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Abstract
Background: Cotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In
2004–2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton.
Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild
relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering
offers the possibility of containment because of maternal inheritance of transgenes. The complete
chloroplast genome of cotton provides essential information required for genetic engineering. In addition,
the sequence data were used to assess phylogenetic relationships among the major clades of rosids using
cotton and 25 other completely sequenced angiosperm chloroplast genomes.

Results: The complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19
duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct
tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but
lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity
≥ 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct
repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed
sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20,
rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum
likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other
angiosperm chloroplast genomes that were not included in any previous phylogenies.

Conclusion: Cotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct
and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their
hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the
eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the
placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to
further test this relationship.
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Background
The chloroplast is the site of photosynthesis, where light
energy in photons is converted into chemical bond
energy, via redox reactions, including inorganic carbon
fixation at Calvin's cycle, finally yielding energy-rich car-
bohydrate molecules. Therefore, apart from the antennae,
photosystem I and II complexes, which are found in the
thylakoid membrane, the chloroplast contains the entire
enzymatic machinery for carbohydrate biosynthesis in the
stroma. Anabolic pathways such as protein, fatty acid,
vitamin, and pigment biosynthesis take place in the chlo-
roplast as well, indicating the organelle's ability to synthe-
size complex molecules. The chloroplast genome
maintains a highly conserved organization [1,2] with
most land plant genomes composed of a single circular
chromosome with a quadripartite structure that includes
two copies of an inverted repeat (IR) that separate the
large and small single copy regions (LSC and SSC) [3]. The
recent surge of interest in sequencing chloroplast
genomes has provided a plethora of information on the
organization and evolution of these genomes and new
data for reconstructing phylogenetic relationships [2].

Chloroplast genetic engineering offers numerous advan-
tages, including a high-level of transgene expression [4],
multi-gene engineering in a single transformation event
[4-7], transgene containment via maternal inheritance [8-
11] or cytoplasmic male sterility [12], lack of gene silenc-
ing [4,13], position effect due to site specific transgene
integration [14], and pleiotropic effects due to sub-cellu-
lar compartmentalization of transgene products
[13,15,16]. Apart from expressing therapeutic agents,
biopolymers, or transgenes to confer agronomic traits,
plastid genetic engineering has been used to study plastid
biogenesis and function, revealing mechanisms of plastid
DNA replication origins, intron maturases, translation
elements and proteolysis, import of proteins and several
other processes [18]. Despite the potential of chloroplast
genetic engineering, this technology has only recently
been extended to the major crops, including soybean [19],
carrot [20] and cotton [21], via somatic embryogenesis,
achieving transgene expression in non-green plastids [22].
All other previous studies focused on direct organogenesis
by bombardment of leaves containing mature green chlo-
roplasts [22]. Lack of complete chloroplast genome
sequences to provide 100% homologous species-specific
chloroplast transformation vectors, containing suitable
selectable markers and endogenous regulatory elements,
is one of the major limitations to extend this concept to
other useful crops [22,23].

The need for sequencing the cotton plastome is obvious,
when considering its annual retail value of about $120
billion, making it America's most value-added crop. This
is justified by the fact that cotton is the single most impor-

tant textile fiber grown in 90 countries; the US accounts
for 21% of the total world fiber production. In 2004–
2005, US farmers planted 79% of the 5.7-million hectares
of nuclear transgenic cotton. Upland cotton, Gossypium
hirsutum, has the potential to hybridize with G. tomento-
sum, feral populations of G. hirsutum, and G. hirsutum/G.
barbadense [21]. Therefore, geographical restrictions in
planting genetically modified cotton are in place because
of reports of pollen dispersal from transgenic cotton
plants [25]. Chloroplast genetic engineering could mini-
mize transgene escape because of maternal inheritance of
transgenes [8-11]. In addition, other failsafe mechanisms,
including cytoplasmic male sterility could be employed to
contain transgenes [12].

