human position. Chapter 3 shows that such data-driven motion mappings improve

the operator’s ability to control the motion of the remote robot. Then I switch the fo-

cus from the efferent (forward) channel to the afferent (feedback) channel. Chapter 4

describes the design of a wearable haptic device that provides tactile fingertip-contact,
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Efferent Channel
Data-Driven Motion Mappings

Afferent Channel
Haptic Feedback

Figure 1.1: An overview of the work presented in this dissertation. I first sought to improve
teleoperation by designing and implementing data-driven motion mappings on the efferent
(forward) channel. I then turned my focus to the afferent (feedback) channel. I created a
wearable device that provides multiple modalities of haptic (touch-based) feedback to the
operator.

fingertip-pressure, and high-frequency acceleration feedback in addition to kinesthetic

grip-force feedback. I investigate the effects of these distinct haptic feedback modal-

ities in Chapter 5.

The contributions of this thesis are as follows:

• Chapter 2: Determining Natural Human-Robot Motion Mappings in Teleoper-

ation

– A new paradigm for deriving data-driven motion mappings to calculate

the desired robot hand position from the position of the human operator’s

hand. A person mimics the robot moving through preprogrammed trajec-
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tories. The human’s motion is recorded and compared to the motion of

the robot to fit the mapping parameters.

– The proposal of three novel motion mapping models. The traditional

Cartesian scaling simply multiplies the human’s motion by a scalar to

obtain the robot’s motion. The three new motion mappings (similarity,

affine, and variable similarity) are fit to data to capture distortions in how

the human moves relative to the robot.

– Evaluation of the proposed motion mapping models for nine users. The

most promising model, the variable-similarity motion mapping, distorts

the human’s motion to correct for systematic directional errors made by

the human when completing the mimicking task. Notably, the way in

which the human’s motion needs to warp to best fit the robot’s motion

generalizes across subjects and matches prior findings in the neuroscience

literature.

• Chapter 3: Evaluation of Data-Driven Motion Mappings

– A teleoperation system created to investigate the value of the variable-

similarity motion mapping. It consists of a Vicon motion capture system

that measures the pose of the operator’s hand and a virtual PR2 humanoid

robot.

– A user study involving twelve subjects investigating how well operators are
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able to control the motion of the virtual robot when their measured motion

is transformed via the data-driven variable-similarity motion mapping, as

compared to a Cartesian scaling. Two forms of the variable-similarity mo-

tion mapping are tested. The parameters of the first variable-similarity

motion mapping are fit to the aggregate data of the subjects who partic-

ipated in the experiment in Chapter 2, so it corrects for errors made by

the general population. The parameters of the second variable-similarity

motion mapping are fit to data collected when each subject completed the

mimicking calibration task.

– Evidence proving that subjects were able to complete a targeted reaching

task with higher accuracy in initial direction of robot motion, at higher

speeds, and with more natural and efficient reaching movements under the

variable-similarity motion mappings. These results indicate that subjects

experienced a higher level of transparency when using the virtual teleoper-

ator with the variable-similarity motion mappings than with the standard

Cartesian mapping. Subjects also preferred the variable-similarity motion

mappings.

• Chapter 4: A Wearable Device for Controlling a Robot Gripper with Un-

grounded Haptic Feedback

– Design and construction of a haptic device thats controls the opening of a

remote robot’s gripper. The device provides kinesthetic grip-force feedback
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and tactile fingertip-contact-and-pressure and high-frequency acceleration

feedback via a DC motor and a pair of voice-coil actuators.

– Development of a control scheme that converts haptic information mea-

sured by sensors on the remote robotic gripper to haptic feedback delivered

by the actuators on the device.

– Preliminary evaluation of the device through teleoperated interactions with

a variety of objects.

• Chapter 5: Effects of Ungrounded Haptic Feedback on a Teleoperated Pick-

and-Place Task

– Development of an experimental system for investigating the effects of grip-

force feedback, fingertip-contact feedback, and high-frequency acceleration

feedback on the user’s performance of a teleoperated pick-and-place task.

The teleoperation system consisted of a Vicon motion capture system and

a real remote PR2 robot.

– Execution of a human-subject experiment that enrolled thirty subjects to

test the developed teleoperation system under different types of haptic

feedback.

– Evidence supporting the utility of grip-force feedback with gain switching.

Grip-force feedback enabled subjects to handle objects more delicately,

hold objects more stably, and better control the motion of the remote
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robot’s hand.

– Confirmation that fingertip contact-and-pressure feedback allowed subject

to better sense when the object is in the remote robot’s hand. However, this

dissertation makes no recommendations about the use of fingertip contact

feedback in teleoperation because the current implementation generally led

subjects to handle the object more roughly.

– Results indicating that high-frequency acceleration feedback slightly im-

proved the subject’s performance when setting the object down, as orig-

inally hypothesized. However, more interestingly, high-frequency accel-

eration feedback also allowed subjects to feel vibrations produced by the

robot’s motion, causing them to be more careful when completing the task.
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Chapter 2

Determining Natural

Human-Robot Motion Mappings in

Teleoperation

Many aspects of teleoperation systems have been fine-tuned through research. How-

ever, the robot’s commanded movement is almost always calculated by scaling and

applying an offset to the operator’s measured movement. While this mapping has

proven to be usable, it may not be the human operator’s preferred motion mapping.

Furthermore, the traditional Cartesian-scaling motion mapping assumes that the hu-

man’s executed movement matches his or her intended movement. This assumption

is known to be false when a person moves his or her hand while relying upon propri-

oception, rather than direct vision.
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I propose that implementing nontraditional data-driven motion mappings has the

potential to improve the usability of teleoperation platforms, making it easier for a hu-

man to remotely complete challenging tasks. This chapter presents a new paradigm

for determining data-driven human-robot motion mappings for teleoperation: the

human operator mimics the target robot as it autonomously moves its arm through

a variety of trajectories. The resulting human motion reveals the human’s chosen

mapping, skewed by systematic motion errors the human made when relying on pro-

prioception to execute these arm movements.

I begin this chapter by discussing relevant background material in Section 2.1. I

discuss the experimental setup and the procedures implemented to test the proposed

paradigm with nine human subject in Sections 2.2 and 2.3, respectively. Section 2.4

gives further details about the traditional Cartesian scaling motion mapping and pro-

poses three data-driven motion mapping models. In Section 2.5, I use data recorded

in the described study to analyze each mapping’s ability to transform human motion

data to corresponding robot motion. Finally, I leave the reader with the main conclu-

sions drawn from this work in Section 2.7. This work was originally published in the

proceedings of the 2012 IEEE RAS & EMBS International Conference on Biomedical

Robotics and Biomechatronics [76].
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2.1 Background

Developed by Goertz and colleagues in the 1940’s, the first successful teleoperators

consisted of kinematically identical master interfaces and slave manipulators that were

mechanically coupled [24–26]. Consequently, the measured motion of the human

operator was reproduced almost exactly by the slave in the remote environment.

Since that time, roboticists have believed that a perfect isomorphism would enable

the best execution of remote tasks [90]. Therefore, most of today’s teleoperators still

attempt to identically reproduce the human’s motion with the slave manipulator.

When a perfect reproduction is not possible, the shape of the human’s input motion

is preserved by applying a uniform Cartesian scaling and an offset [69].

While this method of calculating desired position has proven successful, it is im-

portant to remember that it represents just one of a wide variety of possible motion

mappings between the human and the robot. Romano et al. compared the standard

position mapping scheme to a rate controller, which maps the master’s position to the

slave’s velocity, and to a mouse ballistics-inspired hybrid controller, which nonlinearly

maps the master’s velocity to the slave’s velocity [85]. A user study showed that sub-

jects were able to complete a targeting task using teleoperated steerable needles most

accurately using the hybrid control law. This work provides evidence that humans

may find nontraditional motion mappings to be more intuitive than the standard

approach, depending on the needs of the task.

Many other researchers have created operator-adapted controllers to improve the
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fidelity, transparency, and robustness of teleoperation systems [73]. These researchers

often look to mathematical models of human motion to create higher quality control

schemes. One of the most commonly implemented models is Flash and Hogan’s

minimum jerk criterion, which describes voluntary human arm motion as following

the smoothest possible path [17]. For example, Maeda et al. [60] and Corteville et

al. [12] successfully used the minimum jerk criterion to predict human motion for

improved cooperative object transportation and manipulation. These methods could

easily be adapted to teleoperative applications.

The minimum jerk criterion, however, does not describe errors made by humans

when executing voluntary arm motions. To complete the seemingly simple task of

accurately moving one’s hand to a desired location, one must have a model of the

external space represented in a hand-centered coordinate frame, an estimate of the

hand’s initial position, and a dynamic model of the limb to be moved [21]. Ghez et al.

proposed this theory using their prior work and the work of several other researchers

who showed that subjects make large systematic errors if either the model of external

space [22, 30, 108], estimate of initial hand position [20, 27, 103], or dynamic model

of the limb [29, 87, 89] become degraded. In particular, many of these studies used

a targeted reaching task to show that humans make directional motion errors that

depend on hand position when any of the three representations is inaccurate. When

the hand is laterally displaced to the left of the shoulder, the subject makes large

errors in the counter-clockwise direction, so that if a person were to try to move his
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or her hand directly forward, the final position of the hand would be to the left of

the target location. When the hand is laterally displaced to the right of the shoulder,

the subject makes large clockwise reaching errors, so that if the person again tries to

move his or her hand directly forward, the hand would end to the right of the target

location [20,22,29,30,103].

Although the relationship between intended human motion and produced human

motion has been heavily studied, it is interesting that only a few robotics researchers

have studied the relationship between intended motion and produced motion of a

human operator controlling a remote robot. This dearth of research is even more

surprising when one considers the fact that the three representations needed to ac-

curately produce intended motions are necessarily degraded by current limitations

in teleoperator technology. First, the operator’s understanding of the space of the

remote environment is degraded because he or she must view it through a 2D or 3D

display instead of through direct vision. Second, the operator needs to rely heavily

on proprioception when completing a task using a teleoperator because his or her

vision will be focused on the display of the remote environment, rather than on his

or her own limb. In a teleoperator with perfect presence, or a perfect sense of being

physically located in the remote environment, the visual feedback from the remote

environment would be as useful to the operator as the view of his or her own limbs

in a direct manipulation task. However, limitations in current technology, including

delays in the teleoperator and imperfect visual displays, preclude perfect presence in
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teleoperators and necessitate reliance on proprioception to a certain extent. Relying

solely on proprioception over vision has been shown to cause subjects to produce

large directional errors in targeting tasks [20, 22]. Although teleoperators provide

some visual feedback, I still expect that the directional errors produced when com-

pleting a targeted reaching experiment via teleoperation would be larger than if one

were to complete the targeted reaching task directly. Third and finally, the user of a

telerobotic system must account not only for the dynamics of his or her own arm but

also for the dynamical properties of the master device and the slave device, including

dynamics introduced by any control laws. While it is well known that teleoperation

interfaces should have as little inertia as possible [62], Nisky et al. showed that the

dynamics of even a well designed, highly transparent system still affect the motion of

novice users [70].

For these reasons, it is reasonable to expect human arm motion to be inaccurate

when a person is using a teleoperator. Therefore, I hypothesized that bijective posi-

tional motion mappings that correct for systematic reaching errors may be preferable

to the Cartesian-scaling motion mapping traditionally used in teleoperation. In this

chapter I seek to discover such data-driven motion mappings by analyzing human and

robot motion data recorded by having human subjects mimic the motion of a virtual

robot.
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Figure 2.1: A video of the PR2 making planar motions with its right arm was projected
on a large screen at the front of the motion capture space. The subject mimicked the robot
motion in real time using comfortable motions of her right arm.

2.2 Experimental Setup

To test the hypothesis that data-driven motion mappings can be deduced by having a

subject mimic the motion of a robot, I created a system that could record synchronized

robot and human movements. Willow Garage’s Robot Operating System (ROS) [80]

was a natural choice for use in this project, since a major goal of the work was to

make extensible algorithms to semi-automatically deduce motion mappings from an

operator to a variety of robotic platforms. The algorithms developed in this section

are independent of the method used to capture the human’s arm movement; optical

tracking, magnetic tracking, inertial measurement units, and sensors such as the

Microsoft Kinect would all work.

I note that in graphics, retargeting recorded human motion to animate virtual

characters has become a standard method for creating realistic movements [23]. Tech-
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niques from computer animation have also been adapted to animate humanoid robots,

e.g., [6, 14, 77]. However, the goal of this body of prior research has been to create

human-like robot motion to enhance human-robot interactions, while this work uses

retargeting techniques to allow humans to intuitively teleoperate robotic platforms in

real time.

Virtual Robot

ROS’s modular, multi-lingual, and open-source packages facilitate the development of

algorithms for use on several different robotic platforms. Willow Garage’s humanoid,

the PR2, is one of the best supported robots in ROS and is available in the Uni-

versity of Pennsylvania’s GRASP lab. I recorded the PR2 moving its arm through

commanded trajectories using Gazebo, a three-dimensional multi-robot simulation

environment supported by ROS [50]. Fig. 2.1 shows the recorded view of the sim-

ulated robot presented to the subject. Equivalent alternatives would have been to

record the actual robot moving or to physically locate it with the operator during

testing.

This work focuses on identifying transformations between human motion and

robot motion for trajectories confined to a horizontal plane, since this is the plane in

which Ghez et al. [21] found systematic distortions. Planar robot arm motion was

produced using ROS’s real-time joint controller. The shoulder and elbow joints were

controlled to follow pre-set trajectories over time, and the other joints were com-
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Figure 2.2: Trajectories of the eight motions created by the PR2’s right hand.

manded to stay at fixed angles. Fig. 2.2 shows the trajectories of the PR2’s hand

for the eight motions used. The robot’s hand moved with approximately constant

speed in motions 1 through 5 and at varied speed in motions 6 and 7. The PR2 was

recorded making each motion from six to ten times over approximately 90 seconds.

The view point in the movie was overhead looking down, as shown on the screen in

Fig. 2.1.

Motion Capture

Human movement was recorded using the Vicon motion capture system in the Penn

SIG Center. The subjects wore a full-body suit covered with 53 passive retroreflective

fiducial markers. These markers are individually placed adjacent to all major joints

in the body, to provide a stationary reference point when the corresponding joint

is moved. Because [22] and [21] describe systematic errors in hand positions and
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velocities, I decided to focus the analysis on comparing the position of the human’s

hand to the position of the robot’s hand. The position of the subject’s hand was

taken to be the location of the marker on the wrist by the base of the thumb.

2.3 Experimental Procedures

All study procedures were approved by the University of Pennsylvania IRB under

protocol #815023. Nine subjects participated in the study (seven male and two

female). All subjects were right-handed and between the ages of 20 and 31. Each

subject gave informed consent before participating.

As shown in Fig. 2.1, the videos of the PR2 making arm planar motions were

projected onto a large screen at the front of the motion capture space. The subject was

instructed to mimic the PR2’s motion as closely as possible, using only comfortable

motions of the right arm. The instruction of comfortable motions was important to the

objective of this work because a major goal was derive human-robot motion mappings

that could be used for hours on end with minimal physical and mental fatigue. The

subjects were given no specific instruction on how to accomplish this task, since it

was important that each picked the mapping that was most natural to him or her.

The subject was first shown the constant-speed practice motion from Fig. 2.2, then

each of the numbered motions twice. The seven motions were presented in random

order for each subject, and the two viewings of each motion occurred sequentially.

This procedure yielded motion recordings of the subject attempting to mimic the
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robot repeatedly performing each trajectory in Fig. 2.2. The subject’s motion data

was recorded at a constant rate of 120 Hz, while the PR2’s motion was recorded with

time stamps at an irregular rate of approximately 1000 Hz. The robot data stream

was down-sampled to 120 Hz via linear interpolation. The two data streams were

then aligned in time by finding the segment of human data that yielded the smallest

average Cartesian distance to the corresponding robot data stream under a similarity

transformation. Once aligned in time, both data streams needed to be described in

a right-handed reference frame with its origin at the center of rotation of the right

shoulder. The X-axis of this reference frame is directed from the left shoulder to

the right shoulder, the Y -axis points out from the chest, and the Z-axis points up.

A visual examination of the captured data showed that there were often very large

discrepancies between the human and robot motions at the beginning of each data

set, during the time when the human was learning the periodic motion of the robot,

as would be expected. Additionally, subjects often stopped mimicking the robot just

before the end of each video. Therefore, the first twenty seconds and the last two

seconds of each data set were excluded from analysis.

At the end of the study, each subject completed a short questionnaire to explain

the strategies and methods they used to accurately reproduce the robot’s motions.

Subjects also completed a NASA Task Load Index (NASA-TLX) [37] to rate the

difficulty of the task. The questions posed by the NASA TLX and the associated

rating scales are given in Table 2.1.
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Question Endpoints

How mentally demanding was the task? Very Low–Very High

How physically demanding was the task? Very Low–Very High

How hurried or rushed was the pace of the task? Very Low–Very High

How successful were you in accomplishing what Failure–Perfect

you were asked to do?

How hard did you have to work to achieve your Very Low–Very High

level of performance?

How insecure, discouraged, irritated, stressed, Very Low–Very High

and annoyed were you?

Table 2.1: NASA TLX Rating Scale Definitions [37]

2.4 Proposed Motion Mappings

Once synchronized in time and space, the motion data obtained during the study was

analyzed to look for trends in the differences between each subject’s motion and that

of the robot. These differences can be attributed to the motion mapping chosen by

the subject, as well as unintentional spatial distortions made by the subject while

mimicking the robot’s motion. Four models of increasing complexity were fit to map

the motion made by the subject to the motion of the robot, as described below.

2.4.1 Traditional: Predefined Uniform Scaling

To handle kinematically dissimilar robots, the position of the master device is typ-

ically scaled and offset to better allow the user to perform a task in the slave’s

environment [69]. In the Cartesian plane this mapping can be represented as

~xr = s~xh + ~γ (2.4.1)
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where ~xr is the robot’s desired position and ~xh is the human’s. I set the scale

factor, s, to be the ratio of the robot’s arm length to the human’s arm length, while

the offset, ~γ is the vector from the mean of the scaled human position to the mean

of the robot position.

2.4.2 Similarity Transformation

In transformation geometry, a similarity is an operation for which the distance be-

tween two points is proportional to the distance between the two transformed points [61].

A similarity transformation consists of a scaling, a rotation, a reflection, and/or a

translation. In the Cartesian plane, a similarity can be expressed as follows, where s

is a scale factor, T is a 2 × 2 orthogonal matrix, and θ is the rotation angle.

~xr = sT~xh + ~γ (2.4.2)

T =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (2.4.3)

The least-squares method developed by Schonemann [88] was used to find the simi-

larity transformation that best fits the human’s motion to the robot’s.

2.4.3 Affine Transformation

An affine transformation is a colineation that preserves parallelness between two lines;

it can consist of a strain, a shear, a rotation, a reflection, and a translation. In the

Cartesian plane, the transformed point, ~xr, can be expressed as a linear combination
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of the X and Y components of the measured point, ~xh

~xr = T~xh + ~γ (2.4.4)

T =

a b

c d

 (2.4.5)

The best fit affine transformation from the human trajectory to the robot trajectory

can be solved for in the same manner as the best fit similarity transformation, relaxing

the constraint that T be an orthogonal matrix.

2.4.4 Variable Similarity

The final and highest dimensional proposed motion mapping is a position-based ego-

centric variable-similarity motion mapping designed to correct the systematic direc-

tional errors that humans make when completing a targeting task while relying only on

proprioception, were a directional error is defined to be the angle between the desired

displacement vector and the produced displacement vector. It has been shown that

subjects make directional motion errors as large at 20◦ when completing a targeted

reaching task without being able to view their arm [20, 21, 31], where the directional

error is defined to the be the angle between the desired displacement vector and the

actual displacement vector. The directional errors made by people when performing

such a blinded-reaching task strongly depend on the location of the hand, especially

the lateral position. If either the left or the right hand is laterally aligned with the

corresponding shoulder, reaching motions tend to be accurate. When either hand
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is displaced to the left of the corresponding shoulder, large counter-clockwise direc-

tional errors are made. Conversely, when either hand is displaced to the right of the

corresponding shoulder, large clockwise errors are made.

