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Abstract

This paper provides a step-by-step guide to solving dynamic stochastic games using
the homotopy method. The homotopy method facilitates exploring the equilibrium
correspondence in a systematic fashion; it is especially useful in games that have multiple
equilibria. We discuss the theory of the homotopy method and its implementation and
present two detailed examples of dynamic stochastic games that are solved using this
method.
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1 Introduction

There has been much interest in game-theoretic models of industry evolution and, in par-
ticular, in the framework introduced by Ericson & Pakes (1995) that is at the heart of
a large and growing literature in industrial organization and other fields (see Doraszelski
& Pakes (2007) and the references therein). Ericson & Pakes (1995) provide a model of
dynamic competition in an oligopolistic industry with investment, entry, and exit. Their
framework is designed to facilitate numerical analysis of a wide variety of phenomena that
are too complex to be explored in analytically tractable models. Methods for computing
Markov-perfect equilibria are therefore a key part of this stream of research. This paper
contributes by providing a step-by-step guide to solving dynamic stochastic games using
the homotopy method.

A particularly important concern in the literature following Ericson & Pakes (1995)
is multiplicity of equilibria. The potential for multiplicity in their framework is widely
recognized; see p. 570 of Pakes & McGuire (1994) and, more recently, the examples of
multiple equilibria in Doraszelski & Satterthwaite (2007) and Besanko, Doraszelski, Kryukov
& Satterthwaite (2007).

Multiple equilibria raise at least two issues. First, the existing structural estimation
methods for dynamic oligopoly models such as Aguirregabiria & Mira (2007), Bajari,
Benkard & Levin (2007), Pakes, Ostrovsky & Berry (2006), and Pesendorfer & Schmidt-
Dengler (2003) rely on the assumption that the same equilibrium is being played in all
geographic markets and/or time periods. Hence, multiple equilibria cast doubt on the
estimation results unless one can convincingly argue that the same equilibrium is indeed
being played in all geographic markets and/or time periods. Of course, this is trivially
true if the equilibrium is unique. It would therefore be useful to be able to explore the set
of equilibria of dynamic oligopoly models to determine whether multiplicity exists in the
empirically-relevant subset of the parameter space. The homotopy method offers a way of
doing this.

Second, multiple equilibria limit what we can learn from conducting policy experiments.
Strictly speaking, the most one can conclude from a policy experiment in the presence of
multiple equilibria is that, were the change in policy to occur, one of several equilibria would
be played, but which one is not known. However, if we are able to more fully characterize
the set of equilibria, then it becomes possible to bound the range of outcomes that may
be produced by a change in policy. The homotopy method is again a useful tool for this
purpose.

Computing a Markov-perfect equilibrium of a dynamic stochastic game amounts to
solving a large system of equations. To date the Pakes & McGuire (1994) algorithm has
been used most often to compute equilibria of dynamic oligopoly models. This backward
solution method falls into the broader class of Gaussian methods. The idea behind Gaussian
methods is that it is harder to solve a large system of equations once than to solve smaller
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systems many times and that it may therefore be advantageous to break up a large system
into small pieces. The drawback of Gaussian methods is that they offer no systematic
approach to computing multiple equilibria. To identify more than one equilibrium (for
a given parameterization of the model), the Pakes & McGuire (1994) algorithm must be
restarted from different initial guesses. But different initial guesses may or may not lead to
different equilibria. A similar remark applies to the stochastic approximation algorithm of
Pakes & McGuire (2001), the other widely used method for computing equilibria.

This, however, still understates the severity of the problem. When there are multiple
equilibria, the trial-and-error approach of restarting the Pakes & McGuire (1994) algorithm
from different initial guesses is sure to miss a substantial fraction of them, regardless of how
many initial guesses are tried. That is, as shown by Besanko et al. (2007), if a dynamic
stochastic game has multiple equilibria, then some of them cannot possibly be computed
by the Pakes & McGuire (1994) algorithm. It is therefore important to consider alternative
algorithms that can identify multiple equilibria and thus provide us with a more complete
picture of the set of solutions to a dynamic stochastic game.

The homotopy method allows us to explore the equilibrium correspondence in a sys-
tematic fashion. The homotopy method is a type of path-following method. Starting from
a single equilibrium that has already been computed for a given parameterization of the
model, the homotopy algorithm traces out an entire path of equilibria by varying one or
more selected parameters of the model. Whenever we can find such a path and multiple
equilibria are the result of the path folding back on itself, then the homotopy method is
guaranteed to identify them. We note at the outset that it is not assured that any given
path computes all possible equilibria at a given value of the parameter vector.

In this paper we discuss the theory of the homotopy method as well as HOMPACK90,
a suite of Fortran90 routines developed by Watson, Sosonkina, Melville, Morgan & Walker
(1997) that implements this method. We also discuss potential problems that one may
encounter in using HOMPACK90 to solve dynamic stochastic games and offer some guidance
as to how to resolve them.

We then present two examples of dynamic stochastic games and show, step by step,
how to solve them using the homotopy method. In order to use the homotopy method, one
must formulate a problem as a system of equations. Our first example, the learning-by-
doing model of Besanko et al. (2007), is particularly well-suited for the homotopy method
because it is straightforward to express the equilibrium conditions as a system of equations.
We discuss in detail how this is done. Moreover, we illustrate the computational demands
of the homotopy method using the learning-by-doing model as an example.

Our second example, the quality ladder model of Pakes & McGuire (1994), presents
a complication. As investment cannot be negative, the problem that a firm has to solve
is formulated using a complementary slackness condition, a combination of equalities and
inequalities. We show how to reformulate this complementary slackness condition as a
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system of equations that is amenable to the homotopy method. In fact, we offer several
such reformulations that may be useful if complications arise.

In sum, this paper provides a step-by-step guide to solving dynamic stochastic games
using the homotopy method. Our goal here is not to provide a comprehensive treatment
of the theory of the homotopy method (see Zangwill & Garcia (1981) for an excellent
introduction to the homotopy method) or the possibilities for implementing this method
on a computer (see Allgower & Georg (1992) among others); rather, it is to enable to
reader to start using HOMPACK90 as quickly as possible. To this end, we also make the
codes for the learning-by-doing and quality ladder models available on our homepages. We
include additional detailed instructions on how to set up and use these codes with the codes
themselves.

Most of this paper is devoted to explaining how to use the homotopy method to explore
the equilibrium correspondence of a dynamic stochastic game in a systematic fashion. To
this end, we use the homotopy algorithm to trace out an entire path of solutions to a system
of equations by varying a parameter of interest. This type of application is refereed to as
a natural-parameter homotopy. The homotopy method has other applications. A so-called
artificial homotopy can be used to obtain a solution for a particular parameterization of a
system of equations; it aims to compute just one equilibrium. An all-solutions homotopy can
sometimes be used to obtain all solutions to systems of equations with certain properties;
it aims to compute all equilibria. We briefly discuss these applications at the end of the
paper.1

2 The Theory of the Homotopy Method

A Markov-perfect equilibrium of a dynamic stochastic game consists of values, i.e., expected
net present values of per-period payoffs, and policies, i.e., strategies, for each player in each
state. Values are typically characterized by Bellman equations and policies by optimal-
ity conditions (e.g., first-order conditions). Collecting Bellman equations and optimality
conditions for each player in each state, the equilibrium conditions amount to a system of
equations of the form

H(x) = 0,

where x is the vector of the unknown values and policies and 0 is a vector of zeros, and we
use boldface to distinguish between vector and scalars. Hence, computing an equilibrium
of a dynamic stochastic game amounts to solving a system of typically highly nonlinear
equations.

1The homotopy method has also been applied in other contexts, including general equilibrium models
with incomplete asset markets (Schmedders 1998, Schmedders 1999). See also Eaves & Schmedders (1999)
for a summary of other applications to general equilibrium models, Berry & Pakes (2007) for an application to
estimating demand systems, and Bajari, Hong, Krainer & Nekipelov (2006) for an application to estimating
static games of incomplete information.
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Various methods are available for solving a system of nonlinear equations (see, e.g.,
Chapter 5 of Judd 1998). Gaussian methods such as the Pakes & McGuire (1994) algo-
rithm most often used to solve for equilibria of dynamic stochastic games are not guaranteed
to converge. Moreover, they offer no systematic approach to computing multiple equilibria
and, when multiple equilibria exist, they are unable to compute some of them (Besanko
et al. 2007). Unlike the Pakes & McGuire (1994) algorithm, some nonlinear solvers – no-
tably Newton’s method – are guaranteed to converge provided that the system of equations
satisfies certain conditions and the initial guess that the user provides to the algorithm as a
starting point is close to the final solution. However, like the Pakes & McGuire (1994) algo-
rithm, these algorithms are limited in their ability to compute multiple equilibria because,
to find a particular equilibrium, an initial guess must be supplied that is close (perhaps
very close) to it.

The homotopy method allows us to explore the equilibrium correspondence in a system-
atic fashion. It is therefore especially useful in models that have multiple equilibria. Starting
from a single equilibrium that has already been computed for a given parameterization of
the model, the homotopy method traces out an entire path of equilibria by varying a pa-
rameter of interest. Recall that the equilibrium conditions depend on the parameterization
of the model. Making this dependence explicit, the above system of equations becomes

H (x, λ) = 0, (1)

where H : RN+1 → RN , x ∈ RN is the vector of unknown values and policies, and 0 ∈ RN

is a vector of zeros. λ ∈ [0, 1] is the so-called homotopy parameter. Depending on the
application at hand, the homotopy parameter maps into one or more of the parameters of
the model. The object of interest is the equilibrium correspondence

H−1 = {(x, λ)|H(x, λ) = 0} .

The homotopy method aims to trace out entire paths of equilibria in H−1.

Example. An example is helpful to explain how the homotopy method works. Let N = 1
and consider the equation H(x, λ) = 0, where

H(x, λ) = −15.289− λ

1 + λ4
+ 67.500x− 96.923x2 + 46.154x3.

