
Agents in Network Management
Osman Ertugay Micheal Hicks Jessica Kornblum

Jonathan Smith

26'" February 2000

Abstract

The ubiquity and complexity of modern networks require automated management and control. With
increases in scale, automated solutions based on simple data access models such as SNMP will give
way to more distributed and algorithmic techniques. This article outlines present and near-term
solutions based on the ideas of active networks and mobile agents, which permit sophisticated
programmable control and management of ultra large scale networks.

Introduction

Although the widely accepted definition of "Network Management" has not changed in over a decade,
the importance of managing a network has increased dramatically. Network? have become embedded
in almost everything we do from placing a phone call or sending an email to running a business. What
was initially a few computers connected together has now become a vast array of specialized devices
connected by phone lines, optical cable, satellites, and microwave dishes. The number of network
services ha? also dramatically increased. The telecom~nunications industry has recently created many
"value added services" such as caller identification, call waiting, and call forwarding. They also offer
customers a diverse range of network resources such as Plain Old Telephone Service (POTS),
Integrated Services Digital Network (ISDN), Digital Subscriber Lines (DSL), T1 and T3 lines. The
Internet service base has also expanded, with demand for quality of service (QoS) guarantees, mobile
computing, and secure communications. And of course, new services in the network engender the
proliferation of new software applications and specialized hardware devices.

As networks and their services and applications become larger in scale and more complex, the
need for network management increases. Informally, network management seeks to configure,
diagnose, and otherwise control the network and its services. However, traditional models of network
management have not evolved at the same rate as the networks they manage. For example, the Simple
Network Management Protocol (sNMP)'~~ still the de facto standard in the Internet community, even
though it was developed over ten years ago when IP-based network presented a much different
landscape. Most network managers find that an ad-hoc collection of scripts is their most valuable
management tool, rather than a well-defined approach involving automation, simply because the
network is too complex.

Distributed systems and distributed algorithms, have arisen as a way to deal with scale,
complexity and diversity in networks. Distributed algorithms are used in current networks in an ad-
hoc way; routing algorithms in the Internet are a conspicuous example. While other approaches exist,
the two best-known approaches that provide aplatform for implementing distributed algorithms are
agent-based systems and active networks. In both cases. systems across the network are augmented
with some level of programmability. In the case of agents, this usually occurs at the application layer,
while in active networks the entire network itself becomes programmable, including the network layer
using "active packets."

In this paper, we propose to enhance the existing client-server model of network management
with an agent-based model that allows distributed computation. In doing so, we aim to reduce the
complexity of implementing management tasks, and improve the agility with which these tasks can be
deployed to react to new network services and infrastructures. By providing a uniform model for
distributed programmability, we believe network management tasks may be implemented with greater

automation. While our thinking has been informed by our experiences with active networking, in this
paper we will adopt the mobile agent perspective.

In the following section, we introduce and discuss agents, and the advantages of agents as
compared with the client/server model. Section 3 examines the current practice of network
management and highlights areas that need improving. In section 4, we present a number of
approaches to network management using agents, describing work we have already done in the active
networking context, as well as work to be done in other agent models. We briefly describe various
related efforts in Section 5. We present conclusions in Section 6.

2 Agents

Though many definitions abound, we minimally define an agent to be a program that perfoms a task
on behalf of some other entity (like a person or larger program). Expanding on this definition, agents
may have a number of characteristics. A ,stationary agent runs locally, perhaps sending messages
across the network, while a mobile agent may move (both its code and its state) across the network
during its computation. An agent may be persistent, waiting for events to occur and then responding to
them, or it may be ephemeral, simply performing its task and then terminating. If agents may
communicate with one another, they may be composed into larger applications.

2.1 Benefits of Agents
An agent is used to offload some of the computation that would normally be required of its client. If
the client is a human user, then the agent simply automates a common task. For example, in ssh2, a
user may use an ssh-agent to hold his ssh-key's passphrase and automatically supply that phrase
whenever the user makes connections through the agent, obviating the need of the user to repeatedly
type the passphrase. However, if the client is a program, then the end result is to decompose and
distribute the program into autonomous pieces. For example, consider the client-server model of
communication as illustrated in Figure 1.

Figure 1: Client-server model

Programs are depicted as circles, and computers are depicted as squares. In this example, a
client program wishes to obtain some information located at a server elsewhere on the network. The
client then sends a number of request messages to the server, and the server replies with the
information. This is a common paradigm in network management: the client is the NOC (Network
Operations Center), and the server is a network host or router being managed. The request messages
correspond to SNMP GET messages and the responses are SNMP RESP messages.

