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Pedisich, Konstantinos Kallas, Linh Thi Xuan Phan, Nathan Dautenhahn, Nick

Roessler, Raphael Rubin, Udit Dhawan, and Vincent Liu. I am also grateful to many

collaborators outside Penn: Asaf Kariv, Christian-Alexandru Staicu, Dahlia Malkhi,

George Chrysanthakopoulos, Jiasi Shen, José Pablo Cambronero, Lena Kanellou,
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ABSTRACT

ANDROMEDA—A DISTRIBUTED USERSPACE

Nikos Vasilakis

Jonathan M. Smith

Computing is on a steady trajectory from standalone personal computers to perva-

sive, heterogeneous, networked computing resources. Distributed software systems

are becoming indispensable, but involve a significant (and often unjustifiable) degree

of complexity. This problem is evident in their setup, development, deployment, and

use—all of which are nowhere near their centralized counterparts. Whereas anyone

today can write a Bash or Python script to compute on a single computer, scaling out

to multiple computers requires expert labor around “point” solutions with expensive

setups, restricted programming interfaces, and exorbitant composition costs.

To address this problem, I develop the concept of a distributed userspace—a

language-based overlay environment that bolts distribution onto a conventional (and

light) language runtime as an extensible service module. The environment’s pro-

gramming style melds an unusual combination of elements aimed at lowering the

aforementioned complexity without any loss of generality. To tackle a growing space

of unavoidable distribution trade-offs, it also provides pervasive support for high-level

configurability—e.g., node grouping, context rebinding, and interface transform.

I build a distributed-userspace prototype, Andromeda, targeting the JavaScript

ecosystem. While most of its services are “textbook” implementations, three are

novel and demonstrate characteristics that are applicable beyond the context of An-

dromeda: (i) the storage subsystem, which supports efficient queries on dynamic

data, (ii) the node group management subsystem, which adds first-class support for

network overlays, and (iii) the task execution subsystem, which supports runtime

interface rebinding for safety and performance. The key result is that Andromeda

lowers the complexity of employing distributed software while addressing setup, tran-

sition, and ecosystem challenges. Particularly telling are three frameworks built on
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top of Andromeda that retrofit desirable properties into legacy applications with

minimal developer effort: BreakApp spawns components in remote compartments,

Iris protects co-located components from each other, and Ignis scales out bottle-

necked components. These frameworks serve a double purpose: first, they address

security and performance issues arising from the complexity-lowering techniques

powering Andromeda; and second, they show the benefits of a general-purpose

distributed environment outside the strict context of data-intensive computations,

highlighting the benefits of Andromeda’s design decisions.
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Preamble

This section provides a few guidelines on how to read this dissertation.

The PDF version of this document is thoroughly hyperlinked, and reads best in

color and on a device supporting linking. However, links are in the same font style

and color as the rest of the text, to avoid hindering readability on physical printouts

and avoid visual noise on digital devices. To “see” the links, move your cursor over

chapter, section, figure, and citation numbers and you will notice it change.

The short git commit identifier for this version of the document is: c9e5c76.

Chapter Interdependencies and Intended Audience Chapter 1 provides a

high-level map of the problems and solutions presented in the dissertation; it is geared

towards a general audience. Chapter 2 presents a closer overview of overall system;

(solutions presented in) later chapters depend somewhat on the design decisions pre-

sented here. Chapters 3–6 present four different frameworks built on Andromeda

and have no interdependencies—they can be read in any order. Chapter 7 discusses

implementation details and low-level challenges—this should be interesting primarily

to implementers of similar systems and less so to researchers. Chapter 8 presents

evaluation results of workloads executed on the system, including the frameworks

presented in Chapters 3–6 (and depends on these). Chapter 9 discusses work related

to all of the ideas presented in this dissertation; its sections are clearly marked to

correspond to different chapters. Chapter 10 offers concluding remarks, and should

be of interest to researchers interested in Andromeda’ limitations and ones looking

for promising problems to work on; it is geared towards a general audience, too.
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Appendix A targets Andromeda’ users and everyone else wanting to get an

idea of how it feels to program in Andromeda. It is also intended as a short but

“hands-on” introduction to JavaScript, the language used throughout the disserta-

tion. Readers lacking that background may want to start here. Appendix B describes

the internals of a module system. As most readers are not expected to be familiar

modern module systems in dynamic programming languages, this appendix provides

background information to the module-level transformations used in Chapters 4–6.

Published Work Andromeda’s preliminary design was presented at HotOS [225].

The design and preliminary evaluation of its distributed storage system was presented

at APSys [226]. The motivation for BreakApp—and, more generally, today’s ubiq-

uitous reliance on third-party packages—was presented at PLOS [223]. The design

and implementation of BreakApp was presented at NDSS [224]. The design and

implementation of Ignis was presented at PLDI [222]. Andromeda’s port for web

browsers was presented at EdgeSys [220]. Two Andromeda-related papers have

been recently submitted for review: (i) the design and implementation of Iris was

submitted to CCS [227]; and (ii) the design and implementation of Andromeda

was submitted to SOSP [221].

Correspondence between Papers and Chapters Much of Chapter 1, most of

Chapter 2, and the first sections of Chapters 7 and 8 are drawn from the SOSP

and HotOS papers [225, 221]. Chapters 3–6 are drawn (mostly) verbatim from the

papers they describe [226, 223, 224, 227, 222]. The rest of Chapters 7 and 8 combine

implementation and evaluation sections of all the papers. Much of Chapter 10 is

drawn from papers, but as open questions in some of the papers were addressed

in followup work, this section has been updated and augmented to summarize the

most promising open problems and future directions. Appendix A is new, whereas

Appendix B is drawn from Iris [227].
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Chapter 1

Introduction

Thesis Statement The complexity of building and employing distributed software

systems can be significantly improved without sacrificing generality or security.

1.1 Motivation

Computing hardware is becoming a commodity, to the point that devices with non-

trivial capabilities such as Raspberry Pis [172] cost a fraction of the price of a gradu-

ate textbook. Such an overabundance of cheap hardware resources makes computing

increasingly pervasive and networked. Individuals own and operate a growing num-

ber of computing devices of various types and forms; companies and organizations

employ large fleets of computers to process and store data that exceed any single

machine’s capacity.

This trend, in turn, shifts distributed software—i.e., one that treats many com-

puters as one—from desirable to indispensable. Distributed software already of-

fers multiple benefits over its centralized counterpart—for example, it can speed up

computations, mitigate resource-exhaustion attacks, improve fault-tolerance, and

balance load during spikes. But with the one-way transition towards pervasively

networked hardware resources, distributed software is becoming the only option.
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Unfortunately, distributed software involves a significant degree of complexity :

compared to centralized software, the development and deployment of distributed

software remains different and significantly more difficult. Anyone can write a Bash

or Python script to compute on a single computer—domain-experts routinely glue

scripts together to process and share data, without the help of a computing expert.

However, scaling out to multiple computers requires expert labor around “point”

solutions with expensive setups, restricted programming interfaces, and exorbitant

composition costs [121, 189, 225, 94, 219, 93]. When, contrary to hardware, software

is expensive and highly dependent on the inherent cost of human labor, the cost of

distribution becomes prohibitive for the average user.

As a result of this complexity, only a minority of computing experts, employed

by the select few companies that deal with massive datasets, have the luxury of engi-

neering software systems with distribution baked in from the start. When confronted

with a computing ensemble that numbers more than one computer, the remaining

majority starts with a laborious process of setting up layers over layers of software—

much of which developed to operate in a centralized fashion and utilizing only a

fraction of the ensemble’s capabilities.

1.2 Case Study: Building & Sharing Results

To understand this complexity, consider the case of converting a few Markdown files

to HTML and sharing them over the network. For a user owning one computer, this

is achievable with a single Unix pipeline:

1 find . '*.md' | xargs mdc | nc -l 80 (p1)

Program p1 starts by finding all files with suffix .md in the current directory, passes

them to mdc (a third-party Markdown-to-HTML compiler), and feeds the resulting

HTML to nc, which makes it available over the network (on port 80).

There are several details about such an integrated environment worth highlight-
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ing. Unix provides a portable system for individual program execution and piecewise

synthesis. It abstracts away inessential details such as program naming, loading, and

communication. Utilities such as find and nc are modular building blocks designed

for composition under various configurations; defaults are omitted, whereas non-

defaults use flags like -l. The system is trivially extensible, with add-ons such as

mdc practically indistinguishable from built-ins such as find. Most importantly, it

favors developer convenience over raw performance, but without loss of generality

nor unacceptable performance: p1 takes a few seconds to compose and execute, when

an optimized solution crafted from scratch—i.e., without any Unix services—would

have taken weeks, if not months [83, 18, 19].

Hiding all this complexity is not necessarily a special feature of the Unix userspace.

Other environments, such as Smalltalk or Lisp, would have offered similar, if not bet-

ter, convenience—all of them, that is, until the user owns more than one computer.

1.3 Prior (Classes of) Approaches

Distribution gives rise to issues that do not exist in centralized systems, such that

centralized abstractions cannot be straightforwardly extended to the distributed set-

ting. At a minimum, two computers need to resolve names, communicate results,

and direct output back to the user—generally coordinate so that they look and feel

like a single system. The abstractions available in centralized systems alone are not

adequate in the context of distribution as they are far too low-level, impeding the

user rather than supporting them. Several classes of approaches have been proposed

to aid developers in tackling such issues.

Unfortunately, today’s most popular approaches fail to produce a program as

simple as p1. Data-intensive cluster computing frameworks [49, 146, 248, 145, 168]

can be only of limited benefit, as they exploit functional purity—applicable only to

p1’s mdc. Domain-specific languages [9, 22, 128, 57, 140] suffer from a similar lack of
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generality by making strong assumptions about the nature of distribution: none of

p1’s segments feature, say, strong-eventual commutative computations that can pro-

ceed in parallel. Finally, paid cloud providers [10, 73, 133] are the poorest match, as

they offer coarser building blocks and often on remote, virtualized infrastructure that

cannot be employed on the user’s two computers. Because of specialization, all three

approaches must combine multiple point solutions in a laborious setup process that

takes place outside of the distributed environment. Composition is especially tedious

and generally dealt ad hoc, whereas other issues, such as dependency management

and mdc-like add-ons, simply remain unaddressed.

Distributed operating systems [169, 236, 159, 117, 25, 143, 166, 178, 56, 14, 189,

182] (DOSes) are better suited to address this problem. In fact, Unix-based ones of-

fer solutions that are identical to p1. However, their setup and configuration requires

a significant investment in terms of time and effort. (Setting up a virtualization layer

mostly adds to the base effort, but also affects runtime performance.) Falling out of

favor, DOSes end up lacking support and associated ecosystems—e.g., applications,

drivers, documentation, etc. Worst of all, their one-size-fits-all “distribution trans-

parency” fixes expectations about the nature and scale of distribution: for example,

how could nc expose results on one, a subset, or all computers?

Distributed programming languages [232, 119, 194, 101, 59, 240] (DPLs) give

their users full control over the resulting distribution and lack the ecosystem prob-

lems that plague DOSes. However, as in the centralized case, writing software from

scratch is difficult, time-consuming, and error-prone. Assumptions about the na-

ture of distribution, such as scale and consistency requirements, are baked into the

program at development time. Worst of all, programming languages alone lack any

support of a surrounding system: many chores, such as synchronizing configurations,

managing tasks, and administering computers, require the user dropping out of the

language and back into the underlying centralized system.

Could we lower the complexity of employing distributed systems—say, bring it
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down to ordinary scripting?

1.4 My Approach: A Distributed Userspace

My approach is a language-based overlay environment built around an existing lan-

guage runtime and presented to users as an extensible software module. It can

be imported into programs written in a conventional language to provide a set of

distributed services. These services lift node-local capabilities to their distributed

equivalents—e.g., distributed storage, inter-node communication, and task orches-

tration. I term this approach a distributed userspace and prototype it with An-

dromeda, which renders p1 as:

1 store.get(/.md$/, (p2)

2 (_, o) => mdc.compile(o,

3 (_, d) => web.expose(d, {port :80}) ) )

Program p2 queries the object-based storage (store) across all nodes for objects with

names ending in .md (1), compiles the results (bound to o) to HTML (2), and shares

(a copy of) the resulting HTML on every node part of the system (3). Services like

store and web come bundled with Andromeda, whereas mdc is a wrapper around

a publicly available package.

A couple of tweaks illustrate Andromeda’s malleability: (i) have store return

the most recent update of a strongly-consistent read; and (ii) have web expose results

on a subset of the user’s nodes, possibly different from the one handling files:

1 andromeda.rpi.store.get({k: /.md$/, c: 'strong '}, (p3)

2 (_, d) => andromeda.dsl.web.expose(d, {port :80}) )

Three points are worth mentioning.1 Andromeda’s library is namespaced under

andromeda, a map from groups of nodes to services. Specifying a group has effects on

the scale and nature of distribution, by targeting a subset of nodes and a specialized

1 For brevity, p3 and p4 omit Markdown compilation; key, consistency, and replication are
shortened to k, c, and r, respectively.
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service instance. For example, store on rpi might default to eventually consistent,

3× replication across six local micro-controllers. Services can be further re-configured

at the level of individual calls or messages (e.g., strong consistency).

While p3 addresses several distributed-systems complexities, it could achieve

more. Consider tallying web requests from all nodes using a global counter on a

new node:

1 let count = (opts , cb) => { (p4)

2 let f = () => { andromeda.self.mem.total++ }

3 andromeda.rpi.store.get(/.md$/, cb)

4 andromeda.singleton.tasks.exec(f, ...) }

5 andromeda.dsl.web.expose(count , {port: 80})

Function count creates a function f that updates total on any node it runs. It

queries store à la p1, but also sends and (atomically) executes f on a single-node

group named singleton. Methods get and exec run concurrently, as exec is not

part of get’s continuation.

Program p4 requires less effort than the equivalent in DPLs2 and is near-impossible

to express in the shell of popular DOSes. It illustrates several aspects related to the

programming style: (i) first-class support for value distribution, meaning that func-

tions can be transmitted across nodes, (ii) a cooperative concurrency model, mean-

ing that the executing code decides when to yield, and (iii) dynamic variable name

(re-)binding, affecting the incoming code’s view over exposed interfaces. Absence

of (i) and (ii) would mean that state update would require a transaction to safe-

guard against race conditions from competing nodes. Absence of (iii) would mean

that third-party code would have unrestricted access to Andromeda’s capabilities.

Andromeda favors developer convenience over raw performance but, like Unix,

without loss of generality nor unacceptable performance.

2 Cloud Haskell [59] presents a simplified version in 48 lines of Haskell.
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1.5 Dissertation Outline and Contributions

Employing distributed software today involves a significant degree of complexity.

Following Brooks [30], part of this complexity is essential to translating an algorithm

to an executable, but part of it is accidental and includes chores such as system

setup, program loading, interfacing with the surrounding environment, and task

orchestration. As many of these chores grow proportionally to the number of nodes

involved, distribution amplifies accidental complexity.

Several of Andromeda’s design decisions aim at minimizing accidental com-

plexity (§2). Andromeda’s overlay nature and lightweight kernel accelerate system

setup and teardown, its pervasive use of configurability permits addressing distri-

bution trade-offs, and its programming style simplifies development. For example,

p3 (§1.4) needs only a simple configuration parameter to achieve strong consistency,

and p4 circumvents the need for transactions by relying on support for function

communication and cooperative concurrency.

Lowering essential complexity is only possible by avoiding parts of the algorithm-

to-program translation. Andromeda aids this by allowing development and inter-

action using a conventional language, by providing access to an existing package

ecosystem, and by wrapping distribution in an extensible module (§2). For exam-

ple, p2 (§1.4) looks identical on a conventional (non-distributed) userspace, and its

use of the third-party mdc package is indistinguishable from Andromeda built-ins.

Andromeda’s approach adds the benefit of performance, by leveraging engineering

effort already invested in the language runtime and associated libraries.

This dissertation’s primary result is that a distributed userspace can significantly

lower the complexity of employing distributed software—a key result for anyone

interested in composing distributed software.

Secondarily, the dissertation should inform future designers of both distributed

operating systems and distributed programming languages. To the former group, it

shows that a language-system hybrid presented as a library can be implemented at a
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Figure 1.1: Dissertation Outline. The core of Andromeda is described in Ch. 2
and 3; applications and frameworks on top of Andromeda are described in Ch. 4–7.

fraction of the development cost required to build a distributed operating system—

primarily because it leverages already-invested engineering effort. To the latter

group, it shows that not many distribution-specific features need to be baked into

the language: a small core with extensible semantics (Andromeda uses a subset of

ES5) can be more than enough—most other features can be added as extensions.

Perhaps unsurprisingly, using the complexity-lowering techniques presented in

this dissertation may lead to security and performance issues. I address both classes

of issues by developing a series of frameworks on top of Andromeda; apart from

addressing security and performance issues, these frameworks show the benefits of a

general-purpose distributed environment outside the strict context of data-intensive

computations and highlight the benefits of several design decisions.

Outline The dissertation describes the design and implementation of Andromeda

and its services (Fig. 1.1), starting with an overview of Andromeda (§2): the ideas

guiding its design, the distributed service library, and three representative services.

Three ideas are worth mentioning now: (i) its approach of bolting distribution onto a

conventional (and light) language runtime as an extensible service module, allowing

its users to leverage an existing module ecosystem; (ii) its high-level programming

style, melding a synergistic combination of elements—a dynamic typing discipline, a
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Table 1.1: Security and performance problems. While solving complexity,
some of Andromeda’s design decisions create security (S) and performance (P)
challenges that are addressed in Chapters 3–6.

Design Decision Complexity Benefits Key Problem Solution Ch.

Dynamic Typing Brevity, runtime rewiring Indexing (P) store [226] 3
Cooperative Scheduling No race conditions, etc. DoS etc. (S) BreakApp [224] 4
-as-a-Library Existing language and ecosystem Interface attacks (S) Iris [227] 5
High-level Language Brevity, safety, Runtime overheads (P) Ignis [222] 6

cooperative concurrency model, and a continuation-passing call style; (iii) its perva-

sive support for high-level configurability, aimed at tackling a growing space of un-

avoidable distribution trade-offs. These ideas succeed at lowering complexity without

sacrificing generality, but create several issues of their own (Tab.1.1).

A dynamic typing discipline contributes significantly to lowering complexity [158],

but creates the problem of query-inefficient storage partitioning: efficient queries

require a priori indexing, whereas dynamic types are known a posteriori—and can

change during runtime. I address this challenge addressed by developing a series

of generally-applicable techniques presented in Chapter 3’s store, Andromeda’s

underlying distributed storage subsystem.

Similarly, cooperative scheduling offers significant complexity benefits but suf-

fers from the danger that third-party code may decide not to yield control. I ad-

dress this problem in Chapter 4 by developing a general tool atop Andromeda,

BreakApp [223, 224], that sandboxes selected third-party modules with minimal

developer effort. It does so by spawning third-party modules on remote nodes and

maintaining their interfaces intact—forwarding calls to remote modules and inter-

vening in cases of problems. My experience developing BreakApp was simplified by

Andromeda’s service library, and its transformation and serialization primitives.

The notion of bolt-on distribution-as-a-library lowers complexity significantly,

but due to its simplicity allows third-party modules to re-write library interfaces

similarly similar to how Andromeda does. BreakApp’s sandboxing is of no help

here, as it is too coarse-grained for individual service fields and too heavyweight
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for use as the common case. My solution, presented in Chapter 5, was to build

a system atop Andromeda, Iris [227], that leverages language-based protection

to offer finer-grained control and lower performance overheads. Interestingly, Iris

is powerful enough to enable distributed re-direction used in the next framework:

code thinks it is calling, say, the distributed object storage when in fact it may be

accessing a subset of the storage available on a specific node.

Although high-level, dynamic languages offer significant benefits in terms of com-

plexity their performance overheads may be higher than those of carefully handwrit-

ten C or assembly code [47]. I tried to minimize this disparity by building on a

high-performance runtime with state-of-the-art machinery (e.g., tracing, optimiza-

tions, JIT compilation). This performance loss is insignificant compared to the ben-

efits of productivity and safety, and can be partially recouped by re-engineering or

scaling out bottlenecked components. To confirm the latter hypothesis, I developed

Ignis [222], presented in Chapter 6. Ignis leverages Andromeda’s transformation

infrastructure to detect and scale out bottlenecked modules in legacy applications, as

long as their developers have sprinkled selective imports with soundness-related an-

notations. Ignis also adds the last missing element in the quest to lower complexity,

and allows porting larger (often legacy) applications on Andromeda.3

Chapter 7 presents implementation details of a distributed-userspace prototype

and associated frameworks targeting the JavaScript ecosystem. The goal of this

chapter is to summarize lower-level technical challenges and how I addressed them.

Both the challenges and solutions are not worthy of publication, but might still be

useful to developers of similar systems.

Chapter 8 presents key results, showing that Andromeda lowers the complexity

3 The reader may be wondering about the differences between Andromeda’s and Ignis’ goals:
While Andromeda’s users can use an existing language, their programs will not necessarily take
advantage of distribution if they do not use Andromeda’s APIs. With Ignis, however, their pro-
grams will leverage distribution even if they were developed in a completely distribution-oblivious
fashion. At the same time, Andromeda is much more powerful—programs that do use An-
dromeda’s APIs can see many more distribution benefits that what is possible with Ignis.
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of developing distributed applications. It offers short set-up, scale-out, and tear-

down times, lowering the barriers to entry into distributed systems; it allows for

small programs that execute atop a lightweight, high-performance runtime; and it

enables program composition through an existing package ecosystem numbering over

a million packages. Andromeda is increasingly self-supporting and, as discussed

earlier, has itself enabled novel research [224, 222, 227].

Finally, Chapter 9 compares with related work from several different fields, and

Chapter 10 discusses experiences, limitations, and avenues for future research (§10).

Two Appendixes complement the main content of the dissertation. Appendix A

presents a quick introduction to Andromeda, with two key objectives: (i) provide a

quick guide on the JavaScript language—used pervasively in the dissertation—and

(ii) demontrate the development of programs in Andromeda. Appendix B outlines

how module systems handle modules at runtime—by discussing the implementation

of the Node.js module system; the goal here is to ensure that the techniques presented

Chapters 4–6 are appreciated by a wider audience.
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Chapter 2

An Overview of Andromeda

This chapter presents an overview of Andromeda and its key services. It starts

with the principles behind Andromeda’s design (§2.1). It then discusses three

representative subsystems; while most of Andromeda’s subsystems are “textbook”

implementations, easily replaceable by more sophisticated versions, these three are

novel and illustrate contributions applicable beyond Andromeda (§2.2–2.4):

• the storage subsystem (§2.2), which supports efficient-query partitioning on

dynamic data and illustrates a use of high-level, fine-grained configurability;

• the node group management subsystem (§2.3), which enables first-class support

for network overlays and exemplifies cross-scale concerns; and

• the task execution subsystem (§2.4), which supports automated runtime trans-

formations and interface rebinding.

2.1 High-level Design Principles

This section overviews the high-level design principles underpinning Andromeda:

(i) its distribution-as-a-module approach (§2.1.1) along with the collection of built-in
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Figure 2.1: Andromeda overview. Andromeda bolts distribution on an existing
language and runtime by providing a configurable service architecture, an extensible
service library, and an associated programming model (Cf.§2).

services (§2.1.2), (ii) its pervasive support for high-level configurability (§2.1.3), and

(iii) its programming style for service composition (§2.1.4).

2.1.1 Core: Distribution as a Software Module

Andromeda is accessible as a software module, implantable into (often, pre-existing)

programs using an import statement similar to require("andromeda"). Upon im-

port, Andromeda (i) launches one or more nodes, (ii) loads and binds distributed

services, (iii) transforms local interfaces—e.g., the global-variable map etc.—to de-

tect changes, and (iv) returns the andromeda object (§1.4), which is used to access

services running on nodes.

Launching nodes can be significantly slower than loading a module. As such, the

aforementioned series of events occurs in an asynchronous, non-blocking fashion; a

call to the user code is placed in an event handler that is invoked when the startup

process completes. If nodes are already up and running, the andromeda module

simply attaches onto the local node. If the andromeda module is called standalone

(top-level), it additionally launches the interactive shell, which supports saving pro-

grams and its context to the distributed storage subsystem and loading them at a

later time (or remote node).

On each node, Andromeda maintains service bindings, handles communication

with other nodes, and executes incoming code. Its core is a routing function: given an
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incoming message as an argument, it routes that message to the service responsible

for handling it. Messages can arrive from services running on the same node, or

over the network from different nodes. A message can encode any language value,

including primitives, functions, and objects. Andromeda’s lower-level internals

also recognize types that do not have a direct representation in the source language,

such as object streams, raw-data messages, and raw-data streams.

Messages that encode functions are particularly important, because they provide

the necessary means for shipping services among nodes. This allows extending An-

dromeda at runtime, by registering additional entries in the routing core. Built-in

services are also loaded and instantiated dynamically, often by pulling their func-

tionality from peer nodes.

Andromeda’s core provides only the essential infrastructure for building an

extensible service architecture. It is used to create and bundle a small library of

built-in services, which in turn supports the critical functions of the system proper

and its applications. Services can be configured, augmented, or replaced at runtime

from within the system. The result is a lightweight kernel (<1MB) that offloads

assumptions about the nature and scale of distribution to individual services.

2.1.2 A Library of Built-in Services

Andromeda’s utility comes from services, objects that encapsulate control-level in-

ternal state and expose a small set (typically 4–6) of methods. The service abstrac-

tion is a flexible one, intended to capture the multifaceted concerns of distribution

while facilitating structured, modular program composition.

To simplify composition, routing, and replacement, services conform to a common

interface (§2.1.4) and are available within a flat namespace. Both built-in and add-on

services depend hierarchically on other services to provide supporting functionality.

For example, store depends on partition, which in turn depends on nodes, itself

(loosely) depending on a service implementing an gossip protocol (Fig. 2.3).
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Tab. 2.1 presents a subset of the services bundled with Andromeda. The first

three groups are responsible for storage and query, node and group management,

and task execution (§2.2–2.4). The next group of services provides communica-

tion abstractions with configurable semantics (e.g., ordered multicast) and allows

applications to register custom routing paths for message delivery. Support and util-

ity services complete the standard library—e.g., an event bus provides support for

asynchronous publish-subscribe, and a package manager provides support for module

fetching and loading.

2.1.3 Pervasive, High-Level Configurability

To address inescapable trade-offs of distribution [71, 3, 120], Andromeda supports

(re-)configurability. In most cases, this ability is expressed via high-level declara-

tive properties rather than complex low-level program fragments intertwined with

system logic. One example is service specialization, in which control-level configu-

ration affects key service-internal logic—such as store’ indexing, replication, and

consistency guarantees (§2.2). This ability is available at runtime and at very a fine

granularity—that of individual calls or messages—as illustrated by program p3 (§1.4).

Although configuration knobs are declarative and high-level, their sheer number

can easily overwhelm Andromeda’s users. This problem is alleviated using a series

of automation techniques that include node group (overlay) facilities, automated

runtime transformations, and startup configurations.

Node groups enable stateful service customization, allowing services to make

their default configuration context available for customization. Prior to loading, ser-

vices start as templates that expose a number of control-plane configuration “holes”.

When loaded to a node group, their context is instantiated to a default configuration,

binding context entries to instance-specific values. For example, store’ replication

may be configured differently between the rpi and dsl groups. After a service

has been specialized, its default configuration can still be overridden at the level of
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individual calls.

Runtime transformations, employed pervasively by Andromeda, use reflection

to traverse and rewrite composite values such as objects or interfaces. For example,

they are used for serializing language values into strings, for spawning remote services

while maintaining the local interface intact, and for sandboxing third-party modules.

Andromeda’s startup configuration (usconf, similar to .shrc) is by default

shared across all nodes. This behavior can be overridden by the andromeda im-

port statement, command-line arguments, or a local startup object (saved on disk).

Rather than constraining expressions to data-only objects, usconf supports function

evaluation. As Andromeda emits various events while configuring the kernel and

binding services, user code listens for these events and registers handlers that launch

associated tasks. One example is the launch of additional nodes when the primary

completes its startup sequence, defaulting to as many nodes as processors.

The three techniques outlined are themselves highly configurable. For example,

transformations are runtime-configurable to address semantics-related concerns—

e.g., permissions in sandboxed modules or soundness in distributed ones. Although

more malleable than conventional approaches that bake the configuration into the im-

plementation, such high-level knobs are not expected to cover all possible scenarios.

For these cases, Andromeda provides support for programmatically augmenting or

replacing entire subsystems (§2.3).

2.1.4 Programming Style

Andromeda is a language-based environment whose programming style melds an

unusual combination of aspects: high-level semantics, dynamic typing, cooperative

concurrency, the use of continuations, and location independence. While individual

features are not novel per se, their combination succeeds in lowering the complex-

ity of composing distributed programs without any loss of generality. For example,

p4 (§1.4) illustrates the joint effects of cooperative concurrency with first-class sup-
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port for function distribution; their absence would require transactions, to safeguard

state updates against races from competing nodes.

A high-level language addresses the impedance mismatch between the low-level

semantics and high-level challenges of distribution—too high-level for systems con-

cerned with tasks such as memory allocation and device driving. Compared to a

Unix-like system, files are replaced by objects, processes and process images by

functions and function application, object linking by variable binding, system calls

by library calls, and program installation by package fetching and loading.

Dynamic semantics, an unusual feature, offers the ability to traverse, discover,

and transform interfaces at runtime. The fact that type information is associated

to values rather than names allows names to be re-bound to values of different

types. This aspect enables several of Andromeda’s features and is critical to its (re-

)configuration abilities (§2.1.3). These techniques are available during execution—

when the need to respond to changes is critical—by providing runtime reflection and

introspection. Built-in runtime code evaluation is used in interactive scripting, in

module loading, and especially in distribution of code such as functions and objects.

Cooperative concurrency was chosen primarily to lower complexity, and only sec-

ondarily to improve performance. Complexity is lowered by relieving programmers

from race conditions, locking, and state inconsistencies; their code is preempted only

when it chooses to do so. As a convenient side-effect, performance is improved by

avoiding costs associated with scheduling and context switching. Along with coop-

erative concurrency, continuations allow developers to be explicit about parallelism.

A continuation is guaranteed to be called only after its caller completes, while in-

dependent continuations do not impose any ordering constraints—two continuations

κ1 and κ2 of sequenced calls f1(. . . , κ1); f2(. . . , κ2) can be interleaved in any order

(otherwise, f2 would have been included in κ1).

Location and platform independence lower complexity at scale, by exposing a

single unified set of abstractions across a (potentially heterogenous) distributed in-
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frastructure. All nodes have access to the same interfaces, leading to code that

looks identical irrespective of node structure—except when developers explicitly in-

tend otherwise. Invoking, say, rpi.store from any node will resolve to the same

node/service, except if, say, a third-party module is restricted to local-only access.

Moreover, there is no distinction between calling a service and sending a message:

argument evaluation strategy is strict (eager) and call-by-value—given an argument,

Andromeda will evaluate it, serialize it, and send it to a remote service.1 Service

methods conform to a unified interface type:

1 Op :: Maybe Value -> Maybe Options -> (p5)

2 Maybe (Error -> [Value] -> ()) -> ()

Arguments express (i) state (any language value), (ii) optional configuration prop-

erties (§2.1.3), and (iii) a continuation to be called when the operation completes.

To guard against cases where the return value is of type Error, the continuation

distinguishes the two arguments provided by the service: an Error and, if null

Error, a list of results.

2.2 Object Storage and Query

The distributed storage service, store, is used extensively to store and query both

user and system data. Given its central role in the system, store must solve several

challenges: (i) be flexible, providing tunable guarantees for replication, consistency,

and indexing; (ii) support indexing of dynamic values (§2.1.4), whose structure is

not known beforehand; (iii) provide querying efficiency queries, by avoiding naively

querying all of Andromeda nodes for a single object.

To solve these, store builds on Hyperspace Hashing [62]. This baseline is further

augmented with formulas to capture user insight, improve performance, and provide

tunable replication, consistency, and indexing guarantees. We give a brief summary

1 Co-located services skip the last two stages, passing pointers instead.
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of store, focusing on how it interfaces with the rest of Andromeda, and present

the technical details in the next chapter (§3).

2.2.1 Internal Structure

Andromeda’s scheme permits efficient queries without fixed schemas by hashing

object property names and values. We illustrate this with an example:

ep = {id: "EAP09", fst: "Eddy", lst: "Poe"} (p6)

store.put(ep , λ)

By default, store treats secondary properties (e.g., fst and lst) the same as pri-

mary ones (e.g., id). Storage operations are parameterized by D and r: D dimen-

sions with r regions per dimension. For the example, assume D = 10 and r = 3,

with hash and modulo functions h() and %. Operation put(ep) first hashes the ob-

ject’s keys, calculating h("id")%10, h("fst")%10, and h("lst")%10, all integers in

0–9, inclusive. It then calculates h("EAP09")%3, h("Eddy")%3, and h("Poe")%3, all

integers in 0–2, inclusive. If the results are (3, 4, 8) and (1, 1, 2), the final coordinate

vector is:

[0, 0, 0, 1, 1, 0, 0, 0, 2, 0]

This vector can be used to greatly narrow the search space. Operation get({id:

*, fst: "Eddy", lst: *}) searches for all objects with an attribute name of

fst whose value is ”Eddy” and any id and lst properties. The resulting vector

requires looking only into nine out of 59,049 regions:

[0, 0, 0, {0-2}, 1, 0, 0, 0, {0-2}, 0]

Querying for similar objects that either do not have an id, or have an id of “ep”, the

respective operations are get({fst: "Eddy", lst: *}) and get({id: "ep",

fst: "Eddy", lst: *}). Assuming h("ep")%3 is 2, they result in vectors:

[0, 0, 0, 2, 1, 0, 0, 0, {0-2}, 0]

[0, 0, 0, 0, 1, 0, 0, 0, {0-2}, 0]
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Each one will hit only three different regions.

2.2.2 Interface Considerations

Without user input, Andromeda’s hashing scheme supports efficient queries and

dynamic objects, but has several issues. First, it severely penalizes properties that

can uniquely identify an object. While a query by primary key like id should hit

only a single node, it instead reduces the search space by a mere order of magnitude.

Second, store by default devotes resources to support efficient queries on all object

properties; being more selective would improve performance. Third, by assigning

equal priority to all properties, it does not allow favoring some queries over others—

for example, looking up people by last name is more common than by eye color.

These challenges require user insight, and are addressed by a second argument

for each operation (e.g., put, get) termed a formula—a subtype of Option (§2.1.4).

Formulas are configuration objects that allow developers to provide guidelines at the

level of individual operations.

Formulas provide a mechanism for the user to enforce policies related to classic

distributed systems concerns such as consistency (strong vs eventual), replication

(majority vs n nodes), and quorum selection. Formulas also allow tuning the storage

mechanism itself, for example by devoting more resources to indexing particular

object properties.

While formulas give the user a great deal of power, they also introduce significant

inconvenience. The reason is that once used to insert an object, the same formula

must be used for all subsequent queries, updates, and deletions of that object, even

across nodes. To solve these challenges, Andromeda exploits a key insight: formulas

are themselves dynamic data objects. Thus, the techniques and operations already

described for normal objects can be used to store and retrieve formulas efficiently.

To simplify their management, formula objects are augmented with an identifier

(ID) property, similar in spirit to a distributed pointer. IDs are unique and either
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provided by the user or deterministically2 generated by store. Normal operations

are overloaded to also accept the ID in place of a formula argument:

var cf = {id: "cf1", spaces: {...}}; put(cf); (p7)

put(obj , cf); put(obj , "cf1");

The two put operations are semantically equivalent.

2.3 Node Group Management

Although significantly configurable, a single service instance cannot operate con-

currently at multiple scales [61]. This limitation is addressed by the node group

abstraction, which provides first-class support for context-aware network overlays

and allows overlapping instances to coexist simultaneously.

The key insight behind groups is the addition of a level of indirection between

nodes and services running on these nodes. Leveraging this insight, Andromeda can

(i) refer to a set of nodes using only a single, memorable name, (ii) capture semantic

differences in multiple (potentially overlapping) node groups, (iii) specialize services,

by binding service-context information at the group level.

The group abstraction occupies a somewhat central point in Andromeda, as it

prefixes all accesses to nodes (and, subsequently, services). Such prefixing makes An-

dromeda distributed-first : handling distributed programming with multiple nodes

is the common case, but it is general enough to support centralized programs—by

defining singleton groups (p4, §1.4). By declaring a common node group as the

default one, operations on a pre-configured set services can be prefix-free (p2, §1.4).

2.3.1 Nodes and Node Groups

Nodes are an abstraction of virtual or physical computing devices of varying capabil-

ities (each with its own storage, processing etc.)—e.g., a Unix userspace process or

2 Formulas semantically equivalent map to the same ID.
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a single-board micro-controller. Each node binds on a new (IP, port) pair used as a

communication handle, and is addressable by a cryptographic identifier (NID). Users

can ask Andromeda to generate a new NID, but cannot explicitly name the node

themselves. This is because several system invariants depend on the expectation

that NIDs are unique (and, ideally, long-lasting).

A node group, at its core, combines two parts into a single entity addressable

by a user-generated group ID (GID): (i) a collection of nodes, and (ii) a collection

of services running on these nodes. Three GIDs are built into Andromeda: (i)

global, addressing all nodes, (ii) local, addressing nodes running on the same

host, and (iii) self, addressing the current Andromeda node. Addressing multiple

nodes is expected to be the common pattern, with the exception of self.

