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Abstract

Population Movement in Japan: A Hierarchical Bayesian Approach

As Japan’s population ages, the shifting age distribution threatens to destabilize economic

and social conditions. Exacerbating this issue is increasing urbanization that leaves vulner-

able demographics isolated in more rural regions. To make meaningful statements about the

future of Japan’s demographic distribution, it is necessary to analyze population movement

within the country. To this end, we perform a descriptive analysis examining the net immi-

gration rates into each prefecture of Japan from other prefectures over the course of 2004 to

2013. In particular, we propose a Bayesian regression model of net immigration rates which

incorporates effects of census variables, latent differences between prefectures, and anoma-

lous shocks in wake of the 2011 Tōhoku earthquake and subsequent nuclear meltdown. We

use two-component spike-and-slab priors on regression coefficients that allow for selective

shrinkage of parameters. We further propose a framework for predicting from the model and

demonstrate that it provides accurate predictions even for years for which covariate values

are not known. Our model is seen to give robust predictions of immigration rates, while also

yielding valuable insights about the potential factors influencing migration between regions

of Japan.

Keywords: demography; immigration rates; penalized regression; spike-and-slab

priors; mixed-effects modeling
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1 Introduction: Japan Today

Japan today faces unique social, demographic, and economic issues. Economic growth has

stalled over the last 20 years (Japan’s “lost decades”), while the birth rate has declined

far below the replacement rate, causing rapid aging and depopulation of Japanese society.

Women’s participation in the labor force remains low, and there is a massive shortage of

labor. These trends form a vicious cycle: day cares struggle to maintain adequate levels of

staffing, and so young mothers are discouraged from working and having children by the

inaccessibility of day care facilities (Osaki, 2016); in turn, the low birth rate and low female

labor force participation rate will continue to exacerbate labor shortages in the future.

In addition to the low birth rate, over 25% of Japan’s population was at least the age

of 65 in 2013, and this is expected to increase to nearly 40% by 2060 (The Economist,

2014). As a result, nursing care services have not been able to keep pace with the increase in

elderly population (Aoki, 2016). As the ratio of retired to working-age population in Japan

continues to grow, the labor shortage will continue to get worse.

In the coming decades, Japan’s demographics will continue to undergo massive changes,

with the aggregate population expected to decline by over 30% in the next 45 years (The

Economist, 2014). This will necessarily spur social, political, and economic changes as well.

However, digging deeper into the aggregate trends present in Japan’s demographics, we

can see from regional census data (Statistics Bureau of Japan, 2016) that there is substantial

variation in these trends. Figure 1 shows the population of Japan and two illustrative

prefectures since the year 2000. We can see that population growth has stopped, and since

2010 the population has declined by over a million. This has resulted in the total population

being about the same in 2014 as it was in 2000. However, this trend is not consistent in

Japan as a whole. For instance, the highly urbanized Tokyo Prefecture saw an 11% increase

in population; on the other hand, the very rural Akita Prefecture saw a 13% decline.

Additionally, we can see that there is significant heterogeneity in the population density

of each prefecture of Japan. As of 2013, the overall average population density in Japan
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Figure 1: Population Trends for Japan and Select Prefectures
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was 1,042 residents per inhabitable square kilometer, with the least dense prefecture being

Hokkaido (the northernmost large island of Japan) at 245 and the densest being Tokyo

Metropolis at 9,554. Additionally, the age distribution of the population varies varies greatly

by region. Figure 2 gives a map color-coded by population density as of 2013. Meanwhile,

Figure 3 shows the breakdown of Japan’s population by 5-year age group as of 2013, both

for Japan as a whole (the bars) and by prefecture (the lines).

From Figure 3, we see that the prefectures track the overall age distribution closely, but

some prefectures have much different distributions, especially with respect to the 80+ age

group. Since this age group has the greatest variation, the spatial distribution of proportion

80+ population as of 2013 is illustrated in Figure 4.

Depending on the prefecture, the proportion of the population that is over 80 years old

can vary from 5.2% (in Saitama) to 11.4% (in Shimane), a rather striking difference. A

possible driver of this is that younger people from rural areas may tend to move to cities

(for work, education, etc.), while older people may elect to stay in their rural residence due

to limited mobility and other factors.

What is evident from these illustrative figures is that regional variations are key to un-

derstanding Japan’s demographic crisis, which looks very different between highly urbanized

areas (such as Tokyo and Kyoto) and rural areas (such as Akita and Aomori). In particu-
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Figure 2: Population per Inhabitable Square Kilometer by Prefecture in 2013
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Figure 4: Proportion of Population Over the Age of 80 by Prefecture
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lar, Japan is becoming increasingly urbanized as younger people move from rural areas into

urban areas, while birth rates in urban areas are much lower than in rural areas (perhaps

partially due to the inaccessibility of day care services, as mentioned above). This leaves a

large number of childless young people in urban areas, with shrinking super-aged populations

in rural areas. Hence, understanding the spatial aspects of Japan’s demographic changes is

key to understanding the future of Japan’s population and how policies can be constructed

to ensure the continued thriving of both rural and urban communities around the country.

