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ABSTRACT

IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS THROUGH

BETTER UNDERSTANDING OF SN Ia SYSTEMATIC UNCERTAINTIES

Jennifer Lynn Mosher

Masao Sako

Distance measurements using Type Ia Supernovae have enabled the startling discovery

that the expansion of the universe is accelerating. To determine the nature and the source

of this acceleration, systematic uncertainties on distance measurement must be under-

stood. Due to their importance to high-redshift optical SN Ia cosmology and their sen-

sitivity to dust and progenitor metallicity effects, rest-frame near-UV (NUV) measure-

ments of Type Ia SNe are key to constraining systematic uncertainties. Unfortunately,

the calibration and acquisition of this data is challenging. We use direct comparisons of

low-redshift SDSS-II and Carnegie Supernova Project NUV SN Ia photometry to quan-

tify uncertainties on our ability to calibrate observer frame observations, and find that

photometry in this region is consistent at the level of 2% in flux with a 6% scatter about

the mean. Monte Carlo simulated SN Ia samples are used to directly measure Hubble

Diagram biases resulting from SN Ia model training. Four simulated SN Ia samples are

used to train the SALT-II SN Ia model: two width-luminosity adjustments and two intrin-

sic scatter models are tested. Adding intrinsic scatter to the training sample yields biased

color laws and wavelength-dependent scatters in the NUV region, and causes the color

correction parameter β to be systematically underestimated. Assuming a flat ΛCDM cos-

mology and including BAO and CMB constraints, three of our tests correctly recover the

Dark Energy equation of state parameter w. The fourth test gives a w offset of 0.02, with a

4-σ significance. The software developed to support this work may be adapted to measure

Hubble Diagram biases for any combination of SN Ia model and surveys.
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Chapter 1

Introduction

Where did Earth come from? How long have we been here? How did the Universe begin?

How will it end? Cosmology is as old as humanity; we have always sought to understand

the universe and our place in it. It is only how we go about answering these questions that

has changed. Beginning with the invention of the telescope, advances in technology have

allowed cosmology to be informed by quantitative measurements. One such measurement

– distance – has played a key role during the 20th century, and continues to provide an

important constraint on cosmological models.

My thesis work has focused on improving our ability to use a particular class of as-

tronomical object, Type Ia Supernovae, as a distance measurement tool. I will begin my

thesis with an overview of the importance of distance measurements to cosmology, how

Type Ia Supernovae are used to measure distance, and how we would like to use these

objects to improve our understanding of key cosmological parameters in the immediate

future. Next I will present the key challenges inherent to the use of these objects, summa-

rize the work others have done to constrain and overcome these challenges, and motivate

the questions I was interested in answering during my time at the University of Pennsyl-

vania. Finally, I will present the work I have done and discuss its impact with respect to

future cosmology projects.

1



1.1 Distance Measurements and Quantitative Cosmology

Distance measurement has played a key role in humans’ attempts to understand the uni-

verse. Knowing the dimensions of our physical surroundings allows us to properly situate

ourselves in the context of our universe. From a cosmological point of view, the first

important distance measurements were for objects in our Solar System, starting with the

size of the Earth and the distances from Earth to the Sun and the Moon.

1.1.1 Early Distance Measurements

Eratosthenes of Cyrene performed the first recorded measurement of the circumference

of the Earth by comparing shadows thrown at noon on the summer solstice in two cities

lying at the same longitude: Alexandria and Syene. Around the same time, Aristarchus

of Samos used relative sizes of shadows to estimate the relative sizes of the Earth, Moon,

and Sun and the relative distances to the Sun and the Moon. After concluding that the Sun

was very far away and much larger than the Earth, Aristarchus proposed that the Earth

must orbit the Sun.

Understanding the concept of parallax – that the apparent position of a distant object

depends on the location from which it is observed – the Greeks realized that if the Earth

did orbit the Sun, then the relative positions of the stars should change over the course of

the year. However, no such parallax was observed, implying one of two possibilities: ei-

ther the Earth does not orbit the Sun, or the stars are so far away from the Earth as to make

the parallax invisible to the naked eye. Unable to comprehend distances so immense, the

Greeks instead chose to believe that the Earth was stationary, pausing the development of

Western cosmology for 1500 years.

During the 1600’s the invention of the telescope and the micrometer enabled more

precise parallax measurements. further advances in distance measurement. These tech-

nologies were used in 1672 by Paris Observatory director Jean-Dominique Cassini and his

colleague Jean Richer to measure the distance to Mars, allowing the first determination of

2



the absolute scale of the solar system. In 1838, Friedrich Bessel used a Fraunhofer-built

micrometer to measure the parallax of the star 61 Cygni. His result – 62 mas, or a distance

of 16 parsecs – astounded his contemporaries with its immensity. From the Earth’s sur-

face, parallax enables the measurement of distances out to ∼ 100 parsecs1 and forms the

base of the modern distance ladder. More details on these early distance measurements

may be found in the books Webb (1999) and Van Helden (2010).

Cosmological distance measurements had to wait for the refinement of two more new

technologies: photographic plates and spectroscopy. Silver bromide dry emulsion plates

enabled the first large-scale sky surveys, such as the Henry Draper Memorial survey run

by Edward Pickering at Harvard College Observatory (Pickering 1890). The acquisition

of spectra as part of these surveys allowed the classification of many different types of

objects by their spectral features. Once objects could be reliably classified, their appar-

ent brightnesses could be used as a proxy for their distances. By combining many such

observations statistical estimates of stellar cluster distances could be calculated.

Imaging surveys allowed astronomers to make detailed quantitative studies of the

brightnesses of variable stars: stars whose luminosities vary with time. In 1908, Hen-

rietta Swan Leavitt published the first paper describing Cepheid Variable stars (Leavitt

1908). She found that the brightnesses of these stars correlated with the periods of their

luminosity fluctuations. By using a collection of variable stars within the Small Magel-

lanic Cloud, presumably all the same distance away from Earth, Leavitt was able to use

relative brightnesses to determine the brightness-period relationship. At least one Cepheid

– Delta Cephei– is close enough to Earth for its distance to be measured via parallax, al-

lowing the absolute brightness of a Cepheid to be determined. This new understanding of

Cepheid Variable stars allowed the first quantitative tests of modern scientific cosmology.

1Space-based measurements have higher precision. The Hipparchos satellite could measure parallax

to 1 mas, and therefore distances of ∼ 1000 parsecs; the soon-to-be-launched Gaia mission will measure

parallax to 1 µas for distances of ∼ 1,000,000 parsecs (e.g. Turon et al. 2012).

3



1.1.2 Quantitative Astronomy

Implicit in the previous section is the idea that knowing the relative brightness of two

identical objects allows the distance between the objects to be measured. In this section,

the physical quantities measured by astronomers will be defined.

We assume that an object such as a star emits a certain amount of energy per second.

This quantity is called luminosity L, and may be time-dependent (as with variable stars).

The object’s energy is emitted in the form of photons, with the energy of a single pho-

ton given by Planck’s equation E = hc
λ

. Here λ is the wavelength of the photon and h

is Planck’s constant. Since the energy is emitted at specific wavelengths, we can further

specify the specific luminosity Lλ , which is defined as the energy emitted per unit time

per unit wavelength. The quantity astronomers actually measure is the specific flux fλ of

an object, defined as the energy incident per unit second per unit wavelength per unit area.

Assuming that the object’s energy emission is isotropic, that the energy is not being ab-

sorbed during transit, and that time and wavelength units are constant, specific luminosity

Lλ and specific flux fλ can be related by an inverse square law:

fλ =
Lλ

4πr2 , (1.1)

where r is the distance between the object and the detector.

For historical reasons, optical astronomers typically report measured brightnesses in

terms of magnitude rather than flux. In the magnitude system, brightnesses are logarith-

mic in flux and are always defined with respect to a reference object. If two stars are

observed to have fluxes f1 and flux f2 respectively, we define the magnitude2 difference

between the stars as

m1−m2 =−2.5 log10 (
f1

f2
). (1.2)

Because flux decreases as a factor of 1/r2, optical astronomers can calculate distances

via magnitude measurements: imagine that there exists an astronomical object that always

2This is the Pogson magnitude difference. Other definitions, such as the asinh magnitude, exist. Typi-

cally the different magnitudes differ mainly at very small fluxes where the logarithms are poorly behaved

4



has the same luminosity. This type of object is called a “standard candle”. If we have one

of those objects near us, and another of those objects farther away from us, the difference

between their magnitudes is proportional to the ratio of their respective distances

m f ar−mnear =−5.0 log10 (
dnear

d f ar
). (1.3)

If the specific luminosities being measured are over the same wavelength range, then

we can simplify this calculation by defining an “absolute magnitude” M , the magnitude

that would be observed if the object were to be at a distance of 10 pc. Then

m−M = 5.0 log10(d f ar)−5.0, (1.4)

where the units of d f ar are in parsecs. This quantity m−M is called the distance

modulus µ .

If the specific luminosities being measured are not over the same wavelength range,

an extra term – the K-correction – “K” must be included:

m−M = K +µ. (1.5)

The K-correction term brings one object (typically the observed object) into the same

wavelength frame as the reference object.

1.1.3 A new theory advances cosmology

The flowering of observational astronomy was matched by a flowering of theory. In

1915, Albert Einstein proposed General Relativity (GR), a new theory of space, time,

and gravitation (Einstein 1915) summarized by the Einstein equation:

Rµν −
1
2

gµν R =−κ Tµν . (1.6)

In GR the curvature of space-time itself is the mechanism by which massive3 objects

experience “gravitational force”, and the distribution of mass-energy in turn determines
3mass including energy, as per E = mc2
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the curvature of space-time. The left hand side of Equation 1.6 contains the information

about geometry, represented by the Ricci tensor Rµν and the metric gµν , while the right

hand side contains the information about the mass-energy distribution, represented by the

stress-energy tensor Tµν .

As Einstein, de Sitter, and others quickly realized, GR had profound implications for

our understanding of cosmology. As originally published, the Einstein equation implied

that the large-scale geometry of the universe was evolving with time. To allow for the

possibility of a static universe, the standard cosmological model at that time, Einstein

published a revised version in 1917 containing a “cosmological” constant Λ:

Rµν −
1
2

gµν R+Λgµν =−κTµν . (1.7)

The cosmological solutions considered through the 20th century were first published

by Alexander Friedmann in 1922 and 1924 (Friedmann 1922, 1924). Assuming (as did

Einstein and de Sitter) that mass moves slowly compared to the speed of light and that the

universe is homogeneous and isotropic, but also allowing the possibility that the overall

scale of the universe evolves with time, the Friedmann equation4 relates the scale of the

universe a(t)5 to the energy density ε(t) and curvature as:

(
ȧ
a
)2 =

8πG
3c2 ε(t)− κc2

R2
0

1
a(t)2 +

Λ

3
, (1.8)

where κ represents the curvature-dependence of the solution, R0 is the present-day radius

of curvature, Λ is the cosmological constant, G is the gravitational constant, and c is the

speed of light.

GR and the Friedmann equations made cosmography (mapping out the distances to

objects in the universe) even more interesting: measuring the scale of the universe tells us

not only the size of the universe – a question fascinating in its own right – but also opened

the possibility for humans to peer into the cosmic past and future. Using Cepheids as
4as per the 1922 paper, this equation comes from the i = k = 4 term of the Einstein Equation
5The assumptions of homogeneity, isotropy, and a time-dependent scale factor give a scale a(t)-

dependent metric, later to be called the Friedmann-LeMaitre-Robertson-Walker metric
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a distance measurement tool, Edwin Hubble was the first to take advantage of this new

opportunity.

1.1.4 Hubble and the expanding universe

In 1929, the astronomical techniques of spectroscopy and magnitude measurement had

been in use for at least 30 years. Astronomers had correctly attributed observed shifts

in the wavelengths of spectral absorption features to the relative velocity of the observed

object with respect to Earth. At the same time, the absolute magnitudes of Cepheids had

been calibrated and used in turn to determine the absolute magnitudes of the brightest

stars in nearby galaxies, enabling these galaxy distances to be measured. Edwin Hubble

combined these two sets of information and made a startling discovery: the observed ve-

locities of nearby galaxies were linearly correlated with their distances. Hubble’s original

plot of velocity as a function of distance is shown in Figure 1.1.

ASTRONOMY: E. HUBBLE

corrected for solar motion. The result, 745 km./sec. for a distance of
1.4 X 106 parsecs, falls between the two previous solutions and indicates
a value for K of 530 as against the proposed value, 500 km./sec.

Secondly, the scatter of the individual nebulae can be examined by
assuming the relation between distances and velocities as previously
determined. Distances can then be calculated from the velocities cor-
rected for solar motion, and absolute magnitudes can be derived from the
apparent magnitudes. The results are given in table 2 and may be
compared with the distribution of absolute magnitudes among the nebulae
in table 1, whose distances are derived from other criteria. N. G. C. 404

o~~~~~~~~~~~~~~~~

0.

S0OKM

0

DISTANCE
0 IDPARSEC S 2 ,10 PARSECS

FIGURE 1
Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against
distances estimated from involved stars and mean luminosities of
nebulae in a cluster. The black discs and full line represent the
solution for solar motion using the nebulae individually; the circles
and broken line represent the solution combining the nebulae into
groups; the cross represents the mean velocity corresponding to
the mean distance of 22 nebulae whose distances could not be esti-
mated individually.

can be excluded, since the observed velocity is so small that the peculiar
motion must be large in comparison with the distance effect. The object
is not necessarily an exception, however, since a distance can be assigned
for which the peculiar motion and the absolute magnitude are both within
the range previously determined. The two mean magnitudes, - 15.3
and - 15.5, the ranges, 4.9 and 5.0 mag., and the frequency distributions
are closely similar for these two entirely independent sets of data; and
even the slight difference in mean magnitudes can be attributed to the
selected, very bright, nebulae in the Virgo Cluster. This entirely unforced
agreement supports the validity of the velocity-distance relation in a very

PRoc. N. A. S.172

Figure 1.1 The original Hubble diagram shows radial velocities plotted as a function of

distance for a collection of nearby galaxies. When the galaxies are considered individu-

ally, the best-fit velocity-distance relation is given by the solid line. The dashed line gives

the best fit if the galaxies are grouped.
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This plot – the original “Hubble diagram” – provided the first quantitative evidence

that the scale of the universe is expanding and supported the Big Bang hypothesis for-

mulated by Lemaître (1927). The consistent shift in the spectral feature wavelengths

observed as a function of distance came to be associated with the stretching of space-time

itself and labeled the “cosmological redshift”. Measured redshifts provide a snapshot of

the scale-factor a(t) at the time the light was emitted. As postulated by Friedmann, the

evolution of the scale factor with time depends on the energy density ε(t) and the curva-

ture. Perfect knowledge of both the scale factors and the energy densities as a function

of time would allow us to predict distances to ancient objects. Conversely, knowing the

distances of ancient objects and their scale factors allows us to measure the energy density

as a function of time. For these reasons, Hubble diagrams continue to be a cornerstone of

observational cosmology; extending the Hubble diagram as far back in redshift as possi-

ble is one key to understanding the composition, the past, and (perhaps) the future of our

universe.

1.2 Type Ia Supernovae as Standardizeable Candles

Type Ia Supernovae are a class of Supernovae distinguished by the absence of spectral

hydrogen features, and the presence of strong silicon absorption features (Wheeler &

Harkness 1990). They are extremely bright and are found in both early and late-type

galaxies. Although the exact progenitor system(s) and explosion mechanism remain un-

known (e.g. Maoz & Mannucci 2012), there is consensus around two key issues: 1) the

exploding star is most likely to be a Carbon-Oxygen white dwarf which ignites as its

mass approaches the Chandrasekhar limit (Hoyle & Fowler 1960), and 2) the resulting

light curve is powered by the radioactive decay of 56Ni produced in abundance during the

nuclear burning phase of the explosion (Axelrod 1980a,b).

The extreme luminosity (MB ∼ −19.5) and relative light curve homogeneity of Type

Ia SNe (Kowal 1968; Pskovskii 1977) make these objects desirable as standard candles.
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However, SNe Ia have been found to cover a range of absolute magnitudes (e.g. Lei-

bundgut et al. 1993; Filippenko et al. 1992), and require standardization before they can

be used as distance indicators. A relation between SN Ia light curve shapes and their ab-

solute magnitudes was proposed by Pskovskii (1977) and established by Phillips (1993).
19
93
Ap
J.
..
41
3L
.1
05
P

Figure 1.2 Absolute magnitude M as a function of light curve width ∆m15(B), the mag-

nitude drop in the B band light curve over the first fifteen days post-peak. Absolute

magnitudes in three different broadband filters are shown: MB(top), MV (middle), and

MI(bottom).

Reproduced from Phillips’ original paper, Figure 1.2 shows the linear relationship be-
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tween SN Ia B-band absolute magnitude MB and the light curve shape parameter ∆m(B)15,

a light curve shape parameter defined as the decline in luminosity between SN peak and

15 days past peak. In general, broader light curves are associated with brighter luminosi-

ties, regardless of the particular variable used to parametrize the shape. A second relation

between SN Ia color and absolute magnitude was found by Tripp (1998). In general,

redder SNe are dimmer and bluer SNe are brighter. Although different SN Ia models

differ about the extent to which this color-brightness correlation is due to dust extinc-

tion, corrections for the color-luminosity relation clearly improve the standardization of

SNe Ia. Figure 1.3, adopted from Phillips et al. (1999), shows the progressive reduction

in the scatter about SN Ia Hubble diagram as the width-luminosity and color-luminosity

standardizations are applied to the observed SN mB magnitudes.

Used together, light curve width and color relations produce Hubble Diagrams with

residual scatter of 0.15-0.20 (Kessler et al. 2009a; Conley et al. 2011), or roughly 10%

in distance.

In 1998, two separate groups (Riess et al. 1998; Perlmutter et al. 1999) independently

discovered that high-redshift SN Ia distance measurements are most consistent with an

accelerating universe composed mostly of “dark energy” (ΩM = 0.3, ΩΛ = 0.7). Ob-

servations of the Cosmic Microwave Background and large-scale galactic structure (e.g.

Spergel et al. 2003; Planck Collaboration et al. 2013; Eisenstein et al. 2005; Parkinson

et al. 2012) have since confirmed this result; the leaders of these groups were awarded the

Nobel Prize in 2011. A Hubble diagram of their combined data set is shown in Figure 1.4,

adopted from Astier (2012).

Current SN Ia cosmology efforts are focused on reducing the uncertainties in distance

measurements in order to better constrain the nature of dark energy. In particular, we

would like to know whether dark energy is consistent with a cosmological constant. The

most recent SN Ia cosmology results (Conley et al. 2011) indicate that optical SN Ia

cosmology is limited by systematics rather than statistics at all but the highest redshifts.

For the increasing number of SN Ia observations to impact our understanding of dark
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FIG. 8.ÈL eft : Absolute BV I magnitudes corrected only for Galactic reddening plotted vs. the decline rate parameter for the full sample of 41*m15(B)
and CfA SNe Ia with z º 0.01. Right : Same diagram after elimination of the 23 SNe in the sample for which we Ðnd signiÐcant host galaxyCala" n/Tololo

reddening. The dashed lines correspond to the linear Ðts given by Hamuy et al. (1996a).

due to an overestimate of the errors by Hamuy et al.
(1996a), which we have adopted verbatim. The impressively
low dispersions (0.09È0.13 mag) of these Ðts strongly
support the validity of the methods described in this paper
for estimating the host-galaxy dust reddening. For refer-
ence, Hamuy et al. (1996a), who employed a color cut of

and assumed linear relations forBmax[Vmax \ 0.2 *m15(B)
versus obtained dispersions of 0.17, 0.14, and 0.13Mmax,mag for the Ðts in B, V , and I, respectively. The wavelength
dependence of these values is due to a combination of
uncorrected host galaxy extinction and the nonlinear shape
of the versus relation in B and V ; when these*m15(B) Mmaxe†ects are taken into account, the dispersion is uniformly
low in BV I.

From the average values of the host galaxy reddening
given in Table 2 and the decline rate versus luminosity
relations given in Table 3, we have reexamined the cor-
rected Hubble diagrams in BV I for the 26 Cala" n/Tololo
with which Hamuy et al. (1996a, 1996b)Bmax[Vmax \ 0.2,
referred to as their ““ low-extinction ÏÏ sample. To provide an
absolute calibration for these diagrams and, hence, an esti-
mate of the Hubble constant, we use the same four SNe
(1937C, 1972E, 1981B, and 1990N) with Cepheid distances
employed by Hamuy et al. (1996b). Three di†erent cases
were considered, correcting for (1) Galactic reddening only,
(2) Galactic reddening and the versus rela-*m15(B) Mmaxtion, and (3) Galactic reddening, host galaxy reddening, and
the versus relation.*m15(B) MmaxAveraging the results for BV I, we Ðnd the Hubble rela-
tions illustrated in Figure 9. (Note that the errors given in
this Ðgure for are internal only and do not include theH0external error due to uncertainties in the zero point of the
Cepheid period-luminosity calibration, which we estimate

FIG. 9.ÈHubble diagrams for the 26 SNe Ia in the ““ low-Cala" n/Tololo
extinction ÏÏ sample. The data are shown corrected for(Bmax[Vmax \ 0.2)
Galactic reddening only (upper panel), Galactic reddening and the *m15(B)
vs. relation (middle panel), and Galactic reddening, host galaxyMmaxreddening, and the vs. relation (lower panel). The Hubble*m15(B) Mmaxconstants and dispersions derived for each case are indicated.

Figure 1.3 Hubble diagrams for the 26 SNe Ia in the Calan-Tololo “low-extinction” sam-

ple. The top panel has been corrected for Galactic reddening, the middle panel for Galac-

tic reddening and light-curve width, and the bottom panel for reddening, width, and color.

energy, these systematic errors must be understood and reduced.

1.3 Key Sources of SN Ia systematic uncertainties

To accurately recover cosmology parameters from a SN Ia Hubble diagram, the Hubble

diagram must not be biased as a function of redshift. The most general function for the
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11.2 The SCP and HZT pioneers: the twin papers The expansion of the universe observed with SNe

events mostly from the Calan-Tololo survey, and finds similar
results using two different distance estimators (which, how-
ever, share the same extinction prior). Both distant samples
exhibit similar photometric quality in restframe B-band with
an average photometric uncertainty of the light curve ampli-
tude of 0.07 mag. The SCP sample has poor or even missing
restframe V-band measurements. Those from the HZT com-
pare well with their restframe B-band, but however do not de-
liver a precise enough colour that might enter a distance esti-
mator without a prior. A Hubble diagram combining both sets
is shown in figure 6.

   

FIG. 6. Combined Hubble diagram (logarithm of a distance versus
z) from the twin papers (top), and residuals to a ΩM = 0.3,ΩΛ =
0 cosmology (bottom). The fit favours the thick line over the two
other proposed hypotheses. Note that the HZT events have more
precise distances than those from the SCP. Reproduced from [287],
with permission.

Both teams fitted their data to an ΩM,ΩΛ Universe and
found extremely similar best fits and contours: Prob(ΩΛ >
0) > 99%, a flat matter-dominated Universe was excluded at
more than 7 σ, ΩM = 0.28 ± 0.10 for a flat Universe. Fitting
a matter density with ΩΛ = 0 drives ΩM negative for both
analyses, a certainly uncomfortable situation, which strongly
suggests acceleration. Both teams reported a long study of
systematic uncertainties, and did not find room for large off-
sets: the SCP reported a systematic uncertainty roughly half
of the statistical one.
The significance of a non-zero cosmological constant was

in fact modest, typically 3 σ or less, but there were two of
them, however statistically correlated because they share a
great part of their nearby samples. The significance of ac-
celeration is even smaller. But taking the confidence levels at
face value, matter-dominated universes with ΩM > 0.2 were
excluded at more than 4 σ by each analysis.
Both teams also explored variants of the cosmological con-

stant by replacing it by a fluid X with unknown equation of
state w (i.e. w is the ratio of pressure to density, see §2.1), so
that ρX(z) = ρX(0)(1 + z)3(w+1). In a flat Universe, both anal-
yses [11, 277] found similar and almost degenerate contours,
which can be roughly approximated by ΩXw = (1 − ΩM)w "
−0.72 ± 0.1.
These twin papers are usually regarded as the original key

evidence for an accelerated expansion, and Saul Perlmutter
(SCP), Adam Riess and Brian Schmidt (HZT) were awarded
the 2011 Nobel Price in Physics for this discovery.

11.3. First Hubble Space Telescope samples

Both pioneering analyses illustrate that the colour measure-
ment quality is the Achilles’ heel of distance measurements,
because both teams could not use the bare colour measure-
ments in their distance estimation. Measuring accurate light
curves and accurate colours with the HST seems an efficient
response to this limitation and HST photometric follow-up of
ground-based searches started in 1997. One event from the
SCP sample has HST measurements and three events from
the HZT sample [286].
The SCP team delivered [195] the first cosmological analy-

sis in 2003 where distances to high-redshift events use bare
measured colours, from a mixture of 11 new HST well-
measured events and ground-based ones. Interestingly, three
ways of inserting colours in the distance estimator are com-
pared (figure 9 of [195]):

1. ignoring colours on a low reddening sample (as in the
SCP original paper);

2. applying a one-sided extinction prior (as in the HZT
original paper);

3. using bare measured colours.

One realizes that with the third approach, the events with
HST colour measurements totally dominate the obtained cos-
mological constraints, which are slightly worse than the ones
drawn in each of the twin papers. The “ground-based” events
alone deliver very poor constraints if their bare colour mea-
surements are used.
Among these different approaches, one is not necessarily

right and the others wrong; the different obtained cosmologi-
cal constraints rather reflect different hypotheses. In the first
method, one should check (as done in SCP original analy-
sis [11]) that the average colour of distant and nearby events
agrees, but if the uncertainty in the difference between the
average colour of both samples is propagated to the end of
the analysis, one gets the same uncertainties as with the third

25

Figure 1.4 Hubble diagram of the combined High-Z and Supernova Cosmology Project

data set. The top panel shows distance modulus as a function of redshift. The bot-

tom panel shows the difference between the distance modulus and the default ΩM =

0.3,ΩΛ = 0.0 cosmology. The lines indicate the expected results for three different cos-

mologies: ΛCDM(solid), default(dotted), and matter-dominated(dashed). As the bottom

panel clearly shows, the SN Ia data favor the ΛCDM cosmology.

SN Ia distances used to populate the Hubble diagram can be written as follows:

µ = (mx−KBx)−M∗B−Ax,host(c)−∆M(c)−∆M(x1). (1.9)

To find the distance modulus µ , we measure an observed magnitude mx (here “x” is

the filter in which m was observed), we apply a K-correction KBx to remove the effects
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of cosmological redshift6, we subtract the average B-magnitude M∗B of SNe Ia, we use

a color-dependent extinction correction Ax,host to compensate for scattering and reemis-

sion by host galaxy dust, and finally we apply the standardization corrections ∆M(c) and

∆M(x1) related to light curve color c and shape x1. Examining Equation (1.9) with an

eye to possible changes with redshift helps us understand the most likely sources of sys-

tematic uncertainties. In the following sections, the main sources of systematics will be

discussed.

