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ABSTRACT 

SYNTHESIS OF HYBRID NANOMATERIALS THROUGH AMPHIPHILIC 

SELF-ASSEMBLY 

Qingjie Luo 

So-Jung Park 

 

There have been tremendous efforts toward combining nanoparticles, polymers, 

biomolecules in material synthesis and device fabrication in order to take advantage of 

the unique properties of each component.  The ability to construct multicomponent 

hybrid nanomaterials with controllable structure and properties is critical to truly exploit 

the potential of these functional materials in many applications.  This thesis presents the 

construction of self-assemblies of various components including nanoparticles, synthetic 

block copolymers, DNA block copolymers, and lipid molecules.   

The location of nanoparticles in colloidal block copolymer assemblies is controlled 

by using nanoparticles modified with mixed surface ligands.  Different morphologies 

including micelles, Janus-like micelles, and interfacial assemblies, are obtained by 

varying gold nanoparticles ligand composition.  This work also reveals the surface energy 

calculations to explain the experimental findings, which offers guidelines for the 

generation of colloidal self-assemblies with predesigned structures and properties.  We 

also demonstrated the compartmentalization of two different types of nanoparticles in 

colloidal polymer assemblies by using mixed ligand gold nanoparticles. 

The self-assembly of DNA block copolymers and synthetic block copolymer is also 

presented.  The binary self-assembly results in giant polymersomes which can be 



iv 

connected through specific DNA interactions and form DNA rafts at junction area.  These 

results demonstrate that DNA hybridization induces effective phase segregation in 

polymer assemblies to form multiple DNA linkages.  We further showed that phase 

segregation has important implications in DNA melting properties, as mixed block 

copolymer assemblies with low DNA content can still exhibit useful DNA melting 

properties that are characteristic of DNA nanostructures with high DNA density. 

Finally we developed a strategy to self-assemble DNA-functionalized gold 

nanoparticles into macroscopic sheets assisted by DNA-tethered lipid bilayers.  By 

varying the amount of gold nanoparticles input, the surface coverage can be tuned.  Our 

approach provides a new method for the preparation of versatile scaffolds for 

nanofabrication and paves the way for organizing functional nanoparticles in a 

micrometer space. 
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CHAPTER 1. Introduction 

1.1  Solution phase self-assembly of amphiphilic block copolymers 

1.1.1  Amphiphilic block copolymers solution phase self-assemblies and 

their applications.  Amphiphilic block copolymers consist of two chemically 

distinct blocks which are covalently bound together.  The two immiscible blocks can 

microphase separate and later self-organize into enormous morphologies in solution 

phase, such as spherical micelles, cylinders, lamellae, vesicles, and other hierarchical 

assemblies, etc., as shown in Figure 1.1.
1-3

  Self-assembly is a common phenomenon 

in daily life, for instant, cell membranes constructed by the self-assembly of 

phospholipids, or soap bubbles originated from the self-assembly of small molecule 

surfactants.  Amphiphilic block copolymers self-assemblies are superior to those 

formed by small molecule surfactants in terms of stability and durability due to their 

better mechanical and physical properties.  Therefore, self-assembly of amphiphilic 

block copolymers is a very active area in material science, and has been extensively 

exploited for applications in many domains, including biomateirals, biomedicine, 

microelectronics, catalysts, etc.
4
   

There are couples of popular methods to prepare amphiphilic block copolymers 

assemblies reported on previously published literatures.  Among them, slow water 

addition (or co-solvent method) is the most frequently used method to generate small 

assemblies in chemistry lab.  In this method, block copolymers are dissolved in a 

good solvent, followed by the slow addition of water which is a nonsolvent to intrigue  
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Figure 1.1.  Transmission electron microscopy (TEM) images and corresponding 

pictorial images of various morphologies formed by different degrees of 

polymerization for each block.  In the pictorial drawings, red represents hydrophobic 

polystyrene part, while blue strands denote hydrophilic polyacrylic acid.  In TEM 

images, only hydrophobic PS parts are visible.  HHHs: hexagonally packed hollow 

hoops; LCMs: large compound micelles.  Figure reprint with permission from ref. [2] 

and [3].   
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the self-assembly process.  Typically, this method produces nanometer to several 

micrometer sizes assemblies.  For the generation of giant vesicles in micrometer 

sizes range, film hydration is particularly useful.
5-7

  There are other approaches 

utilized for the preparation of vesicles including electroformation and layer-by-layer 

assembly.
8,9

  The developments of microfluidics techniques in recent years have 

opened promising ways to form monodisperse vesicles with controllable size.
10

   

As mentioned above, one can observe a spectrum of morphologies of assemblies 

obtained by amphiphilic block copolymers, ranging from spherical micelles through 

rods, bicontinous rods, bilayers, to large compound micelles, as shown in Figure 1.1.  

Spherical micelles and vesicles, two of the most important morphologies, will be 

discussed in the following paragraphs.   

Simple spherical micelles are composed of hydrophobic core surrounded by 

hydrophilic corona.  The hydrophilic corona chains maintain the solubility in 

aqueous solution to avoid assemblies precipitating, while the hydrophobic cores offer 

a perfect compartment for the incorporation of hydrophobic functional materials, for 

example, drugs, fluorescent probes, nanoparticles, and a wide range of biomolecules 

including genes and proteins.
11-13

  Hence, spherical micelles have been extensively 

used for applications in bioimaging and drug/gene delivery.  Moreover, during the 

preparations of self-assemblies, spherical micelles are usually first generated.  

Therefore, they are considered as the simplest beginning aggregate to build up more 

complicated morphologies.   

Vesicles consist of hydrophilic hollow cavity with a hydrophobic bilayer wall 
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sandwiched by hydrophilic external and internal coronas.  They are known as super 

amphiphiles, for the reason that their molecular weights are several orders of 

magnitude higher than those of phospholipids.  The higher molecular weight results 

in increased wall thickness and coil interpenetration and entanglement, which makes 

amphiphilic block copolymers vesicles more robust, stable and improved mechanical 

properties, compared to liposomes.
14,15

  Vesicles have drawn significant attention 

because of their unique morphologies as well as their potential applications, and over 

thousands of papers have been published on this topic.
16-19

  Various technologies 

have been applied in order to acquire desired functionalities, for example, vesicle 

surface modification and encapsulation.  Specific ligands, such as biotin can be 

conjugated onto hydrophilic block and incorporated into vesicle coronas which 

subsequently can be decorated by avidinylated/streptavidinylated ligands or 

nanoparticles via strong affinity between avidin/streptavidin and biotin.
20

  Surface 

modification of vesicle walls allows for the attachment of hydrophobic molecules,
21

 

nanoparticles,
22,23

 and proteins, etc.
19,24,25

  The hydrophobic wall also enables the 

encapsulation of molecules mentioned above to create dual system.
26,27

  Nucleic 

acids and proteins need carriers for cellular delivery as they are too polar to enter 

cells.
28

  Vesicles provide the capabilities of encapsulation and delivery of these 

bioactive agents, and thus show promising aspect in gene or protein therapies.
28,29

   

1.1.2  Incorporation of nanoparticles into block copolymer assemblies.  It 

is well known that amphiphilic block copolymers self-assemble into assemblies with a 

wide range of morphologies in selective solvents, allowing them to provide as 
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templates to direct the organization of incorporated nanoparticles.  Through the 

self-assembly of amphiphilic block copolymer and nanoparticles in selective solvents, 

one can spatially organize nanoparticles in the resultant polymer matrices.  

Nanoparticles, as one of the most powerful popular building blocks encapsulated into 

amphiphilic block copolymers, have found a number of applications in electron 

devices, catalysis, nanoelectronics, and biodiagnostics.
30

  The forming 

nanocomposites often have advantages over individual constituent, show enhanced 

stability and unique functions for certain applications,
31-34

 and depend on the 

distribution and ordering of incorporated nanoparticles.   

It should be noted that nanoparticles are not just passively encapsulated into 

polymer metrics, and indeed play an active role during the self-assembly process.  

The co-assembly of nanoparticles and amphiphilic block copolymers is a very 

complex process, and the introduction of nanoparticles even increases its complexity.  

The self-assembly of amphiphilic block copolymers in co-solvent system involves six 

major χ-parameters (Flory-Huggins interaction parameter) including χAB, χAS, χAN, χBS, 

χBN, χSN, where A and B represent the two polymer blocks, S denotes the good solvent 

for both blocks, N denotes nonsolvent for both blocks.
3
  When nanoparticles 

incorporate into amphiphilic block copolymers, there are at least five more parameters 

needed to be considered, namely χPA, χPB (where P represents nanoparticles), 

nanoparticle size, shape and volume fraction.  If nanoparticle-nanoparticle 

interaction is strong, it is not negligible.  Among them, the polymer-nanoparticle 

interaction is an enthalpic parameter which is determined by the polymer and 
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nanoparticle’s coordinating ligand and makes major contribution to the location of 

nanoparticles.  For example, Taton and coworkers have reported the encapsulation of 

citrate-immobilized gold nanoparticles into poly(methacrylate)-block-poly(acrylic 

acid) (PMMA-b-PAA) micelles through the addition of dodecanethiol.  Small 

amount of dodecanethiol was intentionally added to nanoparticle surface to increase 

hydrophobicity and favorable interaction between PMMA block and dodecanethiol, 

subsequently solubilize nanoparticles into polymer micelles.
35

  In another case, 

Eisenberg and coworkers have successfully fabricated PS-block-poly(ethylene oxide) 

(PS-b-PEO) vesicles with polystyrene-block-PAA (PS-b-PAA) decorated gold 

nanoparticles inside vesicle walls mediated by hydrophobic interaction.
23

  The 

incorporation of gold nanoparticles presented in Chapter 2 relies on the surface 

chemistry, which is mainly the interaction between ligand and polymers, to dictate the 

location within polymer micelles.   

Other parameters also play important roles in the co-assembly process.  For 

example, nanoparticles size, from the entropic side, the less favorable the 

polymer-nanoparticle interaction, if the inclusion is larger.
36-38

  Many efforts have 

been made in the nanoparticle synthesis techniques for various types of nanoparticles 

to control over these parameters, including gold,
39,40

 magnetic,
40

 and semiconducting 

nanoparticles.
41

   

1.2  DNA block copolymers 

1.2.1  Preparation of DNA block copolymers.  Previously, researchers are 

only interested in block copolymers that consist of exclusively synthetic polymers; 
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however, more and more investigations have explored nucleic acid and polymer 

hybrids (known as DNA block copolymers) which combine organic materials and 

biomacromolecules.  The properties of block copolymers are determined by 

monomer chemical nature, the length of each block, and the block length ratio.  This 

also holds true for DNA block copolymer which is a novel class of block copolymer 

architectures.  DNA block copolymers provide several advantages over conventional 

block copolymers.  Firstly, the nucleotide precision of DNA segments can be 

perfectly controlled over by automated synthesis facilitating the fabrication of hybrid 

materials with precise length and digital information of DNA blocks.  Another key 

feature of DNA block copolymer is their DNA recognition property from 

single-stranded DNA on surface which can hybridize with complementary sequence 

by Watson-Crick base-pairing.  Furthermore, the conjugation of hydrophilic DNA 

onto polymers leads to supramolecular assemblies in aqueous solution because of the 

amphiphilicity of DNA block copolymers.  With careful selection of DNA sequences 

and polymers, it allows for adjusting of material properties for designated applications 

in gene or oligonucleotide delivery, biomaterials, and DNA detection.
42,43

   

The first paper which reported DNA polymer hybrid materials synthesis came 

out around the late 1980s.  DNA-block-poly(L-lysine) (DNA-b-PLL) was 

synthesized by grafting nucleotide onto PLL backbone and proved to be an effective 

antiviral agent inhibiting the production of vesicular stomatitis virus.
44,45

  Since then, 

the field of DNA polymer hybrid materials has been gaining tremendous momentum.  

There are handful of strategies for the coupling of linear DNA block copolymers 
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which allow for the prefabrication of DNA sequences and polymers, including the 

variation of length and base information of biological building blocks and molecular 

weight of polymer building blocks.  Generally speaking, two synthetic schemes have 

been employed for the coupling, coupling in solution and on solid support.  In 

solution coupling, different reactions have been achieved (Scheme 1.1).  In the first 

reaction, carboxylic acid terminated polymers were conjugated onto amine modified 

DNA sequences.
46,47

  In Chapter 3 and 4, DNA block copolymers were formed via 

this chemistry reaction.  The second reaction is the formation of disulfide bond 

between thiolated polymers and DNA sequences.
48

  The third reaction relies on 

Michael addition, with acrylate- or maleimide-functionalized polymers and thiolated 

DNA sequences as Michael acceptor and donors, respectively.
49,50

  The copper 

(I)-catalyzed Huisgen cyclo-addition as the premier example of click reaction was 

also utilized for the attachment of DNA block copolymers.  However, it has 

drawback resulting from the cleavage of DNA strand induced by copper ions.  

Recently, improvements were made by adding copper chelating agents and it becomes 

feasible for DNA coupling.
51

  Despite the fact that DNA block copolymers are easily 

synthesized through all of the solution-phase methods discussed above, their coupling 

efficiencies are drastically low and they are limited to hydrophilic polymers.  As the 

solution coupling requires both reactants to have sufficient solubility in water.   

Meanwhile, huge progress was made on solid-phase synthesis of DNA block 

copolymers.  Mirkin and coworkers first reported the successful coupling of DNA 

block copolymer using solid-phase strategy, and this work was a landmark in the  
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Scheme 1.1. DNA block copolymer synthesis in solution phase. 
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preparation of DNA block copolymer.
52

  The DNA block copolymers were prepared 

on controlled pore glass beads (CPG) (Scheme 1.2).  In this method, alcohol 

terminated polymer was treated with chlorophosphoramadite to obtained activated 

polymer phosphoramadite which was a crucial reagent.
53

  The polymer 

phosphoramadite was later coupled to oligonucleotide either using “syringe synthesis 

technique” or in a conventional DNA synthesizer.  The former method developed by 

Mirkin group has some drawbacks as it lacks of reproducibility and exposure of 

polymer phosphoramadite to solid support.  The second method was established by 

Herrmann group and carried out “in line” coupling of a polymer phosphoramadite to 

the detritylated 5’-hydroxyl end oligonucleotide bound on resin in a DNA 

synthesizer.
54

  This method was modified later on.  It was discovered 

phosphoramadite polymer which is a sensitive intermediate can be replaced in the 

coupling.  Some chemistry reactions listed on Scheme 1.1 were utilized for the 

conjugation by mixing DNA sequences bound on CPG with polymers in organic 

solvents.  The two blocks were both modified with specific functional end groups.
55

  

And the reactions were performed outside DNA synthesizer.  The DNA block 

copolymers were cleaved from resin and purified through polyacrylamide gel 

electronphoresis (PAGE) or anion exchange chromatography.  In Chapter 3 and 4, 

modified solid-phase method was adopted for the synthesis of DNA block copolymer 

via the formation of amide bond between carboxylic acid terminated polymers and 

amine terminated DNA. 
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Scheme 1.2. Phosphoramadite chemistry. 
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1.2.2  DNA block copolymer assemblies and their applications.  The 

combination of organic polymers with DNA molecules offers new opportunities to 

fabricate functional DNA hybrid material, the key benefit of which is from the 

programmability of DNA sequences manipulating structures with subnanometer 

precision.  In prior work, DNA-modified inorganic nanoparticles were bridged by 

linker DNA to form 3D assemblies and showed sharp melting transitions, which has 

been exploited for applications in DNA detection.
56

  This concept was extended to 

the field of DNA-polymer amphiphilies to generate organic micelles network by 

Mirkin group.  DNA-block-polystyrene (DNA-b-PS) was prepared by solid-phase 

method.  Due to their amphiphilicty, DNA-b-PS form stable micelle suspensions in 

water solution.  The DNA binding properties of micelles were studied, and sharp 

melting transitions were also observed for DNA block copolymer micelles originating 

from high DNA density on assembly surface.
52

  It is expected that DNA block 

copolymer micelles can also be used as building blocks to fabricate higher-ordered 

structures via hybridization with biomaterials that have complementary DNA.   

Inorganic nanoparticles, as the core materials of DNA-modified nanoparticles, 

serve one purpose which is essential in the context of material, device, and probe 

design.  That is, they offer extraordinary chemical and physical properties, for 

example, colorimetric, plasmonic, quenching, catalytic, and scattering.
57-59

  On the 

other hand, polymers which are another type of DNA-modified nanoparticles core 

materials could be biocompatible and possess excellent loading or releasing capacity.  

Drug delivery applications were successfully achieved with pristine DNA block 
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copolymer micelles or mixed micelles.  Hydrophobic anticancer drug molecules 

were incorporated into DNA block copolymer micelle hydrophobic cores, while folic 

acid which is the corresponding ligand of folate receptors on cancerous human colon 

adenocardnoma cell membranes could be coupled to complementary DNA sequences 

and then hybridize with DNA sequences and equipped onto micelle surfaces (Figure 

1.2).
60

  This fast and convenient approach turns DNA block copolymer assemblies 

into multifunctional nanoscale vehicles.  The extremely easy and straightforward 

preparation of DNA block copolymer assemblies gives access to combinational 

platform of drug delivery vehicles.   