The collection of nodes is arranged into a set. Node sets are not disjoint between

node groups, in the sense that a node can exist in and be addressable from multiple

groups. Most groups will refer to a fixed set of nodes, but there are exceptions to

this rule. For example, the self group always depends on the execution context.

The mapping of GIDs to nodes is purely a node-local structure, allowing different

nodes to see different sets for the same GID, which enables encoding other overlay

types beyond cliques.

2.3.2 Service Instantiation and Loading

A group’s services are arranged in a map from a service ID (SID) to a service instance,

which is the result of an instantiation process. This process specializes services and

employs runtime transformations (§2.4.1). Newly instantiated services are provided

a context, which maps variable names to values that serve as defaults during the

execution of the service. Similar to the collection of nodes, the service map may

contain the same service addressable under different SIDs (with potentially different

configurations).

Services inherit functionality from an abstract service template, part of the
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service service (Tab. 2.1). Aside from low-level infrastructure for serialization and

communication, the template provides a structure for organizing configuration pa-

rameters so that they can be discovered at runtime. Service implementers declare a

list of configurable variables along with their default values. Service templates are

kept around for further instantiation, but can be saved on persistent storage if they

are not needed during runtime. Prior to loading, just-in-time static analysis [171]

is used to ensure that the service interface and configuration parameters are in the

expected form.

2.3.3 Group Management

The group service provides several primitives for manipulating groups, such as cre-

ation and rebinding.

Group creation is quite flexible. It is achieved by providing either an explicit

list of nodes or by mixing one or more existing node groups. In the first case, a

system-specified set of services is by default added to S, which users can amend by

passing SID-to-service tuples. In the second case, services are inherited as the union

of all the services by the groups specified. For usability purposes, the specified order

of services has some significance: earlier method names are replaces by later ones.

Replacing a group service can be achieved in two ways:

1 eandromeda.dsl.store = fs (p8)

2 eandromeda.dsl.service.setup(store , "andromeda/dsl/fs", κ)

When updated by property assignment on the group object, replacement defaults to

eventual consistency. This choice is related to the fact that service update—like any

distributed operation—is non-blocking, but the assignment interposition wrapper is

blocking. When updated through the node group API, typical continuation-passing

rules apply (§2.1.4): code in the continuation will execute only after the operation

succeeds (or throw an error), whereas code right after the call will execute immedi-

ately, similar to assignment.
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txfm (e: Field) : Field := match e with
   | {(s, v) :: vs} → {(s, txfm v) :: txfm vs}
   | [v :: vs] → [(txfm v) :: txfm xs]
   | λ.f → (…args).{v ← f(args) // lng(this, args, v)}
   | __ → interpose(copy(e))
end

→

Figure 2.2: Example runtime transformation for lineage. The transfor-
mation (simplified) is presented in functional style to ease variable binding; types,
whose structure is used for pattern matching, are shown in light turquoise The //

operation implies non-blocking call; internally, lng only records the operationv (i.e.,
this) (Cf.§2.4.1).

2.4 Task Execution

When a function or service gets shipped to a remote node some of its names have

to be bound to values local to the remote node—at the very least, the ux object

(p4, §1.4). Even node group features such as the ability to use prefix-free services,

discover service configurations, and replace groups require the ability to walk, trans-

form, and rebind interfaces at runtime. These (and other common) challenges are

addressed using a combination of runtime transformations (§2.4.1) and context re-

binding (§2.4.2).

2.4.1 Runtime Transformations

Transformations are used pervasively throughout Andromeda, and are abstracted

by a parametrizable template. The template maps different types of values (e.g.,

Numbers, Functions) to a generic handler for each type. Transformations have these

handlers parametrized to achieve concrete goals such as generating remote procedure

call (RPC) stubs, serialized string values, security interposition wrappers etc.

Transformations can be applied to any value in the language. The most general

value is an object, a bag of records holding key-value fields; other value types include

primitives, functions, and booleans. Transformations walk objects from their root,

processing component values based on their types (Fig. 2.2). More specifically, (i)
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Table 2.2: Example automated transformations. Transformations are
used by Andromeda to rewrite (or re-wire) interfaces and other values at run-
time (Cf.§2.4.1).

Transformation Explanation Example Parameters

Serialization Convert values to strings—e.g., to send to disk / network boxed values, class hierarchy
Beautification Pretty-print values; add control characters for coloring color scheme, control set
Profiling Wrap functions with ones recording profiling information call frequency, queue size
Protection Interpose on context accesses for environment modifications white-listing, mocking
RPC generation Generate RPC stubs redirecting accesses to original objects remote location, types
Scale-out Generate thin clients scheduling calls across replicas min-max replicas, order
Sandboxing Introduce permission contracts on module boundaries RWX-perms, filters
Lineage Capture data derivation by recording function application check-pointing, versioning

function values are wrapped by closures specific to the goal of the transformation;

(ii) object values are recursively transformed, with their getter and setter methods

replaced similar to function values; (iii) primitive values are either transformed di-

rectly or copied unmodified and wrapped with an access interposition mechanism.

For example, consider transforming a Math object with the goal of profiling its

interfaces or generating a remote interface (Fig. 2.3a,b). Andromeda traverses the

object returned by Math and replaces functions such as div with wrappers. The

wrappers depend on the intended goal: profiling wrappers would record invocation

statistics, and RPC wrappers would forward calls to a remote replica.

For brevity, we omit several technical details that are specific to individual trans-

formations (and are often achieved with multiple additional transformation passes).

These details are discussed in Chapters 4–6. Among other primitives, Andromeda

provides ones for converting local-memory pointers to meaningful distributed ones,

forwarding side-effects such as memory allocation and collection, providing dis-

tributed versions of core built-in libraries, and enforcing event ordering (when re-

quired). For further processing, Andromeda often maintains a handler to the root

of both the unprocessed and the newly processed values. The unprocessed value is

used for further transformations, and the new value is often used to partially reverse

or alter the result of a transformation (e.g., to revoke access permissions). Tab. 2.2

summarizes more transformations applied in a similar fashion.
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Math = {
  … 
  mul: (a, b) => a * b,
  div: (a, b) => {
    log.info.(b);
    return a / b,
  }
  … 
}

let _ = Math;
Math = {};
  … 
Math.div = (…args) => {
  let p = prologue(args);
  let v = p ? _.div(args) : p;
  return epilogue(p, args, v);
}
… 

var ctx = {
 fs: ux.local.fs,
 log: ux.tf(ux.p3.log, 
            myPrlg,
            myEplg),
 … 
}

function (cxt) {
  var fs = cxt.fs;
  var log = ctx.log;
   … 
  div: (a, b) => {
    log.info.(b);
    return a / b,
  }
}
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(a) a Math object

(b) Object transformation

(c) Custom context creation

(d) Context rebinding

Figure 2.3: Example transformations and rebinding. Applying runtime trans-
formations (b) and context rebinding (c, d) on a simple Math object (Cf.§2.4).

2.4.2 Runtime Context (Re-)Binding

Aside from the correctness of communicated values (§2.4, start), names are often

rebound for security or performance reasons. For example, interposing on a third-

party logger’s store access can ensure both that it does not alter sensitive data and

that it avoids inefficient API calls. To achieve these goals, Andromeda provides

the ability to transform and rebind the context of a value at runtime (Fig. 2.3c,d).

This responsibility is divided between two phases: context creation and linking.

Context Creation First, Andromeda needs to prepare a new context to bind to

the current value. It first creates an auxiliary hash table (Fig. 2.2c), mapping names

to (new) values: (i) names correspond to user-declared variables or language built-

ins—including globals, module-locals etc. (ii) values are provided either verbatim

(e.g., primitives) or by transforming (§2.4.1) values in the original context. For

example, transformed values can point to different nodes (Tab. 2.2:5 ) or control

access to the original value (Tab. 2.2:4 ).
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User-defined global variables are stored in a well-known location (i.e., a map

accessible through a global variable named global). However, traversing the global

scope for built-in objects is generally not possible. To solve this problem, An-

dromeda collects such values by resolving well-known names hard-coded in a list.

(Different lists will be needed for different environments and versions of the language,

but we haven’t faced this problem yet.) Using this list, Andromeda creates a list

of pointers to unmodified values upon startup.

Care must be taken with module-local variable names of third-party modules.

Examples include the module’s absolute filename, its exported values, and whether

the module is invoked as the application’s main module; each module refers to its

own copy of these variables. Attempting to access them directly from within An-

dromeda’s scope will fail subtly, as they will end up resolving to module-local values

of Andromeda itself —and specifically, the module within Andromeda applying

the transformation. Andromeda solves this issue deferring these transformations

for the linking phase (i.e., from within the module).

Context Linking Andromeda needs to link the code whose context is being

transformed with the freshly created context.

To achieve this, it leverages lexical scoping to inject a non-bypassable step in the

variable name resolution process. The technique works because the code is still at

a loading stage prior to interpretation, and still represented as a string—e.g., code

that arrived from the network, service templates loaded from disk, modules fetched

remotely, or strings typed in the interactive shell. Wrapping and then evaluating

such code ensures that their variables will point to the transformed context.

Specifically, Andromeda first applies a form of source-to-source code rewriting.

The rewrite wraps the code with a closure that starts by redefining and enclosing

variable names corresponding to modified values as local ones (Fig. 2.2d). The clo-

sure accepts as an argument the customized context and assigns its entries to their

respective variable names. This is arranged in a preamble comprised of assignments,
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which executes before the original code is called. Module-local variables (a chal-

lenge outlined earlier) are assigned the transformation call, which will be applied

only when code is evaluated. Finally, Andromeda evaluates the resulting closure,

invokes it with the custom context as an argument, and possibly applies further

transformations to its return value.

2.5 Summary

This chapter presented an overview of Andromeda and its key services. It started

with the principles behind Andromeda’s design (§2.1). It then discussed three

representative subsystems; while most of Andromeda’s subsystems are “textbook”

implementations, easily replaceable by more sophisticated versions, these three are

novel and illustrate contributions applicable beyond Andromeda (§2.2–2.4):

• the storage subsystem (§2.2), which supports efficient-query partitioning on

dynamic data and illustrates a use of high-level, fine-grained configurability;

• the node group management subsystem (§2.3), which enables first-class support

for network overlays and exemplifies cross-scale concerns; and

• the task execution subsystem (§2.4), which supports automated runtime trans-

formations and interface rebinding.

The next chapter 3 dives into the details of the storage subsystem and, specifically,

its partitioning scheme.
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Chapter 3

Query-efficient Partitioning for

Dynamic Data

Given its central role in the system, store must address several challenges: (i)

be flexible, providing tunable guarantees for replication, consistency, and indexing;

(ii) support indexing of dynamic values (§2.1.4), whose structure is not known be-

forehand; (iii) provide querying efficiency, by avoiding naively querying all of An-

dromeda nodes for a single object. The combination of (ii) and (iii) is critical,

because Andromeda’s programming style follows a dynamic typing discipline. As

the structure of data is not known beforehand, nor remains static, Andromeda

needs to support efficient queries on data stored without static indices. “Efficient”

means avoiding the naive solution of flooding all nodes in a group. This efficiency

should ideally extend to structural queries returning all objects matching a certain

structure; structural queries depend on efficient union, negation, and intersection op-

erations, which in the practice of dynamic languages are often referred to as “duck

typing”. These needs make store the canonical example of a service design that is

configurable at both a high level and fine granularity (§2.1.3).

To address these issues, we develop a new set of techniques that together enable

query-efficient partitioning of dynamic data. First, unispace hashing (UH) extends
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var ac = {
 username: "aph",
 first: "Alyssa",
 last: "Hacker"
};

n1
n2
n3
n4

n1 n2

n3 n4

1
2
3
4
5

Figure 3.1: Partitioning Example. Left: a dynamic object with three proper-
ties. Middle: object placement by username. Right: object placement by first–
last(right) (Cf.§3.2).

multidimensional hashing to data of unknown structure with the goal of improving

queries on secondary properties. Second, compression formulas leverage user insight

to address UH’s inefficiencies and further accelerate lookups by certain properties.

Third, formula spaces use UH to simplify compression formulas and accelerate queries

on the structure of objects. The resulting system supports dynamic data similar to

single-dimension NoSQL systems, efficient data queries on secondary properties, and

novel intersection, union, and negation queries on the structure of dynamic data.

3.1 Broader Motivation

Scalability requirements during the last decade have led to the development of dis-

tributed, non-relational databases (NoSQL). Single-dimension NoSQL [51, 184, 107]

divides data into partitions over the dimension of a “key” property whose values

are unique for each object (Fig. 3.1 middle). Since the partitioning scheme depends

only on a single property, the structure of the rest of the object (i.e., its “secondary”

properties) does not need to be known a priori nor does it need to remain fixed. Data

can be dynamic and have their structure change during the program’s runtime. This

flexibility worked well with dynamic programming languages (e.g., Ruby, Python,

JavaScript, PHP) and interchange formats (e.g., XML, JSON) popular in applica-

tion development. However, an inability to exploit structure means that queries on

properties other than the primary key become inefficient, as all partitions must be

searched.
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Multidimensional key-value stores, as pioneered by Hyperdex [62], attempt to

remedy this problem by partitioning on multiple dimensions (Fig. 3.1 (c)). To create

such a hyperspace, however, the system depends heavily on structure: it requires

a priori knowledge of the structure of objects, it does not support changes to the

object’s properties, and needs to maintain a mapping from regions of a property’s

values to underlying nodes on the side.

The goal of our work is to enable efficient partitioning and querying of dynamic

data using three techniques. Unispace hashing is a generalization of hyperspace hash-

ing [62] that uses property names to identify which dimensions an object represents.

This enables support for dynamic data and accelerated queries on secondary proper-

ties, but does not make ideal use of the available space of dimensions (§3.3). There-

fore, compression formulas can be used to tune space use by configuring queryable

dimensions at the granularity of individual objects. Formulas bring many bene-

fits (§3.4), but their use needs to be consistent between all operations targeting a

specific object. To alleviate this potential for inconsistencies, the system employs

formula spaces (§3.5): it takes advantage of the fact that formulas are themselves dy-

namic objects to store and query them, adding a layer of indirection between their

description and their use. This additional layer can be used to accelerate queries

on the structure of dynamic objects (e.g., unions, intersections). The resulting hy-

brid aims to support dynamic data similar to single-dimension NoSQL, efficient data

queries on secondary properties similar to multi-dimension NoSQL, and novel queries

on the structure of stored data (§8).

3.2 Background

Consider four nodes with ids n1 to n4; a function H(s) that maps strings to nodes

ni; and an object ac that we want to store to one of our nodes. For now, we can

think of H(s) = h(s)%4, where h is a hash function. Objects are sets of properties:

32



each property is a pair of a property name and a property value. In Fig. 3.1, the ac

object has three properties: username, first, and last.

One of these properties takes values that are – or can be made – unique across

all objects (e.g., username). This property is often termed “key” in the distributed

key-value store literature and is used to partition the data on a single dimension

(Fig. 3.1 mid). Assuming the same nodes and “key”, operations by “key” require

contacting a single node, namely H(ac.username). The result is independent of the

node receiving the request, independent of the property names and overall structure

of the object, and is achieved without maintaining any indices or side-structures.

Unfortunately, however, searching by other properties (e.g., first, last, or both)

requires contacting every node.

Hyperspace hashing [62] is a generalization of the previous idea to multiple dimen-

sions. Assuming first and last are enough to uniquely identify an object, it parti-

tions the two-dimensional plane into the four nodes n1 to n4 (Fig. 3.1 right). Insertion

and retrieval require contacting the node at coordinates (H(ac.first), H(ac.last)).

Retrieval by partially-specified queries on secondary attributes is still more efficient

than exhaustive search: to return all “Hacker”s, the system needs to contact only

half of the nodes (shaded area). The system successfully solves queries on secondary

attributes, but requires a priori knowledge of object structure, disallows changes to

the number, names, and types of its properties, and maintains an explicit, centralized

mapping from dimensions to nodes. Moreover, since partitioning is determined stat-

ically, changes in the number of available nodes may render the partitioning scheme

void.1

Based on the previous discussion, our scheme has to solve three main challenges

(Table 3.1): (i) handle objects whose structure is not known beforehand, (ii) provide

efficient queries on “secondary” properties, and (iii) remove the need of a mapping

1 This is different from fault tolerance: there might not be enough nodes to even partition the
data! In our example, if node n3 did not exist, the scheme collapses because there are not enough
servers to support the required dimensions.
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Table 3.1: Summary of features. Techniques: (a) single-dimension NoSQL (1D),
(b) multi-dimensional (or Hyperspace Hashing) (HH), and (c) Unispace Hashing
(UH) (Cf.§3.2).

1D HH UH

Dynamic Object Structure 4 8 4

Efficient Search on “Secondary” Properties 8 4 4

No Dimension-to-Node Mapping 4 8 4

No Bounds on Number of Nodes 4 8 4

Queries on Structure (e.g., Union, Intersection) 8 8 4

from dimensions to nodes. A solution should not pose any requirements on the num-

ber of nodes (e.g., work on a single node) to ensure use in any environment. Finally,

since all objects are dynamic, it should offer efficient queries on their structure (e.g.,

return all objects with a property name “model”).

3.3 Unispace Hashing

The core technique is an extension to hyperspace hashing. To allow querying, each

object is represented as a point in a multi-dimensional space. As with hyperspace

hashing, the coordinate for each dimension is determined by hashing the object’s

property values. Unlike hyperspace hashing, dimensions are determined by hashing

the object’s property names.

All operations draw deterministically from a set of dimensions D with size |D|.

For now, we assume a fixed number r of regions (nodes) per dimension. In single-

dimensional systems r can be thought as the number of nodes in the cluster. We

will later use r to assign multiple regions per physical server as a way to “even out”

differences in the server’s relative capabilities. Hashing the name of each property

returns an integer from 0 to |D| − 1. Using this number to index in D returns a

dimension Di. Hashing the value of the property corresponding to this name returns

a value from 0 to r − 1. This is the coordinate value for dimension Di. Coordinate

values for dimensions corresponding to property names that are not present get
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a default value of 0. Coordinate values for dimensions whose property values are

unknown get the full range of values in r.

Insertions and updates require fully-specified objects. That is, the value of each

property needs to be present in order to determine the location of the object. Queries

and deletions fill unknown coordinates with wildcards: they will need to search all

regions that fall under the values of a specific dimension.

To illustrate insertion and query, we will be using the ac object from Fig. 3.1, an

r of three regions per dimension, and a 10-dimensional D. The put(ac) operation

inserts ac into the database. It first calculates h("username")%10, h("first")%10,

and h("last")%10, all integers in the range from 0 to 9, inclusive. It then calculates

h("aph")%3, h("Alyssa")%3, and h("Hacker")%3, all integers in the range from 0

to 2, inclusive. Suppose the first set of results is 3, 4, and 8 respectively; and the

second is 1, 1, 2. The coordinate vector is the following:

[0, 0, 0, 1, 1, 0, 0, 0, 2, 0]

The get({username: ANY, first: "Alyssa", last: ANY}) operation looks

for all objects with an attribute of name first whose value is ”Alyssa” and any

username and last property. The resulting coordinate vector requires looking into

all regions with coordinates:

[0, 0, 0, {0-2}, 1, 0, 0, 0, {0-2}, 0]

It will only search within nine out of 59,049 regions. If we want to look for similar

objects that either do not have a username or have a username of “aph”, the respec-

tive operations are get({first: "Alyssa", last: ANY}) and get({username:

"aph", first: "Alyssa", last: ANY}) resulting in the following coordinate

vectors:2

[0, 0, 0, 2, 1, 0, 0, 0, {0-2}, 0]

[0, 0, 0, 0, 1, 0, 0, 0, {0-2}, 0]

2 Suppose h("aph")%3 results in 2.
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Each one of them will only hit three different regions.

It is important to note that this scheme works identically with any number

of physical nodes. That is, it hides the distinction between distributed and non-

distributed regions. For example, with a single node, regions can correspond to

memory partitions. Tessellation, the process of assigning regions within a dimension

to storage buckets (i.e., IDs – they could refer to nodes or memory cells), can be

done dynamically during runtime as long as all nodes agree on the same ordering of

IDs. This is the only agreement required upon system startup or reconfiguration.

3.4 Compression Formulas

Unispace hashing as presented in §3.3 solves the challenges enumerated in Table 3.1.

However, issues remain:

• It severely penalizes properties that can uniquely identify an object (e.g., the

“key” property). Using the previous examples, a query that only includes

username should be enough to return a single node. Instead, it just reduces

the search space by an order of magnitude (in base r). In fact, we need a fully-

specified query to fill a single coordinate vector completely and get a single

node – but then, we already have the object we are looking for!

• It wastes dimensions for properties not used for queries. Usually, there exist

properties that are used only after the result is retrieved, but are never as

exact search terms. Examples include multi-word text, template metadata,

multimedia, lists of property values, and methods (code). Even if we wanted

to search within some of these types, they require special pre-processing.

• It assigns equal query priority to all properties. Given a specific number of

nodes, users should be able to accelerate selected queries at the expense of
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others. For example, it is more common to look up people based on their first

and last name, and less common to look them up by eye color.

These issues require user insight, which is supplied by augmenting all operations

with a second argument specifying a compression formula. For instance, users can

insert objects using put(obj1, φ1) and query using get(q1, φ1).

Formulas are configuration objects that specify structural preferences at the level

of individual objects. They instruct the system on how to (re)construct the coor-

dinate space on each operation. The q1 argument above does not need to include

wildcard properties (e.g., ANY) of an object any more. Knowledge about which di-

mensions contain known values, which contain wildcards, and which are not even

indexed can all be expressed using the second argument, formula φ1.

Compression formulas are centered around three configuration parameters: queryable

dimensions, weights, and space overlays.

Queryable Dimensions At the very least, users can specify a subset of dimensions

that are important for queries. To locate where to place the object, the system will

run the scheme described in the previous section only on the dimensions specified

in this subset. If any of the properties specified does not exist, it will get a value of

0. The following formula is equivalent to setting a username as a primary key in a

distributed key-value store.

{ space: ["username"] };

Weights Users can specify the relative ratio of regions per dimension between the

dimensions they plan to index. A higher number of regions for a property means

that queries with this property will be serviced more efficiently. The example formula

below specifies that queries on first should be twice as efficient as queries on last.

{ space: {"first": 4, "last": 2} };

Space Overlays Users can create multiple overlays that are optimized for different

types of queries. Each overlay can either contain a copy of the object or a pointer
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var ac_f = [
 "username",
 "ssn",
 { "first": 4,
   "last": 2 }
];

n1 n2 n3 n4 n5 n6 n7 n8

n1 n2

n5 n6

n2 n4
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Figure 3.2: Space Overlays. Three space overlays resulting from the compression
formula on the left (Cf.§3.4).

to a single location for this object (specified by, say, hashing all its contents). Since

updates to any of its values changes the location of the object for all overlays that

include updated values, the former is ideal for read-heavy systems and the latter for

write-heavy systems. For queries that touch multiple overlays, the system can process

queries with the goal of querying the smallest number of regions. The example below

specifies three overlays; the previous two, and a third one for ssn:

{ spaces: [

{ space: ["username"] }, { space: ["ssn"] }

{ space: {"first": 4, "last": 2} }

]}

Fig. 3.2 illustrates the resulting spaces, and a more concise syntax actually used

by the system today. If the ac object from Fig. 3.1 was updated to include, say, a

notes property, none of the resulting spaces would use it to index ac.

Formulas have several features. They are dynamic: they can be generated during

runtime for individual objects. They are also optional; if no formula is provided, the

system will still operate as described in the previous section — at a possibly non-ideal

configuration. Finally, they maintain the pure, deterministic nature of operations:

given (a) a set of nodes (implicitly), (b) a data or query object (as before), and now

(c) a compression formula (new), the system will return the same node independently

of the node receiving the request.
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function union(propertyList):
 formulaSet = new Set();
 for (p in propertyList):
   F = get({_SYS_PROP: p}, "-1");
   for (f in F):
     if (f.containsAny(propertyList)):
       formulaSet.add(f)
 return formulaSet;

function intersection(propertyList):
 formulaSet = new Set();
 for (p in propertyList):
   F = get({_SYS_PROP: p}, "-1");
   for (f in F):
     if (f.containsAll(propertyList)):
       formulaSet.add(f)
 return formulaSet;

∧ ∨

Figure 3.3: Inverted Formulas. Use of inverted formulas and structural queries.
Union returns φ2, φ8, and φ5; intersection returns φ2 (Cf.§3.5).

3.5 Formula Spaces

So far our scheme solves the problems as posed (Table 3.1); and by taking advantage

of user insight, it makes judicious use of available resources. However, the use of

compression formulas introduces several inconveniences. These can be grouped into

two main categories:

• Formula Management : Even though formulas are optional, a use upon insertion

requires the exact same formula upon query, update, and deletion of the same

object. Moreover, users need to manage formulas explicitly and make sure to

save and retrieve them between system interruptions.

• Overlay Reconstruction: The introduction of overlays makes property-based

searching more complicated as it requires knowledge about (i) which overlays

include a specific property and (ii) how to reconstruct them, in order to locate

the objects. This requires access to all formulas across the system that include

a specific property.

It becomes clear that the system needs to store formulas and make their retrieval

on secondary attributes efficient. But formulas are themselves dynamic objects,

therefore the system can store and query them using the schemes already described.

It can use indexable dimensions to avoid indexing metadata that are stored along

with the formulas such as inverted indices. It can also use several overlays to ac-

celerate operations on objects that have the structure of a formula. The next few

paragraphs explain the details.
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Identifiers First, formulas get a property named ID. Its value is unique and is used

to distinguish between different formulas. IDs can be thought as distributed pointers

for naming formulas: normal operations are overloaded to also accept a string in place

of a formula argument, which is used to locate and retrieve the formula.

Identical IDs mean identical sets of properties for the formula object. Users

can assign human-meaningful IDs such as “Car”, or “specialCarInstance”. If not

provided by the user, IDs are generated by the system using the formula’s property

names as input. In both cases, users can query or update them similar to any other

object. The system also optimizes ID-based operations by using a dedicated space

overlay with a single dimension.

The following example shows the use of formula IDs. Suppose we store the

following formula:

var cf = {id: "cf_user", spaces: {...}}; (p9)

put(cf); // insert formula to DB

Then the following two statements are semantically equivalent:

put(obj , cf); put(obj , "cf_user"); (p10)

The first will run as if the formula was given verbatim. The second will first retrieve

the formula and then run the operation.

Inverted Formulas To facilitate quick lookup of formulas by property, the system

maintains a distributed map from object-properties to formulas containing these

properties. It partitions this map by object-property name on a single dimension

( SYS PROP on Fig. 3.3 left). By retrieving formulas, the system can reconstruct each

space overlay with its own dimensions, coordinates, and weights.

Inverted formulas are particularly useful for searching for all objects that contain

a specific property, independently of the formula used to store them. For example,

the following operation will return all objects that include a property named first

regardless of formula used:

get({ first: ANY }); (p11)
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Structural Queries Since the system is already storing compression formulas,

we can use the inverted formula space to efficiently answer union, intersection, and

negation queries on dynamic data. These queries now amount to getting all the

formulas that include the properties needed and running a union or intersection on

them. This returns only the spaces that are guaranteed to contain the properties

the user cares about. The pseudocode in Fig. 3.3 shows how union and intersection

queries are handled at the formula space.

This is a lot more efficient than querying the data objects for several reasons:

(i) there is a smaller number of formulas, as they get reused for multiple objects

(e.g., all objects that look like “car” share the same formula); (ii) formulas are much

smaller than the data objects they describe (i.e., on the order of an object’s queryable

property names only); (iii) the resulting object is guaranteed to have the requested

structure.3

3.6 Summary

Being central to Andromeda, store had to address several challenges: (i) be flexi-

ble, providing tunable guarantees for replication, consistency, and indexing; (ii) sup-

port indexing of dynamic values (§2.1.4), whose structure is not known beforehand;

(iii) provide querying efficiency, by avoiding naively querying all of Andromeda

nodes for a single object. The combination of (ii) and (iii) is critical, because An-

dromeda’s programming style follows a dynamic typing discipline: as the structure

of data is not known beforehand, nor remains static, Andromeda needs to support

efficient queries on data stored without static indices. “Efficient” means avoiding the

naive solution of flooding all nodes in a group. This efficiency should ideally extend

to structural queries returning all objects matching a certain structure; structural

3 In general, most dynamically-typed languages behave like structurally-typed languages. Under
a structural-subtyping [165] lens then, a more precise statement would be that these queries return
all the objects that are structural subtypes of or structurally-equivalent with the query object.
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queries depend on efficient union, negation, and intersection operations, which in the

practice of dynamic languages are often referred to as “duck typing”. These needs

make store the canonical example of a service design that is configurable at both a

high level and fine granularity (§2.1.3).

To address these issues, this chapter developed a new set of techniques that to-

gether enable query-efficient partitioning of dynamic data. First, unispace hashing

(UH) extended multidimensional hashing to data of unknown structure with the

goal of improving queries on secondary properties. Second, compression formulas

showed how to leverage user insight to address UH’s inefficiencies and further ac-

celerate lookups by certain properties. Third, formula spaces used UH itself to

simplify compression formulas and accelerate queries on the structure of objects.

The resulting subsystem, described in this chapter, supports dynamic data similar

to single-dimension NoSQL systems, efficient data queries on secondary properties,

and novel intersection, union, and negation queries on the structure of dynamic data.

The next three chapters describe three frameworks built atop of Andromeda,

starting with BreakApp (§4)—a framework for automatically sandboxing selected

third-party modules.
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Chapter 4

Automated Module Sandboxing

Andromeda’s cooperative concurrency model and its decision to leverage an exist-

ing ecosystem offer significant usability benefits (§2.1.4). However, when combined,

these two features introduce a significant challenge: third-party code may decide not

yield control, ever. This particular denial-of-service (DoS) risk can be partially ad-

dressed in several different ways, including static (non-)termination analysis [80, 231],

runtime defibrillation techniques [37], and two-level scheduling [150]) (i.e., cooper-

ative, except when user issue a high-priority signal that prefers termination over

state inconsistencies). Our solution was the development of a general tool built atop

Andromeda, BreakApp [223, 224], that automatically spawns third-party code

on remote nodes. BreakApp maintains module interfaces intact, forwarding calls

to remote modules and intervening in cases of problems. Our experience developing

BreakApp was simplified by Andromeda’s service library, and its transformation

and serialization primitives.

4.1 Broader Motivation

Software development is changing in scale, process, and basis for trust. Early open-

source software such as the Linux kernel or Apache had many people focused on the
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quality and security of a single codebase [170]. Yet even such cohesive efforts failed

to prevent a slate of vulnerabilities [35, 39].

Current software makes extensive use of third-party modules created by differ-

ent authors and accessed via language-specific package repositories. For example,

JavaScript’s Node Package Manager [187] hosts more than half a million packages

from over 100K authors and serves hundreds of millions of package downloads per

day. Such public repositories provide no guarantees on modules beyond availability;

anyone can create an account and share packages.

A sample of large-scale applications (§8) shows that foreign code accounts for

up to 99.9% of that released to clients, and thus most code is neither written nor

reviewed by its nominal developers. In practice, glue code stitches together many

specialized modules comprising the application into a system with deep, intricate

interdependencies. As we show, several hundred third-party dependencies occur in

an average application due to recursive imports. This gives rise to security vulner-

abilities, as these modules execute with no isolation or privilege separation beyond

what type safety provides.

Further problems increase these risks. With popular modules averaging tens of

thousands of lines of code, understanding the internals of a complex package and ver-

ifying that it will not behave in unintended ways [66, 132] are both extremely difficult

tasks. The popularity of certain packages—depended-upon by thousands of other

packages—allows vulnerabilities deep in the dependency graph to cause widespread

difficulties [123, 106, 246]. Discovered vulnerabilities are becoming harder to eradi-

cate, since some updates are fetched automatically [181], and module unpublishing

is becoming a multi-step process in order to avoid breaking dependency chains [242].

Software supply chain attacks are becoming an important concern. Instead of

merely reacting to announced vulnerabilities [118, 36, 200] or avoiding composition

altogether due to security concerns, we propose leveraging the trend towards more

and smaller modules to enhance, or retrofit, application security. The core idea is
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Figure 4.1: Multi-module server, and possible decompositions. A simplified
server application with multiple third-party modules of varying trust.

to exploit programming language properties (e.g., abstraction, encapsulation, trust

boundaries) to automatically transform a program at the module boundaries and

offload enforcement to the operating or runtime system (e.g., address space isolation,

LXC/namespaces, sandboxing).

BreakApp is a drop-in replacement for a language runtime’s module system

that pioneers the use of module boundaries as a guide to placing code into pro-

tected compartments. BreakApp is centered around a parametrizable transfor-

mation technique that spawns modules in their own compartments during runtime.

Automated transformations (e.g., function calls to remote procedure invocations,

garbage collection propagation) hide compartment boundaries, providing the bene-

fits of compartmentalization with low developer effort.

Optional runtime policy expressions fix the aforementioned parameters, effec-

tively decoupling assumptions made during module development from requirements

present during module composition. Certain powerful linguistic features, such as

introspection and global variables (§4.3.1), pose high risks for inter-module attacks.

Allowing developers to disable them when their side of the code does not use them

eliminates classes of attacks. Since the same module can be used by several differ-

ent applications, each with its own assumptions and sensitivities, it is important to

let the application developer choose which module behaviors to disallow based on

their side of the code instead of whether vulnerabilities for the modules in use have

already been discovered. Moreover, the aforementioned transformations for creating
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compartments and maintaining the illusion of a single runtime open a rich space of

security and performance trade-offs. Thus policies can also improve BreakApp’s

performance by allowing programmers to customize the provided functionality on a

per-import basis.

BreakApp does not require any annotations, does not require any tracing or

inference (pre-)runs, and does not require manual rewriting of source code. Policy ex-

pressions are backward-compatible with existing codebases and forward-compatible

with unmodified module systems. The system lowers potential barriers to widespread

adoption and makes incremental security retrofit in existing systems possible.

We demonstrate a prototype of our system targeting JavaScript. We leverage

JavaScript’s flourishing package ecosystem to show that it mitigates several classes

of discovered vulnerabilities, as well as wider classes of hypothetical vulnerabilities.

We show that good parameter choices can give acceptable performance results, hit-

ting a sweet spot between security and performance.

Our contributions include:

• identifying an opportunity in today’s applications; the use of many third-party

modules, although risky, offers clear boundaries of trust (§4.3).

• formulating a parametrizable technique for automatically transforming mod-

ules to standalone compartments, allowing users to compartmentalize applica-

tions at the boundaries of untrusted modules (§4.4,4.6).

• proposing a concrete set of policies for configuring the aforementioned param-

eters, effectively allowing users to fine-tune the security, compatibility, and

performance trade-offs (§4.5) during runtime.

BreakApp’s implementation, its evaluation using a combination of micro-benchmarks

and real systems, comparison with prior work, and application of BreakApp’s

ideas in other environments are presented in the implementation (§7.2), evalua-

tion (§8.3), related-work (§9.3), and discussion (§10.2) chapters, respectively. Ap-
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pendix B provides technical background on the module system’s internals, to ensure

that BreakApp’s transformations are appreciated by a wider audience.

4.2 Overview

While our concerns with third-party code are language-independent, the problem

and proposed solution are developed here for an interpreted language where source

code is available.

4.2.1 A Blogging Platform

To highlight typical module usage in modern applications, we consider Ghost, an

open source blogging platform. Ghost imports 62 top-level packages and makes use

of 981 packages in total. The snippet below presents a simplified version of the core

functionality behind such a blogging platform’s search capability:

1 var dbc = require("./dbc.json"); (p12)

2 var ejs = require("ejs");

3 function search(req , res) {

4 var f = db.getFiles(dbc);

5 var m = require("minimatch");

6 var r = m.match(f, req.query);

7 res.body = ejs.render(template , r);

8 }

Function search takes a request and a response object. It populates results

in the response object based on query data from the request and the result-page

template from the developer. Each require statement imports a module into the

current scope. More specifically, it returns the value assigned to the module’s

module.exports variable.

Fig. 4.1-a shows the simplified application running. Boxes correspond to the

context of different modules, with the outer box corresponding to the top-level con-
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text. All these logically unrelated packages execute within the same address space;

a problem in any one of the packages exposes other packages, too. But what can go

wrong when we are talking about a high-level, memory-safe, managed programming

language?

Problem 1 As a simple example, suppose that Ghost generates HTML from tem-

plates using ejs (line 2). Since this package is susceptible to remote code execution

(Table 4.1), a malicious version of this module or a user using the service could try

to get access to the database credentials (dbc) by a number of different execution

paths: (i) attempt to read the global, singleton dbc object by taking advantage of

JavaScript’s default-is-global variable resolution mechanism, the complex this se-

mantics, or by reaching to the caller’s environment if strict mode is not being used;

(ii) access the dbc object by dynamically patching the top-level object and inter-

posing on its access; (iii) access the loaded config module by traversing the cache of

loaded modules; or (iv) directly import the dbc.json config file.

Problem 2 Suppose Ghost provides search functionality using the minimatch mod-

ule, which converts “glob” expressions to regular expressions (line 5). Even if we

assume that minimatch itself is benign, our application is still vulnerable. Because it

is supplied user-generated strings, a malicious user can launch a RegEx DoS attack

by providing pathological regular expressions. Since most JavaScript implementa-

tions follow an event-driven, cooperative concurrency model, a problematic search

query will cause the application to freeze until the pathological request completes.