1.3.1 Calibration

The largest single current source of systematic uncertainty in SN Ia-based distance mea-

surements is calibration (Conley et al. 2011; Sullivan et al. 2011). This can be seen in

Equation (1.9): calibration uncertainties affect the observed magnitude mx and the ob-

served color c. If the same telescope were to observe another SN at a different redshift,

such that the standardization band B corresponded to a different observer-frame band y,

different calibration uncertainties would apply to the measured my and c. Therefore, cali-

bration uncertainties across different filters at a single telescope have the ability to cause

redshift-dependent biases. These biases are large because the corrections for extinction

and color are large, typically on the order of 3× c. More generally, biases in the calibra-

tion of the low-redshift sample will cause a bias in the average B-magnitude M∗B of SNe

Ia, and potentially also in the extinction law and color correction functions used to obtain

extinction and color corrections Ax,host(c) and ∆M(c).

In order to accurately combine data from different telescopes at different redshift

ranges, it is important that the photometric systems of the observations be well under-

stood. Prior to 2005, SN Ia observations were reported in the Landolt system rather than

in the natural system of the telescope. The Landolt system is defined solely by its star cat-

alog (Landolt 1992): to put photometry into the Landolt system, color transformations

derived from stellar observations are applied to observed SN Ia magnitudes. The Landolt

6The combined term (mx−KBx) is the observed magnitude mB in the standardization band B.
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standard stars are much redder than SNe Ia7, with very different spectral features, so these

transformations may not be accurate for SNe Ia (an extensive discussion of Landolt cali-

bration of SNe photometry may be found in Regnault et al. 2009). All SN Ia surveys since

2005 have been aiming for SN Ia photometry with sub-1% calibration uncertainties. To

meet these goals, photometry are being reported in the natural system of the instrument

(Contreras et al. 2010; Hicken et al. 2009b; Holtzman et al. 2008; Guy et al. 2010; Tonry

et al. 2012), and extensive cross-calibration efforts are being undertaken before data sets

are combined Betoule et al. (e.g. 2012b).

1.3.2 Dust

Dust has always been a problem for distance measurement. Dust lying along the line

of sight between the object and the detector scatters and absorbs light, decreasing the

observed magnitude. To correct for dust extinction we can take advantage of the fact

that dust acts preferentially on bluer light, changing observed colors as well as observed

magnitudes. If the intrinsic color of an astronomical object is known, changes in observed

color can be used to determine the dust extinction along a particular line of sight (e.g.

Schlegel et al. (1998) use colors of elliptical galaxies to calibrate their Milky Way Galaxy

dust maps), or to determine the overall absorption profile (“dust law”) of the intervening

dust (Cardelli et al. 1989).

Two main approaches to handling observed SN Ia color variations are used. The first

method, developed by Tripp (1998) and used by light curve models SiFTo (Conley et al.

2008) and SALT (Guy et al. 2005, 2007), is to treat time-independent color variations

empirically. In other words, the origin of observed time-independent SN Ia color variation

is assumed to be some unknown combination of dust extinction and SN Ia physics, and

no a priori assumptions are made about the intrinsic colors of any of the SNe used for

model training. In this method, both the color correction as a function of wavelength

7Most star catalogs, Landolt or not, have colors quite different from those of SNe Ia. The Landolt

requirement for color transformations just makes this worse.
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and the color correction parameter8 are determined from the supernova sample itself.

With respect to Equation (1.9), this approach is like combining the dust and SN Ia color

corrections Ax,host(c) and ∆M(c) into a single term.

The second method is to assume that time-independent color variation is due solely

to dust, i.e. to eliminate the SN Ia color correction term ∆M(c) altogether. This approach

has been used by Phillips et al. (1999) and by the MLCS family of SN Ia models (Riess

et al. 1996; Jha et al. 2007). The difficulty with this second approach as compared to

the first, is that it requires the identification of a “dust-free” SN Ia sample from which

intrinsic SN Ia colors may be determined. Typically, this sample is created by requiring

that SNe come from dust-free regions (i.e. early-type galaxies or the outer arms of spiral

galaxies) and that SN spectra show no signs of Na I or Ca II lines (Lira 1995; Riess et al.

1996).

Comparisons between SALT-II and MLCS2k2 have suggested that the MLCS2k2 ap-

proach leads to significant biases in the trained SN Ia model (Kessler et al. 2009a; Guy

et al. 2010), due in part to its assumptions about the distribution of SN Ia excess color. On

the other hand, studies of SN Ia spectra (Maguire et al. 2012) have found that the CCM

dust law does a better job correcting for color differences than its SALT-II (Guy et al.

2010) color correction counterpart.

Regardless of the color correction law assumed, the color correction parameter ob-

tained from SN samples is well below the one expected from studies of Milky Way Galaxy

(MWG) dust: in the MWG, our dust law is RB ∼ 4.1, whereas dust laws determined from

SNe typically have a RB value of 3 (Kessler et al. 2009a; Conley et al. 2007; Freedman

et al. 2009; Nobili & Goobar 2008).

1.3.3 Evolution

Using SNe Ia as standardizable candles to measure distances across a large range of red-

shifts requires assuming that the objects themselves remain the same across a large range

8analogous to the CCM color law “RV ” parameter in function if not physical significance
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of redshifts. If this assumption is not true, a redshift-dependent distance bias will ensue,

caused by shifts in average SN absolute magnitude, color, or shape.

Comparisons of SN Ia spectra at high and low redshifts have found changes in spectral

feature strength and position as a function of redshift (Ellis et al. 2008; Foley et al. 2008,

2012a; Balland et al. 2009; Sullivan et al. 2009; Maguire et al. 2012), particularly in the

NUV. Figure 1.5 shows such a result, adopted from Maguire et al. (2012), whose authors

report a significant difference in near-UV (NUV) flux between mean low-z and high-z

SNe Ia peak spectra. The dispersion as a function of wavelength, shown in the bottom

panel, also confirms reports of higher dispersion in NUV SNe Ia photometry and spectra

(Jha et al. 2006; Brown et al. 2010; Ellis et al. 2008).

2368 K. Maguire et al.

not unnecessarily influence the mean spectrum comparisons. We
have chosen an effective phase range of −1.0 to +4.5 d for both the
low-z sample and the intermediate-z sample from E08. Cooke et al.
(2011) chose an effective phase range of −0.32 to +4 d, similar to
our chosen values. We have also placed cuts on the stretch (0.7 <

s < 1.3) and B − V colour (−0.25 < c < 0.25) of the SNe in both
samples. These are the same cuts as applied in the cosmological
analysis of Conley et al. (2011). No SNe Ia in our low-z sample
are removed by either of the stretch cuts or the lower B − V colour
or phase cut. We lose nine SNe from the low-z sample due to the
upper phase cut and one SN (PTF10ygu) because of the upper
B − V colour cut. SN 2011ek is also excluded, since it displays an
unusual NUV − B colour of 1.0 mag, which will be discussed in
Section 4.4. This leaves a total of 17 SNe to be used in the mean
low-z spectrum. The preliminary low-z mean spectrum of Cooke
et al. (2011) contained 10 HST SNe Ia and one historical SN Ia
from the literature. From the initial intermediate-z sample of 33,
17 SNe are removed due to the phase cuts and one SN due to the
B − V colour cuts, leaving 15 SNe for the intermediate-z mean.

Choosing SN Ia spectra in a suitably small effective phase range,
which still contains a statistically significant number of objects,
will limit the effect of phase variations when making comparisons
between mean spectra. Despite this, phase variations within this
range will still occur; for example, SNe cool with time, and their
line velocities and NUV flux decrease. However, the effect of phase
variations can be minimized by ensuring that, when comparing
mean spectra, the phase distributions (along with the stretch, B − V
colour and host galaxy distributions) of the samples are drawn from

the same parent populations. As described in Section 2.1, KS tests
were performed and for all these properties there is no indication
that they are drawn from different parent populations.

3.2 Evolution in the mean SN Ia spectrum with redshift

The mean spectrum at low-z is compared to that of the intermediate-
z Keck SN Ia sample from E08 in Fig. 4. This is the first time that
a large sample of low-z SN Ia NUV spectra with colour corrections
applied has been available for comparison with higher-z samples.
As described in Section 3.1, the effective phase, stretch, B − V
colour and host Mstellar distributions of the two samples are found
to be well matched. The mean spectra of the two samples are seen
mainly to agree with the uncertainties (90 per cent confidence lim-
its). However, at shorter wavelengths (<3300 Å), the low-z mean
spectrum has less flux than the intermediate-z sample.

To investigate this further, a random number of spectra (eight to
15) were used to make the low- and intermediate-z mean spectra
and this was repeated 20 000 times. We compute the flux through a
‘UV’ box filter, in the region 2900–3300 Å, for each spectrum, and
find that 99.8 per cent of the time (3.1σ ) the intermediate-z mean
spectrum has a greater flux than the low-z mean spectrum. Cooke
et al. (2011) also found a lower flux at shorter NUV wavelengths
when compared to the sample of E08. The choice of this wavelength
range of 2900–3300 Å was motivated by the results of Walker et al.
(2012), who showed using radiative transfer modelling that this is
the region where the most variation due to metallicity effects is

Figure 4. Comparison of the mean spectra of the low-z sample (17 SNe Ia) to that of the intermediate-z sample (15 SNe Ia) in the top panel. The shaded
regions represent the 90 per cent confidence levels from a bootstrap resampling. The region through which the normalization was applied is marked, along with
positions of the λ1 and λ2 NUV features. The lower panel shows the percentage dispersion at each wavelength (bootstrap resampling error as a percentage
of the flux of the mean) for the HST and Keck samples, respectively. An increase in the dispersion in the NUV compared to optical wavelengths is seen. A
peaked appearance is seen in the dispersion of both samples around ∼3700 Å, which is found to be caused by an increased dispersion in the blue wing of the
Ca II H&K feature.
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Figure 1.5 Comparisons of SN Ia flux(top panel) and dispersion(bottom panel) as a func-

tion of mean SN redshift. The mean high-z spectrum is shown in red, the mean low-z

spectrum is shown in blue. Each mean spectra has been constructed from ∼ 16 SNe Ia

spectra with stretch and redshift-corrected phases between -1.0 and 4.5 . This figure has

been adopted from Maguire et al. (2012, Figure 9).
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Correlations between SN Ia Hubble residuals and host galaxy mass Mstellar have also

been found, even after standardization has been taken into account (Kelly et al. 2010;

Lampeitl et al. 2010; Gupta et al. 2011; Sullivan et al. 2010). Sullivan et al. (2011)

have found that the color correction parameter β used by SALT-II models also varies as a

function of host galaxy Mstellar, such that low-mass hosts have smaller β than high-mass

hosts. Underlying SN Ia progenitor properties such as metallicity or age are thought to be

responsible for these observations. Although no direct connection between SN progen-

itors and either of these properties has been observed, correlations between host galaxy

metallicities and SN Ia Hubble residuals similar to the host mass - Hubble residual corre-

lations have been observed (e.g. D’Andrea et al. 2011). These observed Hubble residual

correlations are consistent with a shift in SN Ia progenitor metallicity as a function of

redshift which one would naturally expect to occur through star formation history and

galaxy evolution.

Explosion models have been used to test the effects of different progenitor metal-

licities on SN Ia luminosity9. The general conclusion is that higher metallicities favor

the production of stable Fe isotopes such as 54Fe and 58Ni over the unstable Fe isotope
56Ni which powers the light curve, thereby decreasing the absolute luminosity of the su-

pernova (Hoeflich et al. 1998; Timmes et al. 2003; Mazzali & Podsiadlowski 2006).

Radiative transfer studies which propagate these differences to light curves differ on the

impact they expect this effect to have on distance measurements. Mazzali & Podsiad-

lowski (2006) attribute the observed ∼ 0.15 magnitude intrinsic scatter in SN Hubble

residuals to progenitor metallicity differences, as their models show MB changing with

metallicity while light curve shapes and optical colors remain the same. A similar study

by Kasen et al. (2009) predicts only a 0.04 magnitude metallicity-induced scatter in dis-

tance measurement.

Recent theoretical studies have examined the influence of SN Ia progenitor metallicity

on NUV flux. By scaling the metallicity in a set of synthetic SN Ia spectra, Walker et al.

9via the intermediary of 56Ni production
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(2012) find that for a given luminosity NUV flux (particularly in the 3000-3500 Å range)

can vary by as much as a factor of two whereas optical fluxes show much less variability.
4 E.S. Walker et al.

Table 1. A summary of the major element groups in each shell
of the model for SN 2005cf. X is the mass fraction of C/O, inter-
mediate mass elements (IME) and iron group elements (IGE).

Zone vph vpre-max vout,1 vout,2

Velocity 10750 13100 16000 19500
X(C/O) 0.3 4.0 70 92
X(IME) 63 92 18 8.2
X(IGE) 37 3.9 3.2 0.2

Table 2. An overview of the model parameters for the models
log(Lbol/!L!) = 9.2, 9.4, 9.6, 9.75 with η = 1. The W7 model is
from Nomoto et al. (1984) and the WDD1 and WDD3 models are
from (Iwamoto et al. 1999). The given velocities are in km s−1.

9.2 9.4 9.6 9.75

Density Structure W7 WDD1 WDD3 WDD3
vph 6783 8539 10750 11250

vpre-max 8366 10406 13100 13710
vout,1 16000

vout,2 19500

to reflect the different energies and 56Ni production at the
bolometric luminosities log(Lbol/L!) = 9.2, 9.4, 9.6, 9.75.
The velocities of the vph and vpre-max shells move depend-

ing on luminosity (Table 2), resulting in the masses of indi-
vidual elements being scaled for the whole model. However,
within each shell the relative abundances of the SN2005cf
model are preserved as described. In order to ensure that
we produce realistic models, we compare the model output
spectrum to observed SNe Ia to ensure we are producing
spectra which match the continuum levels in the UV while
maintaining normal optical spectra i. e. are not members of
the over-luminous of under-luminous subclasses. This pro-
cess is summarised in Table 2 and the spectra are displayed
in Figure 2

We then used these 4 luminosity bins to create a set
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Figure 2. The η = 1 spectra for log(Lbol/L!) =
9.2, 9.4, 9.6, 9.75. Also marked are the three top-hat filters in-
troduced in E08, UV1, UV2 and b (dashed lines) and the Bessel
U filter (solid black line).
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Figure 3. The η = 5, 2, 1, 0.5, 0.2, 0.1, 0.05 spectra for
log(Lbol/L!) = 9.6. The features λ1 and λ2 are also marked.

of models with varying metal contents. We do this by scal-
ing the metallicity in the pre-maximum and two outer shells
with respect to the best-fitting model: the photospheric shell
remains unchanged. To generate the sequences, we multi-
plied the abundances of all the elements with atomic number
Z > 20, i. e. heavier than calcium, by a factor η, which is
allowed to take the values η = 0.05, 0.1, 0.2, 0.5, 1, 2, 5. The
mass fraction X of element E thus becomes X(E) = ηX(E)0
where X(E)0 is the mass fraction of the element in the
SN2005cf best-fit model at the expense of unburnt C/O.
This provides us with a grid of 4×7 models for our analysis,
but we have excluded the model where log(Lbol/L!) = 9.75
and η = 0.05 as the optical spectrum did not look nor-
mal, leaving 27 models for analysis. A metallicity sequence
is shown in Figure 3 for log(Lbol/L!) = 9.6. For all values
of η, the optical spectra appear normal with relatively little
dispersion. However, in the UV the dispersion between the
models increases dramatically and diversity is also seen in
the shapes and positions of features. This reflects the fact
that metal line-blanketing effect is stronger in the UV.

One caveat with our models is that in the red and in-
frared the fits to data are less good. This is because of the
crude assumption of a blackbody at the photosphere. The
flux inside an SN Ia is non-thermal even in the inner layers
(see Sauer et al. 2006). Flux redistribution within the in-
ner parts of the simulated atmosphere leads to a sufficiently
accurate radiation field in the atmosphere in the ultravio-
let and blue regions of the spectrum, but in the red and
infrared some flux excess usually remains in the synthetic
spectra with respect to observations. This can be seen in
Figure 1 where the model flux is higher than the observed
flux from ≈ 6300 Å onwards. This means that our estimates
of LBol may be somewhat larger than the real value when
the red and IR are overestimated. Therefore, in order to
compare models and data we extract LB from both.

2.2 Observational Data

The observational data for this study are taken from those
presented in E08. These SNe were discovered as part of the
Supernova Legacy Survey (SNLS, Sullivan et al. 2011), a
real-time Type Ia supernova search based at the Canada-

Figure 1.6 Variation in flux as a function of metallicity for a model SN Ia spectrum with

bolometric luminosity log(Lbol/L�) = 9.6. Each color corresponds to a different metal-

licity scaling factor η compared to a nominal value η = 1. This figure has been adopted

from Figure 3 of Walker et al. (2012).

Figure 1.6, adopted from Walker et al. (2012), shows the variance in a model SN Ia

spectrum10 as the abundances of elements with Z > 20 are scaled by a factor η . Although

some optical (λ > 4000Å) features exhibit variations in strength and position, metallicity-

driven changes are much stronger in the NUV wavelength region.

This result has been used to explain the increase in dispersion observed in UV broad-

band and spectral flux measurements compared to the optical (Jha et al. 2006; Ellis et al.

2008; Milne et al. 2010; Maguire et al. 2012).

10the spectrum is based on the well-studied normal SN Ia 2005cf
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1.3.4 K-corrections and S-corrections

The ability to correctly perform K-corrections also poses a challenge for SN distance

measurements. K-corrections are applied to standardize photometry from different pho-

tometric systems or different cosmological redshifts. Hogg et al. (2002) provides a good

general overview of the technique, Kim et al. (1996) describe the the technique for SNe

Ia in particular, and Suntzeff (2000) discusses the need to use K-corrections to stan-

dardize photometry from different instruments (“S-corrections”). In order to perform

K-corrections, a photometric system and a Spectral Energy Distribution (SED) must be

assumed. Assuming an SED for SNe Ia is not obvious; their spectra vary with time, and

the amount of spectral variation from object to object is not well determined, particularly

in regions of SN phase space where spectra are difficult to obtain (pre-peak and UV). To

compensate for SN-to-SN variation, K-corrections are performed with mean spectra em-

pirically adjusted to match the observed photometric colors of the particular SN (Nugent

et al. 2002; Hsiao et al. 2007).

1.4 SN Ia UV

The SN Ia UV region lies at the intersection of these four sources of systematic uncer-

tainty.

Ground-based U [3000-4000 Å] observations are the most difficult to calibrate. First,

the blue edge of the filter transmission is determined by atmospheric absorption, making

it difficult to determine. Second, the number of calibration stars available in U is small

compared to other broad-band filter regions, degrading the statistical determination of

imaging zeropoints. Third, the colors of these calibration stars are not at all similar to the

colors of SNe Ia, so a calibration that is consistent for stars may not be consistent for SNe.

Taken together, the difficulty of U band calibration means that ground-based broadband

measurements of the near UV are questionable.

The SALT-II model deweights these measurements for training, adding an extra 10%
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uncertainty to their given statistical uncertainties (Guy et al. 2010); the SNLS collabo-

ration chooses to omit all ground-based broadband measurements from their cosmology

analysis (Conley et al. 2011). A comparison of cosmology parameters obtained from the

same data set with the SN Ia models MLCS2k2 and SALT-II (Kessler et al. 2009a) found

large differences, attributed primarily to systematic calibration offsets of the low-z UV

photometry used to train MLCS2k2.

For similar reasons, ground-based UV spectra are hard to obtain, requiring spectrom-

eters mounted on 8-10 m class telescopes. Added to the difficulty of getting low-z UV

spectra, pre-peak UV spectra in any redshift range are harder to obtain.

14 J. Guy and SNLS Collaboration: SALT2
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Fig. 1. Phase-space mapping by photometric data (top) and spectra (bot-
tom). For photometric observations, the rest-frame central wavelength
of the filter is considered.

with a non zero contribution of the galaxy (at 68% confidence
level) were not used in the training sample.

Figure 1 shows the (p, λ) phase-space region covered by the
photometric and spectroscopic data sets. Since we do not use
infra-red photometric data, the re-calibration of spectra may not
be reliable for rest-frame wavelengths larger than 8000 Å, which
is the central wavelength of the I-band filter. Also, we have lit-
tle spectroscopic information in the UV for phases earlier than
−10 days or greater than 10 days since the spectroscopic obser-
vations of the SNLS are designed to be as close as possible to
the date of maximum luminosity. The few late UV spectra we
have in our sample come from IUE database (INES 2006).

4. Training the model

4.1. The training procedure

The convergence process consists in minimizing a χ2 that per-
mits the comparison of the full data set with the model of
Eq. (1). For each SN, the parameters are the normalization and
coordinates along the principal components (xk), a color and
re-calibration parameters for spectra if any. The actual com-
ponents (Mk) and the parameters of the color-law CL(λ) also
have to be estimated. This procedure requires a first guess for
the model components (Mk), for a first estimate of normaliza-
tion, spectra re-calibration and color. We used the SALT model
SED sequence for a SN with stretch = 1 for M0 and the dif-
ference of SED sequence of a SN with stretch = 1.1 and the
previous one for M1 (i.e. a linearized version of SALT model).

Additional components where initiated with the orthogonal part
of the SALT model SED sequence with respect to all previous
components.

We end up with more than 3000 parameters to fit, with ob-
vious non-linearities, so that we used the Gauss-Newton proce-
dure, which consists in:

1. approximating locally the χ2 by a quadratic function of the
parameters;

2. solving a large linear system to get an increment of the
parameters (δPi);

3. increment the parameters and iterate until the χ2 decrement
with respect to the previous iteration becomes negligible.

First, the average model is estimated along with the color-
law, calibration coefficients for spectra, and parameters of the
SNe ((xi), c). When the system has converged, we add another
component, and all the parameters are fitted again (components,
color-law, SN parameters). The convergence algorithm is insen-
sitive to the input set of components.

4.2. Regularization

There might be some degeneracy in part of the phase space for
the given data set. For instance, if a phase × wavelength region
is only covered by photometry and not spectroscopy, we do not
have enough data to constrain the combinations of parameters
that model spectral features, whereas we can still model a pho-
tometric measurement, since the signal is integrated on a large
spectral band. Adding a regularization term in the χ2 solves this
issue. If its contribution is low enough, it will not alter signifi-
cantly the determination of parameters that are addressed by the
data, while putting some limitation on the parameters that are
not. We have chosen to minimize second derivatives with respect
to phase and wavelength (once again, effective only when there
is not enough data). The regularization term is the following:

χ2
REGUL = n ×

∑
MT

k DT DMk

where Mk is the vector describing component k, D is the deriva-
tive matrix and n a normalization that controls the weight of this
regularization with respect to data. Since such a term introduces
a bias in the estimator (departure from the maximum likelihood
estimator), we have to quantify it in order to adjust the normal-
ization n. For this purpose, we used a simulated dataset. This
simulation helps us to define the resolution of the model. Each
SN of the training sample was adjusted using the SALT model,
then fake light-curves and spectra were computed by replac-
ing each true measurement of the SN by the best fit value of
the model. The training procedure applied to this data set gives
a result that is slightly biased due to the regularization term in
the χ2 in the UV wavelength region. The weight of the regu-
larization term (normalization n) was chosen so that the bias
in K-corrections is smaller than 0.005 mag for all wavelength,
which is significantly less than the statistical uncertainties.

4.3. Model resolution

The choice of the model resolution is imposed by the data
set we have. We used 10 × 120 parameters for M0 (10 along
the time axis and 120 for wavelength), in a phase range of
[−20,+50] days and a spectral range of [2000, 9200] Å. This
gives a spectral resolution of order of 60 Å which is sufficient for
the modeling of SNe with broad lines due to the velocity of the

Figure 1.7 Rest frame phase and wavelength coverage of SN Ia spectra used to train the

SALT-II model. This figure has been adopted from Guy et al. (2007, Figure 1).

Figure 1.7 shows the rest frame phase and wavelength coverage of the SN Ia spec-

tra used to train the SALT-II model (adopted from Figure 1 of Guy et al. (2007)). The

coverage density is largest in the 4000-6000 Å range (broadband B and V near SN peak).

The wavelength limitations of ground-based photometry are obvious in the sharp cutoff

in coverage below 3800 Å. Bluer wavelength coverage mostly comes from space-based

telescopes, and is clustered within 5 rest-frame epochs of peak. Given the added disper-

sion in the UV (see Figure 1.5), the reliability of K and S corrections in this region is in
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question (e.g. Foley et al. 2012b).

Lack of information about SN Ia UV spectra and colors makes the color correction

law, regardless of origin, hard to determine since it is most sensitive in the UV region.

Adopted from Guy et al. (2010), Figure 1.8 shows a representative range of color laws

used to correct for SN Ia color variation. These color laws, regardless of the value of the

color correction parameter (e.g. β or RV ), are all similar in the core wavelength region

of 4000 to 6000 Å. After 6000 Å, the laws diverge slightly. However, the differences

are extreme in the bluest wavelength regions: depending on which color law is used,

magnitude differences for a SN Ia with color c = 0.1 could be as large as 0.2 at 3200 Å.
J. Guy et al., SNLS Collaboration: SNLS-3: SNe Ia photometric distances and cosmological constraints

of distances derived for those two SNe is directly a function of
the (U − B) − (B − V) colour9 difference of the model. Since all
light curve models are empirically derived from a limited train-
ing set, this latter colour has an uncertainty which introduces a
redshift-dependent correlation among the derived supernova dis-
tances (see for instance Knop et al. 2003). Since many more SNe
have been observed at high-redshift than at low redshift, high-z
SNe must be considered in the training of the light curve models
in order to overcome the statistical limitations of the nearby sam-
ple. This has been done with the SALT2 and SiFTO models; it
was possible since both techniques do not make use of distances
in their training process.

4.1.3. Modeling of the near UV emission

High-z SNe allow the observation of the rest-frame near UV
emission from the ground without the need of space telescopes.
The near UV is modelled in SALT2 and SiFTO using SNLS pho-
tometric (in gM and rM bands up to a redshift of 1) and spectro-
scopic observations (see references in Table 9). Using near UV
data allows for a drastic improvement of the colour and hence
distance estimate for SNe at redshifts of order of unity, where the
sensitivity of the rest-frame B and V is limited by the quantum
efficiency drop of MegaCam CCDs in the zM band. However, we
still lack spectroscopic observations at early and late phases (the
primary goal of the SNLS spectroscopic program was to provide
an identification of the SNe which is easier at maximum bright-
ness).

4.1.4. Diversity of SNe Ia colours: intrinsic variation
or absorption by dust

There is still much debate about the treatment of the SN colour
parameter (generally anchored to B − V at maximum light).
Whereas all cosmological analyses based on SNe perform a lin-
ear correction of distance moduli (i.e. logarithm of distances)
with the measured colour, the value of the coefficient used and
its interpretation differ significantly from one analysis to another.
In A06, this coefficient β is marginalised over in the cosmologi-
cal fit, without any attempt to separate the reddening effect of
dust absorption or a potential intrinsic variation. On the con-
trary, the MLCS2k2 technique used in ESSENCE (Wood-Vasey
et al. 2007), GOODS (Riess et al. 2004, 2007) and SDSS surveys
(Kessler et al. 2009), assumes that the derived (B−V) colour off-
set primarily comes from extinction by dust, and therefore that
the β parameter should be identified with the RB value of the
Cardelli et al. (1989) extinction law. When β is fit at the same
time as cosmology, values ranging from about 2 to 3 are found
depending on the technique used to derive it. Those values are
systematically smaller than the value of 4.1 in the Cardelli et al.
(1989) extinction law.