Here we do not use boldface for x and 0 since they are scalars. This equation implicitly
relates a variable x with a parameter λ. The set of solutions H−1 = {(x, λ)|H(x, λ) = 0} is
graphed in Figure 1. There evidently are multiple solutions to H(x, λ) = 0, e.g., x = 0.610,
x = 0.707, and x = 0.783 at λ = 0.3. Finding these solutions is trivial with the graph
in hand, but the graph is less than straightforward to draw even in this very simple case.
Whether one solves H(x, λ) = 0 for x taking λ as given or for λ taking x as given, the result
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Figure 1: Example.

is a multi-valued correspondence, not a single-valued function.
To apply the homotopy method, we introduce an auxiliary variable s that indexes each

point on the graph starting at point A for s = 0 and ending at point D for s = s̄. The
graph is then just the parametric path given by a pair of functions (x(s), λ(s)) satisfying
H(x(s), λ(s)) = 0 or, equivalently, (x(s), λ(s)) ∈ H−1. While there are infinitely many
such pairs, there is a simple way to characterize a member of this family. Differentiate
H(x(s), λ(s)) = 0 with respect to s to obtain

∂H(x(s), λ(s))
∂x

x′(s) +
∂H(x(s), λ(s))

∂λ
λ′(s) = 0. (2)

This differential equation in two unknowns x′(s) and λ′(s) captures the condition that is
required to remain “on path.” One possible approach for tracing out a path in H−1 is thus
to solve equation (2) for the ratio x′(s)

λ′(s) = −∂H(x(s),λ(s))/∂λ
∂H(x(s),λ(s))/∂x that indicates the direction of

the next step along the path from s to s + ds. This approach, however, creates difficulties
because the ratio may switch from +∞ to −∞, e.g., at point B in Figure 1. So instead of
solving for the ratio, we simply solve for each term of the ratio. This insight implies that
the graph of H−1 in Figure 1 is the solution to the system of differential equations

x′(s) =
∂H(x(s), λ(s))

∂λ
, (3)

λ′(s) = −∂H(x(s), λ(s))
∂x

. (4)
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Equations (3) and (4) are the so-called basic differential equations for our example. In
our example, note that if λ = 0, then H(x, λ) = 0 is easily solved for x = 0.5. This provides
the initial condition (point A in Figure 1). From there the homotopy method uses the basic
differential equations to determine the next step along the path. It continues to follow
the path – step-by-step – until it reaches λ = 1 (point D). Whenever λ′(s) switches sign
from negative to positive (point B), the path is bending backward and there are multiple
solutions. Conversely, whenever the sign of λ′(s) switches back from positive to negative
(point C), the path is bending forward.2

Returning to the general case with N > 1, our goal is to explore the equilibrium corre-
spondence H−1 = {(x, λ)|H(x, λ) = 0} that depends on the homotopy parameter λ. Pro-
ceeding as in our example, a parametric path is a set of functions (x(s), λ(s)) ∈ H−1.
Differentiating H(x(s), λ(s)) = 0 with respect to s yields the conditions that are required
to remain on path

∂H(x(s), λ(s))
∂x

x′(s) +
∂H(x(s), λ(s))

∂λ
λ′(s) = 0, (5)

where ∂H(x(s),λ(s))
∂x is the (N ×N) Jacobian of H with respect to x, x′(s) and ∂H(x(s),λ(s))

∂λ

are (N × 1) vectors, and λ′(s) is a scalar. This system of N differential equations in N + 1
unknowns, x′i(s), i = 1, . . . , N , and λ′(s), has a solution that obeys the basic differential
equations

y′i(s) = (−1)i+1 det
([

∂H(y(s))
∂y

]

−i

)
, i = 1, . . . , N + 1, (6)

where y(s) = (x(s), λ(s)), and the notation [·]−i is used to indicate that the ith column
is removed from the (N × (N + 1)) Jacobian ∂H(y(s))

∂y of H with respect to y. Note that
equation (6) reduces to equations (3) and (4) if x is a scalar instead of a vector. For
the general case, a proof that the basic differential equations (6) satisfy the conditions in
equation (5) that are required to remain on path can be found in Garcia & Zangwill (1979)
and on pp. 27–28 of Zangwill & Garcia (1981).

Regularity and smoothness requirements. A closer inspection of the basic differential
equations (6) reveals a potential difficulty. If the Jacobian ∂H(y(s))

∂y is not of full rank at
some point y(s) on the solution path, then the determinant of each of its square submatrices
is zero. Thus, according to the basic differential equations (6), y′i(s) = 0, i = 1, . . . , N + 1,
and the homotopy method is stuck at point y(s). A central condition in the mathematical
literature on the homotopy method is thus that the Jacobian must have full rank at all points
on the solution path. If so, the homotopy is called regular. More formally, H is regular if
rank

(
∂H(y)

∂y

)
= N for all y ∈ H−1. The regularity requirement – and a certain smoothness

2The orientation of the path taken by the homotopy method is arbitrary. Reversing the signs of the basic
differential equations implies, perhaps more intuitively, that λ′(s) switches sign from positive to negative at
point B.
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Figure 2: Examples of solution paths if H is regular.

requirement to be discussed below – ensures that the set of solutions H−1 consists only of
continuous paths. Figure 2 shows examples of possible solution paths if H is regular: (A)
paths that start at λ = 0 and end at λ = 1; (B) paths that start and end at λ = 0 or
λ = 1; (C) loops; and (D) paths that start at λ = 0 or λ = 1 but never end because x (or
a component of x in the case of a vector) tends to +∞ or −∞.3 Figure 3 shows examples
of solution paths that are ruled out by the regularity requirement: (E) isolated equilibria;
(F ) continua of equilibria; (G) branching point;4 (H) paths of infinite length that start at
λ = 0 or λ = 1 and converge to single points (spirals); and (I) paths that start at λ = 0 or
λ = 1 but suddenly terminate.

In practice, it is often hard to establish regularity because the Jacobian of a system of
equations that characterizes the equilibria of a dynamic stochastic game formulated in the
Ericson & Pakes (1995) framework tends to be intractable. This stems partly from the fact
that the Jacobian for such a system is typically quite large because the system includes
at least two equations (Bellman equation and optimality condition) for each state of the
industry, and even “small” models with few firms and few states per firm tend to have
hundreds of industry states.

3The mathematical literature on the homotopy method rules out paths like (D) by imposing a boundary
freeness requirement (see, e.g., Chapter 3 of Zangwill & Garcia 1981).

4More formally, (G) is a so-called pitchfork bifurcation. The regularity requirement also rules out tran-
scritical (X-shaped) bifurcations but is consistent with other types of bifurcations (saddle-node and double
saddle-node). See Golubitsky & Schaeffer (1985) for an introduction to bifurcation theory.
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Figure 3: Examples of solution paths if H is not regular.

The other major requirement of the homotopy method is smoothness in the sense of
differentiability. This yields solution paths that are smooth and free of sudden turns or
kinks. Formally, if H is continuously differentiable in addition to regular, then the set of
solutions H−1 consists only of continuously differentiable paths. This result is known as
the path theorem and essentially follows from the implicit function theorem (see, e.g., p. 20
of Zangwill & Garcia 1981). Moreover, for a path to be described by the basic differential
equations (6) it must be the case that H is twice continuously differentiable in addition
to regular. This result is known as the BDE theorem (see, e.g., pp. 27–28 of Zangwill &
Garcia 1981).

The smoothness requirement is non-trivial and easily violated, for example, by non-
negativity constraints on components of x, say because investment cannot become negative,
or by distributions with non-differentiable cumulative distribution functions such as the
uniform distribution that is often used to model random scrap values and setup costs.
Section 5 explains how to deal with such complications.

To understand why smoothness is necessary, consider an analogy: Imagine that the
solution path is lined with railroad tracks and that the homotopy algorithm follows these
tracks just as a train would. Like a train the homotopy algorithm can follow a curve in the
tracks, perhaps at a reduced speed, but the train derails if the tracks take a sudden turn.

There is a subtle difference between the homotopy method, a mathematical theory, and
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dense Jacobian sparse Jacobian
ODE based FIXPDF FIXPDS
normal flow FIXPNF FIXPNS

augmented Jacobian FIXPQF FIXPQS

Table 1: Path-following algorithms and dense vs. sparse Jacobian in HOMPACK90.

the homotopy algorithm, a computational method. In theory, the homotopy method is used
to describe solution paths. In practice, a homotopy algorithm takes discrete steps along
such a path. This can be beneficial because the homotopy algorithm may succeed in tracing
out a solution path even if the regularity and/or smoothness requirements are violated; as
the homotopy algorithm proceeds along the solution path in discrete steps, it may skip over
points at which one or both of these requirements are violated. However, this also can lead
to a complication. As the homotopy algorithm proceeds in discrete steps, it may jump from
one solution path to another, thus failing to trace out either path in its entirety. These
issues are discussed further in Section 5.5.

3 The HOMPACK90 Software Package

HOMPACK90 is as a suite of Fortran90 routines that traces out a path in

H−1 = {y|H(y) = 0} .

The notation y = (x, λ) ∈ RN+1 underlines that the homotopy method does not make a
distinction between the unknown variables x ∈ RN and the homotopy parameter λ ∈ [0, 1].
The detailed description of HOMPACK90 is given in Watson, Billups & Morgan (1987) and
Watson et al. (1997). Here we just give a brief overview that is meant to enable the reader
to start using HOMPACK90 as quickly as possible.

In order to use HOMPACK90, the user must provide Fortran90 code for the system of
equations and its Jacobian. In addition, the user must supply HOMPACK90 with an initial
condition in the form of a solution to the system of equations for a particular parameteriza-
tion. HOMPACK90 then traces out a solution path. HOMPACK90 offers several different
path-following algorithms as well as storage formats for the Jacobian of the system of equa-
tions. Table 1 gives an overview. Below we proceed to discuss the differences between the
various path-following algorithms and storage formats as well as ways to generate initial
conditions. In Section 4.3 we then compare the implications of the various path-following
algorithms and storage formats for the performance of HOMPACK90.

The output of HOMPACK90 includes a sequence of solutions to the system of equations,
saved to binary files5, and an exit flag that indicates a normal ending or several kinds of

5This functionality was added by us and is not a part of the original HOMPACK90.
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failure. We discuss some of the potential problems in Section 5.5.

3.1 Path-Following Algorithms

HOMPACK90 traces out a parametric path y(s) ∈ H−1 as a sequence of points, indexed
by k. The kth point in the sequence is

{
sk,yk

}
, where yk is understood to represent y(sk).