Clearly, the future of Japanese demographics and its implications for socioeconomic liveli-

hood are of great interest to a variety of Japan-specialist audiences. While current demo-

graphic issues such as depopulation are well-known and well-discussed in Japanese academic

and political circles, relatively few analyses have specifically looked at regional variations

in these triends from a quantitatively rigorous perspective. We believe that much can be

learned through this disaggregated approach—policies and initiatives to help Japan prepare

for its future must not only consider population changes in the country as a whole, but
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also regional changes. Only then can policy be effectively tailored to account for the unique

characteristics of each region within Japan.

Thus, in this project, we seek to move beyond aggregate trends and contribute to discus-

sion around Japan’s demographic changes by performing a descriptive analysis of population

movement in Japan and providing a framework for obtaining robust predictions of future

population movement. In particular, we construct a regression model to analyze the net

immigration rates into each prefecture of Japan from other prefectures over the course of

2004 to 2013. Through this analysis, we hope to highlight how aggregate population trends

vary regionally due to population movement within Japan, so that policymakers can better

understand Japan’s demographic crisis and derive meaningful predictions and insights about

future population movement.

2 Literature

Thus far, as alluded to in Section 1, relatively little English academic literature has performed

quantitatively rigorous analysis of Japan’s recent demographic trends. However, there is a

small but growing body of literature on urban analysis that helps pave the way for our

analysis.

Much of the existing literature arises from spatial econometrics, and much recent work is

focused on the rapid development of cities in China and India. For instance, Zhu et al. (2015)

perform a sophisticated analysis of the development of urban recreational business districts in

Beijing using unsupervised learning methods, while Liu and Guo (2013) take an econometric

approach and use vector autoregressive time series models to analyze the causal relationships

between urban features and economic factors, aggregated to the city level, for many cities in

China. Meanwhile, Harari (2016) analyzes the compactness of the shapes of developing cities

in India as they expand, and how this affects the economic livelihood of the city in question.

While these analyses tend to examine economic outcomes, they can easily be generalized
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to demographic outcomes. And, whereas these papers are primarily focused on inference,

others have taken approaches that can directly inform inform business and policy decisions,

such as Johann et al. (2014), which takes an operations research perspective combined with

a social impact perspective to determine the optimal locations of supermarkets that could

reduce the extent of food deserts in Philadelphia.

Narrowing our focus to literature on Japan, we find that much of the literature is geared

towards forecasting energy demand and optimizing energy planning, a sensible focus after

the nuclear meltdown caused by the 2011 Thoku earthquake. For instance, see Wang et al.

(2014), who analyze the optimal placement of renewable energy sources in Fukushima (the

prefecture of the nuclear meltdown). A number of papers, such as Ohtsuka et al. (2010), are

focused on the forecasting of electricity demand across regions of Japan.

Another focus of the literature is on transportation infrastructure. Studies such as Koike

et al. (2009) and Matsunaka et al. (2013) examine the existence and development of in-

frastructures (the former on expressway development and the latter on urban public trans-

portation) and transit times, and how these relate to economic and demographic factors.

Additionally, some literature such as Sun et al. (2014) and Nishida et al. (2014) focuses on

informatization of Japan and how the variability in adoption of modern technology affects

regional economies across prefectures in Japan.

Lastly, a handful of papers are similar in scope to the literature that we saw for other

countries. For instance, Kakamu et al. (2008) use spatial modeling to examine the relation-

ships between crime levels in different regions of Japan, while Takagi et al. (2012) perform

a similar analysis to Roh and Lee (2013) on the relationship between social capital and

crime victimization through hierarchical spatial regressions. One unique and very relevant

study is by Zhang (2014), who performs an in-depth spatiotemporal analysis of the migration

patterns of Chinese nationals living in Japan.

While these analyses are somewhat disjoint, they provide a sense of the current scope and

extent of literature on this topic. Our project is most similar in scope to Zhang (2014), but



7

focuses specifically on total net population movement between prefectures of Japan rather

than on migration of foreign nationals into Japan.

3 Census and Migration Data

The bulk of the data for this project comes from the Statistics Bureau of Japan through their

online portal e-Stat (Statistics Bureau of Japan, 2016), and unless otherwise stated, data

mentioned in this paper is either retrieved from the Statistics Bureau of Japan or derived

directly from their retrieved data. This resource has a wide variety of publicly available

data collected by various government bureaus. Of particular interest are two types of data:

regional census data and migration data. The regional census data includes many statis-

tics on demographics, geography, economy, housing, welfare usage, education, and health

for each of Japan’s 47 prefectures. The migration data gives the net migration rates into

each prefecture from other prefectures. We restrict our consideration of census variables to

those that are interpretable, non-missing, and non-redundant. Several derived variables are

included as well. After extensive narrowing down of our data to variables that meet these

criteria, we retain 91 variables that serve as indexes of various regional demographic and eco-

nomic factors. Additionally, for creating spatial visualizations of data and model outputs,

we match the data up with political boundary shapefiles from the Global Administrative

Areas database (GADM Database, 2016).

For our model, we use data on the net immigration rates of each prefecture of Japan over

the course of ten years. For each year from 2004 to 2013 and for each of the 47 prefectures in

Japan, we have the net rate of immigration from other prefectures per 100,000 population;

for instance, in 2004, Hokkaido had a net migration rate of -0.21, indicating that for every

100,000 residents of Hokkaido, 0.21 moved out of the prefecture into other prefectures (net

of the residents who moved into the prefecture from elsewhere in Japan).