Besides pure DNA block copolymer assemblies, it is useful to introduce other 

functional polymers to prepare mixed assemblies.  For example, micellar structures 

formed by Pluronic triblock copolymers polyethylene oxide-block-polypropylene 

oxide-block-polyethylene oxide (PEO-b-PPO-b-PEO) can be loaded drug molecules 

into hydrophobic cores, and possess biocompatibility from PEO moieties on micelle 

corona.  However, the shortcoming of Pluronic-based drug delivery system is the 

missing of targeting units.  On the other hand, although DNA block copolymer 

micelles can easily get to desired targeting units by DNA hybridization, their in vivo 

applications are limited to the immune response caused by high local salt and DNA 

concentrations.  By simply mixing both block copolymers to prepare mixed 

assemblies, problems can be resolved.  PEO polymer blocks provide stealth function, 

while DNA sequences of DNA block copolymers implement specific addressability.
61

  

In Chapter 3 and 4, DNA block copolymers were mixed with block copolymers to 
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form mixed assembly structures which show fast phase separation speed and sharp 

melting transitions.  The successful mixing of block copolymers enables further in 

vivo studies in the context of drug targeted delivery and release, circulation lifetimes, 

and immunogenicity.   
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Figure 1.2.  Schematic representation of DNA block copolymer drug delivery 

system.  (a) Folic acid molecules (red dots) attached to complementary sequences 

are equipped to nanoparticle surface by hybridization.  (b) Hydrophobic drug 

molecules are incorporated into hydrophobic micelle core.  Figure reprint with 

permission from ref. [60].   
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The DNA units of DNA block copolymers allow for the functionalization of the 

nanosized objects by hybridization with complementary sequences attached to other 

materials.  Moreover, it has been reported that the hybridization event can induce 

morphology changes of DNA block copolymer assemblies to create dynamic 

structures.  In general, volume fraction and electrostatic govern the overall 

morphologies of assembled amphiphiles.
62

  Therefore, Gianneschi et al reported 

morphology changes of DNA block copolymer amphiphile by manipulating the 

magnitude of volume fraction and electrostatic repulsions in the micelle shells which 

is controlled by DNA sequence-selective interactions.  Three types of 

sequence-selective interactions involve the DNA-programmed micelle phase 

transition, namely, enzymatic cleavage, hybridization of complementary 

single-stranded DNA, and thermal melting and annealing of DNA duplexes.  Two 

morphologies are obtained upon the addition of stimuli, sphere or cylinder (Figure 

1.3).
63

  This work demonstrated the use of DNA sequence as an informational 

intrigue tool for morphology shift in nanoscale polymeric materials.  In a broader 

context, one can expect DNA block copolymers and their self-assemblies undergo 

designated morphology changes in response to stimuli and give the versatility in a 

wide range of applications, for instance, drug delivery, soft polymer templates, and 

self-healing and switching materials. 
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Figure 1.3.  Spherical or cylindrical morphologies of DNA-brush copolymer 

assemblies.  Amphiphilic DNA block copolymers are denoted as cone structures 

with hydrophobic block in red color.  TEM images of (a) spherical micelles 

assembled from as-synthesized DNA-brush polymers; (b) cylindrical micelles 

obtained after the addition of DNAzyme to spherical micelles; (c) spherical micelles 

obtained after the addition of 19-base input DNA sequences to cylindrical 

morphologies.  Figure reprint with permission from ref. [63].   
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1.3  Liposomes 

1.3.1  DNA-mediated liposomes fusion.  Lipid membrane fusion happening 

between cells, between intracellular compartments, between different intracellular 

compartments, is essential for many biological processes, for example, endo- and 

exocytosis whereby vesicles undergo fusion to deposit receptors, transporters, or 

adhesion molecules into membrane, or to release hormones, neurotransimitters into 

extracellular milieu.  It is believed that most vesicle fusion processes are dependent 

on SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein 

receptor) protein complex, composed of recognition pairs on the vesicle and target 

membranes with the aid of many other proteins.
64-66

  Although systems that use 

SNARE proteins or their synthetic surrogates provide valuable insights, due to the 

complexity of the fusion process and huge number of proteins involved, the precise 

physical mechanism and kinetics are not yet well studied.
67-69

   

Recently, a new model system that makes use of DNA-lipid conjugates was 

developed to displace for the SNARE machinery.
70-72

  This new system overcomes 

the shortcomings of SNARE system.  Firstly, it is easy to tailor the length, sequence, 

and binding geometry of DNA which are difficult to track during SNARE-mediated 

fusion.  Thus, it becomes possible to investigate the fusion process when vesicles 

and target membranes are brought into contact by DNA hybridization event.  

Furthermore, the DNA binding specificity of DNA-lipid conjugates can prevent the 

contact with false partners resulting from protein binding promiscuity.  Compared to 

SNARE systems which require detergent dialysis, the DNA-lipid conjugates can 
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directly tag into lipid membranes.
73

  The new system allows for the examination of 

DNA-mediated vesicle fusion mechanism.   

In this new system, DNA sequences attached to a hydrophobic anchor are 

tethered to both vesicle and targeted membrane surfaces with high density of 

DNA-lipids, about 65 DNA per vesicle, which ensures DNA-lipids will not deplete 

during fusion.  Moreover, it is important to note that only zippering orientation of 

DNA sequences can induce vesicle fusion.  In Chapter 5, we applied a similar 

tethering method to functionalize lipid membranes and obtained modified lipid 

membranes with high DNA density.  The DNA hybridization event brings 

membranes close together and initiates vesicle docking and fusion.  The 

DNA-mediated vesicle fusion process is classified as four stages, docking-only, 

hemi-fusion-only, hemi-then-full-fusion, and full-fusion-only (Figure 1.4).
74

  A large 

portion of vesicles participate docking-only process, and no contents transferred were 

observed at this phase.  Following docking process, vesicles transfer some of their 

dyes incorporated into membranes to the targeted membranes, and also merge part of 

their inner and outer leaflets.  During the last two stages, vesicles transfer all of 

remain contents across the target membrane and complete lipid mixing process 

simultaneously.   

It was also revealed that during vesicle docking and fusion, all DNA-lipid 

conjugates attend the hybridization event.  They migrate to junction sites and form 

duplex with the target membrane.  In Chapter 3, the DNA hybridization event also 

caused the migration of DNA block copolymers to junction areas with fast traveling  
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Figure 1.4.  Schematic description for DNA-mediated vesicle fusion.  Figure 

reprint with permission from ref. [74]. 
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rate.  Other studies also suggested that the density of DNA-lipid conjugates on 

surface dictates the lateral mobility of vesicles.  The less DNA-lipid conjugates, the 

higher mobility of vesicles on surface.   

The mechanistic model of DNA-mediated membrane fusion was successfully 

constructed by researchers and thereby provides insight into a few important 

questions: Can polymer vesicles undergo membrane fusion as well? Will they proceed 

the same pathway?  It will be very interesting to see membrane fusion between 

polymer vesicles, between cell membranes and polymer vesicles.  If so, it opens up 

the opportunities of using polymer vesicles as drug delivery vehicles.   

1.3.2  DNA-mediated liposomes rupture.   Researchers use supported lipid 

bilayers as a model to study cell membranes by taking advantage of their simple 

preparation.
75,76

  Supported lipid bilayers can either be formed by 

Langmuir-Blodgett techniques, or fusion of unilamellar vesicles on pre-treated 

surfaces, including hydrophobic or piranha treated hydrophilic glass slides,
77

 silica,
78

 

or TiO2.
79

  Although they are easy to handle and have planar geometry, the close 

distance between lower leaflet and substrate easily gives rise to troublesome 

interaction with contents incorporated into membranes.  To overcome this limitation, 

methods have been applied to separate the bilayers from substrates, such as polymer 

cushioned membranes,
80

 polymer tethered membranes,
81

 or tethered lipid vesicles.
82

   

Recently, a strategy based on DNA hybridization was developed for the 

preparation of tethered lipid bilayers on solid supports.  In this strategy, one can 

adjust the distance between lipid membrane and solid surface by varying the length of 
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DNA sequences.  The strategy includes two methods.  For the first method, 

single-stranded DNA sequences were coupled to a solid surface, for instant, silica, by 

click chemistry to avoid direct exposure to lipid bilayers.  Giant unilamellar vesicles 

which are tagged by DNA-lipid conjugates were incubated with DNA-functionalized 

surfaces and allowed to spread and rupture to form supported lipid bilayers.  In the 

second method, supported lipid bilayers were first created on solid surfaces and 

further modified with DNA-lipid conjugates to obtain DNA-functionalized lipid 

membranes.  Then giant unilamellar vesicles tethered by complementary DNA 

sequences were again incubated with solid surfaces and allowed to spread and rupture 

to supported lipid bilayers (Figure 1.5).
83

  Both methods can be used to prepare 

supported lipid bilayers, however, there are essential differences between the two 

methods.  In the first one, single-stranded DNA sequences were covalently linked on 

the solid surfaces, while DNA strands were tagged onto the surfaces in the second 

method.  Thus, the supported lipid bilayers formed by the former are immobile, and 

are mobile and unstable by the latter.  For the mobile supported lipid bilayers, if 

varied lengths of DNA sequences are used, lateral segregation was recorded by 

confocal microscopy.  In Chapter 5, supported lipid bilayers were prepared by direct 

rupture of lipid vesicles.  We demonstrated that the lipid bilayers possess lateral 

mobility and undergo phase segregation to form gold nanoparticle 2D assemblies. 

The supported lipid bilayers formed by the two methods not only provide a soft 

lipid membrane platform with a designated distance from solid substrate, also have 

their promising applications.  For the immobile lipid bilayers, it is useful for the  
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Figure 1.5.  Schematic description of DNA-mediated lipid membrane formed on (A) 

alkyl-siloxane functionalized glass substrate; and (B) supported lipid bilayers.  

Figure reprint with permission from ref. [83]. 
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doping of membrane proteins but keep them away from solid substrates.  For the 

mobile lipid bilayers, their lateral segregation can be used as a model to study 

biological processes, such as the interactions occurring in cell junctions. 

1.3.2  DNA liposome self-assemblies and their DNA melting properties.  

Due to sequence specificity, DNA sequences have been used as promising building 

blocks to construct new biomaterials and devices.
84-87

  Various particles have been 

conjugated to DNA molecules and assemble into high-ordered superstructures.
88-92

  

Hydrophobic modification of DNA molecules using hydrophobic moieties, such as 

hydrocarbon chain and cholesterol, was found to be useful to functionalize liposome 

and further build their high-ordered assembly.   

There are several strategies for encoding DNA molecules to membrane surfaces, 

and most of them involve couple DNA sequences to hydrophobic molecules that can 

spontaneously anchor into lipid membranes.  So far, the most widely used molecule 

is cholesterol because they are commercially available.  Thus, it can be prepared and 

performed in a wide range of laboratories.  The stability of anchoring is influenced 

by the length of DNA, but detailed study is not reported.  However, it was 

discovered that single cholesterol anchor is not sufficient to label liposome with DNA 

sequences longer than 30 bases, and a double cholesterol anchor will be needed to 

strengthen the tethering in lipid bilayers with DNA sequence hanging in solution.
93

  

DNA-modified liposomes show high stability over a week.   

DNA hybridization can be used to direct self-assembly between two types of 

liposomes decorated by complementary sequences.
94

  Self-assembly of 
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DNA-functionalized liposomes were formed by a broad range of sizes liposomes, 

spanning from nano-size (100 nm, LUV) to micron-size (> 5 μm, GUV).  The cluster 

formation is reversible by increasing temperature above DNA melting temperature or 

reducing salt concentration in solution.  It is challenging to proceed thermal melting 

of giant vesicles on microscope due to the restriction of temperature stage.  However, 

the clustering regimes of LUV can be tracked by dynamic light scattering.  The 

number of DNA on LUV affects the aggregation size as well as speed.  For DNA 

density less than 2.5 per vesicle, aggregation is invisible.  When DNA density 

increases up to 20 per vesicle, small aggregation is observed.  If DNA density keeps 

increasing to 39 per vesicle or even higher, one can observe big clusters by eye.  As 

cholesterol-DNA conjugates are mobile within lipid membranes, excess DNA 

conjugates can float outside adhesion plaque regions where are saturated by about 20 

DNA strands per vesicle, and further collide with additional liposomes to create 

network structures.  There is other work showing that it is possible to control 

association and dissociation of three populations of liposomes by utilizing designed 

DNA strands which opens up the opportunity to form complex and smart interaction 

liposome networks.
95

 

The significant difference between DNA-mediated assembly of liposomes which 

are soft particles, and hard particles such as gold nanoparticles is the lateral mobility 

of DNA conjugates within fluid vesicle bilayers.  In contrast to chemically fixed on 

gold nanoparticles surfaces, DNA strands are tethered and mobile on liposomes 

surfaces.  In DNA-mediated self-assembly, DNA strands migrate to adhesion plaques 
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and form maximum DNA duplex structures with complementary sequences between 

adjacent liposome, resulting in a high local concentration of DNA strands, and also 

salt which is used to screen out the negative charge of DNA backbones.  The local 

environment has a huge impact on the thermodynamic stability of DNA duplexes.  

Previous work demonstrated sharp melting transitions of DNA-functionalized 

liposomes aggregates which were connected by linker DNA strands (Figure 1.6).
96,97

 

The concept of DNA-mediated self-assembly has been extended to between 

other soft materials besides liposomes, including connecting liposomes to 

layer-by-layer capsules,
98

 to gas microbubbles for applications in medical 

theranostics,
99

 and to oil-in-water microemulsions,
100

 allowing the fabrication of 

multicompartment assemblies and multifunctional soft materials. 
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Figure 1.6.  (a) Extinction spectra of DNA liposomes before (blue) and after (red) 

clustering in the presence of linker DNA.  (b) Melting transition of DNA liposome 

clusters monitored as a change in extinction at 260 nm.  Figure reprint with 

permission from ref. [97]. 
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1.4  Thesis overview   

This dissertation will focus on the self-assembly of nanomaterials with varying 

functionalities into hybrid nanocomposites with tunable structures and functions.  

The nanomaterials involved in this dissertation are gold nanoparticles, amphiphilic 

block copolymers including synthetic block copolymers and DNA block copolymers, 

and lipid molecules.  The overall motivation of this work is to develop ways to 

control the structures of these hybrid materials in order to obtain desired 

functionalities and properties.  It is critical to control over the assembly structure of 

amphiphilic block copolymers and nanoparticles for the fabrication of nanomaterials 

with controllable properties.  Chapter 1 gives a brief overview of self-assembly 

formed by amphiliphilic block copolymers and nanoparticles, DNA block copolymers, 

and lipids, and their applications.  Each subsequent chapter will focus on the 

synthesis and the self-assembly of these functional moieties.  Chapter 2 focuses on 

the self-assembly of a prototypical amphiphilic block copolymer (PS-b-PAA) and 

mixed ligand gold nanoparticles with controllable nanoparticles locations.  An 

in-depth study of interfacial energies is presented to explain the relation between 

nanoparticle spatial arrangement and nanoparticle surface chemistry.  In Chapter 3 

the synthesis of DNA block copolymer (PMA-b-DNA) and the self-assembly of 

PMA-b-DNA and PBD-b-PEO are presented.  In this work mixed giant vesicles 

formed by two block copolymers show fast phase segregation driven by DNA 

hybridization event.  Chapter 4 also presents the synthesis DNA block copolymer 

(PBD-b-PEO-b-DNA) and their mixed assemblies with PBD-b-PEO.  Investigations 
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of DNA melting temperatures of different DNA percentages on assembly surfaces 

provide insight into how the phase behavior influences DNA binding properties.  

Chapter 5 focuses on the self-assembly of gold nanoparticles assisted by lipid bilayers.  

Since planar lipid bilayers possess lateral mobility, gold nanoparticles tethered on top 

of lipid bilayers by DNA hybridization are capable of migrating and linked by linker 

DNA to form 2D assembly.   

 

1.5  References 

(1) Bates, F. S.; Fredrickson, G. H. Physics Today 1999, 52, 32-38. 

(2) Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. Can. J. Chem. 1999, 77, 

1311-1326. 

(3) Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969-5985. 

(4) Riess, G. Prog. Polym. Sci. 2003, 28, 1107-1170. 

(5) Jain, S.; Bates, F. S. Science 2003, 300, 460-464. 

(6) Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323-341. 

(7) LoPresti, C.; Lomas, H.; Massignani, M.; Smart, T.; Battaglia, G. J. Mater. Chem. 

2009, 19, 3576-3590. 

(8) Menger, F. M.; Angelova, M. I. Acc. Chem. Res. 1998, 31, 789-797. 

(9) Caruso, F. Adv. Mater. 2001, 13, 11-22. 

(10) Shum, H. C.; Kim, J.-W.; Weitz, D. A. J. Am. Chem. Soc. 2008, 130, 9543-9549. 

(11) Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. J. Controlled Release 2002, 82, 

189-212. 

(12) Harada, A.; Kataoka, K. Prog. Polym. Sci. 2006, 31, 949-982. 

(13) Maysinger, D.; Lovrić, J.; Eisenberg, A.; Savić, R. European Journal of 

Pharmaceutics and Biopharmaceutics 2007, 65, 270-281. 

(14) Bermudez, H.; Brannan, A. K.; Hammer, D. A.; Bates, F. S.; Discher, D. E. 



30 
 

Macromolecules 2002, 35, 8203-8208. 

(15) Bermúdez, H.; Hammer, D. A.; Discher, D. E. Langmuir 2004, 20, 540-543. 

(16) Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun. 2009, 30, 

267-277. 

(17) Meng, F.; Zhong, Z.; Feijen, J. Biomacromolecules 2009, 10, 197-209. 

(18) Smith, A. E.; Xu, X.; McCormick, C. L. Prog. Polym. Sci. 2010, 35, 45-93. 

(19) Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Acc. Chem. 

Res. 2011, 44, 1039-1049. 

(20) Opsteen, J. A.; Brinkhuis, R. P.; Teeuwen, R. L. M.; Lowik, D. W. P. M.; Hest, J. 

C. M. v. Chem. Commun. 2007, 3136-3138. 

(21) Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Blessington, D.; Brannan, A. K.; 

Bates, F. S.; Chance, B.; Hammer, D. A.; Therien, M. J. Proc. Natl. Acad. Sci. U. S. A. 

2005, 102, 2922-2927. 

(22) Nikolic, M. S.; Olsson, C.; Salcher, A.; Kornowski, A.; Rank, A.; Schubert, R.; 

Frömsdorf, A.; Weller, H.; Förster, S. Angew. Chem., Int. Ed. 2009, 48, 2752-2754. 

(23) Mai, Y.; Eisenberg, A. J. Am. Chem. Soc. 2010, 132, 10078-10084. 

(24)Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, 

P. Nano Lett. 2006, 6, 2349-2353. 

(25) Choi, H.-J.; Montemagno, C. D. Nano Lett. 2005, 5, 2538-2542. 

(26) Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. J. 

Controlled Release 2006, 116, 150-158. 

(27) Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M.; Park, S.-J. J. Am. Chem. Soc. 2011, 

133, 1517-1525. 

(28)Christian, D. A.; Cai, S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Discher, D. E. 

European Journal of Pharmaceutics and Biopharmaceutics 2009, 71, 463-474. 

(29)Lomas, H.; Canton, I.; MacNeil, S.; Du, J.; Armes, S. P.; Ryan, A. J.; Lewis, A. L.; 

Battaglia, G. Adv. Mater. 2007, 19, 4238-4243. 

(30) Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. ChemPhysChem 2008, 9, 20-42. 

(31) Balazs, A. C.; Emrick, T.; Russell, T. P. Science 2006, 314, 1107-1110. 



31 
 

(32) Hamley, I. W. Angew. Chem., Int. Ed. 2003, 42, 1692-1712. 

(33) Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Adv. Mater. 2005, 17, 

1331-1349. 

(34) Shenhar, R.; Norsten, T. B.; Rotello, V. M. Adv. Mater. 2005, 17, 657-669. 

(35) Kang, Y.; Taton, T. A. Angew. Chem., Int. Ed. 2005, 44, 409-412. 

(36) Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; 

Sternstein, S. S.; Buehler, M. J. Polymer 2010, 51, 3321-3343. 

(37) Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L. J. Am. Chem. Soc. 

2003, 125, 5276-5277. 

(38) Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Science 2001, 

292, 2469. 

(39) Sun, Y.; Xia, Y. Science 2002, 298, 2176-2179. 

(40) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995-4021. 

(41) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annual Review of Materials 

Science 2000, 30, 545-610. 

(42) Costioli, M. D.; Fisch, I.; Garret-Flaudy, F.; Hilbrig, F.; Freitag, R. Biotechnol. 