To look for similar errors in the motion data recorded in this study, I partitioned

the human and robot data into half-second segments and found the best fit similarity

transformation for each matched pair. The rotation, scale, X offset and Y offset

(θ, c, γ1, and γ2 from (2.4.2) and (2.4.3)) were plotted against the X and Y position

of the first data point in the time segment. The function for each of the four fitted

parameters is in the form of a plane because the results of Ghez et al. found that

directional errors made by humans vary fairly linearly with human hand position

[20,21]. The variable-similarity motion mapping can be written as follows,

~xr = s(~xh)T (~xh)~xh + ~γ(~xh) (2.4.6)

T (x, y) =

cos(θ(~xh)) − sin(θ(~xh))

sin(θ(~xh)) cos(θ(~xh))

 (2.4.7)

~γ(~xh) =

γx(~xh)
γy(~xh)

 (2.4.8)

s(x, y) = asxh + bsyh + cs (2.4.9)

θ(x, y) = aθxh + bθyh + cθ (2.4.10)

γx(x, y) = aγxxh + bγxyh + cγx (2.4.11)

γy(x, y) = aγyxh + bγyyh + cγy (2.4.12)
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I note that while studying pilot data, I also tested a motion mapping scheme

that transforms the direction and magnitude of the user’s velocity as a function of

the position of the user’s hand. This mapping in the velocity domain creates robot

motions that depend on the path of the subject. Thus, certain human motions could

cause the mapping in the velocity domain to command desired positions beyond the

robot’s workspace. Additionally, only rotation angle and scaling could be fit in the

velocity domain, while the warping presented in this study can also fit the X offset

and the Y offset. In the variable similarity transformation, the X offset and Y offset

describe both global translation and differential scaling.

2.4.5 Summary of Mappings

All of the proposed data-driven motion mappings will be used to find the best fit

transformation from the human motion data to the robot data. Applying the fitted

mapping to human motion will calculate the desired robot trajectory for each data set.

The four motion mappings investigated in this paper are summarized in Table 2.2.

This table includes a visualization of how the space around the human will be morphed

to command a desired robot pose. The traditional position mapping uniformly scales

and offsets human motion to map it to a desired robot position. The similarity

mapping uniformly scales, offsets, and rotates the human motion, while the affine

transformation adds differential scaling and shear. Finally, the variable similarity

motion mapping smoothly warps, scales, and offsets the human position to calculate
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desired robot motion.
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Table 2.2: The four motion mappings considered in this work.
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2.5 Preliminarily Evaluation of Motion Mappings

Preliminary analysis of the data showed that all of the motion mapping schemes were

capable of transforming human motion to the general shape of the robot motion, but

they were unable to fit the global position. For each of the three data-driven models,

more than 20% of the error in initial within-trial tests was explained by the offset

centers of the transformed human and robot motion. This effect greatly worsened

when human motion was transformed using a model trained on different data sets,

rising to more than 35% for all four motion mappings. This discrepancy is due to

the fact that one’s proprioceptive estimation of arm position drifts significantly over

time [104]. However, even with a large drift in proprioception, the direction and

extent of motion remain relatively constant [7]. This effect is clearly evident when

humans blindly draw repeated shapes: subjects render several nearly identical shapes

with offset centers [102,111]. In the post-study survey, subjects were asked to estimate

the percentage of time that they focused the center of their vision on their arms. The

mean response to this question was 9.2% with a standard deviation of 13%, indicating

that subjects relied heavily upon proprioception to complete the task. Thus, it was

not surprising that a similar drift was found in this data set. For this reason, all

fittings are evaluated by translating the center of the transformed human motion to

the center of the robot motion.

The quality of each motion mapping model was determined using four tests that

differed in their choice of training and validation data. In each test, the parameters
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of the three data-driven motion mappings were determined by fitting human motion

from a training set to the corresponding robot motion. The identified mappings were

then used to transform the validation set’s human motion to a predicted robot motion

for comparison to the actual robot motion. The scale factor in the traditional fittings

was always taken as the ratio of the length of the PR2’s arm to the length of the

validation subject’s arm. In the first test, the models were trained and tested on

the same data; each trial represented one of the fourteen recordings for one subject.

Second, the training data was set to be the first half of each recording, and the

second half of the recording was used as the validation set. Third, a leave-one-out

cross validation test was performed: for every subject, each of the fourteen data

sets was used as the validation data for models trained on the combined data of the

remaining thirteen sets. Fourth, a leave-one-out cross validation test was performed

across all subjects; the combined data of each of the nine subjects was used as the

validation set for motion mappings trained on the combined data for the other eight

subjects. The median of the Cartesian distance from the transformed human position

to the robot’s actual position was used as the metric to evaluate the goodness of each

fit.

The errors yielded by the four validation tests for each of the four motion map-

ping schemes are shown in Fig 2.3. A two-way analysis of variance (ANOVA) was

implemented on the average values of the motion mapping errors for each test, using

the fixed factor of mapping type and the random factor of subject number. These
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Figure 2.3: Average errors for tests 1 through 4 on the four tested motion mappings.

ANOVAs determines whether the motion mapping models yielded significantly dif-

ferent errors in each test, taking α = 0.05. If model errors were found to differ

significantly, a Tukey-Kramer post-hoc multiple comparison test was conducted at a

confidence level of α = 0.05 to determine which models produced significantly different

errors. When the training and validation sets were the same (Test 1), the similarity,

affine, and variable similarity transformations produced significantly lower error than

the traditional fitting (F1(3,35) = 26.96, p1 < 0.0001, η2
1 = 0.2717), as one would

expect from the higher dimensionality of these fittings. When a mapping trained on

data from a given subject was tested on previously unseen motion data recorded from

the same trial (Test 2) or a different trial (Test 3), the three data-driven mappings

yielded similar errors, with the variable similarity performing slightly better than

the similarity and affine transformation. All three data-driven mappings were again

statistically significant improvements over the traditional fitting (F2(3,35) = 17.33,

p2 < 0.0001, η2
2 = 0.1462; F3(3,35) = 4.76, p3 = 0.0096, η2

3 = 0.0168). The errors

yielded by the cross-subject validation (Test 4) did not differ significantly from each
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other (F4(3,35) = 1.58, p4 = 0.2201). Though not significantly better, the variable

similarity mapping is the only one that performs better than the traditional fitting

in Test 4.
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Figure 2.4: Transformed human motion (solid colored line) overlaid on robot data (dashed
line) for subject 6, motion 3 (test 1). The original human data is also displayed in light
gray. In test 1, the training and validation sets are the same.

−500 0 500
0

500

1000

X Position [mm]

Y
 P

o
s
it
io

n
 [

m
m

]

Traditional

−500 0 500
0

500

1000

X Position [mm]

Y
 P

o
s
it
io

n
 [

m
m

]

Similarity

−500 0 500
0

500

1000

X Position [mm]

Y
 P

o
s
it
io

n
 [

m
m

]

Affine

−500 0 500
0

500

1000

X Position [mm]

Y
 P

o
s
it
io

n
 [

m
m

]

Variable Similarity

Figure 2.5: Transformed human motion (solid colored line) overlaid on robot data (dashed
line) for the within-trial validation test for subject 6, motion 3 (test 2). The original human
data is also displayed in light gray. Test 2 splits each trial in half to form the training and
validation sets.

Figs. 2.4–2.7 show how the model trained in each one of the validation methods
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Figure 2.6: Transformed human motion (solid colored line) overlaid on robot data (dashed
line) for the leave-one-out validation test for subject 6, motion 3 (test 3). The original human
data is also displayed in light gray. Test 3 involves a standard leave-one-out cross-validation
within each subject.
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Figure 2.7: Transformed human motion (solid colored line) overlaid on robot data (dashed
line) for the leave-one-out validation test across subjects for motion 3 (test 4). The original
human data is also displayed in light gray. Test 4 involves leave-one-out cross-validation
across subjects.

transforms a sample movement by Subject 6 to that of the robot. These plots make

it clear that the variable similarity fitting can better match the features of human

motion data to those of the robot motion data. In the same vein, Figs. 2.8–2.10

visually displays the distortion of space around each of the nine subjects’ bodies when
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Figure 2.9: Visualization of all nine subjects’ affine mappings.
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Figure 2.10: Visualization of all nine subjects’ variable similarity mappings.

mapping human motion to robot motion under the data-driven similarity, affine, and

variable similarity transformations trained on the combined data of each subject.

These figures show that the similarity and affine transformations can be viewed as

local approximations to the total spatial warping around the subject’s body. Thus,
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if the similarity and affine transformations are trained on data recorded when the

subject’s hand is in a certain region, the resulting mappings may not be able to map

human motion to robot motion when the subject’s hand moves to another region.

Since the global position of the subject’s hand drifted over time, which was likely

caused by the fact that they were using proprioception to estimate their arm positions,

it will be important to accurately model a human’s entire workspace when performing

longer data captures.

The fact that the variable similarity fitting performed slightly better than the

traditional mapping in the cross-subject leave-one-out validation study means that

some parameters of this transformation are consistent across subjects. Though the

variable similarity fittings shown in Fig. 2.10 clearly differ across subjects, there are

some striking similarities among all of the identified mappings. Notably, these sim-

ilarities are in general agreement with the systematic rotational errors described by

Ghez et al. [21]. Fig. 2.10 shows how the human’s motion would have to be trans-

formed to best match the robot’s motion. Thus, if the findings from this study are

consistent with those described by Ghez et al., the variable-similarity transformation

will appear to be an inversion of the distortions they described. Looking again at

Fig. 2.10, we see that the angle of rotation error of the subject is consistent with the

previously reported results: the magnitude of the direction error grows with lateral

displacement and is increasingly counterclockwise to the left and clockwise to the

right. Furthermore, the rotational errors made by subjects when the hand was be-
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tween the body midline and the right shoulder were fairly small. With the exception

of points very near to the body for subjects 1 (top left in Fig. 2.10) and 3 (top right in

Fig. 2.10), the lateral location where the directional errors change from clockwise to

counterclockwise is within 30 cm of the shoulder at all points over all nine subjects,

which is consistent with the findings of Ghez et al. Additionally, much like their

described distortions, the variable-similarity fittings show a large dependence on the

lateral position of the subject’s hand and a much smaller dependence on the extension

of the subject’s hand.

2.6 Task Difficulty

Fig. 2.11 shows the subjects’ NASA Task Load Index ratings of the difficulty of the

motion mimicking task. Overall subjects found the task to require relatively little

mental effort. They also indicated that they were successful when completing and

felt little insecurity while completing the task. However, subjects found the task to

be moderately physically taxing and indicated they needed to work at moderately

hard to complete the task. Some subjects also felt that they were felt hurried or

rushed when completing the task. The higher than expected physical exertion are

likely due to the subject’s arm position. Although each subject was instructed to

complete the mimicking task using only natural and comfortable motions, several

completed the entire task while constraining his or her arm to the horizontal plane

at shoulder height, which is a very tiring arm position. In future studies, I avoided
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this issue by more heavily emphasizing that subjects should stay comfortable during

the experiment.
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Figure 2.11: NASA NLX ratings of the difficulty of the motion mimicking task..

2.7 Conclusion

This chapter presents the first work to consider non-traditional data-driven motion

mappings for teleoperation. A standard semi-automatic paradigm was created to

determine motion mappings from the recordings of a human mimicking a target robot

that was autonomously moving through a trajectory. Simultaneously measuring the

motions of the human and the robot allows us to model how a subject systematically

distorts space around his or her body while imitating the robot. I hypothesize that

these models can be used to better enable the subject to naturally teleoperate the

robot.

Three new motion mapping models were discussed in this paper: similarity, affine,

and variable similarity. To validate these models, each was trained and validated in
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four tests: the same data set, portions of the same data, data from other trials by

the same subject, and finally data recorded from other subjects. In the tests where

mappings were trained and validated on motion data from the same subject, the three

data-driven motion mappings all yielded significantly lower errors than the traditional

motion mapping. The variable similarity fitting was the only motion mapping that

yielded a lower error than the traditional mapping for the cross-subject validation

study, although the difference was not significant.

The validation tests used for this study were an appropriate starting point, but

to see the true effectiveness of each motion mapping model, I implemented them

on a teleoperation platform for use by human operators. Chapter 3 describes a

user study in which data-driven motion mappings were derived for each subject and

tested against the traditional Cartesian-scaling motion mapping and a data-driven

variable-similarity motion mapping fit to the aggregate data from the nine subjects

who participated in the study described in this chapter.
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Chapter 3

Evaluation of Data-Driven Motion

Mappings

A teleoperation system with high transparency enables the operator to focus on com-

pleting the task at hand instead of on controlling the robot. In Chapter 2, I proposed

that modifying the mapping from human movement to desired robot movement might

improve the transparency of teleoperators in ways similar to adding sensory feedback.

Specifically, I created non-Cartesian motion mappings that correct for systematic

reaching errors made by humans, so that the robot motion resembles the operator’s

intent rather than his or her produced movement. This chapter presents a study

that compares subjects’ performance in a virtual teleoperated targeting task under

three different motion mappings: the Cartesian-scaling motion mapping that is typ-

ically implemented in teleoperators, a corrective variable-similarity motion mapping
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that is fit to aggregate data from subjects in the previous study, and a corrective

variable-similarity motion mapping that is fit to calibration data collected from each

subject. Twelve participants reached toward 120 targets under each of the three mo-

tion mappings with balanced random presentation order and a washout task between

conditions. Subjects were able to complete the targeting task with higher accuracy

in initial direction of robot motion, at higher speeds, and with more natural and

efficient reaching movements under the variable-similarity motion mappings. Sub-

jects also overwhelmingly preferred the variable-similarity motion mappings. These

results indicate that subjects experienced a higher level of transparency when using

the virtual teleoperator with the variable-similarity motion mappings than with the

standard Cartesian mapping. Therefore, mappings that correct for systematic errors

in human motion, such as the variable-similarity motion mappings tested here, should

be considered in teleoperator design.

This chapter first discusses the motion mappings investigated in this study in

Section 3.1. I then provide detail about the experimental materials and methods in

Sections 3.2 and 3.3. Sections 3.4 and 3.5 present the results from this experiment

and interpret their meaning. Finally, I leave the reader with the main conclusions in

Section 3.6. The research presented in this chapter was published as an article in the

journal Presence: Teleoperators and Virtual Environments [48].
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3.1 Tested Motion Mappings

The validation tests discussed in Section 2.5 were an appropriate starting point, but

to see the true effectiveness of different motion mappings, they needed to be im-

plemented on a teleoperation platform and used by human operators. Given the

variable-similarity motion mapping’s promising performance in the preliminary tests,

I designed a study to elucidate how data-driven variable-similarity motion mappings

affect a human’s ability to perform remote tasks using a teleoperator, especially when

compared to their performance using a traditional Cartesian-scaling motion mapping.

Secondarily, we sought to discover whether there were any measurable differences in

task performance when the subject uses a population-fit variable-similarity motion

mapping, which corrects for the average distortions made by a group of subjects,

versus an individually-fit variable-similarity motion mapping, which is based on data

collected during a calibration routine.

In this study subjects performed a targeted-reaching task under three different

motion mappings; a Cartesian scaling motion mapping described in Section 2.4.1,

and two variable-similarity motion mappings described in Section 2.4.4. The scale

factor of the Cartesian-scaling motion mapping was chosen to be the ratio of the length

robot’s arm to length of the subject’s arm. This choice of scale factor most closely

transforms the workspace of the subject to the workspace of the robot. The first

data-driven variable-similarity motion mapping was calibrated using the aggregate

data of the population of the nine subjects discussed in Chapter 2, so it corrects for
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average directional errors. As a reminder, the variable-similarity motion mapping can

be written as follows,

~xr = s(~xh)T (~xh)~xh + ~γ(~xh) (3.1.1)

T (x, y) =

cos(θ(~xh)) − sin(θ(~xh))

sin(θ(~xh)) cos(θ(~xh))

 (3.1.2)

~γ(~xh) =

γx(~xh)
γy(~xh)

 (3.1.3)

s(x, y) = asxh + bsyh + cs (3.1.4)

θ(x, y) = aθxh + bθyh + cθ (3.1.5)

γx(x, y) = aγxxh + bγxyh + cγx (3.1.6)

γy(x, y) = aγyxh + bγyyh + cγy (3.1.7)

The fitted parameters for the population-fit variable similarity motion mapping

are given in Table 3.1

The second variable-similarity motion mapping was fit individually for each sub-

ject in this study, based on data from the calibration described in Section 3.3.1. A

geometric representation of the population-fit variable-similarity motion mapping is

shown in Fig. 3.1. The individually fit motion mappings are shown in Fig. 3.4.
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Parameter Value

as -0.000188 1
mm

bs 0.000163 1
mm

cs 1.159217

aθ -0.000107 1
rad

bθ -0.000610 1
rad

cθ -0.003591

aγx -0.063688

bγx -0.077315

cγx 279.937082 mm

aγy -0.174457

bγy 0.448195

cγy 89.506589 mm

Table 3.1: The fitted parameters of the population-fit variable similarity motion mapping.
These parameters were derived in a right shoulder centered coordinate frame, with the
X-axis pointing forward and the Y-axis pointing to the left. When used with equations
(3.1.1)-(3.1.7), the X and Y position of the human’s hand should be given in millimeters.

3.2 Experimental Setup

I created a teleoperator that would allow different motion mappings to be introduced

when calculating the desired robot hand position from the human’s measured hand

position. For the master device, I simply needed an accurate motion capture system,

as I was not trying to provide any haptic feedback to the user. Because I sought to

improve the accuracy, speed, and intuitiveness with which one can control a remote

robot, we needed a robot that responds to position commands, but it did not need to

manipulate objects in its environment. Therefore, I chose to use a simulated robot in

this experiment.
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Figure 3.1: A sample subject’s workspace (top), the subject’s workspace transformed using
the traditional Cartesian-scaling motion mapping (middle), and the subject’s workspace
transformed by the population-fit variable-similarity motion mapping (bottom).

3.2.1 Virtual Robot

A virtual version of Willow Garage’s humanoid robot, the PR2, was once again chosen

for use in this experiment as it is fully supported by ROS (Robot Operating System)

[80] and is readily available for use in Gazebo, an open-source, three-dimensional

multi-robot simulator [50]. The virtual PR2 robot was presented to the user using

ROS’s Robot Visualizer (RViz) [38], which allowed me to control objects in the robot’s

environment. Fig. 3.2 shows the view of the robot presented to the user. The robot’s
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Figure 3.2: The subject controlled the hand position of a virtual PR2 robot during the
study. An overhead view of the robot was displayed on a monitor approximately 1.5 m away
from the subject’s chair. A Vicon motion capture system was used to track the position of
the subject’s hand relative to his or her shoulder.
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arm position was commanded using a real-time joint controller that ran in ROS’s

hard realtime control loop. For all three motion mappings, the desired position of

the PR2’s hand was constrained to the horizontal plane passing though the robot’s

shoulders. The robot’s arm was always configured such that the entire robot arm

was also contained in this horizontal plane. Additionally, the joints of the robot’s

spherical wrist were fixed so that the hand acts as a rigid extension of the robot’s

forearm. In this configuration, the PR2’s arm is reduced to a two link manipulator

with revolute joints at the robot’s shoulder and elbow. The inverse kinematics for this

two-link manipulator can be solved analytically to find the desired shoulder and elbow

angles given a desired hand position. The control loop explicitly solved this inverse

kinematics problem with each iteration, always choosing the elbow-out solution. The

resulting desired shoulder and elbow angles were then commanded to the virtual robot

using a PD control law on each joint. Although the controller ran at a regular rate of

1000 Hz in simulation time, irregular scaling between real time and simulation time

means that the controller was running at an irregular update rate that averaged 792

Hz in real time.

As shown in Fig. 3.2, the overhead view of the robot allowed the subject to view

the plane in which the robot’s arm was contained without any distortions. The

robot was placed in a solid black virtual environment to avoid giving the subject any

spatial context, which could affect their performance in both the targeting task and

the mimicking task.
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3.2.2 Motion Capture

We used a Vicon MX motion capture system with six cameras to measure the human’s

hand position. To allow the Vicon system to measure the position and orientation

of the subject’s right shoulder and right hand, we created two patterns of retro-

reflective markers for the Vicon system to track. One marker pattern was placed at

the subject’s shoulder; it was attached via velcro to a t-shirt worn by the subject

over their own clothes. To ensure that the shoulder marker pattern would remain

stationary when the subject moved his or her arm, I placed the marker pattern on

top of the clavicle bone, as close to the shoulder joint as possible. The second marker

pattern was attached to a handle that was held by the subject during the experiment.

The Vicon system measured the position and orientation of each pattern at a rate of

120 Hz.

3.2.3 Teleoperator Integration

The Vicon motion capture system and the virtual PR2 robot were integrated using

ROS. Each time new position data was measured by the Vicon motion capture system,

a ROS topic was used to send the subject’s hand position to the robot’s software

controller. The positions of the marker patterns were first used to calculate the

position of the subject’s hand in a coordinate frame centered at the right shoulder.

The controller then transformed the position of the subject’s hand using one of the

three motion mappings tested in this experiment.
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3.3 Experimental Procedures

All experimental procedures were approved by the University of Pennsylvania’s Insti-

tutional Review Board under protocol number 817343. Twelve subjects between the

ages of 19 and 31 participated in all experimental procedures. Three of the subjects

were female, and the remaining nine subjects were male. Eleven of the subjects were

right handed, and one was left handed; all subjects completed the study tasks using

their right arm. At the beginning of each session, the experimenter reviewed all ex-

perimental procedures and obtained informed consent. The subject then completed a

short survey on demographic information. The survey also asked the subject to con-

firm having normal motor control of the right arm and normal or corrected-to-normal

vision, both of which were required for participation in this study. Once deemed

eligible for participation, the subject completed the three activities described below.

