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ABSTRACT

EXPERIMENTS, SIMULATIONS, AND LESSONS FROM EXPERIMENTAL 
EVOLUTION

Emily C. Parke

Michael Weisberg

Philosophers and scientists have sought to draw methodological distinctions among 

different kinds of experiments, and between experimentation and other scientific 

methodologies. This dissertation focuses on two such cases: hypothesis-testing versus 

exploratory experiments, and experiment versus simulation. I draw on examples from 

experimental evolution—evolving organisms in a controlled laboratory setting to study 

evolution via natural selection in real time—to challenge the way we think about these 

distinctions. In the case of hypothesis-testing versus exploratory experiments, 

philosophers have distinguished these categories in terms of the role of theory in 

experiment. I discuss examples from experimental evolution which occupy the poorly 

characterized middle ground between the two categories. I argue that we should take 

more seriously the point that multiple theoretical backgrounds can come into play at 

multiple points in an experiment, and propose some new contributions toward clarifying 

the conceptual space of experimental inquiry. In the case of experiment versus simulation, 

people have attempted to clearly delineate cases of science into these two categories, and 

base judgments about their epistemic value on these categorizations. I discuss and reject 

two arguments for the epistemic superiority of experiments over simulations: (1) 

Experiments put scientists in a better position to make valid inferences about the natural 

world; (2) Experiments are a superior source of surprises or novel insights. Both of these 

claims are false as generalizations across science. Focusing on the experiment/simulation 
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distinction as a basis for in-principle judgments about epistemic value focuses us on the 

wrong issues. This leaves us with a question: What should we focus on instead? I offer 

preliminary considerations for a framework for evaluating inferences from objects of 

study to targets of inquiry in the world, which departs from the problematic custom of 

basing such evaluations on questions like “Was it an experiment or a simulation?” This 

framework is based on the ideas of capturing relevant similarities while appropriately 

accounting for what researchers already know and what they are trying to learn by asking 

the scientific question at hand.  
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1. Experiments

Experiments play a central role in scientific practice. Throughout the history of 

philosophy of science they have been largely neglected in favor of focusing attention on 

theories and models. Until several decades ago philosophers did not say much about 

experiments, and when they did, they talked about them mainly just as means to the end 

of linking theories and models to the world. Philosophy of scientific experimentation is 

still a surprisingly small but growing area in philosophy of science. Two recent trends in 

this area have sought to categorize different kinds of experiments, and to distinguish 

experiment from other scientific methodologies like simulation and observation. A key 

motivation for carving these sorts of methodological lines is to argue that they correspond 

to differences in epistemic value. For example, scientists as well as philosophers 

commonly claim that experiments have a privileged status over simulations because they 

put researchers in a better position to generate trustworthy inferences about the natural 

world. In this dissertation I question the sharpness of some methodological distinctions 

that have been drawn regarding experiments, and the validity of using methodological 

categories—experiment versus simulation, in particular—as markers of epistemic 

differences. I propose a framework for evaluating inferences about the natural world 

which departs from the problematic custom of basing such evaluations on questions like 

“Was it an experiment or a simulation?”

1.1. What is an Experiment?

The key characteristic feature of scientific experimentation is intervention. Here are two 

examples:
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 A classic case, often featured in textbook introductions in discussions of the 

scientific method, is Francesco Redi’s series of experiments on insect generation. Redi is 

the seventeenth-century natural philosopher credited with initiating the end of belief in 

spontaneous generation. Since antiquity people had believed that inanimate matter could 

generate new life: riverbeds could give birth to eels (Aristotle, History of Animals 

569a10-25; 570a4-12) and grain or sweaty piles of clothing left in a barn could give birth 

to mice (Fry 2000). In Redi’s experiments on insect generation he set out to challenge the 

claim that nonliving matter can generate new life (Redi 1668). He placed samples of 

organic matter in jars, left some uncovered and sealed others with paper and twine, and 

reported that by preventing insects from gaining access to the latter jars’ contents, no 

larvae would appear therein. This demonstrated that the life forms which were commonly 

observed “spontaneously” appearing on meat and other organic matter got there because 

flies had laid their eggs there, not because of some intrinsic life-generating property in the 

meat itself. He used hundreds of different kinds of plant and animal matter to 

demonstrate this point, including flowers, grasses, and an impressive array of meats 

ranging from dog and eel to lion and water buffalo. In Redi’s detailed descriptions of 

thousands of repetitions of this experiment he continually emphasizes the necessity of 

many iterated rounds of gathering evidence to confirm his beliefs, and the careful use of 

what we now call controls: experimental setups which isolate single independent variables 

(for further discussion of Redi’s work see Parke 2014a). 

 Another example, which has been called the “most beautiful experiment in 

biology” (Holmes 2001), is Meselsohn and Stahl’s 1957 demonstration of the mechanism 

of DNA replication (see discussion in Weber 2014). In particular, their experiment 

confirmed Watson and Crick’s prediction that DNA replication is semiconservative: When 
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molecules are copied, one strand of each resulting double helix is newly synthesized, while 

the other strand remains from the unwound “parent” molecule. Meselsohn and Stahl grew 

bacteria for a number of generations in a growth medium in which the only available 

nitrogen was a heavy isotope, 15N, which resulted in the bacteria’s DNA molecules 

containing only heavy nitrogen. They then transferred the bacteria to growth medium 

containing only standard lighter nitrogen, 14N, and extracted their DNA after one 

generation and after two generations in the new growth medium. They put the extracted 

DNA in a highly sensitive measuring device, capable of separating DNA containing heavy 

nitrogen, light nitrogen, or a hybrid intermediate. They found that after one round of 

DNA replication the cells’ DNA contained the hybrid intermediate, and after two rounds 

the lighter nitrogen version reappeared. This confirmed the hypothesis that DNA 

replication is semiconservative.

 These are both classic examples where experimenters designed interventions to 

test hypotheses. Until the last several decades, philosophers of science talked about 

experiments almost exclusively as means to the end of testing hypotheses. In Philosophy of 

Natural Science, Hempel talks about experiments in terms of “bringing about the 

conditions C and checking whether E occurs as implied by the hypothesis,” where the C 

and E referred to are terms in a hypothesis of the form: If conditions of kind C occur, then 

an event of kind E will occur (Hempel 1966, p. 20). The examples discussed above fit this 

sort of model nicely. In the Redi case, the hypothesis in question could be stated as “If jars 

are sealed to prevent flies from entering them, then no maggots will appear on their 

contents.” In the Meselsohn-Stahl case, it could be stated as “If the semiconservative 

model of DNA replication is correct, then we should expect to see a certain pattern of 
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DNA nitrogen content when moving bacteria from growth medium with 15N to medium 

with 14N.”

 The last few decades have seen philosophers and historians of science increasingly 

giving experiments more attention, and paying attention to the fact that they do not all fit 

the standard hypothesis-testing model. Pioneering works in this area include Ian 

Hacking’s book Representing and Intervening (1983), Allan Franklin’s The Neglect of 

Experiment (1989), and Peter Galison’s How Experiments End (1987). These works laid the 

early groundwork for a growing literature on experiments and their role in science. There 

is plenty to say about the contributions of this early work, but the key headlines are: taking 

experiments more seriously as central to understanding scientific practice; acknowledging 

that they often play a more complex, exploratory role than mere means to the end of 

testing hypotheses; beginning to account for the many ways scientists can engage 

methodologically and epistemically with their experimental objects of study; and 

exploring the ways that experiments overlap and differ from other scientific 

methodologies like simulation, observation, and measurement.

 I will understand experiments throughout the dissertation as interventions in 

physical systems, consisting of physical entities and their environments in the laboratory 

or out in nature. The physical systems experimenters study vary widely, from meat in jars 

to bacteria in test tubes to electrons in particle accelerators to trees in forests. Okasha 

nicely characterizes the intuitive idea of the kind of intervention which takes place in 

experiments (contrasting experiment with observation): 

Experiments involve actively intervening in the course of nature, as opposed to observing 
events that would have happened anyway. When a molecular biologist inserts viral DNA 
into a bacterium in his laboratory, this is an experiment; but when an astronomer points 
his telescope at the heavens, this is an observation. Without the biologist’s handiwork the 
bacterium would never have contained foreign DNA; but the planets would have 
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continued orbiting the sun whether or not the astronomer had directed his telescope 
skyward. (Okasha 2011, p. 222) 

Following Woodward (2003, 2013) and others, I take the notion of an ideal experimental 

intervention to have to do with “surgical” change in a variable. As he puts it, regarding two 

variables A and B, such changes are “of such a character that if any change occurs in B, it 

occurs only as a result of its causal connection, if any, to A and not in any other way. In 

other words, the change in B, if any, that is produced by the manipulation of A should be 

produced only via a causal route that goes through A” (Woodward 2013).

 People have also characterized the core methodology of experiments as involving 

putting a system in a state. Peschard (2012, p. 2) exemplifies this when she defines an 

experiment as follows:

… experimentation on a physical system S can be thought of as a procedure that 
consists in, at least:

1. Preparing the system S in a certain state, by fixing initial and boundary 
conditions, and selectively putting under control the parameters that have an 
effect on the outcomes of measurement, the active parameters.

2. Letting the system evolve. The evolution of S is characterized by the evolution 
of a set of physical quantities characterizing the state of S, the state variables.

3. Recording the evolution of S through a sequence of states when the values of 
some of these parameters are varied; analyzing the results.

Along similar lines, Winsberg (2009, p. 582) says that when one experiments, one 

“intervenes in [a system] by putting it in a particular initial state and observes its 

subsequent states to learn about its properties in light of that intervention.” It might seem 

like there are two views of experiment at work here, intervention as outlined above versus 

putting systems in states. I think the latter is just one way to talk about intervention. 

Talking about it that way implies a certain kind of successful directed intervention. When 

we put a system in a state we are always intervening, but we can intervene without putting 
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a system in a state (understood as intending to, and successfully, putting it in a particular 

state). Parker (2009, p. 487) nicely ties together these two ways to talk about experiments 

in her characterization: 

An experiment can be characterized as an investigative activity that involves 
intervening on a system in order to see how properties of interest of the system 
change, if at all, in light of that intervention. An intervention is, roughly, an action 
intended to put a system into a particular state, and that does put the system into 
a particular state, though perhaps not the one intended.

So I am inclined to say that the intervention and putting-systems-in-states views are not 

two different views of what an experiment is, but rather two ways to talk about what 

experimenters can be up to when they intervene.

 Understanding experiments as interventions in physical systems distinguishes 

them from computer simulations, which are studies of computational models rather than 

physical systems. This position is somewhat controversial, because some people want to 

say that computer simulations are experiments. I discuss these views in Chapter 4, but do 

not want to take a strong position in that debate here or there. A key point I make in that 

discussion is that we should not hang so much on whether we label cases of scientific 

inquiry as experiments or simulations. A lot of ink has been spilled arguing for various 

ways to neatly carve up cases of research into these methodological categories, for the 

purposes of having categories to base judgments on (for instance, judgments about the 

epistemic privilege of experiments over simulations). I will argue that such categorization 

projects focus us on the wrong issues. The relevant points for evaluating cases of scientific 

inquiry are context-sensitive issues regarding the connection between the object of study 

and target of inquiry in question, how much a researcher knows about each, and what sort 

of scientific question she is asking—not whether we have labeled the case as an 

experiment or a simulation or something else, per se. My reason for understanding 
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experiments as interventions in material systems is not to definitively deny simulations 

status as experiments, but to maintain what I think is an important methodological 

distinction between studying physical systems and studying computational or 

mathematical models on computers. I say more about this methodological distinction in 

Chapters 4 and 5.

 I should underline at the outset that it is not a goal of this dissertation to argue that 

methodological categorizations are useless or meaningless, or that we should stop using 

terms like ‘experiment’ and ‘simulation’ to refer to research activities. ‘Experiment’ does 

and should refer to a way of doing science. My objections will be to views that make 

generalized claims about science like “Experiment is epistemically better than observation 

because it involves active manipulation,” or “Experiments allow us to make better 

inferences about the natural world than simulations.” Objecting to such claims is 

compatible with endorsing the view that there are meaningful methodological differences 

between experiment, simulation, and observation. I am not objecting to the entire project 

of distinguishing them.

 This is probably as good a place as any to clarify some key terminology regarding 

experiments which I will use throughout the dissertation:

• Object, or object of study: The system a scientist engages with in order to learn 

about her target of inquiry. In an experiment, the object is an experimental system. 

In a simulation, the object is a model. 

• Experimental system: The complex of entities and processes (in most biology 

experiments these are organisms, their environment, and an experimental protocol) 

which together comprise an experimentalist’s object.
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• Target,1  or target of inquiry: The system a scientist ultimately aims to generate 

knowledge about through studying or intervening in her object. Most often, but not 

always, the target is some system in the natural world. Very rarely, the object and 

target are identical. Almost always, they are not (I discuss this point further in 

Chapter 4).

1.2.  Different Kinds of Experiments

Chapter 3 will focus on two kinds of experiments, hypothesis-testing versus exploratory 

experiments, distinguished according to their relationships with theory. There is another 

way kinds of experiments are commonly distinguished which is worth mentioning: 

laboratory versus field versus natural experiments. Laboratory experiments are 

distinguished from field and natural experiments according to where they take place and 

the degree of control researchers have. The former take place, of course, in the lab, and the 

latter two take place in the world outside the lab. Laboratory experiments generally afford 

a greater degree of control than field and natural experiments because researchers have 

control, at least in principle, over far more details of the entities and environments 

constituting their experimental systems. 

 Field experiments are distinguished from laboratory experiments primarily 

according to their location: they take place out in nature rather than in the confines of a 

laboratory. Unlike laboratory experiments where researchers have control (at least in 

principle) over many variables, field experiments tend to involve manipulating a single 

8
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variable, like removing or blocking a species from a particular geographic location, or 

introducing a new species to a localized environment like an island (Diamond 1983; 

Irschick & Reznick 2009).

 The name ‘natural experiments’ is somewhat misleading as a way to distinguish a 

separate category from field experiments, because both occur out in nature rather than in 

the confines of the laboratory. In the case of natural experiments, ‘natural’ refers not (just) 

to the setting but to the way that the experimental intervention comes about. In 

laboratory and field experiments, the experimenter himself is responsible for the 

intervention; in a natural experiment, he is not. This can be either because somebody else 

is or nobody is. Woodward defines natural experiments as those which “typically [involve] 

the occurrence of processes in nature that have the characteristics of an intervention but 

do not involve human action or at least are not brought about by deliberate human 

design” (2003, p. 94). A classic example of a natural experiment is the case of the cholera 

outbreak in London in the 1950s. A physician named John Snow identified a particular 

public water pump as the source of the outbreak, and found strong associations between 

using water from that supply and becoming ill or dying of cholera. He also found that 

districts of the city whose water came from a different supplier had lower rates of cholera. 

His study of the outbreak in London involved a setup very much like the interventions 

experimenters intentionally cause in the lab or the field: One group used one water supply, 

another group used another, and this setup presented an opportunity to test the claim that 

using water from the former source causes cholera outbreaks. Only in cases like this 

natural experiment, nobody intentionally caused the intervention. Other examples of 

natural experiments include cases where species are introduced to novel habitats (either 

intentionally by humans or not), which afford researchers an unplanned “natural” 
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experimental setup for studying the evolutionary changes which result from these 

introductions (see discussion in Irschick & Reznick 2009). 

1.3.  Overview of the Dissertation

The rest of this dissertation addresses some methodological distinctions that have been  

made regarding experiments, both within the context of experimentation and between 

experimentation and and simulation. Throughout the dissertation I rely on examples from 

a research area which provides particularly provocative cases for challenging the 

methodological distinctions in question: experimental evolution. Chapter 2 gives an 

overview of experimental evolution, which involves researchers propagating populations 

of organisms in the laboratory as a means to study evolution via natural selection in real 

time. This research area has received little attention from philosophers of science; it 

deserves more attention, as it offers a wealth of interesting cases to think about for 

philosophers interested in topics in scientific methodology, evolution, and ecology. I 

explain the history and scope of experimental evolution and describe in detail a 

noteworthy example, Richard Lenski’s long-term evolution experiment. I return to the 

long-term evolution experiment throughout the rest of the dissertation in my discussion 

of methodological categorizations and how scientists make inferences from objects to 

targets.

 I then turn to the distinctions which have been drawn among different kinds of 

experiments. Section 1.2 briefly discussed kinds of experiments distinguished by the 

methodological issues of where they take place and the extent to which the researcher 

herself is responsible for the intervention. Chapter 3 focuses on another way that kinds of 
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experiments are distinguished: according to the role (or better, I argue, roles) played by 

theory. The classic view of experiments discussed earlier in this chapter says that theory 

comes first, and the point of experiments is to test the hypotheses that theory generates. 

Recent literature has rightly pointed out that this is not the whole picture; experiments 

can also be exploratory. Chapter 3 addresses classic hypothesis-testing versus exploratory 

experiments, which are methodologically more open-ended and have as their aim filling 

gaps in theory or generating entirely new theory, rather than testing specific hypotheses. 

People have had a lot to say about hypothesis-testing and about exploratory experiments, 

and not much to say about the middle ground. I outline a preliminary account of how to 

fill in some aspects of this conceptual middle ground, drawing on examples of cases from 

experimental evolution which occupy it.

 In Chapter 4 I turn to the distinction between experiment and simulation. 

Philosophers have argued that we can divide up cases of science into these two 

methodological categories, and that doing so gives us a basis for making epistemic 

judgments. These judgments invariably come out privileging experiments over 

simulations. I discuss two arguments that have been made for the superiority of 

experiments: (1) experiments put researchers in a better position than simulations do for 

making trustworthy inferences about the natural world, and (2) compared to simulations, 

experiments are a superior form of surprises or novel insights. I argue that both of these 

claims are false as generalizations across science. They are not false because experiments 

and simulations are epistemically on a par, or because simulations are in fact superior—

rather, I argue, these methodological categorization-based assessments of science focus us 

on the wrong issues. We should stop looking to the experiment/simulation distinction to 

tell us anything in principle about epistemic value. Any judgments about the superiority of 
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experiments, or simulations, must be made in a context-sensitive way: in the context of a 

particular field or area of inquiry and the relevant shared background knowledge and 

research traditions.

 This leaves us with a question: If categorical distinctions between experiment and 

simulation are a poor basis for judgments about inferential power, what is the right basis? 

Chapter 5 lays out initial considerations for a framework for evaluating inferences from 

scientific objects of study to targets of inquiry in the world, which departs from the 

problematic basis of beginning such evaluations by asking questions like “Was it an 

experiment or a simulation?” My account is based on the ideas of (1) capturing relevant 

similarities between object and target, and (2) appropriately accounting for what we 

already know and what we are trying to learn by asking the scientific question at hand. A 

more developed account is a topic for future work. 

12



2. Experimental Evolution

It used to be the case that biologists’ only reliable sources of empirical information about 

long-term evolution were the fossil record and living natural populations. There are 

limitations to using the fossil record to study evolution in action, particularly 

microevolution, because the evidence contained therein is patchy; it gives us only 

glimpses of the forms of living things at sporadic points in the past. Data from living 

natural populations, while in principle much richer in quantity and level of detail, 

similarly give us only snapshots. With rare exceptions, like the Grants’ multi-decade study 

of Galapagos finch populations (Grant & Grant 2002), studies of natural populations do 

not give us dynamic data about evolutionary lineages through time. They give us static 

data about a population’s current state and its gene pool, and we must then make 

inferences about how selection or other evolutionary forces have acted on that 

population.2 

 In the past few decades, a relatively new research area has added a richer source of 

long-term evolutionary data to the picture: experimental evolution, which involves 

propagating populations of organisms in a controlled laboratory setting to study evolution 

in real time. While experimental evolution actually dates back to the mid-nineteenth 

century (more on this below), it has become an increasingly active research area in 

biology just in recent years. The first major anthology on experimental evolution was 

published in 2009 (Garland & Rose 2009), a 2013 special issue of Biology Letters was 

devoted to current directions in the field (Bataillon, Joyce, & Sniegowski 2013 and papers 

13
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therein), and the American Society for Microbiology just held its first conference on 

experimental evolution in summer 2014. 

 In the introduction to their recent anthology, Garland and Rose define 

experimental evolution as “research in which populations are studied across multiple 

generations under defined and reproducible conditions, whether in the laboratory or in 

nature,” involving most, if not all, of the following features: “maintenance of control 

populations, simultaneous replication, observation over multiple generations, and the 

prospect of detailed genetic analysis” (Rose & Garland 2009, pp. 6–7). This broad 

definition includes natural experiments like studies of invasive species in the wild. It also 

includes artificial selection experiments and studies of domestication processes. 

 The discussion in this dissertation will focus on a particular way to do 

experimental evolution, a subset of what is covered by Garland and Rose’s broad definition 

of the field: laboratory natural selection (henceforth LNS) experiments. LNS experiments 

are more interesting for the present purposes than some of the other kinds of research 

included under Garland and Rose’s broad understanding of experimental evolution, like 

artificial selection and studies of natural populations. First, artificial selection has been 

happening, and has been talked about, for a long time; LNS experiments are newer and 

hence less discussed. LNS is importantly different from artificial selection: The 

populations are evolving via natural selection; researchers do not choose which 

individuals will carry on to the next generation based on any particular trait(s) they 

possess. As Roff and Fairbairn point out, “The major advantage of [LNS] over artificial 

selection is that the organisms are allowed to evolve relatively naturally in response to 

diverse selection acting on the whole phenotype, and hence the observed evolutionary 

processes may more closely mimic those that occur in nature” (Roff & Fairbarin 2009, p. 
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32). LNS is also importantly different from studies of natural populations: The controlled 

laboratory setting allows for much more direct, comprehensive analysis of the 

populations’ genetic makeup and evolutionary history. As examples I discuss below 

illustrate, researchers much greater access to information about the organisms, their 

environments, their histories, and their genomes than they do in studies of natural 

populations..

 The second, more important reason why I will focus on LNS experiments is that 

they present particularly compelling challenges for the boundaries philosophers of science 

have drawn regarding experiments. This is thanks to the combination of three particular 

features mentioned above: the degree of control afforded by the laboratory setting, the 

open-ended ability to watch evolution as it happens and collect extensive data throughout 

the process, and the “closeness” of the evolutionary processes in the lab to those occurring 

in nature. LNS experiments have features we typically think of as paradigm of non-

experimental methodologies like simulation and observational studies. I return to this 

point at the end of the chapter.

 Section 2.1 gives an overview of an iconic LNS experiment, which I return to as a 

core example throughout the dissertation: Richard Lenski’s long-term evolution 

experiment. Section 2.2 goes into more detail about the history and scope of LNS 

experiments in general; Section 2.3 discusses some challenges this research area presents 

for ideas about the pace of evolutionary change and our ability to empirically test 

questions about the roles of history and contingency in evolution.
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2.1. Lenski’s Long-Term Evolution Experiment 

The organisms of choice for experimental evolution are commonly microbes like bacteria. 

Bacteria are ideal subjects for a number of reasons: They have short generation times 

(from several to tens of generations per day), large populations of them can be stored in 

compact spaces, and they can be frozen and revived, allowing for easy comparisons and 

competitions between evolved populations and their ancestors (Forde & Jessup 2009; 

Gentile et al. 2011; Lenski et al. 1991; Travisano et al. 1995).