Additionally, as mentioned above we have 91 explanatory variables such as demographic/census
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Figure 5: Net Immigration Rates Over Time by Prefecture
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data, density of public resources like schools and parks, and government spending on welfare

and other programs. For our analysis, we normalize the explanatory variables to ensure that

the posterior coefficients are not affected by the scale of the variables.

As seen in Figure 5, the net immigration rates are centered around 0 (as they should be,

since the immigration rates will net to near 0 across all prefectures). A huge outlier is seen

in 2011—this is Fukushima, which experienced a nuclear meltdown after the 2011 Tōhoku

Earthquake that drove many residents out of Fukushima and nearby prefectures into other

regions due to fear of radiation.

We can also visualize the spatial variation of immigration rates. Figure 6 gives a map

of Japan, with each prefecture color-coded by its average net immigration rate over the 10-

year data window. We see net positive migration rates to the Tokyo and Kyoto areas, and

negative migration rates for almost all other regions. This is consistent with overall popu-

lation changes by prefectures in this time period (although differences in age distributions
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Figure 6: Average Net Immigration Rates, 2004-2013
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contribute to the overall population changes in addition to migration).

In the next section, we discuss formulation of a regression model that is able to capture

these trends based on both obversable and latent variation between prefecture characteristics,

and which is able to assess the anomalous effects in 2011 after the Tōhoku earthquake.

4 Model Formulation

To model the net migration patterns, we posit a regression model which has random inter-

cepts and random effects for the effect of the 2011 earthquake. Given the small number of

repeat observations for each prefecture, the covariate effects are left as homogeneous fixed

effects. Denoting yit as the net migration rate and Xit as the explanatory variables for

prefecture i in year t, the model formulation is as follows:

yit = αi + γi · δt,2011 + βTXit + εit
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εit ∼ N(0, σ2)

where δa,b is the Kronecker delta function. Thus αi is the intercept of prefecture i, γi is

the shock to prefecture i in 2011, and β is the p-vector of regression coefficients for the

explanatory variables (which is assumed to be homogeneous across prefectures).

The residual standard deviation is given an improper flat prior:

p(σ) ∝ 1

The prior distribution for the intercepts is assumed to be normal with unknown mean

and variance, to allow for overdispersion in migration propensities due to latent differences

between prefectures. Improper flat priors are placed on the mean and standard deviation of

αi. That is:

p(αi|α0, σ
2
α) = N(α0, σ

2
α)

p(α0, σα) ∝ 1

For the γis, we expect a priori that only some prefectures, particularly Fukushima and

the surrounding area, will have γis that are relatively large in magnitude; meanwhile, most

prefectures are expected to have been impacted minimally by the earthquake and nuclear

meltdown. Similarly, for the βks, we expect that some covariates will have primarily spurious

correlations with the outcomes, whereas others will substantially impact outcomes. Thus,

we wish to employ a prior specification that can enforce shrinkage on parameters. How-

ever, commonly used penalized estimation procedures such as the LASSO produce bias by

penalizing all parameters equally (Hastie et al., 2009). To avoid this, we require a prior

specification that induces selective shrinkage, wherein coefficients are differentially penal-

ized based on their relative degree of influence: less influetial coefficients are penalized more

heavily to prevent overfitting, while coefficients demonstrated to be highly influential are

penalized less to reduce the bias on their estimates.
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To this effect, we employ a spike-and-slab prior (Ishwaran and Rao, 2005), which is a

2-component finite mixture of normal distributions centered at 0, one with low variance (the

“spike”) and one with higher variance (the “slab”). The proportion w of mass in the higher-

variance component (also known as the complexity parameter), gives the prior probability

mass placed on the slab. The prior variance of the spike component shrinks the γis closer

to 0, while the variance of the slab component enforces less shrinkage. The relative variance

and membership probabilities of the two components are left as parameters of the model, to

be estimated simultaneously with the coefficients.

We assume the standard deviation of the spike is some proportion v ∈ [0, 1] of the

standard deviation of the slab, and that some proportion w ∈ [0, 1] of the prior mass is

concentrated on the slab. Uniform priors are placed on v, and w, and the standard deviation

of the slab is given a weakly informative prior to prevent boundary solutions. Separate

hyperparameters are estimated for the βk and γi distributions. That is:

p(γi|wγ, σ2
γ) = wγN(0, σ2

γ) + (1− wγ)N(0, (vγσγ)
2)

p(vγ, wγ) = 1

p(σ2
γ) = Gamma−1(0.00001, 0.00001)

p(βk|wβ, σ2
β) = wβN(0, σ2

β) + (1− wβ)N(0, (vβσβ)2)

p(vβ, wβ) = 1

p(σ2
β) = Gamma−1(0.00001, 0.00001)

where Gamma−1(a, b) represents the inverse-gamma distribution. Note that, when w = 1

and/or v = 1, this reduces to a regular normal prior specification as used for αi. This

completes the prior and likelihood specifications.
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5 Model Estimation and Selection

The model is implemented in a fully Bayesian manner using a Hamiltonian Markov Chain

Monte Carlo (H-MCMC) algorithm. Posterior sampling is performed using the No U-Turn

Sampler (NUTS) algorithm, as implemented in STAN (Carpenter et al., 2017; Hoffman and

Gelman, 2014). NUTS has several advantages over more traditional MCMC algorithms such

as Gibbs sampling and Metropolis-Hastings. Namely, it utilizes information on the gradient

of the likelihood to reduce autocorrelation and speed up convergence; additionally, it allows

for more flexible model specifications as it does not require conditional conjugacy.