The examination of phylogenetic relationships among
angiosperms has received considerable attention during
the past decade [reviewed in [26]]. Although there is con-
siderable consensus about the circumscription and rela-
tionships among many of the major clades, most
molecular phylogenetic analyses have examined numer-
ous taxa but have relied on only a few gene sequences.
Completely sequenced chloroplast genomes provide a
rich source of nucleotide sequence data that can be used
to address phylogenetic questions. Several recent studies
have attempted to use completely sequenced genomes to
resolve the identification of the basal lineages of flowering
plants [27-29]. Use of many or all of the genes from the
chloroplast genome provides many more characters for
phylogeny reconstruction in comparison with previous
studies that have relied on only a few genes. However, the
limited number of available whole chloroplast genome
sequences can result in misleading estimates of relation-
ship [27,30]. This problem can be overcome as more com-
plete chloroplast genome sequences become available.

In this article, we present the complete sequence of the
chloroplast genome of upland cotton, Gossypium hirsutum.
One goal of this paper is to examine gene content and
gene order, and determine the distribution and location
of repeated sequences. Secondly, the RNA editing sites in
the cotton chloroplast genome are identified and exam-
ined, by comparing the DNA sequences with available
expressed sequence tag (EST) sequences, because RNA
editing plays a major role in several lineages of plants
[31,32]. Lastly, protein-coding sequences from 61 genes
are used to estimate phylogenetic relationships of cotton
with 25 other angiosperms.

Results
Size, gene content, order and organization of the cotton 
chloroplast genome
Cotton complete chloroplast genome is 160,301 bp in
length (Fig. 1), and includes a pair of inverted repeats
25,608 bp long, separated by a small and a large single
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Gene map of the Gossypium hirsutum chloroplast genomeFigure 1
Gene map of the Gossypium hirsutum chloroplast genome. The thick lines indicate the extent of the inverted repeats (IRa and 
IRb), which separate the genome into small (SSC) and large (LSC) single copy regions. Genes on the outside of the map are 
transcribed in the clockwise direction and genes on the inside of the map are transcribed in the counterclockwise direction. 
Numbered lines around the map indicate the location of repeated sequences found in the cotton genome (see Table 1 for 
details). The SSC region is in the reverse orientation relative to tobacco [80]. This does not reflect any differences in gene 
order for cotton but simply reflects the well-known phenomenon that the SSC exists in two orientations in chloroplast 
genomes [84].
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copy region of 20,269 bp and 88,816 bp, respectively.
There are 112 unique genes within the cotton chloroplast
genome and 19 of these are duplicated in the IR, giving a
total of 131 genes (Fig. 1). Furthermore, there are four
ribosomal and 30 distinct tRNA genes; seven of the tRNA
genes and all rRNA genes are duplicated within the IR.
There are 17 intron-containing genes, 15 of which contain
one intron, whereas the remaining two have two introns.
The gene order in the cotton plastid genome is identical to
that of tobacco, but cotton lacks the rpl22 and infA genes.
Overall, genomic content is 37.25% GC and 62.75% AT,
where 56.46% of the genome corresponds to protein cod-
ing genes and 43.54% to non-coding regions, including
introns and intergenic spacers.

Repeat structure
Repeat analysis identified 30 direct and 24 inverted
repeats 30 bp or longer with a sequence identity of at least
90% (Fig. 2 and Table 1). Twenty-three direct and 15
inverted repeats are 30 to 40 bp long, and the longest
direct repeat is 72 bp. Most of the direct repeats are within
intergenic spacer regions, intron sequences and ycf2, an
essential hypothetical chloroplast gene [33]. Interestingly,
a 72 bp-long direct repeat was found in the psaA and psaB
genes, whereas a 34-bp forward repeat was within the
rrn23 gene, and a shorter, 32 bp-long direct repeat was
identified in two serine transfer-RNA(trnS) genes that rec-
ognize different codons; trnS-GCU and trnS-UGA.