3.3.1 Motion Mapping Calibration

In this phase of the study, data was collected for both the Cartesian-scaling and

the individually-fit variable-similarity motion mappings. The population-fit motion

mapping was fit to data recorded in Chapter 2 and was not changed for any of

the subjects. As defined by Equation (2.4.1), the Cartesian-scaling motion mapping

scales the human’s motion by the ratio of the length of the robot’s arm to that of

the subject’s. Therefore I needed to measure the length of each subject’s arm. The

subject held his or her arm straight out, and I measured the distance between the

48



0

1

Y
 P

o
s
it
io

n
 (

m
)

−1 0 1
0

1

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

−1 0 1
X Position (m)

Figure 3.3: The four robot trajectories that the human mimicked in the calibration stage.

marker pattern placed at the shoulder and the marker pattern held in the subject’s

hand.

The calibration routine used to determine an individual motion mapping for each

subject was nearly identical to the procedure described in Section 2.3. The subject was

seated in a chair in the center of the Vicon space approximately 1.5 meters away from a

24-inch-diagonal computer monitor displaying an overhead view of the robot, as shown

in Fig. 3.2. The robot then moved its right arm through the four pre-programmed

periodic trajectories shown in Fig. 3.3. Each motion was traced by the robot’s hand

four to six times over approximately one minute. Subjects were instructed to follow

the motion of the robot as closely as possible using only comfortable and natural

movements of their right arm. During this task, each subject mimicked each set of

trajectories twice consecutively, for eight total trials. A computer program was used

to record all seven joint angles of the PR2’s right arm and the subject’s shoulder and

hand position at an irregular rate of approximately 1000 Hz, although the human
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position data was updated at a rate of only 120 Hz. After the calibration phase of

the study, the subject rested while I calculated the individually-fit variable-similarity

motion mapping, according to the methods described in Section 2.4.

3.3.2 Teleoperation Targeting Task

The subject completed a targeted reaching task to determine how each motion map-

ping affected his or her ability to control the simulated robotic arm. A video showing

an example of the targeted reaching task is available at

http://haptics.grasp.upenn.edu/index.php/Research/Data-DrivenMotionMappings. The

subject was told that three different motion mappings would be introduced during

the targeting task, but was given no information about the motion mappings. The

motion mappings were referred to only by the order in which they were presented.

The targeting task took place in the same Vicon motion capture space as the

calibration task, and all data collection procedures were also the same. At each time

step, the human’s hand position was transformed through one of the three motion

mappings to obtain the desired robot hand position, which was then commanded to

the virtual PR2 robot.

The targeting task started with a green circle appearing in the robot’s workspace.

The green target was displayed on the screen for 0.25 seconds in simulated time,

which yielded an average 0.23 seconds in real time. Once the target disappeared

from the screen, the subject moved the center of the robot’s hand to the location
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the target had occupied as quickly and accurately as possible. The subject then held

the robot’s hand as still as possible at the final location. After the robot’s hand

remained still for more than 0.1 seconds in simulated time, the next target appeared

on the screen. The location of successive targets was chosen randomly from a set

of possible targets at five distances (5, 10, 15, 20, or 25 cm) and sixteen directions

(0, π
8
, π

4
, ..., 15π

8
rad) from the ending location of the robot’s hand. The location of

the target was checked to ensure it was in the robot’s workspace; if it lay outside

of the reachable workspace, another target location was randomly chosen, and its

location was checked for validity. The next target was then displayed to the user as

a green circle in the robot’s workspace. Once this target disappeared, the subject

again moved the robot’s hand to the space the target had occupied. This process was

repeated until the subject had reached to 40 targets. The subject then rested for as

long as he or she desired before starting the next set. The subject completed three

sets of 40 targets for each motion mapping.

After doing all three sets for the first motion mapping, the subject completed

the surveys described in Section 3.3.3 and the mimicking washout task described in

Section 3.3.4. The subject then repeated the targeting task, the surveys, and the

mimicking washout task for the remaining two motion mappings. Each of the six

possible motion mapping orders was tested by two subjects to minimize the effects of

learning and fatigue.

The data collected in the targeting task was split into two files, each recorded in
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a separate ROS node. The first data set contained the robot’s commanded position,

the robot’s actual position, the human’s position, and a time stamp. The second data

set contained the target locations and time stamps. The timers used to record the

time stamps for each data set were synchronized.

3.3.3 Survey Data

The subject indicated the difficulty of the targeting task in the six domains of the

NASA Task Load Index (TLX) [37]: mental demand, physical demand, temporal

demand, performance, effort, frustration. Subjects were not asked to rank the impor-

tance of the six domains due to time constraints in the experiment.

3.3.4 Mimicking Washout Task

After filling out the TLX survey for a motion mapping, the subject did a mimicking

task similar to the calibration. The setup for this activity was identical to that used

in the calibration phase. The subject mimicked the robot completing the trajectory

shown in the top right plot of Fig. 3.3 for two one-minute segments. If completing the

targeting task under different motion mappings causes any after effects, performing

this task between sets should help the subject return to his or her natural arm motions.

The data for this task was recorded in the same manner as the calibration data.
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Figure 3.4: The workspace of each of the 12 subjects (tan) is transformed using the
individually-fit variable-similarity motion mapping (blue). The robot’s workspace is also
displayed (brown).

3.3.5 Final Preference

After the entire experiment was complete, nine of the subjects were asked “Which

motion mapping did you prefer?” The final nine subjects were asked this question

after an early subject volunteered this information after completing the study.

3.4 Results

Motion Mapping Calibration

All twelve subjects successfully completed the calibration phase of the study. Fig. 3.4

displays a visual representation of the individually-fit variable-similarity motion map-

pings for each of the twelve subjects. In each plot, the human’s workspace is rep-
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resented as a semicircle with a radius equal to the subject’s arm length. This is

a reasonable representation of the projection of the subject’s workspace onto the

horizontal plane because the subject’s arm was never constrained during the study,

allowing the subject to reach all points in this semicircle. A Cartesian grid is over-

laid on the human’s workspace to help visualize how the area within the subject’s

workspace is transformed by the individually-fit variable-similarity motion mapping.

The human’s workspace and the Cartesian grid are transformed using each subject’s

individually-fit motion mapping to obtain the area of the robot’s workspace that the

human can reach with this mapping. The robot’s workspace is also displayed on each

plot.

3.4.1 Teleoperation Targeting Task

Thirteen metrics were chosen to measure how well the subjects completed the target-

ing task under the three different motion mappings. The first three metrics describe

how accurately the subject moved the robot’s hand from the starting position to the

target location. The remaining ten metrics describe aspects of the human’s and the

robot’s trajectory as the subject moved the robot’s hand from the starting position

toward the target location.

For each of the presented targets, the metrics were calculated using only the data

collected during the time when the subject was actively moving the robot’s hand

toward the target location. To determine this period of time, I first roughly segmented
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the data by creating a separate data file of human motion and robot motion for each

target presented; this file includes a stationary period before the subject started

moving the robot’s hand, the active period when the subject was moving the robot’s

hand, and a stationary period after the subject completed his or her move and was

waiting for the next target to be presented. I refined this segmentation by determining

the onset of motion by finding the point in time when the speed of the user’s hand

rose above a threshold, δ. Similarly, I determined the time of motion completion by

finding the point when the speed of the user’s hand fell below the threshold δ. I

chose to set a default threshold value of δ = 0.002 m/s, which is just higher than

the noise level observed in the human’s speed data. However, since subjects were

only verbally asked to hold still between targets, and they had to do so without any

physical support, some segments had a small initial and final velocity, causing the

segmentation to fail with δ = 0.002 m/s. For these trials, the threshold value δ was

incremented by 0.0001 m/s until the threshold was high enough for the segmentation

method to find the period of active motion. I believe this approach is better than

using a single threshold value that is higher than necessary for the majority of the

trials because a lower threshold value more accurately detects the beginning and end

of the human’s motion. The average threshold value used was 0.00205 m/s with a

standard deviation of 0.00024 m/s. The onset and completion times found by the

above method were visually inspected for all presented targets to ensure accuracy.

Fig. 3.5 shows a sample trajectory from the first subject moving the robot’s hand
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Figure 3.5: A sample robot motion trajectory. The starting location of the robot’s hand is
shown by the light gray circle and the goal location is shown by the dark green circle. The
origin of this plot is located at the center of the subject’s right shoulder. This trajectory
will be used to illustrate several of the metrics used to analyze the subjects’ performance.

toward a target under the Cartesian-scaling motion mapping.

Once the period of active motion was accurately determined, I was able to compute

the thirteen metrics for each target under each of the three motion mappings. The

following paragraphs describe all of the metrics and explain whether subjects obtained

significantly different metrics under the three motion mappings. For the following

analyses all metrics were calculated for each of the 120 targets presented per motion

mapping. I then eliminated non-representative trials in which any one metric was

more than 1.5 standard deviations away from the mean for that subject for that

motion mapping. Once the trials that contained outlier metrics were removed, I

calculated the mean value of each metric for each subject under each motion mapping.

A two-way analysis of variance (ANOVA) was performed for each metric using the

factors of subject number and the motion mapping that the subject used to complete

the targeting task. This analysis allows me to determine whether the factor of motion
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Figure 3.6: (Top) Illustrations of the final direction, final extent, and final distance errors.
(Bottom) There were no statistical differences in the subjects’ final direction error (F =
2.90, p = 0.076), the final extent error (F = 0.24, p = 0.79), or the final distance error (F
= 0.0089, p = 0.99).

mapping affected how the subjects performed the task. When a significant difference

in subject performance was found, a Tukey-Kramer post-hoc multiple comparison

test was performed at a confidence level of α = 0.05 to determine which mappings

led to significant differences in the metric. Significant pairwise difference are marked

with brackets in the figures.

The three metrics that describe how accurately the subject was able to move the

robot’s hand to the target location are final direction error, final extent error, and

a final distance error. These three metrics are illustrated in Fig. 3.6. The direction

error is defined to be the magnitude of the angle between two lines originating at

the starting location of the robot’s hand: one line ends at the target location and
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the other line ends at the final location of the robot’s hand. The extent error is

taken to be the difference between the actual and the desired displacement of the

robot’s hand. Finally, the distance error is the distance between the target location

and the location of the robot’s hand after the subject stopped moving. The dis-

tribution of the direction, extent, and distance errors are shown in Fig. 3.6. There

were no statistically significant differences between how well the subject completed

the targeting task under the Cartesian-scaling motion mapping, the population-fit

variable-similarity motion mapping, or the individually-fit variable-similarity motion

mapping as measured by the final direction error (F = 2.90, p = 0.076), the final

extent error (F = 0.24, p = 0.79), or the final distance error (F = 0.0089, p = 0.99),

although the final direction error is close to significance.

In addition to considering metrics regarding the final position of the robot’s hand,

I also considered metrics that describe the human’s trajectory and the robot’s trajec-

tory as the subject moved the robot’s hand from the starting location to the target

location. The first of these metrics is an initial direction error, which is shown in

Fig. 3.7. I was interested in such a metric because the variable-similarity motions

mappings were designed to help correct for the systematic position-dependent direc-

tion errors that humans make when performing a targeting task while relying solely

upon proprioception. I defined the initial direction to be the angle of the line connect-

ing the robot’s starting position to the point where the robot’s hand is first displaced

1 cm. The initial direction error is then defined as the magnitude of the angle be-
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Figure 3.7: (Top) The initial direction is defined as the angle at which the robot’s hand
leaves a 1 cm circle. The initial direction error is the difference between the initial direction
and direction from the starting position to the goal. (Bottom)The subjects’ initial move-
ment were more accurate when completing the task under both the population-fit and the
individually-fit variable-similarity motion mappings (F = 7.86, p = 0.0027).

tween the initial direction and the direction of the line connecting the robot’s initial

hand position and the target location. Fig. 3.7 is a box plot showing the average

initial direction errors for the twelve subjects when completing the targeting task

under the three different motion mappings. Subjects had significantly smaller ini-

tial direction errors when completing the targeting task with both the population-fit

variable-similarity motion mapping and the individually-fit variable-similarity mo-
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tion mapping than when completing the task using the traditional Cartesian-scaling

motion mapping (F = 7.86, p = 0.0027).

In addition to the accuracy of the initial movement, I sought a metric describ-

ing how naturally the subjects moved their arms when completing the targeting task

under the different motion mappings, to gain insight into how each motion mapping

affected the user’s performance. It is well established that humans make arm move-

ments using trajectories that minimize the time integral of the magnitude of jerk [17].

Therefore, if subjects are moving their arms in a natural fashion, their paths should

follow a minimum jerk trajectory. It has also been established that humans will make

curved trajectories when reaching with neither any physical external constraints act-

ing on their arms nor any instruction about the straightness with which they should

move [16]. Therefore, rather than comparing the subjects’ motion trajectories to the

models presented in [17], which state that the human’s hand movement will be in a

straight line, I compared the subjects’ movements to a model that allows for curva-

ture. The curved minimum jerk trajectory that we created states that the path length

through which the hand moved should follow the quintic trajectory of a minimum jerk

movement. In other words, the path length traveled should be:

S(t) =
5∑

n=0

cnt
n (3.4.1)

where the coefficients cn can be found by setting the initial and final position, veloc-

ity, and acceleration of the minimum jerk trajectory to the initial and final position,
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Figure 3.8: Subjects’ trajectories were closer to a minimum jerk trajectory when com-
pleting the task under the population-fit variable-similarity motion mapping than with
Cartesian scaling (F = 7.86, p = 0.0027).

velocity, and acceleration of the human’s trajectory. I chose this metric because the

data presented in [106] show that the velocity profiles of curved movements made

by subjects are similar to the velocity profile predicted by the straight-line quin-

tic models of [17]. To determine how close the subject was to the minimum jerk

model, I calculated the average path length distance that the human’s hand was

away from the curved minimum jerk trajectory. The average minimum jerk errors

are shown in Fig. 3.8. When completing the task under the population-fit variable-

similarity motion mapping, subjects’ trajectories were significantly closer to the min-

imum jerk trajectory than they were under the Cartesian-scaling motion mapping (F

= 9.67, p = 0.00096). Although not significant, the average distance to the minimum

jerk trajectory is also smaller when the subjects were completing the task with the

individually-fit variable-similarity motion mapping than when completing the task

using the Cartesian-scaling motion mapping.
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Figure 3.9: (Top) Definitions of the two metrics that measure path inefficiency and lin-
earity. (Bottom) Both the subjects’ and the robot’s trajectories were more efficient under
the variable-similarity motion mappings.

Analysis of the efficiency of the subject’s movements will lend further insight

into how well the subjects completed the targeting task using the different motion

mappings. To measure movement efficiency, I defined two metrics; the first measures

movement inefficiency and the second measures movement linearity. Each of these two

metrics was computed for both the human’s motion and the robot’s motion. As shown

in Fig. 3.9, I defined movement inefficiency as the difference between the path distance
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traveled and the displacement of a movement. Since several target distances were

presented, I normalized this metric by the displacement of the movement. Movement

linearity is measured by the linearity index, as first defined in [1]. The linearity index is

the ratio of the largest deviation of a trajectory from the straight line that connects the

beginning and end of the motion to the displacement of the movement, as illustrated

in Fig. 3.9. The distributions of these two metrics are shown in Fig. 3.9. When

completing the targeting task using both of the variable-similarity motion mappings,

the subjects moved their arms with significantly lower movement inefficiency (F =

9.30, p = 0.0012) and lower linearity indices (F= 6.34, p = 0.0067). The robot’s

movements had significantly lower inefficiencies when the subject was completing the

task under the population-fit variable-similarity motion mapping (F = 4.30, p =

0.027). I also evaluated the robot’s motion using the two efficiency metrics because

efficiency in the robot’s motion is desirable, especially in teleoperators where the

remote robot has limited battery life and power consumption is a key factor in the

system’s success. The motion of the robot had significantly lower linearity indices

when the subject was completing the targeting task with both the population-fit and

individually-fit variable-similarity motion mappings (F = 10.46, p = 0.00064).

Finally, I investigated how quickly the subjects completed the targeting task by

evaluating both the average and peak speed of both the human’s and the robot’s hand.

As shown in Fig. 3.10, the human’s average speed and peak speed were significantly

higher when the subject was completing the targeting task under the population-fit
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Figure 3.10: The subjects’ and robot’s peak speeds were highest under the population-fit
variable-similarity motion mapping. No statistical differences were found in the subjects’
and robot’s average speeds.

variable-similarity motion mapping than with the Cartesian-scaling motion mapping

(F = 11.17, p = 0.00045), (F = 4.50, p = 0.023), respectively. There were no sig-

nificant differences between the mappings for either the average speed of the robot’s

hand (F = 1.06, p = 0.36) or the peak speed of the robot’s hand (F = 0.34, p = 0.72).

3.4.2 Survey Data

Subjects rated the cognitive workload of the task using the NASA Task Load Index

(TLX) [37] after finishing the targeting task under each of the three motion mappings.

The perceived difficulty of the task, as measured by subject responses to the six TLX
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Figure 3.11: Subjects rated task difficulty using the NASA Task Load Index (TLX). For
all questions, a lower rating indicates less difficulty. Numbering the questions from left to
right, a rating of 0 corresponds ‘very low’ for questions 1, 2, 3, 5, and 6 and ‘perfect’ for
question 4, while 100 corresponds to ‘very high’ and ‘failure’. No significant differences were
found in task difficulty as measured by TLX ratings.

questions, is shown in Fig. 3.11. A three-way ANOVA was performed on the responses

to each of the six questions using the factors of mapping, set number (1, 2, or 3),

and subject. No significant differences were found for any of the questions for the

mapping and set number factors.

3.4.3 Washout Task

For each subject we collected two mimicking data sets containing human motion

and robot motion for each mapping tested. I analyzed this data to determine if the

subject’s performance in the mimicking task was affected by the motion mapping

that had just been used in the targeting task. Since there was a small time delay

in the human’s reaction to the robot’s motion, I first aligned the human’s motion

to the robot’s in time. To do so, I eliminated the first two seconds and final half

second from the robot’s motion data. I then found the segment of human data that
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Figure 3.12: The subjects mimicked the motion of the robot after each motion mapping
was tested in the targeting task. For each motion mapping tested (box fill color), the motion
data was transformed using each of the three motion mappings (box outline color). The
washout task showed a small after-effect due to the motion mapping tested in the targeting
task.

best transformed to the robot’s under a similarity transformation, which effectively

removes the time delay of the human.

I transformed each human motion dataset using the Cartesian-scaling motion map-

ping, the population-fit variable-similarity motion mapping, and the individually-fit

variable-similarity motion mapping. To compare how close the transformed human

data was to the corresponding robot motion, I computed the average Cartesian dis-

tance between the transformed human motion and the corresponding robot motion.

Since subjects mimicked the motion of the robot two times after each targeting set,

I obtained one error metric by averaging the resulting error values for the two data

sets. As shown in Fig. 3.12, the human data transformed with the individually-fit

variable-similarity motion mapping is always closer to the corresponding robot data

than when the same human motion data is transformed using the Cartesian-scaling
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Figure 3.13: Subject’s responses to the question “Which motion mapping did you prefer?”

motion mapping or the population-fit variable-similarity motion mapping. Further-

more, the average distance between the transformed human motion and the robot

motion is smallest for each motion mapping after that motion mapping was tested in

the targeting task.

3.4.4 Final Preference

After the final motion mapping was tested, nine of the subjects answered the ques-

tion“Which motion mapping did you prefer?” Subjects responded with either the

first, second, or third motion mapping tested, and I recorded this preference. I began

to collect this data only after the fourth subject volunteered this information after

completing the study. Preference data was not collected for the first three subjects.

The subjects’ preferences are shown in Fig. 3.13. Seven subjects responded that

they most liked doing the targeting task under the individually-fit variable-similarity.
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Two subjects responded that they most liked doing the targeting task under the

population-fit variable-similarity motion mapping. No subjects indicated that they

preferred the Cartesian-scaling motion mapping.

3.5 Discussion

Motion Mapping Calibration

Each subject mimicked the movement of the robot during the calibration activity,

enabling us to calculate his or her individually-fit variable-similarity motion mapping.

The calibration was successful for several reasons. First, the identified transformations

were able to map the human’s workspace to cover nearly the entire portion of the

robot’s workspace in which targets could have been presented (mean 90.4%, standard

deviation 8.4%), meaning the subjects were able to use their individually-fit motion

mappings to reach a large percentage of the robot’s workspace. Furthermore, the

individually-fit motion mappings allowed each subject to reach a large percentage of

the robot’s workspace using only a subset of his or her own workspace (mean 65.6%,

std. dev. 12.4%).