The large range of values obtained for β is likely to be a
consequence of different assumptions on the uncertainties of the
(B−V) colour estimates (and to a lesser extent the colour range of
the SNe sample considered). For a given data set, the larger the
assumed uncertainties on (B − V), the larger the fitted β value.
This issue is raised by Freedman et al. (2009); we come back
to it in Sect. 5.5. Whereas in previous papers (including papers
from the SNLS collaboration: A06, G07, C08), low values of
β " 2 were found, we get larger values when accounting for

9 The SNe colours mentioned in this section are always considered at
maximum light. Note however that the estimates of the colours resulting
from a light curve fit are actually an average of the difference between
the data and the model with a weight that varies with the phase of the
observations.
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an intrinsic scatter in SNe colour relations in this paper (see
Sects. 4.4 and 5.5). Fitting for β or not has some consequences.
For instance, Conley et al. (2007) have shown that either we live
at the centre of an under-dense region of the Universe as pro-
posed by Jha et al. (2007), or the relation between SN colours
and luminosity does not follow the one expected for the Galactic
extinction and β < RB.

This low value of β points to either an unusual extinction
law in host galaxies of SNe Ia or an intrinsic colour varia-
tion that dominates the effect of extinction. One hint is that the
colour variation law (which describes how the SN flux varies
with colour as a function of wavelength) can be derived from the
SN data themselves, and differs significantly from the Cardelli
et al. (1989) extinction law in the near UV and U-band, even for
extreme values of RB (see Guy et al. 2005, 2007, and Fig. 6). In
SiFTO, the derived relation between the (U − B) and (B − V)
colours of SNe can not be explained with an extinction law ei-
ther. While there is not yet a definitive proof that the colour vari-
ation we observe is intrinsic to the SN, we still have to relax the
assumption that it is purely due to dust extinction as modelled
by Cardelli et al. (1989). This has some consequences for the
cosmological analysis. Indeed, applying an incorrect correction
to luminosity introduces a redshift dependent bias since the av-
erage colour of SNe varies with redshift because of Malmquist
bias (bluer SNe are brighter and hence dominant near the de-
tection limit of a survey). This occurs at the highest redshifts of
all surveys but also for nearby SNe that were observed by other
means (see e.g. Conley et al. 2007).

In the MLCS2k2 approach, a colour excess E(B−V) is mea-
sured as the difference between the observed colour and that of
the model. In this model, the intrinsic variability of SNe is ad-
dressed with a single parameter (∆), and any possible additional
intrinsic variation is unaccounted for. As a consequence, one ex-
pects that, at some level, the E(B − V) estimate resulting from
the light-curve fit combines both dust reddening and a possible
residual intrinsic colour variation. There are several examples of
SNe Ia being clearly extinguished by dust. In contrast, there is
no proof that part of the (B − V) colour variation is driven by
intrinsic SNe properties. The only hints come from observations
which point to a value of β < RB and a colour variation law
incompatible with a standard dust extinction law. Nevertheless,
as the physical mechanism responsible for the SN Ia explosions
obviously involves more than a single parameter (composition

Page 9 of 34

Figure 1.8 The range of color laws used to correct color variation in SN Ia observations.

The SALT-II (G10) color law is shown by the thick solid curve, the SALT (G07) color law

by the thin solid curve, and two variants of the CCM color law (RV = 1.0 and RV = 3.1)

in the dotted and dashed lines, respectively. All laws are shown for c∼ E(B−V ) = 0.1.

This figure has been adopted from Guy et al. (2010), Figure 6.

Optical SN Ia Hubble diagrams depend on SN Ia rest-frame U and B to measure

distances at high redshifts (z ∼ 1.0). As shown in Figure 1.9 a SN survey such as the

Dark Energy Survey (e.g. Bernstein et al. 2012) will be dependent on SN Ia rest frame U

and B (λ ∼ 3000−5000Å) for its distance measurements.

To put these high-z objects on the same footing as the lower redshift objects used for

model training, it is essential that the relationship between U −B and B−V colors be
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Figure 1.9 Rest frame wavelength range observed at z∼ 1. Observer frame DES riz filters

are shown in solid lines. The equivalent redshifted SDSS u and g filters are overplotted in

dotted lines. The bottom x-axis shows observer frame wavelengths; the top x-axis shows

the equivalent rest-frame wavelengths for a SN Ia with z = 1.

understood. As discussed in Guy et al. (2010), underestimates of U−B color dispersion

lead to biased color law and color correction parameter estimates.

Furthermore, as previously mentioned, signs of metallicity-driven differences in SN

Ia features are most likely to appear in the UV, and will therefore disproportionately affect

high redshift SN Ia distance measurements. However, improvements in our understanding

of metallicity-SN Ia luminosity correlations will be most likely to come from low-redshift

SN Ia data, where distances to the SNe are well-constrained and their progenitors’ local

environments can be intensively studied. Therefore, efforts to understand and improve

ground-based NUV photometry are well worth our while.
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1.5 Overview

To use SN Ia distance measurements to constrain the nature of dark energy it is neces-

sary to understand intrinsic SN Ia UV dispersion, SN Ia color corrections, and possible

evolution of SN Ia behavior with metallicity. Although challenging, ground based UV

observations of nearby SNe Ia will be important to achieving these goals, as these obser-

vations provide the most useful combination of SN observations, distance information,

and host galaxy data.

In Chapter 2 I describe comparisons of photometry taken of the same SNe by two

different surveys: the Carnegie Supernova Project (CSP Hamuy et al. 2006; Contreras

et al. 2010; Stritzinger et al. 2011) and the SDSS-II Supernova Search (SDSS Frieman

et al. 2008a). In addition to confirming the expected high quality of BV RI photometry of

both observing programs, this work performs the first direct comparison of ground-based

SN Ia U observations, and finds typical U agreement of 0.02 magnitudes and an average

dispersion of 0.06 magnitudes. This work has been published (Mosher et al. 2012) and

is reproduced here with minimal changes from the refereed version.

In Chapter 3 simulated SN Ia data are used to train the SALT-II SN Ia model and

quantify the resulting Hubble diagram bias. For SN Ia models incorporating realistic

wavelength-dependent dispersion, we find that the trained color laws are biased at blue

wavelengths and observe a redshift-dependent decrease in the SALT-II color correction

parameter β . However, standard bias corrections somewhat compensate for this effect.

With current training sets, we find model-related bias in the dark energy equation of state

parameter w to be on the order of 0.01. This work will be submitted for publication in the

near future.

Chapter 4 will briefly discuss the implications of this work.
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Chapter 2

Comparison of SDSS-II and CSP

SN Ia photometry

Used as standard candles, Type Ia supernovae (hereafter SNe Ia) provided the first direct

evidence of cosmic acceleration (Riess et al. 1998; Perlmutter et al. 1999), and hence

the existence of dark energy. With cosmic acceleration having been firmly established

through both SNe Ia (e.g. Tonry et al. 2003; Riess et al. 2004, 2007; Astier et al. 2006;

Wood-Vasey et al. 2007; Freedman et al. 2009; Kowalski et al. 2008; Kessler et al. 2009a;

Amanullah et al. 2010; Sullivan et al. 2011) and other cosmological measurements, such

as the late-time integrated Sach-Wolfe effect (Giannantonio et al. 2008) and X-ray cluster

distances (Allen et al. 2008), sights have now turned to understanding the time-varying

nature of dark energy. Distinguishing between competing dark energy theories will re-

quire photometric precision of SNe Ia observations on the 1% level or better.

Several recent surveys have discovered and observed more than a thousand SNe Ia

extending from intermediate- to high-z. Analysis of the full set of SNe Ia indicates that

the precision of cosmology measurements is now limited as much by systematic as by

statistical uncertainties (e.g. Hicken et al. 2009a; Kessler et al. 2009a; Guy et al. 2010;

Conley et al. 2011; Sullivan et al. 2011). Systematic uncertainties are particularly acute
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in the UV, specifically the observer-frame U band (Kessler et al. 2009a; Sullivan et al.

2011).

Performing highly acccurate UV observations is a challenging task. The filter re-

sponse function in this region is difficult to characterize due to the significant role played

by the atmosphere in determining its shape on the blue side. Rest-frame UV response

functions are more variable from telescope to telescope than in the other bands, making

the accurate characterization of the UV filter response function even more important. The

nearby SN sample suffers from both of these problems, since it is a heterogeneous collec-

tion of data taken at many telescopes, and most of the light curve data are reported in the

Landolt standard system for which the filter-response functions are not well-defined, par-

ticularly in U . For this reason, the SALT2 light curve fitter was not trained with observer

frame UV (Guy et al. 2007). U-band calibration of the nearby sample was identified by

Kessler et al. (2009a) as one of the main sources of the discrepancy between cosmology

parameters obtained with the MLCS2k2 and SALT2 light-curve fitting models. Due to

these known calibration problems, many analyses, including Kessler et al. (2009a), Con-

ley et al. (2011) and Sullivan et al. (2011), recommend avoiding use of observer-frame

UV for fitter training and cosmology.

Significant benefits can be gained from SN Ia observer-frame UV data if systematic

calibration uncertainties can be reduced. Spectral observations at high and low redshifts

have shown that the UV portion of the Ia spectrum, particularly below 3500 Angstroms,

shows increased diversity compared to the optical (Foley et al. 2008; Ellis et al. 2008;

Wang et al. 2012; Cooke et al. 2011) , even after accounting for extinction (Ellis et al.

2008). Some degree of diversity is expected due to differences in progenitor metallicities

(Hoeflich et al. 1998; Mazzali 2000; Lentz et al. 2000; Timmes et al. 2003; Sauer et al.

2008). However, it is not clear that current metallicity theories can explain the observed

range of dispersion (Cooke et al. 2011; Ellis et al. 2008; Wang et al. 2012). Progenitor-

stellar companion interaction (Kasen 2010) and asymmetric explosions (Foley & Kasen

2011; Kasen & Plewa 2007) are other possible sources for variations in UV flux.
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Although rest-frame UV photometry is arguably easier to obtain at redshifts of z≈ 0.2

and higher (e.g. Astier et al. 2006), low-redshift SN observations allow for the acquisition

of a much wider range of ancillary data. Spectropolarimetry and very early and late-time

supernova spectra are more easily obtained for low-redshift SNe; these provide valuable

information about rise times, progenitor interaction, and explosion asymmetry (see for

instance Leonard et al. 2005; Foley et al. 2012b; Maeda et al. 2011). Host galaxy metal-

licity data, especially as pertains to the SN Ia location itself, are also easier to obtain

for nearby SNe and can be used to probe the host galaxy-luminosity relationship which

has been recently observed by Kelly et al. (2010); Sullivan et al. (2010); Lampeitl et al.

(2010); D’Andrea et al. (2011); Gupta et al. (2011). The ability to link any or all of

these spectrum-based measurements to observable features in the UV light curve will be

valuable for the interpretation of SN Ia observations as a function of redshift. At high red-

shifts, observed light-curves are limited to the bluer bands in the rest frame. At z ≈ 1.0,

the highest redshift SN observations achievable from the ground, the UV region is criti-

cal. Therefore, the interpretation of these high-redshift SNe light curves, or whether they

can be used at all for cosmological studies will depend on our understanding of SN Ia rest

frame UV models.

In this paper, we examine SN Ia photometry from the Carnegie Supernova Project

(CSP; Hamuy et al. 2006) and the SDSS-II Supernova Survey (Frieman et al. 2008b)

which are likely to make up significant fractions of future light-curve training sets. Both

of these programs have invested substantial time and effort in characterizing their photo-

metric systems and in ensuring accurate photometry. By comparing data from 10 well-

observed SNe Ia in common, we will examine the consistency of their overall calibrations,

particularly in the rest-frame UV. Results of these tests will help determine the viability of

observer-frame UV photometry, and the utility of these data in light curve fitter retraining

efforts currently underway.

Ganeshalingam et al. (2010) perform a similar comparison between CfA and LOSS

BV RI photometry. Although they found photometry agreement to be reasonable, with

26



mean photometry residuals between 0.01 and 0.02 magnitudes in all bands, their scatter

was much larger than expected, ranging from 0.07 to 0.11 magnitudes. It has been pos-

tulated by Foley et al. (2011) that the large scatter is due to S-corrections, which were

not part of the Ganeshalingam et al. (2010) analysis. We will show that by incorporat-

ing S-corrections, which are not negligible in the redshift range of our overlap objects

(z ∈ 0.02−0.08), we are able to obtain residual rms scatter of the levels expected, on the

order of σ ∼ 0.05 magnitudes.

In Section 2.1 we present an overview of the CSP and SDSS photometry, describe our

S-correction technique, and tabulate expected systematic uncertainties. Our magnitude

data, including S-corrected light curves, and magnitude agreement statistics, are described

in Section 2.2. In Section 2.3 we look at magnitude agreement in each band in more detail,

including a discussion of template vs spectrum based S-corrections.

2.1 Photometry

Between 2005 and 2007 the CSP low-redshift program and SDSS-II supernova survey ob-

served 16 common objects, of which ten are spectroscopically confirmed Ia supernovae.

One of these ten (SN 2006fw) has image registration discrepancies, and has been excluded

from our analysis. We use the remaining nine SN Ia, listed in Table 2.1, as our sample. In

subsections 2.1.1 - 2.1.4, we give an overview of how photometry was acquired and how

the data were placed on a common system. Accompanying this information, Table 2.2

summarizes the AB offsets used to transform synthetic CSP and SDSS AB magnitudes

to their native systems. Subsection 2.1.5 describes how interpolation was used to transfer

SDSS photometry onto the observation dates of the CSP data. Subsection 2.1.6 details

the systematic uncertainties expected for this analysis.
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Table 2.1. Spectroscopically confirmed overlap SNe Ia

SDSS-II SN IAU peak MWG CSP phot.
za ∆m15 peculiar

ID name MJD Av
b version

4524 2005gj 0.0616 53658.0 · · · 0.312 Prieto et al. yesc

5944 2005hc 0.0459 53666.6 0.85 0.092 Contreras et al.
6558 2005hj 0.0574 53673.9 0.72 0.121 Stritzinger et al. yesd

7876 2005ir 0.0764 53684.3 0.84 0.095 Contreras et al.
8151 2005hk 0.0131 53684.8 · · · 0.077 Phillips et al. yese

10805 2005ku 0.0455 53697.7 1.02 0.095 Stritzinger et al.
17784 2007jg 0.0371 54367.0 1.17 0.330 Stritzinger et al.
17886 2007jh 0.0401 54366.0 1.77 0.321 Stritzinger et al. yesf

18890 2007mm 0.0664 54392.2 1.91 0.113 Stritzinger et al. yesg

aRedshifts are in heliocentric frame.

bTaken from Schlegel, Finkbeiner, & Davis (1998) dust maps.

cSN 2002ic-like.

dSN 2005-hj like.

eSN 2002cx-like.

fSN 1986-G like.

gSN 1991-bg like.
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Table 2.2. AB offsets for the SDSS and CSP photometric systems

u g r i

SDSS −0.069 ± 0.005 0.021 ± 0.004 0.005 ± 0.004 0.018 ± 0.009
CSP −0.050 ± 0.017 −0.017 ± 0.009 −0.005 ± 0.017 0.002 ± 0.017

Note. — As pointed out in Holtzman et al. (2008), the SDSS AB offsets are

derived by comparing native and synthetic AB magnitudes of the solar analog stars

P330E, P177D, and P041C. CSP AB offsets are obtained by comparing native

and synthetic AB magnitudes of the CALSPEC standard BD+17◦4708, and are

consistent with zeropoints published in Contreras et al. (2010).

2.1.1 SDSS-II Supernova Survey

The SDSS-II Supernova Survey was one of three main scientific programs carried out by

the SDSS-II. Supernova candidates were discovered by repeated imaging scans of a 300

deg2 patch of sky over three fall observing seasons in 2005-7. SDSS-II ugriz (Fukugita

et al. 1996) imaging was obtained with the SDSS camera (Gunn et al. 1998) attached to

the SDSS 2.5 m telescope (Fukugita et al. 1996; Gunn et al. 2006) located at the Apache

Point Observatory [APO]. Preliminary photometric processing was carried out at APO

(Stoughton et al. 2002; Tucker et al. 2006). Photometric zero points for nightly frames

were obtained from field stars in the Ivezić catalog (Ivezić et al. 2007). Off-site, supernova

candidates were flagged for spectroscopic followup (Sako et al. 2008), and SN magnitudes

were extracted from images using scene-modeling photometry (Holtzman et al. 2008) and

reported in the SDSS natural magnitude system (Smith et al. 2002; Lupton et al. 1999).

For a technical summary of the SDSS see York et al. (2000); further information can be

found in Hogg et al. (2001), Pier et al. (2003) and Abazajian et al. (2009).

It has recently been determined that the SDSS-II SN photometry requires declination-
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dependent corrections to compensate for flat-fielding issues with the PT telescope. These

corrections are described in Betoule et al. (2012a); updated photometry will be released

in Sako et al. (2012), and is used for this work.

In combination with the absolute flux standard BD+17◦4708, the SDSS photometric

system is defined by its photon-weighted filter response functions, which include SDSS

filter, CCD response, telescope transmission and 1.3 standard airmass transmission. Ab-

solute flux calibration, tying SDSS native magnitudes to the AB system, has been deter-

mined using SDSS Photometric Telescope (PT) observations of CALSPEC solar analog

stars (Tucker et al. 2006). This process is described in detail in Holtzman et al. (2008).

We have updated the AB offsets to reflect three recent revisions: (1) the February 2010

CALSPEC release, which altered the solar analog SEDs slightly, (2) SDSS 2.5m filter re-

sponse functions (Doi et al. 2010), which apply specifically to observations taken in 2004

or later, and (3) updated SDSS PT to 2.5m linear magnitude and color transformation

equations used to transfer the observed solar analog magnitudes to the SDSS 2.5 meter

system. Of these three changes, the filter response function update has the largest effect,

particularly on the u-band offset which decreases by 0.0316 magnitudes. The changes in

gri offsets are at the millimag level or smaller.

The AB offsets mAB−mSDSS used in this work are −0.069±0.005, +0.021±0.004,

+0.005±0.004 and +0.018±0.009 for ugri, respectively, where uncertainties have been

calculated as per the description in Kessler et al. (2009a). These take into account internal

consistency of the solar analogs as well as the uncertainty in the central wavelengths of

the filter response functions.

2.1.2 CSP Supernova Program

The CSP optical (ugriBV ) follow-up campaigns were carried out with the Direct CCD

Camera attached to the Henrietta Swope 1 m telescope located at the Las Campanas Ob-
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servatory (LCO). A subset of field stars from the published Smith catalog1 were used to

calibrate the local sequences used to derive nightly zeropoints. Similarly to the SDSS

survey, CSP magnitudes are published in the native photometric system, defined by the

SWOPE filter response functions of Stritzinger et al. (2011) and the primary standard

BD+17◦4708.

Preliminary throughput curves given by Hamuy et al. (2006) were updated by Contr-

eras et al. (2010), who emphasized that the u-band curve remained uncertain. Definitive

measurements of the CSP filter throughput curves were carried out at the telescope in

2010 using a monochromator and calibrated photodiodes (Rheault et al. 2010; Stritzinger

et al. 2011). We adopt these curves in the present analysis. As with the SDSS, CSP

throughput curves include filter transmission, CCD response, telescope transmission, and

1.3 standard airmass transmission.

Absolute flux calibration for the CSP ugri photometry is taken from the published

Smith et al. (2002) magnitudes of the SDSS primary standard star BD+17◦4708. Color

terms are used to transform these magnitudes into the CSP native system. Analogous

to the SDSS procedure, AB offsets are determined by comparing expected native CSP

magnitudes with synthetic CSP photometry of BD+17◦4708.2 Using this method, the

following ugri offsets were obtained: −0.050, −0.017, −0.005, 0.002. These values are

consistent with the zeropoints published in Contreras et al. (2010). We use color term

uncertainty as a proxy for the CSP offset uncertainty. Uncertainties are 0.017, 0.009,

0.017 and 0.017 mag for ugri (Hamuy et al. 2006). A summary of calibration information

is provided in Table 2.2.

1As the CSP observed with both Sloan and Johnson B and V filters, only stars common to both the Lan-

dolt (Landolt 1992) and the Smith catalogs were used for calibrating the photometry of the local sequences.
2The specific version used for this work is bd17d4708_sticsnic_002.ascii, which may be obtained from

the website http://www.stsci.edu/hst/observatory/cdbs/calspec.html.
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Table 2.3. CSP SDSS-II Calibration Star Comparison

SN avg∆u avg∆g avg∆r avg∆i

SN 2005gj 0.014(49), 9 -0.005(31), 13 -0.008(33), 13 -0.016(57), 13
SN 2005hc -0.041(12), 2 -0.065(104), 3 -0.028(52), 3 -0.010(40), 3
SN 2005hj -0.093(119), 4 0.024(11), 8 0.009(12), 8 0.024(42), 8
SN 2005ir -0.014(58), 7 0.019(30), 14 0.015(14), 14 0.017(16), 14
SN 2005hk -0.005(46), 12 0.018(15), 15 0.019(10), 15 0.019(14), 15
SN 2005ku 0.212(764), 3 -0.017(297), 7 0.070(105), 7 0.085(78), 7
SN 2007jg 0.018(58), 8 -0.012(26), 11 -0.016(17), 11 -0.021(66), 11
SN 2007jh 0.069(68), 8 -0.037(20), 11 -0.019(20), 11 -0.003(16), 11
SN 2007mm 0.093(18), 4 0.009(46), 8 -0.0002(40), 8 0.005(61), 8

Note. — CSP stellar magnitudes have been transformed into the SDSS-II pho-

tometric system, compared with the SDSS-II magnitudes, and agreement statistics

for each SN calculated. The numbers in parentheses are the rms differences given

in units of thousandths of magnitudes, followed by the number of stars in common

for the listed SN and band. SN 2005ku stands out as having especially poor agree-

ment, with CSP calibration stars appearing dimmer than SDSS calibration stars by

0.2 magnitudes in the u bandpass. Based on this evidence, SN 2005ku has been

omitted from our analysis .
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2.1.3 Calibration Star Comparison

Magnitudes of calibration stars in common were transformed to the SDSS native system

and compared. For the SDSS-II, we chose to use SDSS Data Release 8 (SDSS DR8;

Aihara et al. 2011) “ubercal” magnitudes rather than Ivezić catalog magnitudes, to match

the recalibrated SDSS-II SMP photometry data. Each bandpass of each supernova had

between 2 and 14 calibration stars in common. Table 2.3 shows mean and rms calibration

star agreement as a function of SN and filter. SN 2005ku stands out as having particularly

poor agreement, with three of four bands differing by more than 0.06 magnitudes. The

u band in general is notable for its lack of agreement, with four of nine SNe having

mean calibration star differences of more than 0.06 magnitudes. Rather than exclude

poorly agreeing SNe from our already-small data set, we have chosen to combine mean

calibration star difference in quadrature with photometric uncertainty.

2.1.4 S-correction Procedure

Before comparing photometry from CSP and SDSS-II for a given SN Ia, it is necessary

to transform the photometry to a common photometric system. This is accomplished

through the use of S-corrections (Stritzinger et al. 2002). S-corrections account specif-

ically for differences between filter response functions and are computed synthetically

based on the redshift and spectral energy distribution (SED) of the object. Therefore

they require models for both the native photometric system of the data and the common

system to which we wish to transform to, as well as a reasonable model for the SED.

Since SN Ia SEDs evolve with time, S-corrections must be calculated for each observed

epoch. Depending on the amount of difference between filters and the underlying SED,

S-corrections can be minimal to quite significant. As shown in the right-hand panel of

Figure 2.1 , CSP to SDSS S-correction magnitudes for a mean SN Ia observed at a red-

shift of 0.04 (the typical redshift of our sample) are on the order of −0.1 magnitudes for

the u, +0.05 magnitudes for i, and 0.01 magnitudes for g and r.
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Table 2.4. Systematic Errors affecting synthetic CSP magnitudes

source of uncertainty u g r i

AB Offset Uncertainties 0.018 0.010 0.017 0.019
SDSS Absolute Flux Calibration 0.006 0.009 0.003 0.004
S-Correction Template 0.012 0.005 0.000 0.001
Interpolation 0.006 0.001 0.005 0.002
Total 0.023 0.014 0.018 0.020

Note. — This table summarizes sources and magnitudes of sys-

tematic errors introduced by placing CSP and SDSS photometry on

a single system. In the first row, CSP and SDSS AB offset uncertain-

ties have been combined by addition in quadrature. Row two shows

the difference in SDSS magnitude that would be obtained were the

absolute flux calibration to be tied to BD+17◦4708 rather than Solar

Analogs. Row three gives estimates of magnitude differences due to

the use of templates rather than spectra in S-correction calculations.

Row four gives uncertainty in the mean due to interpolation biases.

For more information, see sections §2.1.1, §2.1.2, and §2.1.6.
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Figure 2.1 CSP and SDSS throughputs are plotted in the left panel. The right panel shows

S-corrections for a mean SN Ia observed at a redshift of 0.04 (the average redshift of the

SNe in our sample) as a function of time. A solid line has been drawn at S-correction

equals zero to guide the eye. Descriptions of the filter response functions used can be

found in Doi et al. (2010) and Stritzinger et al. (2011). Hsiao SN Ia templates have been

used as a proxy for the mean SN Ia spectral energy distributions.

The S-correction technique described by Suntzeff (2000), Stritzinger et al. (2002), and

Phillips et al. (2007) was used to transform CSP photometry to the native SDSS system.

The gist of the technique is to adjust the colors of an appropriate supernova SED until

they match the observed colors in the original system, then to use the adjusted template

to compute synthetic photometry in the new system.

Since we do not have observed spectra corresponding to each photometric measure-

ment, Hsiao templates3 (Hsiao et al. 2007), were used as proxies for the time-evolving

SN Ia SED. The templates were linearly interpolated to the desired rest frame epoch,

redshifted, adjusted to the appropriate Milky Way Galaxy extinction using the CCM ex-

tinction law (Cardelli et al. 1989) and the dust maps of Schlegel et al. (1998), and color-

matched to CSP observed photometry for the xth and (x+ 1)th bands (e.g., for g-band

S-corrections, the template was color-matched to g− r)4. Following Nugent et al. (2002),

3http://www.astro.uvic.ca/ hsiao/uber/index.php
4Since CSP optical photometry only extends through i, CSP r and i-bands were used for i -band S-

corrections.
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color-matching was done via the CCM dust extinction law (Cardelli et al. 1989). For

each desired S-corection, a Monte Carlo routine was used to determine the variance in

synthetic magnitude resulting from observed photometry uncertainties.

