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Scaling of splay and total rigidity for elastic percolation on the triangular lattice
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The randomly diluted elastic network with central force interactions is simulated on the triangu-
lar lattice using a constraint analysis of cluster displacement vectors. The exponents for the per-
colation of splay and total rigidity are found to be the same, v=1.14+0.1, y=1.6+0.3, and
P=0.46+0.4. The concentration of bonds that are in clusters rigid only with respect to a splay de-
formation is evaluated as a function of bond concentration. The area under the resulting distribu-
tion diminishes with lattice size as -I. ', indicating that splay and total rigidity have the same
threshold, p, =0.64.

I. INTRODUCTION

The modeling of randomly inhomogeneous elastic sys-
tems has attracted much attention, as have its predeces-
sors in related areas, since abrupt changes in elastic, elec-
tromagnetic, rheological, etc., response, hold both
theoretical and practical interest, and these changes
occur at thresholds in the concentration of inhomo-
geneities.

In this paper we study the property of elastic connect-
edness in a triangular lattice composed of randomly occu-
pied bonds which mediate a central force interaction be-
tween adjacent sites. This is easily visualized as a collec-
tion of springs each of which spans the gap between two
adjacent sites of the lattice. Every gap is occupied by a
spring with probability p, and is vacant with probability
1 —p, so the lattice is incomplete unless p =1. In the har-
monic approximation the elastic energy for the system is

0=—,'k g g;, [(u; —u, } r,,]',
(ij )

where the sum is over nearest-neighbor pairs ij, and
g,"= 1 (a bond exists between sites i and j) or 0 (no bond
exists} with respective probabilities p and 1 —p. Also u; is
the displacement of the ith site, and r;1 is the unit vector
from site i to site j. Interest in this model arose when
Feng and Sen' studied its critical properties (for finite k}
and found behavior different from that of the analogous
conductivity problem. More recent investigations have
included simulations, effective-medium theories,
renormalization-group treatments, series expansions,
and mean-field theory. These approaches have yielded
estimates of the critical threshold ' (p„„=0.65), the bulk
modulus exponent' (f= 1.4—2.4), the correlation length
exponent (v=1. 1), and the fractal dimension of the
elastic backbone (o.=1.94). Here we will consider the
case k = 00, so that the springs are to be considered rigid
rods with no bond-angle restoring forces.

Using series expansion techniques Wang and Harris
proposed an intermediate phase between those of disor-
der and total rigidity for the diluted central force model
on a triangular lattice. This proposed splay-rigid phase

lacks stability with respect to compression and shear, but
opposes an application of counter torques. Bonds in this
phase have long range orientational order but no long
range positional order. Wang and Harris found the
threshold of splay rigidity to be ps&

—=0.61+0.02. Subse-
quently, Tremblay, Day, and Tremblay' (TDT) simulat-
ed the same lattice and found no evidence for such a
phase. However, their method involved the use of
boundary conditions (i.e., bus bars) which inhibited the
formation of a splay-rigid phase. "

We present the results of a simulation in which the
boundary conditions are more nearly neutral, favoring
neither splay rigidity nor total rigidity with respect to
one another. An analysis of rigidity propagation is car-
ried out for each realization generated. The method en-
abled us to calculate the critical threshold and the ex-
ponents v, P, and y, associated respectively with the
correlation length, the probability that a bond is in the
infinite cluster, and the mean square number of bonds in
a cluster. Our results probably indicate the absence of
the splay-rigid phase in an infinite triangular lattice or at
least set an upper limit on the difference in thresholds of
the two phases.

Briefly this paper is organized as follows. In Sec. II we
present the method for analyzing rigidity percolation. In
Sec. III we present our results and a discussion of them.

II.THE MODEL, DEFINITIONS, AND ANALYSIS
OF RIGIDITY PROPAGATION

As stated above, we work in the limit k = 00, i.e., the
bonds are infinitely stiff but are freely hinged to other
bonds at the nodes of the lattice. In this limit we may
identify two kinds of elastic clusters, one possessing only
splay rigidity, the other being totally rigid.