The results from the calibration phase of this study also contain information that

is relevant to the secondary research question: is it important to fit an individual

motion mapping for each subject, or does a population-fit motion mapping suffice? It

is difficult to make analytical comparisons between the 12-degree-of-freedom variable-
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similarity motion mappings fit to the different subjects. Therefore, I interpreted the

mappings geometrically by analyzing how each subject’s workspace is transformed

under the variable-similarity motion mappings. I also used this geometric analysis to

compare the individually-fit variable-similarity motion mappings between subjects,

as well as to the population-fit variable-similarity motion mapping.

The first geometric metric that we analyzed was the scale factor, given by

S =
A′h
Ah

(3.5.1)

where A′h is the area of the transformed human’s workspace and Ah is the area of the

human’s workspace. The mean scale factor for the individually-fit variable-similarity

motion mappings, 1.51±0.70, is not stastically different from the mean scale factor for

the population-fit scale factors, 1.38±0.12 (p = 0.5185). Therefore, the population-fit

motion mapping may capture the average behavior of the subjects in this study.

A similar trend was found in the other two geometric interpretations of the

variable-similarity motion mappings. The first is the inversion point of the motion

mapping, which I defined as the point where the X-axis of the human’s workspace is

mapped with a zero rotation. To the left of the inversion point, the variable-similarity

motion mapping will correct for counter-clockwise directional errors. To the right of

the inversion point, the variable-similarity motion mapping will correct for clockwise

directional errors. Ten of the twelve individually fit motion mappings had an inversion

point. The average inversion point of these ten subjects is 0.0122±0.17 m to the left of
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the subject’s right shoulder. Although there is a lot of variation among the subjects,

the mean value of the inversion point of the individually-fit motion mappings is not

significantly different from the inversion point of the population-fit motion mapping,

which is 0.0512 m to the left of the shoulder (p = 0.4830). The inversion points found

in the individually fit motion mappings and the population-fit motion mappings are

both in general agreement with the findings of [21].

The final geometric interpretation is the overall rotation of the transformed human

workspace, which we defined as the orientation of the line connecting the endpoints

of the transformed X-axis of the human’s workspace. Much like the first two metrics,

the mean value of the overall rotations of the individually-fit motion mappings of

-3.18±11.30◦ is not statistically different from the rotation value for the aggregate

motion mapping of 1.17±0.24◦ (p = 0.2077).

These analyses show that although there is variation between the individually-

fit motion mappings, it does seem likely that the population-fit motion mapping fit

to subjects from the previous study discussed in Chapter 2 is capturing the average

behavior of the subjects in this study, just as the population-fit mapping was intended

to. Although this finding may seem obvious, it was important to confirm given the

nonlinearity of the variable-similarity motion mapping and the fact that no subject

who participated in this experiment had participated in the previous study from which

data for the population-fit motion mapping was taken. A further comparison of the

population-fit and individually-fit motion mappings regarding how these mappings
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affect subject performance is given in Section 3.5.2.

3.5.1 Teleoperation Targeting Task

The thirteen metrics used to evaluate the subjects’ performance in the targeting task

shed insight into how the three different motion mappings affect targeted reaching.

Since there were no significant differences found in the final direction error, final ex-

tent error, or final distance error, the subjects were able to move the robot’s hand to

the desired target location equally well under the Cartersian-scaling, population-fit

variable-similarity, and individually-fit variable-similarity motion mappings. This re-

sult is expected because subjects had visual feedback of the robot’s hand during all

trials and could make corrections as they moved. Therefore the three metrics eval-

uating the subjects’ final performance are actually measuring how well the subjects

could remember the desired target location and how accurately they were able to

move the robot’s hand.

For this reason, the ten metrics that describe the human and robot motion tra-

jectories provide more insight into how the different motion mappings affected the

subjects’ performance during the targeting task. The first trajectory metric is the ini-

tial direction error, which was defined to be the direction in which the subject moved

the robot’s hand before any path correction could be made. The initial direction er-

ror was smaller for both the population-fit and the individually-fit variable-similarity

motion mappings than for the Cartesian-scaling motion mapping, indicating that the
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Figure 3.14: Subjects needed to make smaller directional corrections under both the
population-fit and individually-fit motion mappings (p = 0.0180 f = 4.853).

subject’s initial movement of the robot’s hand was more accurate under the variable-

similarity motion mappings. Furthermore, since there were significant differences in

the initial direction errors, but none in the final direction errors, the subjects made

larger corrections to their path direction when completing the targeting task under

the Cartesian-scaling motion mapping. In fact, defining the direction correction as the

difference between the initial direction error and the final direction error, subjects did

make significantly larger directional corrections under the Cartesian-scaling motion

mapping (F = 4.8530, p = 0.0180). Fig. 3.14 shows the distribution of the average

directional corrections for the twelve subjects under each of the three motion map-

pings. Since subjects needed to make smaller corrections to their paths while using

the variable-similarity motion mappings, using the variable-similarity motion map-

pings will prove to be less cognitively taxing on operators than the Cartesian-scaling

motion mapping.
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The fact that subjects’ trajectories are closer to minimum jerk trajectories when

completing the task using the population-fit variable-similarity also supports the fact

that subjects were able to complete the targeting task under this motion mapping

with fewer path corrections. It is known that if a subject was to complete the targeting

task directly using his or her arm, the trajectory would be very similar to a minimum

jerk trajectory [17]. Since subjects’ trajectories were farthest from the minimum

jerk trajectory under the Cartesian-scaling motion mapping, we can conclude that

subjects made the least natural reaching movements under this condition. Some of

the loss of naturalness in the reaching movements can be attributed to the fact that

subjects were more heavily relying upon visual feedback to correct the robot’s motion

under the Cartesian-scaling motion mapping than under the population-fit variable-

similarity motion mapping. Additionally, if subjects were to complete the targeting

task using a completely transparent teleoperator, they would make motions identical

to those made when directly performing the targeting task. Therefore, the closeness to

minimum jerk trajectories also measures the transparency of the system. This finding

leads the conclusion that the virtual teleoperation system was most transparent to

users under the population-fit variable-similarity motion mapping.

Analysis of the movement inefficiency metric, which measures unnecessary human

and robot movement, and the linearity index, which measures curvature of the hu-

man’s and robot’s path, further support the above conclusion: subjects were able to

complete the targeting task in a more feedforward manner under the population-fit
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and the individually-fit variable-similarity motion mappings. The excess motion made

when completing the targeting task under the Cartesian-scaling motion mapping was

caused by the fact that subjects needed to make more path corrections under this

condition. Under this mapping, the initial movement of the robot’s hand was in an

unexpected direction. Once the subjects observed this behavior, they corrected their

own trajectory to more accurately complete the targeting task with the teleoperator.

Such corrections require subjects to move less efficiently. A similar trend is observed

in the fact that the linearity indices of the subjects’ paths are highest when com-

pleting the targeting task under the Cartesian-scaling motion mapping. Although

it is known that unconstrained human motion won’t follow a straight path, and all

linearity indices shown in Fig. 3.9 are well within the range of the data presented

in [16], straighter paths with low linearity indices are still more efficient and therefore

desirable. This study was designed to present a similar range of targets to the subject

under each motion mapping. Since subjects had the worst linearity indices under the

Cartesian motion mapping, again leading to the conclusion that subjects moved less

efficiently under this condition.

The final path metrics analyzed the speeds at which the subject and the robot

moved during the targeting task. Subjects’ average and peak velocity were signif-

icantly higher when completing the task under the population-fit motion mapping

than under the Cartesian-scaling motion mapping. Since this increase in speed did

not cause a decrease in motion accuracy, I conclude that the subjects had more con-
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fidence that their input motion would produce the robot motion they expected in

these conditions.

3.5.2 Population-Fit vs. Individually-Fit Variable-Similarity

Motion Mappings

According to the ten trajectory metrics, the population-fit variable-similarity mo-

tion mapping often allowed subjects to complete the targeting task better than the

individually-fit variable-similarity motion mapping, although the differences between

the two were never significant. There are some desirable features of the population-fit

variable-similarity that are not present in some subjects’ individually-fit motion map-

pings. First, the population-fit motion mapping transforms the user’s workspace in

a more uniform way. The local scale factors of the population-fit variable-similarity

motion mapping are fairly constant for the subject’s entire workspace, visually shown

by the uniformly sized blocks of the transformed Cartesian grid in Fig. 3.1. While

some subjects have a uniformity of local scale factors in their individually-fit map-

pings, such as subjects 4 and 5, others have widely varying local scale factors, such as

subjects 1, 3, 7, and 8. While better individually-fit motion-mapping could have been

achieved though a more extensive calibration process, it seems that a population-fit

motion mapping allows subjects to perform at least as well as, if not better than, the

individually fit motion mappings.

75



3.5.3 Subject’s Workspace

I was initially concerned that some of the improvements in the subjects’ performance

as measured by the thirteen metrics were simply due to the fact that the subjects

completed the task using a more comfortable portion of their workspace, close to their

right shoulder where directional errors in targeted reaching tasks are smallest [20–22].

Therefore, I performed the ANOVA analysis described in Sec. 3.4.1 using only trials

during which the subject moved through the common workspace of all three motion

mappings. All metrics that had significant differences when including all targets

still retained significance when only including targets in this common workspace.

Furthermore, a Tukey-Kramer post-hoc multiple comparison test showed that the

same mappings allowed subjects to perform the targeting task significantly better

when including either all targets or only those common to the workspace of all three

motion mappings.

3.5.4 Survey Data

Although the subjects were better able to perform the targeting task using the

population-fit and individually-fit variable-similarity motion mappings, ratings of task

difficulty did not depend on the motion mapping used in the targeting task. One ex-

planation for this finding is that subjects were not able to accurately indicate the

difficulty of the task using the TLX survey. A second explanation is that the dif-

ferences in difficulty between performing the targeting task under the three different
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motion mappings were too small to measure using the TLX. Either explanation makes

sense because changing the motion mapping used in the targeting task altered only

a small part of the task. Subjects still had to use the same teleoperator to produce

similar motions, using similar concentration levels to complete the task.

3.5.5 Mimicking Washout Task

Analysis of the washout task data allows us to understand whether there were any

lasting after effects from using the different motion mappings in the targeting task.

As shown in Fig. 3.12, the motion mapping used in the targeting task has a slight

effect on the subjects’ motion when performing the mimicking task. The individually-

fit variable-similarity motion mapping always most closely transformed the human’s

motion to that of the robot, regardless of which motion mapping was tested in the

targeting task. The Cartesian-scaling motion mapping always transformed the hu-

man’s motion to be the farthest from the robot’s motion. Although the trend is not

statistically significant, each motion mapping best transformed the human’s motion

to the robot’s after the same motion mapping was tested in the targeting task. For

these reasons, I conclude that the subjects slightly adapted to the motion mapping

implemented in the targeting task. The after effects are small given that the motion

mapping used to transform the human motion data is a much stronger predictor of

average error than the motion mapping that was tested in the previous set of the

targeted reaching task.
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3.5.6 Final Preference

All queried subjects self-reported that they preferred the variable-similarity motion

mappings over Cartesian scaling. I trust these subjective reports of motion mapping

preference because the motion mappings that subjects preferred were the same motion

mappings that best allowed them to perform the targeting task. Furthermore, the

presentation order was balanced across subjects, and the subjects were never told

which motion mapping was being used.

An anecdotal finding from pilot testing further supports that subjects reported

their preferences without bias. Another member of the Haptics Group participated in

this study as a pilot subject. He was aware that at least one motion mapping would

distort his motion when translating his movements to the motion of the robot. He

also knew that at least one motion mapping would preserve his motion. When he

finished piloting the experiment, he was reluctant to tell me his opinion of the motion

mappings because he had incorrectly guessed which motion mapping was preserving

his motion. He strongly preferred the variable-similarity mapping, which he guessed

was preserving his motion, to the Cartesian scaling mapping, which he had guessed

was distorting his motion.
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3.6 Conclusion

This study tested the influence of three motion mappings on human completion of

a planar targeting task conducted through a virtual teleoperator. Subjects were

equally good at placing the robot’s hand at the target location when performing the

task under the Cartesian-scaling, population-fit variable-similarity, and individually-

fit variable-similarity motion mappings. More interestingly, the subject’s and robot’s

motion trajectories were better when the subject completed the task under both of

the variable-similarity motion mappings; subjects had smaller initial direction errors

and therefore had to make fewer corrections to their chosen paths. In addition to

making fewer path corrections, subjects moved more naturally and moved the robot

more efficiently when using the variable-similarity motion mappings. Subjects also

moved more quickly, which may indicate that they were more confident during the

targeting task. Finally, subjects liked the variable-similarity motion mappings more

than the traditional Cartesian-scaling mapping.

Given these differences, I conclude that the data-driven variable-similarity motion

mappings are preferable to the commonly used Cartesian-scaling motion mappings

in teleoperation. However, I do not claim that we have found the best possible

motion mapping. This chapter simply has proven that it is important to consider

human factors when designing the mapping from human motion to robot motion, a

teleoperator design factor that has rarely been explored.
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Chapter 4

A Wearable Device for Controlling

a Robot Gripper with Ungrounded

Haptic Feedback

An artist sculpting a block of marble, a magician pulling a card from thin air, and

a surgeon performing an emergency surgery all rely on their sense of touch to push

the limits of human capability. While touch is particularly important in these ex-

treme undertakings, this often overlooked sense is also vital in mundane tasks such

as buttoning a shirt and packing a bag. One rarely, if ever, contemplates the multi-

faceted haptic sensations that are produced by physical interactions with the world.

The unified experience of touch is produced by the combination of four distinct tac-

tile modalities sensed by mechanoreceptors in the skin, plus the kinesthetic sense,
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working seamlessly together [46, 71].

The rich touch sensations of direct manipulation contrast starkly with most teleop-

eration systems, which allow an operator to complete a task using a remotely located

robot. The vast majority of teleoperators provide either no haptic feedback or only

a single modality. I hypothesize that including multiple modalities of haptic feed-

back would aid teleoperated task performance in ways analogous to how the distinct

modalities of touch aid direct task completion.

To test this hypothesis, I created a wearable haptic device that gives an operator

bilateral control over the gripper of a remote robot. This device is the first to provide

kinesthetic grip force feedback along with independently controllable fingertip contact,

pressure, and vibrotactile feedback, all of which are known to be of vital importance to

humans when directly manipulating objects. The device is worn on the user’s index

finger and thumb and allows him or her to control the grip aperture of the robot

using a pinching motion. Simultaneously, the operator receives kinesthetic grip-force

feedback from a geared DC motor and fingertip contact, pressure, and vibrotactile

feedback from a pair of linear voice-coil actuators.

I describe the design of the wearable haptic device and the implemented control

algorithm in this chapter and Chapter 5 gives the details and results of the user study

designed to interrogate the main hypothesis.

I open this chapter by motivating this project and summarizing relevant prior work

in Section 4.1. I then describe the design of the device and the full teleoperation
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system in Section 4.2. In Section 4.3 I propose a controller that closely links the

human’s hand to the sensory signals measured by kinesthetic and tactile sensors on

the robot’s gripper. Initial feasibility of the device is shown in Section 4.4 by having

a user teleoperate a PR2 humanoid robot to repeatedly pick up and set down five

diverse objects. This research was initially published in the proceedings of the 2014

IEEE Haptics Symposium [75].

4.1 Background

Adding high-quality haptic feedback to teleoperation interfaces has been a long-

standing goal of the robotics and haptics communities. The majority of the work

contributing toward this goal has been focused on force-feedback systems, which

measure the forces acting on the end effector of the slave robot and apply a pro-

portional force to the user, e.g., [36]. This form of haptic feedback has proven to

be useful in many studies; for example Hannaford et al. showed that operators com-

pleted a peg-in-hole insertion task more quickly and with lower translational forces

under force feedback than with no haptic feedback [36]. Wildenbeest et al. found

that translation low-bandwidth force feedback improved subject performance of a

tool-mediated bolt-and-spanner task, but higher-bandwidth force feedback produced

diminishing benefits [105]. However, a major drawback of such single-point-of-contact

force-feedback systems is that they cannot haptically inform users about interactions

that produce a zero net force between the robotic end-effector and the environment,
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such as when the robot is gripping a stationary object, like a door handle. This lack

of grip force feedback can make certain manipulation tasks difficult, as the user can

easily apply too little grip force and drop the object during the manipulation, or

apply too much grip force and damage fragile objects. The latter case is evident in

results presented in [49], which showed that subjects applied unnecessary pressure

to durable rubber pieces when using the da Vinci surgical system to complete a peg

transfer task with no grip force feedback.

To remedy this problem, researchers began to investigate ways to display manip-

ulation forces to the user. Barbagli et al. created a desktop haptic device capable of

providing both translational and grip force feedback to users interacting with virtual

environments [2]. Verner et al. created a similar haptic interface to serve as the mas-

ter device in a telemanipulation system, which was used to study the different effects

of translational and grip force feedback in teleoperation [101]. In this study, subjects

used the telemanipulator to complete a peg-in-hole insertion task with either (1) no

haptic feedback, (2) only grip force feedback, (3) only translational force feedback,

or (4) both grip and translational force feedback. While the combination of transla-

tional and grip force feedback led to the best task performance, grip force alone led

to an increased number of unrecoverable drops of the manipulated peg [101]. This

result is surprising because good haptic feedback is generally believed to facilitate

manipulation tasks [35]. The finding is also disappointing because the force sensors

needed for translational force feedback are generally too expensive and fragile to in-
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clude in most robotic platforms. Fortunately, improvements to teleoperation systems

with grip force feedback, but without translational force feedback, are possible. For

example, Griffin et al. showed that shared control can be used to improve operator

success during teleoperation with ungrounded grip force feedback in [32]. Griffin et

al. also implemented several modalities of haptic, auditory, and visual feedback in an

attempt to aid task performance. These researchers found that all three types of feed-

back have the potential to improve subject performance, but that auditory feedback

(playing tones) and visual feedback (blinking lights) can also confuse subjects..

The hypothesis explored in this chapter is that adding tactile feedback to an un-

grounded grip force-feedback device offers another solution to improving teleoperation

without translational force feedback.

The design of the device is informed by the extensive neuroscience research, re-

viewed by Johansson and Flanagan [46], that details how humans use tactile afferents

conveyed by mechanoreceptors during object manipulation. Johansson and Flana-

gan explain that it is fast adapting signals, both type I (FA-I) and type II (FA-II)

that humans rely on most heavily to monitor task progress while lifting an object

off of a table and setting it back down. The FA-I signals fire when the human’s fin-

gers make and break contact with the object, while the FA-II signals respond to the

high-frequency accelerations produced by the handheld object making and breaking

contact with the table. The slowly adapting type I (SA-I) and type II (SA-II) sig-

nals are also vital in the completion of this task. SA-I signals monitor steady-state
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grip force, and SA-II signals inform the human of skin deformations caused by shear

forces at the fingertips and hand movement. Since each of the four types of tactile

afferent signals provide important information during manipulation tasks, we sought

to include as many tactile feedback modalities as possible.

As outlined by Romano et al. [84], the accelerometer and pressure sensors avail-

able on Willow Garage’s humanoid robot, the PR2, allow for the measurement of

tactile signals similar to FA-I, FA-II, and SA-I afferents in the human. Furthermore,

inexpensive MEMS-based accelerometers, such as those added to a da Vinci surgi-

cal robot in [64], and MEMS-based barometers, such as those used in [45], make it

realistic to equip most robot manipulators with tactile sensors similar to those avail-

able on the PR2. Since FA-I, FA-II and SA-I tactile signals are readily obtainable

on robotic platforms, we sought to create a device that will naturally stimulate the

user’s FA-I, FA-II, and SA-I mechanoreceptors, in addition to providing grip force

feedback. Unfortunately, the PR2’s tactile sensors are unable to measure mechanical

contact signals similar to SA-II afferents, so SA-II tactile feedback is not included in

the design of the device.

The design of this tactile display builds on previous successes of researchers who

have shown that kinesthetic and tactile feedback combine synergistically to improve

a user’s ability to perform tasks in a virtual environment. Most recently, Chinello

et al. created a three-degree-of-freedom fingertip display that informs the user of the

orientation of a virtual object’s surface and the applied force [10]. This device was
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further tested in the context of virtual object manipulation by Pacchierotti et al. [72];

subjects could complete a virtual peg-in-hole insertion task best under a combination

of cutaneous feedback provided by the device and kinesthetic translational and grip

force feedback provided by two desktop haptic devices. Another tactile device de-

signed by Provancher et al. [79] and refined by Kuchenbecker et al. [54] displays the

making and breaking of contact and contact location of a virtual object on a user’s

finger. In [54] the authors showed that the contact location display allowed subjects

to follow a virtual contour more quickly and with less force than when following the

contour with single-point-of-contact force feedback. Another fingertip contact dis-

play was created by Solazzi et al. [92]. In the evaluation of this device [18], subjects

wore one contact display on the index finger and one on the thumb. The subject

then pinched and slid his or her fingers over two virtual planes to determine their

parallelism under contact display, kinesthetic force display provided by another hap-

tic device, and a combination of contact and kinesthetic display. The authors found

that kinesthetic and tactile information was combined according to a Bayesian model,

meaning that subjects were best able to determine parallelism using the combined

feedback. Each of these three fingertip display devices are notably validated in virtual

tasks, as they require more advanced sensing than is readily available in teleoperation

systems. However, simplified feedback modes of each of these three devices could be

used to display the making and breaking of contact between a robot’s fingers and

an object or the forces acting on a robot’s pressure sensors. This includes tactile
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Figure 4.1: The wearable haptic device (left) and the PR2 robot gripper (right).

fingertip feedback of both contact and pressure display.