 In February 1988, Richard Lenski’s lab used a single ancestral genome of 

Escherichia coli to found twelve genetically identical3 populations in twelve identical 

environments: flasks filled with 10 ml of bacterial growth medium, a nutrient broth 

containing glucose as a limiting resource. These E. coli were engineered to be incapable of 

recombination, that is, they reproduce completely asexually. Lenski’s group was interested 

in observing the evolutionary dynamics of diversification and adaptation as they 

happened in the laboratory. The basic protocol of their experiment involves a simple serial 

transfer protocol: As the populations grow over the course of every 24 hours, they deplete 

the resources in their flasks, so every day a 0.1 ml sample of each population is transferred 

to a flask of 9.9 ml of fresh growth medium and thus allowed to keep on evolving (see 

Figure 1). Every 75 days (every ~500 generations) population samples from each strain are 

archived in a -80°C freezer, giving researchers a “frozen fossil record” of the populations’ 

evolutionary history (Lenski 2011). At any time, samples from these frozen flasks can be 

thawed and revived for further analysis of the population at the relevant time point, or 

even to literally back up and “rerun” a given lineage from an earlier time point. 
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Figure 1: An illustration of the serial transfer protocol used in Lenski’s experiment.

 The original motivation for Lenski’s experiment was to learn about the dynamics 

of adaptation and diversification by watching evolution in real time. Because the 

populations started out genetically identical and are evolving in identical environments, 

any differences in fitness, physiology, or morphology which arise over time are due 

entirely to new mutations. Since the experiment began in 1988, researchers in Lenski’s lab 

have been keeping the serial transfer protocol going every 24 hours. These populations go 

through approximately 6.6 generations per day, which means they have a long 

evolutionary history. In 2010 they passed the 50,000 generation mark, and they are still 

going today (Lenski 2015). To give some perspective to that number: There is debate 

about exactly how long our species, Homo sapiens, has been around, but estimates point to 

something on the order of 5,000 to 10,000 generations.4 
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 In addition to the actively evolving populations themselves, researchers have a 

“frozen fossil record” of the populations’ evolutionary history (Lenski 2011). Every 75 

days (every ~500 generations), a sample from each well-mixed flask is archived in a –80°C 

freezer. At any time, these fossil layers can be thawed and revived, by scraping a tiny 

sample from the frozen tube into a flask of fresh growth medium and growing it overnight 

at 37°C. This allows researchers to further analyze the revived population at the relevant 

time point—or even to back up and restart a lineage from an earlier point in its 

evolutionary history. 

 One important use of the frozen fossil record is to periodically revive evolved 

populations and compete them against the original ancestor, which gives a measurement 

of each population’s relative fitness at a given time point in its evolution. Growth rate is 

used as a proxy for fitness. Here is an overview of how the competitions work. I said 

earlier that the twelve initial populations were genetically identical; this is true with one 

exception: The populations have a neutral genetic marker (a marker which does not affect 

their fitness), which causes them to turn either red or white when grown on tetrazolium 

arabinose (TA) plates. Six populations have a marker that makes them turn red (the “Ara–” 

strains) on TA plates; the other six (the “Ara+” strains) have a marker that makes them 

turn white. The evolved strain whose fitness is being measured is mixed in a flask with an 

equal amount of an ancestral strain with the opposite genetic marker. For example, if the 

strain whose fitness is being measured is Ara+, it is mixed with its Ara– ancestor. A sample 

from the flask is grown overnight on a TA plate; the number of Ara+ versus Ara– colonies 

can then easily be counted due to their difference in color (Figure 2). After 24 hours have 

passed, allowing the mixed populations in the flask to compete for resources, samples 

from the flask are plated again to TA. The growth rate of each population is the natural log 
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of the ratio of its final plated density (on day 1) to its initial plated density (on day 0). The 

relative fitness of an evolved strain, then, is a measure of its growth rate relative to that of 

the ancestral strain during these direct competitions.

Figure 2: A TA plate showing red and white Ara–/Ara+ colonies (photo credit: Paul 
Sniegowski).

 Lenski and colleagues describe their work as “organized around the analogy to an 

increasingly fantastic exploration of fossil beds” (Lenski & Travisano 1994). In ideal 

circumstances, a paleontologist can find well-preserved fossil layers which allow them to 

measure all sorts of features of long-gone lineages and their changes over time. But 

studying fossil layers in the field leaves many inferences to be made about selection, drift, 

mutation, and migration, and it leaves open important questions about the populations’ 

environments. The Lenski experiment produces dense and perfectly preserved fossil 

layers, in the tubes of frozen E. coli at 500-generation intervals over tens of thousands of 

generations. Furthermore, the need to speculate about the populations’ evolutionary 

history and surrounding conditions is eliminated. Researchers have access, at least in 

principle, to information about which mutations arose and when, whether and when 
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migration occurred, the exact nature of the environment, and myriad other details 

inaccessible in fossil records outside the lab. Not only do they have access to this fossil 

record, but the populations preserved in it can be revived and their evolutionary history 

can be literally rerun.

 Over 60 papers have been published on the Lenski experiment since its beginning. 

Early papers focused on questions about adaptation and divergence over the first several 

thousand generations (Lenski et al. 1991; Lenski & Travisano 1994). Later papers have 

focused on an impressive range of topics in evolution and ecology including the evolved 

populations’ response to novel environments (Travisano et al. 1995), ecological 

mechanisms promoting coexistence of two populations (Turner, Souza, & Lenski 1996), 

the relative roles of history, contingency, and selection (Travisano et al. 1995), and three 

cases which I discuss in more detail in the following subsections: the evolution of high 

mutation rates (Sniegowski, Gerrish, & Lenski 1997), punctuated morphological evolution 

(Elena, Cooper, & Lenski 1996), and the evolution of novel traits like citrate utilization 

(Blount et al. 2012; Blount, Borland, & Lenski 2008). The breadth of what has been 

learned from this single experimental system is astounding.  

 Just from this brief discussion of Lenski’s experiment, a number of interesting 

features begin to emerge. The experiment did not begin with a specific hypothesis it was 

supposed to be confirming or rejecting, but many hypotheses have been tested along the 

way. Further, the setup seems to incorporate elements of what people tend to consider two 

very different kinds of inquiry: active manipulation, and passively watching to see what 

happens while nature runs its course, typically considered the hallmarks of experiment 

and observation, respectively. The Lenski experiment is happening in an “artificial” 

laboratory system, but it captures the process of natural selection in its most “natural” 
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form. These bacterial populations are not undergoing artificial selection or simulating 

natural selection, they are evolving via natural selection. These features raise a number of 

questions about the relationship between experiment and theory, the role of experiment in 

scientific inquiry, and how experimental systems relate to systems in the natural world. I 

get into these questions in detail in Chapters 4 and 5.

2.1.1. High Mutation Rates

The Lenski populations have been used to study the evolution of high mutation rates over 

long evolutionary time scales. Natural selection needs variation to act on, and new 

mutations in organisms’ genetic material are the source of that variation. Most new 

mutations are deleterious, which intuitively makes sense: There are more ways to mess 

something up at random than there are ways to improve it. One might expect that in well-

adapted populations in unchanging environments (that is, in the absence of new selection 

pressure), genomic mutation rates would stay the same over time or perhaps even 

decrease. In just three of the twelve Lenski populations, the opposite happened: Their 

genomic mutation rates increased by two orders of magnitude after 10,000 generations. 

The explanation for how this happened involves mutator alleles, which raise the genomic 

mutation rate by inhibiting mechanisms like DNA mismatch repair or proofreading. 

Sniegowski and colleagues (1997) found that mutator alleles arise spontaneously, by 

mutation, and then hitchhike to high frequencies5 in the experimental populations, which 

is possible because those populations are completely asexual. 
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 From this point about high mutation rates evolving in three of the laboratory 

populations, the authors make an inference about populations outside of the laboratory. 

They conclude that high mutation rates might evolve via the same hitchhiking 

mechanisms in similar clonal populations of cells with high mutation rates in the natural 

world—in particular, pathogenic E. coli and Salmonella (Sniegowski, Gerrish, & Lenski 

1997, p. 704).

2.1.2. Punctuated Evolution

In this second example, a different sort of inference is made from the same object of study. 

In a paper called “Punctuated Evolution Caused by Selection of Rare Beneficial 

Mutations,” Lenski and colleagues used results from their evolving E. coli populations to 

make claims about punctuated equilibrium: the notion that evolution occurs in long 

periods of relative stasis punctuated by short periods of rapid change (Elena, Cooper, & 

Lenski 1996). Punctuated equilibrium was a hot topic in contemporary discussions of 

macroevolutionary trends in the fossil record, notably championed by Gould and 

Eldredge in their discussion of events like the Cambrian explosion, in the context of 

rejecting views about the ubiquity of phyletic gradualism (Eldredge & Gould 1972; Gould 

& Eldredge 1977).

 Over the first few thousand generations of the Lenski experiment, the twelve 

populations of E. coli increased in both average fitness and average cell size (Lenski et al. 

1991; Lenski & Travisano 1994). In addition to these overall trends, average cell size 

increased in a step-like pattern. In one population it remained stable for the first 300 

generations, increased by over 25% in the following 100 generations, and then remained 
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stable for another 300 generations before dramatically increasing again (see Elena, 

Cooper, & Lenski 1996 Figure 1, reproduced as Figure 3 below). This led the researchers 

to claim that punctuated evolutionary trends could be observed on (relatively) very short 

time scales, associated with the rise of beneficial new mutations in the population which 

rapidly sweep to fixation.6 They conclude the paper with an inference from what 

happened with the experimental populations of bacteria to a claim about what might be 

going on in the fossil record, or at least a subset of populations represented in the fossil 

record, delineated by certain features of their evolutionary history and environmental 

conditions: 

The experimental population was strictly asexual, which may have increased our 
ability to resolve punctuated changes. However, any difference between sexual and 
asexual populations with respect to the dynamic of adaptive evolution breaks 
down when two conditions are met: (i) standing genetic variation for fitness is 
exhausted, as will eventually happen in any constant environment, and (ii) 
beneficial mutations are so rare that they occur as isolated events. To the extent 
that these conditions are fulfilled in nature, then the selective sweep of beneficial 
alleles through a population might explain cases of punctuated evolution in the 
fossil record. (Elena, Cooper, & Lenski 1996, p. 1804)

Figure 3: Cell size as a function of time (over 3,000 generations) in one of the 12 populations on the Lenski 
experiment. From (Elena, Cooper, & Lenski 1996, Figure 1).
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2.1.3. Citrate Utilization

The glucose-limited growth medium the Lenski populations live in also contains citrate. 

Citrate is an additional energy source in principle, but E. coli cannot use citrate as an 

energy source in oxic conditions (when oxygen is present). During the first 30,000 

generations of the experiment, none of the twelve populations evolved the ability to 

exploit environmental citrate. As Lenski describes this in a later paper, 

One of the defining features of E. coli as a species is that it can’t grow on citrate 
because it’s unable to transport citrate into the cell. For 15 years, billions of 
mutations were tested in every population, but none produced a cell that could 
exploit this opening. It was as though the bacteria ate dinner and went straight to 
bed, without realizing a dessert was there waiting for them. (Lenski 2011)

By 31,500 generations, a Cit+ (citrate utilizing) phenotype had evolved in just one of the 

12 strains, strain Ara–3. As the authors of the first paper on this surprising result point out, 

by 30,000 generations “each population experienced billions of mutations, far more than 

the number of possible point mutations in the ~4.6-million-bp genome. This ratio implies, 

to a first approximation, that each population tried every typical one-step mutation many 

times. It must be difficult, therefore, to evolve the Cit+ phenotype, despite the ecological 

opportunity” (Blount, Borland, & Lenski 2008, p. 7900).

 Blount and colleagues tested whether the Cit+ phenotype arose in strain Ara–3 

because of an unusual rare mutation, or because of historical contingency and the 

particular evolutionary trajectory that strain had taken. They did this by “replaying” Ara–3 

many times from time points prior to the 31,500 generation mark, using the same sort of 

defrost-and-revive protocol described above. The rare-mutation hypothesis would predict 

that Cit+ phenotypes evolve at the same very low rate from any previous time point; the 

historical-contingency hypothesis would predict that the mutation rate to Cit+ phenotypes 

increases after some series of potentiating mutations occur (that is, it increases as the 
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evolutionary time point approaches 31,500 generations). They replayed and tested 

hundreds of replicates of strain Ara–3 from earlier time points, and the results supported 

the historical contingency hypothesis: some genetic background had arisen earlier in that 

strain’s history which paved the way for the Cit+ phenotype.

 Concurrently with the Cit+ phenotype arising, there was also significant 

population expansion in Ara–3, measured by optical density readings of the strain before 

and after the 31,500-generation time point. Interestingly though, the Cit+ phenotype did 

not fix in that population; Cit– (non-citrate utilizing) phenotypes persisted at a frequency 

of around 1%.7  The authors suggest that the Cit– cells persist as glucose specialists, given 

their higher growth rate and shorter lag phase compared to Cit+ cells when utilizing 

glucose (Blount, Borland, & Lenski 2008). Frequency-dependent selection here appears to 

maintain ecological diversity in the population. The paper suggests future directions for 

research on the evolution of this novel phenotype including studying whether 

differentiation into Cit+/Cit– phenotypes might be a first stage in sympatric speciation.

2.1.4. Laboratory Natural Selection?

Before moving on, it is worth addressing and setting aside a question—are these 

laboratory populations really undergoing natural selection? Two related ideas might 

motivate this question. The first holds that struggle for existence is a necessary condition 

for natural selection (as Darden has argued, in a personal communication, but see also 

Darden & Cain 1989) and questions whether there is genuine struggle for existence in the 

Lenski system. Second, one might wonder whether natural selection is really acting when 
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researchers are imposing the conditions, as part of the serial transfer protocol, for which 

organisms carry on to each subsequent generation.

 In response to the first point: Questioning whether or not natural selection is 

acting here, for this reason, implies subscribing to the view that there can be struggle for 

existence only when that struggle is between organisms and a changing, challenging 

abiotic environment. On this line of thought, the abiotic environment (the bacterial 

growth medium) in Lenski’s experiment, kept constant throughout the experiment, 

presents the bacteria with no opportunity for struggle for existence and thus removes a 

necessary condition for evolution via natural selection. This is wrong for two reasons. 

First, while the recipe for the nutrient broth is always the same, the abiotic environment in 

the flask changes over the course of every 24 hours as the populations deplete 

environmental glucose. Second, and more importantly, the environment relevant to 

thinking about the struggle for existence includes not only abiotic factors but other 

organisms as well. The citrate utilization case (Section 2.1.3) is a perfect illustration of this: 

Citrate was part of the abiotic environment all along, but the sudden arrival of 

conspecifics capable of using it to their advantage changes the selective environment for 

the population as a whole. Darwin himself understood struggle for existence the way I am 

here, to include other organisms as well as the abiotic environment:

I use the term Struggle for Existence in a large and metaphorical sense, including 
dependence of one being on another, and including (which is more important) 
not only the life of the individual, but success in leaving progeny. Two canine 
animals in a time of dearth, may be truly said to struggle with each other which 
shall get food and live. But a plant on the edge of a desert is said to struggle for life 
against the drought, though more properly it should be said to be dependent on 
the moisture. A plant which annually produces a thousand seeds, of which on an 
average only one comes to maturity, may be more truly said to struggle with the 
plants of the same and other kinds which already clothe the ground… In these 
several senses, which pass into each other, I use for convenience sake the general 
term of struggle for existence. (Darwin 2009, pp. 62–3).
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 In response to the second point, about it being up to researchers which individuals 

will carry on to the next generation: Population samples are taken from well-mixed flasks 

and transferred to a new flask each day. Researchers are not choosing which individuals 

from the population will make it into the next flask based on any features those 

individuals possess, such as their phenotype or their location in the flask. The flask is 

constantly shaken over the course of the experiment, so the sample that carries on to the 

new flask each day is random and representative of the population. A bottleneck occurs 

each time a sample is transferred to a flask of fresh growth medium, but nobody has any 

say in which organisms make it through the bottleneck. 

 The selection process in the Lenski experiment is really natural selection. That is a 

crucial feature of what makes this and other LNS experiments such powerful tools for 

studying evolution in action. There might be all sorts of other reasons, in a given case, why 

inferences from what happens in the laboratory to what happens in nature might call for 

validation. As I will discuss in Chapter 5, some such inferences are more questionable 

than others due to differences in our reasons to trust that the laboratory populations are 

relevantly similar to the target populations in question. But “It’s not really natural 

selection” is not one of these reasons.

2.1.5. The Lenski Experiment?

Another question that might come up about the Lenski experiment is: What is “the 

experiment?” The 27+ years (tens of thousands of generations) of propagation of replicate 

E. coli populations are commonly referred to as “the Lenski experiment.” However, many 

different treatments have been applied to those populations over the years, discussed in 
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the above-mentioned 60+ publications from Lenski’s group based on this work.8 It might 

also make sense to think of the particular treatments and protocols contained in each of 

those papers as an experiment or set of experiments in itself (the researchers themselves 

sometimes refer to new treatments concurrent with the ongoing evolution experiment, 

like varying the growth medium or temperature, as separate evolution experiments 

(Lenski 2011)). So, there might be an argument for thinking of those studies as the 

experiments, and the 26+ years of propagation as a research tool rather than an 

experiment in itself. I suggest not getting hung up on worrying about the ontology of 

particular experiments at this level of detail. Nothing rests on this for the purposes of this 

dissertation. It makes more sense to talk about cases of experimental inquiry—Lenski’s 

work certainly counts—rather than looking for clean lines to draw around one experiment 

and another within the context of a given scientist’s or laboratory’s research.

2.2.  LNS Experiments Beyond Lenski: History and Current Directions

The Lenski experiment is especially impressive and deservedly famous. But LNS 

experiments actually date back to the 1880s, when William Henry Dallinger reported on a 

long-term evolution experiment in his Presidential Address to the Royal Microscopical 

Society (Dallinger 1887; see also discussion in Huey & Rosenzweig 2009). Dallinger’s goal 

was to discover “whether it was possible by change of environment, in minute life-forms, 

whose life-cycle was relatively soon completed, to superinduce changes of an adaptive 

character, if the observations extended over a sufficiently long period” (1887, p. 191). His 
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subjects were “the lowest forms of the infusoria,”9 and his chosen environmental 

manipulation was slowly increasing the temperature. He constructed an apparatus 

designed to maintain a constant temperature: a large water-filled copper vessel insulated 

with felt, with space for three glass inserts containing “putrefactive fluids” and the 

microorganisms themselves (Figure 4). This was attached to a mercury thermometer and 

gas flame rigged to automatically regulate and stabilize the temperature in the glass vessels 

to within 1/4 of a degree Fahrenheit. Dallinger began slowly turning the temperature up—

from 60° to 70°F (15.6°–21.1°C) over the first four months of the experiment—and 

observed the organisms in the vessels through a microscope attached to the apparatus, 

noting changes in their morphology and behavior. He gives a detailed account of their 

slow adaptation and stabilization at various temperatures as he continued to turn up the 

temperature after those first four months, describing them at 93°F (33.9°C) as about “to 

surrender to torpor and death,” after which point some organisms seemed to stabilize. 

With painstaking diligence he describes slowly turning the temperature up, with long 

pauses in between, finally reaching 158°F (70°C). He concludes with a note on the 

remarkable adaptation of his populations at later time points: “If the adapted organisms at 

158° F. were taken from that temperature and placed in an eminently nutritious and 

suitable nutritive fluid at 60° they died. While, of course, if forms of the same kind exactly, 

living and flourishing at 60°, were placed in a nutritive sterilized fluid at even 150° they 

were finally destroyed” (p. 199). 
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 Figure 4: Dallinger’s drawing of the apparatus used in his evolution experiment (from Dallinger 1887).

 Dallinger’s experiment took seven years. It was brought to an abrupt halt only 

when “an accident, which no foresight could have guarded against, happened to the 

apparatus employed” (p. 190).10 This stands out as a remarkably early exemplification of 

the key features of LNS experiments discussed above: long-term study of populations in 

the laboratory evolving via natural selection in a controlled environment.

 LNS experiments began using bacteria in the 1950s, when Novick and Szilard 

(1950) used a chemostat to limit resources in populations of E. coli, controlling their 
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growth rate, and observed their rates of spontaneous mutation to resistance to 

bacteriophages T4 and T5. Another notable early LNS experiment, published a year later, is 

described in a paper by Atwood and colleagues propagating E. coli in Erlenmeyer flasks at 

37° C and transferring samples from each flask to a new one every 12 hours (1951). E. coli 

are popular organisms of choice for the reasons cited above: their short generation times, 

ease of manipulability, ability to freeze and revive, and the wealth of existing knowledge 

about their genomes and other traits. But LNS experiments use all sorts of other 

organisms as well, including viruses (Bono et al. 2013; Forde & Jessup 2009), fungi 

(Gifford, de Visser, & Wahl 2013), yeast (Gerstein 2013; Ratcliff et al. 2012; Zeyl 2000), 

green algae (Bell 2013; Colegrave et al. 2002), nematodes (Matsuba et al. 2013), insects 

(Simoes, Santos, & Matos 2009; Zera & Harshman 2009), and mice (Barnett & Dickson 

1984).

 Since the early examples discussed above and the beginning of Lenski’s 

experiment, LNS experiments have made progress in a variety of issues in evolutionary 

biology and ecology. I do not have space for a thorough overview (but see Bataillon, Joyce, 

& Sniegowski 2013; Garland & Rose 2009 and papers therein), but will mention just a few 

more brief examples here to illustrate the breadth of topics covered in the field beyond 

Lenski’s work. 

 Major transitions in evolution have been a hot topic among philosophers of 

biology and biologists (e.g., Calcott & Sterelny 2011; De Monte & Rainey 2014; Maynard 

Smith & Szathmary 1997), including notably the evolution of multicellularity. Recent 

experiments have contributed to our understanding of multicellularity by trying to evolve 

it de novo in the lab. These include Michael Travisano and colleagues’ experiments 

evolving multicellular yeast, in which they expose yeast to regular selection pressure for 
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sinking to the bottom of test tubes, and watch it begin to form “snowflake”-like clusters 

which appear to show some division of labor, characteristic of entities at the transition 

from unicellular to multicellular life (Ratcliff et al. 2012). Rainey and colleagues have 

examined the transition in experimental populations of the bacterium Pseudomonas 

fluorescens, in a spatially structured heterogenous environment, from living as individuals 

to living in cooperating groups, a first step in the evolutionary transition to 

multicellularity (Rainey & Rainey 2003). This work on experimental evolution of 

multicellularity ties to questions in the philosophy of biology about levels of selection and 

individuality, for example, at which point do these multicellular clusters become 

individuals or objects of selection in themselves, and what are the implications?

 Recent experimental microbial evolution studies have also investigated the 

evolution of sex. Sexual reproduction is more costly than asexual reproduction. As 

Maynard Smith famously put it, there is a “twofold cost of sex:” Organisms that have sex 

contribute only half of their genetic material to their offspring (versus asexual organisms 

which contribute all of it), and all else being equal an asexual population grows twice as 

quickly as a sexual one (Maynard Smith 1978). Recent work in experimental evolution has 

investigated the tradeoffs between asexual and sexual reproduction. Raynes and 

colleagues investigated the effects of recombination on the frequency of mutator alleles in 

experimentally evolved populations of yeast, comparing asexual to sexual populations 

(Raynes, Gazzara, & Sniegowski 2011). Turner and colleagues review recent LNS studies 

of viruses, yeast, E. coli, and Chlamydomonas (green algae) establishing that sexual 

(recombining) populations adapt faster than their asexual counterparts (Turner, 

McBridge, & Zeyl 2009). 
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 LNS experiments have also been used to study the mechanisms maintaining 

biodiversity. Kerr and colleagues have used laboratory microbial populations to look at the 

stable coexistence of different strains of E. coli in different spatial configurations. They set 

up a rock-paper-scissors dynamic involving three strains of E. coli: a colicin-producing 

strain (C) produces a toxin which kills a colicin-sensitive (S) strain; the sensitive strain 

however outgrows a third colicin-resistant strain (R), which in turn outgrows the colicin-

producing strain. Thus there is a rock paper scissors dynamic: C beats S; S beats R; R beats 

C. They found that the three stains stably coexist when their interactions are spatially 

localized, but not when they disperse and interact over relatively large spatial scales (Kerr 

et al. 2002).