Bioeng. 2003, 81, 535-545. 

(43) Tong, G.; Lawlor, J. M.; Tregear, G. W.; Haralambidis, J. The Journal of Organic 

Chemistry 1993, 58, 2223-2231. 

(44) Lemaitre, M.; Bayard, B.; Lebleu, B. Proceedings of the National Academy of 

Sciences 1987, 84, 648-652. 

(45) Leonetti, J.-P.; Degols, G.; Milhaud, P.; Gagnor, C.; Lemaitre, M.; Lebleu, B. 

Nucleosides and Nucleotides 1989, 8, 825-828. 

(46) Takei, Y. G.; Aoki, T.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Bioconjugate 

Chem. 1993, 4, 42-46. 

(47) Lee, K.; Povlich, L. K.; Kim, J. Adv. Funct. Mater. 2007, 17, 2580-2587. 

(48) Oishi, M.; Hayama, T.; Akiyama, Y.; Takae, S.; Harada, A.; Yamasaki, Y.; 

Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.; Kataoka, K. Biomacromolecules 2005, 6, 

2449-2454. 



32 
 

(49) Oishi, M.; Nagasaki, Y.; Itaka, K.; Nishiyama, N.; Kataoka, K. J. Am. Chem. Soc. 

2005, 127, 1624-1625. 

(50) Isoda, K.; Kanayama, N.; Miyamoto, D.; Takarada, T.; Maeda, M. Reactive and 

Functional Polymers 2011, 71, 367-371. 

(51) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem., Int. Ed. 

2008, 47, 8350-8358. 

(52) Li, Z.; Zhang, Y.; Fullhart, P.; Mirkin, C. A. Nano Lett. 2004, 4, 1055-1058. 

(53) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. 

Chem. Soc. 1998, 120, 1959-1964. 

(54) Alemdaroglu, F. E.; Ding, K.; Berger, R.; Herrmann, A. Angew. Chem., Int. Ed. 

2006, 45, 4206-4210. 

(55) Rush, A. M.; Thompson, M. P.; Tatro, E. T.; Gianneschi, N. C. ACS Nano 2013, 7, 

1379-1387. 

(56) Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem. Soc. 2003, 125, 

1643-1654. 

(57) Katz, E.; Willner, I. Angew. Chem., Int. Ed. 2004, 43, 6042-6108. 

(58) Rosi, N. L.; Mirkin, C. A. Chemical Reviews 2005, 105, 1547-1562. 

(59) Liu, J.; Cao, Z.; Lu, Y. Chemical Reviews 2009, 109, 1948-1998. 

(60) Alemdaroglu, F. E.; Alemdaroglu, N. C.; Langguth, P.; Herrmann, A. Adv. Mater. 

2008, 20, 899-902. 

(61) Kwak, M.; Musser, A. J.; Lee, J.; Herrmann, A. Chem. Commun. 2010, 46, 

4935-4937. 

(62) Nagarajan, R. Langmuir 2002, 18, 31-38. 

(63) Chien, M.-P.; Rush, A. M.; Thompson, M. P.; Gianneschi, N. C. Angew. Chem., 

Int. Ed. 2010, 49, 5076-5080. 

(64) Brunger, A. T. Q. Rev. Biophys. 2005, 38, 1-47. 

(65) Rizo, J.; Südhof, T. C. Annu. Rev. Cell Dev. Biol. 2012, 28, 279-308. 

(66) Jahn, R.; Fasshauer, D. Nature 2012, 490, 201-207. 

(67) Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachl, M.; Parlati, 



33 
 

F.; Söllner, T. H.; Rothman, J. E. Cell, 92, 759-772. 

(68) Domanska, M. K.; Kiessling, V.; Tamm, L. K. Biophys. J. 2010, 99, 2936-2946. 

(69)Shi, L.; Shen, Q.-T.; Kiel, A.; Wang, J.; Wang, H.-W.; Melia, T. J.; Rothman, J. E.; 

Pincet, F. Science 2012, 335, 1355-1359. 

(70) Chan, Y.-H. M.; van Lengerich, B.; Boxer, S. G. Biointerphases 2008, 3, 

FA17-FA21. 

(71) Burin, A. L.; Armbruster, M. E.; Hariharan, M.; Lewis, F. D. Proceedings of the 

National Academy of Sciences 2009, 106, 989-994. 

(72) Rawle, Robert J.; van Lengerich, B.; Chung, M.; Bendix, Poul M.; Boxer, 

Steven G. Biophys. J., 101, L37-L39. 

(73) Chen, X.; Araç, D.; Wang, T.-M.; Gilpin, C. J.; Zimmerberg, J.; Rizo, J. Biophys. 

J., 90, 2062-2074. 

(74) van Lengerich, B.; Rawle, Robert J.; Bendix, Poul M.; Boxer, Steven G. Biophys. 

J., 105, 409-419. 

(75) Sackmann, E. Science 1996, 271, 43-48. 

(76) Chan, Y.-H. M.; Boxer, S. G. Curr. Opin. Chem. Biol. 2007, 11, 581-587. 

(77) Seu, K. J.; Pandey, A. P.; Haque, F.; Proctor, E. A.; Ribbe, A. E.; Hovis, J. S. 

Biophys. J., 92, 2445-2450. 

(78) Richter, R. P.; Bérat, R.; Brisson, A. R. Langmuir 2006, 22, 3497-3505. 

(79)Rossetti, F. F.; Bally, M.; Michel, R.; Textor, M.; Reviakine, I. Langmuir 2005, 21, 

6443-6450. 

(80) Renner, L.; Osaki, T.; Chiantia, S.; Schwille, P.; Pompe, T.; Werner, C. The 

Journal of Physical Chemistry B 2008, 112, 6373-6378. 

(81) Koper, I. Molecular BioSystems 2007, 3, 651-657. 

(82) Yoshina-Ishii, C.; Miller, G. P.; Kraft, M. L.; Kool, E. T.; Boxer, S. G. J. Am. 

Chem. Soc. 2005, 127, 1356-1357. 

(83) Chung, M.; Lowe, R. D.; Chan, Y.-H. M.; Ganesan, P. V.; Boxer, S. G. Journal of 

Structural Biology 2009, 168, 190-199. 

(84) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nat Nano 2011, 6, 763-772. 



34 
 

(85) Seeman, N. C. Nature 2003, 421, 427-431. 

(86) Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Science 2008, 321, 1795-1799. 

(87) Bath, J.; Turberfield, A. J. Nat Nano 2007, 2, 275-284. 

(88) Geerts, N.; Eiser, E. Soft Matter 2010, 6, 4647-4660. 

(89) Storhoff, J. J.; Mirkin, C. A. Chemical Reviews 1999, 99, 1849-1862. 

(90) Kim, A. J.; Biancaniello, P. L.; Crocker, J. C. Langmuir 2006, 22, 1991-2001. 

(91) Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. Nature 2008, 451, 

549-552. 

(92) Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. 

A. Nature 2008, 451, 553-556. 

(93) Pfeiffer, I.; Höök, F. J. Am. Chem. Soc. 2004, 126, 10224-10225. 

(94) Beales, P. A.; Vanderlick, T. K. The Journal of Physical Chemistry A 2007, 111, 

12372-12380. 

(95) Hadorn, M.; Eggenberger Hotz, P. PLoS ONE 2010, 5, e9886. 

(96) Dave, N.; Liu, J. ACS Nano 2011, 5, 1304-1312. 

(97) Banga, R. J.; Chernyak, N.; Narayan, S. P.; Nguyen, S. T.; Mirkin, C. A. J. Am. 

Chem. Soc. 2014, 136, 9866-9869. 

(98) Loew, M.; Kang, J.; Dähne, L.; Hendus-Altenburger, R.; Kaczmarek, O.; 

Liebscher, J.; Huster, D.; Ludwig, K.; Böttcher, C.; Herrmann, A.; Arbuzova, A. Small 

2009, 5, 320-323. 

(99) Lozano, M. M.; Starkel, C. D.; Longo, M. L. Langmuir 2010, 26, 8517-8524. 

(100) Hadorn, M.; Boenzli, E.; Sørensen, K. T.; Fellermann, H.; Eggenberger Hotz, 

P.; Hanczyc, M. M. Proceedings of the National Academy of Sciences 2012, 109, 

20320-20325. 

 

 



35 
 

CHAPTER 2. Controlling the Location of Nanoparticles in Colloidal 

Assemblies of Amphiphilic Polymers by Tuning Nanoparticle Surface 

Chemistry 
 

 

 

Controllable location of nanoparticles in colloidal block-copolymer assemblies can be achieved 

by using nanoparticles modified with mixed surface ligands.  The binary self-assembly of 

amphiphilic polymers of  polystyrene-b-poly(acrylic acid) (PS-b-PAA) and gold nanoparticles 

(AuNPs) modified with a hydrophobic ligand, dodecanethiol (DT), led to polymer micelles with 

nanoparticles segregated in the core of polymer micelles.  On the other hand, AuNPs modified 

with mixed ligands of mercaptoundecanol (MUL) and DT were distributed at the PS−PAA 

interface, reducing the interfacial energy between the two polymers.  This result was in good 

agreement with the prediction by the surface energy calculations.  We also showed that the 

AuNPs with mixed ligands can decorate preformed polymer assemblies by the interfacial self-

assembly.  Furthermore, we demonstrated the compartmentalization of two different types of 

nanoparticles in colloidal polymer assemblies based on the strategy. 

Reprinted with permission from Luo, Q.; Hickey, R.J.; Park, S.-J. Controlling the Location of 

Nanoparticles in Colloidal Assemblies of Amphiphilic Polymers by Tuning Nanoparticles Surface 

Chemistry. ACS Macro. Lett. 2013, 2, 107. Copyright 2013 American Chemical Society 
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2.1  Introduction 

Colloidal self-assembly of amphiphilic block-copolymers and inorganic 

nanoparticles offers a way to create solution processable functional materials with useful 

chemical and mechanical properties of polymers and the unique sizedependent properties 

of nanoparticles for various applications including medical imaging and drug delivery.
1-4

  

Because the distribution of nanoparticles in the polymer matrixes is an important factor 

that determines the properties of such hybrid structures, it is of great interest to form 

polymer assemblies with controllable nanoparticle arrangements.  A range of different 

types of nanoparticles (e.g., semiconducting,
5
 magnetic,

6
 and metallic nanoparticles

7
) 

have been encapsulated in various polymer assemblies.  For example, Eisenberg and 

coworkers have demonstrated a strategy to incorporate polymer grafted nanoparticles in 

the membrane of polymer vesicles.
8
  Taton and co-workers have fabricated nanoparticle-

loaded polymer micelles where alkyl-terminated nanoparticles were uniformly embedded 

in the hydrophobic polymer core.
9,10

  Using a similar method, we have shown that the 

arrangement of nanoparticles and the polymer morphology can be controlled by changing 

the initial solvent composition, polymer lengths, and nanoparticle weight fractions.
11

  

Unique cavity-like assemblies of hydrophobic nanoparticles were formed in A−B 

polymer assemblies where nanoparticles were arranged at the B−B interface.
12-14

  We 

have also prepared polymer vesicles densely packed with magnetic nanoparticles and 

showed that the spatial arrangement of nanoparticles in the polymer matrix significantly 

affects the magnetic relaxation rate of surrounding water.
11

 

This second chapter shows a simple method to control the location of gold 

nanoparticles (AuNPs) in colloidal polymer assemblies by tuning the nature of the 
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nanoparticle surface.  For bulk and thin film composite systems, various factors affecting 

the binary self-assembly of block-copolymers and nanoparticles have been investigated 

including the size of the nanoparticles, the molecular weight of polymers, and the 

nanoparticle surface ligands.
15-17

  For example, Kramer and coworkers have localized 

polymer-grafted AuNPs in different domains of lamellar assemblies of block-copolymers 

by changing the polymer composition grafted onto AuNPs.
18

  Emrick and co-workers 

have shown that the location of nanoparticles in block-copolymer assemblies can be 

controlled by varying the ratio between hydrophobic and hydrophilic ligands on 

nanoparticles.
19

  On the contrary, the ability to control the nanoparticle distribution in the 

solution-phase selfassembly is still quite limited.  In this chapter, we show for the first 

time that the arrangement of nanoparticles in A−B polymer micelles can be controlled 

from the core of the polymer micelles to the A−B polymer interface by using mixed 

nanoparticle ligands.  We also demonstrate that different types of nanoparticles can be 

compartmentalized in different locations of colloidal polymer assemblies using the 

approach. 

 

2.2  Experimental Section 

2.2.1  Materials.  Gold (III) chloride trihydrate (HAuCl4•3H2O, >99.9%), 1-

dodecanethiol (DT, >98%), 11-mercapto-1-undecanol (MUL, >97%), 

Tetraoctylammonium bromide (TOAB, 98%), sodium borohydride (NaBH4, 99%) were 

purchased from Sigma-Aldrich.  Block copolymers of polystyrene-block-poly(acrylic 

acid) (PS-b-PAA), PS(26000)-b-PAA(1000) (PS250-b-PAA14 Mw/Mn:1.18) and 

PS(15000)-b-PAA(3600) (PS144-b-PAA49 Mw/Mn:1.2) were purchased from Polymer 
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Source, Inc.  Carboxylate-modified microspheres (60 nm, 100 nm, and 200 nm) were 

purchased from Invitrogen.  All solvents were purchased from Fischer Scientific.  

Deionized water (Millipore Milli-Q grade) with resistivity of 17.9 MΩ was used in all 

experiments. 

2.2.2  Synthesis of DT-stabilized Gold Nanoparticles (AuNPs).  AuNPs were 

synthesized by the Brust method,
20

 and then modified by a ligand exchange reaction.
19,21

  

For the Brust method, typically, 34.5 mg (0.1 mmol) of HAuCl4•3H2O were dissolved in 

3 mL of water, and 0.2187 g (0.4 mmol) of TOAB were dissolved in 7 mL of toluene, 

separately.  The two solutions were mixed and stirred until gold precursors were 

transferred to the toluene phase and the water phase became clear and colorless.  A 0.1 

mmol portion of DT was added to the mixture and then the mixture was left stirring for 

20 min.  Then, the reducing agent, NaBH4 (1 mmol in 200 μL of water) was quickly 

added to the mixture.  After the addition of NaBH4, the solution was allowed to stir for 3 

hrs, and then the toluene phase was collected (~7 mL).  Synthesized nanoparticles were 

precipitated by adding an excess amount of ethanol (35 mL) to the solution and collected 

by a gentle centrifugation (8,000 rpm for 10 min).  The supernatant was decanted and the 

nanoparticle precipitate was redissolved in toluene.  The nanoparticles were washed one 

more time in order to remove excess ligands.  Finally, the nanoparticles were redispersed 

into 5 mL of dichloromethane (DCM) for the ligand exchange reaction. 

2.2.3  Synthesis of MUL-stabilized AuNPs.  AuNPs functionalized with MUL 

were synthesized, following the procedure described above but using MUL instead of DT.  

20 mg of MUL was dissolved in 1 mL of toluene, and the solution was added to the 

mixture of gold precursor and TOAB.  The mixture was left stirring for 20 min.  Then, 
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the reducing agent NaBH4 (1 mmol in 200 μL of water) was quickly added to the mixture.  

After the addition of NaBH4, the solution was allowed to stir for 3 hrs.  Nanoparticles 

were collected by a gentle centrifugation (8,000 rpm for 5 min), and redispersed in 5 mL 

of ethanol.  The particles were precipitated by adding an excess amount of toluene (35 

mL) and collected by a gentle centrifugation (8,000 rpm for 10 min).  The supernatant 

was decanted and the nanoparticle precipitate was redissolved in ethanol.  The 

nanoparticles were washed one more time in order to remove excess ligands. 

2.2.4  Ligand Exchange.  AuNPs with mixed surface ligands of DT and MUL were 

prepared by the ligand exchange reaction.  First, a solution of MUL in DCM (1 mL) was 

added to the 5 mL DCM solution of DT-stabilized AuNPs.  The amount of MUL in the 1 

mL solution was varied according to the desired molar ratio on the AuNP surface and 

presented in Table 2.1.  For example, for a 50 % molar ratio of MUL, 4.5 mg of MUL in 

1 mL of DCM was added to the DT-stabilized AuNPs.  The solution was magnetically 

stirred at room temperature for 48 h.  For high MUL% AuNPs, 1 mL of ethanol was 

added to the reaction vial after stirring for a day.  After the ligand exchange, the 

nanoparticle solution was concentrated by air flow until the volume was reduced to about 

3-4 mL, and nanoparticles were precipitated by adding hexanes (35 mL) and collected by 

centrifugation (8,000 rpm for 10 min).  The precipitates were washed one more time by DCM and 

hexanes to remove unbound ligands.  The nanoparticles were then dispersed in chloroform or 

ethanol. 
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Table 2.1. The composition of surface ligands on AuNPs. 

MUL concentration 

(g/L) used for ligand 

exchange 

MUL% by NMR 

1.71 25% 

2.40 33% 

4.82 50% 

9.02  60%
a
 

17.3  80%
a
 

 

a
Some precipitates were observed in CDCl3 solutions of AuNPs with 60% and 80% MUL.  

Because supernatants were used for NMR measurements, the actual MUL percent of the 

samples can be slightly larger than the values determined by NMR.  
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2.2.5  Self-assembly of AuNPs and PS-b-PAA.  The assemblies of AuNPs and 

PS250-b-PAA14 were prepared by a reported literature procedure.
11

  In a typical 

experiment, 500 μL of a PS250-b-PAA14 solution (4 μM) in N,N-dimethylformamide 

(DMF) was mixed with 50 μL of AuNPs (1.7 μM) in chloroform (for 0%, 25%, 33%, and 

50% MUL particles) or ethanol (for 50%, 60%, 80%, and 100% MUL particles) solution.  

In all experiments, the volume fraction of AuNPs, which is the volume of AuNPs divided 

by the total volume of particles and block-copolymers, was kept constant (0.06); the 

concentration of AuNPs was estimated by using the extinction coefficient of 3.61×106 M
-

1
cm

-1
 reported for 3.5 nm particles.5  Additional DMF (1 mL) was added to the solution 

while stirring, and then 300 μL of water (17.9 MΩ) was slowly added to the solution at 

the rate of 10 μL/30 s for 15 min in order to induce the self-assembly of AuNPs and 

block-copolymers.  The solution was stirred for about 15 h.  Next, 1.5 mL of water was 

added over 15 min and then dialyzed against water (17.9 MΩ) with the minimum of three 

water changes over 24 hrs. 

2.2.6  Self-assembly of AuNPs and Pre-formed Worm-like Polymer Templates.  

PS96-b-PAA48 was dissolved in water at 2 mg/mL concentration by applying sonication.  