4.2.2 Strategy: Disabling Features

Language features illustrated in §4.2.1 above and detailed in §4.3.1 below are good

to have some of the time, and may be vital in certain cases. For example, users

should be able to introspect and rewrite state dynamically, share global variables,

compile code, access unsafe code, and traverse the module cache. However, with

the prevalence and simplicity of third-party code there are cases when users need
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to selectively disable some of these features. Within their dedicated compartments,

modules should still have unrestricted access to all these features, but some of them

should stop exactly at the compartment boundary. It is the module client who should

decide which features are allowed to cross boundaries and which ones cannot. This

insight is the driving force behind the design of automated compartmentalization.

The first challenge is giving users the ability to build boundaries within an appli-

cation as easily as importing third-party packages in their application. This is solved

by providing a technique, discussed in §4.4 and illustrated in Fig. 4.1-b, to transpar-

ently spawn modules in their own fresh compartments. Isolated modules can only

communicate through a tight interface (the module’s API) and cannot access state

from other modules without using the API. In the earlier example of a simplified

blogging platform (§4.2.1), the system can spawn ejs in a compartment separate

from dbc.json and minimatch in multiple compartment replicas.

The second challenge is giving users the ability to select the behaviors they need

to disable between boundaries and when. This is solved through a policy scheme,

discussed in §4.5, that allows users to parametrize several aspects of the compartment

types for a particular runtime instance (Fig. 4.1-c). Even if two applications use

exactly the same third-party modules, their safety assumptions, use of these modules,

the intended deployment environment, and the sensitivity of the non-third-party

code justifies disabling very different features — irrespective of whether and what

vulnerabilities have been discovered in these modules. For example, a development

machine could place all third party code (i.e., both ejs and minimatch) in a single

compartment with restricted access to the developer’s file system.

The third challenge is having the compartmentalized application maintain the

semantics of the original application executing on a single runtime. This is solved

using further transformations, discussed in §4.6. Such transformations include con-

verting pointers to distributed references, propagating changes in copied primitive

values, and reflecting garbage collection events. For example, when a developer de-
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cides to manually unload a module using the interactive interpreter, this should lead

to the destruction of the respective compartment and reclamation of its resources.

4.3 Background, Threats, and Opportunities

This section discusses more problems related to third-party modules and outlines

which threats fall within our model.

4.3.1 More Problems

The two examples presented in §4.2.1 only scratch the surface of the risks posed by

problematic modules. In this section we outline further potential problems. These

problems (except (c)) are not specific to JavaScript; substantially similar problems

affect languages such as Java, Go, Objective-C, Ruby, and Python. We give each

problem a circled letter to allow us to refer back to them when explaining how our

system can mitigate each problem (e.g., Table 4.3 in §4.5.2).

Developer Intentions A common source of problems has to do with development

patterns or mistakes. A common pattern with unintended consequences is global

variables a○; for example, having a global, singleton object for an application-wide

database or logger configuration [1, 69]. Mistakes include accidentally exposing state

at the wrong level b○ or making a typo [214] while importing a package (e.g., is it

“coffeescript” or “coffee-script”?).

Runtime Capabilities Another set of problems has to do with powerful reflection

and introspection capabilities, available in many programming languages. These al-

low any part of the program, including a buggy or malicious module, to examine c○

and alter d○ the program’s own structure and behavior during runtime. Implemen-

tations often allow inspecting the call stack for debugging purposes, enabling code

to read data from the calling context e○. Runtime code evaluation with eval or

exec in many dynamic languages allows malicious code to hide its intentions f○.
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Table 4.1: Example vulnerable modules. Eight major vulnerability classes and
specific instances of packages available on npm; “++” indicates that many more
packages with similar problems exist.

Problem Example Package

1 Directory Traversal l○ hostr, bitty, restafary, ++
2 Denial of Service k○ o○ ejs, node-uuid, minimatch, ++
3 Remote Code Execution c○ d○ ejs, pouchdb, reduce-calc, ++
4 Timing Attack p○ fernet, cookie-signature, ++
5 Uninitialized Mem. Exposure e○ mongoose, bl, request, ws, ++
6 Command Injection f○ git-ls-remote, shell-quote, ++
7 Native Code Vulnerabilities q○ libxmljs, libyaml
8 Sensitive Info. Exposure n○ airbrake

Language and Runtime Environment Further problems can arise from the

design of the language. In the case of JavaScript, for instance, common problems

include: default-is-global, where resolution of a name not in scope continues to outer

contexts until it reaches the global context (where it might hit something valuable)

g○; prototype poisoning, where code at inner contexts can affect objects higher in

the prototype chain (effectively mutating all children) h○; a wide range of mutability

attacks, where code can edit properties or even rewrite code before calling it i○,

meaning there is no guarantee that your code will run as expected; self-reference (i.e.,

this) semantics that might resolve differently depending on how the object is being

called j○. Other problems are implementation-specific; for example, several high-

performance implementations employ cooperative concurrency, choking at seemingly

innocuous calls that block the event loop k○ [2].

The Module System A largely undiscovered set of problems has to do with the

inherent implementation of the module system. Module systems do not have the

notion of authority: everything is accessible at any point during the execution of the

program. A malicious module can use built-in modules to access system resources

with the same authority as the rest of the application l○, with code such as fs =

require("fs"); fs.readFile("/etc/passwd"). Worse, module systems tend to
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cache loaded modules to avoid overheads from loading and to ensure consistency

of any state within the module. As a result, a malicious module can enjoy direct,

unrestricted access to the latest instance of any module that is already loaded (e.g.,

require.cache) m○. In many cases, it can even read or write built-in functionality

(e.g., overwrite built-in fs handlers) m○+ i○.

The Broader Environment Some problems are more general and have to do

with the wider system on which an application is running. For instance, modules

have direct access to the calling environment with process.env and process.args

n○. Malicious code within the module or malicious input from users aware of its use

can accidentally or intentionally exhaust resources o○. Modules can also leak timing

information about their state, computation, or underlying resources from observable

changes of how long it takes to execute a request p○.

Native Modules Finally, modules can interface with code written in other lan-

guages. Reuse of existing libraries via foreign functions is a compelling proposition,

but use of unsafe code nullifies the safety guarantees of a high-level, memory-managed

programming language q○.

4.3.2 Threat Model

The general model of threats arising from the use of modules is quite broad. In

practice, however, users are expected to shield applications against only a specific

subset of these threats.

Source of Attacks In terms of attack origin, we care about three broad types:

(i) a malicious module directly attempting an unintended action (e.g., cause a DoS

attack by looping infinitely); (ii) a malicious module indirectly coercing a different

module in the dependency graph with a known vulnerability into performing an

unintended action (e.g., cause DoS by carefully using another module’s API); (iii)

a user feeding a problematic module input that triggers an unintended action (e.g.,
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cause a DoS by submitting problematic search queries).

Attacks We want users to be able to protect against code that attempts to violate

the confidentiality (e.g., read global state, load other modules, exfiltrate data) and

integrity (e.g., write global state or tamper with the module cache) of application

data and code. Moreover, the code can attempt to read or write the broader envi-

ronment within which the application is executing, including environment variables,

hardware counters, the file system, or network. We want to mitigate these attack

vectors by allowing users to disable access to specific variables, specific modules, or

system-level capabilities, such as file system or networking primitives.

We additionally seek to weaken attacks on availability. Pathological inputs from

attackers can disrupt otherwise benign modules within an application (e.g., RegEx

matching [45] or JSON parsing [193]). Potential mitigations range from simple re-

porting, to back-pressuring malicious input, to decreasing resources of malicious

compartments, to shutting down offending compartments.

We also want to make it possible for users to shield time-sensitive modules from

timing attacks. In particular, we want to allow users to set specific minimum response

times for cross-boundary calls.

Assumptions We assume that the core language runtime and built-in libraries

such as fs and net can be trusted. As we show in Chapter 8, our technique allows

spawning built-in modules in their own dedicated compartments. However, the sys-

tem requires a minimum of trusted functionality from the underlying system, such as

the ability to locate and load the right program files required by a module. This can

be achieved by including a trusted (say, formally verified) version of a mini standard

library (e.g., enough to locate files, load modules etc.). We do not explore these

options in this work.

BreakApp can be run either as a third-party module loader on a per application

basis or as a system-wide module loader replacement. In the former case, we assume

that users load BreakApp before any other module; otherwise, a malicious module
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could dynamically rewrite BreakApp’s code. Using a defense-in-depth approach,

BreakApp checks whether other modules attempt to rewrite any of its core struc-

ture using both static checks (the moment BreakApp loads other modules, it parses

their source code) and dynamic interposition hooks on its internal objects (§4.6.5).

Moreover, most of its core structure is immutable: hidden object properties are

set to non-enumerable, non-writable, and non-configurable modes; and policies are

by-default frozen after the initial configuration.

Limitations Attacks targeting package managers are related to, but distinct from,

those we protect against. Most package managers implement pre-install, post-install,

testing, and other scripts that are package-specific. Since these scripts are Turing-

complete programs similar to full-fledged modules, they can be used to launch at-

tacks to the system before, during, or after package installation similar to the ones

described earlier (e.g., read environment variables, denial-of-service attacks etc.).

However, these are beyond the scope of this work and are better addressed with

other methods [31].

4.4 Transformations: Module Decomposition

This section discusses automation related to spawning modules in their own dedi-

cated compartments.

At its core, BreakApp changes the implementation of all module import state-

ments to (i) spawn a new compartment for each previously unseen module, (ii) modify

the return value so that use of module’s members (property accesses and function

calls) will invoke RPC proxies to the newly-spawned compartment, and (iii) redirect

module-specific side-effects, such as console output or exceptions, to the importing

compartment. BreakApp also monitors the health and status of all compartments.
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transform (e : DAG) (toRPC: Fun -> Fun) : DAG :=

match e with

| Obj ((k, v) :: xs) => Obj ((k, transform v) :: mt xs)

| Arr x::xs => Arr ((transform x) :: mt xs)

| Fun f => toRPC(e)

| _ => interpose(copy(e))

end

where mt = map transform

Figure 4.2: Transformation core. The core transformation; example result in
Fig. 4.3

4.4.1 Compartment Setup and DAG Transformations

Whenever the program executes an import statement, control jumps to BreakApp.

Consulting the policies (§4.5) associated with this import statement, it chooses

whether it should spawn a new compartment. If the policy dictates that it should,

it creates a new child compartment for the imported module and sets up a new

communication channel between the two. It replaces core functionality on the child

compartment, such as console printing, in order to propagate certain side-effects to

the parent compartment.

Within the child, BreakApp copies and transforms the return value for the raw

imported module before sending it to the parent compartment. The general case

of such a value is a directed acyclic graph (DAG). The system walks the DAG and

transforms its component values so that function and method calls propagate to the

compartment.

The exact transformation is parametrizable on several aspects related to policies,

but it can be summarized as follows:

• primitive values are copied unmodified and wrapped with an interposition

mechanism that records changes.

• function values are replaced with an RPC stub that, when called, will serialize

arguments, send them to the current compartment, and deserialize the return
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values.

• objects are recursively copied and transformed, with their getter and setter

functions replaced with RPC stubs similar to function values.

If the specified module throws an exception while being loaded, the exception is

caught by BreakApp running on the child, serialized, and re-thrown by the parent

compartment.

If the specified module is already loaded and the policy associated with this

import statement allows module reuse, BreakApp simply retrieves the channel

pointer and returns the previously-transformed DAG copy. Fig. 4.2 summarizes the

transformation algorithm. We discuss an example transformation (Fig. 4.3) at the

end of §4.6.

4.4.2 Function Calls as RPCs

BreakApp mediates between the parent and child compartments. Synchronous

calls yield to the module scheduler, which serializes arguments, sends them through

the channel to the child, and blocks for a response. The child-side wrapper dese-

rializes arguments, calls the required method, and sends results back through the

channel. For asynchronous function calls, the parent module wrapper registers an

event that invokes the provided continuation (with the available results) when a

result is made available on the channel.

In cases when something does not go as expected in the child’s execution, its code

will throw an exception which BreakApp serializes and returns to the caller com-

partment. BreakApp on the parent compartment will inspect the exception and,

if it is related to any violations (i.e., it is not an exception coming from BreakApp

itself), it will re-throw it. BreakApp-specific exceptions are handled specially, de-

pending on the violation.
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4.5 Policies: Tuning Trade-offs

This section discusses policies and how they automate control over tradeoffs among

security, compatibility, and performance.

4.5.1 Expressing Policies

Policies (Table 4.2) can be expressed both at the level of the whole application and

the level of each module. In both cases they are optional. BreakApp’s default policy

is overriden by application-wide policies, which are in turn overriden by per-module

policies.

Application-wide policies generally describe coarse guidelines on how to decom-

pose the application. Typical coarse guidelines include the maximum number of

compartments (LEVEL), action to take in case of violations (ON FAIL), compartment

type (BOX), and application-wide global variables (CONTEXT). They can be expressed

at the point of BreakApp’s initialization:

require("breakapp")({ box: require.boxes.SBX}); (p13)

The line above specifies that all modules should be loaded in their own, fresh,

software-isolated sandboxes (SBX). It creates a new runtime context with fresh built-

ins and top-level objects for each module.

Module-specific policies give developers fine-grained control over decomposition,

allowing them to capture intuition about the properties (regarding security or perfor-

mance) of the modules they use. Per-module policies are expressed at the module’s

import statement:

require("minimatch", {box: require.boxes.PROC }); (p14)

The line above specifies that the minimatch module should be loaded in its own,

fresh process. It creates a new address space, and lets the operating system provide

support for isolation, scheduling, and interprocess communication. If minimatch is a

module written in C, it cannot even forge a pointer to poke into the main application’s
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address space. However, it may take a bit longer to load and communicate than the

rest of the sandbox-based compartments.

The combination of the two policies above should now be clear: load each module

in its own software-isolated sandboxes but load minimatch in a new process. If

minimatch is already loaded in its own compartment, BreakApp will spawn a new

instance of minimatch in its own process.

Notable characteristics of policy expressions include:

Generation: In all cases the policy object can be generated programatically during

runtime (e.g., from command line arguments, from the environment, or through a

pre-processing stage). This gives programmers considerable flexibility, and allows

tools built on top of BreakApp to generate policies dynamically in response to

changing load patterns or evolving threat models.

Compatibility: Per module policy expressions are fully compatible with existing

codebases. Expressing policies is backward -compatible with systems that do not

provide a BreakApp-enabled module system; due to variadic arguments, the policy

argument is ignored by the built-in require function. Not specifying policies (i.e.,

all of the code out there today) is forward -compatible with systems that do provide

a BreakApp-enabled module system: as explained earlier, BreakApp will use the

application-wide default configuration.

Extensibility: Policies are extensible. BreakApp allows users to override most

of the functionality during initialization (i.e., the application-wide policies described

earlier) by passing in functions. The sets of policies described here are simply de-

fault extensions bundled together with the system. If users need to provide further

functionality (e.g., use a different type of compartment or take different actions upon

failure), they can hook up their own implementations.
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Table 4.2: Selected policies. Examples of interesting policies.

Policy Example Options Explanation §

Box SBX, PROC, LXC Compartment type 4.5.2
IPC TCP, UDS, FIFO Communication type 4.5.2
Context {global: global} Share pointers with parent 4.5.2
Level 0, 1, .. Depth at which to decompose 4.5.3
Group subtree.json Group dependency subtrees 4.5.3
Trust ["fs", "http"] Whitelist trusted modules 4.5.3
Doubt ["ejs"] Blacklist untrusted modules 4.5.3
Instances FUSE, PART Fresh compartment per import 4.5.4
Replicas true, 23 Multiple replicas (round-robin) 4.5.4
OnFail (e) => {..} Action upon failure (function) 4.5.5

Compose OURS, THEIRS Priority in policy conflicts 4.5.6

Table 4.3: Compartment types. Different compartment types and problems they
mitigate: vanilla module system (NONE), sandboxes (SBX), processes (PROC), and
containers (LXC)

NONE SBX PROC LXC Notes

a○ b○ 8 4 4 4 globals, state
c○ d○ 8 4 4 4 introspection
e○ 8 — 4 4 stack inspection
f○ 8 — 4 4 evaluation
g○ h○ i○ j○ 8 — 4 4 context
l○ 8 8 8 4 fs, net (leaks)

m○ 8 8 4 4 module cache
n○ 8 8 4 4 process args
n○ 8 8 8 4 process env
k○ o○ 8 8 4 4 denial of service
p○ 8 8 8 4 side-channels
q○ 8 8 4 4 unsafe extensions

4.5.2 Isolation Primitives

Different compartment types provide different guarantees in terms of isolation, but

also affect performance directly. Table 4.3 shows how different isolation primitives

mitigate different types of problems described in §4.3.1:

• Sandbox Isolation (SBX): This creates a new software-isolated context within

the same runtime. Built-in utility functions (e.g., Math.pow) and top-level

objects (e.g., Function.call) are fresh, and global variables not explicitly
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white-listed are not shared. The sandbox shares the same heap and event

queue with the rest of the application.

• Address Space Isolation (PROC): This creates a new runtime instance as a new

process, with its own address space, stream and IPC handles. The system

leverages the OS kernel to synchronize communication and set scheduling pri-

orities between compartments.

• Container Isolation (LXC): This creates a new runtime instance within a fresh

container instance. Containers can restrict process-trees from accessing arbi-

trary parts of the filesystem. They can also restrict access to the network and

set resource restrictions to the use of CPU and memory.

Heavier compartment types and hence more expensive performance costs are

positively correlated with better isolation. However, after fixing the compartment

type, there is room for further tuning performance and isolation independently of

each other. Isolation guarantees can be fine-tuned without affecting performance by

declaring which state compartments are allowed to share (CONTEXT). For instance,

users can share some of the global variables, some of the built-ins, and choose to

allow access to the module cache. Performance costs can be fine-tuned without

affecting isolation by choosing one of the available communication channel types

(IPC). For instance, in the case of process-level isolation, TCP streams provide better

throughput, but Unix Domain Sockets and Unix FIFO Pipes offer lower latencies

(Table 8.6).

4.5.3 Decomposition Granularity

Decomposition granularity affects how many modules to launch into separate com-

partments and is directly related to the number of compartments created. This, in

turn, is positively correlated with finer-grained security, since there are fewer com-

ponents to which a piece of code has unrestricted access. The increase in security
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generally assumes that, all other things equal (e.g., programming language, code

paths etc.), there is a correlation between lines of code and exploitable bugs [127].

However, a larger number of compartments can affect performance negatively by

increasing startup times and communication costs.

There are many ways of guiding the BreakApp compartmentalization scope.

At a coarse granularity of specification, users have two knobs: vertically, define the

level (LEVEL) at which to decompose (e.g., only top-level, every level, only last level

etc.); and horizontally, define the granularity (GROUP) of dependency subtrees (e.g.,

package-level, file-level, etc.). At a fine granularity of specification, they can blacklist

components that should always launch in a new compartment (DOUBT) and whitelist

compartments that are trusted and should always stay with the parent compartment

(TRUST). BreakApp already uses module whitelisting to avoid spawning built-in

modules and its own trusted dependencies.

4.5.4 Instantiation and Replication

Identical-looking import statements might get resolved into different absolute file-

names depending on where they are called in the dependency chain. By default,

BreakApp takes this into account and spawns new compartments only when the

vanilla module system would actually import a module. However, users can re-

quest BreakApp to further replicate a module to address DoS concerns (REPLICAS).

Replication requires user insight because modules that encapsulate state have the

potential to introduce state inconsistencies. When used, the number of replicas can

be declared statically upon startup or inferred dynamically in response to changes in

the load and module response rate. Users can also select a scheduling policy (SCHED)

from an existing set (e.g., round-robin) or can define and pass a custom one.

61



4.5.5 Other Policies

When a violation is detected, BreakApp can select between several actions, de-

pending on the type of the exception (ON FAIL). Among other things, it can log the

violation, email an administrator, kill or restart the compartment, or launch a new

replica. Other policies include scanning the module’s source code to pro-actively

spawn compartments in parallel before they are requested (PRELOAD), encrypting

communication between compartments (ENCRYPT), setting minimum response times

(TIMER), whitelisting environment variables (ENV), and soft-reloading modules with-

out restarting the compartments (RELOAD).

4.5.6 Conflict Resolution

The introduction of BreakApp to a package ecosystem will inevitably lead to con-

flicts of policies. First, third-party packages will start importing other packages

using what they think are the right policies. Then, applications importing these

packages might choose to use different policies. There is no single way for resolving

these conflicts: in some cases the library developer knows better, but in others the

top-level application developer knows more about the intended audience—until, of

course, their application is used as another application’s library.

To solve this, BreakApp comes with a number of conflict resolution options

(e.g., accept-ours, accept-theirs, accept-most-restrictive, accept-most-permissive).

All policies can “lock” at top level, trumping any other policy expression found

in third-party modules.

There is no conflict between different versions of BreakApp, since there is only

one version running: the one starting with the application at top-level. Even if other

modules import BreakApp later, the BreakApp instance that is already loaded

will bypass these imports as no-ops (i.e., ignore their application-wide policies) and

return its own singleton instance.
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4.6 Maintaining a Single Runtime

This section describes several technical details related to transformations intended

to maintain the original application behavior.

4.6.1 Maintaining Pointers

Generally, since BreakApp starts its transformation from the object returned from

a module (e.g., module.exports), values are associated with a name: the name of the

attribute associated with that value. However, not all values in messages include a

meaningful name. For instance, a function can be anonymous and an object can just

be a bytebuffer. To facilitate cross-compartment addressing, the child compartment

maintains a hash table mapping object and function IDs (e.g., SHA256 checksums)

to their in-compartment pointers. These IDs can be thought as distributed, shared-

memory pointers which RPCs include in their messages. Whenever it receives an

RPC message, BreakApp on the child compartment looks into the table and routes

freshly-deserialized arguments to the right function or object method.

4.6.2 DAG Structure and Reference Equality

The creation of object copies during transformation and serialization breaks reference

equality. BreakApp takes care to preserve it. When an RPC leads to a new memory

alias in the remote compartment, the return message from the remote compartment

will include an alias entry containing the remote object ID. BreakApp on the

child compartment then creates and returns a reference to an existing object. The

same consideration must be extended to preserving reference equality for the root of

the DAG between RPCs. A common pattern in many languages is to have methods

that return self; such code would break if the return value of the RPC was a fresh

copy of the method receiver.
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var Point = (x, y) => {
  this.x = x; this.y = y;
};
Point.prototype.toStr = () => {
  `(${this.x}, ${this.y})`
};
module.exports = {
  create: (x, y) => {
    new Point(x, y)
  }
};

var _create = (..args) => {
  var o = create.apply(args);
  var id = generateId(o);
  return _BA.Proxify({ 
    x: o.x, //copy
    y: o.y, //copy
    toString: (..args) => {
      return _BA.RPC({
        "mod": "point.js",
        "obj": id, //07c2b7..
        "fun": "toStr",
        "arg": _BA.from(args)
        "fun": "toStr",
      });
    };
  });

};

module.exports = {
  create: (..args) => {
    return _BA.RPC({
      "mod": "point.js",
      "obj": "exports",
      "fun": "_create",
      "arg": _BA.from(args) 
    });
  };
};
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Figure 4.3: Example application of transformation. A simplified example of
BreakApp-related transformations. BA corresponds to the BreakApp library.

4.6.3 Ordering

Messages get assigned a sequence number. Although communication primitives are

reliable, messages should be received at the correct call order. For example, an

asynchronous call to the printing function will be shown before the next call to the

same function.

4.6.4 Calls to Constructors

Constructors, usually prefixed by the new keyword, slightly change the semantics

of a function call: at the very least, new memory may need to be allocated. The

RPC stub uses additional logic to detect this case.1 If the function is indeed called

with as a constructor, the RPC message has a special type signifying that the target

function should also be called with new. The return value from a constructor is itself

an object whose methods are RPC stubs as described earlier: the true object lies

within its compartment.

1There are many possible ways of doing this; in JavaScript, the simplest one is to check the
value of new.target within the wrapped function’s scope.
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4.6.5 Move vs. Copy Semantics

It is worth clarifying the distinction between values that are remotely referenced and

ones that are copied to the parent compartment. When all nodes in the returned

DAG are methods, they are transformed to RPC stubs referencing values that live

within the remote compartment. State updates targeting such well-encapsulated

modules or objects call directly into the remote object. When some nodes in the

DAG are primitive values however, they result in deep copies of values. Writes to

such values or the RPC stubs themselves2 need to be detected and propagated to

the original object.

To achieve this, we wrap the transformed output DAG with an interposition

mechanism that provides reflection capabilities and gets invoked upon attribute ac-

cesses. A special BreakApp Proxy wrapper3 detects and records changes to

any of the object’s properties. Property values that are themselves objects require

nested proxies (Fig. 4.2). These state updates are compressed into changesets, and

propagated lazily by piggybacking on future RPC calls.

4.6.6 The Class Hierarchy

In object-oriented programming languages, an object might invoke methods inherited

from an object higher in the class hierarchy. These superclasses (or prototypes, for

prototype-based languages such as Lua and JavaScript) might have been imported

from a different module. A naive implementation of transformations to RPC stubs

can then lead to a series of nested boundary-crossings until the outer RPC reaches

its final destination. BreakApp detects class (prototype) hierarchy levels while

traversing the DAG and crafts RPC stubs so that they immediately redirect to their

final destination.

2Whether this is allowed or not is a policy-specific question, discussed in §4.5; here, we merely
show how our mechanism has the ability to detect it.

3 Metatables in Lua or reflect in Java provide similar capabilities.
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4.6.7 Native Functionality

Objects high in the prototype chain are supported natively. Functionality is either

implemented internally in the runtime (e.g., serialization and cryptography modules)

or wraps OS-level subsystems (e.g., networking and filesystem modules). In most

cases, a copy of these objects can be found in the trusted copy of the runtime

(see §4.3.2) which BreakApp includes in the new compartment. Examples include

modules such as crypto, http-parse, and fs, and globals such as timer functions

and top-level objects.

There are cases when this is not possible, however. Specific global or pseudo-

global4 objects in the child compartment require redirection to the top-level compart-

ment. Examples of such objects include console and process to refer to terminal

output and process-level data, respectively.

If compartments live in different address spaces, writes to the child compart-

ment’s out and error streams must be transmitted to the top-level process. Upon

first import, the system shadows log, warn, and error with such redirecting prox-

ies. Similarly, it shadows stream input functions with functions that request this

functionality from the top-level compartment, which sends the results back to the

child.5

4.6.8 Garbage Collection

The standard runtime garbage collector (GC) cannot “see through” compartment

boundaries to collect objects within translation tables. So, in addition to reflect-

ing method calls between compartments using RPCs, BreakApp also propagates

garbage collection events by adding a GC hook to every object that is the result of

a transformation. When such an object is about to be collected, BreakApp sends

4Server-side JavaScript implementations make several objects that are not part of the Ec-
maScript specification available in the global scope, such as process and console.

5In practice, modules asking for top-level user input are extremely rare.
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a message to the child compartment to remove any references to this object.

Whole modules are more difficult to go out of scope for the GC to kick in and

reclaim their memory. This is because there are multiple references to a module in

the cache of the loaded modules. However, modules are often unloaded or reloaded

manually, which should destroy or restart the child compartment. To maintain this

behavior, BreakApp wraps the module cache structure, detects invalidations, and

forces the child compartment to exit. Malicious modules cannot cause other modules

to exit, because child compartments do not have access to other cache entries.

4.6.9 Monitoring

BreakApp interposes on inter-compartment communication, tracking the load place-

ments and frequency of calls on each channel. It monitors the health (i.e., crashed,

not responding) of child compartments periodically and upon remote invocations.

It takes curative actions based on the compartment’s status (e.g., restart, kill, or

spawn more compartments). This is helpful in cases where the module within the

compartment is launching a DoS attach or where asynchronous execution has lead

to exceptions. Child compartments use OS primitives (e.g., SIGHUP on Linux) to be

notified upon parent exit.

4.6.10 Wrapping Up

Fig. 4.3 shows the result of a simple module after two stages of transformations.

The first transformed the return value (create) of the module, and the second

transformed the return value of a call into the module (a Point object). These

transformations are done during runtime and captured only for illustrative purposes.

The left-most column contains most of the original module and its export state-

ment. The right-most column exports a wrapper for create that serializes arguments

and calls back to the original function. The middle two columns show the result of

transforming a newly created Point instance: generateId will store the object to
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a translation table, and return a remote reference. The transformed toStr will al-

ways call back into the original object, whereas access to its x and y fields is Proxyied

through the interposition object.

4.7 Summary

Andromeda’s cooperative concurrency model and its decision to leverage an exist-

ing ecosystem offer significant usability benefits (§2.1.4). However, when combined,

these two features introduce a significant challenge:

This chapter described a general tool built atop Andromeda, BreakApp [223,

224], that addresses the problem arising from the combination of a third-party ecosys-

tem and Andromeda’s cooperative concurrency model—namely, that malicious

third-party code may decide not yield control, ever. BreakApp automatically

spawns third-party code on remote nodes. It maintains module interfaces intact,

forwarding calls to remote modules and intervening in cases of problems. Our expe-

rience developing BreakApp was simplified by Andromeda’s service library, and

its transformation and serialization primitives.

The next chapter (§5) expands on BreakApp’s techniques to offer lower over-

heads.
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Chapter 5

Language-based Module-Level

Compartmentalization

Compartmentalization á la BreakApp is hindered by several practical limitations:

the introduction of concurrently executing compartments may break soundness; syn-

chronous, blocking module interfaces at the compartment boundary may need to

be manually rewritten to non-blocking ones; the granularity of privilege control is

often coarse (i.e., at the level of entire modules or system calls); and the use of

heavyweight isolation mechanisms hinders the runtime performance of the resulting

compartmentalized system. In a sense, the price paid for protecting a module is way

too high—when applications today use thousands of modules.

5.1 Broader Motivation

Today’s ubiquitous reliance on third-party modules1 has led to an explosion of

supply-chain attacks [123, 110, 118, 36, 223, 200]. Subvertible bugs and actively

malicious code in imported modules provide attack vectors that are exploitable long

after modules reach their end-users. Standard module systems provide no meaningful

1 The terms package, module, and library are used interchangeably.
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isolation or privilege separation between untrusted modules and the trusted portions

of an application, as module boundaries are a purely development-time construct.

With popular modules averaging tens of thousands of lines of code, understanding

their internals and verifying their behavior are both extremely difficult tasks [66, 132].

The popularity of certain libraries—depended upon by tens of thousands of other

libraries or applications—allows vulnerabilities deep in the dependency graph to af-

fect a great number of applications [106, 246, 252]. Discovered vulnerabilities are

becoming harder to eradicate, as updates are fetched automatically [181] and module

unpublishing is becoming a multi-step process to avoid breaking applications [242].

Worst of all, leaked publishing tokens allow anyone to update packages with code

that will eventually reach end-users via package updates [152, 125].

Recent work [144, 108, 213, 224] has shown that module-level compartmental-

ization (MLC) can serve as an attractive mitigation by reducing the privilege of

third-party libraries. The key insight behind MLC is that module boundaries al-

ready specify trust boundaries, which can guide security-oriented application com-

partmentalization. MLC works by transforming legacy applications into ones where

each module (or group of modules) runs in its own dedicated compartment, with

enough privilege only to perform its own task. Isolation is typically offloaded to

the operating system (OS), which offers tangible protection guarantees with pow-

erful mechanisms such as processes and containers. MLC shows great promise, as

it can (i) retrofit security into legacy systems not designed with security as their

primary concern, (ii) protect against a plethora of real attacks stemming from defec-

tive, subverted, and malicious elements, and (iii) shield against attacker-controlled

components with unknown vulnerabilities and powerful runtime code evaluation.

Despite its promise, MLC is hindered by several practical limitations (§5.2.2): the

introduction of concurrently executing compartments may break soundness; syn-

chronous, blocking module interfaces at the compartment boundary may need to

be manually rewritten to non-blocking ones; the granularity of privilege control is
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Language-based MLC w/ IRISVanilla App OS-based MLC

Figure 5.1: Overview of Iris Left: application with many third-party mod-
ules, some of which may be malicious (Cf.§5.2.1). Middle: conventional, OS-based
module-level compartmentalization (Cf.§5.2.2). Right: language-based module-level
compartmentalization, such as the one enabled by Iris (Cf.§5.2.3).

often coarse (i.e., at the level of entire modules or system calls); and the use of

heavyweight isolation mechanisms hinders the runtime performance of the resulting

compartmentalized system.

The key insight behind our work, Iris, is that all these limitations can be lifted by

replacing operating-system protection mechanisms with language-based ones. This

is enabled by observing that (i) the vast majority of applications that use third-

party modules today are written in memory-safe languages [50, 249], and (ii) as-

suming memory safety, most of MLC’s goals (§5.3) can be achieved using a combi-

nation of context customization and language-level interpositioning. Any memory-

unsafe modules can be individually contained using prior compartmentalization sys-

tems [167, 24, 78, 213], at a fraction of the original cost.

At its core, Iris extends a programming language’s module system with the

notion of privilege. Specifically, it allows developers to refine the privilege available

to a module, and such privilege refinement is expressible and enforceable at a very

fine granularity.

To provide this ability, Iris introduces privilege-interface contracts (PICs). PICs

specify the functionality accessible within a module—at the level of individual fields

of each module’s return values. Such functionality includes functionality explicitly

imported by modules (e.g., a log module’s info function) as well as that implicitly

available to modules (e.g., top-level objects, global variables, import capabilities).

Examples include “can only access the PWD environment variable”, “can only write
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once the first element of an array”, and “can only import fs”.

To enforce PICs, Iris provides a set of automated runtime transformations that

introduce security monitors at module boundaries. During execution, monitors inter-

pose on all of each module’s accesses that cross its boundary, ensuring they conform

to the policies specified by its PIC. This is achieved by shadowing each module’s re-

turn value and its surrounding environment. Such shadowing forces name resolution

to go through Iris-wrapped values, ensuring the module can only access names that

resolve to Iris’s interposition wrappers. These wrappers, in turn, contain logic that

enforces the PICs as specified by the developer.

Key evaluation results demonstrate that language-based module-level compart-

mentalization à la Iris improves performance over OS-based MLC by several orders

of magnitude, reduces developer effort in identifying and rewriting module interfaces,

enables fine-grained privilege control, and avoids the introduction of unsoundness—

to the point of scaling up to applications with thousands of modules and hundreds

of thousands lines of code.

We begin with an example of the problems caused by third party modules, the

challenges faced by prior MLC systems, and how they are addressed by Iris (§5.2).

We then discuss the threat model and assumptions behind Iris (§5.3). §5.4–5.5

present our key contributions:

• a fine-grained compartment specification primitive, the PIC, that gives devel-

opers control over module-external functionality individual modules can ac-

cess (§5.4),

• a set of techniques for interjecting, transforming, and rebinding the mod-

ule’s context, introducing security monitors that enforce PICs at compartment

boundaries during program execution (§5.5),

While third-party module problems and language-based MLC are pertinent to

any memory-safe programming language, we expound on the JavaScript ecosystem—
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primarily because (i) it boasts the largest collection of modules (and number of

problems) [50], and (ii) it simplifies comparison with prior MLC systems [224]. As

such, our implementation (§7.2) of the augmented module system as an easily plug-

gable package, along with its performance and security evaluation (§8.4) focus on

JavaScript. Discussion of prior work and application of Iris’s ideas in other en-

vironments are presented in the related-work (§9) and discussion (§10) chapters,

respectively.

Appendix B provides technical background on the module system’s internals, to

ensure that Iris’s transformations are appreciated by a wider audience.

5.2 Background and Overview

We illustrate the problems of third-party modules (§5.2.1) by revisiting the recent

event-stream incident [201, 153]. We then introduce conventional MLC and its

limitations (§5.2.2), and close with an overview of Iris (§5.2.3). The discussion is

accompanied by Fig. 5.1.

5.2.1 Running Example: A Bitcoin Wallet

To understand the problems with third-party libraries, consider the event-stream

incident [201, 153]. Meant to simplify working with data-streams, at the time of the

incident event-stream was used by hundreds of applications and averaged about

two million downloads per week. At one point, its author handed off maintenance

to a volunteer; this is common practice when an open source developer reaches a

saturation point. The new maintainer added an obfuscated, malicious package as a

dependency to event-stream, called flatmap-stream, with code that was designed

to harvest account details from selected Bitcoin wallets.

Fig. 5.2 zooms into (simplified) fragments of the attack. If run as part of a

specific Bitcoin application (Copay), it starts by loading the account.js module
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let s = require("stream");
exports = (m, o) => {…}
…
let c = require("btc-wallet/account.js");
let gk_old = c.getKeys;
c.getKeys = (…args) => {
 let k = gk_old(args);
 require("http").request(RMT_SRV).end(k);
 return k;
}

let es = exports;
es.map = require("flatmap-stream");
es.pause = …
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Figure 5.2: Use of third-party modules. Malicious code, highlighted in red,
patches the getKeys method, spoofing credentials and sending them over the network
to a remote node.

related to the credentials of the user’s Bitcoin wallet (line 4). Since the module is

already loaded by the runtime, the language’s module system returns a cached copy

of the module’s return value. This gives the attacker the ability to overwrite (i.e.,

monkey-patch) its getKeys method at runtime (l.5,6). The new method accesses

the sensitive account credentials by invoking the original method (l.7). It then loads

the http module, and transmits the credentials to a remote, third-party server (l.8).

Finally, it returns the expected results to the caller method (l.9).

While this is a simplified version of the attack, used to illustrate MLC and Iris,

the real attack is not detectable via static or dynamic analysis. Static analysis would

not have helped because the attacker employed a series of encryption passes over

the malicious code [191]. Dynamic analysis would not have helped either, because

the malicious code activated very selectively: only when event-stream was part

of Copay’s dependency tree, only when the application run on the “live” bitcoin

network, and only on users that had a balance of B100 or more.