The step along the path from one point to the next starts by choosing ∆s = sk+1 − sk.
HOMPACK90 adjusts this step length based on the curvature of the path. Then HOM-
PACK90 computes the next point yk+1 using a two-phase method. The predictor phase
generates a guess at the solution yk+1; the corrector phase then improves that guess using a
version of Newton’s method. The difference between algorithms lies in the implementation
of the predictor and corrector phases.

ODE based. The predictor phase of the ordinary differential equation (ODE) based path-
following algorithm is a direct application of the system of differential equations (5). It first
solves the system of linear equations

∂H
(
yk

)

∂y
∆y = 0 (7)

to obtain ∆y and then computes the guess as yk+1 = yk + ∆y∆s. As the predictor step
tends to be very precise, the algorithm typically goes through several such steps before a
corrector step becomes necessary.

Normal flow. The predictor phase uses a Hermite cubic extrapolation from the previous
two points. While the Hermite cubic extrapolation is much easier to compute than solving
the system of linear equations (7), it is also much cruder. The corrector phase is thus
necessary at every step.

Augmented Jacobian. This path-following algorithm is similar to the normal flow al-
gorithm except that it takes a more sophisticated approach to the corrector phase.

3.2 Jacobian

HOMPACK90 requires the user to provide a routine that returns the Jacobian ∂H(y)
∂y at a

given point y. In many applications, including dynamic stochastic games, the number of
equations and unknowns is large but any given equation involves only a small number of
unknowns (because the transitions from one state to the next are typically restricted to a
small set of “nearby” states), leading to a Jacobian with most elements being zero. Such
a Jacobian is called sparse and can be more efficiently represented using a sparse matrix
storage format that consists of a list of the non-zero elements with corresponding row and
column indices rather than as a dense matrix that consists of the entire set of N (N + 1)
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elements. Due to the key role of the Jacobian in the homotopy algorithm, we next discuss
some details on ways to compute and represent it.

Numerical vs. analytical Jacobian. The easiest way to compute the Jacobian is to do
so numerically using a one- or two-sided finite-difference scheme (see, e.g., Chapter 7 of Judd
1998). However, we found that, due to the limited precision of numerical differentiation,
the ODE-based algorithm takes small steps and this increases the time needed to complete
the entire path significantly; Normal flow and Augmented Jacobian algorithms are more
robust to imprecise Jacobians.

The obvious solution is to use analytical instead of numerical differentiation, but this
carries a high fixed cost of deriving, coding, and debugging the Jacobian. Instead, we use
ADIFOR, a program that analytically differentiates Fortran code. ADIFOR is described in
Bischof, Khademi, Mauer & Carle (1996); here we just give a brief overview.6

The input to ADIFOR is the Fortran90 code that returns H(y) at a given point y.
ADIFOR analyses this code and from it generates the new code. This code receives a pair
of ((N + 1)× 1) vectors (y, ∆y) and returns the (N × 1) vector

∆H =
∂H(y)

∂y
∆y.

Thus, we obtain the jth column of the Jacobian via a single call to the ADIFOR generated
code with ∆y set to the jth basis vector. Repeating this for j = 1, . . . , N + 1 we assemble
the entire Jacobian.

Dense vs. sparse Jacobian. Taking advantage of the sparse nature of the Jacobians
in dynamic stochastic games offers a decrease in computation time, and in fact we show
in Section 4.3 that this decrease is substantial. The additional efficiency comes from lower
memory requirements and faster linear algebra operations. In addition, the Jacobian of a
very large system of equations may exceed the available memory unless it is stored as a
sparse matrix.

The use of sparse Jacobians is complicated by two issues. First, there is additional
coding because the user must specify the “sparsity structure,” i.e., the row and column
indices of potentially non-zero elements. In practice, this means going through the system
of equations and identifying the elements of y that are involved in a given equation.

Second, the sparse and dense versions of the various path-following algorithms take
different approaches to solving systems of linear equations. In all cases, the linear algebra
routines in HOMPACK90 were selected for speed not reliability, which means that they
can and do fail for certain problems. Our experience has been that the sparse linear solver
is more likely to fail than the dense linear solver; Section 5.6 gives more details and some
solutions.

6ADIFOR can be obtained at http://www-unix.mcs.anl.gov/autodiff/ADIFOR/.
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3.3 Initial Condition

The final input to HOMPACK90 is an initial condition in the form of a solution to the
system of equations for the particular parameterization associated with λ = 0. In some
cases, if the parameterization associated with λ = 0 is trivial, the solution can be derived
analytically. A good example is the case of a zero discount rate that turns the dynamic
stochastic game into a set of disjoint static games played out in every state. Another example
is a particular parameterization that makes movements through state space unidirectional
and thus allows the game to be solved by backwards induction (see, e.g., Judd, Schmedders
& Yeltekin 2002).

More generally, a solution for a particular parameterization can be computed numerically
using a number of approaches such as Gaussian methods including (but not limited to) the
Pakes & McGuire (1994) algorithm, other nonlinear solvers (see Ferris, Judd & Schmedders
2007), and artificial homotopies (see Section 6.1). Finally, one can use a solution obtained
by tracing out a path along a different parameter as an initial condition (see Section 5.1 for
an example of path-following along several parameters).

4 Example 1: The Learning-by-Doing Model

We begin with the learning-by-doing model of Besanko et al. (2007) because it is particu-
larly well-suited for the homotopy method; as explained above, the dynamic programming
problem that a firm has to solve leads to a system of equations that satisfies the smoothness
requirement.

4.1 Model

The description of the model is abridged. Please refer to Besanko et al. (2007) for economic
motivation and greater detail on some derivations.

Firms and states. We consider a discrete-time, infinite-horizon stochastic game. Firm
n ∈ {1, 2} is described by its stock of know-how (or experience) en ∈ {1, . . . , M}. At
any point in time, the industry is completely characterized by a vector of firms’ states
e = (e1, e2) ∈ {1, . . . , M}2. We refer to e as the state of the industry. We use e[2] to denote
the vector (e2, e1) found by interchanging the stocks of know-how of firms 1 and 2.

Each period firms observe the state of the industry and set prices for their respective
goods. By making a sale, a firm can add to its stock of know-how. At the same time, the
firm faces the possibility of organizational forgetting, leading to the law of motion

e′n = en + qn − fn,

where e′n and en are firm n’s stock of know-how in the subsequent and current period,

13



respectively, the random variable qn ∈ {0, 1} indicates whether firm n makes a sale, and the
random variable fn ∈ {0, 1} represents organizational forgetting. If qn = 1, the firm gains
a unit of know-how through learning-by-doing, while it loses a unit of know-how through
organizational forgetting if fn = 1.

Learning-by-doing. Firm n’s marginal cost of production c(en) depends on its stock of
know-how en through a learning curve with a progress ratio of ρ ∈ (0, 1]:

c(en) =

{
κeη

n if 1 ≤ en < m,

κmη if m ≤ en ≤ M,

where η = log2 ρ. Marginal cost decreases by 100(1− ρ) percent as the stock of know-how
doubles, so that a lower progress ratio implies a steeper learning curve. The marginal cost
of production at the top of the learning curve, c(1), is κ > 0 and m represents the stock of
know-how at which a firm reaches the bottom of its learning curve.

Organizational forgetting. We let

∆(en) = Pr(fn = 1) = 1− (1− δ)en

denote the probability that firm n loses a unit of know-how through organizational forget-
ting. We refer to δ ∈ [0, 1] as the forgetting rate. If δ > 0, then ∆(en) is increasing and
concave in en; δ = 0 corresponds to the absence of organizational forgetting.

Demand. Each period one (non-strategic) buyer enters the market and purchases a unit
of the good from one of the two firms. The net utility of good n to a buyer is v − pn + εn,
where pn is the price, v is the fixed component of utility, and εn is a stochastic component
that captures the buyer’s idiosyncratic preference for good n. The buyer’s idiosyncratic
preferences (ε1, ε2) are unobservable to firms and are independently and identically type
1 extreme value distributed. The buyer purchases the good that gives it the highest net
utility, so the probability that firm n makes a sale is given by

Dn(p) = Pr(qn = 1) =
exp(v − pn)∑2

k=1 exp(v − pk)
=

1
1 + exp(pn − p−n)

,

where p = (p1, p2) is the vector of prices and we adopt the convention of using p−n to
denote the price charged by the other firm.

State-to-state transitions. From one period to the next, a firm’s stock of know-how
moves up or down or remains constant depending on realized demand qn ∈ {0, 1} and
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organizational forgetting fn ∈ {0, 1}. The transition probabilities are

Pr(e′n|en, qn) =

{
1−∆(en) if e′n = en + qn,

∆(en) if e′n = en + qn − 1,

where, at the upper and lower boundaries of the state space, we modify the transition
probabilities to be Pr(M |M, 1) = 1 and Pr(1|1, 0) = 1, respectively.

Bellman equation and first-order condition. Define Vn(e) to be the expected net
present value of firm n’s cash flows if the industry is currently in state e. The value
function Vn : {1, . . . , M}2 → R is implicitly defined by the Bellman equation

Vn(e) = max
pn

Dn(pn, p−n (e))(pn − c(en)) + β
2∑

k=1

Dk(pn, p−n(e))V nk(e), (8)

where p−n(e) is the price charged by the other firm in state e, β ∈ (0, 1) is the discount
factor, and V nk(e) is the expectation of firm n’s value function conditional on the buyer
purchasing the good from firm k ∈ {1, 2} in state e as given by

V n1(e) =
e1+1∑

e′1=e1

e2∑

e′2=e2−1

Vn(e′)Pr(e′1|e1, 1)Pr(e′2|e2, 0),

V n2(e) =
e1∑

e′1=e1−1

e2+1∑

e′2=e2

Vn(e′)Pr(e′1|e1, 0)Pr(e′2|e2, 1).

The policy function pn : {1, . . . ,M}2 → R specifies the price pn(e) that firm n sets in
state e. To determine it, let hn(·) be the maximand in the Bellman equation (8). Differen-
tiating hn(·) with respect to pn we obtain the first-order condition

0 = Dn(pn, p−n(e))
(
1− (pn − c(en))− βV nn(e) + hn(·)) .

It is straightforward to show that the pricing decision pn(e) is uniquely determined by the
solution to the first-order condition.