2.1.5 Interpolation

We interpolate SDSS light curves to obtain SDSS magnitudes on the dates of CSP pho-

tometry. Although interpolation with light-curve fitters was considered, ultimately the

choice was made to use cubic splines. This decision allowed us to treat Branch-normal

and peculiar SNe identically, and avoided potential systematic uncertainties that could

be introduced by the set of SN data used to train the light-curve fitter. Since five of our

nine SNe are peculiar (see see §2.1.6 or Table 2.1), the use of a model-independent in-

terpolation technique was especially important for this work. We did use the MLCS2k2

light curve fitter for a limited epoch range near peak i band where splines had difficulty

reproducing the shape of the light curve. To ensure interpolation quality, to be included

in our analysis CSP photometry had to be bracketed by SDSS photometry, with at least

one of those bracketing points being observed within 2 observer-frame days of the CSP

epoch. We also required that interpolated magnitudes have uncertainties less than or equal

to 0.05 magnitudes ( 0.06 magnitudes for u ).

For most of the SNe, CSP and SDSS have very similar sampling rates. Because the

rolling SDSS search discovered most of these SNe, interpolating SDSS data allows inclu-

sion of slightly more data near peak. Therefore, seven of the nine supernovae were inter-

polated from SDSS photometry onto CSP observation dates. For the other two objects,

SN 2005hc and SN 2007jg, we interpolated from CSP onto SDSS dates. SN 2005hc was

located on the overlap area between the two SDSS-II observing strips where calibrations

do not align exactly, leading to difficulties with an SDSS spline interpolation. SN 2007jg

was better sampled by the CSP.
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Table 2.5. SN Ia Used For S-Correction Uncertainty Estimation

SN IAU peculiar reference phases
name

u-band comparison

1960R · Blaylock et al. (2000) 29
1981B HVG Branch et al. (1983) 0
1994D · Patat et al. (1996) −11, −4, 24
1996X · Salvo et al. (2001) 0, 1, 7, 56, 57, 87
1999ee · Hamuy et al. (2002) −11
2002bo HVG Benetti et al. (2004) 4, 43
2004dt HVG Altavilla et al. (2007) −9, −7, −6, −4, 2, 3, 4, 10, 14
2004eo IVG Pastorello et al. (2007a) −3, 2
2005cf · Pastorello et al. (2007b) −8, −7, −6, −3, −2, −1, 5

gri-band comparison

1994D · Patat et al. (1996) −5, −4, −2, 2, 4, 10,
11, 24, 26, 50, 76

1998bu · Cappellaro et al. (2001) 10
2002bo HVG Benetti et al. (2004) −4, −3, −2, −1, 4, 28, 38
2002er · Kotak et al. (2005) −8, 0, 2, 4, 5, 10,

12, 13, 16, 17,20, 34
2003cg · Elias-Rosa et al. (2006) −8, −7, −6, −5, −1,

1, 12, 16,26, 43
2003du · Stanishev et al. (2007) −11, −7, −5, −3, −2, 1,

2, 3, 4, 6, 9, 10, 13, 17,
21, 24, 34, 37, 39, 51, 63, 72
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Table 2.6. Magnitude agreement statistics: pooled data

residual

band N mean [mags] scatter[mags] scatter[σ ]

u 32 0.001 ± 0.014 0.077 1.01

g 62 -0.002 ± 0.006 0.043 0.97

r 60 -0.002 ± 0.005 0.049 1.24

i 59 -0.011 ± 0.005 0.050 1.32

Note. — Residual is defined as CSP magnitude minus

interpolated SDSS magnitude. CSP magnitudes have been S-

corrected onto the SDSS photometric system. Residual mean

and scatter have been calculated using the inverse variance as

weight. To test gaussianity of the statistical errors, we have

also calculated the scatter in units of the error ≡ ∆m/δm. If

errors are random, we expect this quantity to be 1.

2.1.6 Systematic Uncertainties

In this section, systematic uncertainties introduced by calibration, S-correction, and inter-

polation will be discussed and quantified. A summary of the systematic error attributable

to each source is given in Table 2.4.

Absolute flux calibration and AB offsets

As described earlier in §2.1.1 and §2.1.2, SDSS-II calibration is tied to solar analog mag-

nitudes whereas CSP calibration is tied to BD+17◦4708 . If SDSS used BD+17◦4708 as

its absolute flux calibration, SDSS AB offsets would change to −0.0629, 0.0122, 0.0023
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0.0144 magnitudes for ugri respectively. The differences between these two sets of off-

sets, 0.006, 0.008, 0.003 and 0.004 for ugri respectively, should be considered systematic

uncertainties and are listed in row 2 of Table 2.4. We also include the CSP and SDSS AB

offset errors, combined in quadrature, as systematic uncertainties.

Mismatches Between SED and Template

The S-correction procedure requires the use of a template SN Ia SED. Templates can

introduce a systematic error in two ways. First, if the template features do not reflect

average SN Ia features, the ensemble of S-corrections derived from the template may be

biased. The Hsiao template used in this work was designed specifically to address this

issue. Its features were determined by taking a weighted average of a large number of

observed SN spectra, such that it represents a mean SN Ia; its suitability has been tested

for K-corrections from observed frame to the rest frame B band, for the redshifts 0.0 < z<

0.75. Minimal systematic offsets were observed in this band and redshift range, so long

as the proper broad-band colors are used to adjust the template (Hsiao et al. 2007).

The second way in which a template SED may introduce a systematic error is if it is

used with spectroscopically peculiar SNe Ia. This is a particular concern for our sample,

since five of our nine supernovae are spectroscopically peculiar (see Table 2.1) . Three

of these, SN 2005gj (Aldering et al. 2006; Prieto et al. 2007), SN 2005hj (Quimby et al.

2007), and SN 2005hk (Phillips et al. 2007) have been discussed in the literature. Further-

more, we have identified two more of our SNe (SN 2007jh and SN 2007mm) as peculiars

using available spectra and the photometric criteria detailed in Krisciunas et al. (2009).

For SN 2007jh , spectra have features consistent with a 1986G-like object: near peak this

SN has a large Si II at 5800 Å to Si II at 6200 Å ratio, characteristic of fast-decliners, but

lacks the strong Ti II absorption features seen in 1991bg-like objects. In addition, the i

peak date relative to Bmax and the weak secondary maximum are indicators of a 1986-G

type fast-decliner. Only one very early (rest frame epoch −8) spectrum is available for

SN 2007mm. A SNID fit (Blondin & Tonry 2007) of this spectrum agrees with a peculiar
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classification, with 6 of the top 7 matches belonging either to SN 1999by or SN 1986G.

The SN 2007mm light curve lacks a secondary peak in i and its primary maximum falls

after the Bmax date, typical of a 1991bg-like SN.

Multiple steps have been taken to minimize the effects of actual vs. template SED

mismatch. For the 1986-G and 1991-bg like objects SN 2007jh and SN 2007mm, we

use the Nugent 1991bg templates5 (Nugent et al. 2002) rather than those of Hsiao. The

other four peculiars have multiple observed spectra during the overlap time period. For

these objects, in gri bands, we include only those epochs for which observed spectra were

available to compute the S-corrections.

Finally, we quantify the systematic and statistical uncertainties in S-correction due to

SED mismatch by calculating S-correction differences between observed spectra and a

corresponding set of template spectra. Because we had very few spectra from the Branch-

normal SNe in our sample, we used SNID (Blondin & Tonry 2007) to identify similar SNe

for which spectra were publicly available through the SUSPECT Supernova Database6.

In this manner, a set of 75 spectra from six SNe Ia were chosen as a comparison set for our

data sample. A list of comparison SNe and references to their spectra is given in Table 2.5.

To be included in this data set, the spectra had to span the rest frame g, r, and i bands,

and have rest frame epochs between -20 and 80 days of peak B-band magnitude. Each

SUSPECT database spectrum was warped to match the colors of its corresponding Hsiao

spectrum, and S-corrections and S-correction differences were calculated for a redshift of

0.04, the mean redshift of our sample. In a similar manner, a smaller set of 32 spectra from

9 SUSPECT Supernovae was chosen to make u-band S-correction difference estimates.

Because the numbers of spectra with rest-frame u-band coverage are small, any SN Ia

spectrum with adequate wavelength coverage was used. The list of comparison u SNe is

also given in Table 2.5.

Observed spectrum- template spectrum S-correction differences were used to calcu-
5Templates may be downloaded from http://supernova.lbl.gov/ nugent/nugent_templates.html
6http://suspect.nhn.ou.edu/ suspect/
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Table 2.7. Magnitude agreement statistics: SN data

residual

band SNe mean [mags] scatter[mags]

u 4 -0.008 ± 0.016 0.038
g 7 -0.002 ± 0.006 0.028
r 6 0.011 ± 0.005 0.025
i 7 -0.012 ± 0.005 0.032

Note. — Residual is defined as CSP magni-

tude minus interpolated SDSS magnitude. CSP

magnitudes have been S-corrected onto the SDSS

photometric system. Residual mean and scatter

have been calculated using the inverse variance as

weight.

late mean and rms scatter S-correction differences. Mean S-correction differences have

been included as a systematic uncertainty, and listed in row three of Table 2.4. We find

mean differences between template and spectrum-based S-corrections to be no greater

than 0.005 magnitudes in the g,r, and i bands. The mean difference in u is 0.012 magni-

tudes.

The rms scatter in S-correction differences was found to be 0.055, 0.017, 0.012, and

0.016 for ugri, respectively. To properly account for spectrum-template mismatch un-

certainties, these values are added in quadrature with the statistical uncertainties of each

template S-corrected data point.

Color-matching technique

As mentioned briefly in §2.1.4, part of the S-correction process is the adjustment of the

colors of the SN SED to match the observed SN colors. These color matching techniques

have been discussed extensively in K-correction literature, which we summarize here. As
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with S-corrections, SN Ia K-corrections are commonly computed by using a template to

represent the actual supernova SED, and accounting for differences between individual

SNe Ia by adjusting the colors of the template to match those computed from broad-band

photometry (Nugent et al. 2002). This procedure works because K-corrections are primar-

ily determined by the shape of the SN continuum. Two main color-adjustment techniques

are in use. Nugent et al. (2002) use the CCM extinction law (Cardelli et al. 1989) to

match a single color, spanning the two bands around the spectral region of interest. Oth-

ers, including Hsiao et al. (2007), have suggested that a multi-color adjustment process

results in a better match between the template and the actual SED, and therefore yield

more accurate K-corrections compared to those made with a single-color adjustment.

However, if the single color is chosen carefully so that it spans the filter for which the

magnitude is needed, there is a minimal difference between the results of the two tech-

niques (see Hsiao et al. 2007; Figure 9). Analysis pipelines such as SNANA (Kessler et al.

2009b) use the single-color method because it is simpler to implement. In our case, we opt

for the single-color CCM adjustment technique to enable the inclusion of S-corrections

calculated from observed spectra. Very few observed spectra span a wavelength range

that permits even a two-color adjustment. We have implemented a color selection mecha-

nism similar to that described by Kessler et al. (2009a) to ensure that we are using the best

color for a given filter and redshift. Tests have been done to check consistency between

our CCM implementation and multi-color adjustment techniques. No differences have

been detected for this work; therefore, our choice of color-matching is not a significant

source of systematic error.

Interpolation

Based on our relatively small SN sample dominated by peculiars, and on our desire to

minimize the possibility of bias in the u-band, it was decided to use a spline interpolation

to transfer CSP magnitudes to the dates of the SDSS-II observations.

The main drawback to this choice is the potential for introducing extra scatter in the
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magnitude difference results. For SNe with relatively large time gaps between data points,

or relatively fast changes in light-curve shape, splines may systematically under or over-

estimate magnitudes. We expect this effect to be largest in the i-band, due to the rapid

changes in magnitude associated with the light curve secondary maximum. MLCS fits to

i were considered, but found to also have trouble reproducing fluxes in this region. Since

the magnitude of the secondary maximum is not well-correlated with width-luminosity

parameters (see for example Folatelli et al. 2010), it is likely that any current model would

have similar difficulties. As a precaution, our data set excluded those CSP epochs for

which the nearest SDSS epoch was more than 2 rest-frame days away.

Simulations were used to test the effects of our interpolation scheme on magnitude

residuals and scatter. A set of 500 low redshift (z <= 0.08) SNe were simulated with

a simple stretch- and color-based spectral model in SNANA. Since the main goal of this

simulation was to test the impact of the observing cadence on interpolation uncertainties,

a reasonable approximation of a SN Ia light curve was adequate. The simulations were

produced with a cadence of 1 observer-frame day. From this pool of “perfect" SNe light

curves, a redshift-weighted "match" was randomly chosen for each SN in our sample

(excluding peculiars). The cadences of the observed data were used to create “SDSS" and

“CSP" sub-sets of the simulated light curve. Finally, the “SDSS" simulation was splined

onto the CSP observation dates, and the interpolations compared to the “CSP"data. A total

of 200 realizations of the data set were obtained and analyzed for each filter. The same

cuts were applied to the simulations as to the real data. In all cases, shifts to the mean

CSP-SDSS magnitude difference due to our interpolation scheme were less than 0.006

magnitudes. These shifts are reported in the fourth row of Table 2.4, and are included as

systematic uncertainties.

2.2 Results
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Plots of the light curves of the SNe Ia in our sample are shown in the left panels of

Figures 2.2 – 2.10. The plotted magnitudes are all in the SDSS photometric system.

Photometric data used in these calculations are compiled in Tables 2.12–2.9. Magnitude

residuals passing quality cuts have been plotted on the right hand panels of Figures 2.2

– 2.10 (quality cuts have been described in section §2.1.5). Two sets of error bars have

been used to differentiate between uncertainty with and without calibration star disagree-

ment. It should be noted that only some of the residuals displayed in the right hand panels

of Figures 2.2 – 2.10 have been included in the data analysis. In particular, none of the

template-corrected magnitudes for the spectroscopic peculiars SN 2005gj, SN 2005hj, or

SN 2005hk were included. These points have been displayed in the figures to illustrate

the differences between template and observed spectrum S-corrections. Because special-

ized templates were used for fast-decliners SN 2007jh and SN 2007mm, their template-

corrected magnitudes have been included in the data analysis.

Two separate methods were used to obtain mean magnitude differences for each filter.

First, all data for a given filter was pooled and ugri magnitude residual weighted means

and standard deviations were calculated. These results are listed in Table 2.10. Second,

individual SN mean magnitude residuals were calculated, then these values were com-

bined. Figure 2.11 shows the SN-by-SN mean magnitude residuals as a function of filter,

and the combined mean magnitude residuals are given in Table 2.11. The first method

measures the typical difference and scatter in the difference for a single photometry mea-

surement in a given filter. The second method quantifies the typical difference and scatter

in the difference for any one supernova.

For the u, g, and i filters, these two methods give consistent agreement estimates. Two

of the four mean magnitude differences, u and g, are consistent with zero – indicating

agreement between the CSP and SDSS data sets – at the 1-2σ level. From this agree-

ment, we conclude that the likelihood of significant systematic error is small in these

bands. The rms error in g is also fairly small: 68% of individual photometry observations
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Figure 2.2 SN4524 / SN 2005gj : SDSS native photometry, S-corrected CSP photometry

and spline fits to the SDSS photometry are shown in the left panel. The right panels show

∆m, defined as S-corrected CSP magnitude minus interpolated SDSS magnitude plotted

as a function of rest frame epoch. The shaded gray bars show the uncertainty in the

interpolated SDSS magnitude. The u-band data are included when available.
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Figure 2.3 SN5944 / SN 2005hc : SDSS native photometry, S-corrected CSP photometry

and spline fits to the CSP photometry are shown in the left panel. The right panels show

∆m, defined as interpolated S-corrected CSP magnitude − SDSS magnitude plotted as a

function of rest frame epoch. The shaded gray bars show the uncertainty in the SDSS

magnitudes.
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Figure 2.4 SN6558 / SN 2005hj : quantities plotted are as described in Figure 2.2.
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Figure 2.5 SN7876 / SN 2005ir : quantities plotted are as described in Figure 2.2.
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Figure 2.6 SN8151 / SN 2005hk : quantities plotted are as described in Figure 2.2.
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Figure 2.7 SN10805 / SN 2005ku : quantities plotted are as described in Figure 2.2.
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Figure 2.8 SN17784 / SN 2007jg : quantities plotted are as described in Figure 2.3.
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Figure 2.9 SN17886 / SN 2007jh : quantities plotted are as described in Figure 2.2.
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Figure 2.10 SN18890 / SN 2007mm : quantities plotted are as described in Figure 2.2.
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Table 2.8. Magnitude data - r band

IAU MJD CSP(SDSS) SDSS(native) spectrum(1=yes)

2005hc 53663.3 17.4912(0.010) 17.4990(0.010) 0
2005hc 53664.4 17.4371(0.009) 17.4490(0.013) 0
2005hc 53665.4 17.3927(0.007) 17.4760(0.022) 0
2005hc 53666.4 17.3672(0.008) 17.3530(0.013) 0
2005hc 53668.3 17.3506(0.007) 17.3530(0.023) 0
2005hc 53669.3 17.3483(0.006) 17.3970(0.012) 0
2005hc 53669.4 17.3480(0.006) 17.3520(0.016) 0
2005hc 53673.3 17.4282(0.009) 17.4120(0.007) 0
2005hc 53674.3 17.4665(0.007) 17.5010(0.013) 0
2005hc 53675.3 17.5063(0.009) 17.5080(0.025) 0
2005hc 53676.4 17.5545(0.013) 17.6140(0.008) 0
2005hc 53680.3 17.7597(0.025) 17.7840(0.007) 0
2005hc 53681.4 17.8203(0.024) 17.8470(0.006) 0
2005hc 53684.3 17.9885(0.011) 18.0000(0.018) 0
2005hc 53686.3 18.0456(0.014) 18.0570(0.012) 0
2005hc 53687.4 18.0594(0.016) 18.0010(0.039) 0
2005hc 53693.3 18.1736(0.013) 18.2090(0.028) 0
2005hc 53697.3 18.3245(0.009) 18.3420(0.019) 0
2005hc 53698.3 18.3672(0.010) 18.3740(0.029) 0
2005hc 53700.3 18.4720(0.010) 18.4980(0.012) 0
2005hc 53704.3 18.7164(0.014) 18.7360(0.019) 0
2005ir 53682.1 18.5120(0.022) 18.4856(0.013) 0
2005ir 53684.2 18.4458(0.015) 18.4201(0.013) 0
2005ir 53694.2 18.5608(0.015) 18.5783(0.017) 0
2005ir 53695.2 18.6981(0.021) 18.6293(0.015) 0
2005ir 53698.1 18.7881(0.016) 18.7951(0.013) 0
2005ir 53703.2 19.0699(0.020) 19.0249(0.017) 0
2005ku 53699.1 17.5999(0.016) 17.5379(0.009) 0
2007jg 54376.5 17.8088(0.009) 17.8150(0.009) 0
2007jg 54382.5 18.1906(0.015) 18.1710(0.017) 0
2007jg 54385.5 18.2596(0.017) 18.2350(0.020) 0
2007jg 54391.5 18.3493(0.022) 18.3900(0.021) 0
2007jg 54394.5 18.5428(0.018) 18.5380(0.022) 0
2007jg 54396.5 18.6699(0.018) 18.7020(0.021) 0
2007jg 54402.5 19.0779(0.024) 19.1280(0.029) 0
2007jg 54411.3 19.5144(0.035) 19.4590(0.031) 0
2007jg 54415.4 19.6723(0.042) 19.4860(0.017) 0
2007jg 54417.4 19.7573(0.039) 19.6040(0.044) 0
2007jg 54418.4 19.8032(0.037) 19.6570(0.027) 0
2007jg 54422.4 19.8705(0.040) 19.7610(0.030) 0
2007jg 54424.3 19.8735(0.054) 19.8340(0.028) 0
2007jh 54364.4 18.3229(0.016) 18.2965(0.008) 0
2007jh 54380.4 18.8176(0.035) 18.8008(0.024) 0
2007jh 54392.4 19.6852(0.042) 19.7335(0.031) 0
2007jh 54394.3 19.7882(0.046) 19.7882(0.039) 0
2007jh 54395.4 19.9599(0.046) 19.8144(0.040) 0

2007mm 54385.2 20.1710(0.039) 20.2331(0.026) 0
2007mm 54392.2 19.3080(0.016) 19.3185(0.045) 0
2007mm 54394.2 19.2470(0.019) 19.3214(0.030) 0
2007mm 54395.1 19.1608(0.020) 19.3478(0.039) 0
2007mm 54400.2 19.4571(0.054) 19.5616(0.049) 0
2007mm 54403.2 19.7147(0.022) 19.7641(0.047) 0
2007mm 54409.2 20.2400(0.023) 20.2895(0.023) 0
2007mm 54418.2 20.9156(0.056) 20.9182(0.047) 0
2005hc 53701.0 18.5340(0.010) 18.5478(0.017) 1
2007jg 54389.0 18.2992(0.028) 18.2892(0.021) 1
2007jh 54380.4 18.8293(0.031) 18.8028(0.023) 1
2005gj 53699.0 17.2536(0.009) 17.2639(0.006) 1
2005hk 53678.2 16.2680(0.007) 16.2907(0.008) 1
2005hk 53680.3 16.0621(0.012) 16.0522(0.005) 1
2005hk 53684.0 15.8228(0.008) 15.8036(0.011) 1

Note. — ∆S values used in this analysis may be calculated by taking the difference of

the CSP and SDSS magnitudes, and combining an extra 0.009 magnitudes in quadrature

with the given uncertainties, to account for template-spectrum mismatch uncertainties.
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Table 2.9. Magnitude data - i band

IAU MJD CSP(SDSS) SDSS(native) spectrum(1=yes)

2005hc 53664.4 17.9096(0.011) 17.8780(0.019) 0
2005hc 53665.4 17.9195(0.009) 17.9680(0.015) 0
2005hc 53666.4 17.9015(0.012) 17.9340(0.011) 0
2005hc 53668.3 17.9325(0.010) 17.9770(0.020) 0
2005hc 53669.3 17.9552(0.008) 17.9910(0.015) 0
2005hc 53669.4 17.9568(0.008) 17.9530(0.018) 0
2005hc 53670.3 17.9669(0.011) 18.0080(0.024) 0
2005hc 53671.4 17.9781(0.013) 18.0410(0.021) 0
2005hc 53673.3 18.0288(0.014) 18.0530(0.010) 0
2005hc 53674.3 18.0753(0.012) 18.0990(0.012) 0
2005hc 53675.3 18.1325(0.014) 18.1450(0.014) 0
2005hc 53676.4 18.2021(0.026) 18.2490(0.011) 0
2005hc 53684.3 18.6690(0.016) 18.7390(0.028) 0
2005hc 53686.3 18.6669(0.022) 18.6570(0.027) 0
2005hc 53693.3 18.5743(0.016) 18.5600(0.020) 0
2005hc 53697.3 18.5252(0.013) 18.6170(0.021) 0
2005hc 53698.3 18.5173(0.016) 18.5080(0.038) 0
2005hc 53700.3 18.5578(0.016) 18.6230(0.017) 0
2005hc 53704.3 18.7922(0.019) 18.7630(0.025) 0
2005ir 53682.1 18.8816(0.049) 18.8316(0.024) 0
2005ir 53684.2 18.7843(0.023) 18.8533(0.024) 0
2005ir 53694.2 19.1188(0.030) 19.0689(0.019) 0
2005ir 53695.2 19.1819(0.025) 19.1578(0.018) 0
2005ir 53698.1 19.4412(0.038) 19.4467(0.026) 0
2005ku 53699.1 18.0034(0.022) 17.9897(0.024) 0
2007jg 54363.3 17.9352(0.017) 17.9743(0.020) 0
2007jg 54364.4 17.9596(0.021) 17.9978(0.020) 0
2007jg 54376.3 18.5998(0.026) 18.5276(0.012) 0
2007jg 54378.4 18.7409(0.033) 18.6534(0.012) 0
2007jg 54383.3 18.8369(0.037) 18.7547(0.012) 0
2007jg 54385.4 18.8559(0.040) 18.6956(0.012) 0
2007jg 54392.3 18.6087(0.028) 18.5657(0.033) 0
2007jg 54397.2 18.7282(0.026) 18.7050(0.032) 0
2007jg 54403.3 19.2684(0.039) 19.1936(0.032) 0
2007jg 54411.3 19.7462(0.054) 19.6081(0.025) 0
2007jh 54364.4 18.5514(0.034) 18.4944(0.013) 0
2007jh 54380.4 18.8483(0.023) 18.7984(0.020) 0
2007jh 54392.4 19.6366(0.059) 19.5835(0.031) 0
2007jh 54394.3 19.7361(0.046) 19.6203(0.045) 0
2007jh 54395.4 19.7462(0.062) 19.6713(0.044) 0

2007mm 54385.2 20.1100(0.057) 20.2173(0.030) 0
2007mm 54392.2 19.4221(0.018) 19.5101(0.038) 0
2007mm 54394.2 19.3601(0.021) 19.4240(0.036) 0
2007mm 54395.1 19.3341(0.025) 19.4055(0.044) 0
2007mm 54400.2 19.4877(0.041) 19.5024(0.036) 0
2007mm 54403.2 19.6725(0.024) 19.6163(0.032) 0
2007mm 54409.2 19.9729(0.027) 19.9563(0.024) 0
2005hc 53701.0 18.5667(0.014) 18.6656(0.023) 1
2007jg 54389.0 18.5739(0.053) 18.6181(0.022) 1
2005hj 53675.0 18.3083(0.013) 18.3105(0.009) 1
2005hj 53677.0 18.3595(0.026) 18.3486(0.012) 1
2005hj 53678.0 18.3716(0.032) 18.3640(0.019) 1
2005hj 53680.0 18.4047(0.042) 18.3763(0.019) 1
2005hj 53685.0 18.5242(0.044) 18.6328(0.015) 1
2005hj 53700.0 18.9963(0.021) 18.9838(0.022) 1
2005hk 53678.2 16.4768(0.008) 16.5281(0.013) 1
2005hk 53680.3 16.2838(0.012) 16.2988(0.009) 1
2005hk 53684.0 16.0581(0.009) 16.0595(0.011) 1
2005hk 53699.1 15.8532(0.006) 15.8586(0.010) 1

Note. — ∆S values used in this analysis may be calculated by taking the difference of

the CSP and SDSS magnitudes, and combining an extra 0.014 magnitudes in quadrature

with the given uncertainties, to account for template-spectrum mismatch uncertainties.

Note. — See comments forTable 2.13.
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in g agree at better than 0.043 magnitudes, and 68% of individual SNe will have mean

photometry agreeing within 0.028 magnitudes. The u band scatter is quite a bit larger,

with an individual data point having a 68% chance of agreeing within 0.077 magnitudes.