First, consider splay rigidity. For this discussion, we
describe each bond b by giving its orientation Ob and the
coordinates rb ——Ixb, ybj of a point on the bond. A
splay-rigid cluster is a set of bonds I b„b2, b3, . . . ), all of
whose relative orientations, (8,. —8.), cannot be changed
by any application of finite forces to the cluster. The dis-
tance between bonds

~
r,.—rj ~

need not be rigid under
finite external forces. For instance, the simplest splay-
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rigid cluster may be found in the elementary parallelo-
gram of the triangular lattice. The parallelogram col-
lapses or folds up when we compress it [Fig. 1(a)], yet it
resists efforts to splay out a pair of opposite sides [Fig.
1(b)j. The opposite sides thus form a splay-rigid cluster,
i.e., a cluster of bonds within which all the relative bond
orientations are fixed. Since the bonds in the splay-rigid
cluster need not touch (see Fig. 1), one sees that this
weaker form of rigidity can propagate without direct con-
nection. Nonetheless splay rigidity obeys the cluster prop-
erty, ' so that two bonds, each splay rigid with respect
to a third bond, are also splay rigid with respect to each
other. Using this property one can uniquely decompose
any collection of bonds into its component clusters with
respect to splay rigidity. Next for finite k consider the
elastic response of such a cluster. Following Day et al.,
and in close analogy with the definition for resistor net-
works, ' one can consider a "two terminal" experiment in
which two distant bonds at positions r, and r2 are rotated
in opposite senses through an angle 8. For this situation,
we can define the backbone as follows. The bond, b, is in
the splay-rigid backbone if it has a neighboring bond, b,
in the splay-rigid cluster, such that 8b —8&&0. Let
nb(r&, r2) denote the number of such bonds. Then the
fractal dimension, dan of the splay-rigid backbone is
defined through

dBQ
nb(rl r2)

I rl r2 I

This relation presumably holds as long as
~
r, —ri

~

is less
than the correlation length for splay rigidity. As in ordi-
nary percolation, one can have dangling ends, which do
not contribute to the backbone. Such dangling ends are
formed by rhombuses that lead to dead ends. Thus d&B is
smaller than the fractal dimension of the entire splay-
rigid cluster.

(a)

(b)

FIG. 1. (a) The parallelogram collapses when we compress it;
it is not totally rigid. (b) The parallelogram resists e8'orts to
splay out its opposite sides. Pairs of opposite sides are in the
same splay-rigid cluster.

Next we consider total rigidity. Here the analogy with
ordinary percolation is less satisfactory. The main prob-
lem is to define totally rigid clusters in such a way that
the rigid backbone is contained within a single totally rig-
id cluster. The obvious definition of total rigidity is as
follows. Two bonds are totally rigid with respect to one
another, if clamping one bond prevents (for k = ~) the
other from having a translational or orientational dis-
placement. This definition clearly obeys the cluster prop-
erty. The definition of Ref. 10 for the totally rigid back-
bone seems to be a plausible one, namely, the backbone
consists of bonds whose springs are compressed or
stretched when the system is compressed at its
boundaries. As is clear from their illustrations, in the in-
terior of the sample there exist chain segments consisting
of more than one bond which are stressed during such a
compression. On the other hand, within the above
definition of total rigidity, bonds in such a chain segment
are certainly not totally rigid with respect to any other
bonds in the backbone, since the chain segment has no
resistance to a transverse stress. Thus, with these
definitions all bonds in the totally rigid backbone are not
in the same totally rigid cluster. As noted previously,
one cannot preserve the cluster property if one defines to-
tal rigidity in terms of sites. For simulations like ours,
this property is essential if we are to decompose the sys-
tem into its component clusters. Accordingly, we adopt
the above definition to define totally rigid cluster, ignor-
ing possible inconsistencies with the definition of the elas-
tic backbone given in Ref. 10.

The simulation consists of randomly populating the
lattice with bonds at successively larger bond concentra-
tions (bonds are added one at a time or in groups). At
each concentration an analysis is made which classifies
the current set of bonds into splay-rigid and totally rigid
clusters. In this procedure it is clearly advantageous to
use cluster data from a previous (lower) concentration to
identify clusters. Cluster size statistics may be generated
from this information. The above process is repeated for
as many realizations as desired.