Equilibrium. We focus attention on symmetric Markov-perfect equilibria. In a symmet-
ric equilibrium the pricing decision taken by firm 2 in state e is identical to the pricing
decision taken by firm 1 in state e[2], i.e., p2(e) = p1(e[2]), and similarly for the value func-
tion. It therefore suffices to determine the value and policy functions of firm 1, and we
define V (e) = V1(e) and p(e) = p1(e) for each state e. To simplify the notation we further
define V k(e) = V 1k(e) to be the conditional expectation of firm 1’s value function and
Dk(e) = Dk(p(e), p(e[2])) to be probability that the buyer purchases from firm k ∈ {1, 2}
in state e.
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parameter M m β

value 30 15 1
1.05 = 0.9524

Table 2: Parameter values. Learning-by-doing model.

Parameterization. We focus on the ways in which learning-by-doing and organizational
forgetting affect pricing behavior, and the industry dynamics implied by that behavior.
Accordingly, we explore the full range of values for the progress ratio ρ and the forgetting
rate δ while holding fixed the remaining parameters at the values shown in Table 2.

Besanko et al. (2007) prove that the model has a unique equilibrium if δ = 0 or δ = 1. It
is therefore natural to use the homotopy method to trace out the equilibrium correspondence
by varying δ from 0 to 1. We thus make the forgetting rate δ a function of the homotopy
parameter λ and set

δ(λ) = δstart + λ
(
δend − δstart

)
.

In particular, if δstart = 0 and δend = 1, then the homotopy method traces out the equilib-
rium correspondence from δ(0) = 0 to δ(1) = 1. To explore the role of learning-by-doing,
we repeat this procedure for 100 evenly spaced values of ρ ∈ [0.01, 1].

System of equations. We are now ready to describe the equilibrium as a system of
equations in the form given by (1). Define the vector of unknown values and policies in
equilibrium as

x = [V (1, 1) , V (2, 1) , . . . , V (M, 1) , V (1, 2), . . . , V (M, M), p(1, 1), . . . , p(M, M)]′ .

The Bellman equation and first-order condition in state e are

H1
e (x,λ) = −V (e) + D1(e) (p(e)− c(e1)) + β

2∑

k=1

Dk(e)V k(e) = 0, (9)

H2
e (x,λ) = 1− (1−D1(e)) (p(e)− c(e1))− βV 1(e) + β

2∑

k=1

Dk(e)V k(e) = 0. (10)

The collection of equations (9) and (10) for all states e ∈ {1, . . . , M}2 can be written more
compactly as

H(x,λ) =




H1
(1,1) (x, λ)

H1
(2,1) (x, λ)

...
H2

(M,M) (x, λ)




= 0, (11)

where 0 ∈ R2M2
is a vector of zeros. Any solution to this system of 2M2 equations in 2M2

unknowns x ∈ R2M2
is a symmetric equilibrium in pure strategies (for a given value of
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λ ∈ [0, 1]).7

Code. A set of code that allows the user to compute equilibria of the learning-by-doing
model using the homotopy method is available on the authors’ homepages. It includes
(i) Matlab code that implements the Pakes & McGuire (1994) algorithm that we use to
compute a starting point for the homotopy algorithm (see Besanko et al. (2007) for a detailed
description); (ii) Fortran90 code that includes HOMPACK90 and the implementation of the
learning-by-doing model; and (iii) additional Matlab code that analyzes the output of the
homotopy algorithm. More detailed information is included within the code itself.

4.2 Equilibrium Correspondence
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Figure 4: Number of equilibria. Learning-by-doing model.

Figure 4 shows the number of equilibria as a function of the progress ratio ρ and the for-
getting rate δ. Darker shades indicate more equilibria. The subset of parameterizations that
yield three equilibria is fairly large, and we have found up to nine equilibria for some values
of ρ and δ. It is not a coincidence that the number of equilibria at each parameterization
is odd; see the discussion in Besanko et al. (2007).

7A slightly modified version of Proposition 2 in Doraszelski & Satterthwaite (2007) establishes that such
an equilibrium always exists.
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Figure 5: Initial firm value V (1, 1). Learning-by-doing model.

Multiplicity is especially pervasive for progress ratios and forgetting rates that are
broadly consistent with empirical studies of learning-by-doing and organizational forget-
ting (ρ ≥ 0.7 and δ ≤ 0.1). Moreover, Besanko et al. (2007) show that these multiple
equilibria describe a rich array of pricing behaviors that are economically meaningful and
that are quite different in terms of implied industry structure and dynamics. Consequently,
in addition to the parameterization, the equilibrium itself is an important determinant of
pricing behavior and industry dynamics. This reinforces our earlier point that it is impor-
tant to explore the equilibrium correspondence of structurally estimated models in order to
determine whether multiplicity exists in the empirically relevant subset of the parameter
space.

Recall that we made the forgetting rate δ a function of the homotopy parameter λ

and applied the homotopy method repeatedly for a series of values for the progress ratio
ρ. To visualize the set of equilibria as a correspondence of δ for a specific value of ρ, we
need a way to summarize each equilibrium as a single number. The value function in the
initial state (1, 1) is the value of a firm at the onset of the industry; V (1, 1) is thus an
economically meaningful summary of an equilibrium. As we are also interested in long-run
industry concentration, we further compute the expected Herfindahl index. We proceed
in two steps. First, we use the policy function to construct the probability distribution
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Figure 6: Limiting expected Herfindahl index HHI∞. Learning-by-doing model.

over next period’s state e′ given this period’s state e and from it we compute the limiting
(or ergodic) distribution over states, µ∞. Second, we use this distribution to compute the
expected Herfindahl index

HHI∞ =
∑

e∈{1,...,M}2

[
(D1(e))2 + (D2(e))2

]
µ∞(e).

Asymmetric industry structures arise and persist to the extent that HHI∞ > 0.5.
Figures 5 and 6 visualize the equilibrium correspondence either in terms of V (1, 1) or in

terms of HHI∞ for a variety of different progress ratios ρ. As mentioned above, Besanko
et al. (2007) prove that the model has unique equilibria at δ = 0 and δ = 1. Hence, if the
system of equations that characterizes the equilibria is regular, then there must be a path
connecting them. We observe multiple equilibria whenever this path bends back on itself.
Moreover, we have been able to identify one or more loops that are disjoint from this path.

In some places the various solution paths appear to intersect each other. A case in point
is the loop in the upper left panel of Figure 6 that appears to twice intersect the path from
δ = 0 and δ = 1. While such an intersection seemingly resembles the branching point (G)
in Figure 3, the fact that two equilibria give rise to the same expected Herfindahl index
does not mean that the equilibria themselves are the same. We have indeed verified that
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the various solution paths do not intersect. Thus, the intersections in Figures 5 and 6 do
not violate the regularity requirement.

While we have been able to identify some loops, we note that other loops may exist
because, in order to trace out a loop, we must somehow compute at least one equilibrium
on the loop. Unfortunately, there is no sure fire of way of doing so. Figures 4–6 are therefore
not necessarily a complete mapping of the equilibria.

4.3 Performance

HOMPACK90 offers several different path-following algorithms and storage formats for the
Jacobian of the system of equations. Moreover, the user can compute the Jacobian either
numerically or analytically. Below we present the results of a series of experiments that are
designed to highlight the implications of these choices for the performance of HOMPACK90.
We have traced out the main path of the equilibrium correspondence from δ = 0 to δ = 1
for a progress ratio of ρ = 0.75 (as shown the upper right panel of Figure 6). We set the
precision in HOMPACK90 to 10−10 (see Section 5.5 for a discussion). We use ADIFOR
to analytically compute the Jacobian. All experiments are conducted on a Linux machine
with a 64-bit 1GHz AMD Athlon CPU and 4GB of RAM.

Path-following algorithms. A major issue is the trade-off between robustness and com-
putation time. Computation time is the product of the number of steps it takes to trace out
the entire path and the average time per step. This involves yet another trade off because
these two determinants of computation time are affected in opposite ways by the size of the
step that the homotopy algorithm takes from one point to the next. Optimally adjusting
the step size is a highly non-trivial problem and the algorithm that does this is a major
part of HOMPACK90.

Turning to the choice of a specific path-following algorithm, Watson et al. (1997) de-
scribe the normal flow algorithm as the baseline offering a reasonable compromise between
robustness and computation time. The ODE based algorithm is described as the most
robust but slowest and the augmented Jacobian algorithm as the least robust but fastest.

Table 3 shows that the ODE based algorithm is not always slower than the other path-
following algorithms. On the contrary, in our experiments the ODE based algorithm turns
out to be fastest: While it takes more time to complete each step, it takes fewer steps to
complete the path.

To further investigate this somewhat unexpected finding, in Table 4 we contrast the
performance of the different path-following algorithms on separate portions of the solution
path. The ODE based algorithm is faster on the “simple” segment of the path (δ ∈ (0.03, 1])
without multiplicity and much curvature (so that the unknowns change gradually with the
homotopy parameter) but slower on the “complicated” segment of the path (δ ∈ [0, 0.03]).
The reason may lie in the different step size adjustment procedures of the different path-
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algorithm / Jacobian time #steps time/step
(h:m) (s)

ODE based / dense, ana. 22:50 1596 51.5
normal flow / dense, ana. 28:59 2197 47.5

aug. Jacobian / dense, ana. 25:25 2250 40.7
ODE based / sparse, ana. 1:28 1579 03.4
normal flow / sparse, ana. 1:44 2197 02.9

aug. Jacobian / sparse, ana. 2:43 2195 04.5

Table 3: Performance. Path-following algorithms and dense vs. sparse Jacobian. Learning-
by-doing model.