The four SNe in our sample with 3 or more data points have an rms scatter of 0.038

magnitudes. In the i band, we observe an overall systematic offset of -0.011 magnitudes,

inconsistent with zero at the 2.2 σ level. The scatter around this value is slightly larger

than in g, with an point-by-point rms of 0.050 magnitudes, and a SN by SN rms of 0.032

magnitudes. Finally, the r band gives slightly inconsistent results between point-by-point

or SN-by-SN measurements. Based on the SN-by-SN measurements shown in Table 2.11

and Figure 2.11, it appears that there is a slight systematic difference of 0.011 magni-

tudes between CSP and SDSS observations in this filter. The point-by-point calculation

is pulled lower by some severe outlier points in SN 2007mm, which will be discussed in

more detail in section §2.3.1.

Absolute magnitude differences in all bands, including u, are at or below 0.012 mag,

regardless of the method used to compute them. In all cases magnitude differences are

comparable to or smaller than the systematic uncertainties listed in Table 2.4. The rms

mean scatter scales roughly as one would expect, given uncertainties from photometry,

interpolation, and template mismatch. For the pooled filter averages, we also calculate

the scatter in units of the error 7. If our uncertainties are gaussian and correctly estimated,

bias should follow a gaussian distribution, and should therefore have a standard deviation

consistent with one. For the u and g bands, this is the case, indicating that the uncertainties

are reasonable. The r and i band show slightly larger scatter, but in general are consistent.

To study our residuals in greater detail, we plot them as a function of phase, as shown

in the left hand panels of Figure 2.12. For the u and g bands, outliers are randomly

distributed among SNe. For instance, in the g band, there are 5 data points with resid-

ual magnitudes larger than ± 0.1, belonging to four different supernovae. The phases of

7To be precise, for the weighted average we calculate a chi-squared value rather than the bias standard

deviation, but functionally they amount to the same thing.
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Figure 2.11 For each supernova with at least three points in a given filter, magnitude

residuals have been combined into a single mean residual and plotted as a function of

filter.
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these points are fairly evenly distributed across the observed range of -10 to 40 rest frame

days. This is less the case with the r band where four of the five residuals larger than

0.08 mags belong to the same supernova, SN 2007jg, and are at predominantly late times,

phases larger than 30. In i, there appears to be a slight trend in the residual as a func-

tion of phase. A closer look at the individual SNe reveals that SN 2005hc, SN 2005hk,

SN 2007jg, and SN 2007mmall show signs of residual magnitude increasing as a function

of phase, particularly between phases -10 to 5. However, a fit to the residual shows no

significant correlation. The right hand panels of Figure 2.12 demonstrate that all residual

distributions are reasonably gaussian.

2.3 Discussion and Conclusions

In this work we have chosen to make a direct comparison of the absolute flux calibrations

of the CSP and SDSS supernova surveys. This comparison is particularly interesting with

respect to the observer frame u band, where such direct absolute flux measurements are

rare, and the potential impact on cosmology results is significant. By opting for a quanti-

tative comparison of actual SN Ia observations, we are including all possible effects that

could influence agreement of SN Ia flux measurements: calibration differences, pipeline

differences, S-correction differences, and template selection. These are the very same

effects that will be present when this data is used for light curve fitting or light curve

training. In this sense the comparison is more realistic than a calibration star analysis. On

the other hand, the sample size available to us is very small (especially in the u-band),

and the results of all of these effects are mingled. This makes it difficult for us to attribute

the observed scatter in u (0.038 magnitudes from supernova to supernova) to any single

source.

We can speculate as to the origins of the scatter. For instance, the well-observed

Branch-normal SN 2005hc was located on the overlap between the SDSS-II N and S data

strips, and shows a systematic offset in SDSS magnitudes between these two sets of data.
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Figure 2.12 Magnitude residuals between CSP and SDSS-II data are plotted as a function

of phase, and binned into histograms. A slight trend in i-band residual as a function of

phase is observed. Similary, i-band residuals do not appear to be gaussianly distributed.

All other bands show minimal residual variation with phase, and reasonably gaussian

distributions centered on a 0.0 magnitude difference.
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SN 2007jg, also a Branch-normal, had a large gap in SDSS observations near peak, and

may be more likely than the rest to suffer from interpolation errors. The remaining two

SNe, SN 2005hk and SN 2005hj, are both spectroscopic peculiars for which no observed

u-band spectra are available to evaluate the suitability of the template. However, to con-

vincingly disentangle these effects would require either a larger sample size or a selection

of observed spectra for each supernova spanning at least the 3000 to 6000 Angstrom

wavelength range in the supernova rest frame.

In the gri bands for which more data and more observed spectra are available, agree-

ment is more convincing. As shown in Figure 2.11, the majority of the SNe cluster at

similar magnitude offsets in each filter, well within the expected systematic uncertainty

limits we have quantified in Table 2.4. Even so, there are one or two outliers in each band

which merit discussion.

2.3.1 Outlier SNe in gri

As Figure 2.11 makes clear, several SNe have photometry which disagree badly in the

g, r, or i-bands. The object SN 2007mm has a mean magnitude difference of approxi-

mately -0.07 mags in both g and r. With the exception of a ten-day gap in SDSS g-band

coverage, it is well-enough sampled by both groups that interpolation errors should not

be a problem. Based on a single early-time spectrum and the overall color evolution of

this object, we have tentatively classified it as 1991-bg like, and used the Nugent 1991bg

templates for its S-corrections. No observed spectra were available with which to check

the S-corrections. The other fast-decliner in our sample, SN 2007jh, is an outlier in i.

Unlike SN 2007mm, SN 2007jh does have a large gap in SDSS observations around peak

B-band maximum which could possibly impact interpolated data points at the edges of

the gap. This appears to be the case for the g-band point at rest-frame epoch 13, where

both the template and the observed-spectrum S-corrected CSP photometry disagree with

their SDSS counterpart. However, problems in i are not solely due to interpolation dif-

ficulties. As shown in the left-hand panel of Figure 2.9, CSP and SDSS both observed
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this object near rest frame epochs -1.5 and 25.3, and in neither case is a good agreement

between S-corrected CSP photometry and SDSS photometry obtained. Although these

two objects are the faintest in our data set, the pattern of magnitude differences observed

is inconsistent with CSP-SDSS galaxy subtraction differences. Therefore, we conclude

that the most likely cause for the observed g and r discrepancy with SN 2007mm and i

discrepancy with SN 2007jh is template mismatch.

Another outlier seen in the i-band is SN 2007jg. As with SN 2007jh, there are several

points observed simultaneously by both groups whose photometry differs even after S-

correction, suggesting that interpolation is not the source of the discrepancy. The good

agreement between SN 2007jg photometry when an observed spectrum is used suggests

that the observed i disagreement results from template mismatch. Finally, some mention

should be given to SN 2005ir which shows quite a large mean magnitude disagreement in

g-band. This supernova has the highest redshift of any of our sample, and is situated near

the core of its host galaxy.The pattern of magnitude disagreement with rest frame epoch

is suggestive of a galaxy subtraction difference between the two groups.

2.3.2 Stellar calibration and SN 2005hc

In order to achieve a somewhat normal distribution of outliers, it was necessary to take

into consideration the individual objects’ calibration star differences. Calibration star

discrepancies were largest in u, but were instrumental in reducing outliers in g and i

as well. SN 2005ku was found to have especially poor calibration star agreement. A

full analysis of the calibration stars is beyond the scope of this work. A joint effort

between the SDSS and SNLS collaborations includes an in-depth analysis of the those

two surveys’ inter-calibration, and will address in detail the discrepancies observed in the

SDSS photometry and the fixes that have been deployed.

As mentioned earlier in this work, the SDSS-II Supernova Survey suffers from flat-

fielding issues which have necessitated declination-dependent corrections to the photome-

try. Particularly affected by these flat-fielding problems were objects located on the over-

61



lap between the SDSS-II N and S data strips such as SN 2005hc. This Branch-normal

object was very well-observed by both the SDSS and the CSP, makes up a large percent-

age of our data set, and continues to be over-represented in individual two and three sigma

outlier data points, particularly in the u and i bands.

The effects of the combination of photometry taken on two separate CCD’s on alter-

nating observation passes can be seen in Figure 2.3. The SDSS photometry for this object

shows a stair-step effect in all four bands, with the magnitude difference between the two

sets of observations varying as a function of epoch. It appears that one set of observations

agrees better with the CSP measurements than the other. Since this object makes up 25%

of our data sample, we chose not to eliminate it, and minimized the effects of the offset by

interpolating the CSP rather than SDSS data. The calculation of S-correction difference

information from observed spectra requires interpolating both sets of photometry. Thus,

interpolation difficulties with the SDSS data are the likely cause of the large discrepancy

of the single observed spectrum data point in i.

2.3.3 Conclusions

Using SN Ia photometry, spectra, and templates, we have checked the consistency of CSP

and SDSS SN Ia data. Overall, our analysis gives results well in line with expectations:

in gri bands, we obtain photometry agreement at or below the 1% level in flux with

typical epoch-to-epoch scatter no greater than 0.05 magnitudes. These results serve as

a sanity check on our comparison technique. In the u-band, we also find observations

of the CSP and SDSS to be consistent, and to agree to better than 1% in flux. At 0.077

magnitudes, the rms scatter on individual observations is larger than in the gri bands, but is

consistent with the correspondingly larger template - spectrum S-correction uncertainty.

However, at 0.038 magnitudes, supernova to supernova scatter is fairly large in the u

band and our sample size is small, making it difficult to disentangle calibration, pipeline,

and S-correction differences. Applying a conservative interpretation, we conclude that

systematic offsets in observer frame u are equal to or less than 0.04 magnitudes, smaller
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than the uncertainties currently being added to light curve fitters such as SALT2, and a

promising result for ground-based observer frame u.

Through simulations and use of catalog spectra, we were able to quantify the biases

introduced into our analysis by interpolation and the use of templates for S-corrections.

These biases were found to be small in comparison with calibration systematics. Uncer-

tainties due to template use were also estimated and included in our error models. Based

on a selection of SUSPECT database spectra chosen to match our sample, we found that

template-spectrum mismatch was much higher for the u band (0.055 magnitudes) than

in gr and i ( 0.012 - 0.017 magnitudes). Therefore, more observed spectra covering the

rest-frame u band would be required to improve this measurement.

Finally, two key points should be emphasized. First, our data set was small, and

we were therefore obliged to include SNe that we might otherwise have chosen to cut.

Five of the nine SNe in our sample are spectroscopic peculiars. For three of these,

SN 2005gj, SN 2005hj, and SN 2005hk, we had at least some usable observed spec-

tra, and we chose to use only this data for our gri sample. For others, particularly the

fast-decliners SN 2007jh and SN 2007mm, we made use of specialized templates. None

of the available observed spectra covered the rest frame u band. As a result, all of our

u-band S-corrections rely on color-corrected templates. A sixth object in our data set,

SN 2005hc, sat on the overlap between the SDSS-II N and S data strips, and shows a

systematic offset in magnitudes between these two sets of data. Second, by using a direct

comparison of supernova observations to calculate the absolute flux calibration of these

two surveys, we are tacitly comparing two separate pipelines, with different photomet-

ric methods and different host galaxy subtractions. These confounding factors may be

muddying the picture.
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Table 2.10. Magnitude agreement statistics: pooled data

residual

band N mean [mags] scatter[mags] scatter[σ ]

u 32 0.001 ± 0.014 0.077 1.01

g 62 -0.002 ± 0.006 0.043 0.97

r 60 -0.002 ± 0.005 0.049 1.24

i 59 -0.011 ± 0.005 0.050 1.32

Note. — Residual is defined as CSP magnitude minus

interpolated SDSS magnitude. CSP magnitudes have been S-

corrected onto the SDSS photometric system. Residual mean

and scatter have been calculated using the inverse variance as

weight. To test gaussianity of the statistical errors, we have

also calculated the scatter in units of the error ≡ ∆m/δm. If

errors are random, we expect this quantity to be 1.
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Table 2.11. Magnitude agreement statistics: SN data

residual

band SNe mean [mags] scatter[mags]

u 4 -0.008 ± 0.016 0.038
g 7 -0.002 ± 0.006 0.028
r 6 0.011 ± 0.005 0.025
i 7 -0.012 ± 0.005 0.032

Note. — Residual is defined as CSP magni-

tude minus interpolated SDSS magnitude. CSP

magnitudes have been S-corrected onto the SDSS

photometric system. Residual mean and scatter

have been calculated using the inverse variance as

weight.
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Table 2.12. Magnitude data - u band

IAU MJD CSP(SDSS) SDSS(native)

2005hc 53663.3 17.9470(0.020) 17.9860(0.029)
2005hc 53664.4 17.9538(0.017) 17.9470(0.035)
2005hc 53665.4 17.9856(0.013) 18.0170(0.027)
2005hc 53666.4 17.9823(0.019) 17.9590(0.022)
2005hc 53668.3 18.0659(0.015) 18.0940(0.021)
2005hc 53669.3 18.1445(0.013) 18.1950(0.026)
2005hc 53669.4 18.1535(0.013) 18.1920(0.022)
2005hc 53670.3 18.2385(0.013) 18.2250(0.025)
2005hc 53671.4 18.3337(0.017) 18.4010(0.045)
2005hc 53673.3 18.4868(0.017) 18.4970(0.032)
2005hc 53674.3 18.5788(0.014) 18.6490(0.024)
2005hc 53675.3 18.6767(0.019) 18.7450(0.027)
2005hc 53676.4 18.7829(0.028) 19.0670(0.037)
2005ir 53684.2 19.1805(0.039) 19.2437(0.056)
2007jg 54363.3 18.7860(0.026) 18.7620(0.025)
2007jg 54364.4 18.7633(0.028) 18.7057(0.028)
2007jg 54376.3 19.8565(0.051) 19.7794(0.051)
2005hj 53671.4 18.1984(0.023) 18.2260(0.029)
2005hj 53674.3 18.2949(0.020) 18.3160(0.023)
2005hj 53676.4 18.4235(0.044) 18.5190(0.026)
2005hk 53675.1 16.8820(0.013) 16.8131(0.015)
2005hk 53677.1 16.5532(0.012) 16.5634(0.015)
2005hk 53682.1 16.4040(0.012) 16.4085(0.032)
2005hk 53683.1 16.4199(0.015) 16.4274(0.029)
2005hk 53684.1 16.4741(0.015) 16.4612(0.025)
2005hk 53687.1 16.6917(0.018) 16.7027(0.038)
2005hk 53698.1 18.5853(0.037) 18.5868(0.020)
2005hk 53699.1 18.9310(0.052) 18.7850(0.025)
2005hk 53702.1 19.3411(0.064) 19.2887(0.041)

Note. — ∆S values used in this analysis may be calculated di-

rectly from the table data by taking the difference of the CSP and

SDSS magnitudes. To account for spectrum-template mismatch

uncertainties, an extra uncertainty of 0.038 magnitudes should be

combined in quadrature with the photometric uncertainties given

here.
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Table 2.13. Magnitude data - g band

IAU MJD CSP(SDSS) SDSS(native) spectrum(1=yes)

2005hc 53663.3 17.3418(0.007) 17.3340(0.013) 0
2005hc 53664.4 17.3041(0.007) 17.3210(0.007) 0
2005hc 53665.4 17.2714(0.006) 17.2780(0.020) 0
2005hc 53666.4 17.2490(0.008) 17.2920(0.014) 0
2005hc 53668.3 17.2740(0.006) 17.2590(0.035) 0
2005hc 53669.3 17.3012(0.005) 17.3130(0.015) 0
2005hc 53669.4 17.3040(0.005) 17.3140(0.010) 0
2005hc 53670.3 17.3283(0.006) 17.3110(0.014) 0
2005hc 53671.4 17.3610(0.007) 17.3740(0.011) 0
2005hc 53673.3 17.4444(0.008) 17.4290(0.013) 0
2005hc 53674.3 17.4975(0.006) 17.5120(0.012) 0
2005hc 53675.3 17.5558(0.008) 17.5610(0.011) 0
2005hc 53676.4 17.6242(0.012) 17.6090(0.016) 0
2005hc 53680.3 17.9094(0.040) 17.9380(0.013) 0
2005hc 53681.4 17.9970(0.039) 18.0150(0.007) 0
2005hc 53684.3 18.2722(0.013) 18.3430(0.026) 0
2005hc 53686.3 18.4494(0.019) 18.4600(0.015) 0
2005hc 53687.4 18.5501(0.022) 18.4660(0.047) 0
2005hc 53693.3 19.0469(0.021) 19.0660(0.024) 0
2005hc 53697.3 19.3663(0.014) 19.3460(0.019) 0
2005hc 53698.3 19.4643(0.014) 19.4570(0.021) 0
2005hc 53700.3 19.6331(0.013) 19.5760(0.017) 0
2005hc 53704.3 19.8622(0.020) 19.7980(0.020) 0
2005ir 53682.1 18.4005(0.016) 18.3917(0.016) 0
2005ir 53684.2 18.3855(0.013) 18.3708(0.014) 0
2005ir 53694.2 18.7716(0.018) 18.7213(0.022) 0
2005ir 53695.2 18.9059(0.024) 18.7907(0.018) 0
2005ir 53698.1 19.0582(0.014) 19.0233(0.014) 0
2005ir 53703.2 19.5733(0.023) 19.4549(0.014) 0
2005ku 53699.1 17.6318(0.013) 17.5850(0.030) 0
2007jg 54376.5 18.0142(0.006) 18.0340(0.023) 0
2007jg 54382.5 18.6406(0.011) 18.6820(0.018) 0
2007jg 54385.5 18.9678(0.013) 18.9700(0.018) 0
2007jg 54391.5 19.5170(0.031) 19.4880(0.026) 0
2007jg 54394.5 19.7368(0.022) 19.7500(0.041) 0
2007jg 54396.5 19.8277(0.047) 19.9100(0.035) 0
2007jg 54411.3 20.5750(0.033) 20.5990(0.030) 0
2007jg 54413.4 20.6624(0.059) 20.5600(0.047) 0
2007jg 54415.4 20.6805(0.046) 20.5990(0.027) 0
2007jg 54418.4 20.6964(0.059) 20.6800(0.039) 0
2007jg 54422.4 20.7014(0.052) 20.6830(0.034) 0
2007jh 54364.4 18.4714(0.011) 18.5278(0.008) 0
2007jh 54380.4 20.0991(0.026) 19.9968(0.035) 0
2007jh 54392.4 20.9677(0.065) 21.0601(0.047) 0

2007mm 54385.2 20.2828(0.028) 20.4044(0.033) 0
2007mm 54392.2 19.6799(0.015) 19.7425(0.030) 0
2007mm 54394.2 19.6984(0.019) 19.7518(0.029) 0
2007mm 54395.1 19.7796(0.024) 19.8230(0.037) 0
2007mm 54409.2 21.5620(0.045) 21.6200(0.049) 0
2005hc 53665.0 17.2857(0.007) 17.2912(0.015) 1
2005hc 53667.0 17.2582(0.009) 17.2821(0.025) 1
2007jg 54384.0 18.8091(0.009) 18.8353(0.016) 1
2007jg 54389.0 19.2766(0.033) 19.2733(0.024) 1
2007jg 54393.0 19.6526(0.021) 19.6252(0.032) 1
2007jh 54380.4 20.0876(0.027) 19.9969(0.034) 1
2005gj 53699.0 17.8867(0.010) 17.9020(0.011) 1
2005hk 53677.2 16.3364(0.006) 16.3616(0.005) 1
2005hk 53678.2 16.1808(0.007) 16.1949(0.008) 1
2005hk 53680.3 15.9741(0.011) 15.9594(0.006) 1
2005hk 53684.0 15.7797(0.006) 15.7907(0.012) 1
2005hk 53697.2 16.7410(0.008) 16.7724(0.016) 1
2005hk 53699.1 16.9971(0.006) 16.9940(0.015) 1

67



Table 2.13 (cont’d)

IAU MJD CSP(SDSS) SDSS(native) spectrum(1=yes)

Note. — ∆S values used in this analysis may be calculated by taking the

difference of the CSP and SDSS magnitudes, and combining an extra 0.013

magnitudes in quadrature with the given uncertainties, to account for template-

spectrum mismatch uncertainties.
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Chapter 3

Measuring Hubble Diagram

biases with synthetic training

tests of SALT-II

3.1 Introduction

In 1998, observations of type Ia Supernovae (SNe Ia) revealed the accelerating expan-

sion of the universe (Riess et al. 1998; Perlmutter et al. 1999), attributable to an unknown

energy density called dark energy. SNe Ia-based measurements provide the only direct

detection of dark energy, and as such remain a valuable component of the quest to under-

stand this mysterious phenomena.

The cosmological utility of SNe Ia is due to their nature as standardizeable candles.

Building on work by Pskovskii (1977), Phillips (1993) was the first to demonstrate

that shapes of SN Ia light curves are correlated with their absolute luminosity. A second

correlation between SN Ia color and luminosity was shown by Tripp (1998) and quickly

confirmed by others. Although other standardization methods exist, including infrared

light-curve shapes (Barone-Nugent et al. 2012; Kattner et al. 2012) and spectral ratios
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(e.g. Bailey et al. 2009), the ubiquity of optical SN Ia light curve data makes shape and

color standardization the most common technique.

SN light curve analysis is the process of training a SN model, using the model to

determine SN light curve shape and color information, and deriving the best possible

distance measurements from these SN parameters. In this paper, detailed Monte Carlo

simulations (MC) are used to rigorously determine biases in the Hubble Diagram (HD)

resulting from the full SN light curve analysis procedure.

Light curve analyses are performed within the framework of a SN Ia model.

SN Ia models begin with an assumption about the number of observable SN Ia pa-

rameters. As mentioned above, most SN Ia models assume that the family of SNe Ia may

be described by two parameters – light curve shape and color. Models define the SN Ia

rest frame flux as a function of phase, wavelength, and observable light curve parameters.

Since SN Ia progenitors and explosion mechanisms remain ill-defined, models are em-

pirically determined and must be “trained” from a subset of observed SN data for which

initial light curve parameter values can be estimated. The training procedure consists of

solving for the model parameters which best fit the training set of observed SN Ia data.

For example, training of the magnitude-based MLCS2k2 model (Jha et al. 2007) includes

solving for bandpass-dependent cofficients which relate magnitudes to light curve shapes.

The training of the flux-based model SALT-II (Guy et al. 2007) includes solving for the

coefficients of the spline basis functions used to represent SN Ia flux as a function of

wavelength and phase.

Once the best-fit model parameters have been found, the model is ready to be used

for light-curve fitting. For each SN in the data set, the trained model is used to compute

synthetic observed magnitudes in conjunction with minimization routines to “fit” the most

likely light curve parameters. With the data set light curve parameters in hand, distances

may be calculated and an HD constructed for cosmological parameter determination.

Currently, the main source of SN Ia HD systematic uncertainty is photometric calibra-

tion (e.g. Sullivan et al. 2011). However, improved low-redshift SN Ia samples (Hicken
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et al. 2009b; Holtzman et al. 2008; Stritzinger et al. 2011), greater attention to calibration

(e.g. Betoule et al. 2012b), and upcoming wide-field surveys such as the DES (Bernstein

et al. 2012), Pan-STARRS (Kaiser & Pan-STARRS Team 2005) and the LSST (LSST

Science Collaboration et al. 2009) are reducing the significance of this contribution, and

making it more important to understand systematic uncertainties related to the training

and implementation of the light-curve model itself. Because the trained model is used for

light-curve fitting, statistical fluctuations in the model parameters become systematic un-

certainties for the fitted light curve parameters. In other words, statistical fluctuations in

the model are not automatically included in the statistical uncertainties for SN color and

light curve shape. Instead, these uncertainties must be added to the overall error budget

by hand.

The choices of SN Ia model, training procedure, and training set can all introduce

uncertainties that may affect light curve parameter measurement, and hence cosmology

parameter measurement.

One way to determine model-related systematic uncertainties is to compare cosmol-

ogy results from the same set of SN Ia observations evaluated with different SN Ia models.

The most notable studies of model-related systematic uncertainties have been undertaken

by Kessler et al. (2009a) (K09), comparing the MLCS2k2 and SALT-II models, and Guy

et al. (2010) (hereafter G10), comparing SALT-II and SiFTO (Conley et al. 2008). K09

found a significant difference between MLCS2k2 and SALT-II derived cosmology param-

eters, which they attributed to the different handling of color for the two models and the

fact that MLCS2k2 training is much more reliant on observer-frame observations in the

ultraviolet region. G10 found that SALT-II and SiFTO produced consistent cosmology

results.

A second approach is to estimate model uncertainties as a function of redshift directly

from the model training itself. The most extensive work in this area has been done by

G10 for the SALT-II model. In section 5.4.2 of their paper, G10 identify three main

components of model-related systematic uncertainties in SN Ia distance measurements:
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1) model choice, 2) finite training samples, and 3) wavelength-dependence of the scatter

between the model and the data. As shown in Figure 16 of G10, these uncertainties have

been estimated as a function of wavelength for the SALT-II model.

While these two approaches are used to estimate the model uncertainty, the true model

bias cannot be determined from SN Ia observations. Therefore it is possible that system-

atic offsets in the trained model parameters may propagate as-yet unknown biases onto

the final HD. Properly determining these biases is the focus of this work and will be in-

strumental to correctly interpreting SN Ia cosmology data, constructing future training

sets, and designing the next generation of SN Ia models.

In this work we use simulated SN Ia samples to directly evaluate systematic biases

and uncertainties originating from the SN Ia light curve analysis, with a specific focus

on model training and bias corrections. We use the SALT-II model exclusively: the most

recent, most precise SN Ia cosmology results are based on SALT-II light curve fits (Sul-

livan et al. 2011), making this state-of-the-art model an ideal choice for these systematics

studies. In addition, its automated training process makes it straightforward to generate

the multiple training iterations needed to evaluate biases.

We have upgraded existing SN Ia Monte Carlo simulation routines from the SN analy-

sis software package SNANA (Kessler et al. 2009c) to enable accurate random realizations

of the light curve and spectral data samples forming the basis of the most recent published

SALT-II model training. There are two key parts to this upgrade. First, we have added

a spectral simulation component, which uses an SN Ia SED model and a library of ex-

isting SN Ia spectral observations to produce spectra with realistic signal-to-noise ratios,

resolution, cadences, wavelength coverage, and galaxy contamination. Second, we have

added several new intrinsic scatter models (described in K12), as well as the machinery

to apply them to simulated light curves or spectra.

In addition to measuring biases introduced by the training, our multiple training set

realizations are used to check estimates of the statistical uncertainty of SALT-II model pa-

rameters due to the finite sizes of existing training sets and directly measure uncertainties
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resulting from different choices of training parameters.

Most importantly, because the underlying cosmology and parameter distributions of

the simulated training sets are known, we are able to carry out complete light curve analy-

ses for each set of input models, all the way from model training through HD construction

and cosmology fits. We use this information to evaluate HD bias as a function of redshift,

and biases in the best-fit value of the dark energy equation of state parameter w. This is

the first systematic study in which simulations are used to directly test uncertainties and

biases resulting from SN Ia light curve analysis. The software used to run these light

curve analysis tests is part of the publicly available SNANA supernova software package;

these tools can be adapted to test any SN Ia model and data sample. This work is part of

the SDSS+SNLS joint analysis.