 LNS experiments are making progress in a host of other research areas including 

studies of the interaction between evolution and ecology (Jessup et al. 2004), our 

understanding of cancer as an evolutionary phenomenon (Sprouffske et al. 2012), genetic 

interactions and their influence on evolution, the evolution of sociality, and how 

environmental variation affects evolution (see Bataillon, Joyce, & Sniegowski 2013; 

Garland & Rose 2009 and papers therein).

2.3.  Tapes of Life, Darwin’s Mistake, and Other Challenges

Darwin believed that evolution happened very slowly, and could not be directly observed. 

Of evolution in action, he wrote: “We see nothing of these slow changes in progress, until 

the hand of time has marked the long lapse of ages, and then so imperfect is our view into 

long past geological ages, that we only see that the forms of life are now different from 

what they formerly were” (Darwin 2009, p. 84). As Rose and Garland argue in their 
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provocatively titled paper “Darwin’s Other Mistake,”11  experimental evolution shows that 

this is wrong (see also Bataillon, Joyce, & Sniegowski 2013). It allows us to watch evolution 

as it happens, and observe remarkable changes in populations with generation times 

shorter than our own.

 Another idea which LNS experiments have challenged regards our ability to 

“replay the tape of life.” As part of his argument for evolutionary biologists to take 

historical contingency more seriously, Gould proposed a thought experiment in which we 

could rewind the history of life on Earth to some point in the deep past, erase what had 

happened from that point on, and replay it to see how things evolved. Gould said that if 

we were to do this, we could expect that “any replay of the tape would lead evolution 

down a pathway radically different from the road actually taken” (1989, p. 51). This is a 

powerful thought experiment, and Gould presented it as only a thought experiment, 

saying that we could never actually replay the tape of life. Lenski’s long-term evolution 

experiment proves him wrong: not his claim that evolution would differ were we to replay 

the tape, but his claim that we could never perform this experiment on real living systems 

by backing them up and “replaying” them from some earlier point in their evolutionary 

history, from the same starting conditions. Beatty (2006) and Desjardins (2011, note 3) 

have noted in previous discussions of the Lenski experiment that “playing” the twelve 

different lineages from the exact same genetic starting point in identical environments 

gives us an approximation of what Gould had in mind with replaying the tape. In other 

words, we can think of the twelve lineages as twelve “runs” of the same course, since they 

all began with the same ancestor. But there is also a further sense in which long-term 

microbial evolution experiments like Lenski’s allow us to replay the tape of life: As 
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discussed above, the experimental populations can be frozen, defrosted, and “rerun” from 

any point in time. In other words, not only does the set of twelve lineages represent twelve 

replays of the same tape, the individual lineages themselves can be replayed, just by 

defrosting them and regrowing them. This latter aspect of the experiment represents an 

even more straightforward way in which experimental evolution allows us to replay the 

tape of life. Gould had in mind replays of the tape of life on a much vaster evolutionary 

time scale, spanning speciation events and hundreds of thousands of generations or more. 

The evolutionary time scale of the Lenski experiment is (so far) orders of magnitude 

smaller. In any case, the long-term evolution experiment offers an extremely powerful tool 

for investigating questions about the relative roles of history, chance, and adaptation in 

evolutionary processes (Futuyma & Bennett 2009; Travisano et al. 1995).

 The Lenski experiment is by far the most well-known LNS experiment. It is the 

only one philosophers have talked about in detail. Beyond Beatty and Desjardins’ 

discussions, philosophers had not had much to say about this research area.12 In the rest of 

this dissertation I return frequently to examples of LNS experiments, as a case study for 

challenging ways philosophers and scientists have talked about methodological 

boundaries in science.

 What is special about LNS experiments, that they seem to straddle these different 

classic divisions in scientific methodology? We generally think of the ways to do biology 

as doing theory, studying laboratory-bred populations, or studying populations in nature. 

(This is not meant to be an exhaustive list, but the main research methodologies that come 
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to mind.) These all have their respective advantages, and criticisms of the others: 

theoretical biology lets you control whatever variables you want in your models but it is 

not realistic enough; laboratory experiments allow for controlled interventions but the 

systems of study are too artificial; field work lets you genuinely study nature in action but 

lacks control. LNS experiments are a special case: They take place in the laboratory, 

allowing for controlled intervention, and the populations of study are “artificial” in the 

sense that they are strains adapted (or adapting) to the laboratory environment. But they 

are doing something that natural populations typically do and laboratory experimental 

populations typically do not: evolving via natural selection. And we can interact with 

them in this particular and very powerful way in which we could previously only interact 

with computer simulations: We can back them up and rerun them. In addition to making 

LNS experiments a powerful and exciting research area for biologists, these features give 

philosophers interested in biology, scientific methodology, and related epistemological 

questions plenty to think about. I return to some of these themes later in the dissertation.
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3. Hypothesis-Testing and Exploratory Experiments

As discussed in Chapter 1, in the last few decades philosophers and historians of science 

have pushed to focus more attention on experiments and their role in scientific inquiry 

(A. Franklin 1990; Galison 1987; Hacking 1983; Radder 2003; Weber 2004). Recent 

literature on exploratory experiments has addressed ways in which the classic picture of 

hypothesis-testing does not capture everything that experimenters are up to (Burian 2007; 

Elliott 2007; L. Franklin 2005; O'Malley 2007; Steinle 1997; Waters 2007). In this chapter, I 

argue that we need a better account of the whole space of experimental inquiry; 

hypothesis-testing and open-ended exploration are not the entire picture. Waters (2007) 

and Elliott (2007) have previously made the point that there is such a space, but much 

work remains to be done to clarify it. As a starting point for that larger project, I propose a 

more nuanced way to think about the relationship between experiment and theory.13  I will 

frame this discussion within the context of examples of LNS experiments. This is a good 

starting point because these examples put pressure on the idea that cases of experimental 

research can be neatly classified as one or the other (hypothesis-testing or exploratory).

 In Chapter 1 I talked about some classic examples of experiments, Redi’s 

experiments on insect generation and the Meselsohn-Stahl experiment. From the 

discussion in Chapter 2, it should already be clear that LNS experiments are different from 

these canonical cases in interesting ways. The Lenski experiment did not begin with the 

aim of confirming or rejecting a particular hypothesis, but a number of questions have 
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been answered, and hypotheses tested, along the way. Furthermore, the experimental 

setup incorporates elements of what we usually consider two very different kinds of 

inquiry: active intervention and manipulation, versus passively watching to see what 

happens while nature runs its course, typically considered the hallmarks of experiment 

and observation, respectively. The Lenski experiment takes place in an “artificial” 

laboratory system, but it was motivated by the desire to capture the process of natural 

selection in its “natural” form; these bacterial populations are not undergoing artificial 

selection or simulating natural selection, they are really evolving via natural selection. 

These sorts of features raise questions about the nature of experimental inquiry and the 

relationship between experiment and theory. In the rest of this chapter, I lay out the two 

main views in the literature on the nature of experimental inquiry and the relationship 

between experiment and theory, and discuss why neither of them alone adequately 

characterizes what is going on in Lenski’s experiment. This points to the need for a more 

nuanced understanding of possible experiment–theory relationships, as more than just a 

binary set of options. The latter point is not novel (see discussion below of Brandon’s, 

Waters’, and Elliott’s contributions on this front). My contribution in this chapter is to 

make progress on clarifying the conceptual space of experimental inquiry by developing 

an account of how we should think about a key set of dimensions of that space: the 

relationship between experiments and theories.

 Sections 3.1 and 3.2 discuss the views of experimental inquiry as hypothesis-

testing and exploration, respectively, and discuss why neither of these alone captures what 

is going on in Lenski’s experiment. Section 3.3 gives an overview of previous attempts to 

map a conceptual space of experimental inquiry, including the mostly ignored middle 

ground between pure exploration and classic hypothesis-testing. In Section 3.4 I outline a 
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proposal for how to better approach mapping a key aspect of the space including this 

middle ground, focusing on the roles that theories play in experiments.

3.1.  Hypothesis Testing: The Classic View of Experiments 

Philosophers of science have traditionally focused on theories and models as the 

fundamental subjects of analyses of scientific inquiry. Experiments came into play as 

means for linking theories and models to the world. On the classic view, theories are the 

focal starting point, both conceptually and in practice: Scientists begin with their theory 

in hand, formulate a particular hypothesis based on that theory, and then design a 

particular experiment whose aim is to test that hypothesis. As mentioned in Chapter 1, 

Hempel’s writings on experiments are a prime example of this hypothesis-testing view 

(Hempel 1966). According to Hempel, theories are central in scientific inquiry. Theories 

give rise to hypotheses with the form “under conditions C, events of type E will occur,” 

and the point of experiments is to bring about conditions C and check whether or not 

events of type E do, in fact, occur. Thus, the business of experiments is hypothesis-testing, 

and the best experiments are what Hempel calls “crucial tests:” experiments designed to 

settle the conflict between two rival hypotheses about some phenomenon in the world 

which have thus far stood up equally well, until the crucial-test designer identifies a 

situation in which they predict different experimental outcomes. Hansen has a similar 

view of experiments as hypothesis-testing, when he writes that good experiments test 

“single, tersely-expressed hypotheses” (1958, p. 67). In a similar vein, Popper wrote in his 

Logic of Scientific Discovery that “The theoretician puts definite questions to the 

experimenter, and the latter by his experiments tries to elicit a decisive answer to these 
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questions, and to no others… Theory dominates the experimental work from its initial 

planning up to the finishing touches in the laboratory” (Popper 1934, p. 107).

 This classic view of experiments as hypothesis-testing was developed with 

examples from physics in mind, and it applies well to many classic and contemporary 

examples from physics. Part of the pushback against this traditional view has stemmed 

from the objection that it does not apply as well to other sciences, like the life sciences. But 

it is worth noting that this does not mean that the hypothesis-testing view never captures 

what is going on in biology. Plenty of biology experiments follow the hypothesis-testing 

model. The Meselsohn-Stahl experiment was one example; here is another from my work 

in the Sniegowski laboratory at Penn. This case involves questioning the existence of 

general antimutators: alleles that lower the occurrence of mutations across an organism’s 

genome by improving the accuracy of mechanisms like nucleotide insertion, 

proofreading, or DNA mismatch repair. Antimutators are known to exist in some 

organisms like the bacteriophage T4, but they are specific, not general. That means that 

they do not reduce the occurrence of mutations across the entire genome, but instead 

reduce mutations only in particular sites on the genome, or of particular types (for 

example, transitions but not transversions).14  In his paper “General Antimutators are 

Improbable,” Drake (1993) argues against the existence in principle of non-specific 

antimutators. For both structural and evolutionary reasons, he doubts that general 

antimutators that lower an organism’s entire genomic mutation rate could exist.

 Some studies claim to have identified general antimutators, with reported 

strengths ranging from 3- to 50-fold decreases in per-base-pair mutation rate (Fijalkowska 
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& Schaaper 1993; Quinones & Piechocki 1985). But none of them have been tested for 

effects on mutation rate outside of the genetic background in which they were isolated. In 

other words, researchers claim to have found an allele which acts as a general antimutator, 

but they demonstrated it in action in only one context, the genome of the particular 

organism in which they identified it. This raises questions about the background 

specificity of alleged antimutators. They might have a general antimutator effect only in 

one particular genetic background. A particularly well-characterized example is dnaE911, 

which has been shown to have antimutator effects in E. coli K12. The claim being tested is 

that dnaE911 is not a genuine antimutator in the broad sense that organisms bearing it 

will have a lower genomic mutation rate, but that it just happens to have this effect in the 

particular strain of E. coli that Schaaper and colleagues were looking at. To test this, we 

inserted dnaE911 into several other strains of E. coli and checked whether or not it 

affected their genomic mutation rates (Gentile, Shaver, & Parke, in preparation). It had no 

effect on the genomic mutation rate of the other strains of E. coli into which we 

successfully incorporated it, indicating that care should be taken to check for background-

specificity in identifying general antimutators.

 This is one example from biology that fits the picture of experiment as hypothesis-

testing. But this picture does not capture what is going on in all experimental inquiry in 

biology. The Lenski experiment is a case in point. Unlike the antimutator experiment, the 

Lenski experiment was not designed to test a particular theoretical prediction. It was 

informed by the theoretical backgrounds of evolutionary theory and population genetics. 

But it was motivated by the insight that evolving bacterial populations in the lab in real 

time, for a long time, would offer an unprecedented and powerful way to learn about the 

long-term dynamics of adaptation and diversification. As discussed in Chapter 2, while 
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the experimental results initially centered around the relationship between fitness and cell 

size, as the experiment went on they incorporated background from, and asked and 

answered questions about, long-term evolutionary dynamics drawing on areas of 

theoretical background which were not explicitly drawn on at the experiment’s outset, 

including the dynamics of punctuated equilibrium, beneficial mutations, evolution of 

mutation rates, ecology, and many others.

 Strict hypothesis-testing is not the whole picture; experimental inquiry can be 

more open-ended. The last couple of decades have seen attempts to give a richer picture of 

experimental inquiry, and account for the fact that not all experiments are in the business 

of straightforward hypothesis-testing.

3.2.  Exploratory Experiments: A Response to the Classic View

Isaac Newton argued that “hypotheses… have no place in experimental 
philosophy,” a view echoed by mathematician Roger Cotes: “Those who assume 
hypotheses as first principles of their speculations… may indeed form an 
ingenious romance, but a romance it will still be” (in I. B. Cohen Introduction to 
Newton's Principia; iUniverse, 1999). (Glass 2014)

A recent cluster of literature has aimed to show that previous discussion in philosophy of 

science has portrayed the scope of experimental inquiry too narrowly. By focusing on 

theories as central to scientific inquiry, and on experiments purely as means to test the 

hypotheses theory generates, philosophers have not paid enough attention to experiment 

in general, and in particular have neglected the existence of an important kind of 

experiment, exploratory experiments. People have said different things about what 

exploratory experiments are up to; there is no consensus on how exactly to define them. 

In this section I overview the literature on exploratory experiments, which has focused 

primarily on experiments in the life sciences and biotechnology. I then go on to argue 
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that, while some aspects of the exploratory experiment account capture what is going on 

in LNS experiments, the latter look quite different from the paradigm examples of 

exploratory experiment in important ways. More work is needed to fully capture the range 

of kinds of experimental inquiry that take place in biology, and hence in science in 

general. 

 The recent literature I will discuss is the first to explore the idea of exploratory 

experiments in detail, but these authors are not the first to point out that experiments do 

more than test hypothesis. Hempel briefly gestures to this in Philosophy of Natural Science: 

“Experimentation… is used in science not only as a method of test, but also as a method 

of discovery… where no specific hypotheses have as yet been proposed, a scientist may 

start with a rough guess and may use experimentation as a guide to a more definite 

hypothesis” (1966, p. 21). Another early objection to the view of experiments as (purely) 

hypothesis-testing can be found in Hacking’s book Representing and Intervening, where he 

discusses the relationship between theory and experiment. Assessing a representative 

statement of the deductive method in science made by Justus von Liebig in 1863, he 

writes: 

There is however a strong version of Liebig’s statement. It says that your 
experiment is significant only if you are testing a theory about the phenomena 
under scrutiny. Only if, for example, Davy had the view that the taper would go 
out (or that it would flare) is his experiment worth anything. I believe this to be 
simply false. One can conduct an experiment simply out of curiosity to see what 
will happen. Naturally many of our experiments are made with more specific 
conjectures in mind… [but] must there be a conjecture under test in order for an 
experiment to make sense? I think not. The physicist George Darwin used to say 
that every once in a while one should do a completely crazy experiment, like 
blowing the trumpet to the tulips every morning for a month. Probably nothing 
will happen, but if something did happen, that would be a stupendous discovery. 
(Hacking 1983, p. 154)

As Hacking goes on to point out, to say that experiment can precede theory is not to say 

that experiment could exist completely independent of theory. However, it must be 
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acknowledged that “much truly fundamental research precedes any relevant theory 

whatsoever” (Hacking 1983). Sometimes the experiment is done and the theory brought 

to bear or developed later. Thus, even these “simply out of curiosity” experiments are not 

isolated from theory. But there is a big difference between having this kind of relationship 

with theory, and being strongly theory-driven in the way Hempel, Hansen, and Popper 

were talking about. Hacking’s is an early version of discussion of what are now called 

exploratory experiments (A. Franklin 1990; see also discussion in Galison 1987).

 Steinle (1997) is usually credited with being the first to explicitly discuss 

exploratory experiments. He defines them in terms of a particular combination of 

experimental methodology and absence of relevant theoretical background. In particular, 

he says that exploratory experiments involve varying many parameters at once with the 

goal of finding empirical rules, under conditions where a theoretical and conceptual 

framework is unavailable or unreliable. Subsequent definitions of exploratory experiment 

have similarly focused on their relationship with theory. Waters (2007, p. 5) defines them 

as experiments that aim “to generate significant findings about phenomena without 

appealing to a theory about these phenomena for the purpose of focusing experimental 

attention on a limited range of possible findings.” Franklin-Hall (L. Franklin 2005) defines 

them as experiments which are not guided at all by hypotheses or by theory. 

 Thus, the consensus negative definition of exploratory experiments is 

“experiments that are not engaged in hypothesis-testing.” There is no consensus on a 

positive definition. Most of the literature focuses on particular case studies, highlights 

ways that these cases do not fit the hypothesis-testing view, and characterizes them instead 

as paradigm examples of exploratory experiment. A general sense of the common features 

of exploratory experimentation can be drawn from these cases and surrounding 
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discussion of their features. These paradigm cases of exploratory experiments all come 

from new, rapidly-developing research areas in the life sciences, including experiments on 

microRNAs (Burian 2007), nanotoxicology (Elliott 2007), fMRI (Bateman 2012; L. 

Franklin 2005), metagenomics (O'Malley 2007), and high-throughput systems biology 

such as DNA microarray research (L. Franklin 2005).

 Three features unite these paradigm examples: 

1. being theory-informed rather than theory-driven;

2. working in the context of underdeveloped areas of background theory; 

and 

3. using so-called “wide instrumentation.” 

This is not an exhaustive list of the features associated with exploratory experiment, but I 

believe this set of three features represents those unanimously endorsed as characteristic 

of paradigm cases of exploratory experiment. I will say a bit about each of these features in 

turn. 

 Everyone talking about exploratory experiments says that they are not theory-

driven. Waters (2007) introduced the term ‘theory-informed’ to capture what theory does 

to exploratory experiments rather than drive them. Experimentation does not typically 

happen in complete isolation from theory, so to say that experiment is not theory-driven 

is not to say that theory plays no role. Theories are in the background motivating and 

guiding the design of paradigm exploratory experiments, they are just not being used to 

generate specific questions whose specific answers are the experiment’s primary ends. 

Franklin-Hall (L. Franklin 2005) makes a related point about the role of theory in 

exploratory experiment by distinguishing theoretical background from local theory, where 

theoretical background is the canon of theory that broadly informs and guides an 
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experiment, while local theory involves specific predictions about the particular entities 

and processes at play in a particular experimental system. She is not always clear about the 

difference between theoretical background and local theory, but this helps: “Background 

theories, among other things, direct inquirers to the kinds of properties that could 

possibly have a causal role in their local investigations, even if they do not posit particular 

causal relationships;” the latter is what local theories do (L. Franklin 2005, p. 893). So, 

saying exploratory experiment is theory-informed rather than theory-driven means that 

theory still plays an important role, but not the role of driving the experimenter to test a 

specific prediction. The distinction between theoretical background and local theory helps 

highlight this relationship: All experiments engage with theoretical background, but 

theory-driven experiments test hypotheses that fall out of the relevant local theory, while 

exploratory experiments do not. Their aims with respect to theory are different, and 

involve things like characterizing new phenomena or generating new theory.

 The second feature common to the paradigm cases of exploratory experiments is 

that they occur in fields with theoretical backgrounds that are new, underdeveloped, 

rapidly expanding, or some combination of the three. Steinle identifies exploratory 

experiment as “typically tak[ing] place in those periods of scientific development in which

—for whatever reasons—no well-formed theory or even no conceptual framework is 

available or regarded as reliable” (1997 p.S70). O’Malley (2007) describes how the 

development of experimental work in metagenomics was motivated by theoretical and 

practical difficulties with identifying and classifying individual microbes.15 Elliott’s 

example of nanotoxicology (2007) similarly involves experimental work aimed at 
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generating lots of information to address a gap in theory, in this case, knowledge of the 

health effects of the new and rapidly expanding body of nanotechnology products. These 

and the other paradigm cases share the feature of experimental inquiry taking place in the 

absence of particular theoretical background on the experiment’s particular subject 

matter, and with the explicit goal of eventually helping to flesh out that theoretical 

background. This characteristic is what motivates Burian to equate exploratory 

experimentation with “discovery science” (2007, p. 12). 

 The third common feature of exploratory experiment is using what Franklin-Hall 

(L. Franklin 2005) has termed “wide instrumentation.” This is basically another term for 

high-throughput instrumentation, techniques that allow researchers to rapidly measure 

many different features of an object of study in parallel. This goes hand-in-hand with the 

view of exploratory experiments as productive activities, producing as much data as 

possible from as many angles as possible to bolster theoretical background where it is 

lacking. Franklin’s discussion of research using DNA microarrays exemplifies wide 

instrumentation’s central role in exploratory experiment. The goal in these experiments 

was to survey and catalog all of the genes in a yeast genome that had certain cell-cycle-

regulating features, for the purposes of helping scientists learn more about transcriptional 

control in the cell cycle. They were not asking specific questions about a specific aspect of 

transcriptional control, but rather trying to gather as much information on it as they 

could from many angles at once. See (Burian 2007; L. Franklin 2005) for further 

discussion of the connection between exploratory experiment and wide instrumentation.  

 To summarize what has been said so far in this subsection: Exploratory 

experiment has been defined negatively as experimental inquiry that is not hypothesis-

testing. Positive accounts focus on describing paradigm examples of exploratory 
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experiment and highlighting their central features. The three features common to these 

paradigm cases are being theory-informed but not theory-driven, lacking well-established 

theoretical background, and employing wide instrumentation. It is important to note that 

these are not meant to be necessary or sufficient conditions for categorization as an 

exploratory experiment. People say many things about exploratory experiments in the 

literature and do not agree on a single positive definition; the focus is on examples and 

their common themes.

 To the extent that the three-feature account I just discussed is meant to 

characterize the paradigm cases of exploratory experiment in the papers by Franklin-Hall, 

Burian, O’Malley, Elliott, and others, it does a fine job. To the extent that it is meant to 

capture the entire range of experimental inquiry which is not hypothesis-testing, this 

account is inadequate. The Lenski experiment (see Chapter 2) is a great example of an 

occupant of the middle ground: It is not a case of classic hypothesis-testing, but it does not 

exhibit the paradigm features of exploratory experiment.