In addition to fingertip contact and pressure display, I also chose to include high-

frequency acceleration feedback, as previous work has shown these cues can signifi-

cantly improve the usability of teleoperation systems. As first demonstrated in [51],

vibration feedback greatly aids users in completing tasks where high-frequency feed-

back is of vital importance, such as feeling for the grinding produced by a bad bearing.

When used in conjunction with force feedback, vibrotactile feedback greatly improves

the realism of virtual and real interactions, as shown by Kuchenbecker et al. [53] and

McMahan et al. [66], respectively. Acceleration can also be a useful stand-alone hap-

tic feedback modality when force feedback is not possible, for example [64], where

McMahan et al. added tool vibration feedback to the da Vinci surgical system.
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1
Figure 4.2: A PR2 humanoid robot acts as the slave in this teleoperation system. The
opening of the robot’s right gripper is controlled by the custom wearable haptic device.

4.2 Gripper Teleoperation Hardware

4.2.1 Robot

A Willow Garage PR2 humanoid robot was chosen to be the slave robot in the tele-

operator. As shown in Fig. 4.1, the PR2’s hand consists of a parallel-jaw gripper

instrumented with two pressure sensor arrays mounted on the fingertips and an in-

ternal three-axis accelerometer mounted near the robot’s wrist. A brushless motor,

equipped with an encoder, actuates the robot’s gripper via a planetary gearbox and a
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custom mechanism that converts the rotary motion from the motor to linear motion

of the fingertips. Willow Garage supplies a PD controller for the distance between

the robot’s fingertips, allowing users to easily set the desired grip aperture. The

high gear ratio of the gripper limits the rate of change of the grip aperture to be no

greater than 0.04 m/s, which is relatively low compared to the speed of the human

hand. Furthermore, the large gear ratio gives the PR2’s gripper a high mechanical

impedance, making it easy for the manipulator to crush nonrigid objects.

Fortunately, the tactile data supplied by the pressure sensor arrays and the three-

axis accelerometer make it possible for the robot to interact with even the most

delicate objects, including raw eggs and ripe peaches, as demonstrated in [84]. The

pressure sensor arrays (from Pressure Profile Systems, Inc.) each consist of 22 pressure

cells: a 3 × 5 array of the flat gripping surface of the fingertip, 1 pressure cell on the

back surface of the array, and 6 pressure cells arranged along the sides of the fingertips.

Pressure data describing the perpendicular forces applied to each of the 22 cells is

simultaneously available at a rate of 24.4 Hz. A single pressure reading is obtained

from the 15-unit array on the robot’s finger pad by summing the simultaneous readings

from these tactile 15 units. Although the pressure data contains very little noise,

there is hysteresis and drift. Therefore, the pressure sensors are rezeroed each time

the teleoperator is started by setting the mean of the first 0.25 seconds of pressure

data to zero. The two pressure sensor arrays also have a tendency to measure different

values when identical forces are applied.
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The accelerometer (Bosch BMA150) measures accelerations between ±78 m/s2

at a rate of 3 kHz. This data is made available by the PR2 at a rate of 1 kHz,

with each data packet containing three accelerometer readings. Much like FA-II

mechanoreceptors [46],these accelerations can be used to capture the high-frequency

vibrations produced by contacts between the robot’s arm, hand, or handheld objects

and other objects in the robot’s environment, such as a table surface..

SA-I, FA-I, and FA-II tactile feedback were all provided to the user based on

this sensor data, as discussed in Section 5.2.2. No SA-II (skin stretch) feedback was

provided because the PR2 does not have a way to measure such a signal. Furthermore,

we are most interested in SA-I, FA-I, and FA-II feedback because these tactile cues

can be measured by low cost, robust sensors that can realistically be included on any

robotic platform. The Bosch BMA150 on the PR2 can be purchased for less than $20.

The TakkTile TakkStrip measures similar information as the PR2’s pressure sensors

and can be purchased for $150 a pair [97]. The force sensors needed to measure SA-II

signals would be much more expensive and relatively fragile.

4.2.2 Design of Haptic Device

As shown in Fig. 4.1, I designed a lightweight, hand-wearable haptic device that allows

a user to control the parallel-jaw gripper of the PR2 while receiving haptic feedback

conveying information measurements from all of the kinesthetic and tactile sensors of

the robotic hand, as laid out in Table 4.1. The total mass of the device is 205 grams.
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Figure 4.3: The second iteration of the wearable haptic device contained a lockable sliding
linkage in the thumb piece to allow the device to fit more hand sizes. The position of the
thumb and index coils are adjustable via slots and bolts.

The device is worn over the user’s right index finger and thumb and constrains his

or her gripping motion to one degree of freedom. The device has a rotational joint

whose axis is aligned with the metacarpophalangeal (MCP) joint of the user’s index

finger. The first link of the device is firmly secured using a velcro strap placed around

the proximal phalange of the thumb. This part contains a lockable sliding linkage,

shown in Fig. 4.3, to set the distance between the MCP joint and the side of the

thumbpiece, allowing the device to fit a wide range of hand sizes. The second link of

the device is attached to the user’s index finger via two velcro straps placed over the

proximal phalange and the distal interphalangeal (DIP) joint; the second strap also

prevents bending of the user’s index finger.
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A geared DC motor equipped with an optical encoder (Maxon, Motor: RE13-

118423, Gearbox: GP13A: 275:1-110316, Encoder: 110778) is used to actuate the

revolute joint of the device and can apply a continuous torque of up to 0.363 Nm to

the user’s hand. The torque provided by the motor is transmitted through the device

and converted to a normal force felt at the user’s index finger and thumb through

the velcro straps, which naturally actives the user’s SA-I mechanoreceptors to display

grip force. The low friction of the motor and its 275:1 gearbox allow the user to easily

change the angle between the index finger and the thumb when little or no current

is sent through the motor. The motor’s encoder enables us to measure the position

of the device with a resolution of 4400 counts per revolution of the output shaft of

the gearbox. I note that in contrast to other grip force feedback devices [2, 101], the

decision to display the grip force with the motor at a location other than the finger

pad allows us to add tactile feedback that can be displayed at the fingertips, where

mechanoreceptors are most dense.

In addition to the motor, the device has two voice-coil actuators (BEI Kimco

Magnetics: LA10-08-000A) placed behind the distal phalanges of the thumb and

index finger using slots and bolts. As shown in Fig. 4.1 and more closely in Fig. 4.4,

the current-carrying coils are mounted directly to the back of the device, and the

magnets are rigidly attached to movable platforms via screws that allow us to easily

adjust the distance between the magnet and the platform to fit different users. Using

an arbitrary sign convention, when a negative current is sent through the coil, a
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Figure 4.4: The fingertip voice-coil actuators move platforms that are rigidly attached to
the magnet to make and break contact and apply pressure to the fingertip. The voice coil
actuators are also used for vibration feedback. In the above picture, the distance between
the user’s finger and the platform is extended for visual clarity.

magnetic field is created that attracts the magnet to the coil and stably holds the

platform away from the finger pad. When a positive current is sent through the coil,

the resulting magnetic field repels the magnet from the coil, bringing the platform in

contact with the user’s finger. The parallel platforms contact the user’s index finger

and thumb in the same way an object with flat parallel sides would when held in a

pinch grasp. The forces that the platforms apply to the user’s finger and thumb are

proportional to the applied current and can reach up to 6.7 N for short durations and

2.7 N continuously. The making and breaking of contact between the user’s finger

and the platform activates the FA-I mechanoreceptors, while the steady-state force

applied to the finger by the voice coil activates the SA-I afferents.

Although the voice coils produce a reaction force on the back of the user’s finger

when the platform is in contact with the user’s finger. Fortunately, this reaction force

does not hinder the quality of the tactile feedback since it is much less perceptible
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Feedback Actuator Measurement Afferent

grip force motor difference between human SA-I and

and robot hand aperture Golgi tendon organs

fingertip voice coils pressure at robot’s SA-I

pressure two fingertips

fingertip voice coils pressure at robot’s FA-I

contact two fingertips

vibrations voice coils accelerations at robot’s wrist FA-II

Table 4.1: Modalities of haptic feedback provided by the device.

than the force acting on the user’s finger pad for two reasons. First, the reaction

force acts on the user’s nail and on the back of the hand, which are less sensitive

than the finger pad. Second, the reaction force is transmitted to the user’s hand

through a larger area than the area through which the platform contacts the user’s

finger pad, meaning that not only will the reaction force act on the user at lower

pressure level, but also that changes to this pressure will be less perceptible to the

user [95]. Additionally, I note that fingertip contact and pressure feedback can be

coupled with grip force feedback and presented using a single actuator, such as is

done in [67]. However, the decision to use a dedicated actuator for fingertip contact

and pressure feedback allows for independent control of the tactile and kinesthetic

feedback modalities, which is necessary to create the haptic feedback described in

Section 4.3. Furthermore, voice coils can be used for vibration feedback because they

are high-bandwidth vibration actuators [64]. Adding high-frequency signals with a

zero mean to low-frequency force commands allows us to activate the FA-II afferents

when the platform is both in and out of contact with the finger. I added a thin
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layer of neoprene foam between the magnet and the voice coil to allow for vibration

feedback without rattling when the magnet is being attracted to the coil.

4.3 Control and Haptic Feedback

There are numerous ways that the described haptic device can be used to control the

PR2’s gripper. I sought to create a stable, direct-control, bilateral teleoperation sys-

tem that haptically immerses the operator in the robot’s environment in an intuitive

manner.

4.3.1 Bilateral Gripper Controller

Early testing revealed that the fast rate at which humans naturally open and close the

device makes position-position control better suited than a position-force controller

for bilateral control of the PR2 gripper with our device. When grasping an object

under position-force control, the human is prone to close the device at a rate much

faster than the 0.04 m/s that the robot’s gripper can move, thus commanding the

robot’s grip aperture to be much smaller than the width of the object. When the

robotic fingers finally contact the object en route to the smaller commanded aperture,

the high-impedance gripper crushes all nonrigid objects. Avoiding this undesirable

behavior requires the user to visually observe the position of the robot’s fingers and

try to keep her grip aperture similar to that of the robot, a difficult task that distracts

from the manipulation itself.
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Figure 4.5: Diagram of the proposed controller, which enables the human to control the
aperture of the PR2 robot gripper while receiving kinesthetic grip force feedback plus tactile
fingertip contact, pressure, and vibrotactile feedback.

Therefore, I decided to implement a position-position controller. This control

scheme, described in detail in [69] and illustrated in the top part of Fig. 4.5, applies

a resistive force to the operator’s hand when she has closed her hand too far or is

attempting to close her hand too quickly, naturally keeping the human’s and robot’s

grip apertures close together. A PD controller is used to drive the grip aperture of

the robot to match the human’s present grip aperture, as measured by the encoder on

the motor. A second PD controller is used to drive the grip aperture of the human’s

hand to the present grip aperture of the robot. I convert between rotational and

translational commands using the length r = 0.056 m. The gains for the robotic

control loop were unchanged from the default gripper controller provided by Willow

Garage. The derivative feedback gain on the device’s PD controller was tuned so

that it is easy for the user to open and close the device to control the PR2’s gripper

position as long as she is moving the device at approximately the same rate that the
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robot is opening and closing its gripper.

Unfortunately, the well known fact that linear time-invariant position-position

control schemes provide poor transparency, as first discussed in [58], made it much

more difficult to tune the proportional feedback gain in the haptic device’s control

loop. When the proportional gain on the device’s PD controller is low, the operator

is easily able to move her hand to change the commanded grip position of the robot,

which is desirable when opening and closing the gripper in free space. However, the

operator will also be able to effortlessly command the robot’s pose when the gripper

is squeezing an object, not only preventing the user from feeling that the robot’s

gripper is holding an object, but also allowing the operator to crush the potentially

fragile object. In an attempt to remedy this problem, the gains of the haptic device’s

PD controller can be increased to make it more difficult for the user to change the

robot’s hand pose; however, it then becomes difficult for the operator to change the

robot’s grip aperture in free space.

Fortunately, as proposed and demonstrated in [68], a gain-switching position-

position control scheme can be used to provide a good sense of transparency to the

user. When the gain-switching PD control loop is implemented on this device, a low

proportional feedback gain in used when the robot’s hand is in free space, allowing the

user to easily control the robot’s grip aperture. Once the robot’s hand begins to grasp

an object, the proportional gain is switched to a higher value, haptically alerting the

user that the robot’s fingers are in contact with the object, both via the user’s FA-I
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afferents, responding to the quick change in the level of force applied by the motor,

and the user’s SA-I afferents, responding to the steady-state forces commanded by

the PD controller with a high proportional feedback term.

The pressure sensor arrays on the PR2’s fingertips provide a natural and accurate

method to determine gain-switching conditions. An average of the force applied to the

left and right pressure sensors, as determined by methods described in Section 4.3.2, is

compared against predetermined thresholds to tell if the robot’s hand is squeezing an

object. When closing the robot’s gripper in a grasp attempt, the proportional gain is

switched to high once the average pressure rises above the threshold, ε. While this high

gain makes it difficult for the user to further close her hand, it also makes it difficult

for the user to release the grasped object and can create the illusion of adhesion

between the robot’s fingers and the object. Therefore, the system detects when the

user is opening her hand using the motor’s encoders and switches the proportional

gain back to the lower level once the force applied to the pressure cell arrays falls

below a higher threshold value, ε + δ. Even though this gain-switching scheme has

the potential for fast switching of control gains, which could lead to stability issues, I

have yet to encounter problems caused by fast gain switching, largely due to the low

noise of the pressure sensors. Hysteresis may be added in future versions if problems

are encountered.
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4.3.2 Tactile Feedback Modes

Contact and Pressure Feedback

The contact and pressure feedback provided by the voice-coil actuator activate the

user’s FA-I and SA-I tactile afferents in a similar way that a directly manipulated

object would activate these afferents. This feedback mode informs the user if either

or both of the robotic fingers are contacting an object and gives the user an idea of

the amount of force the robot is applying to the object. The system independently

controls the force of the voice-coil actuator on the index finger and thumb based on

the corresponding robot finger’s sensor reading. The robot’s symmetric hand and

infinitely rotatable wrist make it necessary to assign the corresponding finger. I chose

to assign the fingers based on the robot’s arm configuration so that the robot’s index

finger is chosen to be the robotic finger that is closer in position to the human’s index

finger. For example, when the gripper is facing directly outward, as in Fig. 4.1, the

lateral finger is labeled as the index finger.

To calculate appropriate commanded forces to the voice coil, I first process the

data from the index and thumb pressure sensor arrays in the same way as in [84]. I

obtain one reading from the pressure cell arrays on the robot’s thumb and index finger

by finding the total force applied to the 15 pressure cells on the finger’s flat gripping

surface. Although this reading contains little noise, there is a noticeable drift caused

by deformations in the rubber covering the pressure sensor arrays and other sensor

imperfections. To help negate the drift, I tare the sensors during an initialization
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routine by setting the average of the first 0.25 seconds of data to zero. To determine

whether or not the platform attached to the voice coil magnet should be contacting

the finger, I compare the resulting pressure reading to 1 N, a level slightly higher

than the drift observed in the sensors during typical interactions. When the pressure

reading is below this level, the controller commands a current to the voice coil to keep

the platform away from the user’s finger, as shown in the left picture of Fig. 4.4. If

the pressure reading rises about this level, the controller commands the platform to

contact the finger with a force proportional to the force at the robot’s finger, up to 6.7

N, as shown in the right picture of Fig. 4.4. In this version of the controller, I set this

proportionality constant so that when the robot’s gripper is stalled while attempting

to crush a rigid object, the voice coils output their maximum 6.7 N. In the future,

rigorous testing of this feedback mode will help refine this proportionality constant.

Finally, I note that although the platform attached to the voice coil’s magnet applies

a force to the user’s finger, this force is matched by an equal and opposite reaction

force applied to the back of the finger. Since these internal forces negate each other,

the fingertip contact and pressure feedback does not greatly influence the dynamics

or stability of the system.

Acceleration Feedback

Acceleration feedback was used to stimulate the user’s FA-II afferents by playing pro-

cessed accelerations measured by the PR2’s accelerometer through the voice coils;
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these signals naturally convey important information about contact events in the

robot’s environment. Drawing heavily on previous work conducted in the Penn Hap-

tics Lab, I digitally process the accelerometer data to obtain clear signals that can

readily reveal important contact events. First, the three axes of acceleration data are

summed to obtain a single accelerometer reading, a computationally efficient method

that introduces no time delay while still providing a good temporal and spectral

match with the original three-axis signal [57]. The resulting acceleration signal is

filtered using a fourth order 150 to 750 Hz Butterworth bandpass filter to remove

the low frequency gravity component and a strong signal at 1000 Hz. The filtered

signal contains both accelerations caused by contact events and accelerations caused

by the motors and cooling of the PR2. To isolate the important contact accelerations

from the ego-vibrations of the robot, I implemented an adaptive spectral subtraction

method, similar to the method described in [65]. In adaptive spectral subtraction,

short segments of the time domain acceleration signal are transformed to the fre-

quency domain, where a continually updated estimate of the robot’s ego-vibration

spectrum is subtracted from the total spectrum of the signal. The remaining signal

content, which contains the spectrum of contact events, is then converted back to the

time domain. The resulting processed acceleration signal is then scaled to command

appropriate levels of current to the voice coil.

I sought to scale the vibration feedback so that a processed vibration signal con-

taining only robot ego-vibrations would be barely perceptible by the user, allowing the
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contact acceleration transients to be most salient. I found two main factors that each

independently affect the strength of the vibration feedback. First, the acceleration

feedback feels drastically different depending on whether or not the voice coil’s mag-

net is being attracted to or repelled from the coil. When the magnet is being attracted

to the coil, the vibrating magnet is in direct contact with the neoprene foam, and

the vibrations are transmitted throughout the device. Somewhat surprisingly, this

creates stronger vibrotactile feedback than when the magnet is being repelled from

the coil and the platform is in direct contact with the fingertip. Second, although

the adaptive spectral subtraction removes much of the robot’s own vibrations, a dis-

cernible acceleration signal caused by the opening and closing of the PR2’s gripper is

not eliminated, as seen in Fig. 4.6; this sustained vibration is unpleasant to feel. For

these reasons, a different scale factor is used for each of the four combinations (at-

traction or repulsion between the coil and the magnet and movement or stationarity

of the robotic gripper). The acceleration gains for the finger and thumb are switched

independently.

4.4 Preliminary Validation and Conclusion

To validate the design of our wearable haptic device, I integrated it into a full teleop-

eration system that controls the PR2’s right arm. The teleoperation system consists

of the device, the control and haptic feedback methods described in Section 4.3, a

real PR2 robot, a keyboard controller adapted from [96] to move the robot’s hand,
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and visual feedback from one of the robot’s head-mounted cameras, viewed using the

open-source Robot Visualizer (RViz) software [38]. I used this integrated platform to

conduct a simple validation experiment in which one of the authors of [75] teleoper-

ated the PR2 to lift several objects off of a table and set them gently back down. To

complete this task, the operator first maneuvered the robot’s hand to a grasping po-

sition using the keyboard controller and then used our gripper controller to grasp the

object with the robot’s hand. Once she was confident that she was firmly grasping,

but not crushing, the object, she used the keyboard arm controller to lift the object

approximately 0.1 m above the table. She then set the object back down and opened

the gripper to release the object.

The experience level and personal bias of the operator in this study preclude it

from serving as proof, and more extensive testing is certainly required to fully validate

the functionality of the device. Still, the results from this preliminary experiment

indicate that our haptic grip controller can be used to successfully manipulate objects

with the PR2. The operator was able to complete this lift-and-replace task a total of

more than 40 times with the following objects: an empty paper gift bag, a Solo cup,

a champagne glass, a soft block of foam, and a hard plastic cup. Although no object

was ever dropped or damaged, one of the completed trials resulted in a failure when a

champagne glass that was grasped by its stem rotated in the robot’s hand upon lift.