“complicated” (δ ∈ [0, 0.03]) “simple” (δ ∈ (0.03, 1])
algorithm / Jacobian time #steps time/step time #steps time/step

(h:m) (s) (h:m) (s)
ODE based / sparse, ana. 0:31 507 3.7 0:57 1072 3.2
normal flow / sparse, ana. 0:18 292 3.9 1:26 1905 2.8

aug. Jacobian / sparse, ana. 0:26 290 5.4 2:17 1905 4.3

Table 4: Performance. “Complicated” vs. “simple” segment of path. Learning-by-doing
model

following algorithms. Indeed, as a closer analysis of the output of HOMPACK90 reveals,
the ODE based algorithm takes much larger (and thus fewer) steps than the other path-
following algorithms on the “simple ” segment of the path. In contrast, on the “complicated”
segment of the path, the ODE based algorithm takes much smaller (and thus more) steps
than the other path-following algorithms.8

Returning to Table 3, the comparison between the normal flow and augmented Jacobian
algorithms is not clear-cut either. The dense augmented Jacobian algorithm takes less time
for each step but requires more steps, thereby leading to an overall decrease of computation
time. In contrast, the sparse augmented Jacobian algorithm takes more time for each step
but requires fewer steps, thereby leading to an overall increase in computation time. While
the sparse augmented Jacobian algorithm takes only two fewer steps than the sparse normal
flow algorithm in Table 3, Borkovsky, Doraszelski & Satterthwaite (2007) have found that
in some applications both the dense and the sparse versions of the augmented Jacobian
algorithm sometimes take up to 20 percent fewer steps than their normal flow counterparts.

Jacobian. As is obvious from Table 3, the dense-Jacobian algorithms require considerably
more computation time. A closer analysis reveals that the additional computation time

8Further investigation revealed that the normal flow and augmented Jacobian algorithms indeed limit
the maximum step size (as set in the input variable SSPAR(5)). We kept it at the default value to make for
a more fair comparison between the different path-following algorithms. Increasing the maximum step size
also appears to increase the likelihood that the homotopy algorithm strays from the solution path.
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algorithm / Jacobian time #steps time/step
(h:m) (s)

ODE based / sparse, ana. 1:28 1,579 3.4
ODE based / sparse, num. >6:27 >10,000 2.3
normal flow / sparse, ana. 1:44 2,197 2.9
normal flow / sparse, num. 1:22 2,197 2.3

Table 5: Performance. Path-following algorithms and numerical vs. analytical Jacobian.
Learning-by-doing model.

required by the dense-Jacobian algorithms is spent performing linear algebra operations on
the Jacobians. Overall, this makes an overwhelmingly strong case for using sparse Jacobians.

With regard to the dense-Jacobian algorithms, we have found that the choice between a
numerical, hand-coded analytical, or ADIFOR-generated analytical Jacobian has a negligi-
ble effect on the time per step. This is because the time required to compute the Jacobian
is dwarfed by the time required to solve the system of linear equations that the algorithm
must solve to compute the next step along the path.

Turning to the sparse-Jacobian algorithms, precision is a key advantage of analytically
computed Jacobians. Table 5 shows that, while the ODE based algorithm succeeds in
completing the solution path with an analytical Jacobian, it fails to do so with a numerical
Jacobian; in particular, it spends much time tracing out a short segment of the path and
stops at δ = 0.096 where it reaches the maximum number of steps.

On the other hand, the normal flow algorithm requires the same number of steps to
complete the solution path regardless of whether an analytical or numerical Jacobian is
used. Interestingly, the path is computed more quickly when a numerical Jacobian is used
(presumably because computing the numerical Jacobian requires less time than computing
the analytical Jacobian due to the column-by-column approach that ADIFOR requires to
assemble to Jacobian). Thus, it appears that the lower precision of the numerical Jacobian
is problematic for the ODE based algorithm but not for the other path-following algorithms.
The likely reason is that, in contrast to the other two path-following algorithms, the ODE
based algorithm uses the Jacobian not just in corrector but also in the predictor phase.

Overall, our results make an overwhelmingly strong case for using sparse Jacobians.
There are also good reasons to prefer analytical over numerical Jacobians, especially be-
cause ADIFOR makes the process of computing analytical Jacobians very easy. Finally, we
conclude that performance is at least partly problem-specific. We therefore recommend con-
ducting experiments on the particular application at hand. The gains from experimentation
can be substantial, and experimentation is virtually costless once the system of equations
and the Jacobian have been coded.
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5 Example 2: The Quality Ladder Model

We next consider the quality ladder model of Pakes & McGuire (1994). The quality ladder
model presents a complication that stems from the non-negativity constraint on investment.
The problem that a firm has to solve is formulated using a complementary slackness con-
dition, a combination of equalities and inequalities, rather than a first-order condition, an
equation, as in the learning-by-doing model in Section 4. However, the homotopy method
operates on a system of equations. We show how to resolve this problem by reformulating
the complementary slackness condition as a system of equations.

5.1 Model

The description of the model is abridged; please see Pakes & McGuire (1994) for details. To
simplify the exposition, we restrict attention to a duopoly without entry and exit in what
follows.9

Firms and states. The state of firm n ∈ {1, 2} is ωn ∈ {1, . . . , M} and reflects its product
quality. The vector of firms’ states is ω = (ω1, ω2) ∈ {1, . . . , M}2 and we use ω[2] to denote
the vector (ω2, ω1). Each period firms first compete in the product market and then make
investment decisions. The state in the next period is determined by the stochastic outcomes
of these investment decisions and an industry-wide depreciation shock which stems from
an increase in the quality of an outside alternative. In particular, firm n’s state evolves
according to the law of motion

ω′n = ωn + τn − η,

where τn ∈ {0, 1} is a random variable governed by firm n’s investment xn ≥ 0 and η ∈ {0, 1}
is an industry-wide depreciation shock. If τn = 1, the investment is successful and the
quality of firm n increases by one level. The probability of success is αxn

1+αxn
, where α > 0 is

a measure of the effectiveness of investment. If η = 1, the industry is hit by a depreciation
shock and the qualities of all firms decrease by one level; this happens with probability
δ ∈ [0, 1].

Below we first describe the static model of product market competition and then turn
to investment dynamics.

9It is straightforward to extend the quality ladder model to allow for entry and exit. The key is to do
this in a way that guarantees the existence of an equilibrium; see Doraszelski & Satterthwaite (2007) for
details. The Online Appendix of Besanko et al. (2007) contains a formal derivation of the learning-by-doing
model with entry and exit. Setup costs and scrap values are drawn from triangular distributions that yield
cumulative distribution functions that are once but not twice continuously differentiable, yet Besanko et al.
(2007) did not encounter a problem. If a problem is encountered in another application, we suggest using
a Beta(k, k) distribution with k ≥ 3 to ensure that the system of equations is at least twice continuously
differentiable.
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Product market competition. The product market is characterized by price compe-
tition with vertically differentiated products. There is a continuum of consumers. Each
consumer purchases at most one unit of one product. The utility a consumer derives from
purchasing product n is g(ωn)− pn + εn, where

g(ωn) =

{
ωn if 1 ≤ ωn ≤ ω∗,

ω∗ + ln (2− exp (ω∗ − ωn)) if ω∗ < ωn ≤ M

maps the quality of the product into the consumer’s valuation for it, pn is the price, and
εn represents the consumer’s idiosyncratic preference for product n. There is an outside
alternative, product 0, which has utility ε0. Assuming that the idiosyncratic preferences
(ε0, ε1, ε2) are independently and identically type 1 extreme value distributed, the demand
for firm n’s product is

Dn(p; ω) = m
exp (g(ωn)− pn)

1 +
∑2

j=1 exp (g(ωj)− pj)
,

where p = (p1, p2) is the vector of prices and m > 0 is the size of the market (the measure
of consumers).

Firm n chooses the price pn of product n to maximize profits. Hence, firm n’s profits in
state ω are

πn(ω) = max
pn

Dn(pn, p−n(ω);ω) (pn − c) ,

where p−n(ω) is the price charged by the other firm and c ≥ 0 is the marginal cost of
production. Given a state ω, there exists a unique Nash equilibrium of the product mar-
ket game (Caplin & Nalebuff 1991). It is found easily by numerically solving the system
of first-order conditions corresponding to firms’ profit-maximization problem. Note that
the quality ladder model differs from the learning-by-doing model in that product market
competition does not directly affect state-to-state transitions and, hence, πn(ω) can be com-
puted before the Markov-perfect equilibria of the dynamic stochastic game are computed
via the homotopy method. This allows us to treat πn(ω) as a primitive in what follows.

Bellman equation and complementary slackness condition. Define Vn(ω) to be
the expected net present value of firm n’s cash flows if the industry is currently in state ω.
The value function Vn : {1, . . . ,M}2 → R is implicitly defined by the Bellman equation

Vn(ω) = max
xn≥0

πn(ω)− xn + β

(
αxn

1 + αxn
W 1

n(ω) +
1

1 + αxn
W 0

n(ω)
)

, (12)

where β ∈ (0, 1) is the discount factor and W τn
n (ω) is the expectation of firm n’s value

function conditional on an investment success (τn = 1) and failure (τn = 0), respectively, as
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given by

W τn
n (ω) =

∑

η∈{0,1},τ−n∈{0,1}
δη(1− δ)1−η

(
αx−n(ω)

1 + αx−n(ω)

)τ−n
(

1
1 + αx−n(ω)

)1−τ−n

×Vn

(
max {min {ωn + τn − η, M} , 1} ,max {min {ω−n + τ−n − η,M} , 1}

)
,

where x−n(ω) is the investment of the other firm in state ω. Note that the min and max
operators merely enforce the bounds of the state space.

The policy function xn : {1, . . . , M}2 → [0,∞) specifies the investment of firm n in state
ω. Solving the maximization problem on the right-hand side of the Bellman equation (12),
we obtain the complementary slackness condition

− 1 + β
α

(1 + αxn)2
(
W 1

n(ω)−W 0
n(ω)

) ≤ 0,

xn

(
−1 + β

α

(1 + αxn)2
(
W 1

n(ω)−W 0
n(ω)

))
= 0, (13)

xn ≥ 0.

The investment decision xn(ω) is uniquely determined by the solution to complementary
slackness condition. It follows that

xn(ω) = max

{
0,
−1 +

√
βα (W 1

n(ω)−W 0
n(ω))

α

}
(14)

if W 1
n(ω)−W 0

n(ω) ≥ 0 and xn(ω) = 0 otherwise.

Equilibrium. We restrict attention to symmetric Markov-perfect equilibria. In a sym-
metric equilibrium, the investment decision taken by firm 2 in state ω is identical to the
investment decision taken by firm 1 in state ω[2], i.e., x2(ω) = x1(ω[2]), and similarly for
the value functions. It therefore suffices to determine the value and policy functions of firm
1, and we define V (ω) = V1(ω) and x(ω) = x1(ω) for each state ω. Similarly, we define
W τ1(ω) = W τ1

1 (ω) for each state ω.