Figure 2: Agent model

The agent model is depicted in Figure 2. Here, an agent of the client program is co-located with the
server. Upon receipt of the client message, the agent initiates a number of local messages to the server,

and responds to the client based on the server's responses and some computation. This approach has a
number of benefits:

reduced network trafSic
Communication between client (via the agent) and server is local until the final result is calculated
and returned. This especially important if the management action is to diagnose and respond to an
already congested network.
distributed computation
Some of the client's compatation is offloaded to the agent running on the server. This has two
benefits. First, this reduces the load and resource consumption on the client application. In the
case of network management, we could imagine a single NOC administering hundreds of nodes.
By offloading a small computation to each node, we barely disturb the node, but we greatly benefit
the client. Second, the resulting distributed computation is more modular and easier to
understand.
low latency
By localizing communication between agent and server, related information is more accurate
because of reduced latency. Consider n queries made to the server for related information. In the
client-server model, each query is separated by a potentially large gap during message transit, such
that a (relatively) large amount of time may pass between the first and (n-1)th message, diluting
the relationship between the information contained in the messages. In contrast. the agent model
reduces the latency between each server message, as well as the latency of the overall macro-
operation.
fault tolerance
The agent model is more fault tolerant in two ways. First, messages between the server and the
agent are local, and thus essentially reliable, in contrast to messages across the network. Second,
both the code and data relevant to pieces of a distributed computation are condensed into a single
entity: the agent. In the client-server case, there is often data duplicated between client and server,
which can become inconsistent during partial failures.
secure conirnunication
If messages between client and server are to be authenticated and/or encrypted, the benefit of the
agent paradigm is magnified, simply because the number of messages that traverse the untrusted
network, and thus the number of messages to encrypthign, is reduced. Assuming that the agent is
authenticated when it is spawned at the server, all of its communications with the server may
occur without authentication because they are local.

There are additional benefits if agents are persistent; that is, they reside on the server for an extended
period, reacting to events. Two relevant kinds of events are timeouts and server notifications. If
agents may wake up at periodic intervals, they may poll the server and assess current conditions,
obviating potential network traffic due to client polling. Additionally, they may react directly to server
notifications. In the traditional SNMP model, the server may notify the client of events by sending a
TRAP message. In the agent model, the TRAP could instead notify the agent, which may react locally
or forward the information to the client. In the former case, we reduce the load on the client and the
latency of the response.

Finally, if agents may communicate among themselves, then the client application need be
involved even less often. We could imagine an application structured hierarchically, such that certain
agents defer to others in coordinating events.

2.2 Challenges of Agents
Agents are not a panacea, however. By increasing the "vocabulary" of the server with agent
computation, we increase the potential for malicious or inadvertent damage to the server. In an
untrusted setting, we must provide security commensurate with the flexibility available in an agent
environment. Fortunately, most researchers in agent technology consider security a solved problem for
special-purpose environments3 by employing cryptographic techniques; more general solutions, such
as resource contr01~'~ are also possible.

Perhaps more problematic is designing an agent environment amenable to non-experts. In
principle, the agent paradigm should allow most anyone to write small bits of computation to act on
their behalf, but this is difficult for non-experts in current agent implementations3. However, in the
area of network management, this issue is less problematic because network managers are not "non-
experts." Our experience within the active network context has borne out both of these conclusions, as
we describe in more detail in Section 4. In the next section we shall discuss standard network
management models to place some context for our proposed solutions.

3 Network Management

Network Managenlent broadly describes all activities needed to insure a network is behaving as
expected. OSI spent a considerable amount of time in the early 1990's defining "Network
Management." The following five functional areas have since been accepted as the de facto definitions
in both the Telecommunication and Internet management communities6: fault, pellformance,
accounting, security, and configuration and name management. Each functional area requires
extracting information from managed devices. For example, fault management tasks must gather
information about the topology of the system such as if an interface or gateway is alive, pevormance
management tasks are interested in statistical ~netrics such as interface load or average queue length
and configuration and name management might query device MAC or IP addresses. In the following
section, we will describe two popular approaches to managing networks: ad-hoc and centralized.

3.1 Popular approach
Network management is a constant cycle of monitoring, analyzing and controlling different
components of the network. There are two popular approaches to building network management
applications. Both approaches use the clientlserver model.