This initial testing also validated that the control and haptic feedback methods

described in Section 4.3 worked as intended. The data shown in the top plot of
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Fig. 4.6 was recorded during a trial when the operator lifted a rigid cup with a

relatively high grip force, while the data shown in the bottom plot of Fig. 4.6 was

recorded during a trial when the operator gently grasped a flimsy Solo cup. In both

trials the robot’s grip aperture tracked that of the human’s hand very well. While

the user’s prior knowledge of the robot’s speed limitations influenced her use of the

device, the derivative feedback made it difficult for her to open and close her hand

at a rate faster than the robot’s hand, enabling this good tracking. In both trials

the gain-switching controller produced a step increase in the amount of force applied

to the user’s hand by the geared motor when the robot’s fingers first contacted the

object. The recordings also show that the tactile feedback worked as intended. The

voice coils properly applied a force proportional to the force measured by the pressure

cell arrays on the robot’s ‘index finger’ and ‘thumb’ to the human’s index finger and

thumb. Although the acceleration transient caused by the hard plastic cup contacting

the table (at 9 seconds in the top plot of Fig. 4.6) is the only contact event captured

in the presented trials, the vibrotactile feedback did properly alert the user each time

a hard contact was made.
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Figure 4.6: Sample data recorded during the validation experiment described in Section
4.4. The robot was teleoperated to grasp a rigid plastic cup (top) and a flimsy disposable
plastic cup (bottom). The scale of the data associated with the human and the wearable
haptic device is given on the left Y-axes, while the scale of the data associated with the robot
is shown on the right Y-axes. Using a numbering convention so that Plot 1 corresponds
with the top plot for each data set, Plot 1 shows the height of the slave robot’s hand above
the table’s surface. Plot 2 shows the master device’s grip aperture (solid peach) and the
slave robot’s grip aperture (dashed blue). Plot 3 shows the rate of change of grip aperture
for the master and slave using the same line formats. Plot 4 shows the torque commanded
by the master device’s PD controller (solid peach), and the torque output of the robot’s
PD controller normalized by the gripper’s stall torque (dashed blue). The green shading in
Plots 4 and 5 shows the period of time during which the high gain was active in the device’s
gain-switching PD controller. Plot 5 also shows the pressure measured at the robot’s index
finger (solid light green) and thumb (solid dark green), as well as the average of the two
pressure readings (green dashed). Additionally, Plot 5 shows the pressure threshold used to
switch the device’s PD controller’s proportional gain to high when the user is closing the
device (solid black) and the pressure threshold used to switch the proportional gain to low
when the user is opening the device (dashed black). Plot 6 shows the acceleration measured
at the robot’s gripper before (dark teal) and after (light teal) spectral subtraction. The teal
shading in Plot 6 shows the period in time when the robot’s gripper was moving. Finally,
the force output of the voice coils on the index finger and the thumb are shown in Plots
7 and 8, respectively. On these plots the gray shading indicates the situation-dependent
acceleration gain used during that period of time. On each plot, the white background
indicates that the gripper was still and the voice coil’s platform was held away from the
finger, the light gray indicates that the gripper was still and the voice coil’s platform was
contacting the finger, the medium gray indicates that the gripper was moving and the voice
coil’s platform was held away from the finger, and the dark gray indicates that the gripper
was moving and the voice coil’s platform was contacting the finger.
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Chapter 5

Effects of Ungrounded Haptic

Feedback on a Teleoperated

Pick-and-Place Task

This chapter tests the hypothesis that ungrounded grip-force, fingertip-contact-and-

pressure, and high-frequency acceleration haptic feedback, provided by the device

described in Chapter 4, will improve human performance of a teleoperated pick-and-

place task. Thirty subjects used a teleoperation system consisting of the haptic device

worn on the subject’s right hand, a remote PR2 humanoid robot, and a Vicon motion

capture system to move either a flexible plastic cup or a rigid plastic block to a target

location. Each subject completed the pick-and-place task ten times under each of the

eight haptic conditions obtained by turning on and off grip-force feedback, contact
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feedback, and acceleration feedback. The results indicate that the addition of grip-

force feedback with gain switching enables subjects to handle objects more delicately,

hold objects more stably, and better control the motion of the remote robot’s hand.

Although certain aspects were improved, such as sensing when the object is in the

remote robot’s hand, the addition of contact feedback generally led subjects to handle

the object more roughly. Finally, adding acceleration feedback slightly improved

the subject’s performance when setting the object down, as originally hypothesized;

interestingly it also allowed subjects to feel vibrations produced by the robot’s motion,

causing them to be more careful when completing the task. This study supports the

utility of grip-force and high-frequency acceleration feedback in teleoperation systems.

An article documenting this research has been submitted to the IEEE Transactions

on Haptics [47].

This chapter begins in Section 5.1 by providing detailed background information

about the human sense of touch, specifically on how its different modalities enable

completion of a simple pick-and-place task. The main hypothesis of this chapter

is that the haptic feedback provided by the wearable device will aid the operator’s

performance just as the different touch modalities aid direct task completion. Sections

5.2 and 5.3 describe the teleoperation system and the experimental procedures of

this study. I present the results in Section 5.4, interpret them in Section 5.5, and

summarize the main conclusions and plans for future work in Section 5.6.
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5.1 Background on Human Touch

Extensive neuroscience research, reviewed by Johansson and Flanagan [46], has found

that there are four distinct tactile afferents conveyed by mechanoreceptors in the

glabrous (non-hairy) skin of the hand. Two of the tactile modalities are fast adapting

(FA); they respond when a sensation is first experienced but stop relaying information

when it persists. Type I afferents have small receptive fields (∼3-50 mm2), while type

II have large receptive fields (∼10-100 mm2) [100]. The FA-I afferents respond to

dynamic loading and skin deformation over the entire hand, but they are most dense

at the fingertips. FA-II afferents respond to high frequency vibrations ranging from

40 to 400 Hz [46]. The other two tactile modalities are slowly adapting (SA); they

continually relay information even after the tactile stimulus has reached steady state.

SA-I afferents are sensitive to low-frequency loading and skin deformation, while SA-II

afferents respond to low-frequency skin stretch.

Johansson and Flanagan highlight the value of each of the tactile afferent modal-

ities by examining the task of picking an object up from a table and placing it back

down [46]. This pick-and-place task is broken into six action phases: reach, load,

lift, hold, replace, and unload. The tactile afferents convey important information

not only during the action phases, but also to trigger transitions to the next action

phase. The reach phase begins when a person starts moving his or her hand and

ends when the fingers make contact with the object. Both FA-I and SA-I afferents

respond strongly to this contact, informing the person of the accuracy with which
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the movement was executed, which in turn allows him or her to make adjustments

in future reaching movements [19, 81, 83]. The response of FA-I and SA-I afferents

also causes the person to transition to the load phase, in which grip force and vertical

load force increase.

The load action phase ends and the lift action phase commences when the object

breaks contact with the table, an event that activates the FA-II tactile afferent. The

lift phase transitions to the hold phase when the person lifts the object to the goal

height. The replace action phase begins when the person starts lowering his or her

hand. Grasp stability is the main goal during the lift, hold, and replace phases. A

combination of SA-I and SA-II afferents monitors a stable lift and allows the person

to hold the object using a typical grip force of only 10 to 40% more than the minimum

allowable grip force. The FA afferents respond if a slip does occur, and the person

adjusts his or her grasp accordingly. Finally, the unload action phase begins when

the object makes contacts with the table, triggering an FA-II response. The unload

action phase ends when the fingers break contact with the object, as sensed by the

FA-I and SA-I afferents.

The tactile component of touch is complemented by the kinesthetic sense. Golgi

tendon organs and muscle spindles monitor tension experienced by tendons and the

length and velocity of muscles [41, 71]. Kinesthesia provides both a sense of applied

force and awareness of body position (proprioception). In the context of the pick-and-

place task, proprioception allows one to understand the position and orientation of
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one’s hand during the reach action phase. Toward the end of the reach action phase,

the proprioceptive sense indicates the degree to which the hand is opened. The

kinesthetic measure of force activates during the load phase and allows the person to

understand the amount of grip force and vertical load force he or she is applying to

the object.

This chapter tests the hypothesis that fingertip-contact (FA-I), pressure (SA-I),

and vibrotactile (FA-II) feedback with kinesthetic grip-force feedback will aid a tele-

operated task in the same way that tactile afferents are known to play vital roles in

direct manipulation.

5.2 Teleoperation Hardware

To test the value of the different modes of haptic feedback provided by our wearable

device [75], we integrated it into a teleoperator that gives the operator full control

over the arm and hand of a remote robot, as shown in Fig. 5.1. A complete discussion

of the Willow Garage PR2 humanoid robot and the custom control device is given in

Chapter 4.2. More succinct descriptions of these components are included in Sections

5.2.1 and 5.2.2, respectively, for clarity and completeness. We also describe updates

that allow the haptic device to fit more hand sizes. As discussed in Section 5.2.3, a

Vicon motion capture system was used to measure the pose of the subject’s hand,

and the robot’s hand was controlled to follow.
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Figure 5.1: Our teleoperation system consisted of a PR2 robot, a custom haptic device,
a Vicon motion capture system, and a visual display.

5.2.1 Robot

During this experiment the PR2 robot, which is described more fully in Section 4.2.1,

was located in a room across the hall from the subject. The robot in its experimental
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Figure 5.2: The PR2 slave robot was located in a separate room from the subject. Sensors
in the robot’s gripper were used to provide haptic feedback to the operator, and sensors in
the blue platform monitored environment interactions.

environment is shown Fig. 5.2. The robot’s base, torso, left arm, and head remained

stationary during the study. The robot’s right arm was controlled by the subject

using methods described in Section 5.2.3.

The PR2 has several cameras that capture information in the visual domain. A

head-mounted color ethernet camera with resolution of 752×480 pixels at 15 frames

per second was used to record the robot’s view. This information was displayed to

the user using ROS’s Robot Visualizer (RViz) [38] on an LCD monitor approximately

1 m in front of the user, as shown in Fig. 5.1. Displayed images measured 52 cm

diagonally.
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5.2.2 The Haptic Device

The version of the custom haptic device used in this study is shown in Fig. 4.3.

The haptic device allows the operator to control the distance between the robot’s

fingers while feeling a representation of what the robot feels. Brief details of the

implementation of the haptic feedback modalities are given in this section.

A position-position PD controller with gain-switching on the proportional feed-

back term was implemented to provide kinesthetic grip-force feedback. The propor-

tional gain of this PD controller is changed based on the state of the robot’s fingertips

to improve the quality of the kinesthetic grip-force feedback provided to the user [68].

The value of a gain-switching PD controller is highlighted by examining the grip-force

feedback during the action phases of a teleoperated pick-and-place task. When the

user is moving the robot’s hand toward the object, the robot’s fingertips are in free

space, as can be sensed by the robot’s fingertip-mounted pressure sensors. During this

action phase, the user should feel little or no resistance. Therefore, the proportional

gain of the device’s PD controller is set to a low value. At the end of the reach phase,

the robot’s fingertips contact the object of interest. In this teleoperator, we detect

when the robot’s fingertips are no longer closing in free space by comparing the sum

of the readings from the robot’s two fingers to a preselected threshold value, δ = 2 N.

The task has now entered the load phase, so we switch the proportional gain of the

device’s control loop to a higher value. The torque commanded to the motor will now

make it difficult for the user to continue to close the robot’s hand. The gain remains
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high for the lift, hold, and replace action phases of the task. During the unload phase,

the proportional gain will switch back to the lower value when the combined pressure

applied to the fingertips falls below δ + ε = 7 N, once again making it easy for the

operator to open and close the device.

The derivative feedback term was kept constant regardless of whether the robot

was grasping an object. The gain of the derivative feedback was tuned so that the

user would encounter very little resistance when opening and closing his or her own

hand at a rate achievable by the robot’s gripper. If the subject opens or closes too

quickly, the derivative feedback resists this motion.

The other two haptic actuators are voice coils (BEI Kimco Magnetics, LA10-08-

000A) that deliver contact (FA-I), pressure (SA-I), and vibrotactile (FA-II) cues to

the pads of the operator’s index finger and thumb. The magnet of each actuator

is connected to a platform in front of the user’s fingertip. When the corresponding

robot finger is in free space, the current commanded though the coil attracts the

magnet, holding the platform away from the user’s fingertip. The distance between

the magnet and the platform is adjustable to allow the platform to be positioned as

close as possible to the user’s fingerpad without touching. When the force sensed by

the corresponding robot finger rises above 2 N, the direction of the current commanded

though the coil is switched, repelling the magnet and thus bringing the platform into

contact with the user’s fingertip. The steady-state force that the platform applies to

the user’s fingertip is proportional to the force experienced at the robot’s fingertip,
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clipping with a maximum output of 5.4 N when the robot’s finger experiences 29.1 N.

Vibrotactile feedback is achieved by adding the filtered acceleration signal with

zero mean to the low-frequency signal calculated for contact-and-pressure feedback.

The acceleration signal is scaled by four different scale factors depending on whether

the platform is in contact with the operator’s fingertips and whether the robot’s grip

opening is changing. Each scale factor was empirically chosen so that the egovibra-

tions of the robot are barely perceptible.

5.2.3 Motion Capture and Arm Control

A Vicon MX motion capture system with six cameras, two of which are visible in Fig.

5.1, was used to track the pose of the wearable haptic device. As seen in Fig. 4.3, five

retroreflective markers were placed on the body of the haptic device to allow tracking

by the Vicon system. A sixth marker was placed on the lateral side of the subject’s

wrist via an elastic band to track the X, Y, and Z position of the user’s hand. All six

markers were used to track the device’s orientation.

The subject’s hand position and orientation were based on a right-handed Carte-

sian coordinate system whose origin was the initial position of the subject’s hand.

The X-axis of this coordinate system pointed forward, the Y-axis pointed to the sub-

ject’s left, and the Z-axis pointed up. A Jacobian transpose controller was used to

control the position and orientation of the robotic gripper in a Cartesian coordinate

system centered at the initial position of the robot’s end-effector. The position and

orientation of the robot’s gripper were commanded to match the subject’s position
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and orientation. Because all computers were connected on the same local network,

the roundtrip time delay was negligible.

5.3 Experimental Methods

Thirty subjects (20 male, 10 female) participated in this study, ranging in age from 18

to 48 years (mean: 24.2, standard deviation: 5.8). Procedures were approved by the

Institutional Review Board of the University of Pennsylvania under protocol 820867.

After giving informed consent, each subject completed a demographic survey to ensure

eligibility. As required by the protocol, all subjects reported being right handed,

having normal or corrected-to-normal vision, and having normal motor function of

the right arm and hand.

Each subject completed repeated trials of a pick-and-place task under the eight

haptic feedback conditions obtained by turning on and off grip-force feedback, contact-

and-pressure feedback, and acceleration feedback. When grip-force feedback was

turned off, the device’s proportional and derivative feedback gains were set to zero, so

the motor was not activated. When contact-and-pressure feedback was turned off, the

platform was always held away from the user’s fingertip. Lastly, when acceleration

feedback was turned off, the high-frequency acceleration signal was not displayed via

the voice-coil actuators.

The order in which the eight haptic conditions were presented was randomized

before the experiment began. Custom software switched the haptic feedback condi-
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tion, keeping the two experimenters blind to the displayed type of haptic feedback.

Subjects were told that different types of haptic feedback would be presented, but

the conditions were not described until after the study. The haptic feedback was only

referred to by presentation order.

A block of pick-and-place trials always started with the object located in the

center of the white circular target shown in Fig. 5.1. The subject moved his or her

hand to match the pose of the robot and the controller was engaged. In a perfect

trial, the subject used the teleoperator to first position the robot’s gripper near the

object in the reach action phase. The subject then used the wearable haptic control

interface to close the robot’s hand around the object, initiating the load action phase.

Next, the subject moved his or her own hand in the motion capture space to lift the

object from the table and then move the grasped object from the white target toward

the blue target in the hold action phase. The subject then entered the replace action

phase and moved the handheld object toward the blue circular target until the object

contacted the supporting surface. He or she then used the haptic device to open the

robot’s hand to release the object in the unload action phase. Finally, the participant

moved the robot’s gripper away from the object. These actions constituted a single

pick-and-place trial. The subject then performed the same sequence of actions to pick

the object up from the blue target and move it back to the white target. Subjects were

told to treat the object delicately by using minimal grasping force and not dropping

the object.
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Each subject completed one block of ten single pick-and-place trials for each haptic

condition, meaning he or she moved the object from the white target to the blue target

and back five times. The subject rested as long as he or she liked after each block of

ten, typically no more than one minute. Doing all eighty trials took less than than

one hour and ten minutes. Subjects were not compensated for participation.

The subject and the robot were located in two different rooms during the study,

and one experimenter was present in each location. Before beginning the pick-and-

place task, the subject was taken to see the robot and its environment. One of the

experimenters explained the capabilities of the PR2 to ensure that the subject had

a basic understanding of the robot he or she would be controlling. Subjects also

completed at least one pick-and-place trial with their own hand to confirm that they

understood the task instructions and to learn the physical properties of the object.

All subjects followed identical experimental protocols, but they were split into

two groups that completed the task with different objects. Fifteen subjects used the

teleoperation system to manipulate a flexible disposable plastic cup, and the other

fifteen subjects used the system to interact with a rigid plastic block. Fig. 5.3 shows

both objects and the force-displacement curves obtained from squeezing each object

with the PR2 gripper. The first fifteen subjects who enrolled in the study completed

the task with the flexibly cup. Preliminary analysis of their performance led us to

believe that the visual measure of grip force via the flexible cup greatly affected

the subjects’ performance. Therefore, we tested a second group of 15 subjects who
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Figure 5.3: The flexible cup (left) and rigid block (right) were the two objects used in this
study. The depicted force-displacement curves were recorded in five separate trials in which
the robot’s gripper was commanded to move from completely open to completely closed.

completed the task with a rigid block in order to investigate how a visual measure

of grip force (via the flexible cup) affected task performance. We were careful not

change the experimental setup between the two groups of subjects.

5.3.1 Data Acquisition and Task Performance Metrics

In the robot’s environment, we collected data from the robot itself and from sensors

in the task materials. Naturally, pressure applied to the robot’s fingertip pressure

sensors and accelerations experienced at the robot’s wrist were recorded. The robot’s

desired and actual grip opening and gripper position and orientation were also logged.

The blue circular target (Fig. 5.1) was situated on a one-axis load cell (Loadstar:

iLoad Analog) to measure the normal force experienced by the target during different

action phases of the pick-and-place task. Two two-axis high-bandwidth accelerome-

ters (ADXL321, ±18 g) were embedded across from one another in the blue target’s
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platform. One axis on each sensor points upward, along the Z-axis of our frame. The

remaining axes of each sensor were placed perpendicular to one another, creating X

and Y axes.

One of the experimenters sat in the robot’s environment to tally events related

to task performance. When the subject was picking up the object, this experimenter

counted the number of times the object was knocked over and the number of times

the subject began the lift phase before having secured the object in the robot’s hand.

During the combined load, lift, and hold action phases, the experimenter recorded the

number of unstable grasps (slipping) and the number of times the subject dropped

the object. For subjects completing the task with the flexible cup, the number of

times the cup was slightly deformed and the number of times the cup was crushed

were counted. During the replace and unload action phases, the experimenter tracked

the number of times the subject dropped the object before it made contact with the

table. Finally, the number of times that the robot’s hand hit the table was recorded

during all action phases. A video camera in the robot’s environment recorded the

entire experiment. Video documentation was used to double-check the events tallied

by the experimenter.

Data recorded in the human’s environment included the subject’s hand position,

orientation, and grip opening. The state of the three haptic feedback modalities

was always recorded. If any mode of haptic feedback was turned off, we stored the

feedback that would have been experienced by the subject had that mode of haptic
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feedback been on.

Finally, we obtained subjective ratings of each haptic feedback via identical computer-

based surveys completed after each block of ten pick-and-place trials. The subject

used a slider to indicate his or her response to five questions on a continuous scale

from 0 to 100. The questions posed to the subjects were ‘How easy was it to com-

plete the task?’, ‘How confident were you in sensing the robot’s environment?’, ‘How

confident were you in your ability to move the object?’, ‘How consistent was the task

experience with your real-world experience?’, and ‘How would you rate your over-

all experience?’. These questions were adapted from Witmer and Singer’s Presence

questionnaire [107].