The outline of the paper is as follows. A brief introduction to the SALT-II model and

its training procedure will be given in Section §3.2. Our simulations and the data sets

upon which our simulations are based will be described in Section §3.3. Section §3.4

details the input models which will be used for this work, followed by discussion of the

parameters with which training results will be evaluated and the selection bias corrections

that will be performed in Sections §3.5 and §3.6.

We then describe in Section §3.7 the idealized model developed as an initial test for

our training and analysis pipeline, and present the results of those tests. The results of our

regularization tests are presented in Section §3.8. In Section §3.9 the details of the full

realistic training set are laid out, and our measurements of systematic uncertainty and bias

are given. Finally we summarize the implications of the results of these tests for further

SALT-II training, light curve model development, and training set observations in Section

§3.10.

73



3.2 Training SALT2

The SALT2-II model describes SNe Ia with three components: a mean spectral time series

(M0), a shape-dependent spectral time series (M1), and a color law (CL). The component

M0 is identified as the mean SN Ia spectral energy distribution (SED); component M1 is

associated with light curve width variations. The mean color-correction law CL incorpo-

rates all wavelength-dependent time-independent color differences regardless of origin.

No assumptions about dust or extinction laws are made a priori. In addition to the best fit

model, the training process also produces model uncertainties.

The flux for an individual SN Ia is determined by these components and the supernova-

specific parameters x0, x1, and c:1

F(p,λ ) = x0 [M0(p,λ )+ x1M1(p,λ )] exp[c CL(λ )]. (3.1)

Many more details on the SALT-II model may be found in Guy et al. (2007) and G10.

3.2.1 SALT-II model configuration

Solving for the best-fit model consists in varying the model parameters M to minimize

the difference (i.e. χ2) between the training set SN fluxes f and corresponding model

fluxes fM. Training set fluxes obtained from spectra are compared directly with model

fluxes of the same wavelength λ , whereas fluxes obtained from broad-band photometry

are compared with the convolution of the model and the appropriate broad-band filter. In

either case, the model is redshifted to match the redshift z of the training set SN prior to

flux comparison.

Since the model fluxes depend on x0, x1, and c, the set of these parameters x must be

estimated for each SN in the training set prior to calculating the χ2:

1 In terms of SN observables, x0 is related to mB, x1 is related to light curve shape, and c is peak B−V

color.
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Here the uncertainty includes both the statistical uncertainty of the training flux σD

and the uncertainty in the model flux σM, and the summations are over all ni observations

of all m training set SNe.

Third order b-spline basis functions are used to construct the M0 and M1 spectral time

series. Closely resembling gaussians, third-order b-spline basis functions are parameter-

ized by knot values, which determine the local region of phase (or wavelength) space to

which each basis function contributes, and control points, which determine the vertical

scale of each basis function. Only the control points are varied during the SALT-II χ2

minimization process. The phase range -14 to 50 is spanned by 20 basis functions for a

phase resolution of 3.2 days. The wavelength range 2000 to 9200 Å is spanned by 100

splines, or 72 Å per basis function. As in G10, the functional form of the color law is

a polynomial with four free coefficients covering the wavelengths 2800 - 7000 Å. The

best-fit color law is linearly extrapolated for wavelengths outside these regions.

Regularization

SALT-II is unique among SN Ia models in requiring a training set with flux measure-

ments from both spectra and photometry. If a region of parameter space lacks spectral

training data, the M0 and M1 components are constrained solely with deconvolved broad-

band photometry. The deconvolution process introduces high-frequency noise, causing

“ringing” in model spectra in the poorly constrained region. An example of a poorly-

constrained model spectrum is shown in Figure 3.1.

Extra “regularization” terms can be added to the training χ2 to disfavor models with

rapid fluctuations and to favor models which transition smoothly from one basis func-

tion to the next. The addition of these regularization terms reduces the amount of ring-

ing trained into the model, thereby reducing statistical uncertainties on fitted light curve

parameters. However, regularization can also bias the best-fit model and must be used

75



-0.1

0

0.1

0.2

0.3

0.4

0.5

2000 3000 4000 5000 6000 7000

f
l
u
x
 
[
a
r
b
i
t
r
a
r
y
 
u
n
i
t
s
]

wavelength [Angstroms]

surface:M0, epoch:5

original
low reg

normal reg

Figure 3.1 M0 (phase=5) from a training with no spectral data between phases 2 and 8.

Weak regularization shown in black, default regularization shown in red; for reference the

input model is shown in thick gray.

judiciously.

To confine the effects of regularization to regions most likely to benefit, the regulariza-

tion χ2 terms are multiplied by a local weighting function ω(p,λ ) inversely proportional

to the number of training set spectral flux measurements n(p,λ ) constraining that region

of phase space:

ω(p,λ ) =


w

n(p,λ ) , if n(p,λ )< 1

0, if n(p,λ )≥ 1.
(3.3)

Figure 3.2 shows n(p,λ ) as a function of wavelength for four different phase values.

Near peak, wavelengths between 4000 and 8000 Å do not use regularization, whereas

most wavelength bins are regularized at early and late times.

As described in the appendix of G10, two types of regularization are used for the

SALT-II model: gradient and dyadic. Gradient regularization penalizes changes in flux

with respect to wavelength, whereas dyadic regularization favors fluxes which are simple

interpolations from adjacent phase and wavelength grid points. The strength of each type
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Figure 3.2 The number of spectral flux measurements constraining each phase-

wavelength region of the SALT-II model is shown for a selection of phases. The dotted

line shows the n value above which regularization weight ω(p,λ ) is set to zero.

of regularization can be scaled independently, by altering the parameter w (e.g. Equa-

tion (3.3)).

As designed, regularization only affects parameter space regions with little or no spec-

troscopic data and strongly favors constraining them with nearby flux information, limit-

ing biases on color. Figure 3.3 gives an example of the relative impacts of the n and w

values on the best-fitting basis functions for an early phase in the UV region.

The choices of regularization type, weight w, and threshold setting will be discussed

further in Section §3.8.

Recalibration

To account for spectral flux calibration inconsistencies, input training spectra are adjusted

to match the best-fit model of their input light curve data. The adjustment is done by

multiplying the input spectra by the exponential of a polynomial, the order of which

is determined by the number of available light curves and the wavelength range of the

spectrum. Typically the wavelength node points are separated by 1000 Å, roughly the

width of a broad-band filter.
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Figure 3.3 The impact of regularization weight components w and n(p,λ ) on the best-

fitting basis splines. The top panel shows best-fit basis functions (phase=−13) for two

different dyadic regularization weights: w = 10 (red) and w = 1000 (black). For com-

parison, the input model is shown in thick gray. The bottom panel shows the number of

spectral fluxes constraining the model as a function of wavelength for this phase value.

3.2.2 SALT-II training process

One of the key strengths of the SALT-II model lies in its comprehensive, self-consistently

derived model uncertainties. The sections below explain where and how in the training

process each of these is calculated. For reference, a cartoon of the SALT-II training

process is shown in Figure 3.4.

Training stage 1: initial error snake calculation

For each set of input light curves, initial values of x0, x1 and c are fit via a pair of user-

supplied spectral components (i.e. M0 and M1). These values serve as starting points for
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Figure 3.4 The three stages of the SALT-II model training process. Each stage calculates

best-fit model parameters using successively improved estimates of model uncertainties.
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the optimization of the model M0, M1 and CL parameters. By minimizing the chi-squared,

the best-fit CL parameters and the best-fit M0 and M1 basis parameters are determined.

At the end of Stage 1, a color-independent error scaling factor S(p,λ ) is determined

by requiring light curve training data to have reduced chi-squared values of 1 in any given

phase-wavelength bin:

χ
2 ≡

m

∑
i=1

ni

∑
j=1

(
( fi, j− fM(zi,xi,λ j;M))2

(σD
i, j)

2 +(S(p,λ )×σM
i, j)

2

)
= DOF. (3.4)

The default bin size is (6 days) x (1200 Å), but it is increased if there are less than

10 data points in the bin. To ensure the error snake has no color dependence, an overall

amplitude adjustment is made to each model light curve Mi for each corresponding data

light curve Di. By including this error scaling factor (hereafter “error snake”), the training

accounts for mismatches between the assumed model and the actual underlying SN Ia

model.

Stage 2: final M0, M1, and errorsnake

Using the components from stage 1 as initial values, the model is refit in stage 2, this time

incorporating the error snake uncertainty scaling factors into the chi-squared. The results

of this fit are taken to be the final M0 and M1 components, and the model covariances and

error snake are recalculated.

Stage 3: final color law fitting

Using the model and error snake obtained in stage 2, the input light curves are refit for

x1 and c, and light curve residuals are calculated. The light curve residuals and their

uncertainties are used to derive a model of broadband scatter as a function of central filter

wavelength by minimizing the log-likelihood function

F = RTWR− log det(W )+ log det(ATWA). (3.5)
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Here, R is the vector of light curve residuals, W is the inverse of the residuals covariance

matrix, and A is the matrix of model derivatives with respect to all parameters. By using

light curve residuals rather than the full training data set we are implicitly assuming that

the color dispersion is independent of phase. To simplify the minimization, we also as-

sume that the color dispersion is not correlated with passband and assume that the model

derivative matrix A can be written as a function of wavelength k(λ ):

k(λ )≡ k(ai,λi;λ ). (3.6)

Therefore, the minimization consists of finding the best fit parameters ai and λi. Incorpo-

rating these additional color uncertainties, the color law is refit for a final time.

Ultimately, the trained model consists of the stage 2 M0 and M1 components, model

covariances, error snake, and the stage 3 color law and color dispersion. When SN light

curve data are fit with this model, the model covariances include contributions from the

model components M0 and M1, the error snake, and the color dipersion.

3.2.3 Training Test Overview

Figure 3.5 gives an overview of the process this work uses to test SALT-II training.

From a SN Ia input model and cosmology, N realizations of SN Ia training sets (light

curves and spectra) are generated. These observations (“Training Sets") are used to con-

strain N new SALT-II models (“Trained Models"). Finally, the trained models are used to

fit a single set of SN Ia light curves (“Test Set") generated from the SN Ia input model,

resulting in N sets of light curve parameters (x0,x1,ci).

By examining such quantities as training residuals, hubble residuals, and best-fit cos-

mologies resulting from various training configurations and input training sets we will

answer three key questions about SALT-II. We will test the ability of the SALT-II frame-

work to determine the model uncertainty from input data. We will quantify the biases

in hubble residuals (and cosmology parameters) due to various choices of regularization.

And we will measure biases resulting from mismatches between the underlying model
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Figure 3.5 Cartoon of training test schematic. From an input SN Ia model and cosmology,

N sets of SN Ia training data and a single test set of SN Ia light curves are generated. Each

set of training data is used to constrain a new SALT-II model, then each new SALT-II

model is used to fit the test set. The resulting sets of light curve parameters are analyzed,

yielding N best-fit cosmologies.

and the assumed SALT-II model.

3.3 Simulations

We use the SNANA MC code (Kessler et al. 2009b) to generate realistic SN Ia data for

training and testing the SALT-II model. In this section, we describe the data sets after

which our simulations are patterned, the techniques we have used to generate simulated

light curves and spectra, and the tests we have performed to verify the realism of our
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simulations.

3.3.1 The SN Ia Data Samples

To enable comparisons with previous systematics checks of the SALT-II SN Ia model such

as those described in G10, as well as recent cosmology results obtained with the SALT-II

SN Ia model (Conley et al. 2011) we choose to use simulated SN Ia data patterned after

three key data sets: the nearby low-z sample (e.g. Jha et al. 2007), the first-year SDSS-II

sample (Holtzman et al. 2008), and the 3-year SNLS3 sample (Conley et al. 2011).

Nearby Low-z

The nearby low-z sample is a heterogeneous data set compiled from an assortment of

photoelectric and CCD observations. Its largest components are the Calán/Tololo SN Ia

survey (Hamuy et al. 1996) and the first two releases of the CfA monitoring campaign

(Riess et al. 1999; Jha et al. 2006). These data cover the redshift range 0.02− 0.10 and

have been reported in the Landolt system (Landolt 1992). In addition to providing a

low-redshift anchor for the Hubble diagram, this data set includes many SNe with more

than 10 spectral observations, making it a necessary SALT-II training input.

SDSS-II

The SDSS-II SN survey discovered and spectroscopically confirmed ∼ 500 type Ia SNe

during its three Fall operating seasons from 2005-2007. All data were acquired on the

SDSS 2.5-meter telescope (Gunn et al. 2006) with the SDSS camera (Gunn et al. 1998)

and ugriz filters (Fukugita et al. 1996; Doi et al. 2010). This set of homogenous ob-

servations bridges the gap in redshifts between nearby and high-z SN Ia samples ( z

∼ 0.02− 0.45 ), making it interesting for both cosmology and light curve fitter training.

Light curves have been released for 146 of these SNe (Holtzman et al. 2008).
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SNLS 3-year

The SNLS 3-year data set (Conley et al. 2011) consists of 279 SN Ia discovered and

spectroscopially confirmed during the first three years of the SNLS 5-year survey. All

data were acquired on the 3.6-meter Canada-France-Hawaii Telescope (CFHT) by the

MegaCam imager with gMrMiMzM filters. These homogeneously observed and reduced

light curves cover the redshift range from ∼ 0.2−1.0 .

3.3.2 SED-based simulations

The SN Ia simulations used for this work are generated directly from time sequences

of spectral energy distributions (“SIMSEDS”). Each spectral energy distribution model

consists of a set of fluxes parametrized by phase, wavelength, and two or more model

variables. This choice accomplishes two aims. First, it ensures that spectra and light

curves for a given simulated SN are consistent. Second, it allows for maximum flexibility

in the choice of supernova model parameterizations. SIMSED models based on light

curve fitters such as SALT-II may be characterized by light curve observables (i.e. width

and color), whereas SIMSED models derived from explosion simulations such as FLASH,

Sedona, or Phoenix may be parametrized by more physical quantities (e.g. viewing angle,

Ni-56).

Two fiducial SIMSED models are used in this paper. The first model (“GP”) has

been adapted from the SALT-II surfaces used in G10with the specific goal of SALT-II

training compatibility in mind. The second model (“H”) is based on the k-correction

templates published by Hsiao et al. (2007). Other than the addition of a reasonable

width-luminosity relation, no attempt has been made to ensure compatibility with SALT-

II. Color variations for each model are based on the color law published in G10. These

models are explained in greater detail in §3.4.
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Table 3.1. MC x1 and c Parent Gaussian Distribution Parameters

mean σ gen. range

x1 0.0 1.0 −2, +2
c 0.0 0.1 −0.3, +0.3

Note. — The same distri-

butions are used for all training

data simulations.

LC Simulation Details

The methods employed by the SNANA MC code to achieve realistic SN light curves have

been described in other works (e.g. Kessler et al. 2009a,b). For our SDSS and SNLS light

curve simulations we follow the same prescriptions as Kessler et al. (2012) (hereafter

K12).

The quality of the simulations for the SDSS-II and SNLS3-Megacam samples is illus-

trated with several MC/Data comparisons in Figures 3.6 and 3.7.

Most aspects of the MC agree well with the observed data. The largest difference

comes in fitted SALT-II color (c) and stretch (x1) distributions. Although it is well-

established that the parent distributions of these parameters are best described by an asym-

metric Gaussian (e.g. K12), to simplify training results we’ve chosen to use symmetric

Gaussian distributions. The values for the parent distribution parameters used in this work

are given in Table 3.1.

Despite this simplification, our fitted MC mean color and stretch as a function of redshift

agree reasonably well with their SDSS and SNLS data counterparts.
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SPEC Simulation Details

Through its “SIMLIB” feature (Kessler et al. 2009b), the SNANA MC code is able to

produce light curves with realistic signal-to-noise ratios and cadences. We’ve developed a

similar structure to allow the generation of SN spectra with realistic signal-to-noise ratios

and cadences. The spectral follow-up information for a survey is stored in a text file

called a “SPECLIB”, an example of which is shown in Figure 3.8. For SPECLIB SNe with

associated observed spectra, each line captures the relevant information of one observed

spectrum, including spectrum rest frame epoch, beginning and ending observer frame

wavelengths, and spectrum signal-to-noise ratio as a function of observed wavelength.

SPECLIB SNe without associated spectra are also included in the library, to ensure that

SNe with no spectral follow up are accurately accounted for in the simulation.

When a spectrum MC is begun, the subset of library entries matching the redshift

range of the simulation is selected. For each simulated supernova, a library supernova

can be chosen at random from this subset, or may be matched by a user-specified function

of the parameters z, x1, and c. A simulated SN spectra is generated for each “MJD” in the

library entry. The simulated spectrum observed phase, wavelength range, and S/N are

tuned to match the observed spectrum upon which it is based. All valid library entries are

used once before any entry may be repeated.

Currently, two spectral libraries exist, a “low-redshift” version (corresponding to the

low-z and CfA SN samples used in the G10 SALT-II training), and an SNLS3-Megacam

version. New libraries can be easily created to simulate existing or upcoming surveys.

Although the SNLS3 training set only included those spectra judged to have negligible

galaxy contamination, we have included galaxy contamination capabilities in our spectral

simulator. For each simulated SN a galaxy contamination fraction at MB peak can be

chosen from a parent distribution. A galaxy template is then normalized to the appropriate

flux and added to the SN spectra. We focus on contamination from elliptical and normal

spiral galaxies, using as templates the sb and elliptical spectra2 from the Kinney-Calzetti

2 The template files elliptical_template and sb_template were downloaded from the website
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Spectral Atlas of Galaxies (Calzetti et al. 1994; Kinney et al. 1996).

3.4 SN Ia input models

As illustrated in Figure 3.5, all trainings begin with the selection of an appropriate SN

Ia input model. For this work three different input models have been used: the SALT-II

surfaces published in G10, a specially-designed variant of the SALT-II surfaces published

in G10, and a model based on the Hsiao k-correction templates (Hsiao et al. 2007). In this

section we will describe the motivation behind the use of each type of model and give a

general description of how the models were made.

3.4.1 G10 model

These models are built from the G10 spectral surfaces and the G10 color law, combined as

proscribed in Equation (3.1) for a range of x1 and color values. The “S2b” model consists

of 1025 separate spectral time series constructed from the G10 surfaces and color law,

spanning 25 x1 values from -3 to 3 and 41 c values from -0.3 to 0.3. Because it contains

some negative fluxes, especially at early times in the UV region and late times in the

near-IR, this model isn’t suitable for our training purposes. However, it makes a good

comparison model for Malmquist bias tests.

3.4.2 GP model

A second model “GP” used the Guy10 surfaces as a starting point. To ensure full SALT-

II training compatibility, these surfaces were run through a script designed to simulta-

neously remove negative fluxes and translate them onto the desired training basis. As

with the “S2b” model, Equation (3.1) was used to combine the output surfaces with the

G10 colorlaw for the same range of x1 and c values. Since this model is perfectly train-

http://www.stsci.edu/hst/observatory/cdbs/cdbs_kc96.html
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able, it is ideal for ensuring that the training process is able to accurately reproduce an

input model if given enough input data.

3.4.3 H model

The third type of model we use is based on the Hsiao template (Hsiao et al. 2007). Con-

structed from a large collection of observed SN Ia spectra, the Hsiao template was de-

signed to represent the mean spectral features of the SN Ia population. As such, it is

similar to the G10 M0 surface, and has no inherent light curve width variation. We have

added width variation by applying a stretch function to the flux, such that a supernova

with stretch s and peak time t0 has flux at epoch t and wavelength λ

F(t, t0,s,λ ) = F(t ′, t0,s = 1,λ ), (3.7)

where t ′ = (t− t0)/s. Like the prior two models, the G10 colorlaw was used to add color

variation, and the same input range of x1 and c values was utilized3.

Since the H model is not an additive model like the SALT-II formalism, it is not clear

that the training process will be able to reproduce it. This makes it a reasonable test for

the ability of SALT-II to reproduce arbitrary SN Ia models.

3.4.4 Intrinsic scatter models

Fits of SNe Ia typically include an intrinsic scatter term on the order of ∼ 0.15, repre-

senting the amount of extra uncertainty required to be added in quadrature such that cos-

mology fits to SN Ia-derived distance moduli obtain reduced chi-squared values of ∼ 1.

Historically, this extra uncertainty has been associated with the peak B-band magnitude

parameter MB. However, several recent papers have shown evidence suggesting that the

SN Ia scatter varies as a function of wavelength, producing not just magnitude scatter but

also color scatter (Guy et al. 2010; Foley & Kasen 2011; Chotard et al. 2011; Marriner

et al. 2011) and that the assumptions we make about this scatter affect extinction laws
3From Guy et al. (2007), s = 1.00+0.091∗ x1+0.003∗ x12−7.5e−4 ∗ x13
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and cosmology derived from our SN data sets. The underlying source of this scatter is a

subject of ongoing study. A recent work by Kessler et al. (2012) has evaluated models

of intrinsic brightness variation. We chose three of these intrinsic scatter models, FUN-

COH, G10, and C11_0, to test the effects of different intrinsic scatter forms on SALT-II

training.

These models are defined as wavelength-dependent perturbations to the underlying

input model. By design, perturbations average to zero so that the underlying SN Ia model

is not changed. All models used in this work are independent of redshift and epoch.

Combining these smearing models with our base Hand GP models gives us six total input

models to choose from.

Coherent scattering: FUN-COH

Coherent magnitude shifts are the simplest form of scatter to add to our base model. For

each SN, a shift in flux s is chosen from a gaussian distribution of mean zero and standard

deviation equal to the desired scatter (σCOH = 0.13 for this work). The underlying SN

Ia flux is multiplied by 1+s, then spectra and magnitudes are computed as usual. This

scattering model produces a coherent shift in magnitudes; as such it only changes the

SN Ia parameter MB and produces no change in color c, and is the most similar to the

traditional form of intrinsic scatter.

G10

This model of scatter is based on the wavelength-dependent magnitude dispersion mea-

sured from the G10 SNLS3 training set during the SALT-II training process (Fig. 8 of

G10). To create a perturbation which can be applied to our SED-based input models,

independent scatter values are chosen from the measured dispersion at 800Åwavelength

intervals and then joined by a sine interpolation. Because the interpolation slightly re-

duces the total amount of scatter, the measured G10 magnitude dispersion is increased

by an overall factor of 1+(λrest2157)/9259. An additional coherent scattering term of
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σCOH = 0.09 has also been included. This scattering model produces an uncorrelated

color scatter, as well as a magnitude scatter.

C11_0

Our last scatter model is based on a covariance magnitude scatter matrix from the Chotard

et al. (2011) analysis of high quality Nearby Supernova Factory spectra. The original

scatter matrix was extended by Kessler et al. (2012) to cover the full wavelength range

required by SALT-II training. As with the G10 scatter model, the C11 scatter is deter-

mined for broadband wavelengths. To apply it directly to our input models, six random

magnitude shifts [U’UBVRI] are drawn from the covariance matrix and then connected

with the same sine interpolation used for the G10 model. As with the former model, the

magnitude shifts must be scaled up (here by a factor of 1.3) to compensate for the reduc-

tion in scatter caused by the interpolation. This scattering model produces a correlated

color scatter, in addition to a magnitude scatter.

3.4.5 Input model naming conventions

To be clear about which model is being used to train SALT-II, a compound name will be

used to describe the input. For example, an input data set created with the GP base model

altered by a G10 color smear will be called GP-G10. Table 3.2 summarizes the various

training options used in this work.

3.5 Analysis

In this section we describe the quantities that will be used to evaluate the results of the

training tests.
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3.5.1 Quantities Derived From Training

To evaluate the success of the training procedure, we begin by examining the training

products themselves. The training process and products have been outlined in Figure 3.4

and described in Sec §3.2.

Final M0 and M1 components, color laws, and color dispersions will be compared

directly with those of the input model.

3.5.2 Quantities Derived From Light Curve Fitting

Other quantities, such as HD bias, can be obtained from the light curve fit results.

Recall that each realization of a particular training test is subsequently used to fit a test

set of SNe light curves generated from the same input model (see Figure 3.5). For each

test set SN, the best-fitting scale (x0), stretch (x1), and color (c) parameters are determined

by minimizing a χ2 based on the difference between the SN photometry and synthetic

photometry of the model flux. For each SN, the fitted distance modulus is given by

µ f it = mB−MB +αx1−βc (3.8)

where the effective B-band magnitude mB is defined as mB = −2.5 log10(x0)+ 10.635

and the global parameters α , β , and MB are determined by a fit of the entire test set using

the “SALT2mu” program described in Marriner et al. (2011).

For a given training test, it is interesting to compare the mean recovered α and β

parameters with their input values. Various quantities may also be constructed from the

fitted distance moduli µ f it . These are described in the following subsections.

Hubble scatter

The simplest quantity to calculate from the fitted distance moduli is the Hubble scatter.

This quantity is defined as the dispersion on ∆µ , the difference between the fitted distance

modulus and the distance modulus calculated from the best-fit cosmological parameters.
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Like K12, we simplify this quantity slightly by computing the dispersion of

∆µ ≡ µ f it−µcalc(z,ΩM,ΩΛ,w) (3.9)

where the fitted distance modulus µ f it comes from (3.8) and the calculated distance

modulus µcalc is obtained by assuming a ΛCDM cosmology with ΩM = 0.3, ΩΛ = 0.7,

and w =−1.

Hubble bias

For a single test SN i, we begin by calculating the average fitted distance modulus over

all training realizations N:

< µ f it,i >≡ (
N

∑
j=1

µi,( f it, j)

N
). (3.10)

We can then define the Hubble bias ∆ < µi > as the difference between the average

fitted distance modulus (3.10) and the actual distance modulus µsim:

∆ < µi >≡< µ f it,i >−µsim,i. (3.11)

In figures, this quantity has been binned as a function of redshift and the mean bias

has been plotted against the mean redshift in each bin. Therefore, as plotted, the Hub-

ble bias tells us on average how correct a training’s measured distance modulus is for a

supernova in a particular redshift bin. We expect that an ideal training should have bias

measurements consistent with zero in all redshift bins.

Training model scatter

For a single test SN i, we define the training model scatter δ µi as the dispersion of the

fitted distance moduli µ( f it,i), j (where j runs over training realizations 1 to N) about the

mean fitted distance modulus < µi >:

δ µi ≡

√√√√ N

∑
j=1

(µi,( f it, j)−< µ f it,i >)2

N−1
. (3.12)
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This quantity tells us how reproducible an individual SNe’s measured distance modu-

lus is from realization to realization for a particular training test. In figures, this quantity

has been binned as a function of redshift and the mean model scatter has been plotted

against the mean redshift in each bin. Therefore, this plot tells us how stable a training’s

average distance modulus is for a supernova in a particular redshift bin. In the limit of a

perfect training, the model uncertainty should go to zero in all redshift bins.

3.5.3 Best-Fit Cosmologies

Finally, for each training test we can determine the ensemble of best-fit cosmology pa-

rameters recovered from the test set.

We’d like to know whether our trained models are able to accurately recover the input

cosmology, or whether the training procedures result in a systematic bias. To measure

these biases, we fit the simulated Hubble diagram in a manner similar to the FwCDM fits

described in Kessler et al. (2009a).

To obtain best-fit cosmology parameters, SN distance moduli are combined with

Baryon Acoustic Oscillation (BAO) and Cosmic Microwave Background (CMB) con-

straints.