 At first pass, the point about being theory-informed rather than theory-driven 

nicely captures what is going on in the Lenski experiment. While the experiment was not 

motivated by the desire to answer a particular question, it was strongly influenced, 

informed, and guided by theory. At the outset of the experiment, theoretical background 

in experimental evolution studies and population genetics motivated the researchers to 

design this new way to study long-term evolutionary dynamics, and learn from watching 

them unfold in real time in the laboratory. Over the course of the experiment, more 

specific theoretical backgrounds from both evolution and ecology have come to bear in 

learning from the data being generated.
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 The other two features of paradigm exploratory experiments, lack of solid 

theoretical background and wide instrumentation, do not characterize the Lenski 

experiment. Unlike metagenomics, nanotoxicology research, and other cases of 

exploratory experiment discussed above, the Lenski experiment was not designed to fill an 

analogous identified wide gap in background theory in the relevant area of inquiry.16 The 

experiment operates against the well-established background of evolutionary theory in 

general, and population genetics in particular. Furthermore, researchers are not gathering 

data in the massively parallel or high-throughput way characteristic of wide 

instrumentation. 

 It is worth noting two points before moving on. First, in saying that the standard 

account of exploratory experiments does not capture what is going on in the Lenski 

experiment and thus does not capture what is going on in all non-hypothesis-testing 

experimental inquiry, I am not arguing that it does a bad job of capturing what it aims to 

capture. Most of the papers on exploratory experiment focus on characterizing paradigm 

cases, and their account does a fine job of that. My claim is that, to the extent that the 

exploratory experiment account in intended to go beyond those cases and capture all non-

theory-driven experiments, as some imply (see discussion of Elliott’s view below), it is not 

doing the trick. 

 The second point to note is that all three of the features I discussed above as 

applying or failing to apply to the Lenski experiment should be thought of as matters of 
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degree, not discrete binary characteristics. An experiment can be theory-driven or theory-

informed in a number of different ways and to different degrees, as I discuss in more 

detail below. Similarly, while there is certainly a qualitative difference between the breadth 

and throughput of data collection in DNA microarray studies versus in the Lenski 

experiment, there is no obvious line that allows categorization of every experimental 

protocol as using only “wide” high-throughput techniques versus traditional low-

throughput ones. Finally, while there is a clear difference between the relatively new and 

patchy theoretical background of nanotoxicology and the established and rich bodies of 

evolutionary theory and population genetics, there are no obvious criteria for when a 

theoretical area crosses the threshold from new and underdeveloped to established and 

well-developed. 

 I have shown how exploratory experiments are distinguished from classic 

hypothesis-testing experiments, and how neither picture adequately captures what is 

going on in the Lenski experiment. There is a conceptual space of experimental inquiry, in 

which hypothesis-testing and exploration occupy two parts, but not the whole space. The 

idea that such a space exists is not new. In an early paper on exploratory experiments, 

Steinle writes: 

The terms [‘hypothesis driven’ versus ‘exploratory’ experimentation] do not refer 
exclusively to specific experimental procedures, rather they indicate a whole 
range of procedures. In both cases more detailed distinctions can and should be 
made for further investigation. My claim is not that all experimentation should be 
subsumed under these two types. There may be experimental procedures of still 
another character. What I do claim, however, is that my distinction covers some 
essential aspects of experimentation in scientific research. (1997, p.S69)

 Since Steinle’s paper the literature on exploratory experiments has focused on 

fleshing out the picture of exploratory experiments, and little has been said about these 

“experimental procedures of another character.” But this view of a whole range of 
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procedures has been developed in various ways. The general consensus in the literature on 

exploratory experiments is that their relationship to hypothesis-testing experiments 

should be thought of as a continuum, not a dichotomy. While some gestures have been 

made in the direction of fleshing out what this continuum looks like, there is a lot of work 

left to do. 

 Before moving on to propose some further steps in that direction, I should make a 

point about terminology. As indicated above, there is some confusion in the literature on 

exploratory experiments as to whether they should be understood as constituting the 

entire range of non-hypothesis-testing experiments (as Elliott says), or some subset of that 

range (as Steinle implies). We need a better sense of what non-hypothesis-testing 

experiments are up to, and the kinds of things that people have talked about as paradigm 

cases of exploratory experiment do not capture everything important there. I do not want 

to get hung up on labels; if we end up calling all non-hypothesis-testing experiments 

exploratory, that is fine, and if we end up calling just a subset of them truly exploratory, 

that is fine too. My key point is that we need to get clearer about that whole space, 

comprising the paradigm cases and everything in between. The literature on exploratory 

experiments seems to be gesturing at the whole space with their negative definition, but 

then talking about only a portion of it with their case-based accounts. 

 Section 3.3 discusses others’ work toward developing the view that there is a range 

of kinds of experimental inquiry that go beyond the hypothesis-testing paradigm. They 

have made a good start, but none of their accounts are clear enough about what this space 

of experimental inquiry actually looks like. This is by no means an easy task, as many 

different kinds of questions go into thinking about what it is to be an experiment and how 

experiments fit in to the larger picture of scientific inquiry.
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3.3.  Spaces of Experimental Inquiry

Even before the literature on exploratory experiments took off, people were starting to 

push back against the traditional equation of experimentation with hypothesis testing. In 

his paper “Theory and Experiment in Evolutionary Biology,” Brandon (1994) proposed a 

two-dimensional conceptual “space of experimentality.” His overall claim is that, while 

hypothesis-testing is the paradigm kind of experimentation, scientists can engage in 

activities that do not exactly fit this paradigm and still be rightly called experimental. His 

starting point for choosing the dimensions of this space is looking at the relationship 

between experiment and two scientific activities it is contrasted with: observation and 

description. From these contrasts, Brandon draws out two methodological questions 

relevant to determining if a case of inquiry is experimental: First, does it manipulate or 

not? Second, does it test a hypothesis or measure a parameter? 

 He argues that if we think of these two dimensions (manipulating versus not and 

hypothesis-testing versus measuring) as strictly dichotomous, we run into trouble. 

Manipulative tests of hypotheses are experiments, but there is no obvious reason why 

manipulative parameter measurement should not count as experimentation. Brandon sets 

aside this concern by arguing that both dimensions are continuous. The extent to which a 

researcher manipulates nature (or not) in a given case of inquiry is a matter of degree. 

Similarly, the same study can be engaged in both hypothesis-testing and measurement. As 

an example he discusses studies of the strength of selection in natural populations, which 

often proceed as follows: identify types (like phenotypes or genotypes) in the population, 

measure some component(s) of their respective fitnesses, and use these data to (1) test the 

hypothesis that natural selection is acting on the population, and (2) measure the strength 

52



of selection on the different types. Brandon points out that whether this kind of study is 

thought of as primarily a case of hypothesis testing or parameter measurement depends 

not on some intrinsic feature of the study, but on how the researcher in question sees it 

and describes it, or how the relevant scientific community judges it. Furthermore, “[a]fter 

the fact, one can always recast a parameter measurement as a test of the hypothesis that 

the parameter takes the value that we have just observed” (Brandon 1994, p. 65). Thus, we 

cannot always distinguish cases of scientific inquiry into the mutually exclusive categories 

of hypothesis testing versus description, and calling only the former experiment would 

seem arbitrary.

 Brandon’s paper came before the literature discussing exploratory experiment as 

such, but it is an important early contribution to thinking about experimental inquiry as a 

space that includes, but is not limited to, hypothesis testing. In the subsequent literature 

on exploratory experiment, several papers have promoted the view that hypothesis testing 

versus exploration is not a black-and-white dichotomy. One is by Waters (2007), who 

briefly but provocatively discusses how the line between hypothesis testing and 

exploratory experiment is not sharp. He says that thinking about the difference as a simple 

dichotomy is misleading, and “[t]he fact that theory plays a multiplicity of roles in theory-

driven research indicates that the difference between exploratory experimentation and 

theory-directed experimentation may involve multiple dimensions” (2007, p. 6). Waters 

does not say what exactly these dimensions might be, but his discussion indicates that 

they (or at least some of them) should focus on the relationship between theory and 

experiment.

 The most extensive work on fleshing out the space between theory-driven and 

exploratory experiments is in Elliott’s paper “Varieties of Exploratory Experimentation in 
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Nanotoxicology” (2007). Elliott defines exploratory experimentation negatively as “the full 

range of experimental activities that do not involve theory testing (and that have therefore 

been neglected in previous philosophical literature)” (p. 10). He acknowledges that 

depending on how broadly or narrowly one understands exploratory experiments, one 

could think of them as occupying this entire range, or a subset of it. Ultimately his 

concern is with mapping out this space, not with precisely which part of it represents the 

exploratory part. Thus, his project is a starting point for the same project I am interested 

in: mapping the conceptual space of experimental inquiry in a way that includes the space 

occupied by neither classic hypothesis-testing nor the paradigm examples of exploratory 

experiment discussed in the literature. 

 Elliott’s proposed taxonomy distinguishes kinds of exploratory experimentation 

along three dimensions: 

1. the positive aims of experimental inquiry; 

2. the role of theory in experiment; and 

3. the methods and strategies used for varying experimental parameters. 

He says that we can arrange varieties of exploratory experiment according to their 

position along each of these dimensions, which are continuous, not discrete. So far, so 

good; but when it comes to actually describing what the overall space looks like, his 

account gets confusing. First, he does not say how points along any given dimension are 

supposed to relate to each other, or what sort of scale is represented on each dimension. 

Second, he says at the outset that the dimensions are continuous, but the way he describes 

at least two of them (dimensions (1) and (3)) makes them sound discrete. 

 Elliott’s examples of different values experiments could take on dimension (1) 

(positive aims of experimental inquiry) include identifying regularities between variables, 
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characterizing particular entities in time and space, and developing new experimental 

techniques or instrumentation. This makes this first dimension sound like a qualitative 

dimension with discrete values. Regarding dimension (2), the role of theory in 

experiment, he focuses on the point that experiments can be more or less heavily 

influenced by theory; this sounds more like a quantitative and continuous dimension. But 

his examples of particular values on this dimension go beyond quantifying how much 

influence theory has, and sound more like describing qualitatively distinct kinds of roles. 

His examples of values along this second dimension include drawing on some degree of 

theoretical background;17  undertaking experiment explicitly to fill a gap or resolve 

anomalies in theory by “collecting a wide range of data in hopes of determining how, if at 

all, a particular theory has gone wrong or how it applies in a somewhat new 

context” (Elliott 2007, p. 13); and “instructions or strategies for exploration actually 

play[ing] something like the traditional role of ‘theory’ in a particular domain” (p. 14), in 

other words, the role of theory in experiment in this last instance is that of “being 

constituted by exploratory projects or strategies”.18  The difference between these three 

examples of “locations” on Elliott’s second dimension does not look like one of scale; they 
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plays no role, in which case it could still be a point on this one-dimensional quantitative spectrum (that is, 
its role is as minimal as possible). But it seems like he is saying something different, like this: Within certain 
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gives this example, drawing on Waters’ (2007) discussion of experimentation in classical genetics: 

… Waters argues that classical genetics from the 1920’s to the 1940’s included three 
major cognitive elements: pools of special knowledge,  patterns of explanation, and 
patterns of investigation. The third element, “patterns of investigation,” consisted of 
exploratory strategies that structured research. According to Waters, researchers guided 
by these strategies designed series of experiments such that explanations of the results, 
explanations which typically appealed to the transmission theory of inheritance, would 
reveal information about one or another biological process (and often processes not 
related to the transmission theory). (Elliott 2007, p. 13)



cannot be thought of as three points in a spectrum from less to more heavily influenced by 

theory as he indicated in the beginning of his discussion of this dimension. Rather, they 

look like three different kinds of relationships between theory and experiment. This 

distinction between qualitative and quantitative aspects of the role of theory in 

experiment—that is, what kind of role theory plays and how strongly it plays it—is 

important, but talking about both at once leads to an overall confusing picture of what 

this single dimension in Elliott’s space is supposed to look like.

 Elliott’s third dimension, methods and strategies used for varying experimental 

parameters, looks like the first in that his description of it implies a qualitative dimension 

with discrete values. Candidate values include “systematically altering the features of an 

experiment in order to uncover regularities,” “study[ing] a phenomenon using as many 

tools and techniques as possible so as to understand it more fully and to gain more solid 

epistemic access to it,” and “working as a community to collect experimental results under 

a wide variety of conditions” (pp. 14–15). These do not sound mutually exclusive. 

Furthermore, they are put vaguely enough that it is unclear why we should think of them 

as features particular to exploratory experiment, rather than potential features of any 

experiment. More concrete values on this third dimension include using high-throughput 

(or “wide”) instrumentation as opposed to traditional instrumentation. Again, it is not 

clear how this sits with respect to the other three options. High-throughput 

instrumentation is a tool and technique which can be used to study a phenomenon to 

understand it more fully (the second cited example of a value on this dimension, above). 

So why should we think of these as two separate points on a dimension of methods for 

varying experimental parameters?
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 Missing from Elliott’s account is a sense of what the dimensions, and thus the 

space as a whole, actually look like. For instance, what is the scale that makes something 

fall at one end versus the other of the methods and strategies dimension? He intends this 

three-dimensional space to be a functional classification scheme: “To place a particular 

sort of exploratory experimentation within the taxonomy, one can identify where it fits 

along each of the three dimensions” (2007, p. 15). It is not clear how the example 

characteristics mentioned above (altering experimental features, using many tools and 

techniques, and working as a community) constitute a linear pattern that we could think 

of as a one-dimensional continuum.   

 To be fair, Elliott is quick to point out that there is more work to be done to 

improve his taxonomy of experiments (2007, p. 18), and furthermore, it is an open 

empirical question whether or not this space can actually be mapped. By defining this 

space at all, he has achieved his goal of providing a “more complete and systematic 

account [than has been previously given] of the ways in which different forms of 

[exploratory experiment] compare with each other” (p. 4). Two good starting points for a 

better account of this overall space would be (1) being clearer about which features of 

experiments can be talked about qualitatively versus quantitatively, that is, distinguishing 

“how-much” questions from “what-kind” questions, and (2) distinguishing the 

dimensions in ways that would allow natural ranking along continua like less-to-more, 

weaker-to-stronger, etc.

 One question that immediately comes to mind in thinking about how to give an 

improved account of the whole territory of experimental inquiry—hypothesis-testing, 

paradigm cases of exploration, and everything in between—is: What is the point? The list 

of things we could say to describe an experiment seems endless: in what manner and how 
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strongly it relates to theory, which theory or theories it relates to, what background 

information it draws on beyond theoretical content, what information it generates or 

purports to generate, how the experimental system relates to the researcher’s target(s) in 

the natural world, the nature of those target(s), how many parameters are varied in the 

experiment, how they are varied, details of the protocol… this list could go on and on. A 

crucial question in accounting for the “space of experimentality” is to decide, and justify, 

which features of experimental inquiry matter to defining this space.

 In Brandon’s and Elliott’s efforts to define such a space, we saw two different ways 

to think about this. Brandon started with trying to distinguish experiment from two of its 

contrast classes, observation and description; Elliott started with trying to capture what 

distinguishes non-hypothesis-testing experiments from those that test hypotheses. Here is 

a summary of their portrayals of the space:

  Brandon’s two dimensions: 

   (a) hypothesis-testing/not

   (b) manipulating/not

  Elliott’s three dimensions: 

   (c) positive aim

   (d) role of theory

   (e) methods for varying parameters

Collectively, these dimensions address three different aspects of experimental inquiry: the 

experiment-theory relationship (a, c and d), the experimental system and protocol (b and 

e), and the experimenter’s intentions and motivations (c). 

 I take (c) to involve two of these aspects because some of the examples Elliott gives 

for this dimension seem to explicitly involve theory (such as “identifying major 
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regularities between variables and developing a corresponding conceptual scheme”), and 

others do not (such as “varying multiple design elements of an instrument to determine 

which design will be most effective”) (Elliott 2007, p. 11). Perhaps everything Elliott talks 

about as part of this first dimension of his space could be folded into the other two. Saying 

that the positive aim of a given experiment is to identify regularities and develop a 

conceptual scheme implies that theory plays a particular role in the experiment, namely, 

as its aim: The point of this experiment is not to test theory, but to generate it. Likewise, 

saying that the positive aim of a given experiment is to vary the instrumentation to figure 

out how to use it most effectively implies the use of one method for varying parameters 

(or, perhaps setting the stage for effective parameter-varying).

 In the rest of this chapter, I build on both Brandon’s and Elliott’s accounts as 

starting points for further clarifying a key piece of the conceptual space of experimental 

inquiry: the relationship between experiment and theory. This tracks both Brandon’s 

dimension about hypothesis-testing and what I think Elliott had in mind with his 

dimension about “positive aims.” It seems right to say that anything we could say about 

the positive aims of an experiment could be talked about in terms of the experiment-

theory relationship, features of the experimental system and protocol itself, or the 

experiment-world relationship (that is, what the experimental object is meant to tell us 

about the target).

 I ultimately think that a complete account of the conceptual space of experimental 

inquiry should address all three of these latter aspects. In the remainder of this chapter I 

begin to address the first, the experiment-theory relationship. I give a preliminary account 

of a more nuanced and realistic way to approach thinking about experiment-theory 

relationships.
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3.4.  Theories Can Play Many Roles in Experiments

The previous accounts discussed above tend to talk as if a single body of theoretical 

background plays one role at the outset of each experiment (either as driver or informer). 

This is misleading. On the hypothesis-testing view, that picture looks something like this:

THEORY EXPERIMENT

EXPERIMENTTHEORY (NEW INFORMATION, 
NEW THEORY...)

HYPOTHESIS

As Hempel, Hansen, and others describe it, researchers operate within the context of 

particular theoretical backgrounds, and specific hypotheses are generated from those 

backgrounds; these motivate the researchers to design and undertake experiments to test 

the hypotheses. The exploratory experiment picture is different. There, experiments are 

informed but not driven by theoretical background, and theory (or the generation of new 

information to eventually fortify theory) follows from it as an aim. As Elliott (2007) 

describes it, theory might play little role in the design or guidance of exploratory 

experiments, but it plays a role in their motivation, namely, they aim at developing new 

theoretical ideas and concepts. So, the picture there looks more like this:19

THEORY EXPERIMENT

EXPERIMENTTHEORY (NEW INFORMATION, 
NEW THEORY...)

HYPOTHESIS

In both accounts of experimentation, the picture focuses on one body of background 

theory playing one role in an experiment, and that role being played at the experiment’s 

temporal outset: either as provider of a specific hypothesis for the experiment to test, or as 

provider of noteworthy gaps to be filled. 
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 This is misleading because multiple, diverse theoretical backgrounds commonly 

come to bear in individual experiments. Theories can also come to bear differently at 

different points in an experiment. They can direct, guide, influence, inform, and result 

from experiments all at once; new theories can come into play over the course of the 

experiment which researchers were not drawing on at its outset; they can also fail to play 

much of a role at all. I think a good starting point for a better understanding of the 

conceptual space of experimental inquiry is getting rid of the notion that “the role of 

theory in experiment” could be a single dimension in that space. Different questions need 

to be asked here, and they should be asked about the roles of theories in experiments. 

These include: Which theoretical backgrounds are coming to bear in the experiment? 

What roles are they playing, and how strongly are they playing them (for instance, does 

addressing a particular aspect of theoretical background generate the entire motivation for 

doing the experiment, or is it one influence among many)? When do they come to bear 

over the timeline of the experiment, from its original motivation to its design to its 

implementation to its end? Is a hypothesis being tested at the outset? Are hypotheses 

being generated along the way or retroactively? 

 The following list is a starting point for separating out these sorts of questions in 

the context of a given case of experimental inquiry. I do not think that this list is 

exhaustive, but it is a start toward being clearer about the different roles that exist. Here 

are three different questions we could ask about the roles of theories in experiment:

1. Origin: What role does theory play in an experiment’s origin or 

motivation? Was the decision to do the experiment motivated by desire to 

test a particular hypothesis generated by some particular theory? Was it 

motivated by identifying a particular area of theory that lacks empirical 
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validation, or a problematic conflict between the predictions of rival 

theories that needs to be settled?

2. Direction: What role does theory play in the experiment’s direction or 

deciding what to do next? Once the decision to do the experiment has been 

made, what theoretical background, or specific theoretical guidance, goes 

into figuring out what to do next if things are not going as planned, or 

modifying the original course of action if unanticipated results or 

surprising dynamics emerge? 

3. End: What are the experimenter’s ultimate aims with respect to theory? 

This can take a number of forms, including answering specific questions, 

resolving anomalies, adjudicating among rival theories, generating 

information to fill gaps in theory, or laying groundwork for new theoretical 

backgrounds. 

When I say that previous attempts to map the space of experimental inquiry have focused 

only on theory’s role at the outset of an experiment, I do not mean that they have focused 

on only the first kind of role I distinguish above, that of origin or motivation. I mean that 

they have made it sound like experimenters establish a particular goal with respect to 

theory at the temporal outset of an experiment—to test a hypothesis in the classic case, or 

to generate more or better theory in the exploratory case—and that this goal determines 

and constitutes the role of theory in that experiment. My three-part distinction is intended 

to make explicit that this is often not how it works. Others have pointed to the distinction 

between what I am calling theory’s roles as origin, direction and end, but they tend to 

talk as if one theory plays one of these roles. Elliott, for example, in his discussion of his 

second dimension (the role of theory in experiment), says that “[i]t is important to 
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remember… that although Steinle’s preferred form of EE [exploratory experiment] 

includes very little role for theory in the design or guidance of EE, the goal of the activity 

is to develop new theoretical ideas and concepts” (2007, p. 12). However, he thinks of the 

role of theory in experiment as classifiable along a single dimension, which implies that an 

experiment can have a value on this dimension representing the role theory plays in it. 

The point of my account is to underline that often it does not make sense to talk of the role 

that theory plays in an experiment, but rather the roles that theories play in an experiment.

 On the classic view of experiments as hypothesis testing, these three roles are all 

filled by the same body of theory. Consider again the antimutator example discussed 

above. In this case, the relevant theoretical background concerns genetic mutations: 

general theory about their evolution and mechanisms combined with Drake’s particular 

arguments against the probability of general antimutators. This background, prompted by 

details about the previous results being scrutinized in the experiment, led to the question: 

Is dnaE911 a general antimutator in strains of E. coli other than strain K12? This question 

motivated the experiment in the first place (origin), drove its design (direction), and its 

answer constituted the aim and final upshot of the experiment (end).

 The Lenski experiment, in contrast, is a case where it is wrong to think about the 

theory-experiment relationship in terms of one theoretical background playing one role. 

There, evolutionary theory and population genetics were in the background from the 

outset; these played an origin role which is best classified as informing, but not driving. 

The experimenters set out to learn about the dynamics of evolutionary change in a novel 

and relatively open-ended way; their aim was not to confirm or reject a specific hypothesis 

about those dynamics. Over the course of the experiment, elements of theoretical 

background came to bear which were different from those that served as the experiment’s 

63



motivation, either because they were much more specific (as in the case of developing 

theory on the evolution of mutation rates (Sniegowsk, Gerrish, & Lenski 1997)), or 

because they branched into areas outside of evolutionary theory (as in the case of 

ecological theory about multiple populations’ stable coexistence (Turner, Souza, & Lenski 

1996)). These theoretical areas came into play as both direction (for example, by 

motivating measurement of new parameters and other additions to the protocol) and 

ends. Thus, with the three-part distinction above, we can say something different about 

each role of theory, and about distinct theoretical backgrounds playing each kind of role 

within the context of a single case of experimental inquiry.

 For the paradigm cases of exploratory experiment, finally, we might have relatively 

little to say about the first or second roles theories can play, origin and direction. In some 

cases there might be no particular background theory playing a notable role in the 

experiment’s origin or direction; the experiment might be undertaken wholly or primarily 

to produce new information. In this case, we could focus on the role of theory primarily in 

the third sense, the end.