This case is not alone: malicious modules have exfiltrated sensitive environment

variables [26], public SSH keys [154], and credit card numbers [155]. While the

JavaScript package ecosystem dominates headlines—with >1M packages, >150K

authors, >1Bn downloads per day—the trends are widespread across languages and
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worsening: a record-setting 16,000 new vulnerabilities due to third-party packages

were disclosed in 2018 [208].

5.2.2 Conventional, OS-enforced MLC

The key issue underlying the event-stream attack is that any third-party fragment

of an application has unrestricted access to the functionality available to the rest

of application. Some of this functionality is explicitly provided by other libraries

such as fs and http. Other functionality is implicitly provided by the programming

language; examples include the ability to use global variables, import modules, and

access the cache of the loaded modules. Both explicitly and implicitly provided

functionality is exploitable by third-party code. While it may be needed for the

application to function as a whole, it is not necessarily needed by event-stream.

OS-enforced MLC (OSMLC) [144, 108, 224] leverages this insight to restrict func-

tionality at the boundaries of third-party modules. For example, OSMLC would

protect against event-stream and its malicious dependency by spawning them as

separate processes. Address space isolation makes top-level and global objects of

the application inaccessible; process containment restricts the module’s access to fs

and the http; and local copies of interfaces localize the effects of overwriting module

APIs. OSMLC is a powerful tool for security; however, it creates a few challenges of

its own.

Soundness Challenges OSMLC can introduce unsoundness by creating concur-

rently executing compartments [78, 32, 224]. Ensuring that the compartmentalized

program is sound with respect to the original program is challenging; after all, intro-

ducing concurrency is prone to introducing additional behaviors that are not possible

in the original program. Examples include new sources of non-determinism, multi-

ple copies of code and data, and conversion of cooperative scheduling to preemptive.

Access to state shared among several modules can lead to inconsistencies, race con-

ditions, deadlocks, causal ordering violations, and other classic distributed-systems
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problems [78]. Execution must also deal with the potential for compartment failures,

which in turn can also compromise assumptions about execution behavior and global

invariants.

Manual-Effort Challenges In many cases, OSMLC implicitly alters the pro-

gramming model at the module boundary, which itself requires significant manual

effort : as I/O is introduced, module interfaces that are blocking often need to be

converted to ones that are non-blocking, asynchronous, and concurrent. When a

function evolves from being compute-only to potentially yielding, all functions along

the path from the function whose call semantics have changed up to the root of the

call graph may potentially have to be split in two—a side-effect known as “function

ripping” [5].

Granularity Challenges OSMLC is often restricted to coarse-grained monitor-

ing and enforcement, because OS mechanisms are applied over coarse boundaries—

such as processes etc.—rather than fine ones (e.g., individual object fields or meth-

ods). It can easily allow or deny access to an entire module, and often monitor

OS-level interfaces—with mechanisms such as system-call interpositioning and con-

tainer namespacing; however, semantic monitoring at the granularity of module fields

requires support from inside the compartment, and outside the strict visibility of OS

mechanisms.

Performance Challenges Most importantly, OSMLC incurs significant perfor-

mance overheads due to heavyweight OS mechanisms enforcing boundaries across the

entire dependency graph. Invocations at the module boundary become excessively

costly due to (de-)serialization, interprocess communication, and context switching

costs. Boundary crossing is especially problematic in cyclic dependencies where a

boundary has to be crossed multiple times for a single top-level call. Spawning copies

of the runtime system, built-in libraries, and the compartmentalization framework

for every new compartment requires vastly more resources (e.g., memory, file de-

scriptors, buffering) than shared-address-space modules. When deployed at scale,
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all these overheads translate to prohibitive financial costs.

5.2.3 Language-based MLC with Iris

Iris solves these challenges by taking a different approach: restricting the ability

to name disallowed functionality. Rather than relying on the operating system to

protect memory accesses, it “shadows” variable names from within the programming

language. Names are assigned new, customized values that are augmented with in-

terposition mechanisms. A module thinks it is accessing original values, when in fact

it is accessing wrappers that verify accesses before propagating them to the original

values. For example, the event-stream module cannot bypass Iris to name the ap-

plication’s top-level and global objects, cannot access the fs and the http modules

which are namespaced from within the variable context, and cannot overwrite the

getKeys field of a read-only wallet.

To meaningfully restrict the privilege of third-party modules, Iris allows de-

velopers to explicitly specify privilege when importing code—potentially, right at

the require statement. Privilege specification takes the form of function predi-

cates, PICs, that can guard any module imports—be it explicit like fs or implicit

like globals. PICs operate at a very fine granularity—that of individual fields of

individual objects that form the context of individual modules—and can be Turing-

complete functions. For example, a developer can express that the event-stream

module can use the built-in require function as long as it only imports console

(for writing to the standard output stream).

Allowing PIC specification at such a fine granularity is necessary, as neither

static nor dynamic analysis are powerful enough to deal with the most general case of

malicious modules (see §5.2.1, ¶3). Iris improves MLC by not breaking semantics at

the boundary, by not altering module interfaces, by enabling fine-grained control over

module privilege, and by achieving order-of-magnitude performance improvements

for single-module containment.
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5.3 Threat Model

The general model of threats arising from the pervasive use of third-party modules

is quite broad (§5.3.1). To be able to protect against these threats, Iris needs to

place trust in a few underlying components (§5.3.2).

5.3.1 Threats and Goals

Iris protects against (i) attackers sending vulnerable modules input that triggers

unintended actions (e.g., call a method to access a secret key); (ii) malicious mod-

ules indirectly coercing other modules into performing unintended actions (e.g., use

introspection to get a secret key); and (iii) malicious modules directly attempting

unintended actions (e.g., exfiltrate a secret key directly).

Threat Classes Broadly, Iris protects the confidentiality (e.g., read global state,

load other modules, exfiltrate data) and integrity (e.g., write global state or tamper

with the module cache) of data and code. These extend to the broader environment

within which the application is executing, including environment variables, hard-

ware counters, the file system, or the network. Broadly, “ambient” overprivilege

enabling such attacks comes from: (i) common features in programming languages

(e.g., call stack inspection, reflection capabilities, monkey patching); (ii) unusual

language features or deficiencies (e.g., in JavaScript: default-is-global, prototype

poisoning, mutability attacks); (iii) implementation-specific concerns (e.g., module

cache, import capabilities); (iv) authority confusions, where parts of the applica-

tion have equal access rights (e.g., read process.env or process.args, write to the

filesystem or network).

Security Goal Iris aims to mitigate the aforementioned attack vectors that en-

able “ambient” overprivilege, by allowing users to create compartments, controlling

module-to-module access at a very fine granularity—that of individual names, func-

tions, and fields of individual module return values.
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5.3.2 Assumptions and Limitations

Iris places trust in the language runtime and built-in modules such as fs. Although

it can confine built-in modules, a minimum of trusted functionality is needed from

the module system to locate and load contracts. Moreover, when Iris is introduced

as a module, it is assumed to be loaded before any other module—otherwise, a

malicious module could dynamically rewrite Iris’s code.

Limitations Iris does not handle native modules or denial-of-service (DoS) at-

tacks. Native modules are written in lower-level languages such as C, C++, or

assembly, and can bypass any security guarantees provided by the higher-level pro-

gramming language and enforced by the runtime; any operation that violates mem-

ory safety (e.g., pointer creation) would allow arbitrary modules to bypass Iris’s

language-based protection techniques. DoS attacks attempt to prevent legitimate

use of a module by overloading it (e.g., sending many requests, or few carefully

crafted ones; infinite loops); weakening of DoS attacks by automatically scaling out

would not work in Iris’s single-process environment. For these two classes, devel-

opers can use (i) OS-enforced MLC systems [32, 224] and pay the aforementioned

costs for a small fraction of the codebase, or (ii) a system targeting that particular

class (e.g., NaCl [245] for native code; DeDos [52] for DoS attacks).

5.4 Interface Privilege Contracts

Iris’s goal is to reduce the privilege individual third-party modules possess. As a

first step, it arms developers with the ability to explicitly specify a subset of the

rights granted to modules by default upon import. This ability is available on a

per-import basis, through each module’s so-called interface privilege contract (PIC).

A key observation behind Iris is that even functionality that is accessible by

default can be modeled as being provided by implicitly imported modules (§5.4.1).

PICs are expressible at a very high granularity (§5.4.2), using a subset of the source
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Table 5.1: Implicit imports. Examples names resolving to a scope outside that
of a module: (i) core built-in objects, (ii) the standard library, (iii) implementation-
specific objsects, (iv) module-locals, and (v) global variables.

Source Example Variables

Built-in Objects Object, Function, Array, eval, parseInt, . . .
Standard Library Math, Number, String, JSON, Reflect, . . .
Node globals Buffer, Process, console, setTimeout, . . .
Module locals require, dirname, exports, filename, . . .
Globals GLOBAL, global, Window, . . .

language (§5.4.3–5.4.5).

5.4.1 Explicit vs. Implicit Imports

Iris unifies two different (and broad) classes of mechanisms that modules can use

to import functionality. Functionality available to modules is either (i) explicitly

imported from other modules, or (ii) implicitly available through their context.

Explicit Imports Functionality can be imported with the use of an explicit import

statement. The import statement returns a value—the general case of which is an

object—that becomes available to the module’s scope. For example, the log module

returns an object with method fields info, warn, and err, of which only info might

be needed.

Implicit Imports Functionality can also be available by default through (and

shared with) the module’s “outer” context. Examples of such implicit functionality

(Tab. 5.1) include top-level objects and functions (e.g., process.args, eval), func-

tions to output messages (e.g., console.log), and capabilities related to module-

importing itself (e.g., require, exports). Naming this functionality resolves to a

scope outside that of a module, and is pervasively accessible from any point in the

code. What ends up hitting such an implicit context depends on the language’s

variable name resolution2 and represents ambient authority [137]: a module need

2 For example, in some cases variables need to be prefixed with global (e.g., Python) while
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Figure 5.3: Contract segments. Cross-module variable name resolution (left)
augmented with Iris (green boxes), which interjects non-bypassable steps resolving
to Iris-augmented values (right-top: implicit module imports; right-bottom: explicit
import).

only specify the names of the objects and methods associated with an operation in

order to invoke it. Similar to explicit imports, implicit ones are accessible through

the module’s return value.

5.4.2 Specification Granularity

A PIC restricts the privilege available to a module m (or set of modules) by refining

privilege across all the fields across all import values accessible by m. Privilege

refinement is achieved through predicates that need to hold for an access to take

place; semantically, an access is allowed only if a predicate evaluates to true when

the access is attempted at runtime.

To make it easier to describe PICs and associated transformations (§5.5), PICs

follow the distinction between explicit and implicit imports (Fig. 5.3). The part of

a PIC targeting explicit imports is termed the explicit segment, and defines how a

module’s interface is used by its consumers. The part of a PIC targeting implicit

imports is termed the implicit segment, and defines what implicit functionality it

imports. A module’s explicit segment may be different every time the module is

imported, whereas its implicit segment does not generally change. Examples of PIC

in others resolution is attempted on increasingly outer scopes until it hits the global scope (e.g.,
JavaScript).
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segments include “can only write the first element of an imported array” (explicit)

and “can only read the PWD environment variable” (implicit).

The combination of modules and PICs results in a new mental model, in which

developers think of import as an augmented operation that supports privilege spec-

ification. Upon import, they can attenuate the privilege of individual modules by

making privilege explicit at a very fine granularity. Under this extended model, Iris

can be thought as an “object-path” protection service: access rights are expressed

as privilege associated with a path from the program’s module roots to the field cur-

rently being accessed. While implicit imports are part of the model, module-local

and function-local values are not : Iris does not allow specifying (or enforcing) ac-

cess restrictions on, say, arbitrary objects or function return values. Whenever such

restrictions are needed, values have to be wrapped in and imported from standalone

modules.

5.4.3 PIC Expressions

PICs can be expressed using a subset of the source language, enough to map afore-

mentioned object-paths of a module’s return value to access predicates. They can be

specified directly at the point where a module is imported (e.g., require("ev-stream",

σ)) or as part of an auxiliary PIC specification file (e.g., pic.json). The former

offers convenient control over individual imports, allowing developers to refine priv-

ilege on individual modules they import—possibly while developing the application.

The latter is intended to simplify interaction with automated tools built atop Iris.

Privilege refinement is expressed via function predicates over the type of the

attempted access. They take as input the values associated with the access and

return a boolean, true for allowing access to go through and false for denying

access. Input parameters to predicate functions for values that are read, written,

and deleted include (i) a pointer to the target object, (ii) the name of the field to be

accessed, and (iii) for writes, the new value. For executable values and constructors,
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Figure 5.4: Transformation pipeline. Module loading is augmented with several
stages that transform the module and its context before returning its value to the
importing code. Stages (1), (3), and (5) manipulate in-memory objects; stages (2)
and (4) operate on source code (Cf.§5.5).

input parameters include (i) a pointer to the target object (ii) the implicit “self”

argument for method calls, and, most importantly, (iii) the list of arguments provided

for the call. Predicate functions are Turing-complete, in that they can run programs

of arbitrary complexity. In practice, however, they tend to be purely functional

computations over the aforementioned inputs.

PICs work in conjunction with the existing language restrictions and protection

mechanisms. The privilege associated with a value depends on the value’s type.

Specifically, it is meaningful only in the context of accesses related to that type, and

can be thought as further constraining over the language’s base types. Conversely,

to retain the full capabilities of the language, a right to perform an access does not

place any constraints on the type or form of the new value.

5.4.4 Example PICs

To illustrate the use of PICs in practice, consider the Bitcoin application presented

in §5.2.1 (Fig. 5.2).

Example 1 The first privilege we might want to constrain is the use of require:

simply granting a module all-or-nothing privileges over require unleashes too much

power, as it then allows the module to import any module into the current scope.

A PIC can constrain the import to only, say, log. This is accomplished with the

following PIC for event-stream:

1 event -stream: (p15)

2 globals:
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3 require: (m) => m === "log"

4 [...]

During execution, the anonymous function on line 3 will be provided the argu-

ments to require, of which it binds only the first—corresponding to the module’s

name. It returns true if it matches “log”, allowing execution to proceed uninter-

rupted.

Example 2 For a more advanced use, consider a predicate that only allows reads

and writes to files that belong in a certain directory. Module event-stream is

provided a privilege-refined version of fs’s readFile method that can only access

the “/var/www” directory subtree. This is accomplished with the following PIC:

1 event -stream: (p16)

2 fs.readFile: (f) =>

3 path.resolve(f). startsWith("/var/www")

4 [...]

The resolve method of the built-in path module returns an absolute pathname;

subsequent prefix-matching returns a boolean value. This predicate simulates heavy-

weight process jails [95] and container [129] namespacing, but goes beyond all-or-

nothing configurations by allowing different modules to access different directories.

This works because PICs specify privilege for individual modules: a different module

importing fs, such as log, could restrict fs access to the local directory.

5.4.5 Subtleties

The use of predicate functions could open several subversion vectors. To avoid this

problem, Iris restricts the language of PIC expressions, leveraging the techniques

described in this paper. Casual readers may want to skip this subsection on a first

read, as full understanding of the techniques presented here requires reviewing the

enforcement section (§5.5).

The first problem is that importing third-party modules in predicates could open
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wrap (e: Value) : Value := match e with
   | {(s, v) :: vs}        {(s, wrap v) :: wrap vs}
   | [v :: vs]              [(wrap v) :: wrap vs]
   | λ(…args).f            λ(…args).{ σ(e, args)? f : () }
   |                      interpose(σ, e)
end

→
→
→
→

Figure 5.5: Base transformation. The algorithm (simplified) is presented
in functional style to simplify variable binding; types, whose structure is used for
pattern matching, are shown in light turquoise (Cf.§5.5.2).

the doors to malicious code within the PICs, foregoing any of Iris’s benefits. To

solve this, Iris disallows the use of require within PICs. Instead, by using context

transformation and rebinding (§5.5.4), it only permits access to built-in modules

directly by name. For example, instead of require("path"), path’s functionality is

available directly through the path variable.

Even while restricting to built-in modules only, issues remain: asynchronous,

non-blocking functions return before the results of the checks are made available. As

a result, a sensitive resource can be accessed before the corresponding PIC has any

time to be enforced. To solve this, Iris allows calling only synchronous, blocking

interfaces of the built-in modules. This is achieved by guarding the privilege to read

non-blocking interface with a PIC that disallows access.

A last problem is related to PIC side-effects. PICs may need to mutate state

outside the PIC; this is useful, for example, to enforce access to an interface only

once or within a certain timeframe. Moreover, state must be shareable between PICs

to allow coordinated decisions across PICs. However, state shared between PIC- and

application-resident code could lead to problems because malicious application code

could attempt to violate confidentiality and integrity of state on which PICs depend

(i.e., bypassing the two prior techniques). To solve these problems, Iris introduces

a custom global context that is only available to PICs and isolated from the global

context of the application. The map can be shared across PICs, and stores data that

persist across executions of a single PIC.
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5.5 Monitoring Transformations

To reduce the privilege modules possess, Iris needs to enforce the privilege granted

to modules upon import by developers during the execution of the program. This is

achieved by a series of automated runtime transformations that wrap modules with

security monitors. Each monitor is responsible for overseeing accesses that cross a

single module-to-module boundary and ensuring that they conform to the privilege

specified by the accompanying PIC. If a violation is detected, Iris throws a special

exception that includes contextual information for diagnosing root cause (§5.5.1).

To transform a module, Iris augments several steps of the module loading pro-

cess (Fig. 5.4) using a base transformation that wraps an object with a security

monitor (§5.5.2). It starts by intercepting calls to the require function (§5.5.3),

which locates the module’s source code and PIC. It then constructs a custom con-

text based on the PIC’s implicit segment (§5.5.4). It then encloses the module in a

closure to leverage local variable resolution in order to link the custom context with

the module (§5.5.5). After source interpretation, Iris transforms the resulting value

by consulting the PIC’s explicit segment (§5.5.6), updates the Iris-augmented mod-

ule cache (§5.5.7), and returns the value to the consumer. The following subsections

detail these steps.

5.5.1 Privilege Exceptions

The semantics of the augmented model guarantee that a module field will be accessed

only if the accessing module is allowed to do so and if the access conforms to the

field’s predicate; if not, the Iris wrappers throw an access violation. To expose an

access violation to the user, Iris introduces a new exception, PrivilegeException,

that bypasses the program’s control flow to notify the user and provide contex-

tual information. This information is intended to simplify diagnosis of the violation

and its cause, a challenge compounded by Iris’s chosen domain—large dependency
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graphs with many third-party libraries of which the developer has little understand-

ing. Specifically, the exception includes the type of violation, names of the modules

involved, names of accessed functions and objects, and a stack trace.

While Iris guarantees that unauthorized access will not be allowed, a malicious

mediating module can still catch and silence an PrivilegeException. This does

not violate the semantics of the privilege refinement model, but (at worst) may

complicate debugging. To simplify this, Iris can be configured to execute in a log-

only mode, in which it logs exceptions (high I/O overhead), or a fail-stop mode, in

which it prints contextual information to the error stream and immediately stops

execution.

5.5.2 Base Transformation

Iris’s transformations boil down to a base form BT that augments objects with

runtime security monitors. At a high level, BT takes an object O and a PIC σ and

returns a new object O′. Every field f of O is wrapped with a method f ′ defined to

enclose f . At runtime, f ′ checks σ: if the access is allowed, it forwards the call to f ;

otherwise, it raises an exception.

To achieve this transformation, Iris walks the object graph from the root and

processes component values based on their types (Fig. 5.5). Rather than mutating

original values, it copies them, applies transformations on the copies, and returns

copies to the caller:

• function values are wrapped by a closure that forwards arguments to the orig-

inal function if allowed to do so.

• object values are recursively transformed, with their getter and setter methods

replaced similar to function values.

• primitive values are copied unmodified and wrapped with an access interposi-

tion mechanism.
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let _M = Math, Math = {};
Math.add = (…args) => {
if (σ(_M.add, args)) {
 return _M.add(args);
else
 throw Iris.PrivException();
};
Math.sub = (…args) => {…};
…

let Math = {
 add: (a, b) => {
  return a + b;
 },
 sub: (a, b) => {…},
 …
 …
}
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Figure 5.6: Example base transformation. Applying the base transforma-
tion (Cf.§5.5.2) to a Math object that contains an add method yields a new Math

object. The new add is a closure over the old add. When called, it passes arguments
to and invokes the old add if the original add should be called; otherwise, it throws
an ACException (Cf.§5.5.1).

Direct field accesses, such as assignments, require custom detection upon derefer-

ence. To achieve this, Iris wraps fields with an interposition mechanism, essentially

treating direct field accesses as function calls. Examples of such mechanisms include

Proxy objects for JavaScript, metatables for Lua, metaclasses for Python, and direct-

accessor metaprogramming in Ruby. Iris’s wrappers detect and record changes to

any of the object’s fields; nested wrappers monitor nested objects.

For further processing, Iris maintains a handle to the root of both the unpro-

cessed and the newly processed values. The unprocessed value is used to create

objects that check for different PICs. The new value is used to revoke or alter

privilege at runtime, a capability not explored further in this paper.

Fig. 5.6 shows the result of applying the base transform BT on simple Math object.

5.5.3 Import Interception

Iris’s runtime enforcement component is introduced as a backward-compatible,

drop-in replacement of the language runtime environment’s module system—either

as an application-specific module (e.g., iris package) or bundled with a custom run-

time replacing the language’s module system for all applications (e.g., Iris-powered

Node.js). It always starts by dynamically replacing require: instead of simply

locating and loading a module, the function yields to Iris.
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let CONTEXT = {
require: null,      //module-local; null for now
process: Iris.BT(process, σ

1
),

setTimeout: Iris.BT(setTimeout, true),
Number: Iris.BT(Number),
Array: Iris.BT(Array),      
// […another 150 entries…]
}
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Figure 5.7: Creating a custom context. A custom context mapping vari-
able names to values is created by applying the base transformation (Fig. 5.5) on
individual values of the default context (Cf.§5.5.4).

Iris checks (i) if the module has already been loaded, and, if it has, (ii) whether

it has ever been loaded with the same PIC. If both statements are true, it recovers

and returns the transformed module value. If the module was loaded with a different

PIC, Iris loads the appropriate PIC and applies a transformation pass on a cached

copy of the module (§5.5.7). Otherwise, Iris first invokes the built-in module loader

to locate the module.

The process of loading new modules includes a phase of reading the necessary

files as source and a phase of interpreting them, interspersed by applications of

transformations. Reading the source files returns a string representation of the source

code. Interpretation uses the language’s runtime evaluation primitives to convert the

code to an in-memory object. A series of transformations is applied before and after

interpretation.

For PICs, this distinction is not as important, other than to note that PIC

specification files are loaded as strings. The PIC specification language is embedded

in the source language, thus Iris makes use of the language’s built-in evaluation

primitives to interpret the PIC specification file. The result is identical to PICs

specified as arguments to the require method.

5.5.4 Context Transformation

Iris needs to prepare a transformed copy of the module’s outer context, a map from
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variable names to their values. To achieve this, it creates an auxiliary hash table

mapping names to transformed values. Names correspond to implicit modules (§5.4)

such as globals, built-ins, module-locals, etc. (Tab. 5.1). Transformed values are

created by applying the base transformation BT over values in the context, as specified

by the PIC’s implicit segment (Fig. 5.7).

While user-defined global variables are stored in well-known locations,3 traversing

the global scope for built-in values is generally not possible. To solve this problem,

Iris collects such values by resolving well-known names hard-coded in a list; different

lists exist for different environments and versions of the language. Using this list,

Iris creates a list of pointers to unmodified values.

Care must be taken with module-local variables, which refer to information as-

sociated with individual modules. These are accessible from anywhere within the

scope of a module (similar to global variables), but each module refers to its own copy

of these variables. Examples include the module’s absolute filename, its exported

values, and whether the module is invoked as the application’s main module. At-

tempting to access them directly from within Iris’s scope will fail subtly, as they will

end up resolving to module-local values of Iris itself —and specifically, the module

within Iris that is applying the transformation. Iris solves this problem by defer-

ring binding for later, and specifically from within the scope of the module. This

process is detailed in the next section (§5.5.5); for now Iris leaves the entries empty.

Fig. 5.7 illustrates the context transformation for the flatmap-stream module

(Fig. 5.2–bottom), based on the PICs defined in its implicit segment (§5.4.4).

5.5.5 Module Enclosure

Iris needs to link the module with the newly transformed version of its context.

To achieve this, it wraps the module with a closure that starts by redefining and

enclosing global variable names as module-local ones (Fig. 5.8). The closure accepts

3 For example, globals in JavaScript and G in Lua.
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(cxt) => {
 let require = Iris.BT(require, σ

0
);

 let process = ctx.process;
 let setTimeout = ctx.setTimeout;
 let Number = ctx.Number;
 let Array = ctx.Array;
 // […another 150 entries…]
   let s = require("stream");
   exports = (m, o) => {…}
   (flatmap-stream code)
}
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Figure 5.8: Module enclosure. The original module (shaded lines 10–19)
is wrapped with a function (lines 1–8 and 20) that (i) takes the custom context
(Fig. 5.7) as a parameter, and (ii) shadows globals (2), language built-ins (3), and
module-locals (4) by re-defining them as function-locals (Cf.§5.5.5).

as argument the customized context and assigns its entries to their respective variable

names. This is arranged in a preamble comprising of assignments, which executes

before everything else in the module. When the closure is applied to the customized

context, the module’s return value is recovered in a side-effectful manner (as in the

unmodified module system) by reading the module’s exports variable—that is, the

closure does not end with an explicit return.

This technique leverages lexical scoping to inject a non-bypassable step in the

variable name resolution process. Instead of resolving to variables in the context,

resolution will first “hit” module-local values augmented with security monitors. As

a result, even if new code is runtime-evaluated at a later point, it will still be con-

strained to modified values by the language’s resolution algorithm. The technique

works because the module is still at a loading stage prior to interpretation, repre-

sented as a string. It is a limited form of source code rewriting, special in that it

conveniently occurs at runtime.

Late-bound, module-local variables (§5.5.2) are the result of applying BT over

variable names in the current scope, which is now bound to the correct module-local

value.
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let compiled = [native].eval(enclosed);
let rewired = compiled(CONTEXT);
let bucket = require.cache["flatmap-stream"];
bucket[σ.implicit] = rewired;
let instance = Iris.BT(rewired, σ.explicit);
bucket[σ.implicit][σ.explicit] = rewired;
return instance;
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Figure 5.9: Module linking and export. After interpretation, the wrapped
module (Fig. 5.8 is linked to the customized context (Fig. 5.7) by function ap-
plication (Cf.§5.5.6); the return value is cached before (4) and after (6) the final
transformation responsible for attenuating the return value (Cf.§5.5.7).

5.5.6 Module Transformation and Return

Returning the module’s value to its consumer comprises interpreting the module,

linking it with the custom context, and applying transformations to its return value

(Fig. 5.9).

When interpreted, the source code returns (the in-memory representation of) a

function. Passing the custom context to the function evaluates the module. During

this phase the module may attempt to access global objects and cause side-effects,

but all these are subject to the privilege granted to the module. the module can

“see” only a limited subset of interfaces throughout its lifetime. Evaluation returns

the module’s exported values, similar to the vanilla module system.

Right before returning the exports to the consumer, Iris runs the return value

through a final application of BT, consulting the privilege specified by the PIC’s

explicit segment (Fig. 5.9, lines 1, 7). At the compartment boundary between

event-stream and the imported flatmap-stream, only the map field should be ac-

cessible; the base transformation makes all other fields of the object inaccessible.

5.5.7 Augmenting The Module Cache

Applications may import the same module at different points of the dependency

graph. For consistency and performance purposes, module systems maintain a cache

of loaded modules. When an already-loaded module is imported again, vanilla mod-
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ule systems return a cached reference to the return value of the original module. The

new privilege-augmented model, in which the same module can be loaded multiple

times with different privilege, requires augmenting the module cache and associated

operations (§5.5.3).

Iris extends the cache with two additional levels. The first level is indexed by

module identifiers as before, the second level is indexed by implicit segments, and

the third level is indexed by explicit segments. For each module, the second level

contains a collection of entries corresponding to mostly-transformed modules, and the

third level contains fully transformed modules. Mostly-transformed modules have

gone through the entire transformation pipeline except for the last stage: they have

been interpreted and have had their context transformed and linked, but their return

value has not been processed to enforce the explicit segment (§5.5.6). The reason

for splitting the two levels is that modules are usually governed by a single implicit

segment but multiple explicit segments, one for each of its consumers. A context

transformation is applied only a few times, whereas a return-value transformation is

applied on every require. The second level also contains a special entry (indexed

by " ") for the non-transformed return value, so that subsequent transformations

can skip loading the module from disk.

When a module is already loaded, Iris indexes by implicit segment to retrieves

the right module instance. It then applies the transformation required by the explicit

segment. New modules are inserted into the second-level cache right after evaluation

of the interpreted function (line 3 of Fig. 5.9).

5.6 Summary

This chapter presented Iris, a system for solving key challenges in module-level

compartmentalization: the introduction of unsoundness, manual synchronous-to-

asynchronous conversions, coarse-grained privilege control, and significant perfor-
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mance overheads. Iris addresses these challenges by replacing OS protection mech-

anisms with ones provided by the programming language. Rather than relying on

the OS to restrict syscall interface accesses at the compartment boundary, it restricts

(naming) functionality from within a compartment. This ability is available as fine-

grained executable access predicates termed privilege-interface contracts (PICs). A

series of techniques for interjecting, transforming, and rebinding the module’s con-

text introduces non-bypassable security monitors that intercede at the compartment

boundaries and enforce PICs during program execution.

The nest chapter (§6) expands on Iris’ techniques to automatically scale out

bottlenecked modules.
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Chapter 6

Light-Touch Scaling of

Distribution-Oblivious Code

One of Andromeda’s key arguments is that a high-level, dynamic programming

style (and associated runtime) should lower However, a challenge that arises is that

performance of high-level languages may be lower than carefully handwritten C or

assembly code [47]. There are mainly two approaches for minimizing such a per-

formance disparity—and Andromeda uses both of them. The first approach is

to leverage a high-performance runtime, with state-of-the-art machinery (e.g., op-

timization, JIT compilation) that has been the focal point of non-trivial industrial

engineering investment (§7). The remaining loss is insignificant compared to the

benefits of productivity and safety, and can be mostly recouped by re-engineering

or scaling out bottlenecked components—the second approach. We tested the latter

hypothesis of directly exploiting distribution by developing Ignis [222], a framework

that leverages Andromeda’s transformation infrastructure (§2.4.1) to detect and

scale out bottlenecked modules in legacy applications, as long as their developers

have sprinkled selective imports with soundness-related annotations.

Light-touch distribution is a new approach that converts a legacy system into a

distributed one using automated transformations. Transformations operate at the
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Figure 6.1: Schematic of light-touch distribution. Module structure is used
at runtime to automatically scale systems out, guided by recipes (Cf.§6.1).

boundaries of bottlenecked modules and are parametrizable by light distribution

recipes that guide the intended semantics of the resulting distribution. Transforma-

tions and recipes operate at runtime, adapting to load by scaling out only saturated

components. Our Ignis prototype shows substantial speedups, attractive elastic-

ity characteristics, and memory gains over full replication, achieved by small and

backward-compatible code changes.

6.1 Broader Motivation

Distributed systems offer notable benefits over their centralized counterparts. Reap-

ing these benefits, however, requires burdensome developer effort to identify and

rewrite bottlenecked components. This is why the majority of developers starts by

developing and deploying software in a centralized manner—that is, until there is a

significant change of requirements, such as a load increase.

When this happens, developers try to identify affected parts of the system and

manually re-write them to exploit distribution. The scope of such rewrites, and

therefore the cost of manual effort, can vary considerably. Often, they only focus on a

few parts of the system—for example, upgrading to a distributed storage layer. More

rarely, companies rewrite entire systems (e.g., Twitter’s Ruby-to-Scala rewrite [126]),

a process that is notoriously difficult under schedule constraints and competitive

pressures [202, 250]. The manual effort is expensive, and can introduce new bugs,

cascading changes, or regressions of previously fixed performance issues, especially

since software today makes extensive use of third-party modules [223]. Could the
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Figure 6.2: Case study. Wiki module relationships (a) monitored continuously at
runtime to identify bottlenecks (b) and automatically scale them out (c) (Cf.§6.3).

process of identifying bottlenecks, generating a distributed version of the system,

and scaling it out at runtime be significantly automated?

The core insight behind this work is that, instead of manually building scalability

into the system, valuable human effort should only be spent on instructing the system

how to scale. As long as developers have sprinkled the program with hints, it should

automatically detect and dynamically adapt to load. We term this automation and

associated control-plane hints light-touch distribution (Fig. 6.1).

Light-touch distribution involves two components: (i) automated programmatic

transformations that operate at module boundaries for detecting and adapting to

load; and (ii) distribution recipes, lightweight annotations that guide the semantics

of the resulting distributed application. Transformations automate most of the pro-

cess, but depend on recipes for key semantic decisions that affect soundness. Both

transformations and recipes operate at runtime, which offers significant benefits:

applications can respond dynamically to increased load by scaling out, can selec-

tively replicate saturated components instead of whole applications, and can avoid

over-provisioning by scaling back when load subsides.

Light-touch distribution occupies a known middle-ground [27, 122, 224] between

flexibility and automation (§9.5), and is enabled today by a confluence of trends

in software development—namely, the increasingly pervasive use of (i) dynamic, in-

terpreted languages, (ii) fine-grained modules with clear boundaries, and (iii) coop-

eratively concurrent, continuation-passing programming styles (CPS). Examples of

such environments include JavaScript, Julia, and Lua; our Ignis prototype targets
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server-side JavaScript (§7.2).

We begin with an example of applying light-touch distribution (§6.2), and con-

tinue with an overview of Ignis (§6.3). §6.4–6.6 highlight our key contributions:

• §6.4 introduces load-detection transformations that collect windowed statistics

about load at each module boundary. Control-plane coordination with a global

view of load and available resources helps decide when to initiate scale-out of

a bottlenecked module.

• §6.5 presents a set of parametrizable distribution transformations that trans-

parently scale modules out. These transformations can create module replicas,

hook communication channels among them, schedule requests, and forward

side-effects such as mutation and collection of memory.

• §6.6 outlines distribution recipes, lightweight annotations that guide the seman-

tics of the resulting distribution. They offer significant flexibility by parametriz-

ing transformations, including tuning state management, replication consis-

tency, event propagation, and colocation preferences.

Ignis’ implementation, its evaluation using a combination of micro-benchmarks and

real systems, comparison with prior work, and application of Ignis’s ideas in other

environments are presented in the implementation (§7.2), evaluation (§8.5), related-

work (§9.5), and discussion (§10.4) chapters, respectively. Appendix B provides

technical background on the module system’s internals, to ensure that Ignis’s trans-

formations are appreciated by a wider audience.

6.2 Background and Motivation

We use a wiki engine to illustrate difficulties in scaling out applications (§6.2.1),

outline light-touch distribution (§6.2.2), apply Ignis to alleviate the aforementioned

difficulties (§6.2.3), and outline the trends that enable this approach today (§6.2.4).
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6.2.1 Case Study: A Wiki Engine

Fig. 6.2a shows the (simplified) module structure of a wiki engine [70]. Modules—

development-time constructs usually glued together without a full understanding

of their internals—are represented as vertices. The resulting dependencies, which

in modern applications can be thousands [223], are depicted as edges connecting

importing parent modules with imported child modules.

A sharp increase in sign-in attempts can saturate the account module. Logically

unrelated parts of the system competing for the same resource (e.g., CPU), such as

document editing and searching, will also be affected.

Developers use various techniques to understand such problems. For example,

collected traces can be replayed against off-line versions of the system and statistical

profiling can identify hot code-paths. These techniques, however, require some degree

of manual effort: capturing traces, setting up testbeds, replaying traces, analyzing

statistics, and debugging performance are all tedious and time-consuming tasks.

Pervasiveness of third-party modules and heavy code reuse in modern applications

compound the challenge, as the causes may lie deep in the dependency chain.

Detecting bottlenecks is not easy, but its effort is dwarfed by that of rewriting

parts of an application to exploit distribution. Extensive code changes, orchestra-

tion of multiple jobs, service discovery, and scheduling over multiple replicas are all

difficult and error-prone tasks, and must be repeated for every new bottleneck.

Light-touch distribution attempts to automate as much of this process as possible

without requiring development in a new programming language or model.

6.2.2 Light-touch Distribution with Ignis

Ignis detects and scales out bottlenecked components by interposing on the ap-

plication’s module boundaries. It is introduced as a backward-compatible, drop-in

replacement of the language’s module system. It can be imported as an application-

specific module (e.g., ignis package) or can be bundled with a custom language run-
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let pbkdf2 = require("crypto").pbkdf2; //module 
let slt = users[usr].salt; // usr, pswd via form 
let h = users[usr].hash.toString();
pbkdf2(pswd, slt, 10000, 512, (e, d) => {
 (h == d)? resp.send(200) : resp.send(401);
});

1
2
3
4
5
6

Figure 6.3: Example bottleneck. pbkdf2 at the account–crypto boundary
makes the crypto module a good candidate for scale-out (Cf.§6.2.3).

time (e.g., Ignis-powered Lua) replacing its system-wide module system. It starts

by dynamically replacing the import function: instead of simply locating and load-

ing a module, the function yields to Ignis, which applies a series of transformations

to modules with the goal of interposing on their boundaries.