Parameterization. As explained above, the homotopy algorithm traces out an entire
path of equilibria by varying one or more parameters of interest. We allow α and δ to
vary, while holding the remaining parameters fixed at the values shown in Table 6. The
effectiveness of investment α is a natural parameter to vary because the equilibrium trivially
involves no investment if α = 0. Moreover, this equilibrium is unique. In addition to
α, we allow the rate of depreciation δ to vary because experience suggests that the rate
of depreciation is often a key determinant of industry structure and dynamics (see, e.g.,
Besanko & Doraszelski 2004, Besanko, Doraszelski, Lu & Satterthwaite 2006). Note that
in the quality ladder model the equilibrium may not be unique at either δ = 0 or δ = 1.
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parameter M m c ω∗ β

value 18 5 5 12 0.925

Table 6: Parameter values. Quality ladder model.

Taken together, we make the vector comprising α and δ a function of the homotopy
parameter λ: [

α(λ)
δ(λ)

]
=

[
αstart

δstart

]
+ λ

[
αend − αstart

δend − δstart

]
.

For example, if δstart = 0 and δend = 1 while αstart = αend, then the homotopy algorithm
traces out the equilibrium correspondence from δ(0) = 0 to δ(1) = 1, holding all other
parameter values fixed. Setting different starting and ending values for one or more of these
parameters allows us to explore the set of equilibria by moving through the parameter space
in various directions. In general, given any starting and ending values for the parameter
vector, the homotopy algorithm can trace out an entire path of equilibria by moving along
the line in parameter space that connects the starting and ending values.

System of equations. Due to the non-negativity constraint on investment, we obtained
a complementary slackness condition instead of a first-order condition as in the learning-
by-doing model in Section 4. To apply the homotopy method, we must reformulate the
combination of equalities and inequalities in (13) as equalities. In the next section we
describe one way to do this.

Code. A set of code that allows the user to compute equilibria of the quality ladder model
using the homotopy method is available on the authors’ homepages.

5.2 The Zangwill & Garcia (1981) Reformulation of the Complementary

Slackness Condition

The homotopy method operates on equations. Therefore, a model that includes a comple-
mentary slackness condition, a combination of equalities and inequalities, must be reformu-
lated as a system of equations.

Consider a general complementary slackness condition on a scalar variable x:

A (x) ≤ 0,

B (x) ≤ 0, (15)

A (x) B (x) = 0,

where A (x) and B (x) are functions of x. A complementary slackness condition may arise
from an optimization problem with a non-negativity constraint as in the quality ladder
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model in Section 5.1. It may also arise if a model contains min or max operators. For
example, the equation x = min{a(x), b(x)} is equivalent to

x− a(x) ≤ 0,

x− b(x) ≤ 0,

(x− a(x)) (x− b(x)) = 0.

Note that the equation x = min{a(x), b(x)} has a kink when a(x) = b(x) and hence does
not satisfy the smoothness requirement of the homotopy method.

Zangwill & Garcia (1981) offer a reformulation of the complementary slackness condition
that consists entirely of equations that are continuously differentiable to an arbitrary degree
(see pp. 65–68).10 The idea is to introduce another scalar variable ζ and consider the system
of equations

A (x) + [max {0, ζ}]k = 0, (16)

B (x) + [max {0,−ζ}]k = 0, (17)

where k ∈ N. From equations (16) and (17), it follows that

ζ =





[−A (x)]1/k if A (x) < 0,

−[−B (x)]1/k if B (x) < 0,

0 if A (x) = B (x) = 0.

(18)

Using the fact that max {0,−ζ}max {0, ζ} = 0 and the solution for ζ in equation (18), it is
easy to see that the system of equations (16) and (17) is equivalent to the complementary
slackness condition in (15). Moreover, this system is (k−1) times continuously differentiable
with respect to ζ. Hence, by choosing k large enough, we can satisfy the smoothness
requirement of the homotopy method.

Example: The quality ladder model. An example is helpful in understanding how
the Zangwill & Garcia (1981) reformulation works. Consider the complementary slackness
condition (13) in the quality ladder model in Section 5. Using the fact that we focus on
symmetric equilibria in order to eliminate firm indices and multiplying through by (1 +
αx(ω))2 to simplify the expressions that arise in what follows, the complementary slackness
condition (13) can be restated as

− (1 + αx(ω))2 + βα
(
W 1(ω)−W 0(ω)

) ≤ 0,

x(ω)
(−(1 + αx(ω)2 + βα

(
W 1(ω)−W 0(ω)

))
= 0, (19)

x(ω) ≥ 0.

10As Zangwill & Garcia (1981) is out of print, a more easily accessible source may be Charnes, Garcia &
Lemke (1977).
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Applying the Zangwill & Garcia (1981) reformulation to the complementary slackness con-
dition (19) yields the equations

− (1 + αx(ω))2 + βα
(
W 1(ω)−W 0(ω)

)
+ [max {0, ζ(ω)}]k = 0, (20)

−x(ω) + [max {0,−ζ(ω)}]k = 0. (21)

The terms [max {0, ζ(ω)}]k and [max {0,−ζ(ω)}]k serve as slack variables that ensure that
the inequalities in (13) are satisfied and the fact that [max {0, ζ(ω)}]k [max {0,−ζ(ω)}]k = 0
ensures that the equality in (13) holds.

We can now proceed to define the system of homotopy equations using equations (20)
and (21) along with the Bellman equation

− V (ω) + π1(ω)− x(ω) + β

(
αx(ω)

1 + αx(ω)
W 1(ω) +

1
1 + αx(ω)

W 0(ω)
)

= 0, (22)

where we substitute for W τ1(ω) using the definition

W τ1(ω) =
∑

η∈{0,1},τ2∈{0,1}
δη(1− δ)1−η

(
αx(ω[2])

1 + αx(ω[2])

)τ2 (
1

1 + αx(ω[2])

)1−τ2

×V
(

max {min {ω1 + τ1 − η,M} , 1} , max {min {ω2 + τ2 − η, M} , 1}
)
.

This yields a system of 3M2 equations in the 3M2 unknowns V (1, 1) , . . . , V (M, M), x(1, 1), . . . , x(M,M),
and ζ(1, 1), . . . , ζ(M,M).

Two problems arise: First, because we have added the slack variables, this system of
equations is relatively large with 3M2 equations and unknowns. This leads to increased
memory requirements and computation time. Second, this system of equations yields an
extremely sparse Jacobian. Note that the rows of the Jacobian corresponding to equation
(21) each have only one or two non-zero elements. Also note that each column of the
Jacobian corresponding to a slack variable has only one non-zero element. We have found
that such a Jacobian tends to cause HOMPACK90’s sparse linear equation solver to fail;
this is discussed further in Section 5.6.

We address these problems by solving equation (21) for x(ω) and then substituting
for x(ω) in equations (20) and (22).11 This reduces the system of 3M2 equations in 3M2

unknowns to a system of 2M2 equations in 2M2 unknowns. Moreover, it eliminates the
rows and columns of the Jacobian that included only one or two non-zero elements; thus,
we have eliminated the excessive sparsity that tends to cause HOMPACK90’s sparse linear
equation solver to fail.

To this end, define the vector of unknowns in equilibrium as

x = [V (1, 1) , V (2, 1) , . . . , V (M, 1) , V (1, 2), . . . , V (M, M), ζ(1, 1), . . . , ζ(M,M)]′ .
11We thank Karl Schmedders for suggesting this approach.
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The equations in state ω are

H1
ω (x, λ) = −V (ω) + π1(ω)− x(ω) + β

(
αx(ω)

1 + αx(ω)
W 1(ω) +

1
1 + αx(ω)

W 0(ω)
)

= 0,

(23)

H2
ω (x, λ) = −(1 + αx(ω))2 + βα

(
W 1(ω)−W 0(ω)

)
+ [max {0, ζ(ω)}]k = 0, (24)

where we substitute for W τ1(ω) using the definition

W τ1(ω) =
∑

η∈{0,1},τ2∈{0,1}
δη(1− δ)1−η

(
αx(ω[2])

1 + αx(ω[2])

)τ2 (
1

1 + αx(ω[2])

)1−τ2

(25)

×V
(

max {min {ω1 + τ1 − η,M} , 1} , max {min {ω2 + τ2 − η, M} , 1}
)
,

and for x(ω) using
x(ω) = [max {0,−ζ(ω)}]k , (26)

obtained from equation (21). Note that (23) and (24) are equations that are used to
construct the system of homotopy equations, while (25) and (26) are simply definitional
shorthands for terms that appear in equations (23) and (24). The collection of equations
(23) and (24) for all states ω ∈ {1, . . . , M}2 can be written more compactly as

H (x, λ) =




H1
(1,1) (x, λ)

H1
(2,1) (x, λ)

...
H2

(M,M) (x, λ)




= 0, (27)

where 0 ∈ R2M2
is a vector of zeros. Any solution to this system of 2M2 equations in

2M2 unknowns, x ∈ R2M2
, is a symmetric equilibrium in pure strategies (for a given

value of λ ∈ [0, 1]).12 The equilibrium investment decision x(ω) in state ω is recovered by
substituting the equilibrium slack variable ζ(ω) into definition (26).

In general, our approach of replacing a model variable with a slack variable can be
taken only if one of the equations in the Zangwill & Garcia (1981) formulation admits a
closed-form solution for a model variable (in case of the quality ladder model, we solved
equation (21) for the investment decision x(ω)). This is always the case if a model variable
is constrained to be above/below a constant, as with the non-negativity constraint in the
quality ladder model. However, it is possible that none of the equations in the Zangwill &
Garcia (1981) formulation admits a closed-form solution for a model variable. Suppose, for
example, we impose an upper bound on the sum of firms’ investments in each state, i.e.,
xn (ω) + x−n(ω) ≤ L(ω), in the quality ladder model (say because firms are competing for

12A simplified version of Proposition 3 in Doraszelski & Satterthwaite (2007) establishes that such an
equilibrium always exists.
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a scare resource).13 Then in solving an equation corresponding to (16) or (17) for xn(ω),
one finds that xn(ω) = f(ζn(ω), x−n(ω)) = f(ζn(ω), xn(ω[2])). That is, the closed-form
solution for firm n’s policy in state ω, xn(ω), is a function of its rival’s policy in state ω,
x−n(ω), and thus its own policy in state ω[2], xn(ω[2]). In this case, it is impossible to find
a closed-form solution for xn(ω) as a function of only ζn(ω) and thus it is impossible to
eliminate the model variable xn(ω). On the other hand, in this case, the Jacobian of the
system formulated using the “pure” version of the Zangwill & Garcia (1981) formulation is
no longer as sparse, thereby reducing our motivation for replacing a model variable with a
slack variable in the first place.