For the BAO constraint, we use the quantity A defined by Eisenstein et al. (2005),

A(z1;w,ΩM,ΩDE) =

√
ΩM

E(z1)1/3

×

[
|Ωk|1/2

z1
Sk

(
|Ωk|1/2

∫ z1

0

dz′

E(z′)

)]2/3

, (3.13)

and for the CMB we use the shift parameter R

R(zCMB;w,ΩM,ΩDE) =
√

ΩM

∫ zCMB

0

dz′

E(z′)
. (3.14)

Rather than taking the best fit A and R values from data, we calculate them from the SN

simulation cosmology parameters (H = 70,ΩM = 0.3,ΩDE = 0.7,w = −1.0,Ωk = 0.0)

and the experimentally determined redshifts z1 = 0.35 and zCMB = 1090 (Eisenstein et al.
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2005; Komatsu et al. 2009). However, we keep the published uncertainties, yielding the

constraints

χ
2
BAO = [(A(0.35;w,ΩM,ΩDE)−0.487)/0.017]2 (3.15)

and

χ
2
CMB = [(A(1090;w,ΩM,ΩDE)−1.750)/0.019]2 . (3.16)

In the absence of input SN data, these constraints yield the best-fit cosmology param-

eters ΩM = 0.299±0.052 and w =−1.010±0.3.

3.6 Redshift-dependent Bias Corrections

Before presenting the results of our training tests, it is worth explicitly detailing one more

portion of our data analysis: redshift-dependent bias corrections. Any redshift-dependent

bias affecting our data will affect cosmology parameter measurements. As such, we must

identify and attempt to remove these biases as best we can.

3.6.1 Overview of “Malmquist Bias” Correction Techniques

To obtain accurate cosmology parameters, flux-limited SN surveys must account for the

impact of selection effects on distance modulus measurements. Typically, SN Ia light

curves are simulated from parameter distributions (color,stretch,MB) consistent with the

observed data, and selection biases are evaluated from these simulations. Slight variations

exist in the ways the simulated light curves are deployed and the biases are evaluated.

Most papers applying a selection bias correction analyze the simulated data in an

identical manner to the real data; in other words, the simulated light curves are generated

and fit from the chosen SN Ia model, and subjected to any additional processing (i.e.

global parameter fitting if using SALT) necessary to obtain distance measurements. The

fitted distances are then compared with the underlying distances µ(z,Ωi,H0) to obtain the

recovered distance modulus bias as a function of redshift and the real data is corrected
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accordingly. Papers using this method include Astier et al. (2006)4, Wood-Vasey et al.

(2007), and Kessler et al. (2009a).

The SNLS3 cosmology analysis (Sullivan et al. 2011) takes a slightly different tack.

As described in a companion paper by Perrett et al. (2010), simulated SNe light curves are

generated independently from the SNLS3 fitting models (SALT-II and SIFTO), inserted

directly into search images, and run through the discovery pipeline in the same manner

as the actual data. The simulations are configured such that each simulated SN Ia’s actual

∆mB (including both stretch and intrinsic dispersion variations) is known a priori. For the

set of detected SNe Ia, the applied selection bias correction comes from the recovered

〈∆mB〉 as a function of redshift. The simulated data is never fit.

In all of the papers referenced above, the applied corrections are described as “Malmquist

bias” or “selection bias” corrections. However, by including light curve fitting (and global

parameter fitting, for SALT-based fits) as part of the process, the first method implicitly

corrects for fitting biases as well as selection biases. As such, it is not truly a “Malmquist

Bias” correction, and is fitter-dependent as well as survey-dependent. By contrast, the

method used for the SNLS3 cosmology results is a true “Malmquist bias” correction.

For our work, we use the first technique (“TOTAL”) rather than the second, due to

limitations imposed by our current spectral simulation technique. In order to generate a

SN Ia model training sample with consistent light curves and spectra, the intrinsic scatter

model must be applied to the spectrum as a whole, rather than to the individual broad-

band magnitudes as is done by Sullivan et al. (2011). Therefore, we know the pre-intrinsic

scatter simulated mB and the recovered (post-lightcurve fit) mB, f it , but not the actual mB.

3.6.2 Individual Components of Redshift-dependent Bias

It is interesting to try to decompose the total bias into consituent parts: selection bias

(“MALM”), model bias (“MOD”) , and width and color correction (“WCC”) bias. Al-

4Ultimately the authors deemed the recovered selection bias insignificant compared with other sources

of uncertainty, and chose not to apply the correction.
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though we cannot do this in a fit-independent way, we approximate the Perrett et al.

(2010) technique by simulating a realistic full SN Ia sample (i.e. no efficiency cuts are

applied), fitting it with minimum selection cuts, and comparing the distance moduli thus

derived to either the simulated distance moduli or the distance moduli from a “detected”

sub-sample (i.e. those passing our efficiency cuts). Within this framework, we define the

following biases:

MOD =< mB,i−M f it
B +α

simx1,i−β
simci−µ

sim
i >FULL, (3.17)

WCC =< (α f it−α
sim)x1,i− (β f it−β

sim)ci >FULL, (3.18)

and

MALM =< µ
f it

i >DET ECT ED −< µ
f it

i >FULL . (3.19)

Here, mB,i, x1,i, and ci are individual SN Ia parameters derived from model fits of the

data; M f it
B , α f it , and β f it are global model parameters obtained from a SALT2mu fit of

the individual SN Ia parameters; and αsim and β sim are the global model parameters used

to simulate the light curve data. All averages are over redshift.

In terms of these same variables the TOTAL bias we apply prior to cosmology fits is:

TOTAL =

< mB,i−M f it
B +α

f itx1,i−β
f itci−µ

sim
i >DET ECT ED (3.20)

Here again the average is over redshift. We emphasize that the TOTAL bias corrects for

all three components – MALM, WCC, and MOD – simultaneously.

Because these biases are derived from fitted quantities, their values as a function of

redshift are fit model and survey specific. Because these biases depend on simulations,

they also depend on the input model used to simulate the SNe. Plots of the individual

biases for each set of realistic models will be shown and discussed in Section §3.10.
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3.6.3 Details of our Bias Correction Method

We perform our TOTAL redshift-dependent bias corrections as follows. The test data are

fit with the SN Ia model to obtain values of α , β , and parameter distributions for x1 and

c. Using the observed parameter distribution5 and the fitted values of α and β , the trained

SN Ia model is used to generate and fit a large simulated SN Ia data set (N ∼ 10,000),

yielding distance modulus measurements for each of the simulated SN. To be clear, this

simulation includes intrinsic scatter of the G10 form, with the node values described in

K12replaced by the trained model broadband dispersion (i.e. Figure 4.3). Finally, the

average difference in distance modulus 〈∆µ(z)〉 ≡ 〈µsim
i (z)− µ

f it
i (z)〉 is calculated as a

function of redshift and used to correct the observed distance moduli such that µ(z)corr
i =

µ(z) f it
i + 〈∆µ(z)〉. The uncertainty of 〈∆µ(z)〉 is assumed to be the rms of the µsim

i (z)−

µ
f it

i (z) values used to calculate it, and is added in quadrature to obtain δ µ(z)corr
i .

MALM bias corrections are performed similarly. The main differences are 1) the

simulation is performed with no efficiency cuts at all, 2) the light-curve fits use very

minimal light-curve quality cuts, and 3) the bias corrections are calculated according to

Equation(3.19). Changes 1) and 2) enable us to obtain a “FULL” data set. Once this data

has been fit, efficency cuts may be applied to extract the subset of “DETECTED” SNe.

3.7 Test Case 1: Ideal Training

We are working under the hypothesis that given enough input data, the SALT-II training

process will produce a reasonable copy of the input model, and that light curve fits made

with such a model will allow us to recover input cosmology to high accuracy. For the

purposes of this work, we define an “Ideal” training as one in which a comprehensive,

high-quality data set is used as input. In this section, we will describe the data set used

5The fitted parameter distributions themselves must be corrected for selection bias. Examples of this

correction can be found in Kessler et al. (2009a) and D’Agostini (1995). However, we approximate this

correction by using the parameter distribution fitted from an ideal test set.
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Table 3.2. Main Training Options

input model color smear training set test set

H none ideal ideal
GP COH real REAL

C11
G10

Note. — Main training options used in this work.

Particular training tests will be identified by a con-

catenation of options. For instance, a training test

based on the Hinput model with a C11 color smear

trained with an ideal training set and tested on a re-

alistic test set would be called H-C11-ideal-REAL.

for these trainings, and the results of our training tests for both the GP-NONE-IDEAL

and H-NONE-IDEAL input models (definitions of the various training model options are

given in Table 3.2).

3.7.1 Training Set Composition

Our ideal training set consists of 200 simulated SNe drawn from a flat redshift distribution

spanning z of 0.01 to 0.4. Half of these supernovae have photometry in the SDSS ugriz

system, the other half have photometry in the Landolt UBV RI system. The photometry is

of very high quality, with two-day cadence (observer frame) and signal-to-noise ratios of

2000 at peak B-band (or g-band) regardless of redshift. Spectrometry is of similarly high

quality. Seven spectra are generated for each supernova, with the first observation date

randomly chosen between rest frame epochs -14 and -4, and the remaining spectra spaced

every 10 (rest frame) days thereafter. This selection mechanism results in a flat spectrum
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distribution with phase for the entire sample. All spectra span rest frame wavelengths

2000 to 9200 Å, and have signal-to-noise ratios of 1000 defined on a bin size of 100 Å.

3.7.2 Training Configuration

Given the high-quality, high-cadence input data, the training configuration is adjusted ac-

cordingly. The flux scale uncertainty parameter is set to 0, such that observer-frame U /u

data is not deweighted during the training. Because our training set spectra have no cal-

ibration errors, we effectively turn off photometry-based spectral rescaling by increasing

the calibration wavelength step from 800 Å to 100,000 Å. Finally, the high sampling of

the input data makes regularization irrelevant.

3.7.3 Test Set Composition

Once training is complete, the new “IDEAL” models are tested by using them to fit large,

similarly high-quality data sets. These data sets (which we also call “IDEAL”) are made

up of 4000 SDSS and 4000 SNLS SNe. The relevant spectroscopic selection efficiencies

have been applied to the data set, but the exposure times of the simulations have been

adjusted to give photometric data with signal-to-noise ratios of 1000 in the B-band at

peak. The SDSS fits use all available ugri photometric data, the SNLS fits use all available

griz photometric data. The fitted light curve parameters are then used to determine the

global best-fit MB, α and β values and best-fit cosmology parameters ΩM and w for each

training realization, as described earlier in §3.5.2 and §3.5.3.

3.7.4 Ideal Training Results

Model Residuals

Because we have tailor-made our fiducial GP SN Ia model to match SALT-II training

capabilities (see §3.4.2), synchronized our simulation software with our training software,

and trained with extensive, high signal-to-noise ratio training sets, we expect that the
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resulting GP-NONE-IDEAL trained models will match the input model to better than one

percent in flux in all bands. No effort was made to match the H model to SALT-II, so we

don’t expect H-NONE-IDEAL trained models to reach the same level of agreement.

Plots of surface residuals bear out these expectations. Figure 3.9 shows the mean

integrated flux residuals and mean color law residuals for the GP ideal training test.

The GP mean flux residuals are smaller than 0.5% in flux in all bands except U (which

agrees to 1.0% in flux), indicating excellent agreement between the input and trained

model surfaces. Color law residuals show similarly small differences. As shown in Fig-

ure 3.10, the average H-trained model has similarly small integrated flux residuals near

peak but larger residuals at early and late times. We attribute this difference to the in-

ability of the SALT-II formalism to exactly reproduce the H stretch model. H color law

residuals are very similar to their GP counterparts, topping out at 0.005 at the edges of

the wavelength range.

Cosmology Residuals

Each of the 10 trained models was used to fit a single ideal set of 8000 test SNe light

curves. SALT2mu was applied to the resulting light curve parameters to obtain 10 sets of

best-fit model values M, α and β , and 10 sets of distance moduli to use for cosmology fits.

Assuming a flat λCDM cosmology, a chi-squared minimization was used to determine the

most likely cosmology parameters w and ΩM for each realization. The mean recovered

values of α , β , and w are shown in Table 3.3.

Both trainings recovered mean α values quite a bit smaller than the input value of

0.10: 0.094 was recovered for the GP model (a 6% discrepancy) and 0.090 for the

H model (a 12% discrepancy). A discrepancy in α is somewhat expected for the Hmodel,

since the stretch function used to create the SED width-magnitude relation cannot be

described with the SALT-II linear combination of surfaces. On the other hand, the two

training tests were able to recover β and w correctly, as expected. With our ideal test
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Table 3.3. Recovered Fit and Cosmology Parameters - IDEAL TRAININGS

model α β w(raw) w σint χ̃2

NZ∗ 0.094±0.002 3.201±0.007 −1.005±0.005 −1.000±0.005 0.000 0.080
HRK∗ 0.090±0.002 3.202±0.009 −0.998±0.005 −1.003±0.005 0.000 0.163

∗Trainings are of the type <model>-NONE-IDEAL-IDEAL

Note. — Mean cosmology parameters recovered by ideally trained models on ideal data sets.

The training sets were created with input parameters α = 0.100(GP), α = 0.102(H), β = 3.2, and

w=−1.0. For each training, we have shown both the original w and the Malmquist-bias corrected

w. Our Malmquist bias correction technique is described in section §3.6. All errors are errors in the

mean.

set, Malmquist bias is minimal: both the fitted w and the Malmquist-bias corrected w are

recovered within the 1-sigma limit of 0.005.6

Figure 3.11 shows the Hubble bias as a function of redshift for the H and GP trainings.

The average fitted distance modulus 〈µ(z) f it〉 differs from the actual distance modulus

µ(z)sim by less than 0.003 magnitudes in all redshift bins. As with the training surface

residuals, the GP input model gives better results than the H input model. However, in

either case, the redshift-dependent bias is tiny (0.002 magnitudes). data are sparse.

3.7.5 Ideal Training Test Conclusions

With the exception of slightly low recovered α values, ideal training tests give the out-

comes we expected: training the SALT-II model with a complete, well-sampled, high

quality set of data allows us to recover the input model with good accuracy. For both

models, the mean SED broadband-integrated flux is recovered to better than 2 percent in

all bands for phases between −10 and +10 days of B-band maximum. At late times, the

6As of Feb 6, 2013, the MBCORR w values have been performed with the “ideal” Malmquist bias

correction. I’m in the process of rerunning these using the “traditional” method, and will update the paper

when I’m finished. The difference between the two corrections is described in Section §3.6.3.
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maximum flux difference seen for the H model is 3 percent, and for the GP model, only

0.5 percent.

When applied to an ideal set of training data, mean hubble residuals as a function of

redshift are less than 0.003 magnitudes at all redshifts, and the cosmology parameter w is

recovered with high accuracy. After applying Malmquist bias corrections, the less-easily

trainable H mean w differs by 0.003±0.005; the GP mean w is −1.000±0.005.

From this ideal training test, we conclude that the training process can indeed recover

the correct model, given enough input information. In the next sections, we explore the

effects of training changes. Section §3.8 explores the impact of regularization on re-

alistically trained models. In Section §3.9, we determine the average Hubble bias for

realistically trained models, and explore the effects of different color smearing models .

3.8 Regularization

As described in Section §3.2, “regularization” refers to the addition of extra terms to the

χ2, with the goal of reducing the amount of high-frequency ringing trained into regions of

the best-fit model where input data is sparse. Ringing in the best-fit model adds extra scat-

ter to light-curve fits, thereby reducing the precision with which distances and cosmology

parameters can be measured. On the other hand, the addition of regularization terms can

systematically bias the best-fit model. Therefore, uncertainties due to regularization must

be measured and accounted for in the distance modulus error budget.

The forms of regularization used in this work are described in section §3.2.1. The

overall strength of each term is determined by a weight chosen at the time of training.

G10 evaluated the change in mean distance modulus as a function of redshift for two

different choices of normalization. They found the change to be small, less than or equal

to 0.005 magnitudes for redshifts below 1.

Using our simulation techniques we seek to confirm these findings. We will also

explore whether one type of regularization does better than another at minimizing bias
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and statistical error.

3.8.1 Description of our tests

GP-NONE-REAL trainings have been run for three sets of regularization weights: “nom-

inal”, “high” (10x larger than nominal) and “low” (10x smaller than nominal). Here the

nominal regularization weight is 10 for the gradient term and 1000 for the dyadic term.

The same regularization terms and weights are applied to both M0 and M1. Nominal

weights are equivalent to those used in the G10 training.

To determine the optimal regularization, we compare average Hubble biases and Hub-

ble scatter (see §3.5.2) for the three trainings. Results of these comparisons are shown in

Figure 3.12.

For the low and nominal regularizations, Hubble bias ∆ < µ > is equivalent to within

0.005 magnitudes at redshifts between 0.2 and 1.0. This finding is consistent with the

regularization tests described in Guy10. High regularization results in greater changes in

Hubble bias, approaching 0.015 magnitudes at redshifts of 0.3 and 0.8. Hubble scatter

is smallest when the nominal regularization is used. The low and high regularization

weights worsen scatter by 0.02 magnitudes.

These tests suggest that the nominal regularization is the best training choice. It

doesn’t add any extra distance bias compared to low regularization weights, and does

a better job of reducing Hubble scatter. It should be noted that these results have been

calculated with simulated values of alpha and beta (0.11 and 3.2 respectively), rather than

with the SALT2mu fitted values (which change from realization to realization). However,

using the fitted values does not substantially alter the test results.

3.9 Test Case 2: Realistic Training

Having established that the training procedure is able to reproduce the input model under

ideal conditions (i.e. full phase-space coverage by the training set, no intrinsic scatter),
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and having established the optimal level of regularization, we proceed to test SALT-II

training with more realistic training data.

Eight types of realistic trainings have been performed: GP-NONE-REAL, GP-COH-

REAL, GP-G10-REAL, GP-C11-REAL, H-NONE-REAL, H-COH-REAL, H-G10-REAL,

and H-C11-REAL. Model naming conventions are described in Table 3.2.

As with the ideal training test, we examine training results in terms of trained model

residuals, light curve fitting results, and cosmology results. With more realistic input

training data, we expect the differences between H and GP models to be greatly reduced:

the added uncertainties will obscure the real but small differences between the linear and

stretch-based models. As far as intrinsic scatter is concerned, we expect the NONE scatter

models to be quite similar to the COH models, with the main difference lying in scatter

about the mean (COH should have larger scatter than NONE). On the other hand, we

expect the G10 and C11 scatter models to differ from each other, as well as to differ

substantially from both the COH and NONE models, due to the relative “trainability” of

the G10 intrinsic scatter model compared to the C11 intrinsic scatter model. The three

K12 scatter models used in this work have been summarized in §3.4.4.

The following subsections will briefly describe the training set compositions, the

training configuration, and the test set make-up used in our realistic trains, followed by a

presentation of the realistic training test results.

3.9.1 Training Set Composition

Our realistic training sets consist of 220 SNe designed to mimic the data qualities of the

low-z sample and the SNLS3 sample. Details of the light curve and spectral simulations

have been given in sections §3.3.2 and §3.3.2.
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3.9.2 Training Configuration

Training is similar to that used in the G10 paper. We use nominal regularization (see

section §3.8.1), and a spectral recalibration step size of 800Å corresponding to the typ-

ical width of a broadband filter. Unlike trainings with real data, we keep our flux scale

uncertainty parameter set to 0, such that observer-frame U /u data is not deweighted.

3.9.3 Test Set Composition

As with the ideal training tests, we evaluate our trained models by using them to fit large

test sets of SN Ia light curve data drawn from the same input models and parameter

distributions as the training sets. We continue to use an “Ideal” data set (as described

in §3.7.3), and add to these fits and analyses of “Realistic” data sets. “Realistic” data

sets include not only realistic spectroscopic selection efficiencies, but also realistic photo-

statistics.

3.9.4 Realistic Training Results

Analogous to our presentation of the ideal training tests, we start by examining residuals

of the trained surfaces and color laws with respect to the input models. We compare the

obtained statistical and systematic uncertainties (particularly model scatter δ µ , §3.5.2)

with the estimates made in G10. Finally, we examine how well trained-model fits are able

to recover input cosmology parameters, and determine the recovered distance modulus

biases as a function of redshift.

In general, all eight trainings recover the M0 surface reasonably well. Figures 3.13

and 3.14 show light curve residuals (x1 = 0) as a function of phase for realistic GP and

H trainings, respectively.

More variation about the mean U residual is seen for trainings with C11 scatter than

G10 scatter. Early phases (p <−5) show sinusoidal structure in the mean residual for all

combinations of input model, though in the H versions the pattern is confined to the U
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and B wavelengths whereas in the GP versions it extends to V . For the H models the mean

U residuals increase after p ∼ 15 from zero to a maximum of two and a half percent for

the G10 scatter version, and to four percent for the C11 scatter model. The same trend is

not observed for the GP models. This being said, with the exception of the earliest epoch

of the GP-G10 training in the U , all residuals are consistent with zero.

Color law residuals, defined as the difference between the new CL and the input CL,

are a different story. As seen in Figure 3.15, the coherent scatter trainings return color

laws in good agreement with the input model. However, the other scatter models show

deviations from the input at wavelengths below 3500 Å and, for the C11 scatter in par-

ticular, above 7000 Å. Overall, the shapes of the color law residuals are similar for the

two C11 trainings, regardless of which base model is used: at the smallest wavelengths,

the new color laws have 15-25% more extinction than the input color laws. However, the

GP-G10-REAL color law residual looks similar to the GP-C11-REAL color law residual,

whereas the H-G10-REAL color law residual is quite different in shape from the H-C11-

REAL color law residual; of the four trainings shown in Figure 3.15, H-G10-REAL is the

only one with less extinction in the bluest wavelengths than the input model.

Finally, we can compare the recovered broad-band color dispersions with the input

models. Figure 4.3 shows the input and recovered output dispersions as a function of

wavelength for the two realistic intrinsic scatter models G10 and C11. The input broad-

band dispersion is recovered reasonably well for the C11 scatter models. The recovered

G10 scatter models are quite different in the near UV, both GP and H versions obtaining

dispersions at least 25% lower than input with 4-σ significance.

Bias and Cosmology Residuals

Fits of realistically trained models on realistic test data yield the mean recovered values

of α , β , and w shown in Table 3.4. To enable comparisons with the results in K12, we

have also included results for G10 fits of light curve data simulated with the G10 model

and either the G10 or C11 color smear (these are labeled “G10-G10” and “G10-C11”
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Table 3.4. Recovered Fit and Cosmology Parameters - REAL-REAL TRAINS

model α β w(raw) w(TOTAL) w(MALM) σint χ̃2

NZ-G10 0.084±0.013 2.912±0.089 −0.991±0.004 −1.007±0.004 −1.008±0.004 0.124 0.979
HRK-G10 0.091±0.011 2.832±0.089 −0.984±0.004 −1.007±0.004 −0.999±0.005 0.119 0.973
NZ-C11 0.102±0.018 2.647±0.110 −1.004±0.005 −1.024±0.005 −1.023±0.005 0.124 0.966
HRK-C11 0.103±0.020 2.680±0.093 −0.996±0.005 −1.012±0.005 −1.012±0.005 0.126 0.974

G10-G10∗ 0.112 3.036 −0.985±0.020 −1.000±0.020 −0.995±0.020 0.104 0.984
G10-C11∗ 0.116 2.737 −0.986±0.020 −1.015±0.020 −0.982±0.020 0.114 0.966

∗These tests do not include retraining. Lightcurves are made from the G10 model with G10 or C11 dispersion and fit with the

G10 model.

Note. — Mean cosmology parameters recovered by realistically trained models on realistic data sets. All errors are errors in

the mean. Input model parameters are α=0.1, β=3.2. A discussion of the α values we expect to recover is given in Appendix A.

respectively).

As described in Appendix A, we expect some mixing between x1 and c parameters

during training. This is especially true for models to which intrinsic scatter has been

applied. Expected values of α are listed in Table A.1. After taking this effect into account,

our recovered α parameters agree reasonably well with expectations.

None of the test sets recover the input value of β . Because our realistic test data suffers

from selection effects, some decrease in β is to be expected. However, our β values

vary with input scatter model. The trainings with G10 color smears have an average β

of ∼ 2.9, whereas the trainings with C11 color smears have average β ∼ 2.7 K12 also

reported scatter model-dependent differences in recovered β . Our Table 3.4 results are

most similar to the G10 and C11_0 results of the “Nearby + SDSS-II + SNLS3” sample

shown in K12 Table 6: they observe a ∼ 0.4 difference between the G10 and C11_0 β

values. Although our difference is smaller (closer to ∼ 0.2), the trend is in the same

direction. The offsets between the β values in K12 Table 6 and our corresponding G10-

G10 and G10-C11 β values are due to the different distributions of x1 and c used for our

simulations.

107



Table 3.5. HD bias - LOWZ Sample

redshift N GP-G10 GP-C11 H-G10 H-C11

0.007 571 -0.005(0.005) -0.016(0.004) -0.002(0.005) -0.010(0.004)
0.016 343 -0.000(0.006) 0.000(0.006) -0.002(0.005) 0.005(0.006)
0.024 234 0.012(0.008) -0.005(0.007) 0.009(0.007) 0.002(0.007)
0.033 133 -0.001(0.010) -0.015(0.010) -0.007(0.009) -0.006(0.010)
0.042 47 0.027(0.020) 0.026(0.020) 0.018(0.018) 0.032(0.020)
0.050 70 0.008(0.014) 0.006(0.016) -0.006(0.016) 0.013(0.017)
0.054 9 0.031(0.033) -0.018(0.041) -0.014(0.031) -0.016(0.044)
0.067 29 -0.017(0.025) 0.008(0.031) -0.023(0.021) 0.019(0.032)
0.077 33 0.018(0.023) -0.020(0.033) -0.009(0.027) -0.009(0.033)
0.088 12 -0.045(0.033) 0.029(0.036) -0.015(0.048) 0.036(0.041)

Note. — HD biases have been corrected for selection effects with TOTAL method.

All training tests are REAL-REAL.

Also shown in Table 3.4 are our recovered “raw” and bias-corrected values of the

dark energy equation of state parameter w. We show results for two kinds of bias cor-

rections: the “TOTAL” correction used by K12 (Equation (3.20)) and the “MALM” bias

correction (Equation (3.19)) most similar to what is done by SNLS3. After corrections,

the two G10 scatter model trainings recover a value of w within 2-σ of the input value.

The two C11 scatter model trainings give biased w results: the H-C11-REAL wcorr is -

1.012(significance of 2.4σ ) and the GP-C11-REAL wcorr is -1.024(significance of 4.8σ ).

The type of bias correction used has no significant effect on the results.