The method by which one identifies splay and totally
rigid clusters will be described for a fixed set of N bonds
(assumed for simplicity to be connected). In summary,
the method is as follows. In the absence of constraints
there are at most 3N displacement variables, qj, needed
to describe the two possible translations and one rotation
associated with each bond. However, constraints exist
among these variables since each bond is joined to at least
one other, and the problem we address is how to identify
and characterize these constraints. In our procedure the
cluster is reconstructed by sequentially attaching bonds,
starting from an arbitrary seed bond. Correspondingly,
we successively include into a working set the q& associat-
ed with each bond. After the inclusion of a bond, we use
the constraints associated with its connections to others
previously analyzed to eliminate dependent variables.
Thus at each stage of analysis we obtain a complete set of
independent variables q-. Once we have considered all of
the bonds and eliminated the linearly dependent q 's, we
check the effect of each of the remaining q on the motion
of pairs of bonds for the kind of joint displacements asso-
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ciated with splay or total rigidity. Having determined
the splay and totally rigid cluster to which each bond be-
longs, we calculate the cluster size distribution for both
types of rigidity.

Since the technique used here is different from others
used in this class of problems, we give it a full descrip-
tion. We will assume that the set of bonds to be classified
into elastic clusters has already been decomposed into
sets of connected clusters. We therefore consider the
analysis for a connected set of bonds. Since the longitudi-
nal stiffness of an individual bond [k in Eq. (1)] is infinite,
it is clear that, apart from a uniform translation, the dis-
placements of all sites in a cluster can be expressed in
terms of the set of angular displacements [58;} of the
bonds in the cluster, when the displacement of one arbi-
trarily chosen site is taken to be zero. We consider the
limit of small displacements from equilibrium, so that all
coordinates are linear functions of the (58; j. The equi-
librium lattice spacing is taken to be unity. Thus the
problem we consider is how to select from the set ( 58; j a
complete set of independent variables

Q, =58;,Q2 =58, , (3)

58;= g A,,Q, , i =1,2, . . . , k
j=1

(4)

where the coefficients A; were obtained previously in the
construction. In addition, the coordinates, x;, y;, of the
position, r;, of the ith node can also be expressed in terms
of these variables:

in terms of which any 58;, or indeed the displacement of
any node in the cluster can be expressed. To do this we
reconstruct the cluster, starting from an arbitrarily
chosen "initial, " or "seed" bond, by sequentially attach-
ing bonds, so that at any stage of the reconstruction the
bonds form a connected cluster. The displacement of one
site associated with the "seed" bond is taken to be zero.

In general, the reconstruction process proceeds as fol-
lows. Assume that we are at the stage in which k bonds
have been chosen. (We assume that the bonds are num-
bered in the order in which they are chosen in the recon-
struction process. ) At this stage there will be m (with
m & k) independent variables of the type listed in Eq. (3).
We assume that m ~ 0, but if not, the case m =0 can be
considered separately. The angular displacement of any
bond can be expressed in terms of these currently in-
dependent variables as

the cluster consisting of k+1 bonds. Accordingly, con-
sider adding the k +1st bond to this cluster of k bonds.
There are two cases ( A) and (B). In case ( A) the new
bond is attached to a single site in the existing cluster. In
this case, adding the bond introduces no new constraint.
In this case, then, the new set [58}' is given by [58} to-
gether with 58&+,. Also Eqs. (4) and (5) can be updated
in the obvious way with m'=no+1, k'=k+1, and
n'=n + 1. In case (B) the bond connects two sites I and
J which are already sites in the cluster, and therefore are
sites for which Eqs. (5a) and (5b) already exist. We write
equations (which do not yet take account of bond k + 1)
for the positions of these sites as

rJ:ri((—Q})=r',0'~ g R~, QJ, (6a)

rJ = rJ( j Q j ) =rJ"+ 2 Rz, Q, (6b)

where R;~ is the vector with components X; and Y; . If
58&+i is the vector (perpendicular to the plane of the tri-
angular lattice) representing the angular displacement of
bond k + 1, then the constraint introduced by adding this
bond gives rise to the equation

58&+iX(rJ rl )+rj rr =r—j((Q}) rr(j.Q}) (7—)