5.3 Equilibrium Correspondence
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Figure 7: Transient expected Herfindahl index HHIT at T ∈ {10, 100, 1000} along α with
δ = 0.7. Quality ladder model.

We set k = 2 in the Zangwill & Garcia (1981) formulation of the quality ladder model. It
follows that the system of homotopy equations is continuously differentiable.14 We explore
the equilibrium correspondence by allowing two parameters to vary: the effectiveness of
investment α and the rate of depreciation δ. To visualize the equilibrium correspondence

13See Besanko et al. (2006) for a more concrete example.
14In general, if HOMPACK90 encounters problems when k = 2, we recommend setting k > 2; this ensures

that the system of equations is at least twice continuously differentiable.
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Figure 8: Transient expected Herfindahl index HHIT at T ∈ {10, 100, 1000} along δ with
α = 3. Quality ladder model.

we graph the expected Herfindahl index

HHIT =
∑

ω∈{1,...,M}2

[
(D1(p(ω);ω))2 + (D2(p(ω);ω))2

]
µT (ω),

where µT is the transient distribution over states in period T , starting from state (1, 1)
in period 0. We use a transient distribution rather than the limiting distribution as in
the learning-by-doing model because there may be several closed communicating classes.15

When there are multiple closed communicating classes, one cannot compute a single limiting
distribution; rather, one must compute a separate limiting distribution for each closed
communicating class. So, instead, we compute the transient distribution at various points
in time T ∈ {10, 100, 1000}. The transient distribution accounts for the probability of
reaching any one of the closed communicating classes. In addition, given a discount factor
of β = 0.925 we take a period to be one year; therefore, anything that happens beyond a
certain point in time may be considered economically irrelevant.

We present the results in Figures 7 and 8. The industry concentration, both in the
short- and in the long-run, is affected by α and δ in non-trivial ways. While the homotopy
algorithm computes continuous solution paths, the expected Herfindahl indexes in Figures

15A closed communicating class is a subset of states that the industry never leaves once it has entered it.
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Figure 9: Transient expected Herfindahl index HHI1000 along α and δ. Quality ladder
model.

7 and 8 appears to change almost discontinuously in some places. This happens because the
shape of the transient distribution, and with it the value of the expected Herfindahl index,
changes abruptly as investment in certain states goes to zero. In particular, if investment
in state (1, 1) is zero, then both firms are stuck at the lowest possible quality level. As
soon as x(1, 1) > 0, however, the industry takes off, thereby giving rise to a nontrivial
transient distribution that assigns positive probability to asymmetric industry structures.
For example, with δ = 0.7 investment rises from zero to positive around α = 2.17 to cause
the abrupt change in the expected Herfindahl index in Figure 7; with α = 3 investment
drops from positive to zero around δ = 0.74.

Figure 9 illustrates the ability of the homotopy algorithm to criss-cross the parameter
space. It combines several slices through the equilibrium correspondence to show how the
expected Herfindahl index HHI1000 depends jointly on the effectiveness of investment α

and the rate of depreciation δ.
Despite our best efforts, we have not uncovered any multiple equilibria in the quality

ladder model; this does not necessarily mean that they do not exist.

5.4 Scalability

We use the quality ladder model to assess the scalability of HOMPACK90. We change the
number of quality levels M , and thus the number of equations R = 2M2, and adjust the
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M ω∗ #equations time #steps time/step
(h:m:s) (s)

9 6 162 0:00:15 931 0.02
18 12 648 0:24:27 7608 0.19
27 18 1458 5:08:27 21457 0.86

Table 7: Scalability. Normal flow algorithm with sparse analytic Jacobian. Quality ladder
model.

quality cutoff ω∗ accordingly. We trace out the equilibrium correspondence along α ∈ [0, 15]
with δ = 0.7 held fixed.

The results are presented in Table 7. It appears that the total computation time in-
creases approximately as a third-order polynomial in the number of equations R. It is to be
expected that the time per step increases in the number of equations since solving the sys-
tem of linear equations becomes more burdensome. The rate of increase is approximately
proportional to R

3
2 . More surprisingly, the number of steps increases in the number of

equations. Again the rate of increase is approximately proportional to R
3
2 .

The reason for this latter result is the following. Recall from Section 5.2 that the quality
ladder model exhibits a kink as the investment in a state switches from zero to positive or
vice versa in response to a change in the parameter values (see equation (14)). While the
Zangwill & Garcia (1981) reformulation of the complementary slackness condition smoothes
out this kink, it inevitably does so by introducing additional curvature into the solution
path. This forces the homotopy algorithm to take small steps. Moreover, the larger the
state space, the more kinks there potentially are in the quality ladder model and the more
additional curvature is introduced by the Zangwill & Garcia (1981) reformulation. This
argument implies that the homotopy algorithm should take large steps and proceed quickly
as long as the solution path does not exhibit kinks. Indeed, irrespective of the size of the
state space, the homotopy algorithm takes less than a hundred steps to traverse the segment
along which investment is positive for all states; the rest of the steps are needed to trace
out the segment along which investment in some state switches from zero to positive or vice
versa.

5.5 Troubleshooting

If HOMPACK90 successfully follows a path to its end, it indicates a normal ending (exit
flag 1). The end of the path may be associated with either λ = 1 or λ = 0. The latter case,
in turn, may indicate genuine multiplicity of equilibria (see case B in Figure 2) or that the
homotopy algorithm “turned around” and backtracked along the path until it returned to
the starting point. HOMPACK90 may also fail to follow a path to its end for other reasons.
In the remainder of this section, we detail several types of failures that may occur and give
tips for troubleshooting these problems.
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With any type of failure, it is good practice to first verify that the regularity and
smoothness requirements are satisfied. To check for regularity, we compute the condition
numbers of Jacobians along the path. If the condition numbers increase as the homotopy
algorithm approaches the point of failure, it is very likely due to a violation of the regularity
requirement.16 It may be possible to avoid this type of failure by making a small change in
the parameter values of the model or by relaxing the precision setting so that HOMPACK90
takes larger steps and is thus more likely to “skip over” the singularity.

The homotopy algorithm does not check for smoothness and it is entirely possible that it
would successfully follow a path to its end even if the smoothness requirement were violated.
In general, however, it is advisable to formulate the problem such that the smoothness
requirement is satisfied (see Sections 5.2 and 5.7).

HOMPACK90 may abort if the precision setting is too stringent (exit flags 2 and 6) or
too lax (exit flag 5). In the latter case, the homotopy algorithm takes a step and ends up
too far from the path to be able to return to it; this often happens on segments with high
curvature. The solution is to adjust the precision setting.

HOMPACK90 may reach the maximum number of steps (exit flag 3). While the obvi-
ous solution is to increase the maximum number of steps, it is worth investigating if the
homotopy algorithm proceeds slowly because the precision setting is too stringent. The
tighter the precision setting, the narrower the “band” around the solution path in which
the homotopy algorithm aims to stay and thus the smaller the steps that it takes. Also
recall from Section 4.3 that the numerical Jacobian often lacks the precision that allows the
ODE based algorithm to take long steps and proceed quickly. Finally, in the normal flow
and augmented Jacobian algorithms, the maximum step size (as set in the input variable
SSPAR(5)) can be increased.

If the homotopy algorithm progresses very slowly in the vicinity of the initial condition,
then a useful trick is to allow the homotopy algorithm to instead begin at the parameteriza-
tion originally designated as the end point and proceed “backwards” toward the parameter-
ization originally designated as the starting point. This may alleviate the problem in cases
where it allows the homotopy algorithm to approach the segment of high curvature from a
segment of low curvature. We suspect that this occurs because some of the path-following
algorithms – namely, the normal flow and augmented Jacobian algorithms – predict the
next step on the solution path using several previous steps. A segment of low curvature on
the solution path may therefore provide the homotopy algorithm with “data” on the path
that serves as a good indication of the direction in which to proceed.

If a solution path gets sufficiently close to another, then the homotopy algorithm may
jump from one path to another and, in doing so, may fail to traverse the path in its entirety.
Similarly, the homotopy algorithm may also jump between one or more segments of the same
path. If path jumping is suspected to occur, then it is advisable to tighten the precision

16A matrix is singular if its condition number is infinite. A large condition number signifies that a matrix
is nearly singular, see pp. 67–70 of Judd (1998).

34



setting and/or decrease the maximum step size in order to force the homotopy algorithm
to remain close to the current solution path.

5.6 The Linear Solver

All the path-following algorithms must solve a system of linear equations of the form Az = b

in each step, where the matrix A is constructed from the Jacobian ∂H(y)
∂y (see, e.g., equation

(7) in case of the ODE based algorithm).17 The final and perhaps most troubling reason
that HOMPACK90 may fail to follow a path to its end is a failure of the linear solver (exit
flag 4). This occurs if the Jacobian is (nearly) singular; again it is good practice to verify
that the regularity requirement is satisfied. If this is the case, it is likely that the linear
solver cannot handle the problem at hand.

The dense and sparse algorithms in HOMPACK90 differ not only in the storage format
of the Jacobian but also in the low-level numerical linear algebra routines. In our experi-
ence, the dense linear solver has been relatively robust, while the sparse linear solver has
sometimes failed. The dense algorithms in HOMPACK90 use QR decomposition – a direct
method – to solve linear systems. The sparse algorithms use the iterative generalized min-
imal residual (GMRES) method (Saad & Schultz 1986) coupled with incomplete LU (ILU)
preconditioning. Thus, HOMPACK90 solves

(
Q−1A

)
z =

(
Q−1b

)
, where Q is the ILU

preconditioner of A. Q is chosen to make
(
Q−1A

)
close to diagonal and easy to evaluate.