To assess which model specification to use for further analysis, we test the in-sample and

out-of-sample fit of several nested model specifications. This is vital to performing a robust

analysis, since beyond fitting the data well, we also want to test the generalizability of the

model beyond the training data to ensure we are not overfitting. As such, the following

nested model specifications are tested:

1. Fixed Intercept Model: an intercept-only model with one fixed intercept across all

prefectures.

2. Random Intercept Model: an intercept-only model allowing for intercepts to vary across

prefectures.

3. Fixed Intercept Regression Model: a regression model with one fixed intercept across

all prefectures.

4. Random Intercept Regression Model: a regression model allowing for intercepts to vary

across prefectures.

5. Full Model, Normal Prior: a regression model including all the features of Model 4, also

allowing for random shocks in 2011. Normal priors are placed on both the regression

coefficients and the shock coefficients.

6. Full Model, Spike-and-Slab Prior 1: a model with the same features as Model 5, but

utilizing a spike-and-slab prior on the 2011 shock coefficients.

7. Full Model, Spike-and-Slab Prior 2: a model with the same features as Model 5, but
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utilizing spike-and-slab priors on both the 2011 shocks and the regression coefficients.

Each of the models can be seen as a simplified version of Model 7 with some parameters

fixed. In particular:

• Model 7 reduces to Model 6 when wβ = 1 and/or vβ = 1.

• Model 6 reduces to Model 5 when wγ = 1 and/or vγ = 1.

• Model 5 reduces to Model 4 when γ = 0.

• Model 4 reduces to Model 3 when σα = 0.

• Model 4 reduces to Model 2 when β = 0.

• Model 3 reduces to Model 1 when β = 0.

The specifications for each of the nested models are analogous to the full model, and each

of the models tested is also estimated in a fully Bayesian manner using the NUTS algorithm.

The in-sample fit is calculated using the Deviance Information Criterion (DIC), a hierarchical

Bayes’ analog of the Akaike Information Criterion (AIC), as specified by Spiegelhalter et al.

(2002). The implied effective model dimension based on deviance is also calculated.

The DIC is calculated as:

DIC = −2Eθ[log(p(y|θ))] + pD

where θ is the vector of model parameters and pD is the effective dimension of the model,

which is calculated as:

pD = −2 (Eθ[log(p(y|θ))]− log(p(y|E[θ])))

Since the DIC is a simple function of the data and the posterior distribution of the model

parameters, it is also convenient to calculate: once posterior samples are obtained, it is trivial

to aggregate the samples to calculate DIC without needing any additional computationally

intensive sampling procedures.

The out-of-sample fit is approximated through 10-fold cross-validation. The folds are
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Table 1: Comparison of Model Fits

Model Name Dimension DIC RMSE (Y) MAD (Y) RMSE (P) MAD (P)

1. Fixed Intercept 2 -78.5 0.222 0.158 0.225 0.160
2. Random Intercept 46 -688.9 0.117 0.081 0.225 0.160

3. Fixed Intercept Regression 76 -945.9 0.111 0.077 0.186 0.133
4. Random Intercept Regression 89 -1020.4 0.102 0.070 0.176 0.121

5. Full, Normal Prior 127 -1137.7 0.099 0.066 0.162 0.111
6. Full, Spike-and-Slab Prior 1 117 -1140.8 0.102 0.067 0.161 0.109
7. Full, Spike-and-Slab Prior 2 115 -1144.5 0.103 0.067 0.168 0.112

constructed in 2 ways: year-based and prefecture-based. In the former case, the model is

trained on 9 years of data in the dataset and used to predict the values for the remaining

year. In the latter case, the prefectures are split at random into 10 groups, and the model is

trained on 9 groups and used to predict the values for the remaining group (the same group

partitions are used for all models to reduce stochastic error in fit metric calculations). Root

Mean Squared Error (RMSE) and Mean Absolute Deviation (MAD) are then calculated for

the two sets of predictions. For the models incorporating shocks in 2011, the shocks are

included in the model when 2011 is one of the training years and are left off when 2011 is

the holdout year (since there would be no observations to identify the effects).

The metrics are reported in Table 1. “Dimension” denotes the effective size of the model

as implied by its deviance, while “(Y)” and “(P)” denote whether an error metric was

calculated using year-based or prefecture-based holdouts, respectively.

We see that each added layer of complexity on the model uniformly improves the DIC,

and usually improves out-of-sample fit metrics as well. Unsurprisingly, models allowing for

random intercepts and 2011 shocks tend to do much better on year-based holdouts than

prefecture-based holdouts, as they are able to take advantage of each prefecture’s observed

outcome in other years, whereas the prefecture-based holdouts are a “cold start” that re-

quire simply drawing values of αi and/or γi from their respective prior distributions without

incorporating any observed outcomes for that prefecture.

Perhaps more surprising, however, is that the prefecture-based holdout performance actu-

ally improves substantially when random intercepts and shocks are introduced to the model.
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This seems counterintuitive due to the “cold start” mentioned above—the model is not able

to take into account past information on the prefectures to be predicted. However, since

the model allows for latent differences in baseline immigration rates, it helps reduces the

tendency of the model to overfit the covariate coefficients. Hence, despite the random effects

adding many parameters while adding no new information that can be used for prediction,

there is still a reduction in overfitting that results in improved out-of-sample forecasts.