Then, ethanol solution of MUL-stabilized AuNPs (15 μM, 100 μL) was mixed with 10 

μL of the polymer solution.  The volume fraction of AuNPs was 0.38.  Water was slowly 

added to the solution at the rate of 10 μL/30 s for 30 min.  The solution was stirred for 

about 15 h.  Then, 1.5 mL of water was added to the solution over 15 min, and then 

dialyzed against water (17.9 MΩ) with a minimum of three water changes over 24 hrs.   

2.2.7  Self-Assembly of AuNPs and Commercial Microspheres.  Concentrated 

polymer bead solutions were diluted to 2 mg/mL, and then the interfacial assembly of 
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nanoparticles to the beads was formed by following the same procedure described above 

for worm-like micelles.   

2.2.8  Co-assembly of AuNPs and Magnetic NPs.  The tertiary-assembly of two 

different types of nanoparticles and a polymer was formed using a procedure similar to 

the one described above for binary assemblies of AuNPs and a polymer.  For core/shell 

type assemblies, 50 μL THF solution of magnetic nanoparticles (4.5 nm in diameter, 1.5 

mg/mL) was mixed with 500 μL of PS144-b-PAA49 solution (8 μM) in DMF.  Then 50 μL 

of AuNPs (1.3 μM, 80 % MUL) in ethanol was added to the mixture.  Then, the assembly 

of the three components was induced by following the sample procedure used for the 

binary assembly described above.  For simple micelles, a 50 μL THF solution of 

magnetic nanoparticles (15.7 nm in diameter, 3.0 mg/mL) was mixed with 500 μL of 

PS144-b-PAA49 solution (22 μM) in THF.  Then 150 μL of AuNPs (0.3 μM, 100 % MUL) 

in ethanol was slowly added (10 μL/30 s) to the mixture while stirring.  Then, the 

assembly of the three components was induced by following the sample procedure used 

for the binary assembly described above.   

2.2.9  Preparation of Self-Assembled Monolayers (SAMs) on Au.  The gold thin 

films were prepared by thermal evaporation (base pressure 10-6 Torr).  Ti (~4 nm) and 

Au (~80 nm) were evaporated onto glass slides without breaking the vacuum.  After 

cooling down, the slides were transferred into centrifuge tubes containing 30 mL of 

ethanolic solution of DT and MUL at varying ratios.  The total ligand concentration was 

3 mM.  Slides were placed in the ethanolic solutions for 2 days, removed from solutions, 

washed with ethanol, and dried under a nitrogen flow before analyses.   
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2.2.10  Contact Angle Measurements.  Contact angles of water and formamide 

were taken on the prepared SAMs on gold.  At least six measurements were carried out at 

different locations on each slide. 

2.2.11  Instrumentation.  Transmission electron microscopy (TEM) images and 

scanning transmission electron microscopy (STEM) images were taken on FEI-Tecnai 

T12 and JEOL 2010F using acceleration voltages of 120 kV and 200 kV, respectively.  

Energy-dispersive X-ray spectroscopy (EDS) results were collected using JEOL 2010F.  

Dynamic light scattering (DLS) data were taken with a Malvern Zetasizer Nano Series.  

A Rame-Hart Automated Goniometer was used to perform contact angle measurements.  

UV-vis absorption spectra were taken with an Agilent 8453 spectrometer.  
1
H NMR 

spectra were collected with Bruker DMX500, using CDCl3 as solvent. The final molar 

ratio of DT to MUL on mixed ligand AuNPs was determined by 
1
H-NMR.  The broad 

CH3 peak at δ 0.90 ppm and broad -CH2- peak which is next to -OH centered at δ 3.50 

ppm were used for DT and MUL, respectively.   

 

2.3  Results and Discussion  

2.3.1.  Self-assembly of PS250-b-PAA14 and AuNPs with varying surface ligands. 

Figure 2.2 presents TEM images of binary assemblies of PS-b-PAA and AuNPs with 

varying surface ligands.  The AuNPs immobilized with 100% DT segregated into the PS 

core of polymer micelles due to the favorable enthalphic interaction between the 

hydrophobic nanoparticles and the PS block as well as the attractive interaction between 

AuNPs (Figure 2.2 b).  As the fraction of MUL increases to 25% or 33%, the 

nanoparticle aggregates moved toward the PS−PAA interface, forming Janus-type 
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particles (Figure 2.2 c).  The asymmetric assembly formed at the MUL % range is 

reminiscent of the report by Chen and co-workers where single gold nanoparticles are 

eccentrically embedded in polymer micelles when nanoparticles and polymers are self-

assembled in the presence of hydrophobic and hydrophilic thiols.
22

  A further increase of 

the MUL % over 50 (50%, 60%, 80%, 100%) led to AuNPs distributed at the PS−PAA 

interface (Figure 2.2 d). Note that TEM images are two-dimensional projections of three-

dimensional objects. Therefore, the dark contrast at the edges of polymer assemblies 

indicates the selective accumulation of nanoparticles at the PS−PAA interface. 
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Figure 2.1.  TEM image (a) of AuNPs (50% MUL) and their size histogram (b).  
1
H 

NMR spectra of AuNPs with different MUL% (c). 
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Figure 2.2.  (a) Pictorial description of the self-assembly of PS250-b-PAA14 and AuNPs 

with varying surface ligands. Light gray lines, dark gray lines, and red spheres represent 

PAA, PS, and AuNP, respectively.  (b) A TEM image of coassemblies prepared with 

AuNPs modified with 100% DT.  (c) A TEM image of coassemblies prepared with 

AuNPs modified with 75% DT and 25% MUL.  (d) A TEM image of coassemblies 

prepared with AuNPs modified with 20% DT and 80% MUL.  Note that the PAA layer is 

not visible in TEM images. 

 

 

 



47 
 

2.3.2  Theoretical Calculation of Interfacial self-assembly Structure.  

Understanding the wetting properties of nanoparticles and polymers is important for the 

rational design of polymer nanocomposites.
16,23,24

  The spatial arrangements of 

nanoparticles with varying surface ligands in polymer assemblies can be explained by the 

interfacial energies between two polymer blocks, A and B, and nanoparticles. 

Nanoparticles can locate at the A−B interface of two polymers if the criterion of 

                                                                    (1) 

is satisfied, where σA/NP, σB/NP, and σA/B are the interfacial energies of A−AuNP, B−AuNP, 

and A−B pairs, respectively.
16,24,25

  The interfacial energy, σ1/2, between two interacting 

components, 1 and 2, is defined as 

              
                                                    (2) 

where γ is the surface energy.
26

  Surface energy can be estimated by measuring contact 

angle, θ 

  

   
 
             

      
  

  
 

  
                                        (3) 

where γL is the surface energy of liquids and γS is the surface energy of solids.
26

  The γL
D
 

and γS
D
 denote dispersion components, and γL

P
 and γS

P
 denote polar components.  From 

contact angle measurements with a polar and a nonpolar liquid with known surface 

energies, γS
P
 and γS

D 
can be obtained from the slope and the intercept of eq 3.   

We used these relationships to predict the molar ratio of MUL and DT that induces 

the interfacial assembly of AuNPs.  To estimate the interfacial energies between modified 

AuNPs and two polymer blocks, PS and PAA, gold thin films coated with DT and MUL 

were used as model systems for ligand-modified AuNPs (Table 2.2).  Water and 
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formamide were used as test solvents for contact angle measurements (Table 2.3).  The 

ligand-modified gold films were prepared by immersing freshly deposited gold films into 

ethanolic solutions of DT or DT/MUL mixtures (3 mM) for two days at room 

temperature.  The surface energies of modified Au films were estimated from the contact 

angle measurements for varying molar ratios of DT and MUL (Table 2.4).  As expected, 

the surface energy gradually increased as the percentage of MUL increased (Figure 2.3), 

which is consistent with previous reports.
27,28

  The σPS/NP and σPAA/NP values were then 

calculated from the surface energies using eq 2.  As plotted in Figure 2.4, the |σPS/NP - 

σPAA/NP| value decreases with increasing MUL percentage and becomes smaller than 

σPS/PAA (3.43 mJ/m
2
) at about 61% MUL (Table 2.5).  Eventually, the |σPS/NP - σPAA/NP| 

becomes negative for 100% MUL, and the absolute value of |σPS/NP - σPAA/NP| becomes 

closer to σPS/PAA. Therefore, the minimum value of |σPS/NP - σPAA/NP| is found at an MUL % 

between 65% and 100%. These data indicate that NPs with MUL % larger than 65% can 

reside at the PS−PAA interface, reducing the interfacial energy between PS and PAA. It 

also indicates that the ideal MUL % for interfacial assembly should be larger than 65% 

and smaller than 100%.   

This prediction is in a good agreement with the experimental data presented in 

Figure 2.2. Among four different MUL % (50%, 60%, 80%, 100%) that showed the 

interfacial assembly, the nanoparticle distribution was most even at 80% MUL (Figure 

2.2 d and Figure 2.5).  This result is consistent with the prediction that the most 

effective MUL % for reducing the PS−PAA interfacial energy is in between 65% and 

100% (Figure 2.4).  However, it is worth noting that the interfacial assembly of 

nanoparticles was found over a wider range of MUL % than predicted.  This is partly 



49 
 

due to the fact that the surface energy of modified AuNPs can be different from that of 

modified gold films, as reported by Stellacci and co-workers.
27

  Moreover, the two 

ligands on AuNPs can phase segregate to maximize the interaction between PS and DT 

and the interaction between PAA and MUL rather than forming homogeneously mixed 

monolayers.  Also, note that the prediction by the interfacial energy calculation does 

not consider the distribution in ligand compositions, while the actual ligand 

composition is distributed about the measured average values with fractions of 

nanoparticles with more or less MUL % than the average value.  Nonetheless, the 

interfacial energy calculation presented in Figure 2.4 provides a useful guidance for the 

solution-phase interfacial assemblies of nanoparticles and amphiphilic polymers. 
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Table 2.2. Contact angles of SAMs of DT and MUL at different ratios. 

 This work Literature
28

 

MUL% Water Formamide Water Hexadecane 

0 88° 74° 105° 44° 

25 85° 67° 90° 29° 

50 73° 60° 74° 22° 

75 49° 45° 51° 8° 

100 25° 25° 0° 0° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

 

 

 

 

 

 

 

Table 2.3. Surface energies of liquids used for contact angle measurements.
29

  

 γL (mJ/m
2
) γL

D
 (mJ/m

2
) γL

P
 (mJ/m

2
) 

Water 72.8 21.8 51 

Formamide 58.2 39.5 18.7 

Hexadecane 27.6 27.6 0 
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Table 2.4. Surface energies of SAMs of DT and MUL at different ratios. 

 This work Literature
28

 

MUL% 
a
γS

D
 

(mJ/m
2
) 

b
γS

P
 

(mJ/m
2
) 

γS 

(mJ/m
2
) 

a
γS

D
 (mJ/m

2
) 

b
γS

P
 (mJ/m

2
) γS 

(mJ/m
2
) 

0 17.84 6.47 24.31 20.39 0.59 20.98 

25 22.63 5.95 28.58 24.22 3.48 27.70 

50 19.07 14.15 33.22 25.54 10.19 35.74 

75 14.08 36.12 50.20 27.33 23.70 51.03 

100 14.89 51.65 66.54 27.6 45.69 73.29 
a
Values are obtained from the intercepts of the extrapolation of equation (1).  

b
Values are 

from the slopes of equation (1). 
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Figure 2.3.  Surface energies of SAMs of DT and MUL at different MUL percents.  The 

literature values 28 are plotted along with the data measured in this work. 
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Figure 2.4.  (a) Pictorial description of nanoparticles modified with two different ligands 

at different ratios. Green lines and orange lines represent two different ligands.  (b) The 

|σPS/NP - σPAA/NP| values at varying MUL % on nanoparticle surfaces.  The blue line 

indicates the interfacial energy between PS and PAA. 
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Table 2.5. Interfacial energies of SAMs of DT and MUL at different ratios. 

 This work Literature
28

 

MUL

% 
σNP/PS 

(mJ/m
2
) 

σNP/PAA 

(mJ/m
2

) 

|σNP/PS-

σNP/PAA| 

σNP/PS 

(mJ/m
2
) 

σNP/PA

A 

(mJ/m
2
) 

|σNP/PS-σNP/PAA| 

0 2.90 12.64 9.74 4.22 15.25 11.03 

25 1.66 9.85 8.20 1.88 10.38 8.51 

50 0.76 7.41 6.65 0.43 6.29 5.86 

75 0.20 1.96 1.76 0.26 1.80 1.54 

100 2.32 0.11 2.21 3.72 0.01 3.71 
a
σPS/PAA (mJ/m

2
) 3.43 

a
The surface energy values

30,31
 of γPS=44 mJ/m

2
, γPAA =72 mJ/m

2
 were used for the 

calculation. 
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Figure 2.5.  TEM images of AuNPs and block copolymer assemblies formed with 

AuNPs modified with 50% MUL (a), 60% MUL (b), 80% MUL (c), and 100% MUL (d). 
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2.3.3  EDS Measurements and Size Distributions of Interfacial self-assembly 

Structures.  The EDS measurements were consistent with the TEM observations (Figure 

2.6).  The Au intensity profile of the assemblies formed with 100% DT showed a 

Gaussian-shape curve indicating that AuNPs concentrated in the center of polymer 

micelles (Figure 2.6 a).  The assemblies with 80% MUL, on the other hand, showed high 

intensities at the edges of the micelle, confirming the assembly of nanoparticles at the 

PS−PAA interface (Figure 2.6 b).  On the basis of the size of the assemblies (Figure 2.6 

c,d), it is likely that the assemblies formed at 80% MUL adopt the compound micelle 

structure,
32,33

 which is composed of a micelle containing reverse micelles in the core.  

Because varying numbers of reverse micelles can be incorporated in compound micelles, 

they typically show broad size distributions.
32

  However, the interfacial assemblies 

prepared with 80% MUL AuNPs were fairly uniform and showed a narrow size 

distribution with the standard deviation of 8% from TEM measurements (Figure 2.6 d).  

This result indicates that the incorporation of amphiphilic AuNPs regulates the 

characteristic length scale and overall size of polymer assemblies, as shown for polymer 

melts and larger colloidal polymer particles.
34

  It is interesting to note that the size 

distribution becomes broader when the MUL % was increased to 100% or decreased to 

50% (Figure 2.6 e).  For 100% MUL, polymer assemblies might be preformed before 

nanoparticles start associating with polymers at the PS−PAA interface or in the PAA 

block because of the hydrophilic nature of the NPs, resulting in a broader size distribution.   

2.3.4  Mixed-ligand AuNPs Decorated Preformed Polymer Assemblies.  The 

result of 100% MUL suggests that nanoparticle decorated polymer assemblies can be 

prepared from preformed polymer assemblies (Figure 2.8).  This approach provides a 
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simple way to decorate various types of polymeric nanostructures with inorganic 

nanoparticles and is particularly useful for nonspherical assemblies that are difficult to 

prepare using the simultaneous self-assembly of amphiphilic polymers and nanoparticles.  

To test the feasibility of the approach, rod-like micelles were first prepared by dispersing 

PS96-b-PAA48 in water by sonication.  An ethanol solution of AuNPs immobilized with 

100% MUL (2.7 μM, 100 μL) was then slowly added to the aqueous solution of micelles 

(2 mg/mL, 15 μM, 10 μL) while stirring the solution.  The self-assembly was induced by 

the slow water addition (1.8 mL) followed by dialysis.  This procedure led to rod-like 

micelles densely coated with AuNPs, as revealed by TEM (Figure 2.8 a,b). As another 

example, commercial carboxylic acid modified polystyrene beads were used for the 

interfacial assembly.  As shown in Figure 2.8 d and 2.9, polystyrene beads uniformly 

coated with nanoparticles were formed by the same procedure. 
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Figure 2.6.  (a,b) STEM images and EDS line scans of the assemblies prepared with 100% 

DT (a) and 80% MUL (b).  The EDS line profile (gold Lα line) is an average of multiple 

scans.  (c,d) Size distribution histograms of the assemblies prepared with 100% DT (c) 

and the assemblies prepared with 80% MUL (d) obtained from TEM images.  (e) DLS 

data for assemblies prepared with 50%, 60%, 80%, and 100% MUL. 
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Figure 2.7.  UV-vis spectra of polymer assemblies with AuNPs. 
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Figure 2.8.  (a) Schematic description for the formation of rod-like micelles decorated 

with AuNPs.  (b,c) Rod-like micelles of PAA96−PS48 (b) before and (c) after the 

nanoparticle assembly.  (d,e) Commercial carboxylic acid terminated polystyrene beads 

(100 nm) (d) before and (e) after the nanoparticle assembly. 
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Figure 2.9.  (a,c) Commercial polystyrene beads of 60 nm (a) and 200 nm (c) diameters.  

(b,d) Commercial polystyrene beads of 60 nm (a) and 200 nm (c) diameters decorated 

with AuNPs with 100% MUL. 

 

 

 



63 
 

2.3.5  The Fabrication of Multicomponent assemblies.  With these capabilities, 

we fabricated multicomponent assemblies where gold and iron oxide nanoparticles are 

embedded in different locations of polymer assemblies (Figure 2.10).  We have 

previously shown that iron oxide nanoparticles stabilized with oleic acids can form 

unique radial arrays at the PS−PS interface in compound micelles of PS-b-PAA (Figure 

2.10 b).
11,35

  The ternary self-assembly of iron oxide nanoparticles, AuNPs (80% MUL or 

100% MUL), and PS-b-PAA resulted in layered assemblies with AuNPs located at the 

PS−PAA interface and iron oxide nanoparticles located in between the polymer core and 

polymer shell
11

 of compound micelles (Figure 2.10  a,d).  For a typical experiment, 

magnetic NPs were first mixed with PS144-b-PAA49 (2 μM, 20 μL) in DMF and then 

mixed with AuNPs (4.7 μM, 10 μL) in ethanol, followed by the slow water addition and 

dialysis.  The distance between two nanoparticle layers can be potentially controlled by 

varying the molecular weight of polymers or nanoparticle volume fractions.
13

  The EDS 

data confirmed that iron oxide nanoparticles and AuNPs are arranged at two different 

radial positions of polymer assemblies (Figure 2.10 d).  The distribution of iron oxide 

nanoparticles can be controlled by using a different initial cosolvent for nanoparticles and 

polymers as we previously reported.
11

  When THF was used instead of DMF, iron oxide 

nanoparticles are embedded throughout the PS matrix rather than forming shell-like 

assemblies as previously reported (Figure 2.10 e).
10,11

  Figure 2.10 f presents the 

coassemblies of AuNPs and iron oxide nanoparticles prepared in the condition that favors 

the uniform distribution of iron oxide nanoparticles.  It is apparent from TEM images and 

EDS line scans that iron oxide nanoparticles are embedded in the PS core, while AuNPs 

are located at the PS−PAA interface. 
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Figure 2.10.  (a) Pictorial description for the formation of multicomponent layered 

assemblies of AuNPs and magnetic nanoparticles.  Red dots and green dots represent 

AuNPs and iron oxide nanoparticles, respectively.  (b) Compound micelles with 4.5 nm 

magnetic nanoparticles arranged in between the polymer core and polymer shell.  (c) 

Compound micelles with 4.5 nm iron oxide nanoparticles arranged in between the 

polymer core and polymer shell and AuNPs (80% MUL) at the PS−PAA interface.  (d) 

An STEM image and EDS Au intensity (Lα line) and Fe intensity (Kα line) profiles of the 

assemblies shown in (c).  (e) Polymer micelles encapsulated with 15.7 nm magnetic 

nanoparticles in the PS domain.  (f) Polymer micelles encapsulated with 15.7 nm 

magnetic nanoparticles in the PS domain and AuNPs (100% MUL) at the PS−PAA 

interface.  The inset shows a higher magnification TEM image (scale bar: 50 nm).  (g) An 

STEM image and the EDS Au intensity (Lα line) and Fe intensity (Kα line) profiles of the 

assemblies shown in (f). 
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2.4  Conclusions 

In summary, we demonstrated a strategy to control the location of nanoparticles in 

colloidal solution-phase assemblies of amphiphilic polymers.  Depending on the ratio 

between hydrophobic and hydrophilic surface ligands, particles either localized at the 

interface between PS and PAA blocks or aggregated in the center of the assemblies.  