Transformations depend on several configuration details related to recipes, but

can be coarsely grouped into three broad classes: (i) profiling and decision-making,

(ii) spawning and distribution, and (iii) single-system retrofitting. Profiling transfor-

mations build a statistical model of module pressure (Fig. 6.2b) and rank candidate

modules. Distribution transformations replicate bottlenecked modules, create com-

munication channels among them, and balance load across all replicas (Fig. 6.2c).

Single-system transformations selectively back-port the semantics of a single run-

time. To guide the intended semantics (and associated trade-offs), developers anno-

tate transformations with optional distribution recipes.

6.2.3 Ignis-powered Wiki Engine

To show how to apply Ignis on the performance problem outlined earlier (§6.2.1),

Fig. 6.3 zooms into the authentication section of the account module: it imports

the built-in crypto module (line 1) and invokes pbkdf2 (4) which, upon completion,

calls a provided continuation function (5). Ignis augments require (1) to return a

wrapper of pbkdf2. The wrapper monitors pbkdf2’s calls at the account–crypto

boundary. Upon load increase, it identifies pbkdf2 as a bottleneck and marks crypto

as a candidate for scale-out.
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To scale out, Ignis launches a few fresh replicas of the crypto module and starts

spreading remote procedure calls (RPCs) among them. RPCs require serializing

arguments, sending them to one of the remote replicas, and calling pbkdf2 there.

Results are sent back to the account module, which passes them to the provided

continuation.

Ignis also augments require to take a recipe as an additional, optional argu-

ment. A recipe σ at require("crypto", σ) (1) would constrain pbkdf2’s scale-out.

For example, a σ equal to {order:true} would have forced ordering semantics on

calls and their results across all crypto replicas. Luckily, pbkdf2 is a pure function,

which can be determined even in the complete absence of annotations. This exem-

plifies a case where light-touch distribution can obtain benefits even without any

developer effort.

6.2.4 Simplifying Trends

Light-touch distribution is significantly simplified by the increasingly pervasive use

of certain features today.

Packages and Modules Modules provide an implicit and fine-grained component

architecture [60, 67, 147, 85] that applications can be partitioned across [89, 247,

185, 46, 148]. They encapsulate state behind small and tight interfaces, simplify-

ing and minimizing transformations. Their boundaries clearly mark self-contained

components that can be configured to execute remotely—including built-ins, such as

crypto. Multi-thousand-module dependency graphs enable profiling and decomposi-

tion at a very high resolution, aiding bottleneck detection and memory consumption

at scale.

Programming Styles Today’s popular programming styles blur the line between

local and remote execution. Cooperative concurrency grants scheduling control to

the executing code, event-driven programming is naturally message-passing, and

continuations enable (hidden) parallelism: independent continuations do not impose
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ordering constraints—two continuations λ1 and λ2 of sequenced calls f1(. . . , λ1);

f2(. . . , λ2) can be interleaved in any order (otherwise, f2 would have been included

in λ1). As such, components can be distributed across multiple nodes, even if there

is no underlying single system image [111, 116, 25, 38, 17, 12, 251].

Dynamic Language Interpretation Dynamic languages have features—e.g.,

name (re-)binding, value introspection, dynamic code evaluation, and access interposition—

that enable runtime transformations [99, 100]. They conveniently unify module

identification with interposition: a single function or function-like operator locates a

module, interprets it, and applies transformations before exposing its interface in the

caller context. As a result, monitoring and distribution can be performed at runtime

and without forcing users into specific programming models [49, 146, 248, 145, 168].

6.3 System Overview

This section presents an overview of Ignis (§6.3.1) and outlines the structure of

transformations (§6.3.2).

6.3.1 Transformations vs. Recipes

Ignis’ responsibilities are divided between transformations and recipes, similar to

the separation of mechanism and policy in the operating systems literature [112].

Transformations provide the mere mechanism for automating profiling and distribu-

tion, including creating remote references, copying structures, propagating events,

etc. Semantics-related concerns are offloaded to recipes—i.e., policies that encode

developer knowledge about the behavior of modules.

Distribution Recipes Developers start by annotating selected imports with dis-

tribution recipes. Recipes are declarative runtime configuration objects, expressed

using a domain-specific language embedded in the source language. They declare

the intended semantics of the resulting distribution, tuning trade-offs that are fun-
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p ::= s ∈ String | n ∈ Number | b ∈ Bool | ∅
v ::= p | (x,. . .) => {e} | {s:v,. . .} | [v,. . .]
e ::= x | v | (x = e) e | e(e) | e[e] = e

Listing 6.1: Module interface language, used in transformations. Modules
return non-primitive values v, manipulatable via expressions e.

damental in distributed systems [71, 3, 120]. For example, calls to a module may

need to maintain ordering and changes to a module’s state may need to be reflected

across its replicas.

Profiling Once provided with a few recipes, Ignis starts monitoring the perfor-

mance of the corresponding modules in order to detect opportunities for distribution.

A key observation is the semantic isomorphism between calling a function and pass-

ing a message [205, 109]. This allows viewing a series of calls as a stream of messages.

Module boundaries can be viewed as (virtual) queues of messages that await pro-

cessing. Overwhelming a module causes its ingress queue to grow. At some point,

the waiting time of newly-arrived messages becomes longer than the time to send the

messages to a remote copy of the module, run the call there, and return the results

back to their intended recipient.

Scaling Out Once this point is reached, Ignis attempts to scale out a module while

selectively maintaining single-runtime semantics. Scaling out is achieved by spawn-

ing a module replica and replacing its local use with a thin client that disperses calls

across all replicas. On each call, arguments are sent to a remote replica and results

from the replica are returned to the thin client. The selection of which single-runtime

semantics to maintain is tunable by distribution recipes, and implemented via addi-

tional transformations: converting local-memory pointers to meaningful distributed

ones, forwarding side-effects such as memory allocation and collection, providing dis-

tributed versions of core built-in libraries, and enforcing ordering (when required).
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6.3.2 Structure of Transformations

Transformations are used pervasively throughout Ignis, and are abstracted via a

few parametrizable templates. Templates map different types of values (List. 6.1) to

a generic handler for each type. Transformations have these handlers parametrized

to achieve concrete goals such as monitoring, serialization, and scale-out. Simplified

instances are described in the following two sections (§6.4–6.5).

Transformations can be applied to any value in the language, such as an object

returned from a module or an exception about to be sent across the network. The

general case of such a value is a directed acyclic graph (DAG). The types of its

vertices can be coarsely grouped into primitives, functions, and objects. Objects

map strings to other values, pointing to other vertices in the DAG. Transformations

start by walking the DAG from the root vertex and processing component values

based on their types. They do not mutate original values, but first copy them,

apply transformations to the copies, and return copies to the caller. They only

partially explore the object graph, as they do not peak through function closure

environments. Fortunately, this aligns well with our goal of monitoring activity at

module boundaries and ignoring module-internal activity.

As an example, consider transforming the crypto module (§6.2.3). Ignis tra-

verses the object returned by crypto and replaces functions such as pbkdf2 with

wrappers whose specifics depend on the intended goal: profiling wrappers call the

original function in between statistics collection, and RPC wrappers forward the call

to a remote replica.

6.4 Decision-Making

The task of monitoring performance and detecting opportunities for scale-out is log-

ically split into (i) a decentralized set of profiling agents that operate at module

boundaries (§6.4.1), and (ii) a centralized coordinator that builds a holistic under-
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standing of what—and when—to scale out (§6.4.2).

Profiling is accomplished by wrapping module interfaces with logic that generates

a model of the current workload. Each module boundary collects its own statistics

based on a combination of recipes and instructions from the coordinator. Profile

generation can operate at a high resolution in time and space: (i) at every function

call entering a module, and (ii) on thousands of modules across an application.

The coordinator oversees all profile-generation agents, collects periodic sum-

maries from them, and ranks their needs. It is also responsible for creating a map of

available resources and checking their status and health. While coordination operates

at a lower resolution than profile generation, it allows monitoring some boundaries

more closely than others.

The division of labor in deciding when to initiate scale-out is somewhat delicate.

Agents running at the boundaries should not depend on the coordinator for online

decision-making, as after a first scale-out they may be executing on different nodes.

As such, they should have enough logic to make an online decision. To solve this, the

coordinator pushes periodic guideline updates to the agents, which merge them with

their local configurations (e.g., module-specific recipes that override default/global

recipes).

6.4.1 Profile Generation

Profiling transformations insert agents modeling queues at the module boundaries.

Observing queue metrics such as arrival rate and wait time, agents build an under-

standing of the pressure applied at their boundary.

Transformations Profiling transformations focus on function (and function-like)

values (Fig. 6.4), for which they generate and attach code that monitors calls and

returns. Specifically, each vertex in the DAG returned from a module is recursively

replaced with a wrapper:
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ptf (e: DAG) : DAG := match e with
| Obj ((s, v) :: xs) -> Obj ((s, ptf v) :: ptf xs)
| Arr (v :: vs)      -> Arr ((ptf v) :: ptf xs)
| Fun f -> Fun (args) => {nq(); f(args); dq();}
| __                 -> toStats(e)
end

Figure 6.4: Profiling transformation. Functions are wrapped with prologue (nq)
and epilogue (dq) operations that record statistics (Cf.§6.4.1).

• function values are wrapped in functions that add a prologue/epilogue pair

recording profiling data.

• mutable values have their getter and setter methods similarly wrapped with

prologue/epilogue wrappers.

• values of all other types are left unmodified.

Ignis now mediates between parent and child modules. Wrappers record statis-

tics about the their encapsulated functions as well as queue characteristics of out-

standing calls.

In the cases of non-blocking (i.e., asynchronous) interfaces, the prologue includes

code for wrapping the continuation argument (i.e., callback function) before passing

it to the encapsulated callee; the continuation wrapper records metadata similar to

the case of returns for blocking (i.e., synchronous) interfaces. As function invocations

may support re-entrant concurrency (e.g., fs module), marks are added (§6.5.2) to

match prologues with their respective epilogues.

Statistics The wrapper epilogue has access to several raw metrics related to pro-

filing (Tab. 6.1). These metrics need to be composed into a model that allows Ignis

to decide whether to scale out a module.

A simple idea would be to detect when the number of concurrent requests %

exceed the number of replicas R. When this happens, assuming R does not exceed

the number of CPUs P , Ignis could start a fresh new replica:
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Table 6.1: Example metrics. Module boundary agents see only (high-frequency)
local metrics; coordinators receive weighted summaries but have end-to-end visibility
across the system (Cf.§6.4.1).

Metric Module Agent Controller

Arrival Freq. Call Freq. Arrival Th/put
Queue Size Queued Items Avg. size
Processing Time Downstream Latency Lifetime
Call Type Func/Method/Prop. Access Call Ratios
Failure Ratio Exceptions Summary

CPU Number/Type Locally available Total
etc. etc. etc.

Rnew =

R + 1, % > R ∧R < P

R− 1, % < R

(6.1)

This approach omits a few important issues. First, we would like to model and

account for the overheads of scaling out. These overheads involve context switching,

round-trip times, and other systemic overheads δ, as well as one-off startup costs

δ0 when spawning a replica (§8.5). Second, as some operations (e.g., slow I/O) are

intrinsically concurrent, we would want to allow for at least some concurrency before

paying the cost of scale-out. The available room for concurrency, however, is not

visible at the level of individual boundaries; thus, agents can model a virtual queue

by taking a windowed, weighted average of wait-times li:

Rnew =

R + 1, %×
∑t

i=1wili > δ + δ0

R− 1, %×
∑t

i=1wili < δ + a ∗ δ0

(6.2)

Scale-in (i.e., −1) might not seem as important, but constrained environments

benefit from quick re-allocation. However, after scale-in, the system often ends up

just scaling out the same module. To avoid such oscillation, a small reclamation

delay a increases the system’s confidence that the workload has moved away from a

specific pattern.
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Figure 6.5: Accounting accuracy. Only observing the prologue-to-epilogue tim-
ings e − p for a function fc1 does not allow distinguishing among (a) uninterrupted
function call, (b) concurrent interleaving with another call, (c) descheduled in favor
of a different process, (d) parallel execution (Cf.§6.4.1).

Our prototype (§7.2) uses a combination of eq. (6.1) and eq. (6.2). Eq. (6.1)

is used for short-running processes where there are not enough samples to feed the

weighted average.

Challenges A few details on call styles, exception handling, and the module cache

are worth noting.

In the case of blocking interfaces, no items will be arriving at the boundary before

previous items finish executing. As such, there is no meaningful notion of queues (i.e.,

queues will always have zero items). Instead, Ignis wrappers calculate windowed

averages over individual past calls, without modeling concurrently pending ones. If a

blocking interface is marked as a potential bottleneck, Ignis will suggest conversion

to a concurrent, non-blocking version as an intermediate step before distribution;

runtime transformations (§6.5) generate and link the new interface automatically.

In the case of non-blocking interfaces, functions will be called as soon as items

arrive. Gathering accurate statistics for individual calls can be challenging, be-

cause OS-internal queuing and reordering is not visible to the boundary wrapper.

Specifically, a prologue–epilogue time interval can mean any one of several scenarios

(Fig. 6.5). Fortunately, as services are deployed for some time prior to saturation,

Ignis has the benefit of collecting accurate long-term runtime statistics. The prob-

lem is further alleviated by Ignis’s ability to distinguish the concurrent from the
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non-concurrent case, by checking the number of concurrently pending calls in the

function wrappers.

In cases of runtime exceptions, the control flow bypasses the epilogue, skipping

statistics collection. For these cases, Ignis wraps the encapsulated function call with

an exception handler that calls the epilogue and rethrows the exception.

For consistency and performance purposes, module systems maintain a cache of

loaded modules. When an existing module is imported again in a different part of

the codebase, they return a cached reference to the original module. To precisely

attribute load to the right bridge between modules, Ignis’ profiling transformations

return a fresh wrapper function upon each load. For example, if modules A and

B import C, B may be placing 10× more load on C than A does. Such a 1:M

function mapping does not affect module consistency and has negligible effects on

performance (except in cases of meta-programming (§6.5.2)) but offers noticeable

improvements to load attribution.

6.4.2 Application-wide Coordination

Ignis starts by setting up an application-wide coordinator—a logically centralized

control hub that builds a registry of the available resources, interfaces with the

agents at module boundaries, analyzes distribution recipes, and pushes guidelines to

the boundary agents. Ignis daemons, cut-down versions of the coordinator, execute

on other hosts that be used for scale-out, reporting on local resources, listening for

replication requests, and transforming replica interfaces (§6.5).

Resource Registry On every node, coordinators poll the underlying environment

for software and hardware information. Newly configured daemons report this infor-

mation up towards the parent coordinator.

Information on the software environment focuses on the operating system, lan-

guage runtime, and various built-in libraries. Among other reasons, this is important

for modules compiled to execute natively as well as module dependencies that need
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to be installed globally. For example, imagine a module that needs root permissions

but happens to not be available on a specific node. As Ignis cannot set up this

module during runtime, it will not be able to replicate and schedule calls to that

module on this particular node.

Hardware information includes memory configuration, CPU speed, and bus speed.

Information about the characteristics of the network (e.g., latency) is continuous, and

extracted periodically from the performance of call traffic.

Boundary Registration After import (§6.2.2) and transformation (§6.4), the

newly transformed boundary registers with the coordinator. The rewired require

function notifies the coordinator with a message that includes identifiers of the parent

and child modules, pointers to the original and transformed DAG handles, and a

pointer to the local recipe.

The new boundary is added to a list of boundaries monitored by the coordina-

tor. The list is ranked by need-to-replicate, recalculated with every new update the

coordinator receives from a boundary. The calculation focuses on the fraction of

the execution time taken by each module, and is updated at a frequency set by the

coordinator.

If the update leads to changes in the list, boundary agents whose ranking changed

are notified. This notification contains guidelines that allow modules to make online

decisions, including the minimum and maximum number of replicas and the threshold

values of the formulas (6.1) and (6.2).

Load Attribution Agents running at each boundary cannot “see through” mod-

ules in order to attribute load among a module and its dependencies correctly. For

example, an agent at the outermost boundary A of a dependency tree A→B→C does

not know how much of the latency comes from B.

To solve this problem, Ignis relies on the coordinator, which understands the

structure of dependencies and can correctly calculate how much of the latency comes

from each module. Such a calculation is more complicated than a simple subtraction,
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as a module may invoke interfaces from multiple modules at the same time. The

technique of creating 1:M wrappers (end of §6.4.1) alleviates much of the problem.

6.5 Distributing Modules

Transforming a system into a distributed version amounts to scaling out individual

bottlenecked modules (§6.5.1) while selectively maintaining the illusion of a single

runtime (§6.5.2).

6.5.1 Scaling Out

To scale a module out, Ignis (i) creates a new process importing the module and

Ignis-specific libraries, (ii) sets up a communication channel between the old and

new process, and (iii) schedules calls across all the replicas.

Setup Ignis spawns a new operating system process on a node that fits certain

criteria, such as light load, acceptable latency, and compatible versions of packages.

The new process binds to a fresh (IP, port) pair, used both as a communication

handle and as a unique node identifier. Nodes communicate over TCP even for

processes colocated on the same machine, as TCP is system-agnostic and hides the

distinction between local and remote communication. The newly spawned node

first loads a copy of Ignis to (i) set up the channels and, when needed, extract

characteristics of the hardware, (ii) interface with the coordinator on the parent

process (or higher in the module/process hierarchy), and (iii) further respond to

increased load within that module.

Transformations Scale-out transformations focus on replacing a local module with

a thin client that forwards calls to a set of remote modules (Fig. 6.6). To create a

thin client of the same type as the original module, Ignis inspects the DAG returned

by the import call in the new process. It recursively replaces each node in the DAG

with a wrapper:
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dtf (e: DAG) : DAG := match e with
| Obj ((s, v) :: vs) -> Obj ((s, dtf v) :: dtf vs)
| Arr (v :: vs)      -> Arr ((dtf v) :: dtf xs)
| Fun f              -> toRPC(e)
| __                 -> toInterposed(e)
end

Figure 6.6: Distribution transformation. Ignis’ toRPC function takes a function
f1 and returns a function f2 that, when called called, sends the arguments to f1 and
calls it. Primitives are wrapped with interposition (Cf.§6.5.1).

• primitive values are wrapped with an interposition mechanism that records

and propagates changes.

• function values become RPC stubs that serialize arguments, send them via the

channel, and collect results.

• mutable values have their getter and setter functions replaced with RPC stubs

similar to functions.

• exceptions are re-thrown in the parent context after inspection from Ignis

running on the parent module.

Ignis maintains a distributed map from module identifiers to (a set of) channel

pointers. If a module is already loaded, Ignis retrieves the channel pointer and

returns the previously-wrapped DAG; this is useful, for example, in cases where

dependencies have a diamond shape (i.e., two different modules import the same

module).

Scheduling Unless instructed otherwise (§6.6), calls to replicas are scheduled in a

round-robin fashion.

Blocking calls yield to the Ignis scheduler, which picks a replica, serializes given

arguments, sends them through the channel to the chosen replica, and waits for a

response. The child-side wrapper de-serializes arguments, calls the required method,

and sends results back through the channel. For non-blocking calls, the parent
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module wrapper registers an event listener that invokes the provided continuation

when results become available on the channel.

Challenges A few technicalities on asynchronous replica spawn and module reso-

lution are worth noting.

Spawning a new process takes several tens to hundreds of milliseconds (§8), which

should be off the critical path—especially at the point in the execution of the program

when Ignis is in utmost need for performance. Thus, Ignis spawns each module

replica in asynchronous, non-blocking mode while calls are served by the original

module. When the replica completes initialization and is ready to handle calls, the

Ignis coordinator on the child sends a message with all the information described

in §6.4.2 to the parent process.

To be able to locate modules in the new environment, Ignis needs to patch

the module resolution algorithm at the replica. For replicas running on the same

physical host, locating a module is relatively easy: absolute modules are stored in

well-known locations in the environment (e.g., Python’s sys.path), modules local to

the project are stored within the application (e.g., JavaScript’s node modules), and

modules relative to the current location are prefix-resolved at runtime, by having

Ignis prefix the module path appropriately.

Replicas running on different hosts require a more complex runtime resolution,

which is avoided by prefetching modules. To prefetch modules, the dependency

chain is analyzed upon startup by the coordinator (§6.4.2). Project-local modules

are extracted at startup and pre-fetched upon daemon setup. While some disk

space is wasted as the majority of these modules will not be used, latency on the

critical path is avoided. Absolute modules are resolved similarly and re-introduced as

project-local modules on the new host. Modules relative to the current location either

work unmodified (first replica on a host) or are prefix-resolved by Ignis (subsequent

replicas).
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6.5.2 Maintaining (the Illusion of) a Single Runtime

This section describes several techniques related to transformations intended to main-

tain the original application behavior. Whether each one of these techniques is re-

quired or not is a recipe-specific question, discussed in (§6.6); here, we merely show

how Ignis implements each technique.

The techniques below require additional metadata to be attached on the serialized

value. In Ignis, this is achieved by adding a new “hidden” ignis property instead

of embedding the entire value in another message.

Distributed References To facilitate cross-replica addressing, transformations

at the replica boundary assign identifiers to non-primitive values. These IDs can

be viewed as distributed, shared-memory pointers which RPCs include in their mes-

sages. Replicas then maintain a “decoding” hash table, mapping IDs to their in-

replica pointers: whenever they receive a message, replicas use the table to route

freshly deserialized values to the right function (or method).

Generating a fresh ID requires that the new pointer is different from all other

pointers; otherwise, two pointers refer to the same location and should be assigned

the same ID. This is achieved by maintaining a second “encoding” hash table from

non-primitive values to IDs. In constant time, Ignis checks if an entry already exists

(extracting the associated ID) or not (inserting a new (val, ID) entry).

The creation of copies during transformation and serialization breaks reference

equality. To solve this, when an RPC leads to a new memory alias in a replica, Ignis

attaches an alias entry to the serialized value. When receiving such a value, Ignis

on the child will create and return a reference to an existing object. The sender side

uses the “encoding” map to assign a distributed pointer to an object.

The same consideration applies to preserving reference equality for the root of

the DAG between RPCs. A common pattern in many languages is to have methods

that return self; such code would break if the return value of the RPC was a fresh

copy of the method receiver.
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Call Types Constructors, prefixed by new, are different from typical functions

(i.e., memory allocation outlives the function call). Ignis inserts additional logic

into the RPC stubs to detect this case,1 and augments RPC messages to signal that

the target functions should also be called as constructors. The return value from

a constructor is in turn transformed into an object whose methods are RPC stubs

(§6.5 and Fig. 6.6): the true object lives within its own replica.

Similarly, standard garbage collection (GC) cannot “see through” boundaries.

To solve this, Ignis also propagates garbage collection events by adding GC hooks

to every object that is the result of a transformation. These “weak finalizers” fire

when the object is about to be collected, causing Ignis to broadcast a message for

removal of that object from any auxiliary tables. With no inbound pointers, objects

in replicas will be collected in the next cycle.

Although state updates via method calls are redirected to remote objects, di-

rect updates via property values require custom detection and propagation. Ignis

wraps the transformed output DAG with an interposition mechanism that provides

reflection capabilities and gets invoked upon property accesses.2 This wrapper de-

tects and records changes to any of the object’s properties. Further nested wrappers

monitor nested objects (Fig. 6.6). A similar mechanism is used to detect program-

or user-initiated invalidation in the module cache (e.g., to reload a module): a cache

wrapper detects and broadcasts entry invalidation.

Although unusual, modules other than Ignis may dynamically rewrite module

interfaces. If Ignis is loaded earlier, these modules will attempt to overwrite the

RPC stubs instead of the encapsulated methods. The DAG interposition wrapper

described above detects accesses and applies rewrites internally. Such rewrites are

simplified by not having to cross channels, as they occur long before scale-out.

Environment Binding Generally, names defined by the programming language

1 For example, call metamethod in Lua and new.target in JavaScript.
2 For example, metatables in Lua and Proxy objects in JavaScript.
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or standard libraries are valid on all replicas: language constructs such as the top-

level Object are implemented in the runtime; stateless libraries such as crypto and

location-agnostic OS-wrappers such as net are made available unmodified within a

replica.

Certain global or pseudo-global3 constructs may require redirection to the top-

level process. For example, a replica’s out and error streams must appear in the

respective streams of the top-level process. Ignis on each replica transforms and

shadows these methods with RPCs that redirect their arguments to the top-level

process.

Other built-in libraries are replaced by scalable, distributed versions. This re-

placement is achieved by transforming the DAG of the specified built-in module on

every replica with functions that call into the distributed version. A notable example

is the fs module, with a large and well-explored space of available trade-offs. At one

end of the spectrum lies a partitioned fs with strong consistency guarantees that

redirects accesses to a single authoritative node. At the other end of the spectrum

lies a replicated fs that distributes accesses in an eventually consistent fashion across

a subset of nodes, using a consistent-hashing scheme [96, 211].

Finally, objects may invoke methods inherited from classes higher in the hier-

archy. These superclasses—or prototypes, for prototype-based languages such as

Lua and JavaScript—may have been imported from a different module. A naive

implementation of transformations to RPC stubs can thus lead to a series of nested

round-trips until a call reaches the correct destination. Ignis detects class (proto-

type) hierarchy levels while traversing the DAG and creates a dispatch table with

RPC stubs that route calls to the final destination.

Maintaining Ordering Although communication primitives across a single edge

are reliable and in-order, messages that cross multiple edges may arrive out of order.

3 JavaScript implementations introduce objects that are not part of the EcmaScript specification
into the global scope, such as process and console. Similarly, Lua’s Luvit introduces its own
globals, such as p() and exports.
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Figure 6.7: Effects of recipes. Call distribution across replicas of the wiki’s
authentication submodules, as a result of recipes (Cf.§6.6).

To maintain ordering, serialized values are assigned an internal sequence number.

Sequence numbers are generated at the call site and follow the value as it travels

through the system. In cases where the value is changed or replaced by a new one,

the sequence number is extracted and transferred along.

6.6 Distribution Recipes

Recipes are runtime configuration objects that give developers the ability to tune

several trade-offs related to the resulting distribution [71, 3, 120] without requiring

manual development. They are responsible for generating transformation parameters

and configuring deployment details. The latter is important in order to identify which

nodes can be used for scaling out a module. The large number of modules and their

different requirements make this challenging (but we do not discuss it in more detail

here).

Fig. 6.7 shows the (semantic) result of annotating the wiki’s authentication sub-

system (§6.2.3) with recipes. Module routing spreads calls homogeneously over the

two account replicas. Module account spreads consistently over fs—that is, iden-

tical arguments at any of the account call sites will hit the same fs node. Module

logger orders calls to avoid mixing logs from different requests.

Ordering highlights some interesting features. First, as it degrades performance,

it can be enabled only for a limited amount of time—benefiting from recipes being

runtime constructs. Second, order is not enforced for direct accesses, such as as-
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signments that change logging levels. While stronger consistency can be guaranteed

with different recipes, the developer here expects logger levels being set only once and

probably at the start. This is a case where causal consistency between assignments

and calls (but not between calls) can be exchanged for strong eventual consistency.

Writing recipes is equivalent to specifying a system’s distribution properties.

Reasoning about them, rather than the mechanisms by which these properties are

implemented, reduces the chance of errors while scaling out a system.

Recipe Expressions Recipes can be expressed at the level of a program, propa-

gating down to the rest of the dependency chain, or at that of individual modules.

Ignis’ built-in recipes are overridden by program-level recipes, which are in turn

overridden by recipes accompanying individual modules.

System-wide recipes describe how to configure the distributed system, and in-

clude: profiling details such as queue depths and saturation levels, decomposition

limits such as replica counts and module groups, expected semantics of augmented

built-in libraries (e.g., fs), and module priorities, such regex patterns for modules

that should or should never scale out. Users also need to provide the details of the

daemons running on remote nodes; Ignis can then configure the details by querying

the daemons. Here is a typical program-wide recipe, extracted from an experiment:

1 nodes :[{ip: "128.30.2.133", port: 8013}] , (p18a)

2 fs: ignis.fs.EVENTUAL ,

3 cold: [/ process/],

4 hot: [/ejs/, /.* dash/]

It configures Ignis so that an additional node can be used to launch replicas (1),

the standard fs module is replaced by an Ignis-provided, eventually consistent one

(2), the process module should not be replicated (3), and ejs and lodash should

be distributed by default (4).

Module-specific recipes give developers fine-grained control over distribution, al-

lowing them to express intuition about individual modules they import:
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Table 6.2: Ignis recipes. Selected, example recipes and their default parame-
ters (Cf.§6.6).

Recipe Options Default Explanation

Nodes [{ip:...}] localhost Nodes running Ignis
Level 0, 1, .. 1 Decomposition depth
Group subtree.json — Group module subtrees
Hot ["util"] parse, crypto Always distribute module
Cold ["fs", "os"] process, fs Never distribute module
Copies true, [2, 8] [0, CPU] Multiple replicas
Sched RR, MLF, Weigh RR RPC scheduling policies
Q Depth 10--100K Inf Inter-module queue depth
On Fail (e) => {..} throw Module failure hook
Saturation (lvl) => {..} — Saturation level hook
Comm TCP, UDP TCP Communication type
Preload true, false false Load proactively, not lazily

1 copies: [2, 10], (p18b)

2 fs: ignis.fs.LOCAL ,

3 order: false ,

This module should inherit the global recipes specified earlier. Moreover, it

should have a minimum of two and a maximum of 10 replicas running (1), use the

local fs on each node (2), and not need any ordering (3).

Discussion Tab. 6.2 summarizes more recipes, a few non-obvious characteristics

of which are worth clarifying.

Being dynamic objects, recipes are flexible. They can be re-generated at runtime

and change during the lifetime of the program—even between different imports of

the same module. For example, different branches of the control flow can load the

same module with different recipes.

Currently, Ignis defaults to recipes that are conservative, in the sense that they

will never attempt distribution that breaks the semantics of the program. For ex-

ample, purely functional built-in libraries such as parse and crypto default to per-

mitting distribution, but process and fs do not.

Since recipes affect the semantics of the resulting program, an obvious question

is whether developers can get them wrong. The answer is yes, but this is no worse
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than other approaches that aid distributed programming: for example, developers

are free to introduce side-effectful computations in MapReduce’s purely functional

primitives [49]. Ignis makes reasoning about semantics easier, as it concentrates the

decisions that could break semantics into the recipes, rather than forcing them to be

interleaved with application logic. Our position is that there is much more room for

error by avoiding aid from tools like Ignis and MapReduce altogether and building

distributed systems from scratch.

6.7 Summary

This chapter introduced light-touch distribution, a first step towards automating

the generation of distributed systems from distribution-oblivious programs. This is

achieved using a set of programmatic transformations parametrizable by optional

distribution recipes. These operate at module boundaries during runtime to collect

profiling information, detect bottlenecked components, and dynamically separate

and coalesce parts of the application.

The next chapter (§7) covers implementation details of Andromeda and the

surrounding frameworks.
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Chapter 7

Implementation

Decisions related to backwards compatibility (§2.1.1) and programming style (§2.1.4)

constrained our implementation candidates to Lua and JavaScript. Both feature

heavily engineered run-time environments that perform comparably (for our pur-

poses). As the benefits of portability outweigh the problems of working of a quirkier

language, we decided to go with JavaScript.

The current version of Andromeda is about 11K lines of code, the majority of

which is written in ES5.1.1 About 70% of code implements built-in services (about

half of which supports the local group). Internal utility libraries (§2.1.2) are about

2KLoC and code related to interactive use (e.g., shell, value beautification) is about

1.1KLoC. Andromeda can be executed atop any JavaScript runtime, but on Unix

it defaults to Node.js [48], which bundles (i) Google’s V8, a fast JIT compiler, (ii)

libUV, asynchronous cross-platform OS wrappers, and (iii) a small set of standard

libraries (e.g., crypto).

Andromeda treats a multiprocessor as a distributed system [33, 16], lunching a

number of nodes equal to processors. For each node colocated on the same host, it

spawns a userspace process. Remote communication occurs over TCP, with experi-

1 We refrained from using ES6 features beyond arrow functions to simplify serialization. Fully-
supporting ES6 is a matter of engineering effort.
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mental support for reliable UDP [162].

7.1 Challenges

Andromeda critically depends on the ability to serialize and communicate (or store)

arbitrary objects. However, JavaScript’s default data interchange format (JSON)

does not support several key features—most notably: function literals, cyclic refer-

ences, and property descriptors (i.e., if a value is writable, enumerable, configurable,

and prototype-owned). To support these features, Andromeda implements its own

serialization library.

The mismatch between the synchronous nature of shell output and the asyn-

chronous nature of system calls poses a different challenge. Asynchronous calls that

are provided a log continuation for printing results on the shell interfere with the

state of the shell (e.g., overwrite the prompt, input line, etc.). To solve this, log

detects whether it is provided as a continuation on a node running the shell. After

beautifying and printing input, it flushes control sequences on the output stream

that restore the shell’s state. Due to cooperative scheduling (§2.1.4), there is no

concern of garbled output.

Another challenge was due to Andromeda node multiplexing atop a single Unix

host. Early versions of Andromeda used the node SHA256 identifier as the node-

local Unix directory name (within a parent .andromeda directory). IDs were gen-

erated by nodes (or loaded from disk) rather than provided as arguments by the

node spawning them. As a result, (i) knowing whether a node ID on disk is already

executing was challenging, as it required binding to the node’s state (to query them)

before deciding whether this is the right node one to bind to; (ii) running local

calls such as local.obs was at times inconsistent after a Andromeda reboot be-

cause the shell was bound to a different node (due to SHA256 not maintaining order).

These problems were solved by using an integer identifier: new nodes are provided
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an ID, incremented by the node spawning them. Node-local state is organized on

disk as directories named by consecutive integers such as /0, /1, and /2. Rebooting

the system (or starting a single-node system) starts from /0.

7.2 Frameworks: BreakApp, Iris, and Ignis

This section discusses technical details related to BreakApp, Iris, and Ignis.

BreakApp Excluding all Andromeda code, the BreakApp prototype is approxi-

mately 2K lines of JavaScript. One third of them is for handling policies and other

configuration parameters, and the rest supports transformations, serialization and

low-level handling of different isolation primitives. For encryption, we use Dan Bern-

stein’s NaCL library [21], compiled to JavaScript using Emscripten (adding another

2K LoC). Our implementation does not make use of any non-JavaScript features

beyond the GC hooks mentioned in §4.6.8. For these, we use V8’s weak finalizers

with callbacks that fire when an object is about to be garbage collected.

There are several challenges related to policies that depend on the structure of the

dependency tree. First, there is a one-to-one correspondence between source files

and modules. There is little to no information during runtime about which pack-

ages file-level modules belong to. Second, deduplication causes the Node Package

Manager to not install dependencies in a deterministic way. As a result, high-level

granularity policies (e.g., LEVEL, GROUP) can lead to different compartmentalization

results depending on the package installation order. To mitigate these problems,

BreakApp statically analyzes information upon startup in order to make policy

expressions meaningful. Starting from the leaves of the dependency tree, it creates

a map from files to their source package. It also uses information from the vari-

ous package.json files and the directory structure to infer a canonical dependency

structure. This functionality is accessible through the tool’s command line interface

via breakapp --create-map (or -c), which makes it easy to use as a post-install
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hook for any package manager (e.g., Yarn).

A key challenge in the implementation of process and container isolation had to

do with a conflict between Node.js’s (i) non-blocking I/O and (ii) blocking require

statement. To ensure that the require call returns only after the compartment has

been created, BreakApp in the parent compartment polls the filesystem constantly

for a file that confirms that the child compartment has created the channel. Polling

allows the system to actively check a number of different sources during each itera-

tion (and timeout after a while). Since the channel is created before launching the

new compartment, an alternative solution was to block on the channel for an ACK

message. However, compartment creation might fail; thus, there is no guarantee that

the parent compartment will not block indefinitely. Environments that expose any

kind of preemptive multi-threading should not face similar issues.

Iris PIC specification (§5.4) uses JavaScript’s object notation, along with syntactic

sugar for accessing built-in modules (§5.4.5). Such sugaring is achieved by wrapping

PICs upon import with a function that resolves the names of built-in libraries (e.g.,

path, fs) to objects modified to allow only synchronous methods.

Andromeda’s runtime enforcement component (§5.5) is implemented using ES6

Proxy objects [216] and the Reflect API. Module loading necessitated augmenting

several functions in the built-in Module module. The Module module is responsible

for locating a module, wrapping it and exposing module-local variables, interpret-

ing in the current V8 isolate, and updating the module cache. Andromeda adds

several steps: (i) the require module-local method is augmented to capture a PIC

as a second parameter, (ii) the internal compile method is augmented to apply

transformations to the context and interface (§5.5), (iii) the cache is augmented to

support storage and recovery of the unmodified, context-customized, and interface-

attenuated versions of each module. The internals of Node.js’ built-in module system

as well as Iris’ changes are outlined in Appendix §B.

Ignis Ignis builds on the primitives provided by Andromeda to implement mon-
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itoring, adaptive scaling, and wrappers for built-in libraries such as fs.

Applications interact with Ignis via JavaScript’s built-in require function. Recipes

are encoded as JavaScript objects and passed as the second parameter. Due to vari-

adic arguments, recipe-infused codebases remain backward-compatible with Ignis-

less runtimes.
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Chapter 8

Application Programs

Andromeda’s primary goal is to significantly lower the complexity of developing dis-

tributed systems. To evaluate complexity, we use a combination of micro-benchmarks

(accidental) and larger distributed applications (essential). As performance is a sec-

ondary concern, we want to (i) confirm it is within reasonable limits, and (ii) un-

derstand where to aim future engineering effort. For these aspects, we use targeted

performance microbenchmarks to stress Andromeda’s core infrastructure. Our

goal is not to evaluate individual, trivially replaceable subsystems, but to evaluate

Andromeda’s end-to-end benefits.