Where we stop seeing uniform improvement is in comparing prior specifications of the

full model. It is interesting to note that, despite having more complex formulations, the

spike-and-slab models have fewer effective dimensions than the normal prior model, since

they allow for selective shrinkage. The three full models have almost identical out-of-sample

performance, and while the deviance on the spike-and-slab models are very slightly worse,

the reduced effective dimension offsets this and results in a better overall DIC.

Thus, the spike-and-slab prior sacrifices almost nothing in terms of fit, while being more

parsimonious. Additionally, it is more compelling from a generative standpoint: as men-

tioned in the model formulation, we a priori expect some covariates to have minimal impact

on migration rates, and for some (if not most) prefectures to experience only small abnormal

effects due to the Fukushima nuclear meltdown. Hence we expect the inferences from the

model that allows for selective shrinkage to be more robust. For these reasons we choose to

use Model 7 for all further analyses.

6 Regression Results

The following section discusses the results of the model. All inferences are based on 200,000

posterior samples from Model 7 as defined in the previous section.
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Figure 7: Posterior Mean Fitted Values versus Actual Values (R2 = 93.6%)
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6.1 Fitted Values and Residuals

First, we check the posterior mean fitted values of each datapoint and compare this to

observed migration rates. The fitted value plot is given in Figure 7.

Clearly, there is a strong correspondence between the fitted and actual values. Addition-

ally, as seen in Figure 8, the residual plot and histogram (with a kernel density estimate

superimposed) do not show any particular evidence of heteroskedasticity or skewness.

However, this fit is not particularly impressive given how highly parameterized the model

is. Thus, we also assess out-of-sample fit based on the cross-validation procedure described in

the previous section. This tests the generalizability of the parameters to predicting outcomes

for prefectures and/or years not in the training sample. The fitted value scatterplots are given

in Figure 9.

The correspondence is remarkly strong, even out-of-sample. The prefecture holdout

performance is worse than the year holdout, as it is not able to utilize other years’ data to

identify the prefecture-specific intercepts (and so the intercepts must be drawn directly from
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Figure 8: In-Sample Residual Diagnostic Plots
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Figure 9: Out-of-Sample Fitted Value Plots
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Figure 10: Out-of-Sample Residual Diagnostic Plots
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the prior). Nonetheless, the R2 is over 40%, validating that the covariates have substantial

predictive power even out-of-sample. The year-based holdout, which is able to take advantage

other years’ observations to identify intercepts, gets an out-of-sample R2 of nearly 80%.

Both models are not able to predict the 2011 shocks out-of-sample (since there are no

repeat observations), which introduces some extreme outliers and resulting skewness in the

residuals, but other than that the residuals are fairly well-behaved as well, as seen in Figure

10.

Based on these results, we can be reasonably confident in the model’s ability to predict

out-of-sample. In the next sections we discuss what insights can be gained from the parameter

estimates of the model.
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6.2 Parameter Estimates

Next, we discuss the posterior distributions of the model parameters. The posterior mean and

95% credible interval of each hyperparameter are given in Table 2. The subsections hereafter

will discuss and interpret these hyperparameters and their corresponding prefecture- and

covariate-level parameters.

Table 2: Estimated Hyperparameter Values

Parameter Posterior Mean 95% Credible Interval

σ 0.064 (0.059, 0.069)
α0 -0.141 (-0.165, -0.116)
σα 0.080 (0.056, 0.111)
σβ 0.037 (0.021, 0.067)
vβ 0.218 (0.022, 0.552)
wβ 0.359 (0.084, 0.736)
σγ 0.793 (0.248, 2.633)
vγ 0.145 (0.027, 0.342)
wγ 0.079 (0.009, 0.245)

6.2.1 Residual Standard Deviation

The residual standard deviation, σ, is quite well-identified, with a posterior mean of 0.064

and a 95% credible interval of (0.059, 0.069). The sample standard deviation of y is 0.2219,

indicating that the regression model captures roughly 91.8% of the variation in migration

rates (slightly lower than the R2 based on posterior means, since it adjusts for uncertainty

in parameter estimates).

6.2.2 Intercept Distribution

The parameters α0 and σα in tandem determine the distribution of latent baseline migration

propensities. The posterior mean E[σα|y] = 0.080 indicates that there is substantial variation

across prefectures in immigration propensities that is due to latent factors that cannot be
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Figure 11: Implied Density of αi
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explained by the covariates. The mean and 95% interval of the implied mixing distribution

density is given in Figure 11.

Thus, while there is some uncertainty in the mean and variance of the intercepts, the pos-

terior parameters suggest that almost all prefectures have a baseline immigration propensity

between −0.5 and 0.25. This is corroborated by the posterior distributions of each of the

individual αi parameters. Figure 12 gives the posterior mean and 95% credible interval for

each of the αis, sorted by their posterior means. The mean and 95% credible interval of α0

is also plotted in red to show the uncertainty in the overall mean.

We can see from Figure 12 that there is a fair amount of variation in baseline immigra-

tion propensities which is not explained by observable variables. Allowing for this sort of

overdispersion by prefectures helps improve model fit both in-sample and out-of-sample, as

was seen in 1.