 I criticized Elliott above for implying that cases of experiments could be situated at 

particular locations along his dimensions, without being clear about what those 

dimensions look like exactly. So far, my proposal doesn’t seem to fare much better on this 

count. But my proposal is not that origin, direction, and end are three linear dimensions 

along which cases of experiment can be neatly situated. Rather, it is that to understand the 

conceptual space of experimental inquiry we need to understand these as three different 

roles theories can play in experiments. If we like we can think of these as three 

“dimensions” in a space, but visualizing how experiments fit in this space is going to get 

complicated. It is more than just a matter of situating cases in a three-dimensional space. 
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This is because regarding each of the three roles we should ask some further questions 

about the bodies of theory in question. In particular (and this is not necessarily 

exhaustive): 

1. A general question: Are any two, or all three, of the roles shared by one 

body of theory, or are different bodies of theory coming into play for each 

role? (This is a key question which will set most cases of classic strict 

hypothesis-testing apart from the rest).

2. Two more specific questions: Are these bodies of theory theoretical 

background or local theory, in Franklin-Hall’s sense? And, even more 

specifically, what are they?

 Even if we ignore the specific questions, it will get complicated to visualize how 

particular cases could fit in this space.20  But focusing just on the three dimensions and the 

general question, we can see that classic hypothesis-testing experiments and the paradigm 

cases of exploratory experiments, respectively, will occupy particular regions in the space. 

And that leaves plenty of unoccupied territory as well, what I’ve been calling the space in 

between. That is where cases like the Lenski experiment, and many other examples (not 

just from experimental evolution but across science) will fall.

 Classic hypothesis-testing cases will involve a single body of theory playing 

specific roles in origin and end, namely, generating a specific hypothesis to test and either 

rejecting or failing to reject that hypothesis, respectively. That same body of theory will 

play the direction role; this can be done in a number of ways, but the key distinguishing 

feature of classic hypothesis-testing in this space is that a single theory occupies all three 
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roles, and in a very particular sense with regard to origin and end. For example, in 

Section 1.1 I discussed the Meselsohn-Stahl experiment, where the body of theory in 

question regarded the mechanism of DNA replication. A specific hypothesis was on the 

line, the hypothesis that DNA replication is semiconservative, and the experiment was 

designed with the aim of achieving an intervention which would test that hypothesis and 

rule out alternative possible mechanisms of DNA replication.

 The paradigm cases of exploratory experiments will look quite different in this 

space. In these cases at least one body of theory will play a key role in end: The 

experimenter’s aim is to fill significant gaps in that theory, augment it, or perhaps develop 

it from scratch. Theory plays a weaker role in origin and direction, and the role it does 

play there is typically occupied by a different body of theory than that which is the 

experimenter’s end. For example, in the case of fMRI studies: We know little about how 

particular patterns of brain activity correlate with particular cognitive states, and the goal 

of this research is to collect huge amounts of data, generate new hypotheses to test, and 

eventually develop a robust body of theory about these connections. A different set of 

bodies of theory than the latter—including theory about how the brain works in general, 

and how to build the appropriate scanners—informs fMRI experiments in both the senses 

I’m calling origin and direction.

 So classic hypothesis-testing and exploratory experiments occupy two different 

parts of this conceptual space, and together they do not occupy the whole space. How 

would we situate the Lenski experiment in this space? There are a number of ways to think 

about this; doing so brings us back to the question I raised and set aside in Section 2.1.5, 

namely, what is the experiment? One way to think about it would be the entire 27+ years 

of propagation of the E. coli populations; another way would be to treat each individual 
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paper that has been published as a self-contained experiment to fit in the conceptual 

space. There is not right answer here. The important point is that either way of thinking 

about it will result in something which occupies neither the classic hypothesis-testing or 

paradigm exploratory experiment portions of the space.

 Much more work is needed to develop an account of the conceptual space of 

experimental inquiry which fully characterizes the space in between classic hypothesis-

testing and paradigm cases of exploration. In future work I will develop further an 

account of what this space looks like and how to situate particular cases in it. My aim in 

this chapter was just to first show that previous accounts did not do the whole job, and 

second, lay the groundwork for a key piece of doing the job better: a more realistic picture 

of the complex relationship between experiments and theories. 
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4. Experiments and Simulations21

In this chapter I respond to a debate about experiments versus simulations which involves 

arguing that experiments have epistemic privilege over simulations. Experiments are 

thought to have two particular virtues which give them this privileged status. First, they 

generate greater inferential power, or external validity: Experimenters are in a better 

position to make valid claims about their targets of inquiry in the natural world. Second, 

experiments are a superior (or, the only) source of surprises or genuinely novel insights. I 

will argue that both of these claims are false as generalizations across science. All of 

scientific inquiry involves engaging with some object of study—a model, a physical system 

in the laboratory or field, or a combination of these—to learn about some target of 

inquiry. The methodological distinction between experiment and simulation is certainly 

important for making judgments about epistemic value. But I will argue that this is the 

case only in a context-sensitive way, not as a generalization across science. The 

experiment/simulation distinction should not be used as a basis for in-principle 

judgments about epistemic value. Whether we are better off studying a phenomenon in 

the world by interacting with experimental systems or computer simulations depends on a 

complex of factors—including the kind of question we are asking and what we are asking 

it about—and not on some absolute assessment of the primacy of one kind of scientific 

inquiry over another.
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4.1.  Some Preliminary Points About Experiments and Simulations

Scientific practice in the twenty-first century is increasingly blurring the lines between 

experiment and simulation. While it was once common for individual scientists, 

laboratories, or even entire subfields to focus on only one of these methodologies, 

experimental and computational methods are now increasingly combined. This has led to 

new ways to do science, as well as opportunities to reexamine the roles that experiment 

and simulation play in scientific inquiry, and their changing natures in practice. These 

trends are reflected in increased attention from philosophers of science to experiment (see 

discussion in Chapters 1 and 3), simulation (e.g., Humphreys 2004; Weisberg 2013; 

Winsberg 2010), and their methodological and epistemic points of convergence and 

contrast (e.g., Barberousse, Franceschelli, & Imbert 2008; Guala 2002; Morgan 2005; 

Morrison 2009; Parke 2014b; Parker 2009; Peck 2004; Peschard 2012; Winsberg 2009).

 There is a pervasive view among philosophers and historians of science, and 

scientists themselves, that experiments have epistemic privilege over simulations. That is, 

they allow us to make better inferences about the natural world, or generate more reliable 

and trustworthy scientific knowledge. Simulations are often talked about as a fallback, 

something a scientist should do only when an experiment would be too cost-prohibitive 

or otherwise impractical. A number of people have recently put this kind of idea in 

writing. For example: “[Simulation’s] utility is debated and some ecologists and 

evolutionary biologists view it with suspicion and even contempt” (Peck 2004, p. 530); 

“simulations are supposed to be somehow less fertile than experiments for the production 

of scientific knowledge” (Guala 2002, p. 4); and “the intuition of [non-economic] sciences 
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and philosophy is that experiment is a more reliable guide to scientific knowledge” 

(Morgan 2005, p. 324).

 Experiments are thought to have two particular virtues which give them a 

privileged status over simulations. The first is that they generate greater inferential power, 

or external validity: Experimenters are in a better position to make valid inferences from 

their objects of study to their targets of inquiry in the natural world. The second is that 

experiments are a superior (or the only) source of surprises or novel insights. I will argue 

that both of these claims are mistaken as generalizations. To the extent that the difference 

between experiment and simulation carries epistemic weight, this weight is context-

sensitive; the mere fact that a case of scientific inquiry counts as an experiment or a 

simulation is no indication of its epistemic value. There is a lot of important work to be 

done in understanding what grounds and validates inferences from objects of study to 

targets of inquiry in the natural world (I discuss this further in Chapter 5). Focusing on 

whether to classify cases as simulations or experiments, per se, muddies the waters of that 

task.

 In arguing that there is no in-principle difference in epistemic value between 

experiments and simulations across science, I am not endorsing the positive claim that 

experiments and simulations are epistemically on a par across science. I am not 

challenging the idea that, within the context of a particular research area, there might be 

good reasons to think that experiments have epistemic privilege over simulations—or vice 

versa. These might be historical reasons, like experiments having a particularly good track 

record compared to simulations in that research area, or more principled reasons, like lack 

of enough data to build computer models which we could trust anywhere near as much as 

we trust experiments (this is the case, for example, in clinical trials of new medications). 
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There might also be good reasons in particular research areas to think that simulations 

have epistemic privilege over experiments, for example, areas where experiments are 

impossible like studies of long-term climate change. But these are both context-sensitive 

points about particular contexts of inquiry, not about experimental versus simulation 

methodology across science.

 Furthermore, I am not challenging the idea that experiments have priority over 

computer simulations in the greater picture of what fundamentally grounds scientific 

knowledge. We know how to do good computer simulations precisely because we have 

gained knowledge about the world through observation and experiment. In the grand 

scheme of things, empirical data is fundamental for answering scientific questions about 

the natural world. Theory plays an important role in simulations designed to teach us 

about particular targets in the natural world; as Winsberg nicely puts it, “In such contexts 

[i.e., most simulations though especially in the physical sciences], simulation is only 

possible precisely because good theories, well confirmed by a history of experiments, exist 

to underwrite them” (2010, p. 29). However, people often seem to blur the lines between 

this general empiricist claim and a separate issue, namely, which methodology, now, will 

generate better scientific knowledge. This is the target of my objection: The kind of 

thinking that goes into claims about experiments’ superior position in a hierarchy of 

scientific methodologies, like those cited above from Guala, Peck, and Morgan, or claims 

that a case of research is less epistemically valuable because “it’s just a simulation.”

 Much of the literature on experiment versus simulation focuses on computer 

simulations, studies of computational models with some dynamic temporal element. But 

there is another, broader understanding of ‘simulation’ where the object of study in 

question could be any kind of model: mathematical, computational, or concrete 
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(physical). Simulations in this broader sense are taken to include studies of computer 

models, model organisms in laboratories, and model airplanes in wind tunnels. 

Discussions of the relationship between experiment and simulation in the literature have 

focused sometimes on computer simulation (Humphreys 2004; E. F. Keller 2003; 

Morrison 2009; Parker 2009; Peck 2004; Winsberg 2003) and sometimes on simulation in 

the broader sense (Guala 2002; Morgan 2005, p. 320; Winsberg 2009, 2010). I highlight 

this contrast upfront because being clear about which sense of ‘simulation’ is at stake 

matters. In particular, I do not believe that there are interesting or important 

methodological or epistemic distinctions to be drawn between experiments and broad-

sense simulations. I will say more about why in the following sections.

4.1.1. Simulations or Models?

Before moving on to discuss the arguments for the epistemic superiority of experiments, I 

should address a question that might come up: Why am I talking about simulation rather 

than modeling? The short answer is that I am effectively talking about both, because I take 

simulation to be the practice of studying models. But this sort of question might arise 

because people have talked about the relationship between simulation and modeling in 

different ways. The most common way to think of this relationship, and the way I think 

about it, is that a simulation is a study of a model, generally involving some dynamic 

temporal element (studying what happens to the model over time). Most people talking 

about simulations understand them in roughly this way. Peschard, for example, 

exemplifies this view when she defines a simulation as “the manipulation of a putative 

model of the target system” (2012, p. 12). Weisberg (2013) says that simulations are ways 

to compute the behavior of a model using a particular set of initial conditions, contrasting 
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simulation with mathematical analysis as methods for investigating models. Winsberg 

defines simulation as the “comprehensive process of building, running, and inferring from 

computational models” (2003, p. 107).

 There can be confusion here, though, because people understand ‘simulation’ in 

different ways, sometimes contrasting it with modeling. For example, a recent paper on 

simulation talks about it as follows: “Recent years have seen a developing discussion on 

the role and epistemology of simulation in modern scientific practice, as a subject worthy 

of its own attention, distinct from experimentation and modeling” (MacLeod & 

Nersessian 2013, p. 533). Others talk about simulation as a particular kind of model, rather 

than an activity which one does with (or to) a model. One way this gets fleshed out is by 

saying that simulations are a particularly realistic kind of model, which involves an 

explicit dynamic element of modeling a system’s states over time. Peck and Lenhard, for 

example, both seem to endorse this kind of view when they talk about “simulation 

models.” Peck (2004) contrasts these with “simple models,” by which he means non-

computational mathematical models, such as the basic models of population genetics. He 

separates simulations from other kinds of models, and says that simulations should 

actually be thought of as experiments, while (simple) models are a contrast class to 

experiments:

The kinds of experiment done with the simulation model give insight into future 
data-gathering efforts, test hypotheses that would be impossible to test otherwise 
and inform researchers about the implications of theoretical insights contained in 
the causal story that the model represents. Simulation is another experimental 
system with which to explore theories about how the real world works, using an 
artificial world that researchers can control. (Peck 2004, p. 533)

 In a related vein, Lenhard (2007) talks about simulations as a special kind of 

model, rather than something one does with or to models, though unlike Peck he thinks 

that simulations are in a different category from experiments. He says that philosophers of 
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science have viewed the models that do the “real work” in science as the continuous 

mathematical functions characteristic of theoretical models, and simulations as just 

discretized versions of those functions. Simulations, he says, are formulated in a different 

way from other models, so deserve their own classification; it is incorrect to assume that 

there is a prior model and the simulation is just a “realization” of it. He argues that 

“simulation models,” in fact, should be thought of as a separate category of model:

Simulation models do not just apply the brute force of the computer in order to 
squeeze results out of [theoretical models consisting of continuous mathematical 
functions]. Instead, they require their own new kind of modeling… This type of 
discrete model defines the spectrum of potential models anew, motivated by the 
specific requirements of the computer. The reason for this is that the generative 
mechanism selected to imitate a certain dynamic has to “run” on the computer; 
that is, it must not require excessive computing capacity and must, above all, not 
become unstable, because, for example, discretization or truncation errors will 
build up. (Lenhard 2007, p. 187)

 It is worth noting these different views on the relationship between simulation and 

modeling, and how these relate in turn to experiments. In any case, I do not have a 

particular stake in how this definitional issue is ultimately settled, and will set it aside. I 

am interested here in the methodological and epistemic contrasts people have made 

between studying experimental systems and studying models, and I am focusing on 

simulation here, understood as the activity of studying models, because that is the main 

activity people have contrasted with experimentation. Perhaps it makes sense that this is a 

cleaner grounds for comparison than experiments versus models, because simulations 

(understood thus) are about studying models, and experiments are about studying 

physical systems in a laboratory, in the field, etc., both with the goal of learning about 

some target system. Construed thus, both methodologies are about manipulating an 

object to learn about a target.  
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4.2. The Argument about Inferential Power

Belief in the epistemic privilege of experiments over simulations is often grounded in 

ideas about their relative inferential power. In particular, the idea is that experiments lead 

to better inferences about natural systems or phenomena than simulations do (this is 

sometimes referred to as the issue of external validity). This difference has to do with the 

relationship between their respective objects of study and targets of inquiry.

 Judgments about experiments’ privileged status are often driven by the intuition 

that experimental objects of study have a privileged link to targets in the natural world in 

virtue of their shared materiality. Winsberg nicely describes this as “the suspicion (or 

conviction) [that] the experimenter simply has more direct epistemic access to her target 

than the simulationist does” (2010, p. 55). Morgan (2005) and Guala (2002) have argued 

that material object–target correspondence is a defining feature of experiments, and that 

this correspondence is responsible for experiments’ advantage over simulations in terms 

of inferential power. I will call this shared view of theirs the materiality thesis.22 Guala puts 

it in terms of experiments’ objects having “deep, material” correspondence to their targets, 

while simulations’ objects have only “abstract, formal” correspondence to their targets. He 

says that in virtue of their very design, experimental systems are in a better position to 

produce external validity given their material correspondence to the outside world: 

The trick is to make sure that the target and the experimental system are similar 
in most relevant respects, so as to be able to generalise the observed results from 
the laboratory to the outside world. Experimenters make sure that this is the case 
by using materials that resemble as closely as possible those of which the parts of 
the target system are made. (Guala 2002, p. 12)
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Morgan uses a different set of concepts and terms to argue for essentially the same view; 

she puts it in terms of experiments’ objects “replicating” or “reproducing” parts of the 

world, while simulations’ objects only “represent” parts of the world. On her view, what 

experimental systems versus models are made of plays a crucial role in the epistemic 

consequences of experimenting versus simulating: Experiments have greater potential to 

generate valid inferences about the world, precisely because experimental objects are 

“made of the same stuff as the real world” (Morgan 2005, p. 322). In other words, material 

correspondence implies greater inferential power. 

 These authors cite examples of experiments in economics and psychology to 

support their points. There, experimental objects of study (humans) are taken to be the 

same kind of thing in the laboratory and outside the laboratory. Human subjects are 

examined in laboratory scenarios which aim to be realistic, in order to elucidate market 

dynamics of interest. Their point about material correspondence is supposed to be that the 

experimental object and target are literally made of the same stuff: real humans and their 

real participation in market dynamics. A model or simulation could represent these 

dynamics and the various causal relationships involved, but it would be lacking the 

material correspondence to the target system present in the experimental setup. As 

Morgan puts it, “[T]he fact that the same materials are in the experiment and the world 

makes inferences to the world possible if not easy… the shared ontology has 

epistemological implications. We are more justified in claiming to learn something about 

the world from the experiment because the world and experiment share the same 

stuff” (2005, p. 323). Thus her endorsement of the materiality thesis: Experimental inquiry 

gets us closer to the natural world because experimental objects are samples, 

instantiations, or reproductions of their targets; simulations, in contrast, have as their 
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objects (only) models of their targets. She concludes that “on grounds of inference, 

experiment remains the preferable mode of enquiry because ontological equivalence 

provides epistemological power” (Morgan 2005, p. 326).

 There is certainly some truth in the intuition behind the materiality thesis. 

Experimenting on an actual sample or physical approximation of a target in the natural 

world is often the best way to get traction on understanding it when we know very little 

about the target in question, or when the relevant theoretical background is minimal. For 

example, we have relatively low confidence (today) in our understanding of how new drug 

cocktails will work in the human body. It makes sense for us to place more confidence 

(now) in tests on physical proxies, like mice or, even better, human clinical trial 

volunteers, than in a computer simulation of the human body. But often is not the same as 

always. Material object–target correspondence is not, and should not be thought of as, 

necessarily the best route to valid scientific inferences. 

4.3.  Responses to the Materiality Thesis

In this section I raise two problems for the materiality thesis, in increasing order of 

severity. The first is a general point about how experiments are designed. The second 

returns to some examples of laboratory natural selection experiments from Chapter 2 to 

show why the notion of material correspondence itself, and the ensuing distinction 

between experiments and broad-sense simulations, is not as straightforward as Guala and 

Morgan take it to be. This leads to several points: First, we should reject the idea that 

material object–target correspondence is characteristic of experiments and confers greater 
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inferential power on them; second, we should stop looking to the experiment/simulation 

distinction altogether as a basis for making wholesale judgments about inferential power.

 I agree with concerns that both Parker (2009) and Winsberg (2009; 2010) have 

raised about the materiality thesis; in particular, their points that material correspondence 

does not always entail greater inferential power, and that it is difficult to even make sense 

of the distinction between material and formal object–target correspondence. I am 

objecting to the materiality thesis in a different context than theirs, namely, that of arguing 

that we should do away altogether with relying on the experiment/simulation distinction 

to tell us anything in principle about epistemic value. Winsberg (2010) seems sympathetic 

to my conclusion, but I am putting the point more strongly: It is not just that there are 

exceptions to the generalization that experiments have epistemic privilege, but rather, 

thinking in terms of such generalizations is the wrong way to approach judging the 

epistemic value of cases of scientific inquiry.

4.3.1.  Experiments Are Not Necessarily Designed To Be Like Particular 
Targets

To the extent that Guala’s and Morgan’s attribution of superior inferential power to 

experiments rests on their being designed to correspond materially to predetermined 

targets in the world, this account has a problem. Experiments are not always designed this 

way. Experimenters do not always go in to their experiments with a clear idea of what 

their targets in the world are “made of,” for at least two kinds of reasons: (1) they do not 
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have a particular target in mind at all,23 because they focus initially only on designing a 

particular sort of experimental system and have not yet decided or figured out what kinds 

of inferences to the outside world they will draw from it, or (2) they have a particular 

target in mind but have minimal knowledge of its properties. I will discuss both of these 

reasons in turn.

 One kind of case where experimenters do not know what their target is made of is 

when they do not have a concrete target outside of the experimental system in mind when 

they design the experiment. Many, perhaps even most, experiments are designed to 

answer a particular question about the world, and thus designed with a particular target in 

mind to tell us something about. This is certainly true of the economics examples Morgan 

discusses. But this need not be the case; the paradigm examples of exploratory 

experiments discussed in Chapter 3 are cases in point. Sometimes an experimenter’s goal 

is to design an experimental system, study it, and see what happens, or to collect as many 

data as possible and then figure out how to interpret them and what we can learn from 

them. The Lenski experiment, while not a paradigm case of exploratory experiment, is 

another example of an experiment designed without a specific target in mind. The 

experiment was designed to create an object of study which would offer new kinds of 

insight on the dynamics of long-term evolution. Its design was driven by evolutionary 

theory, but it was not designed to test a single hypothesis about the world that came from 

that body of theory, and it was not designed with a particular target in mind that it was 
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supposed to tell us something about.24 Intended routes of inference about the natural 

world were not built into the experimental setup from the getgo, as Guala says (and 

Morgan sometimes implies) is a universal feature of how experiments are designed. These 

came after the system was designed and its dynamics observed over time.

 A second kind of case where experimenters do not know in advance what the 

target is “made of ” is when they have no empirical access to it in principle. This is usually 

not the case in biology, where the targets of interest are natural populations of organisms 

and their evolutionary trajectories, which we can observe to varying degrees. But in 

certain sorts of cases experiments aimed at filling in our understanding of long-ago 

evolutionary history have this feature. An example of this is research on the origin of life. 

One key aim of experimental work on the origin of life is to demonstrate how certain 

processes, like spontaneous formation of lipid bilayer cell walls or the encapsulation of 

information-carrying molecules therein, can take place and therefore might have taken 

place approximately four billion years ago in the prebiotic soup. The target itself (the set of 

events, entities, and processes involved in the actual origin of life on Earth) is empirically 

inaccessible to us for obvious reasons. So the aim of creating trustworthy experimental 

systems here cannot be to make them as much as possible like the target, in the same way 

we might think of making a scenario in an economics lab as much as possible like real 

market dynamics in the world. Rather, the aim is to set up an experimental system, using 

80

24 What exactly is the target, then? It seems too broad to say that the target of the Lenski experiment is the 
set of all past, present, and future entities subject to evolutionary processes. Likewise, it seems too narrow to 
say it is the set of all E. coli in the world (just because E. coli happen to be the organisms in the experimental 
system) or the set of all bacteria, asexual organisms, etc. The experiment was designed to inform us about 
evolutionary processes, and the laboratory organisms were chosen for their virtues as experimental subjects, 
as discussed in Chapter 2, not because they have some special correspondence to a given set of organisms in 
the world designated as future targets of inference. It makes sense to think about the targets of the Lenski 
experiment only in the context of particular claims which are made about the world, for example, 
macroevolutionary trends in the fossil record or pathogenic E. coli populations outside of the lab, in the 
punctuated evolution and high mutation rates discussed in Chapter 2, respectively.



the best theoretical knowledge available, which we have reason to think might teach us 

something about how the target might have been. This same sort of point is true of the 

historical sciences in general.