Several takeaways are worth highlighting. Setting up Andromeda to the point

where commands can be run interactively takes about 1.3s—i.e., 2–3 orders of

magnitude lower than low-effort specialized systems. Even for trivial tasks, An-

dromeda’s combination of language and library lowers development effort than

general-purpose distributed environments. For more complex tasks chosen by the

designers of these platforms, Andromeda lowers development complexity by 7.3–

78.5×. Core overheads, such as interposition and transformations, are negligible—

but value-serialization can be a significant source of overhead.

Our hardware setup uses a network of five workstations connected by 1Gbps links:

one large machine (a1) with 251GB of memory and 64 2.1GHz Intel Xeon E5-2683
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cores, and four smaller machines (q1-4), each with 4GB of memory and two 3.33GHz

Intel Core Duo E8600 processors. Most experiments were run on a1 to avoid orthogo-

nal network overheads, but include full costs of serialization and communication (§7).

No special configuration was made beyond disabling hyper-threading—specifically,

the network protocol stack was left unoptimized.1 Our software setup uses Node.js

6.14.04, bundled with V8 v.5.1.281.111, libUV v.1.16.1, and npm v.3.10, executing

on top of Linux kernel v4.4.0-134. BreakApp’s LXC option uses Docker 17.06.0-ce

for its containment infrastructure.

8.1 Complexity Micro-benchmarks

To understand the effects of the essential and accidental complexities developing

and deploying distributed systems, we present a few “complexity microbenchmarks”,

showing that Andromeda is significantly easier to pick up and operate.

Setup What is the complexity associated with non-essential tasks, such as envi-

ronment setup and program loading? To understand this, we compare Andromeda

with more established systems on typical setup and tear down tasks. These tasks are

scripted to the extent possible. All experiments are run on a minimal Ubuntu image

from docker hub (i.e., all setup times include the time taken to install dependencies).

Setting up Andromeda can be achieved via curl -s up.ndr.md | bash or, if

the JavaScript package manager npm is installed, npm -ig @andromeda/andromeda.

The former takes 0.56s and 1.01s to download and extract the bundle, respectively;

the latter takes 8.22s, primarily spent resolving and downloading further dependen-

cies. It then takes 142.63ms to launch the first node—which includes preparing the

directory structure to support Andromeda. Additional nodes complete startup on

an average of 92.81ms. Individual built-in services take an average of 3.1ms per

service. The combined total setup time is about two seconds.

1 Features such as kernel bypass [175] should yield significant improvements.
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We compare with representative other systems that we used in other parts evalua-

tion section. Fully-scripted setups of Hadoop [11] (v.2.7.3) and Spark [248] (v.2.0.1)

take 1166s and 184s, respectively. Setting up via Docker [129] (v.18.09.2), a sys-

tem created partly to simplify the process bumps these numbers by 40.751s. These

are representative of “product” systems that are easy to deploy. Newer systems do

not provide docker images (like Andromeda) and required significantly more ef-

fort: ScalaLoci [240] (c.e1958be) took about an hour of mostly manual effort (partly

due to its dependencies), we gave up on Husky [244] (c. 9e66349) after failing to

resolve dependency issues. The timings for these systems do not include fault toler-

ance of master nodes (e.g., Zookeeper [90]) nor any distributed resource allocation

capabilities (e.g., Yarn [230]), although preliminary versions of these come with An-

dromeda.

One-liners How does Andromeda programming fare in comparison with other

environments? For a first answer, we compare trivial tasks that in Andromeda can

be written in a single line (Tab. 8.1). We compare the effort with Erlang/OTP [232]

(v21.3) and Plan 9 [166] (v.4); we believe that these are the most successful can-

didates for low-complexity general-purpose distribution. These examples are not

expressible in more specialized systems such as Hadoop [241] or Bloom [9] (§1.3).

Lines-of-code comparisons do not necessarily translate to complexity, but differences

in orders of magnitude could be interpreted as qualitative rather than quantitative.

While the essential complexity of these tasks is trivial, the results highlight a

trade-off: Erlang’s abstractions excel at tasks that require nodes to perform compu-

tations, but fail at more administrative tasks such as setting up a package; conversely,

Plan 9’s abstractions excel at treating the entire deployment as a single system, but

fail at tasks that require node-specific programmatic manipulation. For example, Er-

lang’s default logggers cannot be configured dynamically, thus requiring non-trivial

implementation of custom log handlers (about 50 LoC). In contrast, Plan 9’s sup-

port for file namespacing allows trivial forwarding with a single line. None of the two
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Table 8.2: Rendering prior work on Andromeda These distributed tasks are
inspired from ones in other distributed environments.

Distributed Task Environment LoC Andromeda LoC

1 Remote counter [59] Cloud Haskell 48+ 2
2 Max Temperature [241] Hadoop + Shell 50 + 16 9
3 TF-IDF [244] Husky 157 3
4 Counting [56] Inferno 26 5
5 Chat Service [240] ScalaLoci 42 + 12 5

supports programmatic runtime transformations or tunable distribution guarantees,

posing difficulty in expressing some tasks in a simple fashion. Andromeda provides

a convenient middle ground between the two, additionally solving transformation and

configurability challenges.

Examples from literature How does Andromeda fare when compared with

programs written primarily for other environments? To correct any possible bias by

starting from Andromeda, we turn our attention to small examples drawn from

other frameworks. Our assumption is that, for systems demonstrating low complex-

ity, their designers chose examples that elegantly and succinctly demonstrate this

point.

Table 8.2 includes five examples from several platforms. The most interesting case

is Max Temperature (2), in which an end-to-end Hadoop example takes several tens

of lines of code [241]. A preprocessing step is added to fetch the dataset and bring it

to a form that is better for Hadoop; this task is performed on a centralized computer,

without leveraging any parallelism or distribution. This is unfortunate, because it

could have been trivially distributed: there are no dependencies between nodes, and

the size of data downloaded and processed are the same going into Hadoop. While

it is near-impossible to express this pre-processing step from within Hadoop, it take

9 lines in Andromeda.

Another interesting case is the TF-IDF pipeline (3). While the Husky prototype

is all written from scratch, Andromeda uses an existing natural-language processing
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package. This illustrates an example where Andromeda lowers essential complexity

of the task at hand by leveraging a rich package ecosystem.

8.2 Performance Micro-benchmarks

We now turn our attention to overheads of different underlying primitives used per-

vasively across Andromeda: interpositioning, serialization, and transformations.

Results are averaged over 1K repetitions, with .1K warmup.

Interpositioning To understand the costs of boundary interposition, we measure

the time to access deeply-nested properties of two versions of an object: unmodi-

fied and proxy-wrapped. Paths to the properties (e.g., a.b.c.. . .) are random but

generated prior to running the experiment. We construct 500MB-sized objects, each

with a fanout of 8 fields nested for 12 levels. The proxy-wrapped version introduces

interposition at every level. Traversing one million 12-edge paths (i.e., root to leaves)

averages 167.2ms and 595.7ms for the unmodified and proxy-wrapped versions, re-

spectively.
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Ti
m

e 
(m
s)

1

0
StrA

rr
IntArr

IntArr

HttpVerbs

LargeObj
StrA

rr
IntArr

IntArr

HttpVerbs

LargeObj
Cycle

Function
Utils

ArrN
onEnum

RegExArr
Cycle

Function
Utils

ArrN
onEnum

RegExArr

Serialization Options (colors):

.75

.5

.25

ES5 JSON API Protocol Buffers Andromeda (-Desc) Andromeda 

Benchmarks Benchmarks

Figure 8.1: Serialization overheads Each plot (serialization and deserialization)
is broken into two parts: simple values (left) and complex values (right). JSON and
Protocol Buffers support only simple values (Cf.§8.2).

Serialization To understand the overheads of Andromeda’s serialization library,
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we compare a diverse set of real workloads over four configurations: (i) ES6’s built-in

JSON module, (ii) Protocol Buffers, (iii) Andromeda without expanding descrip-

tors for properties (§7), and (iv) Andromeda with descriptors. Fig. 8.1 shows

the average (de-)serialization times for 10 workloads: the five workloads on the left

of each plot are base objects with structure that is supported by all libraries; the

rest stress functionality that is only available on Andromeda—cycles, enumerable

properties, functions etc.Andromeda’s overhead is significant, mostly spent on cy-

cle detection.

To explore Andromeda’s overheads as a function of object size, we synthesize

custom objects with increasing numbers of internal nodes (fields). Fig. 8.2 shows

both serialization time and (resulting) string size (affecting communication time).
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Figure 8.2: Serialization output size (MB) and processing time (s). From
the bottom: ES6 JSON built-in (blue), Protobufs (green), Andromeda no descrip-
tors (red), Andromeda with descriptors (yellow) (Cf.§8.2).

Startup To understand how these overheads affect code startup on realistic code,

we use Andromeda’s transformation library to load and transform a set of realistic,

third-party modules. The transformation is performed dynamically, by Andromeda

discovering and loading each module on the remote node, transforming them, and

sending the transformed interface to a peer. Modules are tested under three config-

urations: (i) vanilla, (ii) co-located distribution (on the same host), (iii) networked

distribution (over the network).

Fig. 8.3 shows module startup costs. Distribution requires transforming modules
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Figure 8.3: Startup latency breakdown. Each module is measured under three
configurations: unmodified (short bar, only vanilla import), co-located on the same
physical host (medium bar), and scaled out across the network (Cf.§8.2).
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Figure 8.4: Call latency breakdown. The configuration is identical to the one of
Fig. 8.3 (Cf.§8.2).

(RPC stubs), communicating them to the remote node, and launching replicas there.

The startup time of larger modules is dominated by file-system accesses (e.g., cash

takes 798.2–1049.1ms to load all of its files). The startup time of smaller modules,

such as verbs and pad, is dominated by constant factors (e.g., 138.5ms for process

spawn and 17.6–35ms for TCP setup).

RPC To understand the serialization and transformation costs on realistic code, we

run a series of remote-communication (RPC-invocation) tests. The configurations

(modules and setup) are the same as before.

Fig. 8.4 shows inter-module communication costs over the same configurations.

To bring these costs into perspective, we embed modules in “no-op” HTTP applica-

tions. By placing these modules behind an HTTP server, we can study Andromeda’
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impact on the end-to-end latency an HTTP client would experience. Processing-

heavy modules such as pad and nacl are tested under input of size 5B (S) and 5MB

(L).

Conclusion The micro-benchmarks presented in this section highlight Andromeda-

inherent overheads by using carefully-constructed, worst-case workloads that are

nowhere near the ones seen in practice: deeply-nested 0.5GB-sized module interfaces,

large and complex serialization workloads, and near-zero module-internal latencies.

However, they do show that Andromeda could benefit from a high-performance

serialization and communication library, and that the overheads of transformations

and interposition are negligible.

8.3 Sandboxing and Compartmentalization

BreakApp’s techniques described are predicated on the hypothesis that applica-

tions today make extensive use of third-party packages. What are the modularity

characteristics of JavaScript applications out in the wild? Table 8.3 outlines the

dependency characteristics of popular JavaScript programs drawn from five different

classes.2 The table shows: (i) direct dependencies, referring top-level packages the

application imports, (ii) total dependencies, including all packages in the dependency

graph, (iii) total of file-level modules, (iv) the depth of the dependency tree, (v) non-

third-party lines of code, i.e., lines the author wrote, (vi) total lines in third-party,

imported code, and (vii) the average lines of code per third-party file-level module.

Third party code is a non-trivial portion of today’s applications. In our sample

set, imported code is on average 4 times larger than homegrown; but the ratio is

much worse for large applications (1:120 for hackernews vs. 2:1 chalk). Different

applications spread third-party code differently. For example, in mobile applica-

2 We do not discuss client-side web apps, since the emphasis of our work is language-agnostic,
system-level decomposition (it just happens to use JavaScript, historically created for client-side web
development). To address the reader’s curiosity, however, here are some numbers: 1060 modules
for apple.com, 1050 modules for the mobile version of reddit.com, and 365 modules for keybase.io.
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Table 8.3: Five classes of JavaScript programs along with three widely used instances
and their dependency characteristics.

Application Direct Total Files Depth ALoC TLOC TLoC/File

cash 15 84 3554 5 1486 48540 13.84
commands eslint 34 135 4689 6 187801 74893 39.97

yo 30 301 5829 6 107713 106393 18.45

popcorn 46 765 34322 10 14304 411706 12.34
desktop twitter 10 120 4051 8 2514 165066 41.29

atom 57 358 5252 9 15939 548642 107.1

hackernews 5 871 49406 10 309 317144 6.42
mobile mattermost 17 521 13672 8 6296 286388 21.37

stockmarket 14 44 1985 5 2440 199119 101.48

express 26 42 217 3 10159 2261 54.93
server ghost 62 981 22029 9 42467 386676 19.35

strider 64 659 10357 8 21090 303527 30.41

chalk 3 4 9 2 217 10 18.44
utils natural 3 3 193 1 12483 4116 81.51

winston 6 6 83 1 4274 2326 79.52

average 26.13 326.27 10376.53 6.07 28632 190453.8 43.09
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tions, more than 99% of their third-party code comes from a single package—the

mobile framework in use (e.g., Ionic, ReactNative). Server-side applications feature

the largest amounts of total third-party counts, followed immediately by desktop

applications.

Direct module counts, the boundaries of trust between the code that a developer

writes and its third-party dependencies, are somewhere between 2 and 65. These

numbers highlight the minimum number of compartments (average: 26.1). More

fine-grained compartmentalization at the level of individual packages requires an

order of magnitude more compartments (average: 326.2). Since there is a one-to-one

correspondence between files and modules, file-level compartmentalization is possible

but would require 1-2 orders of magnitude more compartments (e.g., popcorn has

more than 10K JavaScript files). Interestingly, analyzing more than 1K imports

(translating to more than 100K file-level modules) reveals an average ratio of 43

lines of code per file, exceeding our expectations for least-privilege decomposition.3

8.3.1 Security

Does the system mitigate vulnerabilities (both discovered and hypothetical) similar

to the ones outlined in §4.3? Table 8.4 presents twelve vulnerable modules, along

with the compartment types used to mitigate their effects. The first six are public

packages, and their vulnerable version is shown in the second column. For these

packages, we use the exploit attached to the original vulnerability report. The last

six are hypothetical vulnerabilities; although we were not able to find any packages

with these specific vulnerability types in any vulnerability databases, we know they

are possible to construct. All of them can be found in the online appendix.

Most of the first six packages can be used for a number of attacks. For example,

serialize makes use of the Turing-complete eval function; user code can access

3 As a point of comparison, Minix 3 [86], a modern microkernel that championed least-privilege
separation, comes with userspace servers on the order of thousands of lines of code.

136



Table 8.4: Vulnerabilities mitigated by BreakApp. Various real (top) and
hypothetical (bottom) vulnerabilities, and the policies used to mitigate them.

Package Ver. Type R/H Mitigation

qs 6.0.0 introspection, poisoning c○ d○ g○ R sandbox
serialize-to-js 0.4.8 eval f○ R sandbox
fernet 0.0.9 timing attack p○ R sandbox
uri-js 2.1.1 denial of service k○ o○ R process
libxml 0.16 unsafe extension q○ R process
hostr 2.3.2 read file-system l○ R container

glob.js — global variables a○ b○ H sandbox
this.js — context c○ H sandbox
mod.js — module cache m○ H sandbox
argv.js — process args n○ H process
env.js — user environment variables n○ H process
stack.js — inspect call stack e○ H process

global variables, patch system APIs, and inspect loaded modules. Launching it

in a fresh V8 sandbox (SBX) defends against inspection and patching of the main

program’s data and structures. Since it is not written in C, it cannot forge pointers

to bypass the language’s safety features; therefore, launching a process would only

add protection against denial-of-service attacks (e.g., using eval to start an infinite

loop), process arguments, and the shared environment. This highlights the core

benefit of policies: they let developers specify what they care about based on their

application structure and needs.

Over half of the problems can be mitigating simply by using sandbox (SBX).

Defending against glob.js and this.js required explicit whitelisting of references

(CONTEXT). Shielding against snooping the environment was possible via process-

level isolation (PROC) and selective shadowing of environment variables and process

arguments. Such shadowing (e.g., ENV) creates an artificial copy of selected variables

right after launching the compartment but before loading the module. Since the

module system is grafted atop V8, separate V8 sandboxes do not have access to

already loaded modules if not explicitly shared during sandbox construction. mod.js

137



Table 8.5: Compartmentalization costs: compartment startup times.
Startup times for four basic compartment types, as a function of the number of
compartments.

Compartments Standard Sandbox Process Container

5 4.3ms 12.9ms 342.5ms 5.9s
50 30.2ms 76.6ms 3.2s 32.8s
500 136.4ms 524.7ms 35.2s 332.2s
5K 1.7s 7.8s 362.4s 3330.5s
abs. / +1 cmpt 0.3ms 1.5ms 72ms 666.1ms
rel. / +1 cmpt (baseline) 5× 240× 2220×

Table 8.6: Compartmentalization costs: throughput and latency. Through-
put and latency of boundary crossing for four different compartment communication
mechanisms, as a function of the number of compartments

Comp/nts Function Pipe UDS TCP

5 192.3GB/s 18.3GB/s 149.5MB/s 158.1MB/s
6.5ns 1.3–1.4ms 17.8–73.8ms 17.7–36.6ms

50 157.1GB/s 17.5GB/s 127.0MB/s 134MB/s
90.18ns 11.6–13.2ms 244.5–536.6ms 210.3–566.8ms

500 46.5GB/s 3.6GB/s 16.4MB/s 20.9MB/s
294.3ns 154.3–160.3ms 3.71–11.95s 6.5–15.6s

required whiltelisting the module module with a fresh module cache. The call stack

and event queue are shared between different V8 sandboxes; disabling access to

the call stack for stack.js requires a separate process. Mitigating timing channels

for fernet required only a sandbox (SBX) and a constant minimum response time

(TIMER). Mitigating url-js’s DoS problems required processes (PROC), replication

(REPLICAS), and a special scheduling policy (SCHED). We will see the details in §8.3.3.

8.3.2 Performance

What are the overheads of different isolation mechanisms related to policies? Ta-

bles 8.5 and 8.6 highlight the costs of starting up new compartments and crossing

compartment boundaries under various configurations.
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Figure 8.5: Startup breakdown of eight packages under various configurations:
vanilla, sandbox, process, and container.

Figure 8.6: Latency breakdown of 10 different workloads with four compartment
types for each: vanilla, sandbox, process, container.

For the first experiment (Table 8.5), we minimize the effects of module sizes

by making modules return a single integer and launch compartments sequentially.

Standard is how the vanilla module system works: it looks up a module on the

filesystem using a resolution algorithm, wraps it so that its global variables do not

leak to the outer context (and to provide some global-looking variables, e.g., file-

name), and evaluates the code in the current context. Sandbox creates a new V8

context for each module and selectively whitelists shared variables from the parent

context. Process and Container use OS processes and Docker containers to isolate

compartments between each other, resulting in higher startup costs.

For the second experiment (Table 8.6), we process an in-memory (/dev/shm/)

stream of 1GB using a linear pipeline of mostly-empty stages. Pipeline stages only

flush some timing metadata when they detect the end of a stream. Streaming starts

only after all connections have been established (i.e., no TCP handshake costs in-

cluded).
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Figure 8.7: Denial-of-service attack against a blogging platorm: (i) vanilla setup
(blue); (ii) two process-level compartments (green + red).

8.3.3 Denial of Service Mitigation

Can BreakApp be used to mitigate DoS attacks? Fig. 8.7 shows latencies of issuing

500 HTTP requests to a slightly modified Ghost server where url-js is susceptible to

DoS attack. The workload consists of 90% benign read requests of various posts; 8%

benign search requests; and 2% malicious search requests. Malicious search requests

block the event loop for 40–60ms.

In the first configuration (blue line), all modules run in a single process. Read

requests reaching the server right after a malicious search query get delayed signif-

icantly or, at higher rates (not shown here), timeout. In the second configuration

(green line: 90% reads; red line 10% queries), the url-js module runs in a separate

compartment with a policy of PROC and PIPE. Although it takes slightly longer to

process search requests (+1ms on average), malicious search requests do not block

benign read requests: it is only the subset that goes through the search functionality

that remains paralyzed by the DoS attack.

In a different experiment, we increased both the number of malicious requests as

well as their latency. Due to monitoring, BreakApp is aware that some requests

are taking significantly more time than expected. By examining the input to the

most recent RPC, it can distinguish between problematic inputs and non-problematic
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Table 8.7: Characteristics of the benchmarked modules. Module shorthand,
size in terms of lines of code (LoC), number of files (Files), number of nodes in the
import return object (DAG), depth of dependency graph (DD), average fan-out of
the dependency graph (F-O), number of function values (fs), overview of its internals
(Notes) (Cf.§8.3.2).

Module LoC Files DAG DD F-O fs Notes

verbs 29 1 28 2 27.0 0 constant string-to-string map
pad 52 1 1 1 1.0 1 small, pure function

cash 451725 10839 75 7 314.0 49 large library with system calls
chalk 145706 9630 5 3 5.3 2 builder objects/cascading calls

debug 554746 8657 34 4 51.3 14 varargs; output to parent stream
ejs 59396 4950 25 4 12.0 11 extensive, pure, testing fixtures

dns 4826 1 60 3 34.0 16 built-in module, async calls
nacl 94686 5387 54 5 40.8 42 CPU crypto processing

ones. We experimented with four ON FAIL policies: (i) shut the child compartment

down and report; (ii) restart the compartment; (iii) spawn a new replica and use a

scheduling policy (e.g., round robin) to schedule RPC calls to these replicas; or (iv)

pushback based on recently-seen inputs. We crafted careful “asymmetric” attacks

where a small number of malicious requests blocks the event loop for extended periods

of time.

The combination of multiple utl-js replicas and caching of results from requests

that take longer than 0.5s with a 30s age timeout was successful at mitigating them.

This was a serious improvement over the previous setup: we were not able to saturate

the system without generating additional malicious strings.

In our final experiment, we overrode the round-robin scheduling policy during

runtime by passing a function that implements priorities. BreakApp split requests

into 100 different queues based on the length of the input string. Benign, small input

strings (i.e., nine out of ten requests) always had available resources.

Further mitigation is possible. Parallel spawn of (i) 500 compartments took 2.82

seconds, and of (ii) 5K compartments took 24.3 seconds, indicating good elasticity

characteristics until system administrators act upon notifications.
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8.3.4 Performance

What is the performance overhead of spawning modules in their dedicated compart-

ments using BreakApp? We opt for single-module, single-compartment setups over

multi-level compartmentalization to zoom into the exact sources of overhead under

various configurations. We use a diverse set of eight modules to isolate and account

for various different behaviors (e.g., interposition, RPCs, etc.). These modules are

running under the Node.js framework, serving HTTP requests. Table 8.7 summa-

rizes the source-level aspects of the modules used. Generally, lines of code and files

correlate with import times; number of nodes, depth, average fanout correlate with

interposition transformation costs; and the number of functions correlates with the

function-to-RPC transformation costs — a much heavier transformation compared

to interposition proxies.

Fig. 8.5 breaks down startup latencies into various sources (e.g., transformations,

interposition etc.) between the main four different compartment types. IPC was set

to TCP to account for its heavy setup period (yellow segment; 17.6–35ms); this choice

affected communication latencies too (purple segment; 11.6–24.8ms). To ease com-

parisons, we did not include system-level costs of spawning each compartment; these

are presented in Table 8.5. Startup costs are dominated by the number of modules

(i.e., files) read from the file system. A good example is cash where importing all

the sources takes 798.2–1049.1ms compared to 138.5ms of launching a new process

and 847.9ms of launching a new container. For smaller modules such as http-verbs

and left-pad the overhead of launching the compartment is more pronounced, but

these modules tend to be used for long-running processes (e.g., web servers); in these

cases, a startup time of few hundred milliseconds gets amortized over a period of

days. Transformation overheads were generally on the order of 0.2–1.3ms for the

addition of interposition proxies and 0.5–6.1ms for all the rest.

Fig. 8.6 shows their execution latencies. IPC is set to PIPE; each IPC segment on

the figure includes the overhead of a serialization and deserialization pair. To account
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for a more realistic setup, modules are loaded as part of a larger “no-op” HTTP appli-

cation which does not do any other processing beyond calling the dedicated module.

Latencies are averages over 1K requests following 100 warmup requests. Some of

the more processing-heavy modules (e.g., left-pad, tweet-nacl) were tested under

different types of workloads: a small 5B workload and a larger 5MB one.

Since HTTP request and response handling in Node.js dominate latency, com-

partmentalization overheads (IPC request and response) account for a small part

of the overall latency. Even in the case of the heavier compartment types, they are

responsible for 2 to 15% of the overall latency. The vast majority of this overhead

is concentrated on the calling side. Returning results is much cheaper because the

return values in our experiments were typically smaller.

The overhead of proxy (interposition) objects is barely visible in these plots, and

generally much smaller than initially expected. To understand the costs of object

proxying better, we created objects with a fanout of 12 for 8 levels (i.e., with 128

internal nodes — roughly .5GB memory footprint). Traversing one million 12-hop

random paths to access properties of the object took 167.2ms on the original object

and 595.7ms on the proxy-augmented object (i.e., all calls went through the proxy

object). To put these numbers into perspective, the object allocation took nearly 16

seconds, meaning that applications will likely hit other bottlenecks before the overhead

of interposition becomes noticeable.

8.4 Language-based Module-level Compartmental-

ization

Iris’s primary hypothesis is that language-based protection mechanisms can ad-

dress the challenges of conventional compartmentalization systems. In this section,

we confirm this hypothesis by discussing (i) the performance overheads associated

with runtime enforcement and how they compare with a state-of-the-art OSMLC
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system (§8.4.1); (ii) the security protection benefits obtained by the use of An-

dromeda (§8.4.2); (iii) our experiences from running Andromeda on large-scale,

real-world applications (§8.4.3). Among other key points, our evaluation shows that:

• For single libraries, Andromeda’s overheads are 1–3 orders of magnitude lower

than a prior MLC system (§8.4.1).

• Andromeda’s enforcement component protects against known attacks from

buggy, subvertible, and actively malicious modules (§8.4.2).

• Andromeda makes it possible to run large, compartmentalized applications,

without any soundness issues nor any manual effort spent rewriting interfaces

at the boundary (§8.4.3).

Experiments were run on a server with 512GB of memory and 80 Intel Xeon E7-

8860 cores clocked at 2.27GHz. No special configuration was made beyond disabling

hyper-threading. Our software setup uses Node.js version 6.14.4, bundled with V8

v.5.1.281.111, LibUV v.1.16.1, and npm version v.3.10.10, atop a Linux kernel version

4.4.0-134. For memory experiments, Node.js is launched with --expose-gc and

--log-gc to allow triggering garbage collection and verifying that it ran.

8.4.1 Performance Evaluation

How does Andromeda’s performance compare with conventional MLC systems? To

answer this question, we perform a series of experiments comparing Andromeda

to BreakApp [224]—a state-of-the-art compartmentalization framework that can

place selected JavaScript libraries in process-isolated compartments. The micro-

benchmarks chosen to highlight compartmentalization overheads involve six mod-

ules of varying size and complexity (Tab. 8.7). These modules were chosen based

on two factors: workload diversity and compatibility with BreakApp. Two of

these benchmarks, lpad and nacl, are tested with inputs of different sizes to better

144



St
ar

tu
p 

Ti
m

e 
(m

s)
M

em
. U

se
  (

M
B)

Ex
ec

. T
im

e 
(n

s,
 lo

gs
ca

le
)

verbs
lpad
chalk
debug
ejs
nacl

0

ve
rb

s
lpad

lpad
-L

ch
alk

deb
ug ejs nac

l

nac
l-L

Unmodified BreakApp Iris

20

40

60

0

10

20

30

101

100

102

103

104

105

106

1.50.8 0.5 1.1

171.4177.8 210.2

24.5 25.5
3.5 4.8 2.7 3.5 0.9 0.9

186.3 201.3
206

5.714.8 4.8 5.71 6.0 7.1
5.0 6.1 4.9

7
4.9 5.1 6.6

32.4
4

32.3
9

35.5 33.6 33.3 34.1

3.5M2.6M 4.2M 4.8M 4.8M 7.2M6.5M 9.2M

1010 10 10

25.4K 26.2K

2.4K 2.5K

18.6K 19.8K
5.6K 6K

62.3K 62.3K

20 20

Figure 8.8: Compartment overheads. Top: startup times. Med: memory
consumption. Bottom: boundary-crossing; as these overheads depend somewhat
on the sizes of call arguments, lpad and nacl include runs with large values (-
L) (Cf.§8.4.1).

stress the overheads of serialization: a small input of 1B and larger one of 2KB

(shown as -L). Results are averages over 1M repetitions, with a warm-up phase of

1K repetitions. We are interested in the following overheads: compartment startup

time, compartment memory consumption, and the overhead of crossing boundaries

between compartments.

Startup Time The top plot of Fig. 8.8 compares the compartment startup time

between Andromeda and BreakApp. Each bar measures the time to complete

a require call, which includes locating and transforming the module. Compared
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to BreakApp, Andromeda improves compartment startup times by a factor of

12–168×: compartment creation is accelerated by two orders of magnitude for the

heaviest modules such as chalk, and three orders of magnitude for lightweight mod-

ules such as verbs and lpad. BreakApp’s additional overheads (beyond transfor-

mations) stem from setting up a TCP channel (10–20ms), serializing and shipping

the return API to the consumer module (5–10ms), and launching a new process

executing a copy of the Node.js runtime (80–120ms).

Memory Consumption The middle plot of Fig. 8.8 compares the base memory

consumption of individual compartments between Andromeda and BreakApp.

Each bar shows the amount of heap memory used by a process, as reported by

V8. The values for baseline and Andromeda include only the heap use for the

individual module imported. BreakApp’s values account for the memory of the new

compartment: a fresh copy of the Node.js runtime takes about 20MB; BreakApp

adds another few MB, mostly coming from its dependencies to deal with serialization

and multiple channel types. Andromeda improves memory consumption overheads

by a factor of 19–31×. Notably, in no cases did Andromeda force V8 to request

additional memory from the OS—even when a few large modules, such as nacl

and chalk, end up doing this for the baseline. Put differently, while loading large

modules may cause performance side-effects that are observable from outside the

language runtime (i.e., the OS), Andromeda’s overhead remains minimal on top

of that.

Boundary-Crossing The bottom plot of Fig. 8.8 shows the cost of crossing a

compartment boundary by calling into a module (includes function-invocation time).

Generally, Andromeda introduces between two and three orders-of-magnitude lower

overheads than BreakApp. The reason is that BreakApp adds serialization, in-

terprocess communication, context switching etc., whereas Andromeda relies only

on language-level enforcement mechanisms.

Notably, Iris’s performance remains mostly unaffected by the input size (normal
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and -L columns). This is due to Iris passing pointers rather than values between

compartments: (i) copying a payload is significantly more expensive, even with-

out considering BreakApp’s user-kernel boundary crossing; (ii) serialization and

deserialization transforamtions from in-memory values to strings and back. Further

experiments (not shown) indicate that BreakApp’s serialization overheads are dom-

inated by value expansions due to cycle detection and property ownership. Thus,

BreakApp’s boundary-crossing cost is a function of the call-argument size.4

Take-Away Andromeda imposes minimal performance overhead, outperforming

a state-of-the-art MLC system by several orders of magnitude.

8.4.2 Security Evaluation

Does Andromeda succeed in mitigating vulnerabilities that fall under its threat

model (§5.3)? To answer this question, we perform a series of experiments using

real and synthetic vulnerabilities (Table 8.8). Real vulnerabilities are drawn from

widely-used modules in the Snyk database [200] and include the malicious versions

and MITRE’s common enumeration identifiers [138, 139]. Synthetic vulnerabilities

are constructed artificially to highlight unusual attacks and compartmentalization

features: we know these attacks are possible, but were unable to find them in vivo.

The table’s last column shows the PIC size, in terms of number of lines.

Real-World Vulnerabilities For the real-world vulnerabilities, we use the proof-

of-concept exploit (PoCE) attached to the original vulnerability report. The morgan

module is a request logger, which the PoCE exploits to call console.log; Iris

permits only importing and calling morgan. The merge module combines multi-

ple objects into one, exploited by the PoCE to alter the object hierarchy with the

injection of a proto property pointing to a new object parent; Iris does not

4 In theory, Andromeda’s overhead is a function of PIC size. In practice, however, PICs are
only a few instructions long; being mostly constant values, they are optimized away by V8’s tracing
compiler.
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Table 8.8: Vulnerable Modules. A set of real (top) and synthesized (bottom)
vulnerabilities mitigated by Andromeda.

Module Version Attack Type CVE PIC

1 morgan 1.9.0 remote code exec. 2018-3784 9
2 merge 1.1 prototype pollution 2018-16469 15
3 mathjs 3.16.5 command injection 2017-1001002 6
4 ns all unsafe serialization 2017-5941 6
5 st 0.2.1 directory traversal 2014-3744 13

6 glob.js — access globals — 4
7 mod.js — read module cache — 6
8 arg.js — expose process args — 4
9 env.js — environment variables — 4

10 arr.js — inspect array values — 5

permit overwriting hidden properties, such as proto . The popular mathjs mod-

ule includes a math evaluator, which the PoCE exploits to console.log a message;

Andromeda blocks it similar to morgan, not allowing use of console. The ns seri-

alization module is exploited by the PoCE to import child process and call exec;

Andromeda blocks this, by only allowing the ns import itself. The st module offers

HTTP routing and caching that is used in conjunction with an HTTP server. It is

susceptible to directory traversal: while dots (e.g., ../) are filtered out, url-encoded

ones are not (e.g., %2e%2e/). The PoCE attempts to access the filesystem root, but

Iris allows access only in the current directory (§5.4.4).

Synthetic Vulnerabilities For the synthetic vulnerabilities, we prepare a mali-

cious module mm that attempts unauthorized access of global variables, the module

cache, the process arguments, environment variables, and values of an importing ar-

ray am. Apart from am’s first element, all other accesses are disallowed. Iris launches

mm in its own compartment, shielding it from ma and its surrounding environment

with several PICs. All of mm’s accesses are blocked by Andromeda, with the gran-

ularity of am being particularly telling: Iris can trivially distinguish across array

elements, as they are object fields that just happen to have integer identifiers as
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names.

Take-Away Andromeda can successfully protect against both known and new

attacks, at a very fine granularity.

8.4.3 Multi-module Evaluation

How does Iris perform in larger applications? In particular, does it solve the sound-

ness and rewriting concerns of conventional MLC? To answer this question, we run

two experiments on multi-module applications. Our goal is to focus on potential

soundness and interface rewriting issues that challenge conventional MLC, even in

the full absence of disallowed behaviors. To avoid disallowing any behaviors, we gen-

erate PICs that permit all calls. PICs update invocation metadata to their shared

global state (§5.4.5), to avoid V8 optimizing them away.

Synthetic Application In the first experiment, we run Iris on a small synthetic

application comprised of two modules, each one importing two additional modules

(total: six imports). Modules hold a consecutive integer as their private state. When

called, each module increments its integer by six and appends to a global array. We

run the benchmark for several thousand repetitions of 1M calls, and confirm that

the global array is always sorted—that is, PIC execution does not introduce any

unsoundness due to interleaving. We were not able to detect performance differences

between the vanilla and Iris-augmented application (beyond statistical noise).
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Real Application In the second experiment, we run Andromeda on an open-

source wiki application comprised of 130 top-level modules, 1640 total modules, and

about 597K lines of code. We use wrk2 [209] from the same physical host to send

HTTP “No-Op” requests. The wrk2 tool produces a load of constant throughput

and calculates latencies at various tail percentiles (e.g., 90%, 99%, 99.9% etc.). We

configure wrk2 with 2 threads and 100 connections, at about 1.07k requests per

second.

The primary result is that Iris’s compartmentalization enforcement does not re-

quire manual effort, demonstrating that decomposition remains feasible without any

module interface rewriting. In terms of performance, the unmodified wiki responds

with an average latency of 4.2ms; introducing Iris bumps latency to 4.8ms. Fig. 8.9

shows that for the majority of the requests (90%), the overhead introduced by An-

dromeda is under 1ms. Changes in memory consumption, which averages around

100MB, remain below 0.01%.

Take-Away Andromeda avoids introducing unsoundness and interface rewriting,

making large-scale module-level compartmentalization feasible.

8.5 Light-Touch Distribution

Several takeaways are worth highlighting. Scaling out with Ignis can require mini-

mal code changes, less than 0.001% of a complex codebase (§8.5.5). Even for simple

applications and scaling goals, this represents 10-20× less effort than manual ap-

proaches and avoids the introduction of bugs (§8.5.3). In a case study where we

scale a web crawler to better utilize a 60-core host, Ignis leads to speed-ups of

27× (§8.5.4). Aside from speed-ups, Ignis reduces memory requirements by up

to 11× compared against typical whole-application replication, by only replicating

bottlenecked components (§8.5.5).
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Table 8.9: Replication overheads. Replica (i) startup costs (rows 2, 3) and (ii)
communication costs (rows 4–8), as a function of the number of replicas (Cf.§8.5.1).

Module Replicas (Single Host) 5 50 500

Startup Overheads:
Latency (Unmodified) 12.9ms 106.6ms 824.7ms
Latency (Ignis) 342.5ms 1.4s 6.2s

Communication Overheads:
Latency (Unmodified) 6.5ns 90.18ns 294.3ns
Latency (Ignis) 27.15ms 388.55ms 11.05s
Throughput (Unmodified) 192.3GB/s 157.1GB/s 46.5GB/s
Throughput (Ignis) 158.1MB/s 134MB/s 20.9MB/s

8.5.1 Micro-benchmarks

No-op Modules To understand Ignis’ inherent startup and communication costs,

we run a few microbenchmarks comparing Ignis with the unmodified module system

as a function of the number of replicated modules. We remove orthogonal network

concerns by running experiments locally on a1, and minimize the effects of module

sizes and transformations by creating “no-op” modules.