Figure 13 gives a map of Japan, color-coded by the posterior mean values of αi. Red

represents a baseline below the average across all prefectures, while blue represents a value

above. While there are possible explanations for some of these deviations (for instance,
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Figure 12: Posterior Distributions of αis
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Fukushima’s below-average intercept could be due to continuing effects of the Fukushima

meltdown in 2012 and 2013), the magnitude of the deviations is fairly small so we refrain

from adding any additional parameters to capture these possible explanations.

6.2.3 2011 Shock Distribution

Next, we discuss the distribution of contemporaneous effects experienced in 2011. As seen is

Table 2, the spike-and-slab parameters (particularly the vs and ws) are only weakly identified.

This is likely due to there being compensatory effects between the parameters—for instance,

higher wγ indicates less overall penalization, but this could be offset by increased penalization

from a lower vγ, resulting in a similar likelihood.

E[wγ|y] = 0.0793 indicates that only a small portion of prefectures belong to the “slab”

component of the distribution, and E[vγ|y] = 0.145 indicates that the “spike” component

has substantially lower variance than the slab. However, given the substantial uncertainty in

the posterior parameter estimates for the spike-and-slab parameters, our ability to interpret

the parameters directly is limited. So, we also consider the shape of the mixing distribution
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Figure 13: Map of Baseline Net Immigration Rates
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implied by the parameters, and the uncertainty thereof. The mean implied density and 95%

credible interval of the shock distribution is given in Figure 14.

The inferred distribution is seen to be stiffly peaked at 0 with a fast dropoff, followed

by a long tail, which is consistent with our a priori expectations (that most prefectures will

exhibit minimal effects from the meltdown, but some will have very large effects). The exact

height of the peak and steepness of drop-off, however, are fairly uncertain. Nonetheless, this

sort of high-peaked, heavy-tailed distribution would not be adequately captured by a typical

normal distribution, validating the need for this more sophisticated prior specification.

Figure 15 gives the posterior means and 95% credible intervals ordered by posterior mean.

We see that a few prefectures have negative shocks, with Fukushima experiencing by far the

strongest negative effect, while most prefectures have slight positive shocks.

The selective shrinkage afforded by the spike-and-slab prior allows some prefectures to

have shocks far away from 0 without too much shrinkage, while the prefectures with small

shocks are penalized more heavily. A typical normal prior penalizes all datapoints equally,

and so does not allow for differential shrinkage like this. To illustrate this, we compare the
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Figure 14: Implied Density of γi
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Figure 15: Posterior Distributions of γis
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Figure 16: Estimates of γi by Prior Specification
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distribution of γis based on a normal prior (Model 5) versus a spike-and-slab prior (Model

7) in Figure 16.

We see that, because the normal prior cannot apply selective shrinkage, it must compro-

mise by substantially shrinking Fukushima towards the origin, while shrinking other points

less compared to the spike-and-slab prior.

In Figure 17, as with the αis, we give a map of Japan color-coded by γi. Since Fukushima’s

coefficient is on such a different scale from the other coefficients, we also give a map with

Fukushima omitted from the color scale to allow for clearer visual differentiation between

the other prefectures.

It is interesting to note that the two prefectures immediately North and South of Fukushima

have essentially neutral effects, but the Tokyo area further to the South has negative effects.

For the surrounding regions not critically impacted by the earthquake, it is likely that people

choose to move due to fear of radiation. For the immediately neighboring prefectures, this

effect is presumably offset by physically displaced people from Fukushima evacuating to the

neighboring regions. Most other prefectures, especially the ones to the West of Fukushima,



25

Figure 17: Maps of 2011 Shocks
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experience positive effects, which is consistent with records of where Fukushima evacuees

have moved (Fukushima on the Globe, 2014).

Of course, since the γis accommodate any anomalous shock for 2011, some of these effects

may be due to other contemporaneous events that occurred in 2011 besides the Tōhoku

earthquake and Fukushima meltdown. Nonetheless, the spatial distribution of shocks are

sensible and generally consistent with what we would expect to see a priori based on Japan’s

geography and population distribution.

6.2.4 Regression Coefficient Distribution

Lastly, we discuss the β coefficients and the inferences to be made from the model. First,

considering the hyperprior parameters: the posterior mean of σβ is 0.037, indicating a fairly

tight distribution of regression coefficients. The wβ and vβ also indicate a substantial amount

of shrinkage, but are difficult to interpret directly due to their rather wide credible intervals.
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Figure 18: Implied Density of βk
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As such, we again focus on the implied shape of the distribution of βks. Figure 18 gives the

posterior mean and 95% credible interval of the implied density of regression coefficients.

This distribution is seen to be even more steeply peaked than the distribution of γis,

but also has more uncertainty in how steep the peak is. This distribution indicates heavy

shrinkage towards 0 for both the spike and the slab, with substantial uncertainty in how

probabilities should be allocated between the the mixture components. As with the dis-

tribution of γis, a normal distribution would not be flexible enough to accommodate this

shape.

Next we look at the posterior distributions of the individual coefficients. Figure 19 gives

the posterior mean and 95% credible interval of each of the 91 regression parameters, ordered

by posterior mean. Despite the heavy penalization, 11 of the covariates are significant at the

5% level. So, although the model opts for heavy penalization on covariate coefficients, several

of them are still important to model fit (as corroborated by the good holdout performance

of the model).