5.4 Results

Results are presented by the action phases of the pick-and-place task to highlight how

the presence or absence of grip-force, fingertip-contact-and-pressure, and acceleration

feedback affected task performance. The load, lift, and hold action phases together

and the replace and unload action phases are grouped together because it was not

possible to reliably distinguish these action phases from one another given the sensors

included in the robot’s environment. Additionally, the experimenter tallied events

over the entire task performance, so errors that occurred during different phases were

coded identically. All performance results are summarized in Tables 5.1 and 5.2. This

Section concludes by presenting subjective survey responses.
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Flexible Cup Rigid Block

Metric Grip-Force Contact Acceleration Grip-Force Contact Acceleration

Feedback Feedback Feedback Feedback Feedback Feedback

Closing Speed 0.70 0.48 0.57 0.023 0.49 0.83

Platform Lift Force 0.95 0.49 0.54 0.20 0.32 0.40

Platform Lift Acceleration 0.55 0.90 0.17 0.42 0.0057 0.31

Reaction Time 0.028 0.41 0.098 0.10 0.57 0.28

Peak Grip Force 0.078 0.025 0.0037 0.013 0.20 0.54

Average Grip Force 0.93 0.21 0.0024 0.0050 0.46 0.51

Average Control Error NA NA NA <0.0001 0.99 0.16

Platform Place Force 0.29 0.89 0.95 0.0013 0.023 0.60

Platform Place Acceleration 0.21 0.29 0.95 <0.0001 0.062 0.33

Trial Time 0.43 0.30 0.77 0.70 0.72 0.014

Table 5.1: The p-values returned by the repeated measures ANOVA. Positive performance
changes caused by the presence of one of the haptic feedback modes are highlighted light
gray, while negative performance changes are highlighted dark gray.

Metrics based on sensor data were first calculated for each individual pick-and-

place trial. If a metric was more than 1.5 standard deviations away from the mean for

that metric for that haptic condition across all subjects, the data point was discarded

as an outlier. Each subject’s remaining data were averaged, resulting in a single value

per subject per haptic condition. Repeated measures analysis of variance (rANOVA),

as implemented by [99], was used to determine whether any of the haptic feedback

modes affected task performance. The within-subject factors were presence or ab-

sence of grip-force feedback, presence or absence of contact feedback, and presence or

absence of acceleration feedback. Counted events are presented as the summed tally

over all subjects and are not statistically analyzed.

Each plot showing sensor-based metrics or counted events displays the same data

three times, once for each of the haptic feedback modes. Each of these presentations

breaks the data into a subset that contains all data from when the feedback mode

of interest is turned on and a subset when it is turned off. Each of these subsets is
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Flexible Cup Rigid Block

Metric Grip-Force Contact Acceleration Grip-Force Contact Acceleration

Feedback Feedback Feedback Feedback Feedback Feedback

On Off On Off On Off On Off On Off On Off

Object Knocked Over 16 13 12 17 14 15 24 32 29 27 30 26

Failed Pickups 4 18 9 13 11 11 10 29 18 21 20 19

Small Deformations 177 189 195 171 170 196 NA NA NA NA NA NA

Crushes 5 9 4 10 7 7 NA NA NA NA NA NA

Unstable Grasps 26 53 46 33 33 46 3 5 2 6 5 3

Drops 0 4 3 1 1 3 2 3 1 4 2 3

Drops On Placement 34 41 39 36 41 34 64 107 67 104 80 91

Robot’s Hand Hits Table 146 139 125 160 136 149 100 145 136 109 119 126

Table 5.2: The number of counted events that occurred in the presence or absence of
each of the feedback modalities. An event is highlighted if there is more than 10% change
between the counts with and without that feedback modality. Positive performance changes
caused by the presence of one of the haptic feedback modes are highlighted light gray, while
negative performance changes are highlighted dark gray.

thus the aggregate data from the four conditions of turning the other two feedback

modes on and off. Plots showing sensor-based data are presented as box plots. The

boxes are filled in if that feedback mode caused a significant difference in subject

performance as measured by the metric at the α = 0.05 significance level. The

total number of times a counted event occurred in each of the eight possible haptic

feedback conditions is presented by a rectangular bar whose height is the number

of times the event occurred during that feedback mode. Each feedback mode is

represented by the following colors: light gray = no haptic feedback, red = grip-force

only, green = contact only, blue = acceleration feedback only, yellow = grip-force and

contact feedback, purple = grip-force and acceleration feedback, teal = contact and

acceleration feedback, black = grip-force, contact, and acceleration feedback.
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Figure 5.4: The closing speed of the robotic gripper.
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Figure 5.5: The number of times the object was knocked over.

5.4.1 Reach

The analyzed first metric was the rate at which the subject closed the robot’s hand

during the reach action phase. As shown in Fig. 5.4, grip-force feedback led subjects

who completed the task using the rigid block to close the robot’s hand more slowly

(F = 6.579, p = 0.0225). Subjects who completed the task with the rigid block also

closed the robot’s hand more quickly (mean = 0.032 m/s) than the subjects who

completed the task with the flexible cup (mean = 0.029 m/s).

The experimenter tallied the number of times the object was knocked over. Al-
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Figure 5.6: The number of times the subject attempted to lift the object without first
having successfully grasped the object.
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Figure 5.7: The peak force experienced by the sensorized platform during the lift action
phase.

though this metric was for the full trial, the vast majority of knock overs occurred

in the reach action phase, so we report the data here. As shown in Fig. 5.5, the

flexible cup was knocked over slightly more often when subjects received grip-force

feedback and slightly less often when they received contact feedback. Subjects who

manipulated the rigid block knocked it over fewer times when they received grip-force

feedback than when grip-force feedback was turned off. These subjects knocked the

rigid block over slightly more when they received acceleration feedback.
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Figure 5.8: The peak platform acceleration during the lift action phase.

5.4.2 Load, Lift, and Hold

Fig. 5.6 presents the number of times the subject attempted to lift the object with-

out first having successfully grasped the object. The number of times the subject

attempted to lift the object without first having successfully grasped it was greatly

reduced when grip-force feedback was present and was slightly reduced when contact

feedback was present for both objects. The rigid object had more failed pick ups.

No form of feedback led to significant differences in the peak force applied to

the load cell when the subject was picking up the object, as shown in Fig. 5.7. For

the rigid block, but not for the flexible cup, subjects caused higher peak platform

accelerations when contact feedback was present, as shown in Fig. 5.8.

We measured the subject’s contact reaction speed as the amount of time it took

the subject to stop closing the robot’s hand after both fingers made contact. As

shown in Fig. 5.9, subjects who completed the task with the flexible cup stopped

closing the robot’s gripper in a significantly shorter amount of time with grip-force
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Figure 5.9: The time it took for the robot’s hand to stop closing after both fingers
contacted the object.

feedback (F = 5.985 p = 0.0282). Although not significant, subjects who completed

the experiment using the rigid block also stopped closing the robot’s hand more

quickly with grip-force feedback (F = 3.025, p = 0.1039).

We analyzed both the peak grip force, shown in Fig. 5.10, and the average grip

force, shown in Fig. 5.11, applied to the object. Subjects who completed the task

with the flexible cup applied lower peak and average grip forces to the object when

they had acceleration feedback (peak: F = 12.131, p = 0.0037, average: F = 13.708,

p = 0.0024). These same subjects applied significantly higher peak forces to the

flexible cup when receiving contact feedback (F = 6.341, p = 0.0246). Subjects who

manipulated the rigid block applied lower peak and average grip force when they had

grip-force feedback (peak: F = 7.995, p = 0.00134, average: F = 11.031, p = 0.005).

The final sensor-based metric examined during the load, lift, and hold action

phases was the average grip aperture control error, which we defined to be the dif-

ference between the robot’s grip opening and the subject’s grip opening. Using our
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Figure 5.10: The peak grip force exerted on the object.
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Figure 5.11: The average grip force exerted on the object.

sign convention, a negative error means that the subject’s hand was closed more than

the robot’s. As shown in Fig. 5.12, the control error is very small for subjects ma-

nipulating the flexible cup because this object did not impede the robot’s gripper.

The rigid block did prevent the gripper from closing, so the control errors are much

larger. When the subjects manipulating the rigid block had grip-force feedback, they

kept their grip opening closer to that of the robot (F = 38.696, p < 0.0001). Neither

contact nor acceleration feedback affected the average control error.
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Figure 5.12: The average grip opening control error during the load, lift, and hold action
phases.
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Figure 5.13: The number of times the flexible cup was slightly deformed (left) and crushed
(right).

Although the gripper is not impeded by the soft cup, if the subject commands

the gripper aperture to be too small, the cup will deform and potentially crush. The

number of visible deformations and the number of times the cup was crushed to the

point of destruction were counted by the experimenter in the robot’s environment, as

shown in Fig. 5.13. The number of small deformations was not greatly affected by any

of the modes of haptic feedback. However, the number of times the cup was crushed

was greatly reduced with the presence of either grip-force or contact feedback.
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Figure 5.14: The number of times the object slipped or rotated within the robot’s gripper
without falling.
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Figure 5.15: The number of times the object was dropped during the lift and hold action
phases.

The experimenter in the robot’s environment also tallied the number of times the

subject lifted the object with an unstable grasp. A grasp was considered unstable if

the object rotated or translated in the robot’s hand without falling. If the object fell,

the event was tallied in a separate category as a drop. The number of unstable grasps

and drops are shown in Figs. 5.14 and 5.15, respectively. Subjects who completed the

task with the flexible cup had fewer unstable grasps and dropped the cup less often

when they had grip-force feedback or acceleration feedback. Conversely, these same
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subjects had more unstable grasps and dropped the object more often when they

had contact feedback. Subjects who manipulated the rigid block had fewer unstable

grasps with grip-force or contact feedback, but slightly more unstable grasps when

acceleration feedback was on. All three forms of feedback led to slightly fewer drops

by the subjects who completed the task with the rigid block.

5.4.3 Replace and Unload

Drops that occurred when the subject released the object before it contacted the

table but after the subject had clearly entered the replace action phase were coded

separately from normal drops. The total number of times the object was released

prior to making contact with the target is shown in Fig. 5.16. Subjects who moved

the flexible cup dropped it before making contact with the target location roughly

the same number of times regardless of which feedback modes were present or absent.

For subjects who completed the task with the rigid block, the presence of each of the

three modes of haptic feedback reduced the number of times the object was dropped

prior to placement. Overall, the rigid block was dropped more than the flexible cup.

For trials when the subject successfully placed the object on the target without

dropping it, data collected by the force and acceleration sensors embedded in the

platform reveal how gently the subject placed the object on the target. Fig. 5.17

shows the peak force applied when the subject placed the object on the blue target.

Placement force was not affected by any feedback mode for subjects who completed
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Figure 5.16: The number of times the object was dropped during the replace action phase.
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Figure 5.17: The peak platform force during the replace action phase.

the task with the flexible cup. Subjects who manipulated the rigid block placed the

object with lower peak force when grip-force feedback was present (F = 16.106, p

= 0.0013). Contact feedback caused the same subjects to place the rigid block with

a higher peak force (F = 6.513, p = 0.0230). Fig. 5.18 shows the peak acceleration

experienced by the target platform. No differences in peak acceleration were observed

for subjects who completed the pick-and-place task using the flexible cup. Subjects

who completed the experiment using the rigid block produced lower peak acceleration
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Figure 5.18: The peak platform acceleration during the replace action phase.

when placing the object with grip-force feedback (F = 45.17, p < 0.001).

5.4.4 Combined Action Phases
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Figure 5.19: The time spent in the load, lift, hold, replace, and unload action phases.

Two metrics span all of the phases. First, we examined the total amount of time

the subject took to complete the task. Because subjects performed the pick-and-

place task continuously, and because they chose how far to move the robot’s hand
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after releasing the object, we decided to ignore time spent in the reach phase. We

define the trial time as the duration the subject was holding the object. No differences

were found in trial time for the subjects who manipulated the soft cup, as shown in

Fig. 5.19. Subjects who completed the task with the rigid block were faster when

receiving acceleration feedback (F = 7.782, p = 0.0145).

on off on off on off
0

25

50

75

100

125

150

175

Grip Force
Feedback

Contact
Feedback

Acceleration
Feedback

Flexible Cup

N
u
m

b
e
r 

O
f 
T

im
e
s
 R

o
b
o
t’
s
 H

a
n
d
 H

it
 T

a
b
le

on off on off on off
0

25

50

75

100

125

150

175

Grip Force
Feedback

Contact
Feedback

Acceleration
Feedback

Rigid Block

N
u
m

b
e
r 

O
f 
T

im
e
s
 R

o
b
o
t’
s
 H

a
n
d
 H

it
 T

a
b
le

Figure 5.20: The number of times the robot’s hand hit the table.

Second, we counted the total number of times that the robot’s hand collided with

the table. Grip-force feedback led to slightly more collisions for subjects who moved

the flexible cup, but it caused many fewer collisions for subjects who moved the rigid

block. Contact feedback reduced the number of collisions for subjects who completed

the task with the flexible cup, but it led to an increase in the number of collisions

for subjects who completed the task with the rigid object. Both sets of subjects

completed the task with slightly fewer collisions with acceleration feedback.
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Figure 5.21: Subject responses to survey questions.
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5.4.5 Subjective Ratings

The survey completed by the subject after each feedback condition revealed cases

where grip-force feedback and contact feedback significantly improved the task expe-

rience. These data were analyzed using repeated measures ANOVA with the three

within-subject factors of grip-force feedback mode, contact feedback mode, and accel-

eration feedback mode. The distribution of subject responses in shown in Fig. 5.21.

Overall subjects rated the task relatively positively, with mean responses ranging

from 58.9 to 76.3 out of 100.

Subjects who completed the pick-and-place task with the cup responded that they

felt significantly more confident in sensing the robot’s environment when they received

grip-force feedback (F = 8.32, p = 0.012). These subjects also responded that the

task was significantly more consistent with their real-world experience when they had

contact feedback (F = 8.07, p = 0.0131). Contact feedback also indicated improve-

ment in subject responses to the questions “How confident were you in sensing the

robot’s environment?”, “How confident were you in your ability to move the object?”,

and “How would you rate your overall experience?” at the α = 0.1 significance level.

Acceleration feedback did not lead to differences in subjective ratings for this group.

Subjects who manipulated the rigid block rated the overall experience significantly

higher when they received grip-force feedback (F = 5.50, p = 0.034). These subjects

also indicated that grip-force feedback caused them to feel more confident in their

ability to move the object and caused the task to be more consistent with their real-
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world experience at the α = 0.1 significance level. The factors of contact feedback

and acceleration feedback did not show any differences in the subjective ratings of

the task for this group.

5.5 Discussion

As evidenced by the results in Tables 5.1 and 5.2, the different modes of haptic

feedback both positively and negatively affected different aspects of the pick-and-

place task.

5.5.1 Reach

During the reach action phase, subjects who completed the task with the rigid object

closed the robot’s hand more slowly when receiving grip-force feedback. Although

slower movement may seem inefficient, the excessive grip force and high grip aper-

ture control errors that occurred without grip-force feedback show that subjects were

closing the hand too quickly. The desirable slow and careful closure of the robot’s

gripper under grip-force feedback is due in part to the damping subjects encountered

when closing the robot’s hand too quickly. It is likely that the subject’s increased

awareness of the remote object due to grip-force feedback contributed to the more

careful behavior.

The number of times the subject knocked the object over indicates how well the

subject was able to control the robot’s hand in the remote environment, and it may
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also show the degree to which the robot became integrated with the subject’s own

body schema [34,110]. When visual cues gave redundant information about the grip

force applied to the flexible cup, grip-force feedback led the subjects to knock the

object over more often, while contact feedback led the subject to knock the object

over fewer times. When no redundant visual grip force information was present (for

the rigid block), subjects knocked the object over more times overall, indicating that

this task was more challenging. But grip-force feedback reduced the number of times

the rigid block was knocked over, indicating that it gave subjects better control of

the robot’s hand in the more difficult task condition.

5.5.2 Load, Lift, and Hold

The number of times the subject attempted to lift the object without securing it in the

robot’s gripper reflects how well he or she was able to sense when the remote object

was grasped in the robot’s hand. Both grip-force and contact feedback reduced the

number of failed pickups for both objects, supporting our hypothesis that grip-force

and contact feedback will increase the subject’s understanding of the remote environ-

ment, allowing a successful transition between the load and lift action phases. With

grip-force feedback subjects also stopped closing the robot’s gripper more quickly after

the flexible cup had been grasped, further confirming our hypothesis that grip-force

feedback increases the subject’s sense of the remote environment.

When the subjects successfully lifted the object, contact feedback was the only
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form of haptic feedback that affected the physical interactions between the object

and the sensorized platform during the load and lift action phases. Contact feedback

caused higher peak accelerations, as measured by the accelerometers embedded in

the platform, for subjects who completed the task with the rigid block. The sudden

onset of the contact feedback may have startled some subjects, resulting in rougher

behavior captured by the peak accelerations.

During the lift and hold action phases, grip-force feedback led subjects to apply

lower grip forces to the flexible cup at a α = 0.1 significance level and to the rigid

object at a α = 0.05 significance level. Grip-force feedback also led to fewer small de-

formations and crushes of the flexible cup. Importantly, grip-force feedback decreased

the number of unstable grasps and the number of drops, showing that grip-force feed-

back allows subjects to hold the object more gently while still applying sufficient

force.

Contrary to the hypothesis, subjects applied higher grip forces to the flexible

cup when contact feedback was present. Contact feedback also led to more small

deformations of the flexible cup, but fewer destructive crushes of the flexible cup.

The presence of contact feedback also led to more unstable grasps and drops of the

flexible cup, but fewer unstable grasps and drops of the rigid object. Contact feedback

may have led to an increased awareness of the remote object, causing subjects to grasp

more firmly, explaining the higher grip force and occurrence of small deformations but

reduction in the number of times the object was crushed. I note that although contact
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feedback caused more drops of the flexible object, all three drops occurred during the

first block of trials when contact feedback was turned on. Therefore, contact feedback

may initially cause subjects to unsafely reduce grip force. However, given the fact

that no subjects dropped the flexible object after the first block of pick-and-place

trials with contact feedback, I believe that subjects can learn to make proper use of

contact feedback with practice. Contact feedback led to fewer unstable grasps and

drops of the rigid object, without causing an increase in the overall grip force applied

to the object, indicating that contact feedback was beneficial to this set of subjects.

However, these subjects were free to apply high grip forces to the rigid object with

no negative effects.

Acceleration feedback unexpectedly led to a reduction of grip force applied to the

flexible object, resulting in fewer small deformations of the cup. However, acceleration

feedback did not affect the number of times the flexible cup was crushed. Acceleration

feedback also led to fewer unstable grasps and drops of the flexible cup. Finally,

acceleration feedback led to more unstable grasps of the rigid block, but fewer drops.

Acceleration feedback was not anticipated to have a positive effect on the subjects’

ability to hold the object more more stably with lower applied grip force because

the robot’s wrist-mounted accelerometer cannot measure any salient signal related to

applied grip force during the load, lift, and hold action phases. However, during these

action phases the accelerometer does measure vibrations produced by the robot’s own

motion. Therefore, acceleration feedback let subjects feel not only vibrations caused

140



by interactions between the robot and its environment but also vibrations produced

by the robot’s own motion. The highly geared PR2 gripper produces significant

vibrations when opening or closing. Although acceleration feedback was scaled to

reduce these egovibrations, they were still perceptible.The overall positive effects

of acceleration feedback during the load, lift, and hold action phases are likely a

consequence of subjects having a better appreciation of the robot’s movement because

they were able to feel the robot’s egovibrations.

5.5.3 Replace and Unload

The number of times the object was dropped before it contacted the supporting sur-

face in the replace action phase shows how well subjects understood whether the

object in the robot’s hand had contacted the target platform. The hypothesis pre-

dicted that acceleration feedback would enable subjects to feel the transient vibrations

produced when the object contacted the target. Consistent with this hypothesis, ac-

celeration feedback reduced the number of drops of the rigid object during the replace

action phase. However, contrary to this hypothesis acceleration feedback increased

the number of premature releases of the flexible object. I attribute this difference in

performance between subject groups to the physical properties of the objects. The

rigid object produces higher peak accelerations than the flexible object for similar

contact conditions. Therefore, subjects felt salient vibrations from contacts with the

rigid object at lower impact speeds, and acceleration feedback aided user performance.
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On the other hand, higher impact speeds were required in order for subjects to feel

collision vibrations from the flexible object. Therefore, acceleration feedback acted

as negative reinforcement for subjects completing the task with the flexible cup and

perhaps led them to release the object before placement.

Subject performance during other action phases has already provided evidence

supporting that grip-force feedback improves the subject’s control over the robot’s

hand, while grip-force feedback and contact feedback improve the subject’s ability

to sense the held object. These conclusions are further supported by the finding

that grip-force feedback slightly decreased the number of times the flexible cup was

dropped during the replace action phase, and the fact that grip-force and contact

feedback both greatly reduced the number of premature releases of the rigid object.

No haptic feedback mode affected placement force and acceleration measured by

the platform for the flexible object. However, grip-force feedback reduced both the

placement force and acceleration for the rigid block, yet again indicating that grip-

force feedback better allowed subjects to control the motion of the remote robot.

Contact feedback increased peak placement force of the rigid object at the α = 0.05

significance level and peak placement acceleration of the rigid object at the α = 0.1

significance level. One explanation is that contact feedback degraded the subject’s

ability to control the remote robotic hand. An alternative explanation is that contact

feedback allowed the subject to better sense the remote object, causing them to avoid

dropping it, even at the expense of rougher placements. Contrary to the hypothesis,
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acceleration feedback did not affect the roughness of object placement for either

object, perhaps because it occurs only after impact.