Mean distance bias 〈∆µ〉 as a function of redshift for each of the four training config-

urations is shown in Figure 3.17. Both the raw and corrected biases are displayed. The

mean distance modulus bias is listed as a function of redshift and scatter model in Tables

3.5, 3.6, and 3.7.
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Table 3.6. HD bias - SDSS Sample

redshift N GP-G10 GP-C11 H-G10 H-C11

0.048 47 0.000(0.015) -0.012(0.016) -0.024(0.016) -0.009(0.016)
0.088 131 -0.020(0.010) -0.015(0.007) -0.008(0.009) -0.010(0.008)
0.129 277 -0.010(0.007) -0.006(0.006) 0.006(0.006) -0.009(0.007)
0.171 537 0.003(0.005) -0.001(0.005) 0.004(0.005) -0.003(0.005)
0.214 763 0.007(0.005) 0.004(0.005) 0.005(0.004) 0.005(0.005)
0.254 790 -0.005(0.005) -0.002(0.005) -0.006(0.005) 0.003(0.005)
0.296 495 0.001(0.008) -0.003(0.008) -0.006(0.007) -0.008(0.008)
0.340 315 0.016(0.011) 0.021(0.011) 0.007(0.010) 0.018(0.011)
0.384 225 -0.006(0.014) -0.009(0.015) -0.007(0.015) -0.005(0.015)
0.425 105 -0.049(0.022) -0.034(0.024) 0.018(0.021) -0.031(0.024)

Note. — HD biases have been corrected for selection effects with TOTAL method.

All training tests are REAL-REAL.

Table 3.7. HD bias - SNLS Sample

redshift N GP-G10 GP-C11 H-G10 H-C11

0.263 123 0.008(0.010) -0.008(0.009) 0.002(0.010) -0.005(0.009)
0.338 197 0.001(0.008) 0.007(0.008) 0.017(0.007) 0.006(0.008)
0.414 293 0.008(0.007) -0.001(0.008) 0.011(0.006) -0.001(0.008)
0.491 354 0.005(0.006) 0.027(0.008) 0.011(0.006) 0.018(0.008)
0.569 472 0.002(0.007) 0.012(0.007) 0.002(0.006) 0.002(0.007)
0.645 508 0.012(0.007) 0.009(0.008) 0.019(0.007) 0.012(0.008)
0.720 570 0.016(0.008) 0.027(0.008) 0.021(0.008) 0.019(0.009)
0.799 557 -0.015(0.011) -0.001(0.009) 0.001(0.011) -0.006(0.010)
0.874 457 -0.002(0.013) -0.013(0.013) -0.006(0.012) -0.000(0.012)
0.949 297 0.022(0.015) -0.060(0.018) -0.029(0.014) 0.003(0.016)

Note. — HD biases have been corrected for selection effects with TOTAL method.

All training tests are REAL-REAL.
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3.10 Discussion

In the following subsections, we will discuss some of the implications of these biases,

examine procedures for bias correction, and remark on implications for optical SN Ia

cosmology and future model training.

3.10.1 Training with intrinsic scatter biases color laws

Adding realistic intrinsic scatter to the SALT2 training set yields biased models. Al-

though the M0 surfaces do not appear to be impacted (i.e. Figures 3.13 and 3.14), all

four realistic scatter color laws show at least a 1-sigma bias at wavelengths bluer than

approximately 3000 Angstroms (Figure 3.15). In addition, the two G10 scatter trains sig-

nificantly underestimate broadband dispersion at wavelengths bluer than 3000 Angstroms

(Figure 4.3).

Figure 3.18 shows the difference between the recovered and the input color law for

the four realistic-intrinsic-scatter models. The difference between the G10 color law and

the CCM (Rv = 3.1) color law is shown on the same panel as a reference. The observed

color law biases from our training tests are small and constrained to the region below 3000

Angstroms. However, three of the four input models give biases in the same direction,

such that Aλ ,new−Aλ ,old is positive. This trend agrees with Maguire et al. (2012), who

found that the SALT-II color law overcorrected SN Ia spectra in the NUV.

In terms of our ability to recover cosmological parameters, the size of this effect is not

large. As shown in Table 3.4, the best-fit equation of state parameter w is underestimated

by as much as 0.025, depending on the choice of input scatter model.

3.10.2 Implications of a Biased Color Law

NUV biases in the color law and color dispersion affect the ability of the model to cor-

rectly fit for the color parameter c in redshift regimes where rest-frame near-UV and U

are important. As discussed by K09 and G10, these sorts of biases will result in redshift-
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dependent values of β even if the underlying SN Ia β is constant. This effect can be seen

in our test samples.

We have divided our test samples into redshift bins of width=0.1 and fit each group

individually for β . The resulting values of β (z) are shown in Figure 3.19. Included in this

figure are results from our ideal and realistic test sets, as well as the β (z) values observed

by G10 from SNLS3 data. Training tests with no added intrinsic scatter show minimal(no)

change in β when applied to ideal(realistic) test samples. When intrinsic scatter is added,

both ideal and realistic training tests have identical δβ /δ z until a redshift of 0.65 when

Malmquist bias causes the realistic test sample δβ /δ z to decrease more rapidly. The mean

β (z) obtained from our simulated samples is in good agreement with G10 SNLS3 results

(see Figure 17, Guy et al. (2010)).

Because the recovered value of β is so sensitive to small biases in the color law and

broadband dispersion, it is not productive to interpret this value as a physical quantity.

3.10.3 Impact of scatter models on SALT-II training and HD biases

A similar examination of HD biases as a function of scatter model was undertaken by

K12. However, they did not retrain the SALT-II model as part of their work. Comparing

our scatter tests with theirs7, we make the following observations. First, despite our

differences in simulated sample x1 and c distributions, we are able to reproduce their

results. Our “NOTRAIN” results (Table 3.4) find that the G10 scatter w is recovered

with no bias, whereas the C11 scatter w has a post-correction bias of -0.015 compared to

their -0.017. Second, even after retraining, we both find an overall bias in recovered w of

∼ 0.02.

7The most apt comparisons are the G10 and C11_0 scatter models from the Nearby + SDSS-II + SNLS3

set of data, K12 Table 6
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We find that when the full training procedure is used, the strong G10/C11 demarca-

tion observed by K12 decreases. For instance, K12 found G10 w values to be unbiased

regardless of the application of a bias correction, whereas C11_0 w values changed sig-

nificantly and remained biased even after correction. On the other hand, we find that bias

corrections change the raw w by about the same amount (0.02) for both G10 and C11,

and that the average difference in w between the two scatter models is only ∼ 0.01, a 2-σ

improvement from K12. On the other hand, we find that bias corrections make the C11

w bias worse whereas they tend to improve the G10 w bias. We emphasize – as did K12–

that these results are specific to the combination of surveys used in the tests, and may not

apply to analyses with other data.

3.10.4 Statistical Uncertainty Estimates for SALT-II Model Training

Using multiple training set realizations, we have been able to directly measure the scatter

in SN Ia distance measurements as a function of redshift due to training statistics. In

Figure 3.20, we compare our results with estimates calculated by G10. Becuase our dis-

tance scatter measurements include both wavelength dispersion uncertainty and training

statistical uncertainty, we’ve combined the analogous components of the G10 estimates

(e.g. the “statistical uncertainty of the training” and “residual scatter model” portions of

G10 Figure 16). We find that the scatter in distance measurements ranges from 0.03 to

0.09 at z=1, with the GP-G10 model having the lowest scatter and the H-C11 model hav-

ing the most scatter, and that the G10 estimates agree well with our results for all intrinsic

scatter models.

3.10.5 Using these results to improve constraints on Dark Energy

We have used a series of MC samples to train the SALT-II model and measure HD biases

as a function of redshift. Our MC samples were specifically designed to match the SNLS3

SN Ia cosmology sample (e.g. Conley et al. 2011). Because our HD bias measurements
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incorporate uncertainties due to SN Ia model, intrinsic scatter, regularization, global pa-

rameter values (e.g. β ), and bias corrections in a self-consistent way, they may be used to

update those portions of the systematic error estimates from the most recent SNLS3 cos-

mology analysis (Sullivan et al. 2011). In keeping with the treatment described in Conley

et al. (2011) we use the bias results from Tables 3.5-3.7 to make covariance matrices for

each of the data sets represented in our simulations. The improvements in cosmology

constraints solely due to this work are shown in the contour plot in Figure 3.21. The

model uncertainties calculated using our technique show that the systematics associated

with the SALT-II model are negligible.

3.11 Conclusions

We have used simulated SN Ia samples to determine that SALT-II model training, fits, and

bias correction of the current SNLS3 cosmology sample introduces a redshift-dependent

HD bias, ultimately resulting in a ∼ 0.02 bias on w, significantly smaller than the corre-

sponding systematic bias reported by Sullivan et al. (2011). In order to perform these

tests, we have upgraded the SN analysis software package SNANA to enable spectrum

simulations incorporating realistic photo-statistics, galaxy contamination, and intrinsic

scatter.

When the SALT-II model is trained on a SN Ia spectral time series with no intrinsic

scatter and a high-quality MC training set, we find that we are able to recover the input

model components MO, M1, and CL, and obtain a HD with no biases. When the training

set is made more realistic via the addition of intrinsic scatter to the input model and a

reduction in the training set size and signal-to-noise ratios, our results agree well with the

w bias estimates of K12, the ∂β /∂ z measurements of G10, and the statistical uncertainty

estimates of G10. Because our results agree well with expectations, we conclude that our

method is robust.

We identify biases in the UV portion of the trained SALT-II color law and wavelength-
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dependent dispersion as the sources of the HD bias. These biases alter the measurement

of individual SN Ia color parameters c as a function of redshift, and cause the recovered

color correction parameter β to be systematically underestimated. The extent to which the

recovered β deviates from the input β depends on the form of the intrinsic color scatter

which is applied. Scatter of a form trainable by SALT-II (i.e. G10) results in smaller β

biases than scatter with covariances (i.e. C11) which the SALT-II formalism is currently

unequipped to handle. Because the color correction parameter β is so sensitive to scatter

model, it is unproductive to interpret this value as a physical quantity.

Although the scatter models we use in this work have been thoroughly tested (K12)

and found to reproduce key photometric observables such as photo-z residuals, Hubble

scatter, and color dispersion, they are solely dependent on wavelength, and as such are

somewhat unrealistic. Real SN Ia scatter probably results from a combination of effects,

including metallicity, viewing angle, and progenitor. As such, scatter probably depends

on phase, stretch, color, and redshift as well. An improved understanding of the origins

and nature of intrinsic scatter will be important to reducing systematic uncertainties in SN

Ia distance measurements.

The HD biases measured in this work will be used to reduce model-related systematic

uncertainties in an upcoming SNLS3 publication (Betoule et al. in preparation). Although

our HD bias measurements are model and survey specific, our procedure is general and

may be adapted to test any SN Ia model and data sample.
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Figure 3.6 Comparison of DATA SET distribution for SDSS-II data (blue circles) and

SIMSED MC (black histograms/stars). From top-to-bottom and left-to-right, the distribu-

tions are redshift, number of degrees of freedom in the SALT-II light curve fit, maximum

fitted S/N, maximum fitted S/N, fitted SALT-II color (c), and stretch parameter (x1). The

bottom two panels show the mean fitted SALT-II color (c) and shape parameter (x1) versus

redshift.
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Figure 3.7 Same as Fig 3.6, except for SNLS3-Megacam sample.
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LIBID: 1 (03D1au)

Z_HELIO: 0.5043 PEAK_MJD: 52909.839 0.308

G10c: -0.015 0.031 G10x1: 1.342 0.218

NSPEC: 1

MJD IDTEL FIRSTWAVE LASTWAVE BINWAVE SNRNBIN SNR2000 SNR3000 SNR4000 SNR5000 <...> SNR10000

S: 52905.000 30 3739.25 8953.21 5.00 10 -9.00 -9.00 4.13 10.90 -9.00

END_LIBID: 1

#--------------------------------------------------

LIBID: 2 (03D1aw)

Z_HELIO: 0.5820 PEAK_MJD: 52902.946 0.409

G10c: -0.019 0.038 G10x1: 1.342 0.218

NSPEC: 1

MJD IDTEL FIRSTWAVE LASTWAVE BINWAVE SNRNBIN SNR2000 SNR3000 SNR4000 SNR5000 <...> SNR10000

S: 52905.000 30 3740.71 8961.70 5.00 10 -9.00 -9.00 0.46 7.29 -9.00

END_LIBID: 2

#--------------------------------------------------

LIBID: 3 (03D1ax)

Z_HELIO: 0.4960 PEAK_MJD: 52915.961 0.140

G10c: -0.111 0.032 G10x1: -0.564 0.132

NSPEC: 0

END_LIBID: 3

#--------------------------------------------------

LIBID: 4 (03D1co)

Z_HELIO: 0.6790 PEAK_MJD: 52954.548 0.430

G10c: -0.048 0.065 G10x1: 0.875 0.467

NSPEC: 3

MJD IDTEL FIRSTWAVE LASTWAVE BINWAVE SNRNBIN SNR2000 SNR3000 SNR4000 SNR5000 <...> SNR10000

S: 52947.000 34 5203.19 9323.19 5.00 10 -9.00 -9.00 -9.00 -9.00 -9.00

S: 52947.000 31 4254.63 8939.63 5.00 10 -9.00 -9.00 -9.00 1.15 -9.00

S: 52965.000 30 3755.00 8950.00 5.00 10 -9.00 -9.00 0.01 1.19 -9.00

END_LIBID: 4

etc...

Figure 3.8 Excerpt from a SPECLIB for the SNLS3 SN survey.
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Figure 3.9 Mean flux and color law residuals from the GP ideal training test. The top panel

shows the flux residuals for U(black), B(blue), and V (red). The bottom panel shows the

color law residuals (C=1). Blue crosses represent the difference between output and input

CL after the first stage of training, and red triangles show the same quantity for the final

CL. RMS scatters for each set of data are given by corresponding solid lines.
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Figure 3.10 Mean flux and color law residuals from the H ideal training test. Plot descrip-

tions are identical to Figure 3.9.
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Figure 3.11 Hubble residual bias for the GP and H ideal trainings evaluated with ideal

data sets. Both sets of trainings show small bias with minimal redshift dependency.
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Figure 3.12 Hubble bias and Hubble scatter (§3.5.2) as a function of regularization weight.

Distance modulus µ and Hubble scatter have been calculated with simulated values of α

and β . Results shown are for GP-NONE-REAL trainings tested with realistic SN Ia data.

Model naming conventions are described in Table 3.2. Top: Systematic uncertainty of

the average distance modulus µ (in redshift bins of 0.1) due to regularization. The low

(blue) and high (red) lines compare 10× less and 10× more regularization with nominal

regularization. Shaded regions indicate one sigma uncertainties. Bottom: Hubble scatter

distributions for GP-NONE-REAL trainings with differing levels of regularization: nom-

inal (red), 10× smaller (blue) and 10× larger (red). Twenty realizations were run for each

training. The resulting distributions have been normalized to 1.
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Figure 3.13 Mean M0 surface residuals from the GP-G10-REAL(left) and GP-C11-

REAL(right) training tests. Model naming conventions are described in Table 3.2.
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Figure 3.14 Mean M0 surface residuals from the H-G10-REAL(left) and H-C11-

REAL(right) training tests. Model naming conventions are described in Table 3.2.
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Figure 3.15 Mean color law residuals from the GP(left) and H(right) realistic training

tests, for C=1.0. (Notice that this is 10 times the C used in G10 Figure 6). Solid lines

show the 1-σ scatter about the mean residuals. Model naming conventions are described

in Table 3.2.
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Figure 3.17 Hubble bias is shown for realistically trained models applied to realistic test

data. The blue circles show the TOTAL (R13) bias-corrected values; small red dots indi-

cate the raw (uncorrected) values. Plot labels indicate the input model and training type.

Model naming conventions are described in Table 3.2.
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Figure 3.18 Mean color law differences for the four realistic-scatter trainings. Each set of

data points shows output − input CL as a function of wavelength for a SN with c = 0.1.
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3.1) color law for comparison. Model naming conventions are described in Table 3.2.
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Figure 3.19 Mean β values evaluated independently in redshift bins for the intrinsic scat-

ter models “NONE” (black stars), “G10” (blue triangles), and “C11” (red circles). β

values for ideal test sets are shown on the left, β values for realistic test sets are shown on

the right. Analogous β values obtained from SNLS3 data (G10 Figure 17) are shown in

pink crosses. Solid lines on the right panels show the β values recovered if one assumes

β is constant with redshift. Model naming conventions are described in Table 3.2.
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Figure 3.20 Training model scatter as a function of redshift. Solid lines show the mean

SALT-II scatter estimates produced during the model training process; triangular points

show scatter recovered from our training tests. Both quantities have been normalized by

subtracting off their value at z = 0. Plot labels indicate the input model and training type.

Model naming conventions are described in Table 3.2.
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Figure 3.21 Influence of model systematic uncertainties on SN Ia cosmology constraints.

The shaded green contours show the SN Ia cosmology constraints on the values of w

and ΩM if only statistical distance uncertainties are included. The dotted lines show

the constraints when the model systematics from Conley et al. (2011)(red) or the H-

C11 model systematics from this work(green) are taken into account. Model naming

conventions are described in Table 3.2.
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Chapter 4

Conclusions

4.1 Implications of Current Work

Currently, optical SN Ia cosmology is hampered by a lack of information about SN Ia

UV and the systematic uncertainties associated with this wavelength region. Both SN Ia

broad-band photometry and spectra show increased dispersion in the UV. Circumstantial

evidence suggests that the observed dispersion in the UV region is related to progenitor

metallicity. Theoretical studies of the relationship between progenitor metallicity and SN

Ia luminosities indicate that metallicity evolution of progenitors could lead to redshift-

dependent shifts in average absolute magnitude and width-luminosity relations which po-

tentially bias optical SN Ia-derived cosmological parameters. A relationship between SN

Ia UV colors and metallicity is less well studied, in large part because the observational

data hasn’t been available, but is likely to exist (Walker et al. 2012; Foley & Kirshner

2013). Because the SN Ia color correction parameter is large (∼ 3), biases in measured

SN Ia color are likely to lead to biases in measured distance.

Using simulated SN Ia training and test samples, we have shown that current training

sets and model configurations lead to biases in the SALT-II SN Ia model UV color law and

wavelength-dependent dispersion. Our inability to correctly estimate UV color laws and
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dispersion leads to confusion about the nature of host galaxy dust and large uncertainties

in high-z SN Ia cosmology.

To immediately reduce statistical uncertainties in high-z optical SN Ia cosmology,

combining existing optical light curves with one or more space-based NIR observations

is very helpful. Thanks to improved CCD efficiencies in the NIR (λ ∈ [8000,10000]

Å) the Dark Energy SN Survey will have the best z photometry of any SN Survey to

date. Even so, at redshifts near 1.0, DES optical photometry is only sampling rest frame

SN photometry through lambda ∼ 4000 Å. As shown in Figure 4.2, the addition of

HST WFC3/IR F105W and F125W photometry adds SN Ia rest frame coverage through

λ ∼ 6000 Å. This range of the SN Ia SED has been intensively studied and has much

lower dispersion compared to the UV (e.g. Figure 1.5).

Figure 4.3 shows simulation-based estimates of DES distance constraints for SN Ia

at redshifts between z ∼ 0.8 and z ∼ 1.3 for two situations: DES photometry alone, and

DES photometry combined with a single epoch of HST WFC3/IR F105W and F125W

photometry 21 days past SN discovery (roughly corresponding to 10 days after rest frame

peak B magnitude). According to simulations, the addition of that single epoch decreases

the distance measurement uncertainty by 0.07, entirely due to a reduction in the model

uncertainty on the measured color parameter.

Measurements of the difference in distance bias as a function of redshift for DES alone

vs DES + HST may also be carried out as an extension of my SALT-II training work.

In order to use optical SN Ia cosmology to learn more about the time evolution of w,

understanding the SN Ia UV region is increasingly important. The correlation between

host galaxy masses and Hubble residuals indicates that the existing observational param-

eters – light curve shape and color – are insufficient to standardize the brightnesses of

SNe Ia. However, host galaxy mass is only a proxy for the actual SN Ia variable. Cir-

cumstantial evidence points to SN Ia progenitor metallicity as a good candidate for a

third standardization parameter. Theoretical studies suggest that SN Ia luminosity varies

as a function of progenitor metallicity. However, these same studies indicate that the
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Figure 4.1

Figure 4.2 Without adding HST IR imaging, DES high-redshift SNe use observer frame

iz, corresponding roughly to rest-frame ug, to constrain color. The addition of WFC3/IR

F105W and F125W photometry adds rest-frame g− r information, enabling a much

better-determined color (and hence distance) measurement.
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Figure 4.3 Distance modulus error as a function of redshift. The black points show con-

straints from DES only; the red points include NIR photometry with HST. Both sets of

data have been averaged in redshift bins of ∆z = 0.1. Here we assume a single orbit of

HST observations taking place 3 weeks after trigger. Note the dramatic improvement from

〈σµ〉 ∼ 0.25 to 0.17 with only a single HST visit. For comparison, distance measurement

uncertainties from 39 z > 0.9 SN Ia from SNLS3 and HST (Riess et al. 2004, 2007) are

overlaid in blue. These values are adopted from Sullivan et al. (2011). The black dashed

line shows the intrinsic scatter associated with optical SN Ia distance measurements.
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wavelength regime typically observed for optical distance measurements (4000− 8000

Å) does not provide sufficient constraints on color or light-curve shape to distinguish

between metallicities. While metallicity does impact the UV region of SN Ia SED’s, ob-

servations of this area are challenging to obtain at low redshifts. On the other hand, at low

redshifts distances – and therefore absolute luminosities – are known. More information

is available to constrain host properties, and additional host galaxy observations are more

easily obtainable at a wider range of wavelengths. If rest-frame UV observations of SNe

Ia can be shown to be reliable, the investment of scarce scientific resources needed to get

this information will be more palatable.

Our comparison of CSP and SDSS SN Ia broad-band u photometry (§2) showed that

modern photometry techniques can achieve good average agreement in UV flux measure-

ments. However, we found the dispersion in our UV photometry to be large. Our work

suggested that much of this scatter was due to S-correction uncertainties, but the paucity of

spectra with adequate wavelength coverage made these uncertainties difficult to quantify.

More recently Betoule et al. (2012b) have used comparisons of calibration star catalogs

to perform a more traditional cross-calibration check of SDSS and SNLS UV photometry.

They found SDSS u calibration uncertainties to be on the order of 1% in flux, and 2%

for the SNLS u1. Taken together, these two papers have provided evidence supporting

the reliability of SDSS u photometry. Additional evidence buttressing these conclusions

has come from a new sample of HST low-z SN Ia spectra described by Maguire et al.

(2012). Synthetic photometry of these spectra indicate that natural variability in the UV

combined with the relatively narrow width of the observer frame SDSS u filter explain the

observed dispersion in SDSS UV observations (J Guy 2013, pers. comm., April 14, 2013).

Based on these results, the SDSS observer frame u data will be included in the upcoming

retraining of the SALT-II light curve fitter.

1The SNLS SN survey was aimed at higher redshifts and did not observe SNe Ia in u
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4.2 Outlook for the future

Next season, the Dark Energy Survey will detect∼ 200 SNe Ia with redshifts < 0.4. These

SNe Ia will have four bands of photometry, including high quality NIR (i and z) imaging.

Using the SALT-II model to fit the three redder bands, corresponding to rest-frame gri, it

will be possible to examine UV photometry residuals2 as a function of SN Ia phase and

rest-frame wavelength. If we assume a cosmology, we can also look at Hubble residuals

as a function of UV photometry residuals. A correlation betwen specific UV photometry

residuals and Hubble residuals would point the way to a light curve observable we could

use as a third standardization parameter, and provide guidance in designing low-redshift

SN surveys and low-z SN host galaxy follow-up to best explore this valuable wavelength

region.

4.3 Scientific Acknowledgements

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Founda-

tion, the Participating Institutions, the National Science Foundation, the U.S. Depart-

ment of Energy, the National Aeronautics and Space Administration, the Japanese Mon-

bukagakusho, the Max Planck Society, and the Higher Education Funding Council for

England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the

Astrophysical Research Consortium for the Participating Institutions. The Participating

Institutions are the American Museum of Natural History, Astrophysical Institute Pots-

dam, University of Basel, University of Cambridge, Case Western Reserve University,

University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study,

the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear

Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean

Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National

Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute

2with respect to the best-fitting SALT-II model

135



for Astrophysics (MPA), New Mexico State University, Ohio State University, University

of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval

Observatory, and the University of Washington. Support for this research at Rutgers Uni-

versity was provided in part by NSF CAREER award AST-0847157 to SWJ.

This work is based in part on observations made at the following telescopes. The APO

3.5 m telescope is owned and operated by the ARC. We thank the observatory director,

Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The

Subaru Telescope is operated by the National Astronomical Observatory of Japan. The

William Herschel Telescope is operated by the Isaac Newton Group on the island of La

Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de As-

trofisica de Canarias. Observations at the ESO New Technology Telescope at La Silla

Observatory were made under programme IDs 77.A-0437, 78.A-0325, and 79.A-0715 .

Kitt Peak National Observatory, National Optical Astronomy Observatories (NOAO), is

operated by the Association of Universities for Research in Astronomy, Inc. (AURA) un-

der cooperative agreement with the NSF. The WIYN Observatory is a joint facility of the

University of Wisconsin-Madison, Indiana University, Yale University, and NOAO. The

W. M. Keck Observatory is operated as a scientific partnership among the California Insti-

tute of Technology, the University of California, and NASA. The Observatory was made

possible by the generous financial support of the W. M. Keck Foundation. The South

African Large Telescope of the South African Astronomical Observatory is operated by a

partnership between the National Research Foundation of South Africa, Nicolaus Coper-

nicus Astronomical Center of the Polish Academy of Sciences, the Hobby-Eberly Tele-

scope Board, Rutgers University, Georg-August-UniversitÂŁt GÂŽttingen, University

of Wisconsin-Madison, University of Canterbury, University of North Carolina-Chapel

Hill, Dartmouth College, Carnegie Mellon University, and the United Kingdom SALT

consortium. A.V.F.’s supernova group at U.C. Berkeley is supported by NSF grant AST-

0607485.

Thanks also to the SUSPECT Online Supernova Spectrum Archive.

136



Appendix A

Expected alpha determination

Mixing between the input x1 and c parameters during the training process is not unex-

pected, and will lead to predictable changes in the recovered α model parameter.

The training process separates color from width by assuming that peak B−V color

will be zero for all SNe with c=0, regardless of x1 value. If the input training set shows

some variation in color with x1, such that the observed color follows the form cobs =

c0+bx1 , the width-varying part of the color will be incorporated into the SALT-II model

α term as follows:

mB = MB +K +µ(z)− (α−βb)x1 +βc0, (A.1)

where K, µ(z), x1, and c are the k-correction, distance modulus, width, and color of a

specific SNIa, and MB, α , and β are global SN Ia parameters.

By linearly fitting peak B−V color as a function of x1 for each of our input models,

and normalizing this slope with respect to the base G10 model such that b ≡ b− bG10 ,

we can measure the slope and predict the expected alpha value αexp:

αexp = α−βb. (A.2)

We have used this technique to calculate expected values for α as a function of input

model:
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Table A.1. Expected α values

model αexp

GP-NONE 0.100
H-NONE 0.102
GP-G10 0.079
H-G10 0.106
GP-C11 0.099
H-C11 0.100

[h!]
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