To contextualize this distribution, Figure 20 provides a comparison between the coefficient
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Figure 19: Posterior Distributions of βks
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estimates based on the spike-and-slab prior to those based on traditional non-penalized

estimation. The panel on the left gives the empirical densities of the distribution of regression

parameters with randoms effects penalization (using the posterior means under the spike-and-

slab prior) and fixed effects without penalization (using ordinary least squares to estimate the

intercepts and coefficients). The panel on the right compares directly the estimates from the

two methods, with the red line demarcating what would make a perfect 1:1 correspondence

between estimates.

On the left panel, we see that the distribution of penalized coefficients is much lighter-

tailed, demonstrating the enormous shrinkage that results from the spike-and-slab prior. The

sample variance of the posterior means is 95% lower than the sample variance of the OLS

coefficients, indicating heavy penalization. On the right panel, we can see directly the effects

of selective shrinkage: most coefficients are pulled sharply towards 0 compared to their OLS

estimates, but some are shrunk much less, and a few even have larger coefficients under the

spike-and-slab estimation procedure than under OLS.

The predictors which are significant at the 5% level, as well as their respective slopes and
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Figure 20: Estimates of βk by Estimation Method
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credible intervals, are presented in Table 3. For scale interpretability, the coefficients have

been transformed back to the unnormalized scale. Since there are a substantial number of

covariates, typically a multiple hypothesis testing correction would be required to keep the

false discovery rate low. However, since the estimation scheme implicitly shrinks coefficients

towards zero in a selective manner, this reduces the need to make such corrections. As such,

we opt to use a regular 5% significance threshold.

The interpretation of these coefficients is, for the most part, fairly straightforward and

intuitive. We see that, for instance, people tend to immigrate more to higher-income prefec-

tures and tend to immigrate less to prefectures where the consumer price index is increasing

relatively quickly. Particularly notable is that 4 of the 11 selected variables are related to

labor and employment—suggesting that migration patterns are strongly tied to job availabil-

ity and labor force dynamics. Unsurprisingly, we see that people tend to move to prefectures

where there is greater job availability.

However, beyond the inferences obtained from model parameters, we are also interested

in predicting future net immigration rates and evaluating how these predictions vary under
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Table 3: Estimates of Significant Regression Coefficients

Variable ID Posterior Mean 95% Credible Interval Posterior P-Value

#D02206 0.018 (0.001, 0.033) 0.0221
#D0310801 -0.012 (-0.021, -0.003) 0.0053
#D0310901 0.033 (0.008, 0.056) 0.0065
#D0330403 217.225 (112.327, 321.040) 0.0001
#D0330503 53.424 (4.523, 100.958) 0.0239
#F03103 0.202 (0.137, 0.266) 0.0000
#F03302 -0.006 (-0.008, -0.003) 0.0000
#F03402 0.005 (0.001, 0.009) 0.0083
#H06310 -0.241 (-0.373, -0.106) 0.0003
#L04102 -0.016 (-0.027, -0.004) 0.0059
#L04302 0.013 (0.007, 0.018) 0.0000

The descriptions of these covariates are as follows:

• #D02206: Taxable income (100,000 yen per taxpayer)

• #D0310801: Government expenditure on health (% of administrative spending)

• #D0310901: Government expenditure on labor (% of administrative spending)

• #D0330403: Elderly welfare costs (100,000 yen per capita)

• #D0330503: Child welfare costs (100,000 yen per capita)

• #F03103: Ratio of job openings to job seekers

• #F03302: High school graduates getting a job outside of the prefecture (%)

• #F03402: Unemployment rate of new college graduates

• #H06310: Mobile phone subscriptions per capita

• #L04102: Annual change in Consumer Price Index, less imputed rent (%)

• #L04302: Annual change in residential land prices (%)
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counterfactual conditions. Hence, in Section 7, we provide a framework for predicting future

outcomes from this model and give illustrative examples.

7 Predictive Analysis

7.1 Covariate Extrapolation

Prediction is an important potential use of this model, but is difficult because covariate values

outside of the 2004-2013 range are not known. Thus, in order to predict future outcomes

from the model, it is necessary to model the covariate values themselves.

To obtain baseline predictions for the model, we predict future covariate values using a

simple linear time trend:

Xitk ∼ N(ξik + ηikt, τ
2
k )

where Xitk is the value for prefecture i in year t of covariate k.

We then use priors on ξik and ηik analogous to the prior used for the main model. The

parameters are assumed independent across covariates, allowing for each set of parameters to

uniquely characterize the time trends for each covariate; a priori there is no reason to believe

that time trends for different covariates (e.g. job openings versus mobile phone subscribers)

would come from the same distribution.

Specifically, we allow the intercepts for each prefecture to follow a normal hyperprior,

and place flat priors on the corresponding mean and variance:

p(ξik|ξ0k, τ 2ξk) = N(ξ0k, τ
2
ξk)

p(ξ0k, τξk) ∝ 1

Next, for time trends, we would a priori expect some prefectures to have fairly stable
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covariate levels, while others may be more volatile; hence, we use a spike-and-slab prior as

used for regression coefficients in the full model:

p(ηik|wηk, τ 2ηk) = wηkN(0, τ 2ηk) + (1− wηk)N(0, (vηkτηk)
2)

p(vηk, wηk) = 1

p(τ 2ηk) = Gamma−1(0.00001, 0.00001)

Using this model specification, we estimate the model for each covariate individually

and simulate posterior predictive values of the covariates out to 2020. Using the sampled

predictive distributions of the covariates, we combine these with the posterior samples from

the full model to get predicted net immigration rates for each prefecture from 2014 to 2020.