RNA editing
Comparison of the nucleotide sequences of protein cod-
ing genes and EST sequences retrieved from GenBank

revealed that rps16, rpl2, rpoC2, rps4 and ycf1 have 100%
sequence identity with their respective ESTs (data not
shown). Eleven non-synonymous nucleotide substitu-
tions, resulting in a total of nine amino acid changes, were
identified within ndhC, rpl23, rpl20, rps3 and clpP com-
pared to respective ESTs, although their sequence identity
was above 98% (Table 2). Surprisingly, there were no syn-
onymous substitutions. All of the five aforementioned
genes experienced one or two nucleotide substitutions,
apart from the protease-encoding clpP, which had five var-
iable sites. Lastly, in all but rpl23, the nucleotide substitu-
tions had an impact on the hydropathy of the amino acid
because they changed the amino acids from aliphatic to
hydrophilic, and vice versa.

Phylogenetic analysis
The data matrix for phylogenetic analyses included 61
protein-coding genes for 28 taxa (Table 3), including 26
angiosperms and two gymnosperm outgroups (Pinus and
Ginkgo). The data set comprised 45,573 nucleotide posi-
tions but when the gaps were excluded there were 39,624
characters. Maximum Parsimony (MP) analyses resulted
in a single, fully resolved tree with a length of 49,957, a
consistency index of 0.46 (excluding uninformative char-
acters) and a retention index of 0.62 (Fig. 3). Bootstrap
analyses indicated that 24 of the 26 nodes were supported
by values ≥ 95% with 19 of these with bootstrap values of
100%. Maximum Likelihood (ML) analysis resulted in a
tree with a –lnL = 311251.33. The ML and MP trees had
identical topologies so only the MP tree is shown in Figure
3.

Several major groups were supported within angiosperms
and these groups are generally in agreement with recent
classifications [26]. The most basal lineage was Amborella
followed by the Nymphaeales. The next branch included
Calycanthus, the sole representative of magnoliids in the
data set. This was followed by a strongly supported clade
of monocots, represented by members of three different
orders (Acorales, Asparagales, and Poales). The monocots
were then sister to the eudicots with the Ranunculales
forming the earliest diverging eudicot clade. Within the
core eudicots there were two major clades, one including
the rosids and the second including the Caryophyllales
sister to asterids. Within the rosid clade there were two
major groups, the eurosids II and a group that included
the Myrtales sister to the eurosids I. Gossypium in the Mal-
vales was sister to Arabidopsis in the Brassicales.

Discussion
Implications for integration of transgenes
We have recently demonstrated stable transformation of
the cotton plastid genome and maternal inheritance of
transgenes via somatic embryogenesis [21]. In contrast to
previous reports on integrating foreign genes in tomato

Histogram showing the number of repeated sequences ≥ 30 bp long with a sequence identity ≥ 90% in the cotton chloro-plast genomeFigure 2
Histogram showing the number of repeated sequences ≥ 30 
bp long with a sequence identity ≥ 90% in the cotton chloro-
plast genome.
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and potato chloroplast genomes using tobacco flanking
sequences that do not have 100% sequence identity
[24,34,35], the cotton plastid transformation vector was
constructed using the PCR-amplified native cotton 16S/
trnI-trnA/23S sequence. However, regulatory sequences
used in the cotton plastid transformation were derived
from tobacco or other heterologous sequences. With the
availability of the entire cotton chloroplast genome
sequence, it should now be possible to utilize endogenous
regulatory sequences. Species-specific vectors should be
effective for plastid transformation, especially in recalci-
trant plants, because of transgene integration using flank-

ing sequences with 100% sequence identity and
endogenous promoters, 5' & 3'untranslated regions,
thereby enhancing transcription and translation of trans-
genes. Also, the complete chloroplast genome provides
the option of transgene integration into transcriptionally
silent, active or read-through spacer regions for optimal
transgene integration.