The first approach, ad-hoc management, uses a set of customized, independent scripts.
Scripts are usually written to focus on a very small, discrete task such as calculating the load for a
given interface or checking configuration parameters for a device. The manager typically runs the
script by manually sending it to a managed device. This is a very ad-hoc and popular approach to
network management because it is simple. However, ad-hoc management is very costly and
inefficient because it places the complexity of managing the network on the manager; manually
monitoring and fixing erroneous behavior is very time consuming and inefficient. The positive aspect
to ad-hoc scripts is that management tasks are divided up into modular components. Modularity
allows the manager to write flexible management applications that can easily be extended as the
network evolves.

The second approach to network management is a centralize approach. In a centralized
approach, one application is developed to handle all five areas of nelwork management. This tactic is

depicted in Figure 3.

Figure 3: Centralized Network Management model

In the depicted network, we have a centralized NOC with three different managed devices. Each device
exports some local information. Traditionally, the local information is formatted as a Management
Information Base (MIB). It is not necessary that each device supports the same API to access local
information and hence the shapes in the figure are different. For example, our application in Figure 3
could query Device A using SNMP, but query Device B and C using CLI (Command Line Interface).
Our example shows one large application with five management tasks. Each task is responsible for
polling the devices for information, making a centralized decision on the network's health and then
possibly initiating a control mechanism to change the device's state.

The centralized management model is complex and inextensible. If a new device is added to
the managed set or a known device extends its set of exported local information (new MIB or device
OS), the NOC must halt management applications and recompile to include new information. It is not
an acceptable solution to halt network management software applications for a critical network system.
This model also suffers from a limited or unsafe API between the NOC and its managed devices. For
example, the SNMP API only allows three types of functions: get, set and trap. Get and its various
forms are used for querying the managed device. Set is used as a control mechanism to change state.
It is important to note that not all variables are write enabled. Trap is used by the SNMP agent (server)
to notify the NOC. An SNMP agent is capable of monitoring individual variables for some condition
then notifying the NOC once the condition becomes true1. Such limited API methods force the NOC
to use a polling mechanism to determine the health of thc network, which may cause network
congestion. A positive aspect to the centralized model is that it naturally provides a global view of the
network.

By combining the positive aspects of both the ad-hoc and centralized management models, we
can create a management infrastructure that is modular, extensible and capable of managing a network
from a global view. Agent technology provides us with the best of both worlds.

Agents and Network Management

In this section, we examine more closely how the agent model can be applied to improve automation
and address the complexity problem in network management.

A common characteristic for all agent-based models is extensibility. Agents can be deployed
and removed dynamically over the network. hence the computation required for a management task
can be changed in a flexible manner. Agents nicely accommodate the diversity and dynamism of
requirements from network management.

Much of our recent research has examined applying ephemeral, mobile agents to the task of
network management. This work ha5 been done in the context of an active, or programmable,
network, called PLAN^^^. In PLANet, packets consist not of the header and data fields of traditional
packets, but instead, of packet programs, not unlike mobile agents. Packet programs are written in a
small, script-like language called PLAN, the Packet Language for Active Networks4. PLAN provides
simple primitives for data aggregation, control-flow, and computation, but is expression-limited so that
all PLAN programs are guaranteed to terminate. In particular, there is no way in the language to
express infinite loops or recursive function calls.

In previous work we used PLAN to write small diagnostic programs useful for network
management. For example, a simple ping program imple~nented in PLAN is depicted below:

fun ping (src:host, dest:host) : unit =
if (not thisHostIs(dest)) then

OnRemote(lpingI(src,dest), dest, getRB(), defaultRoute)
else

OnRemote(lackl(), src, getRB(), defaultRoute)

The program works as follows. In the case that the packet has not reached its destination, the first case
applies, as the call to thisHostb(dest) fails, and so the packet is resent towards its destination
using the OnRemote primitive. The details of OnRemote are unimportant; the key elements to notice
are the first and second arguments: Ipingl(src,dest) indicates that the function ping, with arguments

src and dest, should be evaluated at the destination dest, thc second argument. Once the destination is
reached, the second caqe will execute, causing a packet to be sent back to the source, and invoking a
small acknowlcdgement function ack (not shown).

PLAN can express more interesting programs as well. For example, we can write traceroute,
which aggregates the list of nodes traversed between a source and a destination, and even trace-net, in
which packets fan out and discover the topology of the network, within certain parameters (such as hop
distance from the source). Both are useful for discovering inconsistencies in routing tables, and for
diagnosing downed nodes andlor links. The interested reader is referred to8 for a more thorough
treatment of PLAN programming.