 I raise these considerations just to point out that judgments about inferential 

power should not be grounded in experiments being explicitly designed to be “made of 

the same stuff” as their targets, or to capture aspects of a predetermined and well-

characterized portion of the outside world in their material constitution, as Guala and 

Morgan imply. Inferences about targets in the natural world can be thought of after the 

experiment has been designed, even after it has been carried out. This is an objection to 

the way Guala and Morgan talk about the process of experimental inquiry, but it is not 

really a severe point against the materiality thesis. It is more a point about timing than 

about material correspondence or lack thereof, per se. My response in the following 

subsection presents a more serious challenge to the view that material object–target 

correspondence confers superior epistemic power on experiments.

4.3.2. Material Correspondence: Hard to Evaluate, Not Always the Goal

Recall two cases from the Lenski experiment which I described in Sections 2.1.1 and 2.1.2, 

high mutation rates and punctuated evolution. In the high mutation rates case, an 

inference was made from the increased mutation rates observed in three of the Lenski 

populations in the first 10,000 generations, to a proposed similar mechanism for increased 

mutation rates observed in populations of E. coli and other pathogenic asexual microbes 

in nature. In the punctuated evolution case, an inference was made from the punctuated 

morphological evolution observed in the Lenski populations in the first 3,000 generations, 
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to a proposed mechanism for punctuated equilibrium in macroevolutionary trends in the 

fossil record, over a hugely greater evolutionary timescale.

 An important question is: Are these two different inferences plausible and 

warranted? In the high mutation rates case, the extrapolation claim seems quite plausible. 

The researchers are tentatively saying that they saw an increased genomic mutation rate in 

some of the asexual populations in the lab, and that the phenomenon of mutator 

hitchhiking could explain increased genomic mutation rates both in those experimental 

populations and in relevantly similar asexual populations outside of the laboratory. In the 

punctuated evolution case, on the other hand, the extrapolation claim looks more 

dubious, because punctuated equilibrium is a hypothesis about extremely long-term 

morphological evolution spanning speciation events; this is quite different from the 

increased cell size observed in the experimental populations over 3,000 generations. I will 

return to this question in Chapter 5. For now, I am going to step back and focus on a more 

fundamental question: What about this experimental system, and its relationship with the 

dynamics and populations in the world outside of the laboratory in these two different 

cases, would make these valid extrapolation claims?

 The materiality thesis implies that inferential power is proportional to the degree 

of material correspondence between object and target. To think through what this means 

exactly, we first need to clarify what this correspondence is supposed to consist in. 

Morgan and Guala refer to it in various ways: “material correspondence,” “material 

analogy,” “ontological equivalence,” or being “made of the same stuff” (Guala 2002; 

Morgan 2005). They must of course mean “made of the same kind of stuff,” in the sense 

that object and target are both instances of the same material type. But there are various 

ways to interpret what this means. One (uncharitable) way would be “made of the same 
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material stuff at the most fundamental level.” On this interpretation, almost all biology 

experiments could be said to achieve strict material correspondence, because their objects 

and targets are made of carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur. 

 Here is a more reasonable interpretation of ‘material correspondence’: The highest 

degree of material object-target correspondence would be an identity relation. Certain 

field experiments might achieve this, for example, when they involve studying every 

individual in a small, clearly delimited population in order to make inferences about 

particular features of exactly that population. But this sort of object-target identity is far 

from the norm in science. 

 The next level of material correspondence would be an object which is a token of 

the same relevant ontological category as the target, at a sufficiently fine-grained level for 

the purpose at hand. When a chemist studies samples of uranium to learn about the 

properties of uranium in general, they are achieving material object-target 

correspondence in exactly this sense. The object is a token of the target’s type at the finest 

level of grain with which scientists classify the relevant kinds, chemical elements. Further 

from this extreme would be studying mice to learn about humans. Both are living 

organisms, but they are not of the same type at even close to the finest level of grain with 

which we classify organisms, phylogenetic classes. They are both mammals, but do not 

belong to the same species or even genus. Even further from this extreme would be 

studying plastic models of mice to learn about mice.

 I take this to be the most plausible way to make sense of the idea of degrees of 

material correspondence, and will from here on use the term in this sense: in terms of 

variations in grain of correspondence at the relevant “material” (that is, chemical, physical, 

biological…) level of categorization. (This will come up again in Chapter 5.) Adopting this 
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refined understanding of material correspondence, were we to endorse the materiality 

thesis, we should hope to be able to at least roughly rank research programs in terms of 

their achieved degree of material object-target correspondence. However, this gets difficult 

if we try to think through our two examples of inferences from the Lenski system in these 

terms. 

 In the high mutation rates case, it is not so difficult. The inference is from 

experimental populations of E. coli to natural populations of E. coli and Salmonella: The 

mechanism posited for explaining the evolution of high mutation rates in the former 

might be the same mechanism responsible for the evolution of high mutation rates in the 

latter. There is straightforward material correspondence, in the sense outlined above, 

between object and target: E. coli in the laboratory belong to the same type as E. coli in 

nature, at a fine-grained level of classification of biological types: species. E. coli and 

Salmonella belong to the same type at a level which is not as fine-grained, but still, 

arguably, significantly fine-grained.25 Thus, in the high mutation rates case, the object 

(experimental populations) and target (natural populations) in question differ in their 

exact genetic makeup and environments, but they correspond materially according to the 

scheme laid out above for making sense of the notion of material correspondence.

 In the punctuated evolution case there is not such straightforward material 

correspondence. It is not even clear how to go about evaluating it. We know what the 

object is: The same set of twelve experimental populations of E. coli as before. But what 

exactly is the target? How is it classified materially? In this case, the claim was that rare, 

beneficial mutations sweeping to fixation explain the punctuated evolutionary dynamic in 

the laboratory populations, and that this same process could explain punctuated 
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equilibrium in nature. This claim rests on the experimental populations sharing properties 

of their evolutionary history with an arbitrary set of populations, traces of whose 

evolutionary history are left in the fossil record. Those properties, in particular, were (1) 

displaying a certain macroevolutionary trend, (2) existing in a constant environment, and 

(3) having rare beneficial mutations. Note that none of these properties has to do with 

what the population is “made of:” its phylogenetic classification, or any specifics of its 

phenotype. How are we to assess material object-target correspondence here? Both object 

and target comprise or once comprised living organisms; that is a start. But the target is 

not identified in such a way that its material correspondence to E. coli can be 

straightforwardly evaluated.

 Material object–target correspondence is not necessarily a characteristic feature of 

experiments, either in design or in retrospective analysis. This case illustrates that nicely 

because it can be said of the exact same experimental object that it corresponds materially 

to one target, but it is unclear whether it corresponds materially to another, or how to 

even evaluate such correspondence.

 A separate issue, however, is: What conditions would need to hold for the 

inferences in question, from the laboratory population of E. coli to these different targets 

in the natural world, to be valid? In the high mutation rates case, the inference relies at 

least in part on the object corresponding materially to the target, in the sense outlined 

above. It relies on mutator hitchhiking actually being the mechanism responsible for the 

evolution of high mutation rates observed in the laboratory populations, and on the 

reasonability of assuming that that same mechanism could explain the same observation 

in closely related natural populations. Here the researchers seem to rely on material 

correspondence in the way Morgan and Guala had in mind: Identifying a mechanism in a 
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physical object of study (experimental populations) allows you to make an inference about 

materially corresponding targets in the natural world (natural populations in the same 

biological/phylogenetic class: asexual pathogenic microbes).

 In the punctuated evolution case material correspondence is not playing such a 

role. There the focus is on evolutionary mechanisms and environmental particulars, not 

what the target populations are “made of ” in anything like the material correspondence 

sense. For the punctuated evolution inference to be valid, the population-level 

mechanisms and environmental conditions responsible for the evolutionary dynamics in 

the laboratory populations would need to correspond to mechanisms and conditions 

responsible for evolutionary dynamics in the relevant natural populations. But physical, 

physiological, or phylogenetic particulars of the populations in question are not figuring 

in to the researchers’ reasons to think that is the case. 

 I agree with Parker (2009) that material object–target correspondence does not 

necessarily entail greater epistemic value. She discusses cases like climate modeling to 

make this point. In these cases, we make predictions about climate change which are as 

reliable as possible by building complicated large-scale computer models; we cannot 

generate similar predictions by experimenting on the actual global climate, and there is no 

reason to think that creating “same stuff” laboratory analogues would do anywhere near as 

well as the computer simulations. Material correspondence is one (often good) route to 

grounding valid inferences from objects to targets. But it is not the only route; material 

object–target correspondence is neither necessary nor sufficient for valid scientific 

inferences.

 My discussion above establishes a further point beyond Parker’s: It does not even 

follow from the fact that we have a material system as our object of study that material 
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correspondence is doing, or is even meant to be doing, the work in validating an 

inference. If we want to assess inferential power in cases like the punctuated evolution 

one, we need to look somewhere other than success or failure at achieving material 

correspondence.

 The picture is further complicated because proponents of the materiality thesis 

compare experiment to simulation in the broader sense (Guala 2002; Morgan 2005), while 

its opponents have sometimes followed suit (Winsberg 2010) and sometimes focused only 

on computer simulation (Parker 2009). I mentioned in Section 4.1 that I do not think 

there is a clear distinction to be drawn between experiment and simulation in the broader 

sense. The cases under discussion do a nice job of showing why. If we consider the 

difference between the two examples from the Lenski experiment from the perspective of 

the materiality thesis, we can generate some puzzling questions. Should we think of both 

cases as experiments because their objects are the same kind of physical experimental 

system in a laboratory (we call the research area “experimental evolution,” after all)? 

Should we think of the high mutation rates case as an experiment and the punctuated 

evolution case as a broad-sense (physical) simulation? The rationale for this might be that 

the former takes the object as an instance of some target and makes inferences grounded 

in material (and, in this case, phylogenetic) similarities, while the latter arguably takes the 

object as more of a representation or model, and makes inferences grounded in more 

formal similarities. Or should we think of both cases as broad-sense simulations, because 

the object in question is a population of model organisms, a kind of concrete theoretical 

model?26 

87

26 Some (Frigg and Hartmann 2012; Harré 2003; Humphreys 2004; Weisberg 2013) say so of model 
organisms, in any case. Levy and Currie (forthcoming) argue that model organisms play a different role in 
scientific inferences than traditional concrete theoretical models.



 Plausible arguments could be made for affirmative answers to all three of those 

questions, and people argue about just these kinds of questions; see, for example, 

discussion in Guala (2002), and the references mentioned in footnote 26. But if we are 

interested in accounting for how and why cases of scientific inquiry differ in inferential 

power, these sorts of questions are red herrings. This discussion of laboratory natural 

selection experiments, and the different kinds of inferences that can be made from the 

same object of study, highlight the fuzziness of the distinction between experiment and 

broad-sense simulation. Whether we classify a case of scientific inquiry as an experiment, 

a simulation, a hybrid, or explicitly both at once, per se, should not make a difference to 

how we judge its inferential power. If one of the inferences in question is more licensed 

than the other, the right way to think about this is in terms of specific details of the case 

and how well the object captures features relevant to making a good inference about the 

target in question—not in terms of how we categorize it. 

 It does not follow from a case of inquiry being categorized as an experiment that 

any inference it makes is (actually or intended to be) based in its degree of material object-

target correspondence. Furthermore, categorization as an experiment or a simulation 

alone does not tell us anything about inferential power. We should not look to the 

experiment/simulation distinction as a basis for in-principle judgments about inferential 

power. There are certainly particular contexts in which experiments put us in a better 

position for making valid inferences than simulations. But it does not follow that 

experiments are always better generators of inferential power in principle.

 Again, the discussion in the preceding paragraphs was not supposed to be an 

assessment of the validity of the inferences in the punctuated evolution and high mutation 

rates cases. The question was: If we adopt the material correspondence view about what 
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matters for grounding external validity, what can we say about whether or not the 

experimental and target systems are made of the same stuff? And the answer is: First, it is 

not obvious what this even means when we get down into the details, and second, it looks 

like we should be concerned with more than just material correspondence. The material 

correspondence (designed or not) of experimental systems to their targets is not alone a 

good grounds for assessing the external validity of experiments (versus simulations, or 

period). I say it is not alone a good grounds because sometimes material correspondence 

does matter; sometimes it is crucial. If we know a little bit, but not much, about some 

target of inquiry in the world, often a great way to learn about it is to intervene on it 

directly, or set up something very much like it in the lab that we can intervene on. But 

material correspondence matters in these cases not because it is material correspondence 

per se, but because this sometimes happens to be the best route to capturing the 

similarities most relevant to grounding the inference one wants to make.

4.4. Surprise

  
Even if we agree on the points I have made so far in response to the materiality thesis, 

people still want to say that there is a further difference between experiments and 

computer simulations which affects their epistemic value: Simulations cannot surprise us 

the way experiments can (from now on I will refer to this as the surprise claim). The 

thinking behind the surprise claim has to do, again, with the nature of experimental 

objects of study: While experimenters usually design at least some of their object’s parts 

and properties, they never design all of them, and in some cases they design none of them, 

such as in some field experiments. A simulationist’s object of study, on the other hand, is a 
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model: She made or programmed it herself, so knows all of the relevant facts about its 

parts and properties. It is thought that experiments, in virtue of these facts about the 

nature of their objects, are a superior source of surprises compared to simulations. 

 Surprise plays an important role in what we value about science. People have 

talked about surprise in a number of different ways. There is a term used in cognitive 

neuroscience, ‘surprisingness,’ which defines that as a function of the absolute value of the 

difference between observed and expected outcomes (Hayden et al. 2011). Another way to 

think about surprise is an epistemic change by which we believe that some outcome is 

improbable or are indifferent to whether or not it might obtain, and then realize that it is 

in fact probable, or it is in fact the case. There are also cases of surprising results in science 

which seem to go beyond changes in our beliefs about probabilities; for example, cases of 

entirely new things being added to our ontology.

 Those are some existing ways to think about surprise in science. I do not want to 

hang too much on a particular definition of surprise. What I have in mind broadly in this 

discussion is the sort of novel or unexpected result, behavior, discovery, or insight 

regarding scientific objects of study, characteristic of what’s really interesting about doing 

science. Surprising results are either contrary to what we expected, or introduce 

possibilities we didn’t even know were on the table. 

 A common claim about a difference in epistemic value between experiments, 

compared to simulations, is the surprise claim, which says that as a matter of principle 

experiments are a superior source of surprises. Not many people have put this claim in 

writing, but it comes up all the time in discussions of the difference between experiments 

and simulations. The strongest form of the surprise claim would hold that simulations 
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cannot genuinely surprise us at all. More commonly, the claim is that simulations and 

experiments differ, either qualitatively or quantitatively, in their capacity to surprise us. 

 Paul Sniegowski (personal communication, cited with permission), discussing the 

difference between experiment and simulation in evolutionary biology, writes: “Although 

surprises do emerge in simulations, in general what goes into a simulation is well known 

and surprises are not anticipated. In contrast, surprises and exceptions to anticipated 

results are fairly common in experimental systems.” Morgan endorses another version of 

the surprise claim, arguing that while simulations may be able to surprise us, experiments 

can both surprise and confound. She writes:

[N]ew behaviour patterns, ones that surprise and at first confound the profession, 
are only possible if experimental subjects are given the freedom to behave other 
than expected. […] This potential for laboratory experiments to surprise and 
confound contrasts with the potential for mathematical model experiments only 
to surprise.27  In mathematical model construction, the economist knows the 
resources that went into the model. Using the model may reveal some surprising, 
and perhaps unexpected, aspects of the model behaviour. Indeed, the point of 
using the model is to reveal its implications, test its limits and so forth. But in 
principle, the constraints on the model’s behaviour are set, however opaque they 
may be, by the economist who built the model so that however unexpected the 
model outcomes, they can be traced back to, and re-explained in terms of, the 
model. (2005, pp. 324–5)

Note that Sniegowski is making what I called a more quantitative version of the surprise 

claim. He is saying that surprises are commonplace in experiments and rare in 

simulations. Morgan, on the other hand, is making a more qualitative version of the claim. 

By “confounding” she has in mind motivating a researcher to seriously question her 

relevant background theoretical knowledge, as opposed to merely seeing something she 

was not quite expecting to see.
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 I take the idea behind the surprise claim, in its various versions, to be generally 

based on the following line of thinking: The objects of study in simulations are 

computational or mathematical models, while the objects of study in experiments are 

physical systems in the laboratory or the field. While experimenters usually design at least 

some of the parts and properties of their objects of study, they never design all of them, 

and in some cases they design none of them (for example, in some field experiments). So 

details of the object of study come along for free, for the experimenter, which she did not 

knowingly put there herself. A simulationist, on the other hand, has a different 

relationship with her object of study (the model): She made or programmed it herself, so

—the thinking behind the surprise claim often goes—she knows all of the relevant facts 

about its parts and properties. It is thought that experiments, in virtue of these points 

about their objects of study, are thus superior sources of surprise as a matter of principle: 

either simulations lead to surprises rarely (or never) in comparison, or experiments can 

surprise us in ways that simulations cannot. That is what I take to be the core intuition 

behind the surprise claim. An extreme version of the surprise claim, though I do not think 

that anyone actually endorses this view anymore, would be that whenever you do a 

simulation you are just learning things you already knew.

4.4.1. Response to the Surprise Claim

People making the surprise claim have in mind some quantitative or qualitative difference 

between experiments and simulations, regarding to their capacity to surprise us. I want to 

get more precise about what we are talking about here, and shift the discussion to thinking 

in more detail about potential kinds of sources of surprise in scientific objects of study.
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 I will focus on two kinds of sources of empirical surprise. The first is unexpected 

behavior: surprising states or phenomena exhibited by a scientific object of study over the 

course of studying it. The second is hidden features: sources of surprise that in some 

important sense can be said to have “been there all along.” These are features of the object 

of study itself, which a researcher was genuinely unaware of prior to studying it. 

Unexpected behaviors and hidden features are not mutually exclusive categories. The 

former is a source of surprise in its own right, and it is also sometimes (but not always) a 

sign of the latter. Unexpected behaviors in an object of study surprise us, for example, by 

displaying some state of that object which we did not anticipate it would be in, or by 

failing to straightforwardly refute a hypothesis in the sort of way we were expecting. 

Sometimes unexpected behaviors can also motivate us to dig down and question our 

knowledge of the fundamental workings of the object of study itself. When this happens, 

we might learn that those unexpected behaviors were actually just caused by artifacts or 

bugs. But sometimes, when we investigate them further, we will uncover important 

hidden features of our object of study which we genuinely did not know about before we 

began studying it. These can include mechanisms, causal factors, properties, key 

components, or variables.

 Unexpected behaviors are found in experiments all the time. Lenski and 

colleagues’ work is again a great source of examples. A number of the many publications 

from the Lenski experiment are based on unexpected behaviors the populations have 

exhibited over their 27+ years (60,000+ generations) of evolution. Two noteworthy 

examples are the evolution of surprisingly high mutation rates, two orders of magnitude 

higher than the ancestor’s, after 10,000 generations, and the evolution of citrate utilization 

after 31,500 generations (these were discussed in Sections 2.1.1 and 2.1.3).
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 Another kind of example of unexpected behavior comes from a more recent 

laboratory natural selection study of the evolution of mutation rates. Gentile and 

colleagues (2011) looked at the relationship between mutation rates and fitness evolution 

in engineered “single mutator” and “double mutator” genotypes of E. coli, which have 

respectively high and extremely high mutation rates compared to the wild type (Figure 5).

Figure 5: Mutation rates of wild type, single and double mutator E. coli (from (Gentile 2012); see also 
(Gentile et al. 2011)). Estimates are of the per base pair, per generation genomic mutation rates with 95% 

confidence intervals for wild type E. coli, single mutators with the mutL13 allele (which confers deficiency in 
mismatch repair), and double mutators with mutL13 and dnaQ905 alleles (the latter confers deficiency in 
DNA proofreading). Single mutators have a genomic mutation rate 100–fold higher than the wild type; 

double mutators have a genomic mutation rate 45–fold higher than single mutators.

One would think that a population with a genomic mutation rate as high as the double 

mutator’s, which is 4,500-fold higher than the wild type, would not last long. Thinking 

about mutation rates intuitively, there are plenty more ways to mess something up at 

random than ways to improve it. Populations in nature, as far as we know, never have 

genomic mutation rates this high, and theories such as the error catastrophe hypothesis 

(Eigen 1971, 2002) and Muller’s ratchet (Muller 1964) predict that populations with very 

high mutation rates will decline in fitness and go extinct. But surprisingly, using a serial-

transfer protocol similar to that in the Lenski experiment, the double mutators remained 

viable for over 2,500 generations (Gentile 2012; Gentile et al. 2011), and stopped then only 

9 

 

Figure 2-1: Estimates of the per base pair mutation rate to nalidixic acid resistance in the 

single- and double-mutator strains.  Error bars represent 95% confidence intervals. 
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because the experimenters stopped propagating them. This case is worth mentioning, in 

addition to the cases from the Lenski system mentioned above, because they are examples 

of different kinds of unexpected behaviors: The evolution of high mutation rates and 

citrate utilization were cases of unexpected features arising over time in the object of 

study, while this is a case of things going explicitly otherwise than what we might have 

thought from the getgo given the relevant background theory.

 Unexpected behaviors also occur all the time in simulations. Examples abound in 

the area of agent-based modeling. In agent-based models, also known as individual-based 

models, individual agents and their properties are represented and the consequences of 

their dynamics and interactions are studied via computational simulation. Common 

applications of agent-based models include in ecology and the social sciences, where 

agents can represent individual organisms and their interactions, locations, behaviors, life 

history traits, and so forth. Behavioral patterns can emerge from simple initial conditions 

comprising agents, their properties, and their interactions, such as complex cycles of 

fluctuation in population size or flocking behavior (Epstein & Axtell 1996; Grimm & 

Railsback 2013; Railsback & Grimm 2011).

 One example of unexpected behavior from simulations, keeping with the theme of 

studying evolving populations, is evolved predator avoidance in Avida. Avida is an agent-

based model in which self-replicating “digital organisms” compete for resources in the 

form of computer memory (Ofria & Wilke 2004). Ofria and colleagues describe a case in 

which they wanted to study a population that could not adapt, but would accumulate 

deleterious or neutral mutations through genetic drift. Agent-based models are idea for 

this kind of study: Researchers can examine each new mutation as it occurs by running a 

copy of the mutant agent in a test environment and measuring its fitness. The test allowed 
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them to identify agents in the primary population with beneficial mutations and kill them 

off, which would in theory stop all future adaptation. Surprisingly, however, the 

population continued to evolve. It turned out that the agents had developed a method of 

detecting the inputs provided in the test environments, and once they determined that 

they were in a test environment, they downgraded their performance. As the authors put 

it, the agents in the model “evolved predator avoidance,” the performance downgrade 

being an adaptation to avoid being killed.28

 It makes sense that simulations and experiments can both involve sources of 

surprise in the form of unexpected behaviors, if we consider their methodological points 

in common. An experiment starts with choosing or designing an object of study and 

specifying a protocol. A simulation starts with the object of study, a model, in some initial 

state with a set of transition rules specifying how it will update to future states. In both 

cases, a researcher sees what happens to her object of study over time. The examples of 

unexpected behaviors I just discussed were all cases of subsequent states or properties of 

the object of study differing in surprising or unexpected ways from its initial states or 

properties.