5.5.4 Combined Action Phases

Although no task instructions regarding speed were given to subjects, trial times

can still indicate task difficulty. The only haptic condition that improved trial time

was acceleration feedback for subjects who completed the task with the rigid block.

Noting that trial times were defined to exclude time spent in the reach action phase, we

believe that placement cues provided by the acceleration feedback increased subject’s

confidence when placing the object, decreasing time spent in the replace and unload

action phases.

Consistent with results described above, grip-force feedback reduced the number

of times the robot’s hand hit the table for subjects who completed the task with

the rigid object, again indicating that these subjects were better able to control the

remote robotic hand with grip-force feedback. Contact feedback reduced the number

of robot hand collisions for subjects completing the task with the rigid object, but it

increased collisions for subjects completing the task with the flexible object. Contact

feedback can both improve and degrade user performance in a teleoperated pick-and-

place task.
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5.5.5 Subjective Ratings

Survey responses showed that both grip-force and contact feedback improved the

subjective experience for participants who manipulated the flexible cup, and only

grip-force feedback improved the experience for subjects who completed the task

with the rigid block. No mode of haptic feedback degraded the experience for either

group. When object deformations were visible (flexible cup), it is interesting to note

that grip-force feedback improved one aspect of the task, while contact feedback

improved three aspects of the task at the α = 0.1 significance level. However, when

no redundant visual grip-force information was provided to subjects (with the rigid

block), grip-force feedback dominated subject experience, improving three aspects of

the task experience at the α = 0.1 significance level.

5.6 Conclusion

Grip-force feedback with gain-switching had the most positive effects on subject per-

formance and had very few to no negative effects. It aided task performance in ways

consistent with the hypothesis, improving user performance just as the kinesthetic

sense of grip force aids a direct pick-and-place task. For example, grip-force feedback

reduced the number of failed pickup attempts, the number of unstable grasps and

drops during the lift and hold action phases, and the number of drops during the

replace action phase for both objects. Grip-force feedback also reduced the number
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of times that the flexible cup was either slightly deformed or crushed and allowed sub-

jects to apply less grip force to the rigid object. Information provided by grip-force

feedback also improved the subject’s ability to move the robot’s hand through space,

although more research is needed to fully understand this effect. Ideally, I would

conduct another study investigating subject performance with and without grip-force

feedback in a teleoperated reach-to-grasp task to pinpoint how grip-force feedback

affects an operator’s ability to control the motion of a remote robot.

I hypothesized that contact feedback would improve subject performance in simi-

lar ways as grip-force feedback. However, results indicate that aspects of task perfor-

mance were both improved and degraded with contact feedback. A reduced number

of failed pickup attempts of both objects indicates that contact feedback better al-

lowed the subject to determine when the object was grasped in the robot’s hand.

However, the increased awareness of the remote object seems to negatively affect sub-

ject performance in other ways. For example, subjects who completed the task with

the flexible cup applied higher grip force and slightly deformed the object more often

with contact feedback. Subjects needed time to learn to interpret contact feedback,

as evidenced by the fact that all three drops of the flexible cup with contact feedback

occurred during the first set of trials that included contact feedback. They were also

rougher when picking up and setting down the rigid object with contact feedback.

More work is needed to understand the learning curve required for subjects to best

make use of contact feedback. In the future, I plan to investigate whether it is possible
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to improve the method by which contact feedback is presented to improve its effect

on operator performance.

I designed acceleration feedback with the goal of informing subjects about phys-

ical interactions between the robot’s hand and the robot’s environment. However, a

reduction in the number of drops of the rigid block during the replace action phase

and a faster trial time were the only evidence that acceleration feedback improved

the subject’s ability to place the object. On the other hand, feedback of vibrations

caused by the robot’s motion had a large impact on subject performance, improving

the load, lift, and hold action phases in ways similar to grip-force feedback. I note

that Kurihara et al. similarly showed that haptic and auditory feedback of vibrations

caused by robot motion increased subjective ownership and the sense of resistance

caused by moving a virtual robot arm [55]. I propose to further investigate whether

feedback of vibrations caused by robot motion will cause similar effects of increased

ownership of the remote robot in teleoperation.
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Chapter 6

Conclusion

The ideal teleoperation system would allow an operator to complete a task in en-

vironments where human presence is impossible or undesirable as least as easily as

if he or she were to directly perform the same task with his or her own hands. To

date, all teleoperation systems fall short of this ambitious standard. A few immer-

sive systems that offer high transparency and presence, such as the da Vinci surgical

system [33], come close, especially with extensive operator training. However, even

the da Vinici surgical system surgical system Furthermore, the da Vinci’s immersive

display requires the operator to sacrifice awareness of his or her local environment.

This tradeoff is acceptable in robotic surgery, but it would be dangerous in many

other teleoperation use cases. For example, in a search-and-rescue task, the operator

is located in a disaster field and needs to be aware of the local environment [8].

This dissertation presented and evaluated two new methods of improving the us-
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ability of teleoperation systems without sacrificing the operator’s awareness of the lo-

cal environment. First, I proposed and proved that data-driven motion mappings that

correct for systematic human motion errors improve the usability and transparency

of teleoperation systems. Second, I proposed that providing grip-force, finger-tip-

contact-and-pressure, and high-frequency acceleration haptic feedback would improve

the usability of teleoperation systems by increasing the level of presence experienced

by the operator. Analysis of a teleoperated pick-and-place task revealed that grip-

force and high-frequency acceleration haptic feedback aided task performance, while

finger-tip-contact-and-pressure haptic feedback had both positive and negative effects.

6.1 Contributions

Determining Natural Human-Robot Motion Mappings in Tele-

operation

Chapter 2 proposes implementing data-driven motion mappings as an alternative to

the typically used Cartesian-scaling motion mapping. The Cartesian-scaling motion

mapping falsely assumes that the operator’s executed movements identically match

his or her intended movement. A data-driven motion mapping that corrects for

systematic errors in human movement will result in robot motion that more closely

resembles the operator’s intent, as opposed to the operator’s produced motion. First, I

developed and implemented a semi-automatic method to determine such a data-driven
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motion mapping in which the subject mimics the preprogrammed motion of a virtual

robot. The recorded motion data is then used to fit parameters of a data-driven

motion mapping model. Three data-driven motion mapping models are proposed

and evaluated against a Cartesian-scaling motion mapping. A variable-similarity

motion mapping that corrects systematic directional motion errors was found to best

transform the recorded human motion to the robot’s motion.

Evaluation of Data-Driven Motion Mappings

Chapter 3 confirms the hypothesis that implementing data-driven motion mappings

will improve the usability of teleoperation systems. Two forms of the variable-

similarity motion mapping model and a Cartesian-scaling motion mapping were used

to calculate a virtual robot’s desired hand position given the measured human hand

position. The first variable-similarity motion mapping was fit to data collected in the

study conducted in Chapter 2 and corrects for average motion errors made by a pop-

ulation. The second variable-similarity motion mapping was individually fit to data

collected in the calibration phase of the validation user study. Twelve participants

reached toward 120 targets under each of the three motion mappings with balanced

random presentation order and a washout task between conditions. Subjects were

able to complete the targeting task with higher accuracy in initial direction of robot

motion, at higher speeds, and with more natural and efficient reaching movements

under the variable-similarity motion mappings. Subjects also overwhelmingly pre-
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ferred the variable-similarity motion mappings. These results indicate that subjects

experienced a higher level of transparency when using the virtual teleoperator with

the variable-similarity motion mappings than with the standard Cartesian mapping.

A Wearable Device for Controlling a Robot Gripper with Un-

grounded Haptic Feedback

In Chapter 4, the focus of the dissertation switches from the feedforward (efferent)

channel to the feedback (afferent) channel. An ungrounded wearable haptic device

was designed to deliver grip-force, fingertip-pressure-and-contact, and high-frequency

acceleration haptic feedback. The device’s controller is also developed: a position-

position controller with gain switching was implemented to allow the user to control

the opening of the remote robot’s hand while simultaneously feeling a representation

of the grip force that the robot’s hand is applying to objects. Signals measured

by the robot’s pair of fingertip-mounted pressure sensor arrays and a wrist-mounted

high-bandwidth accelerometer were processed to drive the tactile fingertip-contact

and high-frequency acceleration feedback. Finally, preliminary testing of the device

proved that it successfully delivers the intended haptic feedback and enables handling

of diverse objects.
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Effects of Ungrounded Haptic Feedback on a Teleoperated

Pick-and-Place Task

Chapter 5 evaluates each haptic feedback modality that is displayed by the custom

device developed in Chapter 4. A user study was designed to test the hypothesis

that ungrounded grip-force, fingertip-contact-and-pressure, and high-frequency accel-

eration haptic feedback will improve a teleoperated pick-and-place task just as the

different touch modalities aid direct task completion. I developed a teleoperation

system consisting of a haptic device worn on the subject’s right hand, a remote PR2

humanoid robot, and a Vicon motion capture system. Each subject used this teleop-

eration system to move either a flexible plastic cup or a rigid plastic block to a target

location ten times under each of the eight haptic conditions obtained by turning on

and off grip-force feedback, contact feedback, and acceleration feedback. The results

indicate that the addition of grip-force feedback with gain switching enables subjects

to handle objects more delicately, hold objects more stably, and better control the

motion of the remote robot’s hand. Although certain aspects were improved, such

as sensing when the object is in the remote robot’s hand, the addition of contact

feedback generally led subjects to handle the object more roughly. Finally, adding

acceleration feedback slightly improved the subject’s performance when setting the

object down, as originally hypothesized; interestingly it also allowed subjects to feel

vibrations produced by the robot’s motion, causing them to be more careful when

completing the task. This study supports the utility of grip-force and high-frequency
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acceleration feedback in teleoperation systems.

6.2 Future Directions

Research presented in this dissertation can be extended through further investigation

on alternative data-driven motion mappings and ungrounded haptic feedback in tele-

operation. This dissertation can also be extended by studying the interplay between

the feedforward and feedback channels. Finally, an important vein of future work lies

in creating objective metrics to evaluate the levels of transparency and presence in

teleoperation systems.

Data-Driven Motion Mappings

This dissertation showed that variable-similarity motion mappings allow subjects to

better complete a targeting task than Cartesian-scaling motion mappings. However,

to fully substantiate this claim, we need to validate it using more complicated tasks

in which subjects not only move the robot’s arm through space, but also interact with

objects in the robot’s environment to perform a meaningful task. In order to allow

subjects to complete such a task, we first need to extend our motion mappings to three

dimensions. Both extending our calibration routine to three-dimensional motions

and performing the two-dimensional calibration routine in several different horizontal

planes are promising approaches for deducing three-dimensional data-driven motion

mappings.
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I would also like to extend our methods to allow a robot to complete two-handed

tasks. While simply replicating our methods for the left hand could work, we need to

better understand how humans perform two-handed tasks. The mappings currently

consider only the position of the hand in a body-centered coordinate frame. However,

in two-handed tasks, the left hand would need to coordinate its position with that of

the right hand, and vice versa. Therefore, more research may be required to extend

our mappings to two-handed teleoperators.

I also hope to find other motion mappings that improve operator performance

in teleoperation. We recommend starting this investigation by further considering

theories proposed in the neuroscience literature regarding the cause of systematic

errors made by humans completing targeting tasks. For example, Gordon et al.

propose that systematic errors are made when a human fails to fully account for the

inertia of his or her arm [29]. Another theory states that subjects systematically

underestimate the distance of their hand from their body, causing them to produce

systematic directional errors [22]. New motion mappings can be created based on

these theories and others proposed in the literature.

Finally, I would like to extend my work in modeling human motion errors and

creating data-driven motion mappings to the field of physical therapy. The motion

mimicking task could be repurposed as a diagnostic tool because errors made during

this task generalize across a population. Therefore, a metric could be developed

that could inform a therapist how close his or her patient is to having normal motor
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function. I envision a therapeutic setup that measures human motion as patients

mimic the motion of a human-like agent. The resulting patient motion would then be

analyzed by custom software and produce a score about the patient’s motions. The

software could also help direct the physical therapist by providing information about

the areas in the subject’s workspace in which errors were most abnormal.

I also believe that implementing corrective motion mapping in a virtual physi-

cal therapy task could make physical therapy more enjoyable, which could result in

greater patient compliance. A task could be developed in which the patient would

control the motion of a virtual agent. Corrective motion mapping would be developed

for the patient using methods similar to those developed in this dissertation. These

motion mappings would enable the motion of the agent to match the patient’s intent,

rather than his or her produced motion. Implementing such data-driven motion map-

ping would likely result in higher levels of task performance. Higher levels of task

performance could encourage patients, which could lead them to be more energized

and to work harder during therapy sessions. There is the obvious risk that subjects

could become satisfied with their performance, which would reduce effort and limit

the benefits of the therapeutic intervention. To prevent this I propose investigat-

ing methods to blend corrective motion mappings with mappings that preserve the

user’s motion. This would allow physical therapists to control the level of assistance

delivered by the motion mappings. The therapist could adjust the assistance level

according to the needs of each patient, even as these needs change from session to
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session.

Ungrounded Haptic Feedback in Teleoperation

This dissertation showed that ungrounded haptic feedback improves operator perfor-

mance in a teleoperated pick-and-place task. Grip-force feedback with gain switching

allowed subjects to hold the object more stably and with lower forces, and it gave

subjects better control over the robot’s hand position. Early testing showed that the

device worked better with a position-position controller, rather than a position-force

controller. However, the position-position controller works best when the robot is

manipulating a rigid object. When the robotic hand grasps a rigid object, the force

applied to the robot’s fingertips increases according to Hooke’s law. Very little force

is applied to the robot’s fingertips if it is grasping the object with a commanded grip

opening that it close to the width of the object. High forces are applied to the robot’s

fingertips if it grips the object with a commanded grasp opening that is smaller than

the width of the object. On the other hand, in the case of a deformable object, the

difference between the device’s opening and the robot’s opening can be negligible

and the operator would feel very little force, even when the robot’s hand is apply-

ing enough force to deform the object. It is thus not surprising that the results of

this study revealed that our implementation of grip-force feedback had more positive

effects for subjects manipulating the rigid block. Therefore, we propose that a new

control system should be developed that closely links the human’s hand to the robot’s
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while accurately reflecting the force applied to the user’s hand. This goal could prob-

ably be achieved using a position-position controller with gain scheduling [11,86], so

that the value of the proportional gain is continually updated so that the force applied

to the user’s hand matches the measured force at the robot’s fingertips, even when

the position control error is small.

Fingertip-contact tactile feedback both positively and negatively affected task

performance. Consistent with the hypothesis, contact feedback better allowed the

subject to determine when the object was grasped in the robot’s hand. However,

contact feedback also caused subjects to handle the object more roughly. I believe

that the current implementation of contact feedback startled some users, thereby

increasing the roughness with which they handled the object. Therefore, alternative

methods of delivering contact feedback should be explored with the goal of increasing

the positive effects of contact feedback, while lessening its negative effects. One small

improvement would be to reduce the moving mass of the platform by switching the

magnet and the coil. In this configuration, the heavier magnet (33 grams) would be

rigidly attached to the body of the haptic device and the lighter coil (7 grams) would

be attached to the moving platform.

High-frequency acceleration of transient vibrations caused by collisions in the

robot’s environment improved task performance amongst subjects who completed

the task with the rigid object. High-frequency acceleration feedback of egovibrations

caused by the robot’s motion unexpectedly proved more beneficial to user perfor-
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mance. It is worth noting that I purposely eliminated as much egovibration feedback

as possible when designing the device’s controller because I falsely assumed these

vibrations would only serve to annoy the operator, without improving his or her task

performance. I was not alone in this misguided assumption, as evidenced by that fact

that nearly all research on robot egovibrations treats such vibrations as noise and

aims to eliminate them from sensor readings, e.g. [43, 44, 65]. To my knowledge, the

sole exception is the research of Kurihara et al., which showed that haptic and au-

ditory feedback of vibrations caused by robot motion increased subjective ownership

and the sense of resistance caused by moving a virtual robot arm [55]. This rela-

tively unexplored area of egovibration feedback certainly merits further exploration.

However, I note that care must be used when designing such egovibration feedback

because it is known that continuously applying strong vibrations to the skin reduces

tactile sensitivity [39].

The modalities of haptic feedback were designed to deliver accurate representa-

tions of what the robot felt. However, limits in sensor and actuator technology pre-

clude the haptic feedback provided by the device from being indistinguishable from

what the operator would feel if her or she were to directly interact with the object.

This dissertation showed that the haptic feedback provided by the device was useful

to the subjects in this experiment, even if the haptic feedback paled in comparison to

the rich sensations encountered in direct manipulation tasks. However, understanding

exactly how subjects were able to utilize the haptic feedback was beyond the scope of
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this work. In the future, I hope to conduct a study investigating the learning curve

associated with each modality of haptic feedback to elucidate the naturalness of each

feedback modality. If a modality of haptic feedback leads a subject to perform a task

well, but doesn’t improve his or her performance over time, we can conclude that that

modality of feedback had high levels of intuitiveness. However, if a modality causes

a subject’s performance to improve over time, we can conclude that this modality is

useful, but not necessarily intuitive. I hope to conduct such a learning curve study

not only using the modalities of feedback discussed in this dissertation, but also using

a variety of other haptic, visual, and auditory feedback modalities.

Another interesting research extension for this project would be to consider how

to best provide haptic feedback to an operator to controlling a multi-fingered robotic

hand. Extending the tactile feedback to a multi fingered design would be a reasonably

straightforward extension of the device’s current design. One would simply need

to place a voice coil actuator at the tip of any finger involved in controlling the

robotic hand. These additional voice coils could then be driven using the same control

methods developed in this dissertation. Extending grip force feedback to a multi-

fingered controller would require more extensive mechanical modifications because

the DC motor is positioned to directly actuate the rotational degree-of-freedom of the

device. The direct-drive design prohibits a simple extension to a multi-fingered device

because it is impossible to fit multiple motors between adjacent metacarpophalangeal

joints. A possible alternative design would be to position the motors near the back
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of the hand and use linkages to transmit forces from the motors to the fingers. This

design would be similar to that of the CyberGrasp [13], but would allow the device

to both push and pull on the operator’s fingers.

Effects of Haptic Feedback on Reach Accuracy in Teleopera-

tion

This dissertation investigated two separate methods of improving the usability of

teleoperation systems that measure natural arm movement to control the motion

of a remote robot. The first half of this dissertation improved the forward channel

of a teleoperation system by introducing data-driven motion mappings. The second

half of this dissertation improved the feedback channel by providing the operator with

multiple modalities of ungrounded haptic feedback. The effects of data-driven motion

mappings and haptic feedback were each independently analyzed, largely treating the

feedforward and feedback channels as separate entities.

However, Chapter 5 provides showing that haptic feedback better allowed the

subject to control the motion of the remote robot. Unfortunately, the unconstrained

design of this study prohibited extensive analysis of the subject’s performance in the

reach action phase of the teleoperated pick-and-place task. It is reasonable to expect

haptic feedback to positively affect an operator’s ability to control the motion of a

remote robot because the sense of touch plays an important role in allowing one to

accurately and consistently move his or her own arm. For example, touch allows
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subjects completing a typing task to reach more accurately toward the keys and

to recognize when a finger movement was executed inaccurately [28]. Furthermore,

typing movements are executed with higher trajectory variability when anesthesia is

administered to block the sense of touch [81]. The human sense of touch also improves

the accuracy of pointing tasks that require full arm movement [83]. Blocking the sense

of touch with anesthesia also affects both the spatial movements of the hand and the

trajectory of the hand opening in a reach-to-grasp task [19]. The improvements in

motion accuracy and consistency are due to the fact that touch allows one to update

his or her internal body representation by providing accurate spatial information when

the hand makes contact with an object at a known location [56]. The sense of touch

also allows one to recognize when a reaching motion was executed inaccurately, when

the experienced touch is inconsistent with the expected touch, which allows a person

to alter his or her internal motion controller following an inaccurately executed reach.

Therefore, we hypothesize that haptic feedback will improve reach accuracy in

teleoperation. We plan to conduct a user study in the near future in which subjects

will complete a teleoperated reach-to-grasp task with a virtual robot. A crossover

experimental design will be implemented. Subjects will reach and grasp three sets of

virtual targets, either with or without haptic feedback. The targets will be presented

in a randomly generated order. Subjects will then complete three more sets of trials

under the other haptic feedback condition. We will compare each subject’s task per-

formance with haptic feedback against his or her performance without haptic feedback
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to understand whether haptic feedback affects reach accuracy in teleoperation.

We plan to use this study as an opportunity to investigate the interaction between

the data-driven motion mappings and haptic feedback. Half of the subjects will

complete the task under a population-fit-data driven motion mapping and the other

half will complete the task under a Cartesian-scaling motion mapping. This proposed

study will show the relative importance and possible synergy of the two techniques

pioneered by this dissertation.
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