Thus far, transgenes conferring several useful agronomic
traits, including insect [4,36,37], herbicide [8,38], and
disease resistance [39], drought [13] and salt tolerance
[20], phytoremediation [5], as well as cytoplasmic male

Parsimony tree based on 61 chloroplast protein-coding genesFigure 3
Parsimony tree based on 61 chloroplast protein-coding genes. The tree has a length of 49,957, a consistency index of 0.46 
(excluding uninformative characters) and a retention index of 0.6. Numbers above node indicate number of changes along each 
branch and numbers below nodes are bootstrap support values. Taxa in red are those which have not appeared in any previous 
phylogenetic studies using 61 genes from complete chloroplast genome sequences. Ordinal and higher level group names fol-
low APG II [85]. The maximum likelihood tree has the same topology but is not shown.
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Table 1: Location of identified repeats in the cotton plastid genome. Table includes repeats at least 30 bp in size, with a sequence 
identity greater than or equal to 90%. IGS = Intergenic spacer. See Fig. 1 for location of repeats on the gene map.

Repeat Number Size (bp) Location

1 30 IGS
2 30 IGS
3 30 rpoC1 intron, rpl16 intron
4 30 ycf2
5 31 IGS
6 32 psbI (5 bp) – IGS, IGS
7 32 IGS
8 32 IGS
9 32 IGS (4 bp) – trnS-GCU, IGS (4 bp) – trnS-UGA
10 32 IGS
11 34 ycf2
12 34 IGS
13 34 rrn23 exon
14 34 ycf2
15 34 ycf2
16 34 ycf2
17 35 ycf3 intron
18 36 ycf3 intron, IGS
19 38 ndhA intron, rps12_3end intron
20 38 ycf2
21 38 ycf2
22 38 ycf2
23 40 IGS
24 43 IGS
25 47 ycf2
26 52 ycf2
27 58 IGS
28 64 ycf2
29 64 ycf2
30 72 psaA exon, psaB exon
31 30 IGS (2 bp) – trnS-GCU, trnS-GGA
32 30 IGS
33 30 IGS
34 31 IGS
35 34 IGS
36 34 ycf2
37 34 ycf2
38 34 IGS
39 34 IGS
40 34 ycf2
41 34 ycf2
42 36 ycf3 intron, IGS
43 38 IGS, ndhA intron
44 38 ycf2
45 38 ycf2
46 41 ycf3 intron, ndhA intron
47 41 IGS
48 43 IGS
49 43 IGS
50 48 IGS
51 52 ycf2
52 52 ycf2
53 64 ycf2
54 64 ycf2
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sterility [12], have been stably integrated and expressed,
via the tobacco chloroplast genome. Using the chloroplast

as a bioreactor, vaccine antigens [15,40-42], human ther-
apeutic proteins [17,43-45], industrial enzymes [46] and

Table 2: Differences observed by comparison of cotton chloroplast genome sequences with EST sequences obtained by BLAST 
searches of GenBank.

Gene Gene size (bp) Sequence ana-
lyzeda

Number of 
variable sites

Variation type Position(s)b Amino acid 
change

clpP 591 228–537 5 A-G 523 M-A
T-C 524
T-A 528 I-M
T-G 531 G-S
G-A 532

ndhC 363 76–363 1 T-C 323 L-S
rpl20 354 1–354 2 A-G 263 K-R

C-U 308 S-L
rpl23 282 85–282 1 C-U 89 S-L
rps3 657 274–657 2 T-G 275 L-R

A-C 302 K-T

aSequence analyzed coordinates based on the gene sequence, considering the first base of the initiation codon as bp 1. bVariable position is given in 
reference to the first base of the initiation codon of the gene sequence.

Table 3: Taxa included phylogenetic analyses with GenBank accession numbers and references. Taxa in bold are those which have not 
appeared in any previous phylogenetic studies using 61 genes from complete chloroplast genome sequences.