Both Layne Watson (the principal author of HOMPACK90) and Ken Judd (an authority
on numerical methods in economics) acknowledge that the GMRES method can and does
fail for some problems. There is no guidance as to which problems are susceptible but we
strongly suspect problems with extremely sparse Jacobians. As explained in Section 5.2,
constructing a system of equations for the quality ladder model using the “pure” version of
the Zangwill & Garcia (1981) formulation yields such a sparse Jacobian. Our proposal is to
reduce the size and sparsity of the Jacobian by eliminating variables. Since this proposal
may not be applicable or successful in other applications, we discuss in Section 5.7 a number
of additional reformulations of the complementary slackness conditions.

In addition, we also offer the following suggestions: (i) Reorder the unknowns and/or
equations to change the order of the columns and rows of the Jacobian. (ii) Use the
dense algorithms if the dimension of the problem is less than several hundred equations.
(iii) Increase the limit on the number of GMRES iterations and/or increase the “k” in
GMRES(k) (GMRES(k) is restarted every k iterations until the residual norm is small
enough (Watson et al. 1997)). (iv) Remove the ILU preconditioning and use GMRES by
itself to solve the linear system. (v) Replace the sparse linear solver in HOMPACK90.18

17The Jacobian ∂H(y)
∂y

is a (N × (N + 1)) matrix whereas the linear solver requires a square matrix. All
three path-following algorithms therefore add a row to the Jacobian. This extra row is simply a basis vector
in case the ODE-based and normal flow algorithms and the augmented Jacobian algorithm uses a vector
that is tangent to the solution path.

18We thank Layne Watson for some of these suggestions. We warn the reader that implementing some of
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5.7 Other Reformulations of the Complementary Slackness Condition

The user has considerable freedom in formulating the system of equations that character-
izes the equilibria of a dynamic stochastic game and some formulations work better than
others in some applications. In what follows we present additional reformulations of the
complementary slackness conditions. The additional reformulations of the complementary
slackness conditions are applicable to problems with simple inequality constraints that force
a variable to be above or below a constant.19

First reformulation. Recall that in the quality ladder model the investment decision
is20

x(ω) = max

{
0,
−1 +

√
βα (W 1(ω)−W 0(ω))

α

}

if
(
W 1(ω)−W 0(ω)

) ≥ 0 and x(ω) = 0 otherwise. Taken together, the above can be restated
as

x(ω) =
−1 +

√
max {1, βα (W 1(ω)−W 0(ω))}

α
. (28)

It follows that the complementary slackness condition (19) is equivalent to equation (28).
However, we cannot simply replace the complementary slackness condition (19) with equa-
tion (28) because the max operator in the argument of the square root introduces a kink,
thereby violating the smoothness requirement of the homotopy method. But we can elimi-
nate this kink through a change of variables. To see this, let

ξk(ω) = βα
(
W 1(ω)−W 0(ω)

)− 1, (29)

where k ∈ N is odd.21 This allows us to restate the investment decision as

x(ω) =
−1 +

√
[max {0, ξ(ω)}]k + 1

α
. (30)

Thus we can replace the complementary slackness condition (19) with equations (29) and
(30). By setting k ≥ 3 we ensure that the system of equations is twice continuously
differentiable.

We can further eliminate the model variable x(ω) by using equation (30) to substitute for
it in equations (29) and (22) to construct a system of 2M2 equations in the 2M2 unknowns
V (1, 1) , . . . , V (M, M) and ξ(1, 1), . . . , ξ(M,M).

Besides the quality ladder model, this reformulation of the complementary slackness con-

them requires in-depth knowledge of HOMPACK90.
19More general formulations for simple inequality constraints other than the non-negativity constraint in

the quality ladder model are available from the authors upon request.
20We have eliminated the firm indices because we restrict attention to symmetric equilibria.
21Note if k is odd, then ξ(ω) = (βα(W 1(ω)−W 0(ω))− 1)1/k, which follows from equation (29), is always

well-defined.

36



dition can also be applied in other models of investment wherein investment is constrained
to be above or below a constant and the first-order condition is quadratic.

Second reformulation. Consider an unconstrained version of the quality ladder model.
The investment decision is

θ(ω) =
−1 +

√
βα (W 1(ω)−W 0(ω))

α
(31)

if W 1(ω)−W 0(ω) ≥ 0 whereas otherwise the problem has no solution. We can recover the
investment decision in the constrained version of the model as follows.

x(ω) = max {0, θ(ω)} (32)

Hence, the complementary slackness condition (19) is equivalent to equations (31) and (32).
Unfortunately, the max operator in equation (32) introduces a kink, thereby violating the
smoothness requirement. We address this problem by letting φ(ω)k instead of θ(ω) be the
investment decision in the unconstrained version of the model, where k ∈ N is odd. This
yields the following system of equations:

[φ(ω)]k − −1 +
√

βα (W 1(ω)−W 0(ω))
α

= 0 (33)

x(ω)−max{0, [φ(ω)]k} = 0 (34)

We can also eliminate the model variable x(ω) by using equation (34) to substitute for it
in equations (33) and (22) to construct a system of 2M2 equations in the 2M2 unknowns
V (1, 1) , . . . , V (M, M) and φ(1, 1), . . . , φ(M,M).

In general, this formulation can be used when the first-order condition of the uncon-
strained problem has a solution. Hence, to present this formulation within the context of the
quality ladder model, we have to assume that the investment decision in the unconstrained
version of the model is always well defined. Although we have not proven this, a sufficient
condition is that the value function is nondecreasing in a firm’s state, and this does seem
to be the case for the quality ladder model (and many other applications). Moreover, the
first-order condition of the unconstrained problem must be expressed in a manner that en-
sures that its unique solution is the desired optimum, i.e., the second-order condition must
hold at the unique solution to the chosen formulation of the first-order condition.

6 Artificial and All-Solutions Homotopies

Below we discuss some other uses of the homotopy method. We first introduce the distinc-
tion between natural-parameter homotopies, which trace out an entire path of solutions by
varying a parameter of interest, and artificial homotopies, which obtain a solution for a
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particular parameterization. Then we present all-solutions homotopies that aim to obtain
all solutions to systems of equations with certain properties.

6.1 Artificial Homotopies

While the homotopy method can be used to trace out an entire path of solutions by varying
a parameter of interest, it has another important application, namely obtaining a solution
to a system of equations for a particular parameterization. Consider the system of equations

F (x) = 0 (35)

where F : RN → RN and 0 ∈ RN is a vector of zeros and define

H (x, λ) = λF (x) + (1− λ) (x− a) , (36)

where a ∈ RN is a vector. An artificial homotopy traces out a path from λ = 0, where
the solution to H (x, 0) = 0 is x = a, to λ = 1. As H (x, 1) = F (x), the choice of a does
not matter; as long as it reaches λ = 1, the homotopy algorithm finds a solution to the
system of equations (35). So, if the goal is to solve a dynamic stochastic game for a single
parameterization (e.g., to obtain an initial condition as in Section 3.3), then HOMPACK90
offers the functionality to do so.

An artificial homotopy tends to be more robust than a homotopy that follows a “nat-
ural” parameter of the model. Watson et al. (1997) prove that if F is twice continuously
differentiable and the Jacobian of F has full rank at any solution to the system of equations
(35), then almost all starting points a will result in a path that has finite length and satis-
fies regularity at every point. Thus, the artificial homotopy will succeed in tracing out the
entire path and, therefore, in solving the system of equations (35) with probability one. In
practice, if the homotopy algorithm strays off the solution path to some point

(
x̄, λ̄

)
where

H(λ̄, x̄) 6= 0, then it can change the value of the starting point from a to ā such that

λ̄F (x̄) +
(
1− λ̄

)
(x̄− ā) = 0.

The homotopy algorithm then returns to the task of tracing out a solution path, starting
from point (ā, 0), until it finds a solution to the system of equations (35). Note that in
changing a to ā, the homotopy algorithm simply elects to proceed along a different path,
in particular, one that passes through the point (λ̄, x̄) to which it has strayed.

Devising a globally convergent algorithm for solving dynamic stochastic games is com-
plicated by the fact that, while we can generally guarantee that the system of equations is
twice continuously differentiable, we cannot establish regularity (although, of course, suc-
cessful usage of natural-parameter homotopies suggests that regularity holds for most – if
not all – parameterizations). It remains to be seen how reliable artificial homotopies for
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dynamic stochastic games are, especially in comparison to the Pakes & McGuire (1994)
algorithm and other nonlinear solvers (see Ferris et al. 2007). Moreover, while an artificial
homotopy is extremely robust, it may prove to be less efficient than nonlinear solvers that
are based on Newton’s method.

6.2 All-Solutions Homotopies

The problem of finding all solutions to a system of equations is largely unresolved in the
mathematics literature. Indeed, as already noted, there is no guarantee that the homotopy
method finds all the equilibria of a dynamic stochastic game.

In some cases, it is possible to exploit the structure of the system of equations. For
example, the system of equations that characterizes the Nash equilibria of a finite game is
polynomial (see, e.g., McKelvey & McLennan 1996). For polynomial systems, in turn, there
are methods that are sure to find all solutions. These so-called all-solutions homotopies have
been implemented in the freely-available software package Gambit (McKelvey, McLennan &
Turocy 2006) and used by Bajari, Hong & Ryan (2004) in the context of static games. Judd
& Schmedders (2004) use all-solutions homotopies to construct a computational uniqueness
proof for a class of dynamic stochastic games in which movements through the state space
are unidirectional and the primitives are given by polynomials. We refer the reader to
Chapter 18 of Zangwill & Garcia (1981) for further details on all-solutions homotopies.

While there is little reason to believe that all-solutions homotopies can be extended to
general classes of dynamic stochastic games, we emphasize that both natural-parameter and
artificial homotopies can and have been used to identify multiple solutions. Our experience
suggests that following different parameters (in the case of natural-parameter homotopies)
is often a successful strategy. Wolf & Sanders (1996) provide a number of additional sug-
gestions, including using different starting points a (in the case of artificial homotopies);
using a complex homotopy parameter or multiple real homotopy parameters; and allowing
the homotopy algorithm to proceed beyond λ = 1 in the hope that it will bend back and
find another solution at λ = 1. While none of these suggestions is foolproof, in our view,
striving to find some solutions is at least a first step toward finding all solutions.
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