Uniform interfacial assemblies of AuNPs were obtained with AuNPs modified with 80% 

MUL and 20% DT, which is in good agreement with the prediction by interfacial energy 

calculations.  Compared to the hollow nanoparticle capsules fabricated by the interfacial 

assembly at the oil/water interface of emersions,
36

 the binary assembly of nanoparticles 

and polymers reported here results in more stable nanoparticle capsules supported by 

polymer templates.  On the basis of the approach, we fabricated multifunctional 

assemblies where iron oxide nanoparticles and AuNPs are compartmentalized at different 

locations of polymer matrixes.  Furthermore, we demonstrated that MUL-modified 

AuNPs can decorate preformed assemblies of amphiphilic polymers.  This approach can 

be potentially useful for functionalizing polymer particles with targeting molecules or 

drugs for biomedical applications. 
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Chapter 3. DNA Rafts on hybrid DNA block copolymer assemblies 

induced by DNA hybridization 
 

 

 

We report the DNA-induced phase segregation and DNA-raft formation in DNA block copolymer 

assemblies.  DNA diblock copolymer of polymethylacrylate-block-DNA (PMA-b-DNA) was 

synthesized and assembled with a prototypical amphiphilic block polymer of poly(butadiene)-

block-poly(ethylene oxide) (PBD-b-PEO).  The binary self-assembly of PMA-b-DNA and PBD-b-

PEO resulted in giant polymersomes where DNA is uniformly distributed in the hydrophilic PEO 

shell.  When giant polymersomes were connected through specific DNA interactions, DNA block-

copolymers appear to concentrate at the junction area, forming DNA-rafts within polymersomes.  

These results demonstrate that DNA hybridization induces effective phase segregation in polymer 

assemblies to form multiple DNA linkages. 
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3.1  Introduction 

There has been tremendous effort and interest in nanostructures made of dense DNA 

shells without the gold particle which maintain sharp melting transitions.
1-4

  In particular, 

amphiphilic DNA block copolymers have been utilized to fabricate nanoscale or 

mesoscale assemblies composed of a polymer core and a densely packed DNA shell.  As 

a consequence of the high DNA density on polymer assemblies, they show similar 

molecular recognition properties to DNA-modified gold particles.
5
  In addition, DNA 

block copolymer assemblies have several advantages over DNA-modified gold particles.  

Firstly, it does not contain gold nanoparticles which are costly to prepare and can be 

potentially toxic at high dose.  Secondly, functional molecules or nanoparticles can be 

readily incorporated into the polymer core of DNA block copolymer micelles.
4
  

Capitalizing on these attributes, DNA block copolymers have been actively studied for 

various applications including drug delivery
6
 and gene therapy.

7-10
  For example, 

Hermann and co-workers have demonstrated that DNA-block-poly(propylene oxide) 

(DNA-b-PPO) micelles can be used as an effective chemotherapeutic drug delivery 

vehicle where anticancer drugs are loaded in the polymer core.
9
   

Another unique property of DNA block copolymer micelles is that block copolymer 

strands composing the assemblies can undergo strand rearrangement and exchange.  

Gianneschi et al utilized this aspect to induce the morphology change of DNA block 

copolymer assemblies.
11

  Another important possibility arising from the strand 

rearrangement is the phase segregation and domain formation in mixed assemblies, which 

has not been previously explored.  Phase segregation is a common phenomenon found in 

cell membranes where different membrane components are segregated to form domains 
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called membrane rafts.
12

  The raft formation is known to play a critical role in cellular 

functions such as signal transduction pathways, cell adhesion and migration, and synaptic 

transmission, etc.
13

 

In this chapter, we fabricated hybrid giant vesicles from DNA diblock copolymers 

of polymethylacrylate-block-DNA (PMA-b-DNA) using a prototypical block copolymer 

of poly(butadiene)-block-poly(ethylene oxide) (PBD-b-PEO) as a matrix polymer.  We 

demonstrated that the hybrid vesicles undergo efficient phase segregation upon the 

introduction of complementary DNA.  The full phase segregation occurred at time scales 

which is comparable to that shown in lipid membranes (from minutes to hours).  Note 

that for polymers, it was shown to take days to months to fully develop large scale 

domain phase segregation.
14,15

  The hybridization-induced phase segregation led to high 

density DNA rafts on the vesicle surface, and we are going to study their DNA binding 

properties at varied DNA sequence concentrations on hybrid assembly surfaces in the 

next chapter. 

 

3.2  Experimental Section 

3.2.1  Materials.  Tetrahydrofuran (THF) was purified by distillation over 

Na/benzophenone under argon.  Other common solvents such as acetone, methanol, 

isopropanol, chloroform, and dichloromethane were used as received.  1,3-butadiene (BD) 

was purchased from Aldrich and purified by distillation over calcium hydride.  Ethylene 

oxide (EO) was purchased from Pfaltz&Bauer and dried with calcium hydride and 

distilled prior to use.  sec-Butyllithium was purchased from Aldrich and used as received.  

The concentration of butyllithium was determined by diphenylacetic acid titration.  
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Potassium naphthalenide solution was prepared by adding freshly cut potassium metal to 

a stirring naphthalene solution (THF) under nitrogen flow.  The dark green solution was 

allowed to stir at room temperature for at least 2 h before use.  Methyl acrylate was 

purchased from Sigma and purified through an alumina neutral column to remove 

inhibitors.  The initiator (4,4’-azobis(4-cyanovaleric acid) (V-501)), RAFT agent (4-

cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (RAFT-2.0)), N,N-

diisopropylethylamine and 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate (HATU) were purchased from Sigma and used 

as received.  Oligonucleotides (DNA 1: 5’-A10-ATCCTTATCAATATT-FAM-3’; DNA 

1’: 5’-AATATTGATAAGGAT-T10-3’) were purchased from Trilink, Inc. 

3.2.2  Synthesis of PBD.  PBD-OH was synthesized by anionic polymerization.
16

  

Typically, sec-butyllithium (3.5 mL, 1.16 M, 4.06 mmol) was added into 30 mL 

anhydrous THF in a 250 mL dry flask under an inert atmosphere.  The flask was cooled 

to about -65 °C using dry ice/isopropanol bath and a deep yellow color was observed for 

the solution.  BD monomer (16 mL, 189 mmol) was added via cannula to the reaction 

flask.  The solution was slightly warmed up to -60 °C where the solution color became 

yellowish orange.  The reaction was kept stirring at -60 °C for about 5 h.  EO was then 

added to the solution using cannula (2 mL).  Upon the addition of EO, the solution 

became colorless within a minute.  The solution was warmed up to room temperature by 

removing the cooling bath and stirred overnight.  The reaction was then quenched by 

adding acidic methanol (200 mL).  The solution was stirred overnight, filtered through 

filter paper, and concentrated by a rotary evaporator.  The crude product of PBD-OH was 
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dissolved in hexane and filtered through filter paper to remove residual inorganic salts 

prior to the second block polymerization. 

3.2.3  Synthesis of PBD-b-PEO.  Typically, synthesized PBD-OH (3.86 g, 1.23 

mmol) was dissolved in 15 mL anhydrous THF in a 250 mL dry flask.  The PBD-OH 

solution was slowly titrated with freshly prepared potassium naphthalenide solution at 

room temperature until a light green-brown color appeared and the solution became 

cloudy.  EO (2.2 mL, 44 mmol) was added to the solution via cannula.  The green-brown 

color disappeared within a minute.  The reaction mixture was warmed up to 40-45 °C and 

stirred for 24 h.  The reaction flask was allowed to cool down to room temperature and 

then acidic methanol (200 mL) was added to the mixture to quench the reaction.  The 

solution was kept stirring overnight, filtered by filter paper, and concentrated on a rotary 

evaporator.  The crude product was redissolved in chloroform and washed several times 

by extraction with distilled water.  The chloroform solution was dried over anhydrous 

Na2SO4 and concentrated on a rotary evaporator.  The gel-like product was heated to 

70 °C in a vacuum oven to remove residual solvents and naphthalene. 
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Scheme 3.1. Synthesis of PBD-b-PEO. 
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Figure 3.1.  MALDI-TOF (a) and GPC spectra (RID trace) (b) of PBD52-OH. 
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Figure 3.2.  MALDI-TOF (a), GPC (RID trace) (a), and 
1
H NMR spectra (b) of PBD52-b-

PEO32. 
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3.2.4  Synthesis of PMA.  Acetone solutions of MA (2 mL, 22 mmol), RAFT-2.0 

(0.1 M, 2.5 mL) and initiator V-501 (0.02 M, 2.5 mL), and pyrene acrylate (0.075 g) were 

mixed in a Schlenk flask.  Three freeze-pump-thaw cycles were applied to the reaction 

flask to remove oxygen.  The reaction flask was heated at 75 °C for 6 h and then cooled 

down to room temperature.  The reaction was stopped by introducing air to flask.  The 

crude product was purified by precipitating in cold methanol using dry ice/acetone bath. 

 

 

Scheme 3.2. Synthesis of PMA. 
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Figure 3.3.  MALDI-TOF (a), GPC (RID trace) (b), and 
1
H NMR spectra (c) of PMA82. 
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3.2.5  Synthesis of PMA-b-DNA.  PMA(0.264 g, 34 μmol) was dissolve in 500 μL 

of anhy-drous DMF.  N,N-diisopropylethylamine (48 μL, 280 μmol) and HATU (13 mg, 

34 μmol) were added to the solution.
10

  The solution was vortexed for 10min to 

preactivate coupling reaction.  5’-amino-modified DNA on CPG solid support (ca. 1 

μmol, MMT deprotected) was added to the activated solution.  The mixture was kept on 

shaker at room temperature overnight.  The CPG beads were washed with about 200 mL 

of DMF to remove unbound PMA homopolymers.  The DNA block copolymer was 

cleaved from beads via treating in about 1 mL of concentrated ammonia at 65 °C for 2 h 

and ammonia was evaporated afterwards.  The CPG beads were filtered off and 

subsequently washed with about 4 mL of H2O.  The resulting crude DNA block 

copolymers and unbound single strand DNAs were isolated by PAGE gel electrophoresis. 

3.2.6  Purification of PMA-b-DNA.  Gel electrophoresis was performed using Bio-

Rad Criterion 15% TBE PAGE precast gels.  Crude product solutions (1 mL) were 

concentrated down to 100 μL, separated into ten 10 μL portions, and loaded onto each 

lane of the gel loading well.  The gel was run in 1×Tris/boric acid/EDTA (TBE) buffer at 

200 V for 60 min.  The lowest electrophoresis mobility band was cut with a razor blade 

and crushed mechanically in a centrifuge tube.  Water (5 mL) was added to the tube 

which was then placed on a shaker overnight at room temperature to extract DNA block 

copolymers from gel pieces.  The DNA block copolymer solution was dialyzed against 

water using dialysis tubing (10-12 kDa MWCO) for 2 days to remove salts.  

3.2.7  Preparation of PBD-b-PEO and PMA-b-DNA hybrid assemblies.  

Polymersomes were prepared by film hydration method. Fifty microlitters PBD52-b-

PEO32 CHCl3 solution (4 mg/mL) was mixed with 10 μL PMA-b-DNA (2.928E-6 M) 
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DMSO solution.  The solution was first dried under nitrogen and flowed by evaporation 

of DMSO and CHCl3 residue under vacuum > 6 h.  Addition of 500 μL 0.1 M PBS buffer 

(100 mM NaCl, 10 mM phosphate buffer pH=7.17) and heating at 50 °C for 12 h led to 

the formation of mixed giant vesicles.    

3.2.8  Preparation of DNA polymersome aggregates.  In a typical experiment, 100 

μL polymersome solution was combined with 100 μL polymersome solution 

functionalized with complementary DNA sequences.  The mixture was incubated at 

55 °C for 5 min then allowed to cool down to room temperature overnight prior to 

measurement.   

3.2.9  Control experiments.  In a typical experiment, 100 μL polymersome solution 

was combined with 100 μL polymersome solution functionalized with complementary 

DNA sequences in water.  The mixture was incubated at 55 °C for 5 min then allowed to 

cool down to room temperature overnight prior to measurement.  

      In a typical experiment, 100 μL polymersome solution was combined with 100 μL 

polymersome solution functionalized with non-complementary DNA sequences in 0.1 M 

PBS buffer.  The mixture was incubated at 55 °C for 5 min then allowed to cool down to 

room temperature overnight prior to measurement. 

In a typical experiment, 100 μL polymersome solution was combined with 

complementary DNA sequences (5.86 nmol) in 0.1 M PBS.  The mixture was incubated 

at 55 °C for 5 min then allowed to cool down to room temperature overnight prior to 

measurement. 

Hybridization of DNA polymersomes with plain complementary DNA.  In a typical 

experiment, 100 μL polymersome solution was combined with 100 μL hybrid micelle 
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solution functionalized with complementary DNA sequences in 0.1 M PBS.  The mixture 

was incubated at 55 °C for 5 min then allowed to cool down to room temperature 

overnight prior to measurement. 

3.2.10   Measurements and instrumentation.  Dynamic light scattering (DLS) data 

were taken with a Malvern Zetasizer Nano Series.  
1
H NMR spectra were collected with 

Bruker DMX500, using CDCl3.  All fluorescent spectra were collected with a Jobin Yvon 

Horiba Fluorolog3 spectrometer.  A Quantum Northwest TLC50 temperature controller 

was used for temperature dependent fluorescence experiments.  Matrix-assisted laser 

desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) spectra 

were obtained on a Bruker Flex Series MALDI-TOF/TOF MS.  GPC measurements were 

carried out at 30 °C at a flow rate of 1.0 mL/min on a Perkin-Elmer Series 10 high-

performance liquid chromatography system equipped with two AM gel columns (500 Å, 

5 μm; 1000 Å, 5 μm), a Perkin-Elmer 785 UV-vis detector (254 nm), and a Varian star 

4090 refractive index (RI) detector calibrated against poly(methyl methacrylate) (PMMA) 

standards in THF.  Optical images of polymersomes were obtained with 488 nm 

excitation (argon ion laser) and an 40 x objective lens (water immersion 40 x/1.15 NA) 

using an Olympus Fluoview FV1000 confocal laser scanning microscope equipped with 

an inverted IX81 microscope. 

 

3.3  Results and discussion 

3.3.1  Synthesis of PBD-b-PEO.  Amphiphilic block copolymer poly(butadiene)-

block-poly(ethylene oxide) (PBD-b-PEO) were synthesized by anionic polymerization 

following a previously reported procedures.  The purified block copolymer was 
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characterized by MALDI-TOF mass spectroscopy (Figure 3.2a), gel permeation 

chromatography (GPC, Figure 3.2b) and 
1
H NMR spectroscopy (Figure 3.2c).  The 

repeating unit numbers of the two blocks were calculated by the ratios between starting 

material sec-butyllithium (δ 0.8 ppm) and  PBD, PEO integrals (δ 5.4 ppm, δ 3.6 ppm) on 

1
H NMR spectrum, respectively (Figure 3.2c).  The block copolymer was determined to 

be PBD52-b-PEO32. 

3.3.2  Synthesis and purification of PMA-b-DNA.  An amphiphilic DNA block 

copolymer, PMA-b-DNA was synthesized through the coupling of carboxylic acid 

terminated polymethylacrylate (PMA, Mn=7800 kg mol
-1

) to 5’-amine-modified 25 base 

oligonucleotide strands (DNA 1: 5’-A10-ATCCTTATCAATATT-FAM-3’) attached on 

solid supports (Figure 3.4a).
10

  A green fluorescent dye (6-FAM) was attached at the 3’ 

end of DNA to monitor the presence of DNA.  Typically, pyrene acrylate dyes were 

incorporated into PMA at a ratio of one pyrene molecule per polymer chain to track the 

presence of PMA (Figure 3.3c).  The gel electrophoresis data show that DNA block 

copolymers were successfully synthesized and purified from the crude product of DNA 

block copolymers and unbound free DNA (Figure 3.4b); as DNA block copolymers form 

nanoscale assemblies in water, they remain in the loading well while unconjugated free 

DNA strands move along the electric field.  The successful conjugation was also 

confirmed by the coexistence of the fingerprint-like absorption peaks of pyrene and the 

absorption peak of FAM at 494 nm as well as the DNA peak at 260 nm (Figure 3.4c).  

Based on the absorbance at 494 nm of 6-FAM and 335 nm of pyrene, the molar ratio of 

the two dye molecules was calculated to be 0.88 to 1, which is close to the predesigned 

1:1 ratio.  Due to the amphiphilic nature, PMA-b-DNA spontaneously form micelles in 
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water after gel purification.  The diameter of the polymer micelles was determined to be 

14 nm with the polydispersity index of 0.28 by dynamic light scattering (DLS) (Figure 

3.4d). 
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Figure 3.4.  (a) Synthesis of PMA-b-DNA.  (b) PAGE analysis.  Lane 1: DNA 1 

sequence.  Lane 2: crude product containing PMA-b-DNA conjugate (top) and unbound 

DNAs (lower bands).  Lane 3: purified PMA-b-DNA block copolymer (BCP), purified 

via gel electrophoresis.  (b) Extinction spectrum of purified PMA-b-DNA in water.  (c) 

DLS data for purified PMA-b-DNA self-assembled into small micelles in water. 
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Figure 3.5.  Photoluminescence spectra of PMA-b-DNA with plain complementary DNA 

sequence at different temperatures.  Melting profiles (b) of the same solution in (a) by 

monitoring the fluorescence intensity at 520 nm with increasing temperature. 