Taxon GenBank Accession Numbers Reference

Gymnosperms –Outgroups
Pinus thunbergii NC_001631 Wakasugi et al. 1994 [72]
Ginkgo biloba DQ069337–DQ069702 Leebens-Mack et al 2005 [27]

Basal Angiosperms
Amborella trichopoda NC_005086 Goremykin et al. 2003 [29]
Nuphar advena DQ069337–DQ069702 Leebens-Mack et al 2005 [27]
Nymphaea alba NC_006050 Goremykin et al. 2004 [28]

Monocots
Acorus americanus DQ069337–DQ069702 Leebens-Mack et al 2005 [27]
Oryza sativa NC_001320 Hiratsuka et al. 1989 [73]
Saccharum officinarum NC_006084 Asano et al. 2004 [74]
Triticum aestivum NC_002762 Ikeo and Ogihara, unpublished
Typha latifolia DQ069337–DQ069702 Leebens-Mack et al 2005 [27]
Yucca schidigera DQ069337–DQ069702 Leebens-Mack et al 2005 [27]
Zea mays NC_001666 Maier et al. 1995 [75]

Magnoliids
Calycanthus floridus NC_004993 Goremykin et al. 2003 [76]

Eudicots
Arabidopsis thalliana NC_000932 Sato et al. 1999 [77]
Atropa belladonna NC_004561 Schmitz-Linneweber et al. 2002 [53]
Cucumis sativus NC_007144 Plader et al. unpublished
Eucalyptus globulus AY780259 Steane 2005 [78]
Glycine max DQ317523 Saski et al. 2005 [3]
Gossypium hirsutum DQ345959 Current study
Lotus corniculatus NC_002694 Kato et al. 2000 [79]
Medicago truncatula NC_003119 Lin et al., unpublished
Nicotiana tabacum NC_001879 Shinozaki et al. 1986 [80]
Oenothera elata NC_002693 Hupfer et al. 2000 [81]
Panax schinseng NC_006290 Kim and Lee 2004 [82]
Ranunculus macranthus DQ069337–DQ069702 Leebens-Mack et al 2005 [27]
Solanum lycopersicum DQ347959 Daniell et al. in press
Solanum bulboscastanum DQ347958 Daniell et al. in press
Spinacia oleracea NC_002202 Schmitz-Linneweber et al. 2001 [83]
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biomaterials [6,47,48] have been produced successfully in
an environmental friendly way. Although many successful
examples of plastid engineering in tobacco have set a solid
foundation for various future applications, this technol-
ogy has not been extended to many of the major crops,
primarily due to the lack of complete chloroplast genome
sequences and challenges in achieving homoplasmy in
recalcitrant crops.

Evolutionary implications
Other than the IR, repeated sequences are generally con-
sidered to be uncommon in chloroplast genomes [1]. Fur-
thermore, previous studies based on both filter
hybridization and DNA sequencing have indicated that
dispersed repeats are found more commonly in genomes
that have experienced changes in genome organization
[49,56], especially in highly rearranged algal genomes
[51,52]. The most extensive examination of repeat struc-
ture in angiosperms was performed in legumes [3], which
do have a single inversion and in some taxa a loss of one
copy of the IR. These repeat analyses identified a substan-
tial number highly conserved repeats ≥ 30 bp with a
sequence identity of ≥ 90%. Many of these repeats were
located in intergenic spacer regions and introns, with sev-
eral located in the coding regions of psaA, psaB, and ycf2.
Our examination of repeats in the cotton chloroplast
genome (Table 1, Fig. 2) identified similar numbers of
repeats as in legumes [3], and these are also located
mostly in intergenic spacer regions and introns. Repeats in
coding regions of cotton are located in the same genes as
in legumes. Overall, it appears that dispersed repeats are
very common in angiosperm chloroplast genomes, even
in genomes that have not experienced rearrangements.
Future comparative studies are needed to determine the
functional and evolutionary role these repeats may play in
chloroplast genomes.

DNA and EST sequence comparisons identified many
nucleotide substitutions resulting in amino acid changes.
Based on previous studies of Atropa [53] and tobacco [54],
posttranscriptional RNA editing events result predomi-
nantly in C-to-U edits. However, analysis of the cotton
genome and EST sequences indicates that only two of the
eleven differences were C-to-U changes, suggesting that
most of these changes are not mRNA edits but may simply
represent intra-species polymorphisms. Evolutionary loss
of RNA editing sites has been previously observed and
could possibly be due to a decrease in the effect of RNA-
editing enzymes [31]. Additionally, conversions other
than C-to-U in cotton, as well as other crops, suggest that
chloroplast genomes may be accumulating considerable
amounts of nucleotide substitutions, where some genes
might accrue more alterations than others, such as the petL
and ndh genes that have a high frequency of RNA editing
[55]. Therefore, despite the plastome's high conservation,

variations occur post-transcriptionally, promoting trans-
lational efficiency due to transcript-protein complex bind-
ing and/or changes in the chloroplast microenvironment,
like redox potential or light intensity [56,57].