The right-hand side of this equation is the relative dis-
placement associated with the k + 1st bond calculated in
terms of the independent variables associated with the
system of k bonds. On the left-hand side of this equation
the same quantity is expressed in terms of 58&+,. Equa-
tion (7) is a vector equation which gives rise to two scalar
equations which are each linear in the variables [58; j
and 50&+1. In general, from these two equations we can
always eliminate 58&+ i in terms of the [ Q j's. However,
these two formal equations may or may not be linearly in-
dependent. For instance, if the sites I and J were already
rigidly connected before the k +1st bond was added, the
only constraint now present with k+1 bonds is that
58&+, is equal to the 58 representing the rotation of the
rigid cluster containing sites I and J. In this example
[Q j'= j Q j and Eqs. (4) and (5) can be updated in an ob-
vious way. If the two scalar equations from Eq. (7) are
linearly independent, then it will be possible to solve for
both 58&+ i and for one of the Q's. Let Q„be the variable
so eliminated by the newly introduced constraint:

x, =x,"'~ g X„Q, , i =1,2, . . . , n
j=1

y,. =y,' '+ g Y,.iQ, i =1,2, . . . , n
j=1

(Sa)

(5b)

Q, =g'B„Q;

where the prime on the summation indicates the absence
of the term for which i =r Thus Eq. .(4) yields

where the superscript (0) denotes an equilibrium value
and n is the number of nodes in the cluster at this stage.
Here again, the coefficients X;. and Y;. would have been
obtained in a previous stage of the construction. We now
describe the iteration procedure by which the corre-
sponding quantities (denoted by primes) are obtained for

58, =g' A, , Q, ~ A,„g'B„,Q, , (9)

from which one can deduce the new coefficients A ';. To
do this, it is necessary to renumber the Q's if r&m

This procedure is illustrated in Fig. 2 for the parallelo-
gram shown in Fig. 1. In discussing this cluster we nurn-
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(a)

88)
i L~

ber the sites in increasing order clockwise, starting with
number 1 at the lower left. Bond 1 is fixed to have one
end at the origin: r&

——(0,0), i.e., the displacement of this
end is zero. In terms of the orientational displacement,
58, the other end is at r~=(1, 58, ) [Fig. 2(a)]. Now we

add bond 2 and allow it to have orientational displace-
ment 58z from equilibrium [Fig. (2b)]. There are no con-
straints so that now I Q ] =M„58z. Also at this stage

r) ——(0,0), (loa)

r4 ——(1, M, ), (lob)

r2= —— 582,
2 2

+ —50, (10c)

8e„

Next we add bond 3 and allow it to have orientational
displacement 583 [Fig. 2(c)]. There are still no con-
straints, so that now [Q j =58&, 58z, 583. Now r; for
i =1, 2, 4 are as given in Eqs. (10a)—(10c), but additional-
ly we have

3 &3 &3
r, = —— 58, , + —58z+ 583 (10d)

(c)
88)

P
I

8e,

Finally, we add bond 4. This is shown in Fig. 2(d) where
we note that the ends of bonds l and 4 are not connected.
If we insist that these two ends be connected, we obtain
constraint equations as in Eq. (7). Specifically, the x and

y components of this equation are

2 2 2 2
M4 ——————+ 58z (1 la)

——584—
2 2 2 2

——58,—58, +58, . (1 lb)

8e&
=X

FIG. 2. Here panels (a), (b), (c), and (d) show the independent
angular displacements after, respectively, 1, 2, 3, and 4 bonds
have been attached to form a parallelogram. In panel (d) the
constraint of Eq. (7) has not yet been applied. In panel (e) a
bond has been added which connects sites 2 and 3, making the
overall cluster completely rigid.

These equations are linearly independent in this case and
their solution yields, 584=58z and 58&——58&, so finally for
the full cluster of Fig. 1 we have simply t Q J =58„58z,
and the constraints are 584 ——58z, and 583 ——58, . If anoth-
er bond were placed connecting sites 2 and 3, one would
introduce for it an orientational displacement, 585 [Fig.
2(e)]. The constraint equations would then have the solu-
tions 585 ——58z ——58&. This coordinate describes an
overall rigid rotation of the cluster and indicates that the
whole cluster forms a single "rigid" cluster and, of
course, a single "splay-rigid" cluster.

There are several advantages to this method. One ob-
tains the exact cluster size distribution for each realiza-
tion as well as an unambiguous map of the propagation of
the two types of rigidity through the lattice. This map
may be drawn on a terminal or printed. The method may
be generalized to other lattices, higher dimensions, and
different models of elastic energy. Most of the necessary
operations within a computer program can be vectorized.
This procedure results in a substantial saving of computa-
tional time. Since this approach identifies a minimum set
of variables, it would be a useful starting point for a cal-
culation of the bulk modulus.
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FIG. 3. For each lattice size, I., the abscissa is the occupied-bond concentration p &, the ordinate is the fraction of realizations pz in
which splay rigidity has percolated across the entire lattice (circles), total rigidity has percolated (squares), and splay rigidity has per-
colated but total rigidity has not (triangles).