 

 

 

 

 

 

 



87 
 

3.3.3  Fabrication of hybrid giant polymersome from PMA-b-DNA and PBD-b-

PEO (DNA polymersome).  Giant DNA polymersomes were prepared by the film 

hydration of PMA-b-DNA and PBD-b-PEO (Scheme 3.3).  PBD-b-PEO diblock 

copolymers can self-assemble into various structures, such as spherical micelles, bilayers 

and cylinders in water, depending on the relative block ratio.
17

  In this study, PBD52-b-

PEO32 with the weight fraction of PEO (wPEO) of 0.33 was used for the hybrid self-

assembly, as PBD52-b-PEO32 readily form giant vesicles by the film hydration method 

(Figure 3.6a).  In typical experiments, PMA-b-DNA and PBD52-b-PEO32 were mixed at a 

molar ratio of 1: 1600 in CHCl3/DMSO mixture (5CHCl3:1DMSO).  The solution (60 uL) 

was placed on the bottom of a glass vial and dried by the stream of N2 gas, which 

generated a thin film of mixed polymers on the bottom of the vial.  The film was further 

dried under vacuum overnight, and then hydrated in 500 uL of 0.1 M phosphate buffered 

saline (PBS) solution (100 mM NaCl, 10 mM phosphate, pH=7.17).  The 12 hour 

incubation in the buffer produced suspensions of giant vesicles of two polymers. Figure 

3.7a,b presents confocal microscope images (Figure 3.6b) of the assemblies formed with 

0.062% DNA block copolymer, showing well-defined giant vesicles composed of the 

hydrophobic inner layer of PBD and PMA and the hydrophilic corona of PEO and DNA 

(Scheme 3.3).  Green fluorescence from vesicles indicates that DNA block copolymers 

are incorporated into the vesicle membranes.  Z-stack images of DNA giant 

polymersomes obtained by immobilizing them onto a micropipette (Figure 3.7c,d) 

showed uniform distribution of FAM-labeled DNA on the polymersome surface (Figure 

3.7d). 
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Scheme 3.3. Schematic Description of the Self-Assembly of polymethylacrylate-

block-DNA (PMA-b-DNA) and PBD-b-PEO into DNA Polymersome. 
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Figure 3.6.  (a) Transmission image of polymersomes formed by PBD52-b-PEO32.  (b) 

Confocal laser scanning fluorescence image of PBD52-b-PEO32 and PMA82-b-DNA 

hybrid polymersomes. 
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Figure 3.7.  (a) Confocal laser scanning fluorescence and (b) transmission images of 

PBD52-b-PEO32 and PMA-b-DNA hy-brid polymersome (excitation wavelength 488 nm).  

(c) A pictorial description of DNA polymersome immobilized onto a micropipette.  (d) 

DNA polymersome imaged by z-stacking confocal microscopy during aspiration in 

micropipette. 
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3.3.4  Clustering and Phase segregation induced by the self-assemblies of DNA 

polymersomes.  Two sets of giant DNA polymersomes (polymersome 1 and 

polymersome 1’) were prepared using complementary DNA strands, DNA 1 and DNA 1’ 

(Scheme 3.4).  The two sets of giant DNA polymersomes were mixed together in 0.1 M 

PBS buffer to induce the hybridization of DNA 1 and DNA 1’ and the aggregation of 

giant DNA polymersomes.  Optical microscope images taken after 16 hour incubation 

showed that the giant polymersomes are clustered up as expected (Figure 3.8a, Figure 

3.9a,b).  In our control experiment where polymersomes 1 and 1’ were mixed in water 

did not show any polymersome clustering (Figure 3.10a,b).  Yet, in another control 

experiment where non-complementary polymersomes were mixed in a 0.1 M PBS buffer, 

again no clustering was found (Figure 3.10c,d).  To further confirm the duplex formation 

at the junction, we introduced ethidium bromide ethidium bromide to the polymersome 

clusters. The orange fluorescence observed at the junction area (Figure 3.9b, Figure 

3.9c,d) confirms that the polymersome clusters are indeed formed through specific DNA 

interactions. 
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Scheme 3.4. Schematic description of the self-assembly of DNA polymersomes. 
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Figure 3.8.  (a) Transmission and (b) confocal laser scanning images of phase-separated 

polymersome clusters (excitation wavelength 515 nm).  (c) Confocal laser scanning 

fluores-cence and (d) Transmission images of phase-separated polymersome clusters 

resulting from specific DNA hybridization.  Inset: An intensity line profile through the 

junction area and unbound region. 
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Figure 3.9.  (a) Confocal laser scanning fluorescence and (b) Transmission images of 

phased-spearated polymersome cluster resulting from DNA specific hybridization.  (c) 

Confocal laser scanning fluorescence and (d) Transmission images of phase-separated 

polymersome cluster stained with ethidium bromide. 
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Figure 3.10.  (a) Confocal laser scanning fluorescence and (b) Transmission images of 

complementary hybrid polymersomes mixed in low salt solution.  (c) Confocal laser 

scanning fluorescence and (d) Transmission images of non-complementary hybrid 

polymersomes mixed in buffer (100 mM NaCl, 10 mM phosphate buffer pH=7.17). 
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Figure 3.11.  (a) Confocal laser scanning fluorescence of hybrid polymersomes mixed 

with plain complementary DNA.  (b) Confocal laser scanning fluorescence image of 

hybrid polymersomes mixed with complementary DNA hybrid micelles. 
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3.3.5  Fluorescence intensity studies of DNA rafts on DNA polymersomes, non-

junction sites and isolated DNA polymersomes.   

Calculation of DNA polymersomes fluorescence intensity.  In DNA 

polymersomes confocal images (Figure 3.12), hybrid polymersomes which are on the 

focus plane were chosen to analyze.  In the two images (Figure 3.12a,d), 2 lines were 

drawn to create its intensity line profile.  Peaks at about 3μm and 18 μm were chosen and 

averaged as the intensity of hybrid polymersomes (I=29.3). 

Calculation of phase-segregation DNA polymersomes fluorescence intensity.  In 

the self-assembly of DNA polymersomes confocal image (Figure 3.13), 10 lines were 

drawn in different locations to create their intensity line profiles.  Peaks at about 20 μm 

were chosen and averaged as the intensity of junction sites (I=65.8). Peaks at about 5μm 

and 30 μm were chosen and averaged as the intensity of non-junction sites (I=5.9). 

Interestingly, fluorescent microscope images reveal that FAM fluorescence from 

DNA is localized at the junction between polymersomes (Figure 3.8c,d, Figure 3.9a,b).  

The intensity line profiles show that the fluorescence intensity at the junction is about 

eleven times higher than that on the other area (Figure 3.8e, Figure 3.13) and is about two 

times higher than that on isolated polymersomes (Figure 3.12) by comparing peak 

intensities on intensity line profiles.  This result indicates that polymer strands in the 

giant vesicles are mobile and DNA block copolymers accumulate at the junction area, 

creating DNA rafts on polymersome surfaces. 
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Figure 3.12.  (a,d) Confocal laser scanning fluorescence and (b,e) Transmission images 

and (c,f) intensity line profiles of PBD52-b-PEO32 and PMA82-b-DNA hybrid 

polymersomes. 
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Figure 3.13.  (a) Confocal laser scanning fluorescence of phase-separated polymersome 

cluster resulting from DNA specific hybridization and corresponding intensity line 

profiles (b). 
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3.3.6  Fast responsive time scale of DNA polymersomes.  It is interesting to note 

that the full phase segregation occurred at a relatively short time frame.  The phase seg-

regation and domain coalescence is fast for liposomes; the phase segregation in 

liposomes typically takes minutes to hours.
18-20

  For polymersomes, the phase segregation 

is much slower due to the entanglement of large molecular weight polymers.  For 

example, Discher and coworkers reported that segregated polymer domains were 

developed after 40 hr incubation of micron-sized polymersomes made of PBD-b-PEO 

and poly(butadiene)-block-poly(acrylic acid) (PBD-b-PAA) in a solution containing 

cross-bridging polyvalent cations.
14

  In another example, nanometer-sized hybrid 

polymersomes made of PBD-b-PEO and poly(2-(diisopropylamino)ethyl methacrylate)-

block-poly((2-methacryloyloxy)ethyl phosphorylcholine) (PDPA-b-PMPC) showed the 

evolution of surface patterns over the time-scale of more than a month.
15

  The DNA 

polymersomes in this work showed full phase segregation at a time scale comparable to 

the responsive time shown for liposomes.  We attribute the fast phase separation occurred 

for DNA polymersomes studied here to the thermodynamic drive of forming multiple 

DNA linkages between conjoined polymersomes.  In other words, the DNA segregation 

occurs to maximize the number of DNA binding and the cooperative DNA inter-actions 

promote the phase segregation. 
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3.4  Conclusions 

In summary, we have fabricated mixed assemblies of DNA block copolymers 

(PMA-b-DNA) and a prototypical block copolymer of PBD-b-PEO.  Binary self-

assembly of PBD-b-PEO and PMA-b-DNA at low DNA block copolymer content adopt 

the morphology of PBD-b-PEO and form giant polymersomes, where DNA block 

copolymers are uniformly distributed in the membrane.  Note that DNA block copolymer 

alone typically forms small micelles in water due to the highly charged DNA backbone.
21

  

Mixed assembly reported here provides a way to form various types of DNA block 

copolymer assemblies that are difficult to make on their own.  Interestingly, when the 

hybrid giant polymersomes with complementary DNA strands were mixed together in 

buffer to induce clustering of polymersomes, DNA block copolyemrs segregated from the 

matrix polymer of PBD-b-PEO to the binding area, forming DNA rafts at the junction 

between polymersomes.  The phase segregation occurred at relatively short time frame.  

Phase segregation in polymersomes typically takes much longer period (days to months) 

than lipids due to the entanglement of long polymer strands.  The efficient phase 

segregation observed here was attributed to the thermodynamic drive of forming multiple 

DNA linkages between polymersomes.  This phase segregation has important 

consequences in DNA melting properties of mixed assemblies, which will be discussed in 

Chapter 4.  We believe that this work is the first to demonstrate the efficient DNA-

induced phase segregation in mixed polymer assemblies.   
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Chapter 4. DNA binding studies of DNA Rafts on hybrid DNA block 

copolymer assemblies induced by DNA hybridization 
 

 

 

We report the DNA-induced phase segregation and DNA-raft formation in DNA block copolymer 

assemblies in Chapter 3.  Here, DNA triblock copolymer of PBD-b-PEO-b-DNA were synthesized 

and assembled with a prototypical amphiphilic polymer of poly(butadiene)-block-poly(ethylene 

oxide) (PBD-b-PEO).  The binary self-assembly of PBD-b-PEO-b-DNA and PBD-b-PEO resulted 

in small assemblies where DNA where DNA strands are hanging outside assembly shell instead 

of being buried inside the PEO layer.  We show the phase segregation has important implications 

in DNA melting properties, as mixed block copolymer assemblies with low DNA content can still 

exhibit useful DNA melting properties that are characteristic of DNA nanostructures with high 

DNA density. 
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4.1  Introduction 

Gold nanoparticles (AuNPs) modified with a dense layer of oligonucleotides
1
 have 

been extensively studied for many applications ranging from materials syntheses
2
 to 

diagnostics and drug delivery.
3-7

  The most attractive characteristic of DNA-modified 

gold particles is their unique DNA melting properties such as sharp melting transitions 

and high binding constants.  Thorough and systematic studies have been carried out to 

define and evaluate relevant parameters contributing to the unusual melting properties, 

such as the size of the nanoparticles, the surface density of DNA, the dielectric constant 

of surrounding medium, etc.  These unique properties originate from the cooperative 

interaction of densely packed DNA strands, and thus they are independent of the core 

composition.
8
   

Recently, significant research has been focused on spherical nucleic acids with cores 

composed of soft materials, including DNA liposomes and DNA block coopolymer 

amphiphiles.  Liposomes are attractive as they show well-established applications in 

chemical cargo loading and releasing
9,10

 and drug delivery.
11-13

  Large DNA-

functionalized liposomes have been utilized in the context of DNA-mediated material 

assemblies,
14-16

 while small DNA-functionalized liposomes not only show sharp melting 

transitions,
17

 but also reveal the ability of rapidly entering multiple cell lines and 

effectively knocking down gene expression via antisense pathways.
18

  On the other hand, 

DNA block copolymer amphiphiles as a novel class of DNA hybrid materials have been 

thoroughly explored for their potential in drug delivery
19

 and gene therapy,
20,21

 showing 

superior chemistry processibilty, functionality and stability to lipid molecules.  Tailorable 

and desired material properties for designated applications can be achieved through 
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appropriate selection of synthetic polymers and DNA sequences.  More importantly, it is 

well known that the manipulation of block lengths, solvent compositions and other self-

assembly parameters have led to the formation of various morphologies of amphiphilic 

block copolymer assemblies, such as spherical micelles, bilayers and cylinders.
22

  The 

introduction of organic polymers to hydrophilic DNA sequences results in a wide range 

of amphiphilic structures, for example, micellar structure with hydrophobic core and 

hydrophilic DNA corona, or vesicular structure with hydrophobic wall and hydrophilic 

DNA corona, which cannot be obtained by only DNA sequences.   

In last chapter, we demonstrated that the hybrid polymersomes undergo efficient 

phase segregation upon the introduction of complementary DNA polymersomes.  The 

DNA raft formation shown in last chapter is advantageous, as it indicates that the useful 

DNA binding properties of DNA block copolymer micelles such as sharp melting 

transition
8
 might occur in the hybrid assemblies with low DNA content.  In this chapter, 

we studied their DNA binding properties at these particular sites on hybrid assembly 

surfaces with varied DNA concentrations.  To examine how the phase behavior affects 

DNA binding properties, we prepared two new sets of hybrid assemblies from DNA 

triblock copolymers of poly(butadiene)-block-poly(ethylene oxide)-block-DNA (PBD-b-

PEO-b-DNA) and polystyrene-block-poly(ethylene oxide)-block-DNA (PS-b-PEO-b-

DNA), which contain low glass temperature polymer PBD and high glass temperature 

polymer PS, respectively.  This new design allows for the formation of hybrid assemblies 

where DNA strands are not buried inside the PEG layer which can destabilize DNA 

duplexes.
23
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4.2  Experimental Section 

4.2.1  Materials.  Tetrahydrofuran (THF) was purified by distillation over 

Na/benzophenone under argon.  Other common solvents such as acetone, methanol, 

isopropanol, chloroform, and dichloromethane were used as received.  N,N-

diisopropylethylamine, sodium hydride, 4-bromomethylbenzoic acid and 1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) were purchased from Sigma and used as received.  PBD46-

b-PEO30 and PS48-b-PEO45 were purchased from Polymer Sources (Montreal, Canada).  

Oligonucleotides (DNA 2: 5’-ATCCTTATCAATATT-FAM-3’; DNA 2’: 5’-A10-

AATATTGATAAGGAT-3’) were purchased from Trilink, Inc. 

4.2.2  Synthesis of PBD-b-PEO-b-DNA.  PBD-b-PEO-b-DNA was synthesized by 

coupling PBD-b-PEO and amine-terminated DNA, following a previously reported 

method.
24

  Typically, PBD46-b-PEO30 (0.129 g, 34 μmol) was dissolved in 500 μL of 

anhydrous DMF.  N,N-diisopropylethylamine (48 μL, 280 μmol) and HATU (13 mg, 34 

μmol) were added to the solution.  The solution was vortexed for 10 min to preactivate 

the COOH group.  5’-amino-modified DNA on CPG solid support (ca. 1 μmol, MMT-

deprotected) was added to the solution.  The mixture was kept on a shaker at room 

temperature overnight.  Then, the CPG beads were washed with about 200 mL of DMF to 

remove unbound PBD-b-PEO.  Synthesized DNA block copolymers were cleaved from 

the beads by immersing the beads in about 1 mL of concentrated ammonia at 65 °C.  

After 2 h reaction, ammonia was evaporated by loosening the vial cap.  The CPG beads 

were filtered and subsequently washed with about 4 mL of water.  DNA block 

copolymers and unbound single strand DNAs were collected and separated by PAGE. 
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4.2.3  Synthesis of PS-b-PEO-COOH.  PS-b-PEO-COOH was prepared by 

converting the hydroxyl end group of PS48-b-PEO45-OH to carboxylic acid, following a 

literature procedure.
25

  Sodium hydride (15 mg) was dissolved in a mixture of THF (2 mL) 

and DMF (1 mL) and cooled to 0 °C.  4-bromomethylbenzoic acid (17 mg) dissolved in 1 

mL of THF was added dropwise to the mixture.  Subsequently, PS-b-PEO-OH (0.5 g) 

dissolved in THF (2 mL) was added dropwise to the mixture.  The reaction mixture was 

then warmed up to room temperature and stirred for 3 days.  The reaction was quenched 

by 10% HCl (0.5 mL) in an ice bath and then the reacted polymer was extracted with 

dichloromethane (100 mL).  The organic phase was washed with saturated NaHCO3 (500 

mL) and water (500 mL) to remove unreacted bromomethylbenzoic acid.  The 

dichloromethane solution was dried over anhydrous Na2SO4 and concentrated on a rotary 

evaporator. 

 

Scheme 4.1. Synthesis of PS-b-PEO-COOH. 
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4.2.4  Synthesis of PS-b-PEO-b-DNA.  PS-b-PEO-b-DNA was synthesized by 

coupling PS-b-PEO-COOH and amine-terminated DNA, following a previously reported 

method.  Typically, PS-b-PEO (0.4 g) was dissolved in 500 μL of anhydrous DMF.  N,N-

diisopropylethylamine (48 μL, 280 μmol) and HATU (13 mg, 34 μmol) were added to the 

solution.  The solution was vortexed for 10 min to preactivate the COOH group.  5’-

amino-modified DNA on CPG solid support (ca. 1 μmol, MMT-deprotected) was added 

to the solution.  The mixture was kept on a shaker at room temperature overnight.  Then, 

the CPG beads were washed with about 200 mL of DMF to remove unbound PS-b-PEO.  

Synthesized DNA block copolymers were cleaved from the beads by immersing the 

beads in about 1 mL of concentrated ammonia at 65 °C.  After 2 h reaction, ammonia was 

evaporated by loosening the vial cap.  The CPG beads were filtered and subsequently 

washed with about 4 mL of water.  DNA block copolymers and unbound single strand 

DNAs were collected and separated by PAGE. 

4.2.5  Purification of PBD-b-PEO-b-DNA and PS-b-PEO-b-DNA.  Gel 

electrophoresis was performed using Bio-Rad Criterion 15% TBE PAGE precast gels.  

Crude product solutions (1 mL) were concentrated down to 100 μL, separated into ten 10 

μL portions, and loaded onto each lane of the gel loading well.  The gel was run in 

1×Tris/boric acid/EDTA (TBE) buffer at 200 V for 60 min.  The lowest electrophoresis 

mobility band was cut with a razor blade and crushed mechanically in a centrifuge tube.  

Water (5 mL) was added to the tube which was then placed on a shaker overnight at room 

temperature to extract DNA block copolymers from gel pieces.  The DNA block 

copolymer solution was dialyzed against water using dialysis tubing (10-12 kDa MWCO) 

for 2 days to remove salts. 
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4.2.6  Preparation of PBD-b-PEO-b-DNA and PBD-b-PEO hybrid assemblies.  