We have also used PLANet as the ba3is for more complicated service management functions,
such as device queue management (perhaps to implement QOS)~, and packet filteringg. In both cases,
we can take advantage of PLANet's extensibility, which allows network nodes to be augmented with
new, persistent functionality available to PLAN programs, termed services. For example, we can load
a new queuing service, and allow it to be initiated, configured, and/or terminated by a PLAN
management packet. To make sure that arbitrary packets cannot change node parameters, PLAN is
augmented with security services8 that allow authenticated packets to access services commensurate
with their level of privilege. For example, a user's packet would not be privileged enough to access
the service that allows a node to be extended, whereas a management packet would authenticate itself
with the node, and thus gain access to additional services.

We are currently examining how PLAN may be used as a mobile agent technology for
management outside of the active network context.

4.1 Management Models
PLANet uses one sort of agent model in implementing network management. Various other models
exist based on agent characteristics. These characteristics can be examined along three discrete
dimensions: mobility, persistence and cooperation. This classification is a good starting point for
analyzing agent-based models in a more structured manner.

F i r e 4: Agent Characteristics

Persistent agents run indefinitely to perfonn long-term computations. Ephemeral agents, on the other
hand, perform relatively shorter computations and terminate. Although the distinction may seem
vague, one can think of persistent agents as executing in an infinite loop where termination depends on
special conditions while ephemeral agents are designed to terminate and loops are bounded.
Management tasks that depend on long-term system state are candidates for persistent agents.
Ephemeral agents can handle tasks that depend on instantaneous state or no state at all.

Stationary agents perform their computation at a single node. Mobile agents, on the other
hand, may move from node to node during their computation. Tasks local to a node may be performed
by stationary agents while tasks with topological dependencies may be performed by mobile agents.
Stationary agents may also perform global tasks if they are persistent and able to cooperate with

remote agents. Hence, the choice between stationary and mobile models depends on the agent
characteristics in other dimensions as well as the requirements of the particular management task.

Finally, cooperalive agents communicate with peer agents at other nodes to perform their
computation. Non-cooperative agents act alone. Note that in both cases agents may communicate with
higher-level management applications. Tash that require a global view to make local decisions are
handled by cooperative agents while Lasks that have only local dependencies are handled by non-
cooperative agents.

4.2 Applications
There are eight possible models based on the classification in Figure 4. Choice of a model depends on
the properties of particular management tasks. The PLANet model described above used the
mobile/ephemeral/non-cooperative model. In this section, we focus on two other models with
potential applications: the stationary/persistent/non-cooperative and stationary/persistent/cooperative
models. We also examine how agents can be used to introduce new network services in the context of
the statzonaiy/persistent/cooperutive model.

Statio~ry/Persistent/Non-cooperative model

Consider the task of monitoring the running mean and variance of the amount of traffic going out from
each interface of each router in our network. This is an informational management task, i.e. agents do
not change any operational properties on the routers. The computed information may be used for future
system planning, or for (figuring out) load distribution over the network.

This task is best suited by a stationary/persistent/non-cooperative model. Agents need to be
persistent to periodically get the number of bytes sent out from each interface, update the mean and
variance values by using an appropriate algorithm, and log the computed values periodically (much
less often than the sampling frequency) to an external application. Mobility and cooperation of agents,
furthermore, do not provide any additional benefits. This model has all the benefits described in
Section 2 over the traditional management model based on centralized polling.

StationarylPersistentJCooperative model

Consider the logging task performed by the agents in the above example. Rather than each agent
logging to a central application, in a cooperative model, agents can form a hierarchy by using a
distributed spanning tree algorithm, and log to their parent agents. In general, the cooperative model
allows the agents to choose and form the right communication topology for efficiency in terms of
bandwidth, delay, and scalability.

Agents can be used not only as watchers of the network, but as implementers of its services, as
proposed by active networks. The stationary/persi.rtent/cooperative agent model is well-suited to this
task for three reasons. First, because agents are long-lived, they can react to network events, such as
timeouts and user- or network-requests. Second, because agents cooperate, large services can be
broken down into smaller modular components that are easier to understand. Furthermore,
communication may occur with agents at other nodes without loss of abstraction. Finally, services
may be easily evolved by deploying new agents or upgrading old ones.