 The extreme version of the surprise claim—that a researcher cannot be genuinely 

surprised by her simulations because she programmed them, so knows everything about 

them—is plainly false. A simulationist will often, but not always, know everything about 

her model’s initial conditions and transition rules. A straightforward case in which she 

might not know everything is when she did not write the model herself, so is ignorant of 

aspects of how it was programmed or how it works. But there are more interesting reasons 

why she might fail to know everything. For example, she might be writing the model in a 

96

28 One could argue about whether this is the most plausible way to describe what went on here, but that is 
beside the point; in any case this is a clear example of unexpected behavior in a simulation.



high-level programming language and fail to understand all of its low-level details. Or she 

might program the model in a way that leads to its initial conditions having unintended 

features, or its transition rules entailing unintended consequences. Furthermore, very 

complex models are often written by teams rather than individual (for example, in climate 

modeling); in some such cases, no individual researcher might be said to understand 

everything about the model’s initial conditions and transition rules.

 In any case, knowing “everything” about a model’s initial conditions and transition 

rules does not entail knowledge of its future states. Setting an initial state and deciding 

which rules will govern its change over time does not tell you what will happen—that is 

why we must run the simulation. Similarly, finding out as much as you can about an 

experimental object of study and sorting out all the details of your protocol does not tell 

you what will happen in the experiment. Both experiments and simulations can exhibit 

unexpected behaviors. Any study of a system with an initial state and subsequent states 

has at least the potential to surprise us, because it contains potential sources of 

unexpected behavior as it changes (or fails to change) over time.

 I now turn to hidden features. Unlike unexpected behavior which an object of 

study manifests over the course of studying it, these are features an object of study already 

had, in some sense, which a researcher was genuinely unaware of when she embarked on a 

study. Hidden features are always accompanied by unexpected behaviors, but the converse 

is not true. Hidden features are discovered as a result of investigating unexpected 

behaviors, but investigating unexpected behaviors does not always lead to discovering 

hidden features. 

 A perfect example of surprise in the form of a hidden feature is the discovery of 

transposable genetic elements. Barbara McClintock, over the course of her studies of the 
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genetic basis of maize patterns, discovered that the gene regulating the maize’s mottled 

pattern also made its chromosomes break. In the process of examining this breakage, she 

eventually discovered that genes can move from one place to another on the chromosome, 

with a sort of cut and paste mechanism, refuting the earlier belief that genes’ positions on 

the chromosome are fixed (McClintock 1951). McClintock discovered transposable 

elements over the course of her studies of maize plants, but in an important sense she was 

discovering a hidden feature of the genome that had been there all along, which she didn’t 

know was there; nobody knew it was there. 

 Simulations can also contain hidden features. Here is an example: The agent-based 

model Sugarscape is a simple model consisting of cells in a grid. Every cell can contain 

different amounts of sugar or spice (resources), and there are agents (red dots) which can 

move around the grid. The basic setup of the model is that with each time step, agents 

look around for the nearest cell in their neighborhood with the most sugar, move, and 

metabolize. These simple local rules can give rise to population-level features that look 

remarkably like the macrostructures we see in societies of living organisms: structured 

group-level movement, carrying capacities, distributions of wealth, migration patterns, 

and so forth. The model’s creators discuss these results as follows:

Now, upon first exposure to these familiar social, or macroscopic structures… 
some people say, “Yes, that looks familiar. But I’ve seen it before. What’s the 
surprise?” The surprise consists precisely in the emergence of familiar 
macrostructures from the bottom up—from the simple local rules that outwardly 
appear quite remote from the social, or collective, phenomena they generate. In 
short, it is not the emergent object per se that is surprising, but the generative 
sufficiency of the simple local rules. (Epstein & Axtell 1996, pp. 51–2)

Now, one might think: That’s not a hidden feature. You had to run the model to see the 

macrostructures, they were not just sitting there in the initial conditions. That is true, but 

there is something revealing in what Epstein and Axtell say here, in the italicized last 
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sentence: The surprise is not so much in the details of the behavior itself, but in the fact 

that these simple local rules are sufficient to generate it. This object of study which looks 

very simple has generative properties that one would have never known about until 

studying it. And the interesting lessons in this case come from studying that fact and how 

it works, not the “familiar macrostructures,” per se.

 Another example supporting the idea of hidden features in a simulation comes 

from Conway’s Game of Life. The Game of Life is a cellular automaton, a simple model 

consisting of a collection of cells on a grid which evolve in discrete time steps, according 

to rules based on the states of their neighboring cells. Cellular automata have been studied 

since the 1950s; they were originally thought of as possible representations of biological 

systems, and went on to be used to study a wide range of issues in computation and 

complexity science. The Game of Life is a two-dimensional grid whose cells can be in one 

of two states: “on/living” or “off/dead” (Figure 6a). The update rule is simple: an “on” cell 

will remain on at next time step only if exactly two or three neighbors in its Moore 

neighborhood (the eight cells immediately adjacent and diagonal) are on; otherwise it will 

turn off. An “off” cell will turn on only if exactly three neighbors in its Moore 

neighborhood are on.

Figure 6: (a) A representative grid of cells in the Game of Life. (b) A glider gun, with a stream of gliders 
moving off toward the lower right.
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 Understanding the two possibilities for cell states, and knowing the transition 

rules, in one sense tells you everything you need to know about how the model works. But 

once the simulation begins, it produces surprisingly complex results. The simple rules and 

initial conditions generate an amazing number of different patterns, with organized 

structures and entities apparently persisting at a level higher than the individual cells 

(Bedau 2008; Dennett 1991; Weisberg 2013). A number of surprising results have come 

from studying the Game of Life. John Conway, the model’s creator, did not think that the 

model was capable of producing an infinite number of cells, and offered a fifty-dollar prize 

in 1970 to whomever could prove him wrong (Weisstein 2013). He was proven wrong by 

the discovery that certain initial conditions give rise to “glider guns,” configurations of 

cells that spit out stable patterns, called gliders, which move off into infinity through the 

two-dimensional grid, maintaining their structure as they go (Figure 6b). The ability to 

produce an infinite number of cells from a finite number of initial “on” cells is an 

unexpected behavior of the Game of Life. The glider guns can be thought of as a hidden 

feature, at the macrostructure, in the model.

 This difference between unexpected behaviors and hidden features is another way 

to articulate the kind of idea I take it Morgan had in mind regarding the difference 

between surprise and confoundment. Namely, there are plenty of situations in which we 

can be surprised by unexpected behaviors, but only in special circumstances do surprising 

results cause us to dig down and question our knowledge of the workings of the object of 

study itself, or learn something about it that we genuinely did not know going into the 

research program. Unexpected behaviors, in the sense discussed here, are the kinds of 

things that surprise, in Morgan’s sense. The process of investigating particular unexpected 

behaviors, searching for possible hidden features, in the sense discussed here, would seem 
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to correspond roughly to Morgan’s notion of confoundment. So, I think Morgan’s 

distinction between surprise and confoundment is important, and I’d like to think that I 

have preserved some version of it in my account. However—and this is the key point—

unlike Morgan, I am arguing that neither form of surprise is unique to experiments. 

 It does seem, though, that studies of material systems arguably put us in a better 

position to uncover a particular kind of hidden feature. Here is what I have in mind. We 

can talk about hidden features existing in scientific objects of study at different levels. In 

particular, we can distinguish among the micro-level and the macro-level. I am keeping 

the terms as general as possible here because, depending on the area of inquiry, exactly 

how we think of these levels of organization in our object of study, and exactly what we 

call them, will vary. The micro-level might be thought of as the level of individuals, 

molecules, or atoms. The macro-level might be thought of as the level of aggregates, 

populations, or wholes. In population genetics the relevant levels might range from allelic 

to population; in ecology, from individual to community; in chemistry, from atomic to 

aggregate; and so forth. I do not intend to give any particular metaphysical weight to the 

distinction among these levels, but just to point out that we can think of most scientific 

objects of study in these sorts of terms (it need not be an objective matter of fact exactly 

what the relevant levels are in a given research area). Thinking in terms of different levels 

of organization in objects of study matters, for our purposes here, because there is a sense 

in which micro-level hidden features seem (1) more hidden than macro-level ones, and 

(2) potentially unique to experiments.

 The transposable elements case involved the discovery of a micro-level hidden 

feature, the mechanism of genetic element transposition. The examples of generated 

macrostructures in Sugarscape and glider guns in the Game of Life involve macro-level 
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hidden features. It seems tempting to say that here might be the grain of truth in the 

surprise claim: There is this particular kind of source of surprise that might be unique to 

experiments, namely, these micro-level hidden mechanisms. People think there is 

something special about studying physical systems; I mentioned that at the outset. Part of 

the intuition there is that a lot of stuff comes along for free when you adopt a physical 

system plucked from the world, as opposed to a computer model written from scratch, as 

your object of study. People usually make this point in the context of arguing for why 

experiments put us in a better position to make inferences about the world (see my earlier 

discussion of the materiality thesis). But it also bears on the surprise claim.

 However, there are plausible counterexamples to this idea that surprises in the 

form of micro–level hidden features come only from experiments. Here is an example 

from nanoscale physics. Lenhard (2006) discusses a molecular dynamics simulation which 

uncovered properties of gold nobody previously knew about. In particular, when nickel 

tips are held against gold plates and slowly removed, the gold deforms to make nanoscale 

wires of gold atoms (Landman et al. 1990). Lenhard quotes an interview with the model’s 

creators: “That gold would deform in this manner amazed us, because gold is not 

supposed to do this” (Lenhard 2006, p. 606). The simulation results were confirmed later 

by atomic force microscopy. Lenhard uses this example to argue for the point that 

simulations, like experiments, can be “epistemically opaque,” even when the person 

running the model of study built it themselves “from scratch.” So this is a counterexample 

to the idea that micro-level hidden features can be uncovered only in experiments. 

Though it seems plausible that discovery of micro-level hidden features in simulations 

might be particular to cases like this, where the model is based on a significant well-
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known body of theory about the physical microstructure of the target of inquiry in 

question.

 The upshot of all of this discussion is that the surprise claim is false as a 

generalization. Experiments and simulations both have the potential to give rise to 

unexpected behaviors. While in particular contexts there might be reasons to think that 

experiments will lead to more unexpected behaviors than simulations (or the converse!), 

there are not grounds for claiming that this is the case in general. I have given reasons to 

think that both experiments and simulations can lead to the discovery of hidden features. 

Though on this latter point, it still seems right to say that simulations do not contain 

sources of a particular kind of surprise—namely, micro–level hidden features—as often as 

experiments do. 

 Within the contexts of certain research areas, experiments may well be a superior 

source of surprise over simulations. This might be the case especially in new fields where 

exploratory experiments are the (current) chief means of learning about the world, good 

simulations would have to be data-driven, and we do not have the data yet. This is just to 

underline that the target of my objection is people who endorse the surprise claim as 

generally true across science, and who take it to support claims for the general epistemic 

superiority of experiments.

4.5. Experimenters Almost Never Study Their Targets Directly

There is a view which is in the background in arguments for the materiality thesis and the 

surprise claim, but which one could hold without endorsing either. This is the relatively 

common view that a key difference between experiments and simulations is that 

experimenters study their targets directly, while simulationists do not. Winsberg (2009, p. 
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577) quotes Gilbert and Troitzsch as holding this view: “The major difference is that while 

in an experiment, one is controlling the actual object of interest (for example, in a 

chemistry experiment, the chemicals under investigation), in a simulation one is 

experimenting with a model rather than the phenomenon itself.” 

 This kind of view underlies the claim that reproduction versus representation 

characterize object–target relationships in experiments versus simulations, respectively, 

discussed in Section 4.2 above. It also comes up for proponents of the surprise claim, and 

could be a line of response to my response to the surprise claim in Section 4.4.1. The idea 

would be that when you discover a hidden feature in an experimental object of study, you 

are learning something about your target. But when you discover a hidden feature in a 

simulation you are learning something only about your model. For that reason, the 

objection goes, experiments still put us in an epistemically privileged position with 

respect to their capacity to surprise us. This objection is not necessarily about how often 

experiments versus simulations lead to surprises, or how often they lead to the discovery 

of genuine hidden features. The objection regards the epistemic payoff of those hidden 

features. That is, it says that the productivity of surprises from experiments is worth more 

because it tells us about targets in the world. The claim is that when a researcher discovers 

a hidden feature in a simulation, the burden is on him to show why it tells us anything 

about the world outside the model.

 This view is wrong. Well, it is not entirely wrong: It is true that simulationists do 

not study their targets directly. They study models, which stand in for their targets. But 

experimenters almost never study their targets directly, either. In physics and chemistry, 

objects of study in the laboratory are often instances of the target entities or phenomena in 

the natural world, like particular subatomic particles or elements or kinds of reactions. 
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But even then experimenters need to do some work to show why the conditions that apply 

to those entities or phenomena in the laboratory apply to them in general out in nature as 

well, or (sometimes) whether they are even identifying the correct entities or phenomena 

in the laboratory (on this latter point see related discussion in Galison 1987). In biology 

and biomedical research, there is often even more work to be done to show why inferences 

from the object of study to a target of inquiry in the natural world are licensed, as when 

using Drosophila to study genetics in general, or a small group of clinical trial volunteers 

to study potential future drug-takers in general. When computer models are the objects of 

study, scientists always have to do the work to show why inferences to the world outside 

the object of study are valid. When experimental systems are the objects of study, they 

almost always do too.

 Only in very rare cases can experimenters be said to study their targets directly. 

The only sorts of cases where this applies are cases where (1) the target is delineated in 

particular rather than general terms and consists of a small, clearly delimited set of 

entities, and (2) the experimenter is studying exactly that set of entities as her object. 

Cases where this might hold include studies of very small populations, for example, 

certain field studies in anthropology, where the goal is to say something about a small, 

clearly delimited population of humans and researchers engage with every member of that 

population as their object of study; or biomedical studies of the only 50 people in the 

world with an extremely rare genetic disorder for the purposes of making inferences about 

people with that genetic disorder.29 Other rare cases that might meet these conditions 

include chemistry experiments in which researchers create a new synthetic element in the 

laboratory, for the purpose of making an inference about how that element behaves, and 

105

29 Even here, though, there could be problematic issues involved in making inferences about past or future 
people with the disorder in question.



the only existing instance of that element is the one which they are studying. For example, 

in 2014 researchers claimed to have created element 117 (ununseptium) (Khuyagbaatar et 

al. 2014); it is very difficult to create this synthetic element in the laboratory and the 

element exists for only a fraction of a second before falling apart. But people created it and 

wrote a paper about it. In these sorts of cases, where the only proper instance of the target 

in the universe (as far as we know) is exhausted by the experimenter’s object of study, it is 

correct to say that the experimenter is studying her target directly. In the vast majority of 

experiments, this is incorrect.

 These sorts of cases are rare exceptions, and not at all the norm. In all other cases 

of scientific research, the object of study is standing in for the target of inquiry. There are 

many ways for one thing to stand in for or represent something else, and it is beyond the 

scope of this discussion to enumerate all these various ways and exactly how to 

understand them (but see Frigg 2006, Van Fraassen 2008 and others). The key point here 

is just that a scientist always has to do some extrapolation work to show why her object is 

an appropriate stand-in for her target. This applies whether her object is a physical system 

in a laboratory, a population in the field, or a model visualized on a computer screen. This 

applies whether the difference between her target and object is that one is a biological 

population in nature and the other is computer code, or that one is a biological population 

in nature and the other is a biological population in a test tube. If we were to define 

experiments as cases where researchers study their targets directly, then very few cases of 

scientific research would count as genuine experiments.

 It is worth mentioning another exception to the view that experimenters study 

their targets directly, simulationists do not: There are also rare cases where simulationists 

do study their targets directly. For example, it can be the case that a simulationist’s 
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ultimate target of inquiry is not some system in the natural world, but the model under 

study itself. Weisberg calls these cases “targetless models,” where “[t]he only object of 

study is the model itself, without regard to what it tells us about any specific real-world 

system” (2013, p. 129). The Game of Life (see discussion in Section 4.4.1) is a perfect 

example. The model is not meant to represent some particular target system in the natural 

world. Rather, it is studied as an interesting case in its own right of properties of interest to 

researchers in artificial life and computer science, like emergent dynamics and universal 

computation. 

4.6. What’s the Difference between Experiment and Simulation?

To underline a point which should be clear by now: When we are talking about broad-

sense simulation and comparing experiments to physical simulations (studies of physical 

models), there is no interesting or important difference between experiment and 

simulation. I have discussed cases which we might think of as either experiments or broad 

sense simulations. It does not ultimately matter, for the purpose of evaluating the 

inferences in question, whether we call these experiments or simulations. The same is true 

for any other study where researchers are intervening in a physical system (their object) 

for the purpose of making some inference about some other physical system (their target). 

Other than in very rare cases like the ones mentioned in Section 4.5, scientists’ objects of 

study are always stand-ins for their target. They almost never study their targets directly. 

The important question for evaluating what we can learn from a given study of a physical 

system is not “Is it a simulation or an experiment?” The important question is, how is this 

object of study being used to generate or justify inferences about the target of inquiry in 
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question. I agree with Winsberg (2009, p. 591) when he says that “[h]ow trustworthy or 

reliable an experiment or simulation is depends on the quality of the background 

knowledge, and the skill with which it is put to use, and not on which kind it belongs to.” 

There is no epistemic or methodological distinction between experiments and physical 

simulations. Focusing on which kind a case of scientific inquiry belongs to focuses us on 

the wrong issues. 

 That was all about experiments versus physical simulations. When we’re talking 

about experiments versus computer simulations rather than broad-sense simulations, 

there is an important methodological difference at play, namely, the difference between 

studying a physical system and studying a computer simulation. This matters for 

pragmatic reasons. Most often, doing an experiment will be more costly than doing a 

simulation. The supplies, reagents, and person hours needed to run a laboratory 

experiment tend to cost significantly more than running a model on a computer. (I say 

tend to because even here there are exceptions: running most middle-school chemistry 

experiments costs significantly less than running meteorologists’ climate models). 

Simulations can allow one to observe an object of study’s dynamics over time much more 

quickly than doing so in a real-time experimental system. 

 This pragmatic advantage can come with epistemic costs. Many people have the 

intuition that it always comes with epistemic costs; this is an important part of the 

intuition which the materiality thesis tries to explain: The idea is that studying a model as 

opposed to a material system involves sacrificing realism, and sacrificing realism reduces 

epistemic value. Again, this is a good intuition in contexts where we know relatively little 

about the features of our target of inquiry relevant to designing a good experimental 

system or model. But science is not always operating in such contexts. One example of a 
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context in which there is no such epistemic cost associated with simulation is the study of 

molecular bond angles in chemistry. We know enough about chemical bonding to answer 

questions via mathematical modeling and computer simulation about how atomic 

substitutions will affect the bond angle in a given molecule; for example, swapping atoms 

of phosphorus for atoms of arsenic in the molecular backbone of DNA (as in Denning & 

MacKerell 2011). For answering questions about straightforward atomic substitutions in 

familiar molecules, we would not be in a better epistemic situation were we to carry out 

the relevant experimental manipulation (and it would certainly be far more pragmatically 

costly). So again, the point about the epistemic costs of simulation is a point that holds in 

many contexts. But it is not an in-principle epistemic difference between experiment and 

simulation.

 The methodological difference between experiment and simulation is not purely 

pragmatic. It matters for making judgments about epistemic value—but only in a context-

sensitive way. All of science is about engaging with some object of study to learn about 

some target of inquiry, and very rarely are the object and target identical. We should not 

look to the experiment/simulation distinction alone to tell us anything in principle about 

the epistemic value of cases of scientific inquiry.

 A final point about the difference between studying experimental systems and 

computer models: Even regarding this version of the experiment/simulation distinction, 

people have been hasty in drawing sharp methodological lines (and using these, in turn, 

as a basis for conclusions about the epistemic superiority of experiments). While it was 

once common for individual scientists, laboratories, or even entire subfields to focus on 

one or the other, experimental and computational methods are now increasingly 

combined. While of course there is the methodological distinction I just mentioned, the 

109



identity of the object of study, the methodological overlap between experiment and 

computer simulation in another sense is often significant. The views on experiment versus 

simulation cited above often talk as if researchers choose to do one or the other, as their 

main program of research or even within the context of a given study. But this is 

increasingly not the case. Computer simulations are often a key part of the experimental 

process. Of course, one way computation is used in biology is to solve mathematical 

models, like population- and Mendelian-based models of evolutionary genetics. But 

simulations can play plenty of other roles in the experimental process as well. For 

example, they are used as initial steps in LNS experiments to help figure out which 

variables to fix (Roff & Fairbarin 2009), or to explore theoretical questions about spatial 

structure in experimental microbial communities in tandem with studying those 

communities themselves (Kerr et al. 2002).

 I have argued that we should not look to the experiment/simulation distinction to 

tell us anything in principle about epistemic value. I have shows that two senses in which 

experiments are commonly thought to have epistemic privilege over simulations—

inferential power and capacity to generate surprises—do not generalize across science. 

Studying a material system as opposed to a computer model does not automatically entail 

better inferences. In Chapter 5 I will begin to develop an account of where we should look 

instead. 
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5. Conclusion: Evaluating Inferences about the Natural 
World

The views I responded to in Chapter 4 held that we can look to the experiment/simulation 

distinction to tell us something in principle about the validity of scientific inferences. I 

argued against the claim that experiments are superior to simulations as a generalization 

across science, both in the sense of having greater inferential power and being a superior 

source of surprises, and furthermore that we should not rely on the experiment/

simulation distinction, in and of itself, as a basis for making judgments about the 

epistemic value of cases of scientific inquiry. The trend toward carving up scientific 

methodologies into clear categories, and using those categories as bases for such 

judgments, focuses on the wrong issues.

 In this concluding chapter I begin to sketch an account of where we should focus 

instead when evaluating inferences. The starting point, rather than the methodological 

category of the case in question (was it an experiment, a simulation, an observation…?), 

should be the extent to which relevant similarities have been captured between the object 

and target, along with context-sensitive information about background knowledge and the 

scientific question at hand. Methodological considerations like degrees of control, 

intervention, material object-target correspondence, and the identity of the object of study 

(is it an experimental system on a lab bench, a computer model, a population in the 

field…?) can certainly be focal points in these evaluations. But these methodological 

aspects should play a context-sensitive role. The conclusions we draw from them depend 

on the question at hand and the researcher’s epistemic relationship to her object and 

target. This framework allows us to understand how doing an experiment or a simulation 
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can have strong advantages—but not purely in virtue of being an experiment or 

simulation, per se. I will discuss three sorts of key considerations: relevant similarities, 

how much we know (about the target and the object), and the importance of realism 

versus control.30

 The core focus of evaluating inferences without problematically focusing on 

methodological categorizations should be to look at the extent to which a given object of 

study is relevantly similar to the target of inquiry in question. In recent work Parker has 

endorsed this view, and Weisberg has offered a detailed account of how to assess relevant 

similarities for the purpose of understanding model-world relations (henceforth I will use 

‘relevant similarities’ as shorthand for the relevant similarities which hold between an 

object and target). I agree with both of them, and think that relevant similarity 

assessments are the key piece in a framework for evaluating inferences. But they are not 

the only piece. Hence I see my account as adopting both of their views but also taking a 

step further toward a complete picture of the considerations which should go into 

judgments about the external validity of cases of scientific research.