Mixed small micelles were prepared by passing the assemblies formed by the film 

hydration method described in last chapter, and through the membrane extrusion filter.  

Typically, 100 μL of PBD-b-PEO-b-DNA (DMSO, 4.0 μM) solution was mixed with 35 

μL of PBD46-b-PEO30 solution (CHCl3, 0.4 mg/mL) for mixed assemblies with 10 mol% 

DNA block copolymer content or with 38 μL of PBD46-b-PEO30 solution (CHCl3, 0.04 

mg/mL) for mixed assemblies with 50 mol% DNA block copolymer contents.  The 

mixture was placed into a glass vial and the solvent was evaporated under vacuum for at 

least 6 h.  Then, 100 μL of 0.1 M PBS buffer (100 mM NaCl, 10 mM phosphate buffer 

pH=7.17) was added to the polymer film in the vial.  The solution was vortexed, frozen 

and thawed 5 times before the extrusion.  Finally, the sample was extruded 38 times 

through Whatman Nucleopore track-etch membrane with pore size of 400 nm. 

4.2.7  Preparation of PS-b-PEO-b-DNA and PS-b-PEO hybrid assemblies.  

Mixed small micelles were prepared by passing the assemblies formed by the film 

hydration method described in last chapter, and through the membrane extrusion filter.  

Typically, 145 μL of PS-b-PEO-b-DNA (DMSO, 3.0 μM) solution was mixed with 35 μL 

of PS48-b-PEO46 solution (CHCl3, 0.74 mg/mL) for mixed assemblies with 10 mol% 

DNA block copolymer content or with 38 μL of PS48-b-PEO46 solution (CHCl3, 0.074 

mg/mL) for mixed assemblies with 50 mol% DNA block copolymer contents.  The 

mixture was placed into a glass vial and the solvent was evaporated under vacuum for at 

least 6 h.  Then, 100 μL of 0.1 M PBS buffer (100 mM NaCl, 10 mM phosphate buffer 

pH=7.17) was added to the polymer film in the vial.  The solution was vortexed, frozen 
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and thawed 5 times before the extrusion.  Finally, the sample was extruded 38 times 

through Whatman Nucleopore track-etch membrane with pore size of 400 nm. 

4.2.8  Synthesis of DNA-functionalized gold nanoparticles.  DNA-functionalized 

gold nanoparticles were synthesized by following a literature procedure.
26

  In a typical 

experiment, 1.5 mL of 57.55 nM citrate stabilized gold nanoparticle solution was mixed 

with 47.5 μL of 380 μM thiolated-DNA sequence, and 3453 μL of Mili-Q water was used 

to bring up the solution to 5 mL in total volume.  The finally concentrations of gold 

nanoparticles and DNA sequences were 17 nM and 3.61 μM, respectively.  The mixture 

was put on a shaker to shake overnight.  Phosphate buffer saline (PBS, 1 M NaCl, 100 

mM phosphate, pH = 7.17) was gradually added to the mixture to increase its salt 

concentration.  Generally, 55.56 μL of PBS buffer was added to the solution every 20 

min for 10 times.  Eventually, nanoparticles were dispersed in 0.1 M PBS buffer (100 

mM, 10 mM phosphate buffer, pH = 7.17).  The solution was sat on a shaker for 2 days.  

The unconjugated DNA sequences were removed by centrifugation later on.  The 

solution was centrifuged at a speed of 17K for 20 min.  The supernatant was discarded 

and nanoparticles were collected and redispersed in 0.1 M PBS (100 mM NaCl, 10 mM 

phosphate buffer, pH = 7.17).  The centrifuge cycle was repeated for twice.  DNA-

functionalized gold nanoparticles were dispersed and kept in 0.1 M PBS buffer.   

4.2.9  Preparation of DNA hybrid assemblies and gold nanoparticles aggregates.  

To prepare DNA hybrid assemblies and gold nanoparticles aggregates, 3.2 nM DNA 

functionalized AuNPs were mixed with each DNA mole percent small micelle solution 

(100 μL) at a total volume approximate 1 mL.  The solutions were frozen in dry ice for 3 

min, and thawed to facilitate hybridization prior to thermal denaturation experiments.  
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For annealing studies, each of the macroscopic gold aggregates was heated at 50 °C for 

16 h and then cooled down to room temperature before measurements were taken.   

4.2.10  DNA melting studies of hybrid assemblies and nanoparticles aggregates.  

Melting studies were monitored in a quartz cuvette equipped with stir bar by UV-vis 

spectroscopy.  We chose surface plasmon peak of gold nanoparticles at 520 nm which is 

sensitive to nanoparticle aggregation to monitor the hybridization and dehybridization 

processes.     

4.2.11  Control experiments.  For DNA binding studies of hybrid assemblies and 

nanoparticles aggregates without pre-annealing, 3.2 nM DNA functionalized AuNPs 

were mixed with each DNA mole percent small micelle solution (100 μL) at a total 

volume approximate 1 mL.  The solutions were frozen in dry ice for 3 min, and thawed to 

facilitate hybridization prior to thermal denaturation experiments.   

For DNA binding studies of plain dsDNA with annealing, 3.05 nmol plain ssDNA 

(5’ ATC CTT ATC AAT ATT 3’) was mixed with equal amount of ssDNA (5’ AAT 

ATT GAT AAG GAT 3’) in 1 mL of 0.1 M PBS.  The solutions were frozen in dry ice 

for 3 min, and thawed to facilitate hybridization.  The solution was heated at 50 °C for 16 

h and then cooled down to room temperature prior to thermal denaturation experiments.   

4.2.12  Measurements and instrumentation.   

Dynamic light scattering (DLS) data were taken with a Malvern Zetasizer Nano 

Series.  UV-vis absorption spectra were obtained with an Agilent 8453 spectrometer.  

Transmission electron microscopy (TEM) images were taken on FEI-Tecnai T12 using 

acceleration voltage of 120 kV.   
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4.3  Results and discussion 

4.3.1  Synthesis and purification of PBD-b-PEO-b-DNA and PS-b-PEO-b-DNA.  

The DNA triblock copolymer, PBD-b-PEO-b-DNA was synthesized with DNA 2 (5’-

ATCCTTATCAATATT-FAM-3’) and PBD-b-PEO (Mn: 3800 kg mol
-1

, wPEO: 0.34), 

following the same procedure used for DNA diblock copolymers.  The synthesized 

polymers were purified by the gel electrophoresis (Figure 4.1a).  The purified DNA 

triblock copolymers showed distinct DNA absorption peak at 260 nm and 6-FAM peak at 

480 nm (Figure 4.1b), as expected.  The DNA triblock copolymers spontaneously form 

big aggregates when cleaved from CPG beads, showing a broad peak at 343.8 nm in 

diameter with polydispersity index (PDI) of 0.54 (Figure 4.1c).  And PS-b-PEO-b-DNA 

(Mn: 7000 kg mol
-1

, wPEO: 0.29) was synthesized and purified by PAGE using the same 

method.  The triblock copolymer formed small aggregates in water with 35.7 nm in 

diameter and 0.20 of PDI (Figure 4.2). 
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Figure 4.1.  (a) PAGE analysis.  Lane 1: DNA 1 sequence.  Lane 2: crude product 

containing PBD-b-PEO-b-DNA conjugate (top) and unbound DNAs (lower bands).  Lane 

3: purified PBD-b-PEO-b-DNA block copolymer (BCP), purified via gel electrophoresis.  

(b) Extinction spectrum of purified PBD-b-PEO-b-DNA in water.  (c) DLS data for 

purified PBD-b-PEO-b-DNA self-assembled into big aggregates in water. 
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Figure 4.2.  (a) PAGE analyses of crude product of PS-b-PEO-b-DNA.  The higher band 

in the loading well corresponds to PS-b-PEO-b-DNA and lower bands are for unbound 

DNA.  (b) Extinction spectrum of purified PS-b-PEO-b-DNA in water.  (c) DLS data of 

purified PS-b-PEO-b-DNA micelles in water. 
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4.3.2  Characterization of DNA hybrid assemblies.  To prepare hybrid assemblies, 

PBD-b-PEO-b-DNA was mixed with PBD46-b-PEO30 at varying molar ratios (100 mol%, 

50 mol%, 10 mol% of PBD-b-PEO-b-DNA) in small amount of CHCl3/DMSO mixture 

(4CHCl3:1DMSO).  Suspensions of hybrid polymer assemblies were prepared following 

the procedure described in chapter 3 for diblock copolymers.  The polymer suspensions 

were extruded through a polycarbonate membrane filter with 400 nm pores to obtain 

uniform nanoscale hybrid assemblies for DNA melting studies.  Transmission electron 

microscopy (TEM) images showed that spherical assemblies were formed by the 

procedure (Figure 4.3).  The diameters of the assemblies were determined to be 62 nm, 

63 nm, 65 nm (PDI: 0.22, 0.23, 0.24) for 100%, 50%, 10%, respectively, by DLS (Figure 

4.4).  The mixed assemblies of PS-b-PEO-b-DNA and PS48-b-PEO46 were prepared by 

the same method.  The diameters of assemblies were determined to be 170 nm, 145 nm, 

267 nm (PDI: 0.16, 0.20, 0.26) for 100%, 50%, 10 %, respectively (Figure 4.5).  The 

mixed assemblies made from PS are larger than those made from PBD, since the 

molecular weight of PS-b-PEO is slightly higher than that of PBD-b-PEO. 
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Figure 4.3.  (a and b) A TEM image of assemblies composed of PBD-b-PEO and PBD-

b-PEO-b-DNA (100 mol% and 50 mol% DNA block copolymer, respectively) in 0.1 M 

PBS buffer (100 mM NaCl, 10 mM phosphate buffer pH=7.17).  (c) Cryo-TEM image of 

PBD-b-PEO and PBD-b-PEO-b-DNA mixed assemblies with 10 mol% DNA density in 

0.1 M PBS buffer. 
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Figure 4.4.  DLS data for hybrid assemblies made of PBD-b-PEO and PBD-b-PEO-b-

DNA with 100 mol% (a), 50 mol% (b), and 10 mol% (c) DNA block copolymer content.  

Different colors represent data collected for different batches of hybrid assemblies. 
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Figure 4.5.  DLS data for hybrid assemblies made of PS-b-PEO and PS-b-PEO-b-DNA 

with 100 mol% (a), 50 mol% (b), and 10 mol% (c) DNA block copolymer content.  

Different colors represent data collected for different batches of hybrid assemblies. 
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Table 4.1. DLS data of DNA triblock copolymer hybrid assemblies. 

 DNA mol% PDI d. nm (Number) 

PBD-b-PEO-b-

DNA 

100 0.217 61.6 

50 0.234 63.8 

10 0.243 65.2 

PS-b-PEO-b-DNA 100 0.158 170.9 

50 0.199 145.2 

10 0.262 267.3 
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4.3.3  DNA melting properties of hybrid assemblies with pre-annealing.  To 

investigate the melting properties of hybrid DNA assemblies, AuNPs modified with DNA 

2’ (5’-A10-AATATTGATAAGGAT-3’) were mixed with DNA triblock copolymer 

assemblies in 0.1 M PBS buffer, as illustrated in Scheme 4.1.  The mixtures were then 

incubated at 50 °C for 16 hr to facilitate the polymer strand migration and DNA duplex 

formation.  The DNA hybridization connects nanoparticles with PBD-b-PEO-b-DNA 

polymer assemblies or PS-b-PEO-b-DNA assemblies with high DNA concentration on 

surfaces (100 mol% and 50 mol%) together into macroscopic aggregates (Figure 4.6).  

This assembly process causes a red-shift and broadening of 520 nm (SPR) band of gold 

nanoparticles and corresponding red to purple color change (Figure 4.7).  The melting 

curves were obtained by monitoring the extinction of gold nanoparticles at 520 nm 

(Figure 4.7).  A sharp melting transition was observed for the assemblies made of 100 

mol% PBD-b-PEO-b-DNA (FWHM: 1.9 °C), as expected, due to the cooperative 

interaction of densely packed DNA strands (Figure 4.7a, Figure 4.8a).
27

  Hybrid 

assemblies containing 50 mol% (Figure 4.7b, Figure 4.8b) or 10 mol% DNA block 

copolymers (Figure 4.7c, Figure 4.8c) showed only slight broadening in the transition 

with narrow FWHM values of 2.4 °C and 4.1 °C, respectively.  And the sample with 10 

mol% DNA of PS-b-PEO-b-DNA showed much broader melting transition (FWHM: 

7.7 °C) (Figure 4.7d, Figure 4.8d).  The melting curve of plain dsDNA is given for 

comparison, which showed a much broader melting transition (FWHM: 9.8 °C) (Figure 

4.10).  We attribute the sharp melting transitions with reduced concentration of PBD-b-

PEO-b-DNA on surface to the mobility of PBD polymer strands and the phase 

segregation described in Chapter 3.  During the annealing process, PBD-b-PEO-b-DNA 
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strands are segregated and form locally concentrated DNA rafts at the binding sites, 

which allows for the cooperative binding even at low DNA contents.  By contrast, 

assemblies made from PS-b-PEO-b-DNA with high DNA mole percentages (50% and 

100%) can form network aggregates with gold nanoparticles and show sharp melting 

transitions (Table 4.2), however, low percentage DNA can barely produce aggregates and 

broad melting transition was observed (Figure 4.7d).  We believe that PS is high Tg 

polymer and not mobile at the annealing temperature (50 °C).  Thus low DNA 

concentration 10 mol% was not sufficient to have high DNA local concentration at 

binding areas resulting in a broad melting transition.  It is also important to note that the 

melting temperature of 10 mol% PS-b-PEO-b-DNA is much lower than those of other 

mixed assemblies, indicating the hybridization is weak between assemblies and 

nanoparticles due to low DNA concentration at binding areas. 
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Scheme 4.2. Schematic description of DNA-induced self-assembly of DNA triblock 

copolymer micelles and DNA-modified gold nanoparticles. 
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Figure 4.6.  (a) A picture of dispersed nanoparticles (left) and nanoparticle aggregates 

(right).  (b) A TEM image of nanoparticle networks. 
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Figure 4.7.  DNA Melting transitions of aggregates formed from DNA-modified gold 

nanoparticles and DNA micelles with (a) 100 mol%, (b) 50 mol%, and (c) 10 mol% DNA 

triblock copolymer content, and 10 mol% PS-b-PEO-b-DNA (d), obtained by monitoring 

the extinction at 520 nm.  The insets show the first derivatives of the melting curves. The 

black and the red curves are experimental data and fitted curves, respectively. 
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Figure 4.8. Temperature-dependent extinction spectra used to construct the melting 

curves shown in Figure 4.7 for mixed assemblies made of PBD-b-PEO and PBD-b-PEO-

b-DNA with 100 mol% (a), 50 mol% (b) and 10 mol% (c) DNA block copolymer content, 

and assemblies made of PS-b-PEO and PS-b-PEO-b-DNA with 10 mol% DNA block 

copolymer content (d). 
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Figure 4.9.  Melting profiles of two sets of mixed assemblies from PBD-b-PEO-b-DNA 

and PS-b-PEO-b-DNA with 100 mol%, 50 mol%, and 10 mol% DNA density on surfaces. 
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Figure 4.10.  (a-b) Melting profile (b) of plain DNA, obtained by monitoring the 

absorbance at 260 nm with increasing temperature (a). 
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4.3.4  DNA melting properties of hybrid assemblies without pre-annealing.  We 

also revealed the melting properties of hybrid DNA assemblies and DNA-funcaitonalized 

AuNPs aggregates without pre-annealing treatment.  Similar to procedures mentioned 

above, AuNPs modified with DNA 2’ (5’-A10-AATATTGATAAGGAT-3’) were mixed 

with DNA triblock copolymer assemblies in 0.1 M PBS buffer.  However, the mixtures 

were allowed to hybridize at room temperature overnight instead of incubating at 50 °C 

for 16 hr.  The melting curves were also obtained by monitoring the extinction of gold 

nanoparticles at 520 nm.  Sharp melting transitions were not found for the assemblies 

made of 50 mol% and 10 mol% for both DNA triblock copolymers.  Comparing to 

assemblies composed of 100 mol% DNA triblock copolymer, hybrid assemblies 

containing 50 mol% or 10 mol% DNA block copolymers showed broadening in the 

transition with FWHM values (Table 4.2).  More interestingly, for both 50 mol% and 10 

mol% PBD-b-PEO-b-DNA assemblies, bumps were observed in pre-melting temperature 

region.  We speculate that before double stranded DNA (dsDNA) sequences dehybridize, 

polymer strands undergo rearrangement and phase segregation.  However, for assemblies 

made from high Tg polymer PS, since polymer strands lack of mobility, these 

observations were not found (Figure 4.12). 
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Figure 4.11.  Melting profiles of gold nanoparticles and hybrid assemblies made of PBD-

b-PEO and PBD-b-PEO-b-DNA with 100 mol% (a,d), 50 mol% (b,e) and 10 mol% (c,f) 

DNA block copolymer content without thermal annealing. 
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Figure 4.12.  Melting profiles of gold nanoparticles and hybrid assemblies made of PS-b-

PEO and PS-b-PEO-b-DNA with 100 mol% (a,d), 50 mol% (b,e) and 10 mol% (c,f) 

DNA block copolymer content without thermal annealing. 
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Table 4.2. List of Tm and FWHM of DNA triblock copolymer hybrid assemblies 

with or without annealing treatment in 0.1 M PBS. 

 DNA mol% Pre-annealing Tm (°C) FWHM (°C) 

PBD-b-PEO-b-

DNA 

100 Yes 59.1 1.9 

50 Yes 59.1 2.4 

10 Yes 58.4 4.1 

100 No 58.1 2.2 

50 No 57.5 2.8 

10 No 56.6 6.7 

PS-b-PEO-b-

DNA 

100 Yes 56.2 1.8 

50 Yes 56.3 2.0 

10 Yes 45.3 7.7 

100 No 49.9 3.6 

50 No 51.1 4.1 

10 No 41.8 8.9 

 Contrl. plain 

DNA 

Yes 48.2 9.8 
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4.4  Conclusions 

In summary, we have fabricated mixed assemblies of DNA block copolymers (PBD-

b-PEO-b-DNA, PS-b-PEO-b-DNA) and amphiphilic block copolymer of PBD-b-PEO 

and PS-b-PEO, respectively.  Hybrid micelles formed from PBD-b-PEO-b-DNA and 

PBD-b-PEO at varying DNA triblock copolymer contents showed that the unique sharp 

melting transition of DNA block copolymer micelles is maintained in the micelles with 

50% and 10% DNA block copolymer.  However, mixed assemblies made by PS-b-PEO-

b-DNA and PBD-b-PEO did not show sharp melting transition at low DNA concentration 

due to high Tg temperature of PS.  Note that it is advantageous to use low DNA block 

copolymer content in forming DNA decorated polymer nanostructures, as DNA block 

copolymers are more costly to make than the matrix amphiphilic polymers.  We believe 

that this work is the first to demonstrate the efficient DNA-induced phase segregation in 

mixed polymer assemblies and to show how it affects the DNA melting properties. The 

findings of this study demonstrate that the mixed assembly of DNA block copolymers 

and other commonly used amphiphilic polymers provides an opportunity to form various 

types of assembly structures that are difficult to make by DNA block copolymer by itself 

without losing its excellent DNA hybridization properties. 
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4.6  Appendix 

4.6.1  DNA liposome microarrays.  DNA microarrays in a combination of PCR 

technology allow us to analyze the expression of hundreds of genes in improved speed 

and accuracy.
1-3

  Interested DNA sequences extracted from cell samples are incubated 

with single stranded DNA sequences which are immobilized on a solid support of DNA 

microarray.  Complementary DNA fragments hybridize with DNA sequences spotted on 

the array, which further allows for analysis or gene expression.  In recent work, 

DNA-functionalized liposomes were immobilized on the chip and used as nanocontainer 

for protein detection.
4,5

  Water soluble proteins are incorporated into liposome 

hydrophilic cavity to remain in their real states and avoid denaturation.  Therefore, it 

opens up the possibility of a conversion of DNA chip to protein chip.   