III. RESULTS AND DISCUSSION

At a particular bond occupation probability, the frac-
tion of realizations in which splay or total rigidity has
traversed the sample results in a pair of cumulative distri-
bution functions. These are plotted in Fig. 3 as are their
differences for lattices of size 12 (11000), 18 (1700), 24
(500), and 36 (1000), where the number of realizations is
given in parentheses. The areas under the peaks (tails put
in by hand) when extrapolated to L = ~ yield the value
of hP =pTR —psR, the difference in the critical thresh-
olds of splay and total rigidity. One can see that the
areas decrease, as do the maxima as already found by

TDT with somewhat smaller data sets than ours. A plot
of 1nhP against lnL is shown in Fig. 4. hP-L with
A, =1.1. In view of this behavior the existence of the
splay-rigid phase is unlikely. If there is a splay-rigid
phase, the area under the L=36 peak gives the upper
bound hP ~0.007+0.002 where the error estimates are
somewhat subjective.

In Fig. 5 we make a log plot of the reduced bond con-
centration

~ pl —p„„~ -L ' " at which total rigidity
has percolated across half of the realizations versus the
log of the lattice size L. We expect this relationship to be
linear with slope —1/v. The graph indicates
v=1.14+0.1, and the best fit to this power law behavior
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FIG. 4. log-log plot of the areas, hP, under the peaks
(graphed with triangles) in Fig. 3 vs L.

FIG. 6. The exponent 4„ for n = —1,0, 1.
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FIG. 5. log-log plot of the occupied bond concentration pL at
which total rigidity has percolated across half of the realizations
vs the lattice size L. Here p, =pL —p„„and we took p„„=0.64.

occurs for p„„=0.64+0.002. This value of p„„super-
cedes previous estimates. We cannot say whether or not A,

and 1/v are distinct exponents.
From the above results it appears that the order pa-

rameters for splay and total rigidity are simultaneously
critical. We also find that their exponents, within error,
are the same. In particular, the fraction of realizations
which are splay rigid but not totally rigid as a function of
p has a peak of diminishing amplitude and width as one
moves to larger lattices. All of the above data indicates
the absence of splay rigidity on the triangular lattice as
found by TDT.

For each realization of the lattice and at each bond
concentration p we calculate (m") =—g m "N /

mN, the kth moment of the cluster size distribution
N . N is the number of clusters per bond with m bonds
where g mN =pNo for bond percolation, where No is
the total number of bonds in the system when p =1. For
a given lattice of size L, finite size scaling gives'"
( m ")—L" 'f ((p —p, )L '~"}. Near the critical point and
for L ~~, f becomes a simple power law, so we obtain
( m ")—

~ p —p, ~

". For L finite this implies that at
the critical point ( m ")-L" '. In analogy with
the ordinary percolation problem' we set x =P
+2y+n (y+P) —=4„v and n:—k —3. This choice of ori-
gin for n puts the intercept of 4 in the rniddle of the data
points. The definition of x allows us to recover the usual
susceptibility, infinite cluster, and gap exponents. A plot
of 4„versus n for n = —1,0, 1 should have a slope of
(y+P)/v and an intercept of (P+2y)/v . From Fig. 6
we find that the slope is 1.8+0.2 and the intercept is
3.2+0. 16. These are combined to yield y/v=1. 4+0.23,
and P/v=0. 4+0.36. If from above we take v= 1.14+0. 1,
then P=0.46+0.4 and y=1.6+0.3. The above slope
and intercept can also be checked against
the hyperscaling relation d v=2P+ y. We obtain
(2P+y)/v=2. 2+0.76, which is satisfied given the large
error bars.

The percolation exponents for rigidity have rather
large errors associated with them. At this point there is
no other prediction for these quantities although the
backbone exponent for total rigidity, Pan, may be
derived from the calculation of Day et al. via

Pan ——v(d —o )=0.07 which is considerably smaller than
P=0.5 calculated here. It is possible that the difference
between the two numbers be attributed to the difference
in technique discussed in TDT and the response by Wang
and Harris. "

A field theoretic formulation of this problem would
offer more insight into the simultaneous criticality of
splay and total rigidity as well as further estimates of the
exponents in this problem.
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