Tab. 8.9 rows 2 and 3 show the base startup time of modules that return a single

integer. Ignis modules incur significantly higher startup times, but these overheads

are amortized as the number of modules increases.

Vanilla JavaScript loads modules sequentially. However, Ignis-replicated mod-

ules can amortize their (much more expensive) startup costs by leveraging parallelism—

an idea that (at least in part) motivated asynchronous spawning (§6.5.1). Asyn-

chronous spawning raises concerns regarding interference with the main process on

a single host. To investigate this, we start 5K modules in parallel (total time: 15.4s,

avg: 3ms/module) while a main module “mines” SHA512 hashes. Hash rate, about

5.4 MH/s, essentially remains unaffected.

Tab. 8.9 rows 5–8 show the cost of communication (remote invocation), by pro-

cessing an in-memory stream of 1GB across a series of modules. The stream starts

only after all connections have been established (i.e., no TCP handshake costs in-
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cluded). As expected, copying the payload (rather than passing pointers) is signifi-

cantly more expensive.

Real Modules To understand startup and communication costs on real modules,

we run single-replica experiments on a diverse set of popular modules under three

configurations: (i) vanilla, (ii) co-located distribution (as before), (iii) networked

distribution. Their source-level aspects (Tab. 8.7) affect startup times, whereas call

argument sizes affect invocation times.

Fig. 8.10 shows module startup costs. Distribution requires transforming modules

(RPC stubs), communicating them to the remote node, and launching replicas there.

The startup time of larger modules is dominated by file-system accesses (e.g., cash

takes 798.2–1049.1ms to load all of its files). The startup time of smaller modules,

such as verbs and pad, is dominated by constant factors (e.g., 138.5ms for process

spawn and 17.6–35ms for TCP setup).

Fig. 8.11 shows inter-module communication costs over the same configurations.

To bring these costs into perspective, we embed modules in “no-op” HTTP appli-

cations. By placing these modules behind an HTTP server, we can study Ignis’

impact on the end-to-end latency an HTTP client would experience. Processing-

heavy modules such as pad and nacl are tested under input of size 5B (S) and 5MB

(L).

To understand the costs of boundary interposition, we measure the time to ac-

cess deeply-nested properties of two versions of an object: unmodified and proxy-

wrapped. Paths to the properties (e.g., a.b.c.. . .) are random but generated prior

to running the experiment. We construct 500MB-sized objects, each with a fanout

of 8 fields (DAG child nodes) nested for 12 levels. The proxy-wrapped version intro-

duces interposition at every level. Traversing one million 12-edge paths (i.e., root

to leaves) averages 167.2ms and 595.7ms for the unmodified and proxy-wrapped

versions, respectively.

Towards Practical Overheads The micro-benchmarks presented in this section
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highlight Ignis-inherent overheads by using carefully-constructed, worst-case work-

loads that are nowhere near the ones seen in practice (§8.5.3–8.5.5): 1GB-sized

function-call arguments, deeply-nested 0.5GB-sized module interfaces, and near-zero

module-internal latencies (that in practice would not lead to scale out).

8.5.2 Synthetic Applications

To better understand Ignis’ profiling and distribution in a controlled environment,

we craft a four-module application with pre-defined bottlenecks. The application

can perform one of three operations, depending on its current state: (i) invoke a

call to a module it imports, (ii) busy-wait, or (iii) accept calls. State transitions

are controlled by a probability distribution; and modules can introduce additional
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delays. The application accesses modules m1 and m2 with equal probability; m1

accesses m3 and m4 similarly, but m2 accesses m3 three times more often than it does

m4. The four modules add a delay of 10ms × their depth in the dependency graph.

The application is part of Ignis’ testing infrastructure, encoding well-understood

scenarios with the goal of verifying that scale-out follows the developer’s intuition.

Fig. 8.12 depicts the importance of fidelity in load attribution. Load is visible

at the application level (left), but the lack of detail does not help determine which

modules must be scaled out. Module-level data, collected by Ignis’ coordinator

(right), reveal that m3 receives the majority of the load.

Manually deciding which module to scale out would require installing linux-tools,

setting up perf [77], resolving JavaScript symbols with V8’s --perf-basic-prof,

recoding event samples, mapping samples to modules (using stack information), and

visualizing results. Many of these steps would need to be repeated for every new

bottleneck and, after scale-out, combine results from multiple replicas.

Ignis reaches the decision to scale out within a few hundred milliseconds, pri-

marily because of lack of confidence due to cold-start effects. By observing long

inter-module queues and a sufficient number of idle processors, Ignis launches three

replicas of m3 at once.
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8.5.3 Macrobenchmark: A (very) Simple Weblog

Scaling out a system is often as easy as upgrading to a readily-available distributed

storage system. This is the simplest case of bolt-on distribution, because it does not

require thinking deeply about the structure of the computation. To compare with

such minimum-effort rewrites, we plug a distributed key-value store into a simple

blog application.

KoaBlog [88] (commit 1fd5316) is a small application for learning the Koajs

web framework. The blog manipulation code totals 50 lines and imports six direct

dependencies, for a total of 160 packages and 96 KLoC. Entries are indexed by an

integer ID. They are stored on disk using methods from the built-in fs module (e.g.,

write, readdir).

Even though KoaBlog is a trivial application, the manual effort required to use

a NoSQL system such MongoDB [41] (v.3.4.10) is considerable. We first use npm

to download and import the monk module for interfacing with MongoDB, similar

in effort to importing Ignis. We then create a database schema, and configure the

connection to the master node—including details such as binding address, port, and

username. We also remove the import of the fs module, and rewrite all file-system

operations such as read and write to make use of monk’s find and insert. All

the above is expressed in JavaScript and within KoaBlog, in a diff that totals 11

lines (22% of end-developer code). However, it omits lines typed in the MongoDB

and Unix shells (outside npm and requiring sudo): fetching and installing MongoDB,

configuring administrative users, setting up one master and two slave nodes, and

connecting MongoDB’s startup with KoaBlog.

Adapting KoaBlog also required fixing two bugs that we unintentionally intro-

duced. First, by replacing all fs.writes with inserts, we broke updates; fs.writes

corresponding to updates should have been replaced by updateById, not insert.

Second, we misconfigured the binding address and port of one node. These bugs

were not difficult to fix, but illustrate the inherent dangers of manually scaling out
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an application, even when the modifications seem straightforward.

In contrast, with Ignis this scale-out requires a short recipe at the fs import:

require("fs", {copies: 3}) (aside from downloading and importing Ignis, à la

monk). The recipe specifies a minimum and a maximum number of three replicas,

similar to Mongo’s setup. Ignis launches three replicas of the fs module (see “En-

vironment Binding” in §6.5.2 for built-ins), traverses the return DAG of the original

fs, and rewires methods such as readFile and writeFile to call Andromeda’s dis-

tributed storage equivalents. Node.js’s fs methods take optional arguments such as

encoding (e.g., UTF-8) and access mode (e.g., RW). As Andromeda stores objects

(rather than files), Unix flags such as RW were initially a concern; however, existing

support for UTF-8 was enough to avoid breakage.

To evaluate performance, we pre-populate KoaBlog with 10K posts of 1.1MB

each, and issue a 2-minute HTTP GET workload of 5K req/s. To saturate disk band-

width and “force” Ignis to scale out, we initiate three local, parallel, long-running

cp commands in the background. Distribution improves request latencies signifi-

cantly (table below) as well as request throughput and transfer rates: 24 requests

Percentile 50% 90% 99% 99.9%

Baseline 154ms 1028ms 4731ms 8905ms
Ignis 65ms 231ms 318ms 1187ms

per second (28.2MB/s) become 88.22 (103.5MB/s). No significant difference between

Ignis and MongoDB was noticed; this is expected because no advanced indexing,

replication, and consistency features were used, where the two diverge.

These performance improvements are on top of the base benefits of storage

distribution—increased capacity (combined, q1-4’s disk capacity is over 1TB) and

availability (3× replication). (This availability is different from the fault-tolerance

of Ignis itself, which is left for future work (§10.4).) The introduction of Ignis does

not impact the memory consumption of the main node. This is because the koa-*

modules dominate, whereas the newly-introduced ignis module is comparable in
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size to fs.

8.5.4 Macrobenchmark: Document Ranking

For a more complex application, we consider a custom natural-language processing

(NLP) pipeline that is used as part of a larger web crawler application. As documents

arrive, the NLP pipeline extracts word stems, removes stop-words, normalizes terms,

creates n-grams of sizes 2–5, and runs frequency analyses. The pipeline is built

around v0.6.3 of natural, a third-party package for NLP, and applied on 200 books,

each averaging 1MB, from the Project Gutenberg corpus [84].

Scale-out depends on the relative overheads of different NLP stages. Skipping

the manual effort of profiling (described at the end of §8.5.2), manual scale-out

would need to extract the interfaces of used modules, generate RPC stubs (e.g.,

gRPC [212]) and load them remotely, start communication servers, and balance load

at runtime. We did not attempt this; instead, we added require("ignis", {hot:

["natural"]}).

The centralized version processes at a rate of 22.2 documents per minute (2.7s per

document). Ignis improves throughput by a factor of 27× to 612.8 documents per

minute (97.9ms per document). While Ignis sees gains in launching more processes

on the local host, it does not see any gains in further distributing across physical

hosts. The reason is that the crawler does not feed the NLP pipeline with documents

at a rate that is high enough to benefit from networked distribution (in our setup).

8.5.5 Macrobenchmark: Wiki Engine

For a complex application, we turn to wiki.js (2.0.0-dev), a popular wiki engine that

imports 130 top-level modules; counting recursive imports, the total jumps to 1640

modules and about 597K lines of code. We augment wiki.js with uri-js v2.1.1,

an extensible URI parsing and validation library that is fast in the average case but

can sometimes spend upwards of 400ms per URI in pathological edge cases. This
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leaves wiki.js susceptible to denial-of-service attacks [45] (ReDoS) and slowdown

in certain non-adversarial workloads. We use Ignis to mitigate this with a simple

two-line recipe (i.e., less than 0.0005% of the codebase) that scales out uri-js.

Under normal operation, when no URIs in the workload invoke the edge cases in

uri-js, Ignis introduces little runtime overhead. Issuing an HTTP load of 5Kreqs/s

on wiki.js’s sample dataset, the unmodified wiki responds with an average latency

of 34.1ms (σ: 2.1ms). Introducing Ignis bumps latency to 34.3ms (σ: 2.8ms).

Changes in memory consumption, which averages around 100MB, remain below

0.01%.

With a workload that contains even a small fraction of pathological URIs, the

benefits of Ignis become significant. Servicing a workload with 99% benign URIs

and 1% pathological URIs, the throughput of the unmodified wiki drops to 197req/s

(15.2s per request, σ: 11.04s). Ignis, on the other hand, achieves a throughput of

208req/s (8.1s per request, σ: 4.9s) when distributing to q1-4’s four network repli-

cas. When distributing to 60 replicas on a1, it achieves a throughput of 1,880req/s

(42.66ms per request, σ: 1.35ms). Ignis detects the load pressure applied on uri-js

within the first few pathological requests, scaling out in under half a second.

Memory consumption of each replica is about 17.3MB, the vast majority of which

comes from the Node.js runtime and libraries. For comparison, naive application

replication leads to a total memory footprint of 1.1GB (on top of the “master”

wiki.js consumption).
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Chapter 9

Related Work

The techniques employed in this dissertation are related to a large body of previ-

ous work in several distinct domains. While many individual features have close

analogues in the literature, Andromeda provides a novel synthesis to furnish a

distributed userspace. To complement the high-level discussion presented in the in-

troduction (§1.3), this section focuses on more technical discussion between of these

features.

9.1 Distributed Environments

Andromeda draws heavily from prior work in the broad field distributed environ-

ments.

Language-based Systems Andromeda shares many similarities with language-

based DOSes [111, 116, 25, 38, 136, 56, 243], which used programming language

abstractions to lower the complexities of distribution; Andromeda, however, does

not require the use of a new programming language. The asynchronous program-

ming model unifying local and remote access is similar to Argus [116]. Value mobil-

ity, object prototypes, and the per-node performance focus are close to Emerald’s,

but we address its “locatics” [25] concerns with node groups and configurability.
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Andromeda’s focus on extreme portability, userspace hosting, and high-level inter-

pretation combined with JITing is similar to Inferno [56, 243], but its (asynchronous)

semantics is closer to Actors [6] than Limbo’s CSP [87] style.

Several approaches attempt to graft a single-system image (SSI) atop an existing

language [12, 251, 27]. However, they usually do not provide transformation primi-

tives, impose a cluster-aware version of the runtime, and do not include a library of

services. Andromeda shares (distributed) Smalltalk’s [17] extensibility and intro-

spection and its ancestry on interface unification (and minification) from Dataless

Programming [13].

Distributed Operating Systems Andromeda shares many similarities with

DOSes [169, 236, 40, 159, 143, 166, 178, 56, 14]. Andromeda’s group services are

related to V [40] and Chorus [178]. Its architecture—i.e., key services outside the

core, the naming service etc.—is especially close to Amoeba’s [143]. Andromeda’s

local execution binding techniques are similar to Plan 9’s [166] namespacing, and

its configurability is similar to Nemesis’ [176] QoS guarantees (although both at a

different level).

Recent proposals to revisit DOSes [189, 182, 121, 93] share Andromeda’s in-

tention to revisit older ideas in distributed systems; however, they do not aim at

leveraging high-level programming-language abstractions nor at lowering employ-

ment complexity—but primarily improving raw performance. Their focus is current

workloads on mostly-homogeneous datacenters whereas Andromeda enables pro-

gramming “in the small” [53] across very diverse owned resources. Among these

systems, DiOS [189, 188] and Taurus [121, 122] stand out as more relevant to An-

dromeda.

DiOS is a distributed operating system for datacenters implemented as a Linux

kernel extension module. Although it eschews the POSIX API, its abstractions

remain close to those of Unix. Contrary to Andromeda: (i) it is a language-agnostic

system that can run ELF executables, (ii) it provides Unix-like primitives such as
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FIFOs, processes, namespacess, and (iii) it is written in C and does not assume

any (specific) language-level integration of its object notion. Moreover, services

from the kernel are not distributed: the file system is flat, but not distributed;

there is no node and group management; and there are no primitives for distributed

execution. Contrary to Andromeda, it supports legacy applications by having them

not use the DiOS syscall API. That is, legacy applications do not see any distribution

benefits from running on a DiOS system (except possibly Firmament scheduling by

linking with TaskLib). This is different from Andromeda where legacy applications

still benefit from distributed system services. Developers in DiOS need to rewrite

applications to use the new API, which DiOS aids by exposing a “Limbo” ELF type

for binaries that require access to both APIs.

Taurus is a holistic runtime system, in which language runtime environments

running on individual nodes coordinate with one another for tasks such as garbage

collection, just-in-time compilation, and safety/type checking. While Taurus is sim-

ilar to Andromeda in that it focuses on high-level runtime environments, it solves

a different (and complimentary) problem: performance pathologies arising from lack

of runtime coordination. It does not provide abstractions for composing or employ-

ing distributed applications. Andromeda’s performance would definitely benefit

from inter-node coordination, which could be provided as a pluggable service; the

garbage-collection hooks used in BreakApp are a limited version of this functional-

ity. Conversely, while Taurus is today implemented as a JVM co-process, its mech-

anisms and policy domain-specific language (DSL) could benefit from the approach

of a distributed userspace. Taurus’ separation between mechanism and policy, and

specifically policy expressions via through a high-level DSL, served as the inspiration

for Andromeda’s configurability as a remedy to distributed-systems trade-offs.

Unconventional Operating Systems Andromeda shares the treatment of mul-

tiprocessors as distributed systems with Disco [33], Cellular Disco [75] and Bar-

relfish [16]. Similar to unikernels [124, 206], Andromeda runs in a single address
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space, does not support multiple users, and can be used as a libOS, but it is not

intended for executing a single application and does not depend on hypervisors for

key functionality. Like Mirage, Andromeda is written in a high-level programming

language, uses language-based guarantees for correctness, and depends on memory

safety for protection; but does not provide statically checkable guarantees (§10).

These systems do not provide a unified distributed userspace.

Component Architectures Andromeda shares philosophy of services as toolkit-

libraries. Similar to Andromeda, Horus [218] identifies multifaceted trade-offs of

distribution and attempts to provide flexible communication abstractions in a group;

however, its specification is lower-level than Andromeda’s semantic configurations.

ISIS [23] and Circus [44] exploit development-time module structure to replicate

modules and provide fault-tolerance. In contrast to Andromeda, these systems

operate statically at compile time, without runtime introspection.

Transformations Andromeda’s transformations can be seen as aspect-oriented

programming (AOP), a programming model that maps program join-points to ac-

tions to be taken at these points [99]. In fact, they are enabled by the language’s

support for metaobjects [100], objects that manipulate object structure, enabling a

program to access its own internal structure, including rewriting itself as it executes.

Metaobjects are examples of runtime reflection, of which Andromeda makes ex-

tensive use to traverse, understand, and rewrite interfaces. Andromeda tries to

minimize AOP and metaobject complexity with high-level semantic configurations,

rather than requiring developers to alter or introduce code. This is related to recent

transformation work that attempt to alter the semantics of the original program in

principled ways [173, 163, 197, 198].
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9.2 Distributed Storage System

Data Structures High-dimensional database techniques have been of interest to

the data-base and data-structure communities for decades (e.g., k-d trees [20], R-

trees [81], the grid file [149], z-order [157], R+-trees [192] ). They either require a

static object (i.e., table) structure [149, 157] or, more commonly, adapt on the data

they see [20, 81], which makes straightforward distribution very difficult.

Dimensionality Reduction Other lines of work [141, 91, 72] focus on reducing

dimensionality down to a single dimension to then enable single-dimension parti-

tioning schemes. Space-filling curves [141] do this, for example, by tracking a single

curve through all regions of a multi-dimensional space. This is a promising direction

for dealing with very high dimensionality, and is somewhat similar in spirit to map-

ping a multidimensional matrix into a single region of physical memory, as done in

our system. However, scalability may be hindered by (i) multi-dimensional queries

partitioned into single-dimensional ranges of different sizes, and (ii) space regions

falling under multiple nodes.

Locality-preserving hashing [91] and locality-sensitive hashing [72] offer multi-

dimensional range and nearest-neighbor (i.e., fuzzy, wildcard) queries. However,

since they are sensitive to data for preserving locality, they do not offer good load-

balancing features. In some cases, space partition is based on previously-seen data

– so different nodes might have inconsistent views of the space – and offer only

approximate guarantees [72].

Distributed Hashing On the other hand, distributed hashing techniques provide

uniform load balancing without depending on previously-seen data. Somewhat more

complex hashing schemes (e.g., rendez-vous hashing [211], consistent hashing [96])

can minimize data shuffling in dynamically-changing systems. These ideas have been

used in various settings (e.g., P2P [204, 177]) and led to the revolution of distributed,

single-dimensional (i.e., key-value) NoSQL storage systems (e.g., Dynamo [51], Re-
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dis [184], Cassandra [107]). Hyperdex [62] improved on the idea in many ways (§3.2).

Our work extends Hyperdex’s partitioning technique, namely hyperspace hashing,

for data whose structure is not known beforehand and can change during runtime.

Replication and consistency are orthogonal issues and can be served by schemes

complementary to ours (e.g., Hyperdex [62], Replex [207]).

9.3 Automated Module Sandboxing

Supply Chain Attacks Our concerns about large-scale reliance on loose supply

chains are echoed by both academia [123, 110] and industry [118, 36, 200]. Academic

studies have shown the increasing risks of the reliance on third-party code (although

they generally do not consider the scope of problems we do in §4.3). Several recent

companies [190, 156, 200] provide third-party module assurances by having more

people audit and recommend packages in the wild or crawl public repositories for

open vulnerabilities. In practice, they do not offer any guarantees similar to com-

partmentalization, but can be used complementary to our work: users (or libraries

that are built on top of BreakApp) can use these recommendations to choose which

modules to quarantine. Package managers have added support for locking dependen-

cies between deployments [151]. However, this does not necessarily rule out extant

problems; on the contrary, users forego valuable bug and vulnerability fixes, while

experiencing a more convoluted dependency management.

JavaScript Isolation In the case of JavaScript specifically, much effort has gone

into client-side compartmentalization (e.g., execution isolation [132], object capabil-

ities [135], sandboxing [210, 7] information flow control [203]). These works focused

primarily on client-side, web-based setups which are different from our focus in many

ways: isolation primitives (i.e., iframes), origin (i.e., explicit sources), threat model

(i.e., no C/C++ modules; no valid access to “/etc/passwd”), compartment numbers

(i.e., few), and developer effort (i.e., manual annotations or rewrite).
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Microservices Microservice architectures, a style for building server applications

as sets of loosely-coupled components [67, 147], are often touted as enabling fine-

grained, Least-Privilege decomposition inspired by the Unix philosophy. Even more

so, lambda architectures [60, 85] are emerging as a lighter-weight, evolutionary step

beyond microservices that use runtime contexts to offer improved elasticity. In prac-

tice, however, both are vastly more coarse-grained than the applications shown here,

with each microservice usually built on top of hundreds of packages similar to the

server-side applications outlined in Table 8.3. Moreover, (i) communication between

services is request-response style and usually explicitly exposed to the application,1

(ii) decomposition is a manual process that requires a careful design process (includ-

ing agreeing on the interfaces) prior to development. These are antithetical to our

technique that hides the underlying compartment boundaries.

Containerization Many other system-level sandboxing primitives can be used

(e.g., SELinux [164], AppArmor [15]). We experimented with Docker [129] primarily

because it is becoming an industry standard: most users are expected to use (and

seek numbers about) Docker more than any other container infrastructure. Coarse-

grained compartmentalization, however, such as by wrapping a language runtime

with a layer of virtualization, is ill-equipped to address risks described in § 4.2.1

and 4.3: a malicious module is still able to access trusted state, exfiltrate data, or

launch a DoS attack.

System Decomposition There is a long history of alternative system structures

with a focus on least privilege decomposition [183] and, more generally, separation

of concerns [55] (e.g., microkernels [4, 114, 86], capability systems [113, 195], and

separation kernels [179]). Increasing security requirements brought decomposition to

the foreground [167], culminating with systems such as Crowbar [24] and SOAAP [78]

that assist programmers into decomposing applications into multiple compartments

with reduced privileges. Other systems have focused on abstractions and mechanisms

1It usually relies on HTTP — much more heavyweight than the channels described in this work.

165



that allow efficient separation [54, 238, 237]. Despite their advances, systematic

adoption has been impeded by the lack of automation [123], the primary focus of

BreakApp.

Unsound Program Transformations There is a recent emergence of unsound

program transformations [173, 163, 197, 198] to mitigate failures and attacks via

self-healing. Such transformations change the semantics of the original program in

principled ways. Our work can be seen as a set of potentially unsound transforma-

tions at the module boundaries: users can decide how to break the semantics of the

program by choosing which behaviors to disable. However, our transformations are

proactive rather than reactive. They are also based on the assumption that there

are cases in which a legacy program runs the risk of breaking either way : developers

can choose whether it will be due to third-party modules (unprincipled way) or due

to altered semantics (principled way).

9.4 Language-based Protection

Andromeda’s goal is to protect applications against untrusted code—a concern

echoed by both academia [123, 110] and industry [118, 36, 200]–and thus can be

compared to alternative mitigations.

Ecosystem-focused Non-academic response [190, 156, 200] has focused on (i)

having more humans vet and recommend (or recommend against) certain packages,

(ii) aggregating such data and combine them with data from source-code repositories,

and (iii) using the combined data in tools that check dependency chains for packages

that are vulnerable. Unfortunately, this process works only with known vulnerabil-

ities and does not offer any guarantees close to compartmentalization. However, it

can be used complementary to our work: users and libraries can use these recom-

mendations to choose where to focus Andromeda’s PICs.

More recently, package managers have added support for locking dependencies
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between deployments [151]. However, this does not necessarily rule out extant prob-

lems; on the contrary, users forego valuable bug and vulnerability fixes, while expe-

riencing a more convoluted dependency management.

The following few paragraphs outline more principled approaches and how they

relate to Andromeda. While industrial response placed utmost importance on

maintaining backward-compatibility, this goal is not shared with the vast majority

of academic approaches—a major departure from Andromeda.

Decomposition Separation kernels [179] and µ-kernels [4] pioneered manual de-

composition in an attempt to lessen the privilege of buggy or malicious components.

Privilege-separated system-level applications, such as OpenSSH [167], demonstrated

tangible security benefits over monolithic approaches. Manual decomposition en-

ables full control over compartment structure and boundary placement, but comes

at a significant productivity cost.

Followup approaches proposed reusable frameworks that can automatically spawn

compartments and connect communication channels, at the cost of lightweight anno-

tations on program objects—e.g., configurations in Privman [102], priv directives

in Privtrans [32], tags in Wedge [24], hypotheses in SOAAP [78], and policies in

ACES [43]. Annotations typically express a small number of sensitivity levels, trans-

lating to an equally small number of compartments.

To ameliorate manual annotations on individual objects, recent attempts ex-

ploit runtime information about module boundaries. Unfortunately, module-level

compartmentalization [144, 224, 108, 213] does not scale beyond a few modules, as

it suffers from several practical challenges—potential introduction of unsoundness,

coarse granularity, and significant performance overheads (§5.2.2).

Software Isolation Replacing OS protection with language-based one is not

a new idea. Software fault isolation [235] rewrites object code of modules written

in unsafe languages to prevent them from writing or jumping to addresses outside

their domains. Singularity’s software-isolated processes [8] ensure isolation through
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software verification. Leveraging memory safety, Andromeda can be applied in

environments with runtime code evaluation, for which binary rewriting and software

verification might not be an option.

Language-based information-flow control [180, 229] (IFC) emphasizes data flow

over code structure and, like Andromeda, depends on memory safety. IFC is more

powerful than code-oriented compartmentalization but with performance and usabil-

ity implications. Power comes from the fact that it provides semantic assurances over

entire data flows for multi-user systems that combine many sensitivity levels—often

allowing untrusted code to see sensitive data by blocking its subsequent commu-

nication. Unfortunately, fine-grained tracking and checking usually translates to

higher performance costs. Andromeda decomposes at intuitive trust boundaries

and granularity (modules), has negligible performance costs, and remains backward-

compatible with existing codebases.

While our techniques are not JavaScript-specific, prior work in JavaScript has

largely focused on the client: execution isolation [132], object capabilities [135],

sandboxing [210, 7], and information flow control [203]. Although isolation primi-

tives (i.e., iframes), script origin (i.e., explicit sources), threat model (i.e., no sys-

tem access), compartment numbers (i.e., few), and developer effort (i.e., manual

rewrite) are all different, it would be interesting and worthwhile to see adoption of

Andromeda’s techniques on the web.

Capabilities Capability systems [112, 113, 195] place resource restrictions by

distinguishing data values from pointers. Object-capability systems, such as An-

dromeda, achieve this conveniently by restricting the ability to name a resource,

essentially treating the object reference graph as an access graph.

To make capabilities more widespread, efforts such as Joe-E for Java [130] and

Caja for JavaScript [135] restrict popular languages to object-capability-safe subsets.

Iris exploits the structure of the dependency graph to introduce backward-compatible

capability-like (membrane) wrappers, retrofitting security on vanilla JavaScript—
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without any restrictions–by leveraging meta-object capabilities provided by the lan-

guage itself.

Contract and Metaobject Systems Andromeda’s PICs are a special case of

contracts—executable partial program specifications—for specifying privilege. Con-

tracts were pioneered by Eiffel’s “design-by-contract” methodology [131] and have

seen widespread use [161, 65, 234, 103, 97, 217]. PICs fit in latent contracts [65],

purely dynamic checks that are transparent (and orthogonal) to the type system,

as opposed to manifest contracts [76], in which types record the most recent check

that has been applied to each value. Andromeda restricts the privilege of code

in the contracts by leveraging its security-monitor transformation infrastructure.

Andromeda’s exceptions offer first-order information about which modules are

responsible for a violation, contrary to sophisticated (and more expensive) blame

assignment and propagation in contract systems.

Andromeda’s contract-enforcement transformations are made possible by metaob-

jects [100]—objects that manipulate objects, enabling a program to access its own

internal structure. This functionality is inspired by Self’s mirrors [215], Smalltalks’s

method wrappers [29], AmbientTalk’s mirages [142], and E’s proxies [136]. An-

dromeda’s users do not need to provide their own implementations of metaobjects.

Programmatic Transformations Unsound program transformations [173, 163,

197, 198] attempt to alter the semantics of the original program in principled ways,

to enable self-healing, failure-recovery, and increased security. While Andromeda

alters the semantics of offending components (manifested as PrivilegeExceptions),

it does not alter those of benign code; transformations do not introduce any form of

concurrency.
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9.5 Automated Distribution

Automated Parallelization There is a long history of automated parallelization

starting from explicit DOALL and DOACROSS annotations [34, 115] and continuing

with compilers that attempt to automatically extract parallelism [160, 82]. These

systems operate at a lower level than Ignis (e.g., that of instructions or loops instead

of module boundaries) and typically do not exploit runtime information.

More recent work focuses on extracting parallelism from domain-specific pro-

gramming models [68, 74, 105] and interactive parallelization tools [98, 92]. While

these tools simplify the expression of parallelism, programmers are still involved in

discovering and exposing parallelism. Moreover, the insights behind these attempts

are significantly different from ours, as they extract parallelism statically during

compilation instead of dynamically during runtime.

Distributed Environments A plethora of systems assist in the construction of

distributed software. At one end of the spectrum, distributed operating systems [169,

236, 159, 143, 166, 178, 56, 14, 189, 182] and programming languages [232, 194, 101,

59] provide a significant amount of flexibility in the resulting application. However,

they involve significant manual effort using the provided abstractions, which are

strongly coupled with the underlying operating or runtime system. Light-touch

distribution does not make assumptions about the underlying operating system, and

makes only minimal assumptions about the language runtime.

At the other end of the spectrum, distributed computing frameworks [49, 146,

248, 145, 168] and domain-specific languages [9, 22, 128, 57, 140] simplify certain

patterns, but do not offer the flexibility of a full-fledged environment. Develop-

ing under these frameworks differs quite significantly from how developers normally

compose applications. In Ignis, developers write general programs as they would

do normally—only sprinkling them with “control-plane” insights.

Object-based Distribution Several language-based approaches attempt to pro-
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vide a single system image (SSI), either under new [111, 116, 25, 38] or existing

languages [17, 12, 251]. The latter are closer to Ignis, but focus on SSI rather than

component replication (except pure-function replication for cJVM [12]), and do not

support dynamic profiling-based scale-out. They also impose a cluster-aware version

of the JVM, whereas Ignis comes as a third-party module running on a completely

unmodified V8.

Taurus’ policies [122] and Terracotta’s annotations [27] share the same flexibility-

automation philosophy as Ignis’ recipes, albeit at different levels. Taurus does

not transform non-distributed applications, but is complementary to Ignis: using

a holistic runtime would have helped coordinate just-in-time compilation, module

spawning, and garbage collection across nodes. Terracotta’s approach (see AOP

below) requires significantly more developer effort, and does not support distributing

the standard library (à la fs for Ignis).

More generally, distributed operating systems, programming languages, and language-

based run-times are closer to Andromeda [225]—the platform upon which Ignis was

developed—than Ignis itself.

Application Partitioning Automated application partitioning [89, 247] and mo-

bile code offloading [185, 46, 42, 104, 239, 58] introduce (opaquely) the network into

the application. Applications are split into a small number of parts, typically two:

one runs on the server with nearly unlimited resources, while the other runs on the

client with very constrained resources. There is no runtime profiling, and often no

performance-oriented component replication [89, 247], as the goal is to hide the net-

work and offer a continuum to the end-user. Wishbone [148] partitions sensornet

programs automatically, but only if written in a custom stream-processing language

and with predictable input patterns.

Circus [44] and ISIS [23] exploit development-time module structure, but their

replication focuses on fault-tolerance instead of scalability. Circus forwards calls to

all replicas, whereas ISIS uses a primary-backup scheme. In contrast to Ignis, they
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operate in a static environment and without runtime introspection, decomposing

applications at compile-time. They also assume knowledge of module requirements

and deterministic, idempotent modules whose semantics remain locked; in Ignis,

such domain-specific information is expressed via recipes and can change at runtime.

Security-oriented compartmentalization [102, 32, 24] decomposes software into

multiple isolated components with the goal of improving its security properties—

and often at the boundaries of (third-party) modules [144, 224, 108, 213]. However,

it does not leverage runtime profiling, and is usually static, targeting privilege reduc-

tion rather than performance increase. DeDoS [52] includes profiling for denial-of-

service attacks, but requires users to structure their applications in terms of minimum

schedulable units (MSUs).

Component Architectures Lambda [60, 85] and microservice [67, 147] archi-

tectures build server applications as sets of loosely-coupled components. While in

principle small and light, both are vastly more coarse-grained than language-level

modules. Whereas a single multi-hundred-package microservice can scale out inde-

pendently, light-touch distribution can scale out individual components of a single

microservice. Moreover, communication between services is request-response style

and is made explicit to the application. Most importantly, such decomposition is

a manual process that requires careful design, including agreeing on the interfaces,

prior to development.

Transformations Aspect-oriented programming (AOP) is a programming model

that maps program join-points to advice, actions to be taken at these points [99]. For

light-touch distribution, these would be “calls at the module boundary” and “wrap

with profiling”, respectively. Some cross-cutting aspects around the program could

be transformed to their distributed versions (e.g., built-in fs module). In contrast

to AOP, Ignis does not inject dependencies, therefore control flow is not obscured.

Moreover, developers do not need to understand different concerns—that is, program

structure is not affected and developers do not alter or introduce code.
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More generally, AOP is related to metaobjects [100] that enable a program to

access to its own internal structure, including rewriting itself as it executes. They

are examples of runtime reflection, of which Ignis makes extensive use to traverse,

understand, and rewrite interfaces; but developers using Ignis do not need to provide

their own metaobjects.

There has been a recent emergence of unsound program transformations [173,

163, 197, 198] that attempt to alter the semantics of the original program in princi-

pled ways. Light-touch distribution can be seen as introducing programmer-guided,

“control-plane” semantic hints at the module boundaries. Using these hints, pro-

grammers effectively guide the principles behind how the semantics of a program

change.
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Chapter 10

Conclusion

The previous chapters show that it is possible to lower the complexity of employing

distributing systems using a combination of techniques. Below, I reflect on some of

the design decisions and their limitations (§10.1–10.4), outline possible avenues for

further research (§10.5), and close with a few higher-level thoughts (§10.6).

10.1 Limitations

The work presented in Chapters 3–6 was motivated by limitations in Andromeda’s

design. Several other limitations of the system proper remain, three of which are

outlined below.

Asynchronous Programming Continuation-passing call style (CPS), when paired

with cooperative scheduling, provides a convenient way of expressing which parts of

a program should proceed concurrently and which ones should be sequential. How-

ever, writing in CPS-only is too verbose—even a trivial add(1, 2) function has to

be written as add(1, 2, κ) where κ is a continuation function. For this reason,

the asynchronous programming model offers a convenient middle ground: CPS for

operations involving I/O and need to be concurrent, and conventional direct call

style (DPS) for everything else.
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However, mixing the two call styles in the same environment significantly compli-

cates automation—especially since, in both cases, the type of the function remains

the same. Consider .map(φ) and .read(κ) that (in a simply-typed Lambda calcu-

lus [165]) have identical types; however, in the first case φ is called synchronously,

whereas in the second κ is called asynchronously (and its argument is semantically

equivalent to a return value). How can transformations know, at runtime, which one

is which?

One solution to this problem would be to label functions with identifiers that

signal whether a function is synchronous. Fortunately, EcmaScript functions are

themselves objects, which allows attaching arbitrary properties—a feature used ex-

tensively in Andromeda. An initial label for built-in functions would need to

be provided, but then functions calling these functions could automatically label

their return values. By tagging functions, transformation wrappers would become

call-style-aware, applying the right transformation by checking argument labels at

runtime.

Transactional Semantics A feature that is missing from Andromeda today is

the ability to invoke multiple operations (on potentially different nodes) in a way

that preserves atomicity and isolation. While single-user semantics and cooperative

scheduling ameliorate the problem, they do not provide full remedy.

Designing a configurable, “overlay” transaction system for Andromeda com-

bines several interesting challenges. First, it needs to support the execution of

general programming language—i.e., arbitrary functions, which might include side-

effects outside the boundaries of the system. Second, overlaying transactions on

an existing system may needs to support user-defined constructs—e.g., objects,

functions—that are not language built-ins and may be expressed through several

different means. Third, providing mixed consistency guarantees—at a high-level,

configurable way similar to other services—is an open problem that is just starting

to be addressed [79, 207, 134]. These challenges compound with a scalable, fully
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decentralized transaction coordination.

A starting point for a solution would be a combination of a dedicated transaction

management service and automated runtime transformations for augmenting opera-

tions with transaction identifiers. A pessimistic protocol (or one augmented with a

centralized sequencing mechanism) seems more appropriate because reverting certain

side-effects such as console output is impossible.

Fault-Tolerance The distributed versions of built-in services provide a degree of

fault-tolerance—e.g., store for persistent state. However, the current version of An-

dromeda does not adequately handle replica failures or network partitions in the

general sense, which includes handling calls that were scheduled on failed replicas.