 In Parker’s discussion of the relationship between experiment and simulation 

(2009) she rejects what I’ve called the materiality thesis on grounds which are 

complementary to the points I made in Chapter 4 (see discussion in Section 4.3). She 

argues that instead of focusing on material correspondence to evaluate inferences we 

should focus on relevant similarities. Parker says that “the focus on materiality is 

somewhat misplaced here [in the context of the materiality thesis], because it is relevant 
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similarity, not materiality, that ultimately matters when it comes to justifying particular 

inferences about target systems” (2009, p. 484). Relevance is a function of the question 

being asked about the target: Depending on what a researcher wants to know about his 

target, capturing some subset of its features in his object of study will be crucial, and other 

features might be ignored. The relevant similarities in a given case might be of the sorts 

that Morgan and Guala called material, formal, or some combination of the two; it 

depends on what the researcher is after. I completely agree with Parker, but more needs to 

be said. She does not give a thorough account of how to measure or evaluate relevant 

similarities, or how we judge them to have been achieved (that is, how we are to rely on 

them as an alternative basis to material object–target correspondence for judging 

inferences valid). Picking up where Parker left off, I think we need a more nuanced 

account of what ‘relevant similarity’ means and how it figures into experimental design, 

analysis, and inference.

 It would be hard to object to Parker’s claim that the key thing scientists need to 

know in order to justify an inference from an object to a target is “whether the 

experimental and target systems were actually similar in the ways that are relevant, given 

the particular question to be answered about the target system” (2009, p. 493). I think it is 

fair to say that Morgan and Guala both accept this claim in their papers defending the 

materiality thesis. They just prioritize one particular way to be relevantly similar. While 

they don’t put it in exactly these terms, one way to think about their materiality thesis, 

which I do not think they would object to, is as follows: Material correspondence is 

sufficient for capturing the relevant object–target similarity needed to validate an 

inference. In other words, materiality matters enough that achieving material 
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correspondence is tantamount to achieving ideal conditions for a valid inference. As I 

discussed in Chapter 4, this is problematic.

 Other people talk about relevant similarity in roughly the sense Parker has in 

mind, too. This point is often relied on, but seldom articulated in detail: In order to 

successfully learn about one thing by studying another, the two should be similar in the 

relevant ways for inferring something about the former from the latter to be credible. For 

example Samir Okasha, discussing research strategies for understanding the major 

transitions in evolution by studying natural selection acting at multiple levels, asks: “… is 

the transition from unicellularity to multicellularity relevantly similar to the transition 

from solitary insects to eusocial insect colonies? If so, then can the theoretical principles 

needed to understand the former be extrapolated to the latter and vice versa?” (Okasha 

2008, p. 152). 

 We can begin to flesh out a more developed account of how to think about 

relevant similarities by returning to two familiar cases from laboratory natural selection 

experiments discussed in Chapters 2 and 4, punctuated evolution and high mutation rates, 

and distinguishing them in terms of the relevant similarities which are meant to be 

grounding the two inferences in question. I will say a bit about what sort of justification 

there is supposed to be for these two claims, and then make some evaluative remarks 

about how well this pans out in each case. I said in Chapter 4 that the two cases differ in 

the degree of material correspondence that is meant to be playing a role in grounding the 

inference in question. As a starting point for distinguishing them now in terms of the 

sorts of relevant similarities at play, it is helpful to rely on the division of the experimental 
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system into three of its key aspects: organisms, their environments, and the governing 

mechanisms and processes.31

 In the punctuated evolution case, a process was meant to be front and center in 

grounding the inference, namely, the process of punctuated dynamics in morphological 

evolution. The environment’s constancy was important, but its particular constitution was 

not. The particular identity (phylogenetic, phenotypic, or otherwise) of the organisms 

comprising the evolving populations was not a consideration at all. So in this case, 

weighing the relevance of each of these three aspects (processes, environment, and 

organisms) matters a lot more than some overall assessment of material correspondence 

like the one I laid out in Section 4.3.2, which defaults to focusing on only the latter two 

aspects being alike in the object and target.32  Whether or not the same dynamics and 

underlying mechanism are captured in the object and target is key to answering the 

question of whether or not this is a valid inference, and the choice of experimental system 

(in this case, twelve strains of E. coli in minimal growth medium) can be geared toward 

isolating features crucial for understanding long-term evolutionary dynamics. For trying 

to make an inference like the one in the punctuated evolution case, making the 

experimental system more like the world outside of the laboratory—for example, by 

introducing environmental variation over space and time or using organisms plucked 

directly from the wild rather than developed for use as laboratory model organisms—
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would detract from its value by undermining its goal of isolating and capturing the 

features most salient for studying the high-level evolutionary dynamic in question.

 The inference in the high mutation rates case is different. There, the identity of the 

experimental populations is central to validating the inference from E. coli to asexual 

pathogenic microbes outside of the laboratory. Here is a case where being materially 

closer to the target matters more, in the sense I discussed in Section 4.3.2, where material 

correspondence is understood in terms of grain of correspondence at the relevant 

“material” (that is, chemical, physical, biological…) level of categorization. In this case the 

relevant categorization is phylogenetic combined with a more general point about 

reproductive class (being an asexual, non-recombining population). But this point about 

material closeness mattering holds in this case because close correspondence of physical/

biological traits of the experimental subjects and the entities which comprise the target is 

what needs to be the case for this to be a plausible inference. It has to do with the level of 

phylogenetic and physiological specificity with which the target is defined in this case—

not with the fact that this is an experiment, per se.

 We can now return to the question, which I raised and set aside in Chapter 4, of 

how to actually evaluate the inferences made in these two cases. I mentioned the intuition 

that the inference in the high mutations rates case seems more plausible than that in the 

punctuated evolution case. If we analyzed these two cases from the perspective of the 

material correspondence view, we would get the following upshot. The high mutation 

rates case is in a good position with respect to external validity, since its experimental 

subjects are “made of the same stuff” as the target organisms in precisely the same way as 

in Morgan’s examples from economics. The punctuated evolution case would not get such 

a clear stamp of approval, but this is because, as I discussed in Section 4.3.2, it gets messy 
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trying to even make sense of what material object–target correspondence would look like. 

The point of the inference in that case is not to delineate a target in terms of any 

particulars of its material constitution; in a material sense, the target is not concretely 

defined. It is an arbitrary set of populations, traces of whose evolutionary history are left 

in the fossil record; the target in this case is about the macroevolutionary trend of 

punctuated equilibrium. The aim in that case was to capture what is going on with a 

certain kind of evolutionary dynamic and its historical causes. Thus, the material 

correspondence view seems to more or less line up with our intuitions about these two 

cases, but for the wrong reason. It fails to point to a valid inference in the punctuated 

evolution case, but only because it fails to offer a coherent analysis of what is going on in 

that case.

 If we think about these two cases in terms of capturing relevant similarities, rather 

than material correspondence, we can get a different analysis. The high mutation rates 

case (see Section 2.1.1) looks plausible because the relevant similarities are plausibly 

captured between the asexual, non-recombining populations of evolving microbes in the 

experimental system and those designated as the target. The claim being made in that case 

has the following form:

1. We observe the evolution of high mutation rates in the lab populations.

2. We posit a mechanism for how this might occur, mutator hitchhiking.

3. The same mechanism might explain the evolution of high mutation rates 

observed in similar populations in nature, with phylogenetic classification 

identical to or close to that of the lab populations, sharing the key feature that 

makes mutator hitchhiking work: lack of recombination.
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This looks like a good inference from object to target for roughly the same reason as 

discussed in the preceding paragraph, but rather than just talking about material 

correspondence we can put it in terms of relevant similarity—though, if you like, it is still 

“material correspondence” (in this case, cashed out as corresponding classification as 

members of overlapping or nearby phylogenetic classes and as asexual populations) doing 

the work. The point is, the way the claim is made, researchers give solid reasons for 

thinking that the features relevant to explaining the mechanism in question hold in both 

the lab populations (object) and the populations in nature (target). Both sets of 

populations are relevantly similar with respect to those key characterizing features.

 The punctuated evolution case (see Section 2.1.2) looks questionable for a more 

satisfying reason than on the material correspondence analysis discussed above, where it 

was just unclear how to understand the target’s “material” status and thus how to even go 

about evaluating material correspondence. The inference from the lab populations to the 

fossil record is dubious because it is not clear that the laboratory populations’ short-term 

punctuated evolutionary dynamic actually has to do with the massively longer-term 

proposed evolutionary dynamic of punctuated equilibrium in nature. The inference there 

has the following form:

1. We observe punctuated morphological evolution over 3,000 generations in the 

lab populations (the cells increase in size over a short number of generations, 

stay the same size for many generations, and then increase rapidly again).

2. We posit a mechanism for how this might occur, rare beneficial mutations 

rapidly sweeping to fixation.

3. The same mechanism might explain punctuated equilibrium observed in the 

fossil record, where macroevolutionary trends appear to show long periods of 
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stasis punctuated by short periods of rapid change. But—the authors do not 

note this but I am noting it here—the way Gould and Eldredge (Eldredge & 

Gould 1972; Gould & Eldredge 1977) talked about punctuated equilibrium in 

their classic discussion, in addition to the massive difference in scale, the 

periods they focus on are concentrated periods of rapid speciation events, not 

evolution of single morphological traits.

In this case, we have to focus on the evolutionary dynamics at play, and functional features 

of the environment, to be in a position to evaluate the inference from object to target. 

Material correspondence is not the point. And there are not convincing reasons given here 

for why the laboratory populations should be taken as relevantly similar to a set of 

fossilized organisms (and the long-gone lineages they represent) taken as evidence of 

punctuated equilibrium, for the purpose of establishing the claim the authors make. The 

problem is that the authors use observations about relatively very short-term dynamics in 

single lineages in the laboratory to propose a mechanism for hugely longer-term dynamics 

in nature spanning speciation events, without doing the work to show why the object is a 

valid stand-in for the target. There is a major scale difference between the laboratory 

dynamics and target dynamics in question, combined with an undiscussed difference 

between the observation of a single morphological trait (cell size) evolving in a few leaps, 

versus a complex of observations of changes over speciation events at issue in discussions 

of punctuated equilibrium. 

 The view that material correspondence is all that matters does not leave enough 

room for tailoring what matters in an inference claim to the kind of scientific question 

being asked or answered. Thinking in terms of relevant similarities addresses this: 

Depending on the kind of inference being made, different aspects of the relationship 
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between the object of study and the outside world will be more salient and crucial to 

capture. External validity need not be proportional to degree of material object-target 

correspondence. Instead, external validity assessments should account for what is relevant 

about correspondence to the outside world not only of the entities which make up the 

object of study, but also a host of other potential features of the governing processes and 

environment (particularly in experiments). 

 Recall the quotation from Guala on p. 75 above, where he says that “The trick [to 

generating external validity] is to make sure that the target and the experimental system 

are similar in most relevant respects… Experimenters make sure that this is the case by 

using materials that resemble as closely as possible those of which the parts of the target 

system are made.” Guala starts out on the right track here, but he makes the mistake of 

conflating achieving material correspondence in an experiment with capturing what is 

most relevantly similar about the experimental system and the target. Material 

correspondence is one possible route to achieving external validity. Depending on the 

context, it might or not might be the best route, or even an appropriate route. I am not 

saying that material correspondence never matters. My point is just that it is wrong to 

think that there is something special about experimentation such that material 

correspondence is the crucial, or even central, feature grounding valid extrapolation 

claims. Sometimes it is; sometimes it is not. Relevant similarities between objects and 

targets should be the basis of extrapolation claims, and these can be similarities of many 

different sorts—physiological, functional, mechanical, material, phylogenetic, 

mathematical, “formal,” etc.—depending on the scientific question at hand.

 One of the most complete accounts of the notion of similarity is from Weisberg 

(Weisberg 2013). Weisberg focuses on model-target correspondence in modeling and 
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simulations, but his account could easily be adopted to apply to any case where we are 

assessing object-target correspondence. Weisberg proposes a formal account for 

understanding the similarity between a model and its target based on the idea of weighted 

feature matching. This involves compiling a list of the salient features of the model and the 

salient features of the target, and calculating which features they share and which features 

they fail to share. Features are divided into attributes (properties and patterns) and 

mechanisms (the underlying processes which generate attributes). The formal metric for 

assessing similarity on Weisberg’s account involves calculating the intersections of 

attributes and of mechanisms shared between model and target, as well as the difference 

between the model’s and target’s respective attributes and mechanisms. Each of the 

resulting six terms is then assigned a weight, based on the relative importance of each 

member in the feature set to the researcher’s modeling goals. Overall similarity is the ratio 

of weighted shared features to weighted features which are not shared. For further details 

of the account and several examples of its application, see (Weisberg 2013, chapter 7). 

 I consider this an account of relevant similarity in the sense I am talking about 

here because it incorporates context and what matters to the researcher. Weisberg says: 

A model is similar to its target… when it shares certain highly valued features, 
doesn’t have many highly valued features missing, and then the target doesn’t have 
many significant features that the model lacks. Relevant features are identified in a 
natural or formal language and their importance is weighted relative to the goals 
of the scientific community. (2013, pp. 144–145)

The relevance comes in in the use of (only) highly valued, significant features, and in their 

weighting. This is an account of how we should think about relevant similarities: roughly, 

the feature matching captures the similarity, and the weighting captures the relevance. 

Scientists thinking about object-target correspondence on Weisberg’s account have to 
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make decisions about which features of their object and target are most salient for 

establishing external validity; not all similarities count equally. 

 Weisberg illustrates his account with examples including the San Francisco Bay 

model and Schelling’s segregation model. The former is a huge (1.5 acre) scale model of 

the San Francisco Bay with hydraulic pumps simulating tides and currents, used to study 

the effects on the bay of actions such as constructing potential dams. Schelling’s 

segregation model is a computational model showing how racial segregation can occur in 

the absence of explicitly racist attitudes. It consists of a spatial grid populated by agents of 

different types, each of whom has a slight preference that their neighbors be of the same 

type as them; the model can be applied to thinking about the mechanisms of segregation 

in particular cities like Philadelphia (see further discussion of both cases in Weisberg 

2013). Weisberg explains how we think in terms of weighted feature matching to assess 

the extent to which object (model) and target share the features researchers care about. 

 We can think of the resulting calculations as good starting points for evaluating 

the validity of inferences from objects to targets: a higher score would entail a greater 

license to place confidence in such inferences because it points to greater reason to be 

confident that the object has captured the features of the target that matter. We can 

successfully carry out these sorts of similarity assessments only when we know quite a bit 

about our target’s attributes and mechanisms. This works well in the examples Weisberg 

uses to illustrate his account. In the case of the San Francisco Bay model, we know a lot 

about the bay. In the case of the Schelling model being used to model racial segregation in 

Philadelphia, we know a lot about Philadelphia. We do not know everything about either 

target; if we did, we wouldn’t be asking questions about them and trying to learn more. 

But we know enough about their relevant attributes and mechanisms to generate a 
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satisfactory assessment of their similarity to those of the object (model). For instance, we 

can be confident that the simple shared utility functions used in the model (such as “I 

want at least 30% of my neighbors to be like me”) are not strictly identical to those held by 

the actual citizens of Philadelphia, and we know that the rigid grid structure of the 

model’s spatial layout does not strictly match the irregular grid structure of the actual city 

of Philadelphia but still does a fine job of approximating it in various ways (Weisberg 

2013, p. 148). 

 In cases where we know much less about the target than we know about the San 

Francisco Bay or the grid and population structures of US cities, we would be in a worse 

position to assess relevant similarities because we might not even know enough to 

calculate exactly which attributes and mechanisms are shared, or fail to be shared. In 

many cases, scientists know a lot less about their target’s attributes and mechanisms than 

we know about the targets in these examples. To be fair to Weisberg, he intends weighted 

feature matching calculations to represent the relation that is supposed to hold when 

relevant similarities are achieved. He does not say that a modeler will always be in a good 

position to perform the relevant calculations about her model and target, for the sort of 

reason I’m raising here (she might know little about her target—or about her object). My 

point is not to criticize his account, but just to underline that many cases are far enough 

from the ideal that weighted feature matching calculations will be difficult or impossible 

to carry out. For example, this will often be the case in research areas whose targets are 

entities and phenomena in the deep past, like research on long-extinct species or the 

origin of life of Earth. In such cases, we cannot rely only on successful feature-matching 

calculations to give us confidence that our object and target are sufficiently relevantly 

similar, and thus to place confidence in inferences from the former to the latter.
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 I think Weisberg’s account is a good way to think about assessing relevant 

similarities, and I am not proposing an alternative way to assess them. Rather, I’m 

underlining that we cannot always carry out clear relevant similarity assessments. For the 

present purposes—an account of how to evaluate inferences from objects to targets—we 

should focus centrally on relevant similarities, but also take a step back and have some 

framework in place for judging inferences even when we cannot carry out these 

assessments. Sometimes a scientist’s epistemic relationship to her target, or even to her 

object, is such that she is not in a good position to say anything too definitive about what 

similarity relationship holds between them. In particular, I’ll making some preliminary 

remarks about some further considerations that matter: how much a scientist knows 

about her target and her object, and the closely related issue of the value of control versus 

realism. When she knows less about her object or target or especially both, realism 

matters more, and we often have reason to place greater confidence in an experiment than 

in a computer simulation. When she knows a lot about both, realism can sometimes be 

sacrificed for control, and we can sometimes have reason to place greater confidence in a 

simulation than we would in an experiment.

 First, regarding the cases when we know less about the target, when realism 

matters more: We can aim for relevant similarities even when we are not in a position to 

undertake a clear feature-by-feature assessment as in Weisberg’s account. The issue of 

identifying and assessing particular features which make an object and target relevantly 

similar is not the same as having reasons to think that the object might be relevantly 

similar to the target. Usually these go hand in hand, but sometimes we can have the latter 

without a clear idea of the former. This seems to be the case especially in biology, where 

we often rely on phylogenetic closeness to justify studying one organism as a stand-in for 
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another, when the former is a model organism we know a lot about and the latter is an 

organism in nature we know much less about. The reason to think the two might be 

relevantly similar can involve knowing, for example, that the species evolved by natural 

selection in similar environments, or that they share key homologous structures of 

interest. Even if we cannot list all of the features they share, that is a good reason to think 

that they are similar in ways that matter. On this sort of point, Maclaurin and Sterelny 

write: 

To say that two organisms are members of the same taxonomic group is to say 
that they are importantly similar, and, depending on the taxonomic system 
employed, to license inferences based on those similarities. Importantly, they will 
be similar with respect to features whose existence or importance we are yet to 
discover… The enormous scientific effort expended on understanding the 
developmental biology of just a few model organisms (a fruit fly, a nematode 
worm, a mouse, a fish) is based on this intellectual strategy. (Maclaurin & Sterelny 
2008, p. 10).

To reiterate an important point I made in Chapter 4: When we have little background 

knowledge of our target, a physical sample of our target or a close approximation is often 

the best starting point. Experiments often have epistemic privilege in these contexts where 

we know little about our target. 

 When we know more about the target, control can matter more than realism. In 

the contexts of some research areas, we know enough to build reliable simulations 

precisely because we have enough information from the world already. The molecular 

bond example discussed at the end of Chapter 4 (see page 105) is such a context: We know 

enough about the way individual atoms fit into molecules, and the effects of atomic 

changes on molecular structure, to design reliable simulations. These are the sorts of cases 

where not only can we place confidence in the simulation results, but it seems right to say 

that simulations have privilege over experiments. Carrying out the relevant experimental 

manipulation (that is, physically swapping out the atoms of phosphorus in an actual DNA 
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molecule for atoms of arsenic) would be extremely difficult, and would arguably involve 

steps of uncertainty and need for confirmation (has the intended intervention actually 

been successfully achieved?) which would give us reasons to have decreased confidence in 

the experimental result compared to the equivalent well-designed simulation.

 Other cases present even more strikingly how sometimes, however much we know 

or fail to know about the object or target, it makes for better inferences to sacrifice realism 

for control for pragmatic reasons. In these cases, simulations have privilege over 

experiments in a different sense: They are for practical reasons the best we can do. For 

example, there are situations where studying a physical approximation of the target would 

be unfeasible, such as large-scale climate studies (see Parker 2009). In these cases, 

studying a physical sample or a close physical analogue of the climate of the entire planet 

does not make sense as a feasible experimental program. This is a point about hugely 

macro-scale targets of inquiry; the same sort of point also holds at the extreme micro-

level, for examine in certain cases in nanoscale physics. While it is not strictly impossible 

to undertake the experimental manipulations in question, it would be prohibitively 

difficult (and would perhaps require technology we have not yet developed), but more 

importantly we have enough theoretical knowledge to construct reliable computer models 

(see discussion in Lenhard 2006).

 Here is another example of a case where control seems to matter more than 

realism, in this case because a certain kind of question is being asked about general 

dynamics rather than particular kinds of organisms or entities in the world. This example 

involves trying to figure out the relative importance of different evolutionary processes in 

populations with high mutation rates. In a recent paper Keller and colleagues (2012) 

discuss computer simulations aimed at understanding which processes are responsible 
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when null models of mutation-selection balance fail to predict a population’s fitness 

equilibrium. They explain their choice of object of study as follows: “we do not pretend 

that our model captures any biological system. The property that is most appealing is a 

fitness landscape in which many different biological properties can evolve” (p. 2308). In a 

case like this, control of certain high-level features is paramount, and there are a number 

of reasons to think that studying a material system, like laboratory populations of 

organisms, would put researchers in an epistemically worse situation with respect to 

answering the particular question at hand, namely: When the null models fail to predict 

fitness equilibrium, what sorts of other evolutionary processes might be responsible? This 

is because they would be sacrificing much-needed control for arguably unneeded realism 

(for example, it would be hugely more difficult to identify and measure the fittest 

genotypes in the population.) This is where the kind of intuition underlying the 

materiality thesis comes in: If we are asking a scientific question that relies particularly on 

physical, physiological, or phylogenetic object–target correspondence, experiments are the 

best route to valid inferences. It is the conditional that is key here: Not all scientific 

questions rely on such correspondence to achieve valid inferences about the target in 

question; in fact, some explicitly have goals that conflict with such correspondence.

 The aim of this chapter was to outline the kinds of considerations that should go 

into a framework for evaluating inferences from objects to targets which allows for 

context-sensitive judgments about a range of factors including, but not limited to, the 

identity of the object in question (computer model or physical system). This was to shift 

away from the problematic basis of basing such judgments purely on methodological 

categories like experiment or simulation. I talked about the importance of three 

interrelated considerations for such an account: relevant similarities, how much we know 
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about the object and target in question, and how we weigh the importance of control 

versus realism. There’s a lot more to be said about each of these three considerations; this 

is a topic for future work. The main point I want to establish here is that these are the 

considerations that should go into such an account.

 In closing, from the discussion in this dissertation a number of lessons follow for 

how we think about experiments and their role in scientific inquiry. First, the 

categorization scheme differentiating hypothesis-testing and exploratory experiments is 

not exhaustive; much work remains to be done to clarify the middle ground. Second, 

attempts to draw clear methodological and epistemic lines dividing experiments and 

simulations break down, especially in the case of experiments versus what I called broad-

sense simulations. Third, philosophers, scientists, funding agencies, and others evaluating 

particular cases of scientific research should give up the common practice of relying the 

experiment/simulation line as a basis for in-principle judgments about the value of those 

cases. Instead, we should focus on questions about the relationship between objects and 

targets in particular contexts, what the researcher knows about both, and what sort of 

question she is trying to answer by studying her object. In arguing for these points I have 

argued neither that methodological categories are meaningless,33 nor that experiments 

never have epistemic privilege over simulations. As the preceding discussion in this 

chapter especially shows, there are important differences between studying physical 

experimental systems and studying computer models. But—this is the key point—our 

judgments of the value of these sorts of methodological choices for backing up good 

scientific inferences must be sensitive to the context of the research question, and research 

area background knowledge, at hand. The right way to think about evaluating inferences is 
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in terms of relevant similarity assessments (when possible), combined with thinking about 

how much a researcher knows about her object of study and target of inquiry, and the 

relative importance of control versus realism to generating a good answer to the scientific 

question at hand.
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