The phylogeny based on 61 protein-coding genes for 28
angiosperms is congruent with relationships suggested in
previous studies [summarized in [26]]. There is strong
support for the monophyly all of the major clades of
angiosperms, including monocots, eudicots, rosids,
asterids, eurosids I, eurosids II, asterids I and asterid II.
Our phylogenetic analyses have greatly expanded the
taxon sampling of entire genomes because we included six
genomes (in bold in Table 1 and Fig. 3) that have not been
included in recently published phylogenies based on
complete chloroplast genomes [27-29,58]. The sampling
is particularly expanded in the rosids with four of the six
genomes from this clade. Thus, we will focus our discus-
sion of the phylogenetic implications of this expanded
analysis on this group.

The rosid clade is very large and includes nearly 140 fam-
ilies representing almost one third of all angiosperms. The
most recent phylogenies of this group [summarized in
chapter 8 in [26]] indicate that there are seven major
clades whose relationships still remain unresolved. Repre-
sentatives of three of these major clades are included in
our analyses, eurosids I, eurosids II, and Myrtales. The
position of the Myrtales has been especially controversial
with no clear resolution of the relationship of this order to
other members of the rosids. Our 61 gene chloroplast
phylogeny (Fig. 3) provides strong support for a sister
relationship of the Myrtales with the eurosid I clade. A
three-gene phylogeny of 560 angiosperms is congruent
with our results [59], although support was very weak.
However, a sister relationship between eurosids I and
Myrtales is in conflict with two other recent phylogenies
based on two chloroplast genes (atpB, rbcL), which placed
the Myrtales sister to the eurosid II clade with weak sup-
port [60,61]. Although our results clearly favor a closer
relationship of Myrtales to the eurosid I clade, expanded
sampling of complete chloroplast genome sequences of
rosids is needed to resolve this issue, especially since lim-
ited taxon sampling can lead to erroneous tree topologies
[27,30].

Our chloroplast phylogeny (Fig. 3) also supports the sister
relationship between the orders Cucurbitales and Fabales,
two of the four nitrogen fixing clades of eurosids I. Fur-
thermore, the position of cotton, a member of the order
Malvales, as sister to Arabidopsis in the Brassicales, is in
agreement with recently phylogenies of the eurosid II
clade [26].
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Conclusion
Our complete sequence of the cotton chloroplast genome
provides the needed information for expanding chloro-
plast genetic engineering to this important crop plant.
Although genome organization of cotton is very similar to
other unrearranged angiosperm chloroplast genomes,
identification of disperse repeats and potential RNA edit-
ing sites provides new insights into the evolution of this
genome. Finally, phylogenetic analyses of sequences of 61
protein-coding genes for 26 angiosperms suggests that the
order Myrtales is sister to the eurosid I clade but denser
sampling is needed to test this result rigorously.

Methods
DNA isolation and amplification
Gossypium hirsutum plants cv. Coker310FR were grown
from seedlings in soil pots, until they were 1 m tall. Prior
to DNA extraction, the plants were placed in the dark for
two days to reduce the chloroplast starch levels. After that,
10 g of young leaf tissue was collected for cpDNA isola-
tion based on the sucrose step gradient centrifugation
method by Sandbrink et al [62]. Isolation was followed by
whole chloroplast genome Rolling Circle Amplification
(RCA), using the Repli-g RCA kit (Qiagen, Inc.) following
the methods outlined in [63]. After incubation at 30°C
for 16 hr, the reaction was terminated with 10-minute
incubation at 65°C. Digestion of the RCA product with
BstXI, EcoRI and HindIII allowed verification of successful
RCA plastome amplification, as well as assessment of its
quality, prior to DNA sequencing.