Call scheduling could be prefixed with a form of check-pointing so that, upon failure,

Andromeda reschedules the dropped call on a different replica (potentially jump-

ing the queue, to compensate for the lost time). Moreover, failure-aware scheduling

would adapt scale-out towards the unaffected part of the deployment. Andromeda

would also need to protect against partial global changes, where only a subset of

nodes receives an update (e.g., write to a global variable), using some form of con-

sensus.

Work on provenance (and especially domain-specific lineage, such as the one

pioneered by Spark [248]) can be of significant aid here; however, general-purpose

failure tolerance at the level of individual (potentially side-effectful) functions will

require further insights. Configuration parameters, pervasive in Andromeda, offer

a clear starting point for such an endeavor—for example, work on failure-tolerant

light-touch distribution will lead to new recipes for tuning failure-related trade-offs.

As a side-note, some of the Andromeda’s simplicity seems to be threatened by

fault-tolerance: once one starts worrying about fault-tolerance and error handling,

complexity may start crippling up towards the user. However, the split between

mechanism and policy and, more specifically, the high level semantic annotations

of policies should remain robust to the introduction of mechanisms to deal with
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these concerns. While domain-specific languages for each one of these services may

grow, this will not be significantly different from what they already support. The

distributed storage system, store, shows some evidence: developers only need to de-

clare their failure expectations from the distributed storage system—replication,

consistency, etc. The specifics of error handling depend a bit on chosen the lan-

guage; unfortunately, JavaScript has no (direct) support for option types (e.g.,

Haskell’s Maybe Int) but instead allows throwing exceptions. Exceptions bypass

the normal control-flow, which significantly complicates transformations (aside from

other problems). The hope is that the ideas presented in this dissertation are appli-

cable to languages with more expressive type systems.

10.2 On BreakApp

BreakApp’s techniques are not tied to a particular programming language. The

use of JavaScript and its ecosystem was primarily due to three reasons—leveraging

Andromeda’ infrastructure, a large package ecosystem, and a plethora of known

security problems.

Interpreted languages are a particularly good fit for runtime compartmentaliza-

tion. They expose a single function or function-like operator that takes care of

locating a module, interpreting it, and exposing its interface in the caller context.

Because all of this happens during runtime, the boundary detection that occurs at

the import statement is conveniently unified with runtime compartment construc-

tion and code transformations. Moreover, the ability to (re-)bind different functions

to the same variable names and interpose on object accesses further simplify things.

Thus, BreakApp can be ported straightforwardly in languages such as Lua, Python,

and Ruby.

Compiled languages do not enjoy these conveniences. The work done at runtime

for JavaScript would need to be split across three phases: compile, link, and run-
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time. An implementation of BreakApp for compiled code would also face further

challenges. First, modules may be linked and loaded statically or dynamically, which

complicates the choice of how to divide work between the three phases. Second, type

information may not be present at either compile time or run time in languages like

C, thus complicating object introspection and marshalling. Finally, source code may

not be available for all untrusted modules. Without source code, compiler-driven

transformations become infeasible.

Some of these individual challenges have been recently addressed in the litera-

ture. For example, C-Strider [186] provides type-aware heap traversal for C pro-

grams. Concurrent with our work, researchers are just starting to tackle automated

module isolation in compiled languages such as C [213] and Rust [108]. This pro-

vides evidence that adapting BreakApp-like techniques for compiled languages is

feasible, albeit nontrivial.

BreakApp raises many interesting questions regarding module restarting. One

line of exploration is related to runtime policy changes, which might lead to changes

in the structure of compartmentalization at runtime—and which can be based on

dynamic feedback. While virtually all compartmentalization systems in the litera-

ture are geared towards static decomposition, BreakApp’s (and Andromeda’s)

dynamic policies can be altered at runtime. A related line of exploration is patching

applications by updating individual modules during runtime. Given isolated mod-

ules from BreakApp, compartments can be used to enable incremental, restart-free

updating of applications, which can benefit security. For example, one could imag-

ine replacing modules with better versions of modules, generated either through

existing (better) modules [197, 198, 199] or through active learning and regenera-

tion [174, 196]. Practical challenges include migrating state of individual modules

from the old to the new version and the frequency of updates in applications com-

prising of hundreds of modules.
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10.3 On Iris

Similar to BreakApp, Iris’s ideas are not tied to a particular programming lan-

guage; JavaScript and its ecosystem are used for the same illustrative purposes as

BreakApp, in addition to the ability to compare Iris with BreakApp.

Other dynamic languages such as Lua, Ruby, and Python conveniently unify

module identification with runtime interposition: a single function or function-like

operator locates a module, interprets it, and applies transformations before exposing

its interface in the caller context. All these languages offer runtime capabilities such

as name (re-)binding, value introspection, and access interposition.

Compiled languages—such as Haskell, OCaml, and Rust—would apply trans-

formations using compile-time metaprogramming facilities, such as templates (e.g.,

Template Haskell) and macro expansions (e.g., Rust’s macro system). Such facilities

would alleviate the runtime overhead of transformations, improving program startup

times; however, they would not affect the overhead of contract evaluation, as this is

still a runtime operation. Static type checking could further aid developers by issu-

ing warnings of incompatible privilege settings. Contrary to BreakApp, however,

there is no need for support from the runtime linker because libraries do not execute

as separate processes.

The combination of BreakApp and Iris raises the question of mixing module-

level compartmentalization systems, targeting different threat models, automatically.

For example, a more sophisticated combination of analyses can detect (i) native mod-

ules (statically), good candidates for SFI-based containment [235, 245], and (ii) DoS-

attacked modules (dynamically), good candidates for Ignis-like scale-out [52, 222].

Unutilized performance budget can then be traded carefully for selected security

improvements.
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10.4 On Ignis

Ignis’ key enablers—i.e., dynamic languages, module ubiquity, and the program-

ming model (§6.2.4)—are also its key limiting barriers for wider applicability.

Ignis’ ability to significantly automate distribution is made possible due to a

confluence of trends in today’s development environment: (i) many small modules

with clean, high-level interfaces enable high-resolution profiling and transformation,

(ii) dynamic programming languages simplify value introspection and type rebinding

during runtime, and (iii) cooperative, event-driven concurrency models coupled with

continuation-passing style (CPS) ensure the application can decide when to release

control, (iii) phased program behavior and stateless protocols (i.e., “everything as a

server”) unlock high-level, program-wide transformations. Making Ignis applicable

more broadly would require lifting some of these barriers—for example, decomposing

an application into components even in the absence of explicit modules and providing

bolt-on scalability without any of the features offered by dynamic languages.

Another limitation is related to Ignis’ statistical profiling models. The decision-

making infrastructure outlined in §6.4, including the basic statistical profiling mod-

els described in §6.4.1 and the controller logic in §6.4.2 showed the potential of

light-touch distribution. More sophisticated prediction logic for profiling and coor-

dination (§6.4) is critical for elasticity. It should combine longer call history with

the ability to quickly detect sudden changes in workload characteristics. Moreover,

it should attempt to capture resource heterogeneity—even the distinction between

locally available processors and distributed hosts. The main challenge is combin-

ing sub-linear space growth at the module boundaries with prediction latency low

enough to be useful in online decision-making.
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10.5 Towards the Future

By exploring this area, Andromeda was fortunate to reveal the existence of several

interesting problems that have not yet seen adequate solutions.

Distributed Communication Andromeda’s development resurfaced a (mostly

known) mismatch between what distributed systems need from the communication

layer and what protocols in wide deployment provide. Most distributed systems

make extensive use of message-oriented multicast communication patterns in which

a node sends messages to several other nodes. Yet, for simplicity, most such systems

default to all-or-nothing, one-size-fits-all, point-to-point transport primitives such as

TCP—because the alternative is to build a protocol from scratch on top of UDP.

TCP is far from ideal, as in most cases it is either “too much” or “too little”. In

many cases, TCP is just too costly—setting up and tearing down connections, queue-

ing for ordered delivery, etc. are all guarantees that trade performance for reliability.

Worse even, as TCP provides a fixed, all-or-nothing, one-size-fits-all semantics—

reliable, ordered, and error-checked delivery of connection-oriented byte-streams—it

is impossible to recoup some of this cost by “disabling” some of these features.

In other cases, TCP’s features alone are insufficient—being point-to-point, it is

a poor match for systems whose fundamental raison d’être is distribution. Point-

to-point reliability is not composable without further higher-level mechanisms, such

as atomic broadcast [90], to the point that end-to-end consistency guarantees and

transactional semantics end up being handled at a layer above TCP. Thus, TCP’s

features are not only costly—they are also insufficient.

This mismatch is worsened by the emergence of mixed -guarantee systems, in

which a single service uses several different distribution guarantees configurable at a

very fine granularity. Andromeda’s canonical example is store, but several other

proposals provide mixed consistency [79, 207, 134], replication [63, 233], and index-

ing [228] guarantees at the granularity of individual objects. In such environments,
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the combined high cost and insufficient semantics of TCP make little-to-no sense.

A promising solution would be to provide distributed applications (and their

developers) tunable transport layer abstractions. Using insights similar to the ones

used in Ignis, the proposed solution would combine (i) communication channels

configurable at fine-granularity with (ii) a high-level domain-specific language for

expressing these configurations. At the back-end, a network stack optimizer could

take care of analyzing combinations and generating specialized compositions with

performance—of which TCP is an instance.

Configuration Inference A key design principle behind Andromeda (and the

frameworks built on top of it) has been the distinction between mechanism and

policy. Mechanisms offer powerful automation, but are always parametrizable by

some kind of configuration—formulas for store, policies for BreakApp, contracts

for Iris, and recipes for Ignis. This distinction has multiple benefits, both for the

designers and the users of these mechanisms—especially when policies are expressed

as functions. Designers do not need to anticipate all possible scenarios, and users

can specialize these mechanisms to their needs. As users need to provide only a

high-level configuration instead of developing the entire mechanism, configurations

fundamentally lower the complexity of employing these systems.

A remaining open problem is the inference of these configuration options—the

last barrier to automation. Static analysis is difficult in environments with few-to-

zero type annotations and modules written in multiple languages, some of which

come compiled. Dynamic analysis is equally challenging, as it requires carefully

tracing pre-runs that are still not guaranteed to cover all possible (non-deterministic)

interleavings.

A combination of tooling (for space exploration) with some form of learning could

lead to conservative recipes that improve performance without breaking semantics.

This tractability is due to two key observations. The first observation is that, because

complexity is now concentrated in only a narrow space, the space of all possible con-
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figurations is smaller and thus more amenable to brute-force search. Appropriately

restricting the language further into specific classes would further restrict the search

space. For example, Iris contracts that target a subset of its threat models—say

only runtime interface subversion—could be inferred using either static or dynamic

analysis.

The second observation is that such search does not need to be brute-force if it

starts from conservative models that offer few benefits but without breaking certain

invariants. For example, automatically inferring Iris contracts that offer some se-

curity improvement without breaking functionality. Similarly, one could start from

a high-level security principle—e.g., isolation, non-interference—and generate con-

tracts that collectively enforce this property.

Overlay Type Checking Dynamic languages work well for quick prototyping [158],

but as a codebase grows large even small changes can lead to bugs. Such problems

have been very common in the development of Andromeda, despite considerable

investment in testing, linting, and type checking [64]. While static type checking

can quickly rule out certain classes of bugs, it is not compatible with the advanced

runtime code transformation and evaluation that Andromeda employs.

The experience of developing several frameworks with Andromeda show clear

value in a series of overlay type systems that can check types just-in-time [171] and

are orthogonal to the semantics of the underlying language. Key benefits include

type-checking at load time (e.g., right after a transformation or a message) and the

checking of different (and diverse) invariants on the same piece of code.

This approach would be an extension over pluggable type-systems [28], in which

multiple type-systems co-exist over the same code-base. A key insight here has been

to encode types in the comments, a technique that maintains backward-compatibility,

enables the co-existence of multiple type-systems, and avoids having type declara-

tions overload values (this is true for complex types). Example overlay type-systems

include (i) one checking purity, useful for massively distributed computations, (ii) one
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checking RWX permissions, useful for quickly checking third-party modules, and (iii)

one checking union types, useful for encoding more complex invariants and aiding

the development of Andromeda.

10.6 Closing Thoughts

Aside from collecting evidence for my thesis and developing several techniques ap-

plicable beyond Andromeda, my dissertation hopefully provides a glimpse of a few

broader ideas. Three non-obvious ideas are the following.

First, the use of dynamic programming languages with interpreted semantics,

precisely due to the dynamic nature of distribution, brings many interesting benefits

to distributed systems. Fundamentally, distributed systems are all about runtime

reconfiguration—including interface discovery, (re-)generation, and agreement. Even

at a lower level, nodes constantly evaluate and re-evaluate code that is in transit

across nodes. This decision represents a significant departure from the existing liter-

ature in the field of distributed and operating systems, but makes sense in retrospect:

a low-level, statically checked, compiled language seems like a poor fit for such an

environment.

Second, leveraging (and providing support for leveraging) the software engineer-

ing force of an existing package ecosystem numbering over a million modules is

incredibly beneficial. This decision was also unusual for research in distributed and

operating systems, especially when a key part of the thesis is to redesign a layer that

sits lower in the software stack (operating system abstractions).

Third, the use of powerful languages needs to be paired with equally powerful

protection mechanisms. Abstraction misuse—accidental or purposeful—is a general

problem, regardless of expressive power; however, power seems to have a multi-

plicative factor in making misuses catastrophic—for example, a simple assignment

affecting runtime resolution in the prototype chain of all objects can be irreversible.
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Powerful runtime protection mechanisms, such as the ones presented by Iris and

BreakApp, are needed to guard against such misuse.

On a separate note, my hope is that Andromeda can (and will) be used as a basis

for both teaching and conducting research on distributed systems. Teaching is aided

by the overarching goal, which has been to lower the complexity of employing dis-

tributed applications—especially for programming “in the small” [53]. I cannot think

of a better consumer for this than students about to embark onto distributed-systems

explorations, such as undergraduates and graduate students building projects. In

fact, having a distributed environment that students can setup in under a second is

what many excellent courses in distributed computing lack. Research prototyping

is aided by Andromeda’ low-complexity and high-performance characteristics: one

can quickly prototype ideas whose single-node performance will not suffer. This is a

sharp contrast over older distributed environments written in lower-level languages,

exactly because they had not received the same engineering care as Andromeda’s

internals (e.g., V8, LibUV, libraries, ecosystem, etc.). A series of frameworks built

atop Andromeda and presented in this dissertation—e.g., BreakApp, Ignis—

provide ample evidence for this.

As a final note, it seems unfortunate that the distributed (and operating) systems

and programming language communities are somewhat separate today. While these

communities have considerable shared interests in providing better abstractions, their

transfer of ideas is limited.

The programming languages literature has much to offer students of distributed

and operating systems. Its community’s emphasis on formal specification and under-

standing enables very useful analyses that can be an ally in any context. Moreover,

programming languages are fundamentally a tool for creating new abstractions—the

interface between a human and a system—truly unconstrained from the state-of-

practice.

Conversely, while the programming-language readership of this dissertation may
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be more limited, distributed systems have much to offer scholars of programming

languages. Perhaps the most important offering is truly a plethora of interesting

problems to apply insights and techniques from programming languages. Offer-

ing practical, usable abstractions for distributed and operating systems can have

widespread impact—even simple ones can make a huge difference in the daily lives

of the designers and practitioners of such systems.

Accordingly, this dissertation can be viewed as an attempt to merge these two

worlds by revisiting language-based distributed operating system abstractions. The

underlying motivating question has been the following: if we were to redesign the ab-

stractions offered by distributed operating systems—possibly by reusing ideas from

the past, and given the performance improvements in higher-level languages—how

would the solution look like? The constraints of building a practical, usable system

within the (admittedly limited, for a project of this scale) scope of a Ph.D. con-

strained the programming language exploration to augmenting an existing offering

rather than designing one from scratch. I am hopeful, however, that the insights

and experiences from Andromeda will inform future research in either of these two

communities and will aid collaboration.
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Appendix A

Tutorial Introduction to

Andromeda

This chapter presents a quick introduction to Andromeda, with two key objectives.

The first is to show essential elements of the JavaScript language to readers that lack

any background in the language—as such, it uses small (but real) programs, without

getting too bogged down in details, rules, and exceptions. The second and most

important objective is to show the basics of programming with Andromeda. This

includes the use of the standard library, how Andromeda interfaces with existing

programs, and use of the interactive shell. The goal is not to demonstrate novelty—

other chapters achieve this—but to give a sense Andromeda’s nature to the reader.

Note that Andromeda is at a very early stage of development for practical purposes;

still, there are some interesting tasks one can already achieve with it.

The easiest way to try these programs is by typing them into Andromeda’s

interactive shell. Before going further, note that Andromeda provides interactive

documentation using the following shortcut:

1 ;?

This shortcut will return set of beginner topics, including a fully-interactive version

of the following tutorial. Issuing queries on specific names—such as services or
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methods—can be achieved by typing:

1 ;? name

Further shortcuts available for interactive use are described later (§A.4).

A.1 First Program: Hello, Universe!

Here’s a typical first program, adapted for Andromeda:

1 andromeda.global.task.exec (() => "Hello , Universe!", log) (p19)

2 //=>{'.. b613564047d1 ..': 'Hello , Universe!',

3 //=> '.. b35c5a64519f ..': 'Hello , Universe!',

4 //=> '.. f74c53b4e063 ..': 'Hello , Universe!'}

Lines 2–4 show a sample output when you type the expression on line 1. Don’t

worry if your results are somewhat different—either the identifiers on the left or the

number of lines. We will now study this program starting from the right end of the

program and proceeding to towards its left.

First, the log function transforms, beautifies, and prints to the console any

value it is provided. This swiss-army knife is useful both for interactive prototyp-

ing through the shell and for debugging purposes in programs. To see its simplest

use-case, pass log as an argument to itself: log(log).

Second, the anonymous function () => "Hello, Cosmos!" is syntactic sugar for

function () { return "Hello, Cosmos!" } that takes no arguments and returns

a string. This function and log illustrate that functions in Andromeda are first-

class citizens: they can be assigned to variables, provided as arguments to calls, and

transmitted across nodes in the system.

These functions are provided as arguments to exec, a method responsible for

scheduling tasks to execute on (a set of) nodes. The key point is that exec is an

asynchronous and non-blocking function; its last argument is a continuation function

that will handle the results after the function completes. If it was synchronous
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and blocking, it would look as log(exec(t)). Such a continuation-passing style is

preferred, because exec can take longer than, say, an addition that executes locally;

concurrently, while exec is executing remotely, our shell is available for other tasks.

This call style is the common case in Andromeda.

Functions such as exec are provided by a service—in this case task. Services

provide the necessary functionality for building distributed applications. Examples

of services include store for persistent storage and query of objects, message for

communicating with a remote node, and nodes for returning the nodes available in

a deployment.

System services are associated with specific node groups, such as global. A

node group is a collection of nodes, physical or virtual computers that can execute

programs and store data. Three node groups come pre-configured in Andromeda:

(i) global, used here, for addressing all nodes, (ii) local, for addressing nodes

running on the same host, and (iii) self, addressing the current Andromeda node.

If you run Andromeda on a single laptop, global and local refer to the same

group.

All Andromeda-related services can be found under the andromeda names-

pace (i.e., the andromeda. prefix right before node.). Like everything else in An-

dromeda, the prefix and its semantics are configurable.

A.2 Scaling Up: Standard Library Interfaces

We now know we have a distributed system under our fingertips. Thus, a more

interesting example would be to have an arbitrary node greet us—i.e., have a remote

node execute the “Hello, Universe!” code and send the results back to the current

node. This can easily be done by:

1 let h = () => "Hello from " + andromeda.self.config.getNodeId () (p20)

2 //=> @base :: function

3 andromeda.global.tasks.exec(h, {nodes: 'any'}, log)
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4 //=> 'Hello from .. b613564047d11df47ef7b34f ..'

This illustrates the use of optional configuration arguments, expressed as objects.

An object is a type of collection that associates string keys with arbitrary values.

Values can be booleans, functions, or any other language value—including objects.

The structure of objects can change at runtime.

What if we wanted to get a greeting from all of the underlying nodes? By

changing task’s options one can ask all or a subset of nodes to execute something:

1 let h = function (me) {return "Hello from " + me} (p21)

2 //=> @base :: function

3 andromeda.global.tasks.exec(h, {args: 'andromeda '}, log)

Storage As you might have expected, Andromeda can ship arbitrary objects to

remote nodes. Objects represent any state and are used anywhere one would tradi-

tionally use a file or a data-base: data, configuration, messages—you name it! The

storage system exposes four basic operations, inspired by dataless programming [13]:

(i) put for insertions, (ii) get for retrievals, (iii) patch for updates, and (iv) del for

deletions. For example, consider the following insertion:

1 let galaxy = {name: "Andromeda", magnitude: 3.44} (p22)

2 //=> @base :: object

3 andromeda.global.store.put(galaxy , 'm31')

The system takes care of placing the data in one of the underlying nodes. Al-

though we don’t know its precise location (i.e., the node on which it is stored), we

know we can always locate it simply by asking Andromeda:

1 andromeda.global.store.get('m31', log) (p23)

2 //=>{ "name": "Andromeda",

3 //=> "magnitude ": 3.44}

Nothing out of the ordinary here: we pass the log function so that Andromeda

knows what to do when it fetches the object: print it. Later, we will discuss how to

tune various state-related properties (e.g., placing, fault-tolerance, consistency etc.)
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when desired.

Events It would be great if we could be notified about events happening across the

system (e.g., failing nodes, newly-joined ones, changes in topology). Andromeda

exposes an event channels, where user code can register or generate events.

As an example, consider what happens when nodes detect changes in the under-

lying topology. When the current node finds out that another node is not available,

it will generate a "peer-down" notification. Code that depends on all peers being

active can then take corrective action. We can instruct the shell to notify us when

the underlying topology changes:1

1 let f = () => { (p24)

2 andromeda.global.nodes.get(null , (e, d) => {

3 log("left w/", Object.keys(d).length , "nodes!")

4 });

5 }

6 //=> @base :: function

7 andromeda.global.events.on('peer -down', f)

Let’s jump to the next section to see this one in action!

Fault-Tolerance One reason why people use distributed systems is to tolerate

failures: a single computer can be in a state of either working or failed, but a

distributed computer can keep working even if a subset of the underlying nodes has

stopped working! Suppose that one of our nodes failed unexpectedly. To simulate

unexpected node failure:2

1. run andromeda.local.info.get()

2. note the process ID corresponding to the highest port number, say 3333.

1 This is somewhat in conflict to Andromeda’s philosophy of keeping the user experience
identical regardless of changes in the underlying structure. We can think of it in similar terms to
a superuser’s use of desktop notification when CPU starts overheating.

2 It’s much simpler to shutdown a node from within Andromeda. However, we want to simulate
an unexpected failure, since under normal shutdown a node will take care of some last-minute
bookkeeping tasks.
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3. in a separate terminal, kill that process using kill -9 3333.

Returning to Andromeda, the first thing we should see is the “left w/ . . . ”

message we defined earlier! We can attempt to retrieve the m31 object:

1 andromeda.global.store.get('m31', log) (p25)

2 //=>{ "name": "Andromeda",

3 //=> "magnitude ": 3.44}

Phew—we can still retrieve our data! Of course, there are cases when such

redundant replication is not desirable, or requires several tweaks. This is equally

easy, and depends on the originally passed to store.put.

Module Management Andromeda is extensible through a simple package man-

ager that allows incorporating code written by other users. Among other things, the

package manager takes care of: (i) fetching and bookkeeping third-party code with

minimal hassle, (ii) keeping all underlying nodes on the same package version, and

(iii) breaking up applications into pluggable components.

Let’s import mdc, the distributed version of a popular Markdown-to-HTML com-

piler (the following line requires a network connection):

1 let f = (e, d) => lg('Setup complete!') (p26)

2 //=> @base f :: function

3 andromeda.global.packages.get('@andromeda/mdc', f)

Function f will notify us when we can start using mdc. After setup is complete,

we can run program p4, presented in Chapter 1.

Some packages are already bundled with Andromeda. For instance, attn.

enables terminal color theming, beautifying source code output from lg; web is a

distributed HTTP server; and nx implements a Unix compatibility layer, allowing

users to call Unix utilities from within Andromeda. In any case, users do not need

to go through an installation step and there is no single, centralized package registry.

Wrapping Up This is enough to give a basic idea of what Andromeda feels

like. its goal is to allow users to express their intended computation worrying only
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about the inherent difficulties of their problem and not the difficulties of choosing

a distributed model of computation. To shut Andromeda down, do one of the

following: type ;q, press Ctrl+C, or call:

1 andromeda.global.nodes.del({halt: true }); (p27)

2 //=> ... Shutting down 3 nodes ...

A.3 Using Andromeda in Existing Programs

Andromeda is designed to interplay with existing programs; in many cases, these

programs are mostly distribution-oblivious—i.e., not written from scratch to exploit

distribution. Importing Andromeda into these programs provides access to the

library of distributed services.

Importing Andromeda The simplest way to import Andromeda into an exist-

ing JavaScript program is the following:

1 let andromeda = require("andromeda") (p28)

2 let c = {nodes: 5}

3 let f = () => { andromeda.global.task.exec (() => "Hello!", lg) }

4 andromeda.start(c, f)

Program p28 first imports Andromeda (1), creates an (optional) configuration

(2), and wraps the user program in a function f (3). Calling start (4) will launch

Andromeda by overriding defaults with the values in the configuration; when the

startup is complete, it will call the user-defined function f.

Alternatively, one might want to launch different functions at different stages of

the startup process:

1 let andromeda = require("andromeda") (p29)

2 andromeda.local.events.on("up", () => log("it's up!")

3 andromeda.global.events.on("up", () => {

4 andromeda.global.task.exec (() => "Hello , Universe!", log)

5 })
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6 andromeda.start ({nodes: 5})

The program above will call different functions at different stages of the startup

process.

More Complex Programs For a more complicated task, consider calculating a

simple proof-of-work function. Proof-of-work functions power modern cryptocurren-

cies such as bitcoin, and can leverage distribution.

Due to its complexity, we might want to type this program in a file named

e.g., pow.js. We can then launch it through the Unix shell, using andromeda -f

"pow.js".

1 let andromeda = require("andromeda"); (p30)

2 let pow = (pre , difficulty , start , step) => {

3 let zeros = Array(difficulty + 1). join('0');

4 let hash = require('crypto '). createHash;

5 while (true) {

6 let s = pre + start.toString (16);

7 let digest = hash('sha256 '). update(s). sha256.digest('hex');

8 if (digest.slice(-difficulty) === zeros) {

9 cb(null , {nonce: nonce , digest: digest });

10 }

11 start += step;

12 }

13 };

14

15 let dpow = () => {

16 andromeda.global.nodes.get(null , (e, nodes) => {

17 let max = Object.keys(nodes). length;

18 let init = 0;

19 let conf = {top: 1, args: () => ['pre', 5, init++, max ]};

20 andromeda.global.task.exec(pow , conf , out)

21 });

22

23 andromeda.start(null , dpow);
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This program first imports Andromeda. It then defines two functions: pow is

responsible for single-node proof-of-work (similar to how it would be written nor-

mally); and dpow is responsible for calling pow on multiple nodes.

A.4 Interactive-Shell Shortcuts

Much of the interaction on Andromeda is achieved through the interactive inter-

preter (or, shell). The shell exposes a programming interface mostly-identical to the

one available for programs. In fact, the andromeda instance object available through

the shell is the same as the one available to programs. Changes to any of the built-in

primitives (say, replacing the persistent file system with a non-persistent one, adding

a new interface) are reflected immediately in the shell (including the auto-completion

methods).

There are two cases in which shell understands code that cannot be part of a

valid Andromeda program. The first case is shortcut versions of more verbose

function calls to services. This feature is designed to be extensible by both users

and packages that add or replace existing shortcuts. Commonly used shortcuts can

be seen in Table A.1. The second case is interpreters from programming languages

that are different from JavaScript. In these cases, Andromeda forwards parsing

and error handling to them. When a user exits the interpreter, they are back into

the Andromeda shell.

Programs can be loaded from and saved to the distributed file system. The shell

history and the context is also persisted, distributed, and replicated across all the

nodes in the global group. Users can start their work in one node and continue their

session from any other node. This is another case where consistency is aided by

the fact that Andromeda is a single-user system: bits usually travel much faster

than users. Users can also process (e.g., run filter with regular expressions) their

command history and context similar to any other dataset. All of this is exposed via
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Table A.1: Shell Shortcuts. Examples of (default-defined) shortcuts for interac-
tive use. Imported modules may define their own shortcuts.

Prefix Calls To

;l package.get (re-)load module or package and make it available in scope; e.g.,
l @andromeda/breakapp will load the breakapp module

;h repl.hf save, load, inspect, or execute shell history; for example,
h /.*global.*/ inspect all commands that match this regexp

;c repl.cf save, load, or print context; for example,
c:s demo save context as demo

;t utils.typeOf output type of expression; for example,
t x output the type of the value assigned to “x”

;u unix.exec run ¡cmd¿ on Unix and print output; for example,
u:primegen ls -l / runs ls -l / on all nodes of primegen

;? doc.is see available interactive shortcuts or documentation for ¡exp¿; e.g.,
? global.store shows documentation for store in global.

;q nodes.del quit Andromeda; q1 quits only the current node
;v info.get display system version and other information

the shell service.
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Appendix B

The Node.js Module System

As several chapters leverage the module system, whose internals may not be known to

the reader. To ensure that the techniques presented in these chapters are appreciated

by a wider audience, the following subsections outline how module systems handle

modules at runtime—by exemplifying on the internals of the Node.js module system.

The chapter starts by sketching out the Node.js runtime (§B.1), then outlining the

use of the module system (§B.2), and finally discussing a few technical details of how

module loading works (§B.3).

B.1 JavaScript Implementation

Node.js combines a number of components to provide a high-performance JavaScript

runtime decoupled from the web browser: (i) the V8 engine, Google’s performance-

oriented JavaScript implementation used in Chrome; (ii) libuv, a cross-platform

library for event-driven, asynchronous I/O; (iii) a number of utility libraries (e.g., a

C library for HTTP parsing, zlib for compression, OpenSSL for SSL and TLS); and

(iv) a JavaScript standard library (e.g., module for loading modules, url for URL

processing).

V8 compiles and executes JavaScript source code. It provides mechanisms for
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creating objects, calling functions, allocating and collecting memory, and isolating

code within a single runtime.

Libuv implements the I/O subsystem (e.g., file-system, network) with an empha-

sis on providing abstractions that (i) are identical between different platforms, and

(ii) follow an asynchronous, event-driven style. Its core functionality is comprised of

the event loop, its worker threads, and callback-based notifications of I/O and other

events (e.g., signals). Moreover, it provides a unified, platform independent API

by wrapping such platform-specific APIs for system-level functionality (e.g., POSIX

timers, sockets, file operations, signals, system events, execution of children processes

etc.) with platform-independent, asynchronous equivalents. It gathers events from

the operating system (e.g., epoll, kqueue, IOCP, event ports) and invokes callbacks

defined by the users specifically as handlers for these events.

B.2 Interface of the Module System

Node.js’ module system is implemented entirely in JavaScript. It exposes require, a

global-looking function for importing modules. The following example demonstrates

the use of require:

1 // -------------- [./ main.js] ------------- (p31)

2 // importing point

3 let Point = require("./ point.js");

4 Point.create(1, 1). print (); // => [1, 1]

5

6 // -------------- [./ point.js] ------------

7 let Point = function Point (x, y) {

8 this.x = x; this.y = y;

9 };

10 Point.prototype.print = function print () {

11 console.log([this.x, this.y]);

12 };

198



13 module.exports = {

14 create: function create (x, y) {

15 return new Point(x, y);

16 }

17 };

In the example above, the main module (main.js) imports the point.js mod-

ule using the require statement (line 3) Functionality from the exporting module

(point.js) that is expected to become available to the importing module (main.js)

is assigned to a special module.exports object (line 13); the rest is module-private

functionality. Files and modules are in one-to-one correspondence (each file is treated

as a separate module). Method require is synchronous (i.e., blocking): it will block

execution until the module specified is loaded. The module system is implemented

in the module built-in module (§B.3), which locates, wraps, compiles, and executes

the specified file.

Andromeda hooks into module and alters the return value of the require call

that imports point.js (line 3).

B.3 Implementation of the Module System

At a very high level, loading a fresh module with require("foo"); corresponds to

the following five stages:

1. Resolution: identify the file to which the module specified corresponds, and

locate it in the filesystem.

2. Loading: depending on the file type, use the corresponding loader (e.g., V8

compiler for js, JSON.parse for json etc.).

3. Wrapping: wrap the module so that module-globals get encapsulated and

Node.js globals (e.g., require) get resolved.
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4. Evaluation: evaluate the wrapped module in the current context, so that global

names and top-level objects get resolved correctly.

5. Caching: add the module to a handful of module-related cache structures, for

purposes of consistency and performance.

Andromeda interposes on all of these steps to facilitate transformations. Wrap-

ping (3) and evaluation (4) are particularly interesting, because they allow An-

dromeda to interpose at the module boundary during runtime. Before a module’s

code is evaluated, the Node.js module loader wraps the module so that (i) it keeps

top-level variables (defined with var, const or let) scoped to the module rather than

the global object; and (ii) it provides some global-looking variables that are actually

specific to the module, such as the module and exports objects that the implemen-

tor can use to export values from the module and convenience variables—such as

filename and dirname containing the module’s absolute filename and directory

path, respectively. True globals remaining are (i) the global objects as defined by

the EcmaScript standard (e.g., Object, Function, Math); and (ii) Node.js-specific

globals (e.g., console, process, timer). These globals require further interposition.

1 // Node.js will wrap a module with a function , (p32)

2 // so as to bring certain names into scope

3 // before compiling/evaluating code.

4 let wrapped = "function (" +

5 "exports , require , module , " +

6 "__filename , __dirname , CTX) {" +

7 "let Math = CTX.Math" +

8 "let console = CTX.console" +

9 //...[ more definitions]

10 moduleSource +

11 "});"

Andromeda hooks into the wrapper function (the last variable in the function

definition, CTX). This trivial source-to-source transformation re-defines global vari-
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ables as module-locals and initializes them with Andromeda-augmented values.

For example, console in the context of the module will be an Andromeda-created

object that allows Andromeda to interpose on it. Evaluation of the module passes

an additional value to this function, which is the modified context. As a result,

any changes to the top-level objects and any global variables are accessible from the

within the module.

1 let load = function (mID) { (p33)

2 if (cache[mID]) {

3 return cache[mID];

4 }

5 let m = {

6 exports: {},

7 id: mID ,

8 dir: path.resolve(mID)

9 };

10 let cm = v8.compile(wrapped );

11 let ctx = andromeda.utils.freshContext(implicits[mID]);

12 cm(m.exports , this.require , m, mID , m.dir , ctx);

13 m.exports = andromeda.utils.wrap(m.exports , explicits[ID]);

14 cache[mID] = m;

15 return m.exports;

16 }

The load method in the Module module combines evaluation (line 10) and caching

(line 14) of the wrapped module. After evaluation, invoking the compiled function

generates the value that is assigned to module.exports from within the module (line

12). Andromeda passes a freshly constructed context at that invocation, modified

according to the implicit segment of the PIC corresponding to the module being

loaded. Before returning the value of module.exports, Andromeda transforms

it according to the explicit segment of the PIC corresponding to the module being

loaded. Finally, the results of the entire process are placed into the module cache

for later use.

201



Bibliography

[1] Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[2] CVE-2016-2537., 2016.

[3] Daniel Abadi. Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[4] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A New Kernel Foundation for
UNIX Development. In USENIX Technical Conference, 1986.

[5] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.
Douceur. Cooperative task management without manual stack management.
In Proceedings of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pages 289–302, Berkeley, CA, USA,
2002. USENIX Association.

[6] Gul A Agha. Actors: A model of concurrent computation in distributed sys-
tems. Technical report, DTIC Document, 1985.

[7] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven
Desmet, and Frank Piessens. Jsand: Complete client-side sandboxing of third-
party javascript without browser modifications. In Proceedings of the 28th
Annual Computer Security Applications Conference, ACSAC ’12, pages 1–10,
New York, NY, USA, 2012. ACM.

[8] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Galen Hunt, and James
Larus. Deconstructing process isolation. In Proceedings of the 2006 Workshop
on Memory System Performance and Correctness, MSPC ’06, pages 1–10, New
York, NY, USA, 2006. ACM.

[9] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak.
Consistency analysis in bloom: a calm and collected approach. In CIDR,
pages 249–260, 2011.

202



[10] Amazon.com, Inc. Amazon web services, 2006. Accessed: 2017-11-11.

[11] Apache Software Foundation. hadoop tutorial, 2016.

[12] Yariv Aridor, Michael Factor, and Avi Teperman. cjvm: A single system image
of a jvm on a cluster. In Proceedings of the 1999 International Conference on
Parallel Processing, ICPP ’99, pages 4–, Washington, DC, USA, 1999. IEEE
Computer Society.

[13] R. M. Balzer. Dataless programming. In Proceedings of the November 14-16,
1967, Fall Joint Computer Conference, AFIPS ’67 (Fall), pages 535–544, New
York, NY, USA, 1967. ACM.

[14] Amnon Barak and Oren La’adan. The mosix multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems,
13(4):361–372, 1998.

[15] Mick Bauer. Paranoid penguin: Apparmor in ubuntu 9. Linux Journal,
2009(185):9, 2009.

[16] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-
becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh
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