7.2 Prediction and Validation

Using the posterior predictive distribution of extrapolated covariate values for 2014 to 2020,

we predict the net immigration rate for each prefecture for each year in the prediction

window.

While we do not yet have the true covariate values for 2014-2016, we are able to obtain

the net immigration rates for each prefecture for these years from the Statistics Bureau of

Japan (2016). This provides an opportunity to measure the predictive validity of the model

beyond the cross-validation procedure used in Section 5, and tests the ability of the model

to generalize to cases where the covariates are not known and must be extrapolated.

Figure 21 gives the fitted value plot for the net immigration rates in 2014 to 2016. The

R2 is almost identical to that of the year-based holdout in Section 6, where covariate values

were known. As such, it appears that there is minimal loss in predictive validity when

extrapolating covariate values over a short horizon.

However, the fitted value plot also shows signs of the model systematically overpredicting

the prefectures with low fitted values—possibly a bias introduced by the covariate extrapo-
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Figure 21: Fitted versus Actual Values for 2014-2016 (R2 = 80.0%)
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lation procedure. Nonetheless, the predictions are quite robust, especially for such a short

time series. Additionally, this framework is simple to generalize to more sophisticated ex-

trapolation methods.

Next, we consider the predicted net immigration rate for the whole holdout window up

to 2020. The predictions are plotted in Figure 22, with only the posterior mean shown to

avoid overplotting. We see that the mean predictions for all prefectures are fairly stable, and

most are trending slightly upwards, while some stay flat or trend downwards.

Beyond these posterior mean predictions, one of the principal benefits to using Bayesian

models is the ability to obtain credible intervals of estimates and predictions. So, beyond

considering just the mean predicted trends, we also provide the 95% posterior credible in-

terval of predicted values for two select prefectures (Tokyo and Fukushima) in Figure 23.

Tokyo is predicted to have a gradual slowing of immigration in the coming years, although

there is substantial uncertainty in this trend. Even at the higher bound of the credible

interval, Tokyo is not predicted to surpass the peak in immigration that it experienced in

2007. Fukushima, meanwhile, is expected to stabilize post-disaster and settle at a slightly
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Figure 22: Posterior Mean Predictions Through 2020
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Figure 23: Posterior Mean and Credible Interval of Predictions for Select Prefectures
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negative net immigration rate.

These illustrative examples directly use the extrapolated covariate values using our pro-

posed framework, but the methods used here can easily be generalized to other extrapolation

methods as well as to counterfactual conditions. For instance, to see the effect of an exoge-

nous shock to one or more covariates, it is simple to perturb the extrapolated covariate values

to observe the resulting change in predictions.

8 Conclusions

In this analysis, we have constructed a hierarchical Bayesian regression model to analyze the

annual net immigration rates for each of Japan’s prefectures from 2004 to 2013. The model

posits immigration rates to be explained by a combination of census and economic covari-

ates in addition to latent differences between prefectures. The model additionally allows

for contemporaneous shocks in 2011 to account for the abnormalities in migration patterns

that arose from the Fukushima nuclear meltdown. The model gives good predictions both

in-sample and out-of-sample; and, through the use of prior specifications on the shock coeffi-

cients and regression coefficients that enforce selective shrinkage, we are able to differentiate

between factors that are strongly related to observed migration patterns and those which

are negligibly related.

Additionally, our model allows for prediction and counterfactual analysis through our

proposed covariate extrapolation framework. Based on recent immigration rates in years for

which no covariates were available, we see that our model maintains its predictive validity

even in the absence of exact covariate values.

It is important to note that these results are purely descriptive: causal inferences are

beyond the scope of this analysis, as there is a clear endogeneity problem with observational

data on macroeconomic variables. For instance, the regression coefficients suggest that there

is a positive relationship between residential land prices and immigration rates, but this
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is presumably due to increased immigration causing an increase in real estate prices (as

opposed to the other way around). Similarly, some of the other covariate coefficients also

have counterintuitive signs that make interpretation difficult.

Nonetheless, descriptive analysis is useful in that (1) it allows us to narrow down a large

set of variables to a handful that are empirically seen to be closely related to migration

patterns; and (2) it allows for prediction and counterfactual analysis of future migration

outcomes, assuming future values of covariates are determined exogenously.

This is of interest to public policy researchers and practitioners alike. Identification of

observational associations are essential to determining what policy variables are important to

consider for further analysis: experimental research and econometric methods for mimicking

experimantal designs can be used to help establish causal relationships and infer treatment

effects, but these methods are much more resource-intensive and less amenable to large

numbers of inputs. As such, this analysis helps narrow down the scope of inputs that are

worth further investigation. Additionally, even if endogeneity precludes us from performing

an operational analysis (e.g. analyzing how to optimally allocate government expenditure to

stabilize the spatial population distribution), the ability to predict immigration rates (and

uncertainty thereof, thanks to the Bayesian formulation) is still very useful for policymakers,

both so that they can prepare appropriately for population inflow/outflow and so that they

can perform post hoc assessment of the effectiveness of policy decisions (e.g. analyzing how

much immigration rate differed from predictions after a policy change, and how statistically

significant that difference is). Thus, this analysis helps provide a descriptive and predictive

tool for analyzing migration patterns that can help inform policy decisions and direct future

experimental research.
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