Consider the example of providing guaranteed quality of service (QoS) to network clients. Many
routers and switches provide low-level mechanisms (packet filters, priority queues, traffic counters,
etc.) for supporting QoS, and higher level protocols. such as lnt~erv" and ~iflerv" , are built on top
of these mechanisms. We believe that agents can be used to implement these services in a modular
and extensible manner. Persistent agents at QoS-capable nodes can monitor and control the filtering,
classification, queuing and other mechanisms that the underlying device exports. Network wide QoS
objectives can be achieved by communicating the QoS state between node agents. Furthermore, the
algorithms and policies that govern the allocation of resources can be changed dynamically.
ln~plementing DiffServ with this agent model is especially appealing because the domain can tailor its
implementation based on its own constraints and objectives, and can update the system dynamically to
accommodate new requirements. We are currently working on the design and implementation of an

agent-based QoS management model on commercial network devices that allow dynamic loading and
execution of mobile programs.

5 Related Work

The research community has recognized some of the problems that we have mentioned, and a number
of different approaches have been proposed. RMON 1 and 2 (Remote Network on it or in^)' were
developed to relieve the NOC from load incurred during monitoring. RMON is a specification that
presents a higher-level MIB that combines lower-level functions into single entities so as to reduce the
load on the NOC, offsetting some monitoring responsibility to the managed device. However, this
monitoring ability is fundamentally fixed; the manager could not, for example, specify new filters at
runtime.

~ ~ e n t ~ l ~ was developed with goals similar to ours: to reduce the complexity of management
software, and to allow it to change at runtime. These goals are achieved by allowing traditional SNMP
agents to be programmed in a modular, extensible manner. AgentX logically splits the traditional
SNMP agent in two; a master and one or more subagents. The master agent handles all NOC SNMP
requests and passes the information on to the appropriate subagent. Each subagent manages a MIB. If
a device or system wants to support new MIB or extend an existing MIB, a new subagent can be
loaded and initialized to support the new information. This approach is still fundamentally data-
driven, however, and therefore does not offset the complexity of the management application.

Agents have been a popular research topic during the last decade, and a number of agent
systems already exist3. Several agent systems cite network management as an applicable domain, but
none that we know of have developed such applications to an appreciable degree.

6 Conclusion

As networks filter into more aspects of our lives, the importance of the network management system in
watching, configuring, and protecting network functions increases dramatically. Current network
management models place little burden on the managed device but tremendous burden on the
management applications, dramatically increasing their complexity. Furthermore, standard models are
fairly rigid, making it difficult to accommodate new services and advances in networking technology.
To solve these problems of high complexity and rigidity, and therefore scalability, we have presented
new models of network management that move some computational ability to managed devices
through the use of agents, or more generally. active networks. Our classification of agent models in
this context serves as a means for examining the tradeoffs of various approaches. In particular, within
this context we have described prior work in the active network system, PLAN^^^, as well as presented
two other feasible agent models for network management along with example applications.

References

1 J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Sirnple Network Management Protocol (SNMP).
Technical Report RFC 1157, IETF Network Working Group, May 1990.
2 Tatu Ylonen. SSH(l), 1995. Linux 6.1 Man Page.

Dejan Milojcic. Mobile agent applications. In Trend Wars, IEEE Concurrency, pages 80-90. IEEE,
July-September 1999.
4 Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles. PLAN: A
Packet Language for Active Networks. In Proceedings of rhe Third ACM SIGPLAN International
Conference on Functional Programming Z&ngziage,s, pages 86-93. ACM, September 1998.
5 Paul Menage. RCANE: A Resource Controlled Framework for Active Network Services. In
Proceeding ofthe First International Working Conference on Active Nehiorks (IWAN'99), July 1999.

William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley, third edition,
1999.
Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter, and Scott Nettles. PLANet:

An active internetwork. In Proceedings of the Eighteenth IEEE Computer and Comm~inication Socieiy
INFOCOM Conference, pages 1124-1 133. IEEE March 1999.

Michael Hich, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles. Network
programming with PLAN. In Luca Cardelli. editor, Proceedings of the IEEE Workshop on Internet
Programming Languages, volume 1686 of Lecture Notes in Computer Science, pages 126-143.
Springer-Verlag, May 1998.

Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Stefan Covaci, editor, Proceedings of
the First Internattonal Workshop on Active Networks, volume 1653 of Lecture Notes in Computer
Science, pages 307-3 14. Springer-Verlag, June 1999. Extended version at
http://www.cis.upenn.edu/-switchware/papers/sec~eplan.ps.
10 IETF Integrated services working group, 1999. http://www.ietf.org/html.charters/intserv-charter.html
l1 IETF Differentiated services working group, 1999. http:/lwww.ieft.org/httnl.charters/diffserv-
charter.html
l2 M. Daniele and B. Wijnen. Agent extensibility (AgentX) protocol. Technical Report RFC 2741,
IETF Network Working Group, January 2000.