DNA sequencing and genome assembly
DNA was sheared by nebulization, size fractionated to 4–
6 kb, linker ligated and cloned into pHOS2, a TIGR
medium copy vector. A total of 1619 good reads with an
average length of 812 bases was generated during the ran-
dom (1396 reads) and closure (223 reads) phases of
sequencing. Sequences were assembled using TIGR assem-
bler [64] and scaffolded using Bambus [65]. Sequence fin-
ishing included directed PCR to span gaps, directed
primer walking on clones and transposon mediated
sequencing of full clones to cover the entire genome and
complete regions of low coverage and manual editing of
sequences to resolve inconsistencies.

Gene annotation
The cotton genome was annotated using DOGMA [Dual
Organellar GenoMe Annotator, [66]], after uploading a
FASTA-formatted file of the complete plastid genome to
the program's server. BLASTX and BLASTN searches,
against a custom database of previously published plastid
genomes, identified cotton's putative protein-coding
genes, and tRNAs or rRNAs. For genes with low sequence
identity, manual annotation was performed, after identi-
fying the position of the start and stop codons, as well as

the translated amino acid sequence, using the plastid/bac-
terial genetic code.

Examination of repeat structure
REPuter [67] was used to locate and count the direct (for-
ward) and inverted (palindromic) repeats within the cot-
ton chloroplast genome. For repeat identification, the
following constraints were used: (i) minimum repeat size
of 30 bp, and (ii) 90% or greater sequence identity, based
on Hamming distance equal to 3 bp [3]. Manual verifica-
tion of the identified repeats was performed in EditSeq,
while performing intragenomic blast search of the identi-
fied repeat sequence.

Variation between coding sequences and cDNAs
Each of the gene sequences from the cotton chloroplast
genome was used to perform a BLAST search of expressed
sequence tags (ESTs) from GenBank. The retrieved Gossyp-
ium hirsutum ESTs were aligned with the corresponding
annotated gene using ClustalX [68], followed by screening
for nucleotide and amino acid changes using Megalign
and its' plastid/bacterial genetic code. Because of variation
in the length between an EST and the related gene, the
length of the analyzed sequence was recorded.

Phylogenetic analysis
The 61 genes included in the analyses of Goremykin et al.
[28,29] and Leebens-Mack et al. [27] were extracted from
our new chloroplast genome sequences of cotton using
the organellar genome annotation program DOGMA.
[66]. The same set of 61 genes was extracted from chloro-
plast genome sequences of five other recently sequenced
angiosperm chloroplast genomes, including tomato,
potato, soybean, cucumber, and Eucalyptus (see Table 3
for complete list of genomes examined). In general, align-
ment of the DNA sequences was straightforward and sim-
ply involved removing gaps included in the data set
because of the elimination of non-seed plants and adding
the 61 genes for the new angiosperms to the aligned data
matrix from Leebens-Mack et al. [27]. In some cases, small
in frame insertions or deletions were required for correct
alignment. For two genes, ccsA and matK, the DNA
sequences were more divergent, requiring alignment
using ClustalX [68] followed by manual adjustments.

Phylogenetic analyses using maximum parsimony (MP)
and maximum likelihood (ML) were performed using
PAUP* version 4.10 [69]. All phylogenetic analyses
excluded gap regions. All MP searches were heuristic with
100 random addition replicates and TBR branch swap-
ping with the Multrees option. The Hasegawa-Kishino-
Yano (HKY; [70]) model of molecular evolution was used
in ML analyses of the nucleotide sequences. ML analyses
used TBR branch swapping with the Multrees option and
one random addition replicate. Non-parametric bootstrap
Page 9 of 12
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analyses [71] were performed for MP analyses with 1000
replicates with TBR branch swapping, one random addi-
tion replicate, and the Multrees option and for ML analy-
ses with 100 replicates with NNI branch swapping, one
random addition replicate, and the Multrees option.
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