Amphiphilc biomolecules like membrane proteins are driven to insert into 

hydrophobic compartment of vesicles by the minimization of the number of hydrophobic 

carbon chains exposed to water.  If this is the case, the hydrophobic wall of liposome is 

too thin to hold macromolecules, as its thickness is only about 3 nm.
6
  It is revealed that 

hydrophobic walls of polymersomes have a thickness of 8 nm which is significantly 

greater than liposomes.
6
  Moreover, amphiphilic block copolymers can self-assemble 

into other morphologies, such as micellar structures, and the loading capacity of 

hydrophobic cores is expected to be comparable.  For example, our previous works have 

successfully encapsulated high mass percentage of nanoparticles (up to 44%) in a wide 

range of sizes (from 2 nm to 15 nm) into block co polymer micellar structures.
7-9

  

Therefore, by replacing lipid molecules with polymers, amphiphilic biomolecules which 
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usually possess high molecular weights can be encapsulated into more spacious 

hydrophobic compartment and macromolecule detection chip can be achieved.   

4.6.2  Preparation of Streptavidin patterned glass slides via 

Polydimethylsiloxane (PDMS) stamps.  Sylgard184 was mixed with curing agent in a 

10:1 ratio.  After degassing of the mixture, it was poured over the SU-8 photoresist 

master and baked at 80°C for 60min.  PDMS stamps of 1cm x 1cm were cut out directly 

from the master and then cleaned in 20% ethanol solution for 10 min applying sonication.  

The stamps were then extensively rinsed with Milli-Q water and dried with filtered air.  

Streptavidin was diluted in PBS buffer (pH 7.4, Sigma) to 0.2mg/ml and the stamp was 

inked with streptavidin solution for 60 min.  After incubation, the stamp was rinsed with 

Milli-Q water and dried with filtered air.  Glass cover slips were cleaned in air plasma 

for 10s prior to microcontact printing.  Subsequently stamp and cover slip were brought 

into contact and streptavidin was printed. 

4.6.3  Attachment of biotin-DNA to streptavidin patterned glass slides.  

Biotinylated DNA sequence (5’ TAA CAA TAA TCC-biotin-3’, 72.86 nmol) was 

dispersed 1 mL of 0.1 M PBS buffer solution (100 mM NaCl, 10 mM phosphate buffer, 

pH=7.17).  Surface patterned streptavidin glass slide was immersed into biotinylated 

DNA buffer solution and allowed to conjugate overnight.  Unbounded biotin-DNA 

sequences were removed by washing glass slide with excess amount of PBS buffer. 

4.6.4  Attachment of 10 mol% DNA triblock copolymer hybrid assemblies to 

biotin pattern glass slides.  Biotin patterned glass slide was incubated with linker DNA 

(5’ GGA TTA TTG TTA AAT ATT GAT AAG GAT 3’, 2.0 nmol) in 0.1 M PBS buffer 

for 3 hr at room temperature.  Excess amount of linker DNA sequences were washed 
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away by multiple washes with PBS buffer.  The glass slide was further incubated with 

200 μL of 10 mol% DNA triblock copolymer hybrid assembly solution in 0.1 M PBS 

overnight.  DNA triblock copolymer assembly surface patterned glass slide was 

thoroughly washed with 0.1 M PBS buffer before imaging (Scheme 4.3).  Images of 

surface patterned glass slides were obtained using an Olympus Fluoview FV1000 

confocal laser scanning microscope equipped with an inverted IX81 microscope.  The 

objective lens (water immersion 40 x / 1.15 NA) imaged sample solutions by exciting 

6-FAM with a 488 nm argon laser. 
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Scheme 4.3. Schematic description of surface patterning using DNA hybrid 

assemblies. 
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Figure 4.13.  Patterning DNA hybrid assemblies.  10 mol% DNA triblock copolymer 

hybrid assemblies were patterned on an array of biotin with islands 10 μm in diameter 

and 10μm in spacing.  (a,b) Fluorescence microscopy images of the streptavidin stamp 

overlayed with DNA hybrid assemblies. 

  

 

 

 



141 
 

4.6.6  References. 

(1) Sanders, G. H. W.; Manz, A. TrAC Trends in Analytical Chemistry 2000, 19, 

364-378. 

(2) Heller, M. J. Annu. Rev. Biomed. Eng. 2002, 4, 129-153. 

(3) Geschwind, D. H. The Lancet Neurology, 2, 275-282. 

(4) Städler, B.; Falconnet, D.; Pfeiffer, I.; Höök, F.; Vörös, J. Langmuir 2004, 20, 

11348-11354. 

(5) Chaize, B.; Nguyen, M.; Ruysschaert, T.; le Berre, V.; Trévisiol, E.; Caminade, 

A.-M.; Majoral, J. P.; Pratviel, G.; Meunier, B.; Winterhalter, M.; Fournier, D. 

Bioconjugate Chem. 2006, 17, 245-247. 

(6) Discher, B. M.; Won, Y.-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.; 

Hammer, D. A. Science 1999, 284, 1143-1146. 

(7) Chen, X.-J.; Sanchez-Gaytan, B. L.; Hayik, S. E. N.; Fryd, M.; Wayland, B. B.; Park, 

S.-J. Small 2010, 6, 2256-2260. 

(8) Kamps, A. C.; Sanchez-Gaytan, B. L.; Hickey, R. J.; Clarke, N.; Fryd, M.; Park, S.-J. 

Langmuir 2010, 26, 14345-14350. 

(9) Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M.; Park, S.-J. J. Am. Chem. Soc. 2011, 

133, 1517-1525. 

 

 



142 
 

Chapter 5. Lipid Bilayers Assisted Self-assembly of 

DNA-functionalized Gold Nanoparticles 

 

 

 

Self-assembly is a ubiquitous approach to fabricate novel supermolecular architectures.  

Here we demonstrate a strategy to self-assemble DNA-functionalized gold nanoparticles into 

macroscopic sheets assisted by DNA-tethered lipid bilayers.  Cholesterol-DNA conjugates 

are tethered on lipid bilayers by hydrophobic interaction.  We show that the DNA strands 

are mobile on modified lipid membrane surface by fluorescence recovery after 

photobleaching (FRAP) experiment.  The DNA-tethered lipid bilayers can hybridize with 

complementary DNA-functionalized gold nanoparticles, and further self-assemble into 

micron-size nanoparticle sheets by adding linker DNA and annealing.  By varying the 

amount of gold nanoparticles input, the surface coverage can be tuned.  Our approach 

provides a new method for the preparation of versatile scaffolds for nanofabrication and 

paves the way for organizing functional nanoparticles in a micrometer space. 

a 
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5.1  Introduction 

There has been tremendous effort and interest in DNA-directed assembly which 

is a powerful means to create macroscopic nanoparticle ordered superlattices using 

DNA-functionalized nanoparticles as building blocks.  Through specific interaction 

of DNA, nanoparticles functionalized with a dense layer of DNA sequences, can be 

programmable self-assembled into crystalline structures with controllable structural 

parameters, such as particle size, periodicity, and interparticle distance.
1
  In addition 

to the three dimensional superlattice structures, previous studies have shown a variety 

of approaches to fabricate DNA gold nanoparticle conjugate layers on glass substrates, 

or even free-standing nanoparticle films.  For example, early work was reported by 

Letsinger and co-workers where DNA was used as a particle interconnect for the 

formation of mono- and multilayers of gold nanoparticles showing application in the 

area of biodetection.
2,3

  Our group has successfully fabricated responsive 

free-standing films of DNA-linked gold nanoparticles taking advantages of their 

unique sharp melting transition.
4
  Recently, Mirkin and co-workers have shown the 

novel preparation method for transferrable free-standing DNA nanoparticle 

superlattice sheets which show a large degree of flexibility and can be post-process to 

increase their utility.
5
  On the other hand, DNA-functionalized lipid bilayers have 

been widely used as planar platform to construct nanostructures.  Because of their 

simple preparation, easy handling, planar geometry, and surface lateral mobility, lipid 

bilayers have been considered as ideal structural units for large-scale assemblies.  

For example, it has been demonstrated DNA origami units can be readily deposited 
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onto DNA-modified lipid bilayers and assembled into periodic lattices in 

micrometer-order dimensions.
6
  Also the insertion of DNA nanostructures into lipid 

bilayers results in artificial ion channel mimics made from DNA, which is expected to 

have applications in basic biological research and nanotechnology.
7
  Here, we 

combine the two useful building blocks and show gold nanoparticles assembly on 

lipid membranes driven by DNA hybridization event.  In the future, appropriate 

design and careful selection of nanoparticles will allow for the generation of sensing, 

plasmonic devices. 

 

5.2  Experimental Section 

5.2.1  Materials.  Cholesterol-modified DNA and thiol-modified DNA were 

purchased from TriLink BioTechnologies, Inc.: cholesteryl-5’-ATC CTT ATC AAT 

ATT-FAM-3’, and 5’-(C6-S-S-C6)-A10-AAT ATT GAT AAG GAT-3’.  Linker DNA 

sequence was purchased from IDT: 5’-CGCG A ATC CTT ATC AAT ATT-3’.  

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Avanti Polar 

Lipids, Inc. in a chloroform solution (25 mg/mL) and used without further 

purification. 

5.2.2  Preparation of small unilamellar vesicles (SUVs).  SUVs were 

prepared using a published procedure.  Twenty five microliters of 25 mg/mL DOPC 

in chloroform stock solution plus 0.2 mol% fluorophore Texas Red was added to a 

glass vial and evaporated under air flow.  The obtained lipid dry film was further 

dried under vacuum for at least 3 hr to remove trace of chloroform.  The film was 
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then hydrated with 600 μL 0.1 M PBS buffer solution (100 mM NaCl, 10 mM 

phosphate pH=7.17) followed by 30 min sonication to form a liposomal suspension.  

The suspension was further vortexed, frozen, and thawed five times before applied 

membrane extrusion.  To obtain narrow size distribution, the sample was extruded 19 

times through a polycarbonate membrane (50 nm pore size, Avanti Polar Lipids, Inc.). 

5.2.3  Spread of lipid membranes.  Supported lipid bilayers were assembled 

by placing 30 μL of SUV solution and 70 μL 0.1 M PBS buffer over a glass coverslip 

(Fisherfinest Premium Cover Glass) on the bottom of a crystallization dish at room 

temperature.  Before spreading liposomes, the coverslips were immersed into 

piranha solution (3:1 H2SO4: 30% H2O2 (aq)) for at least 45 min.  After washing 

thoroughly with Milliphore H2O and dried with air flow, the surfaces were further 

cleaned by plasma.  Excess SUVs were removed from the newly formed supported 

lipid layer by multiple washings with 0.1 M PBS buffer. 

5.2.4  Tether chol-DNAs to lipid bilayers.  To prepare DNA-functionalized 

lipid bilayers, cholesterol modified DNA (0.4 nmol) was pipetted on top to a 2 cm in 

diameter vesicle membrane surface.  At least 45 min was allowed for the chol-DNAs 

to diffuse into membrane.  Excess chol-DNA sequences were washed away by 

multiple washing with 0.1 M PBS buffer. 

5.2.5  Hybridization of AuNPs with DNA-functionalized lipid bilayers.  

Complementary DNA-modified AuNPs (26.8 pmol) were added to the freshly 

prepared DNA-functionalized lipid membrane and allowed to hybridize overnight.  

Again, excess AuNPs were removed by washing with 0.1 M PBS buffer.  To prepare 
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gold nanoparticles assemblies, linker DNA (0.3 nmol) was added to lipid membranes 

hybridized with AuNPs and heated at 40 °C for 16 h and then cooled down to room 

temperature before imaging. 

5.2.6  Thermal stability studies of DOPC lipid bilayers.  DOPC lipid 

bilayers were incubated in 0.1 M PBS at 30 °C and 40 °C for different time periods.  

The lipid bilayers were cooled down to room temperature before imaging. 

5.2.7  Control experiments.  Two control experiments were performed to 

confirmation the retention of gold nanoparticles was indeed induced by DNA 

hybridization event.  In the first control experiment, DNA-functionalized gold 

nanoparticles were incubated with complementary DNA-tethered lipid bilayers in 

pure water.  In the second experiment, non-complementary DNA-functionalized gold 

nanoparticles were incubated with DNA-tethered lipid bilayers in 0.1 M PBS buffer.  

Another two control experiments were also carried out to proof both linker DNA and 

annealing are necessary for the formation of large scale nanoparticles assemblies.  In 

the first experiment, DNA-functionalized gold nanoparticles were incubated with lipid 

bilayers at 40 °C overnight in the absence of linker DNA.  In the second experiment, 

DNA-functionalized gold nanoparticles were mixed with lipid bilayers and linker 

DNA was later added to chamber.  The chamber was allowed to sit at room 

temperature overnight. 

5.2.8  Measurements and Instrumentation.  Images of lipid bilayers, 

DNA-functionalized lipid bilayers and AuNP thin films were obtained using the Leica 

TCS SP8 confocal system.  The objective lens was a Leica 20X.  The fluorophore 
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Texas Red was excited by a laser at 552 nm and 6-FAM was excited at 488 nm.  

Scanning electron microscope (SEM) images were taken with a JEOL 7500F HRSEM 

at an accelerating voltage of 20 kV.  Nanoparticles samples for SEM and GISAX 

measurements were first washed with excess amount of 0.3 M ammonium acetate 

solution.  Coverslips with gold nanoparticles assemblies were further dried out under 

vacuum overnight before imaging.  Samples for SEM imaging were first deposited 

with 4 nm Ir to increase conductivity.  Samples for confocal microscope were 

directly imaged in chamber with 0.1 M PBS buffer.   

 

5.3  Results and discussion 

5.3.1  Formation of uniform lipid bilayers on hydrophilic glass substrate 

and their thermal stabilities.  Small unilamellar vesicles (SUVs) stock solution (1 

mg/mL) was prepared from DOPC and 0.2 mol% of Texas Red.  The solution was 

further diluted by 0.1 M PBS buffer solution (100 mM NaCl, 10 mM phosphate 

pH=7.17), and then brought into contact with a hydrophilic glass coverslip which was 

pretreated with piranha solution (3:1 H2SO4:H2O2).  It is found that varying the 

concentration of SUV solution from 0.3 to 0.8 mg/mL does not have a big impact on 

the quality of membranes.  Supported DOPC lipid membranes were formed rapidly 

within 20 min, and the formation of lipid bilayers is even and continuous over the 

entire slide (Figure 5.1a,b).  The surface cleanness of glass slides is crucial to the 

quality of lipid bilayers.  Glass coverslips need to be cleaned with piranha solution 

and subsequently treated with plasma.  Otherwise, phase segregation or uneven 

surfaces was found.  Also, the size of liposomes slightly affects the membrane 
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quality.  Using small liposomes (50 nm), less defects on lipid bilayers were found; 

however, if larger liposomes were used to spread (> 100 nm), the area of phase 

segregation increased. 

The thermal stability of lipid bilayers over time was also exploited.  After lipid 

bilayers doped by Texas red were successfully formed on the hydrophilic glass 

substrate, different temperatures were used to incubate the lipid bilayers, and they 

were imaged at varied time intervals.  The lipid bilayers maintain intact over long 

time period (>12 h) when incubated at 30 °C, indicated by red fluorescence uniformly 

spread over the entire slide (Figure 5.2a,b).  While a higher incubation temperature 

40 °C was applied, the lipid bilayers were intact for the first few hours (~ 6 hr); 

however, overnight incubation led to the visualization of discrete lipid domains in red 

fluorescent images (Figure 5.2c,d).  The continuity of DOPC lipid bilayers was 

perturbed by the long time incubation at high temperature.  Further cooling down 

following the overnight incubation was attempted to regain the continuity, 

nevertheless, lipid domains were still presented and long range continuous lipid 

bilayers were not recovered.  Therefore, the deformation of lipid bilayers caused by 

overnight incubation at high temperature is an irreversible process. 

5.3.2  Fabrication of DNA-anchored lipid bilayers.  One popular approach 

to anchor DNA nanostructures onto lipid membranes is employing the modification of 

nucleic acid with hydrophobic groups, such as porphyrin,
8,9

 α-tocopherol
10

 and 

cholesterol.
11,12

  Cholesterol (chol) was chosen for surface functionalization in this 

work as the hydrophobic component.  Due to its amphiphilicity, chol-DNA conjugate 
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buries its hydrophobic moiety into lipid bilayer hydrophobic core, anchoring DNA 

sequence onto the outer monolayer of lipid membranes.  DNA surface 

functionalization process was carried out by incubating lipid membranes with 

chol-DNA conjugates in a home-built chamber for 60 min at room temperature.  A 

green fluorescent dye (6-FAM) was attached at 3’ end of DNA to monitor the 

presence of chol-DNA conjugate (Scheme 5.1).  The unbound chol-DNA was then 

removed from the surface by exchanging 10 times the incubation buffer with 0.1 M 

PBS, never allowing the supported lipid bilayers to dry out.  The preparation led to 

homogenous and continuous green fluorescence over the entire slide, indicating 

chol-DNA uniformly tethered on lipid surface (Figure 5.1c,d). 

 

 

 

 

 

 

 

 

 

 

 

 



150 
 

 

 

 

 

 

 

 

 

Scheme 5.1. Schematic Description of DNA-functionalized Lipid Bilayers 

Preparation. 
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Figure 5.1.  (a,b) Confocal laser scanning fluorescence image of Texas red doping 

DOPC lipid bilayers (ex @ 633 nm) on glass slides.  (c,d) Confocal laser scanning 

fluorescence image of DNA-functionalized DOPC lipid bilayes (ex @ 488 nm). 
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Figure 5.2.  Confocal laser scanning fluorescence image of Texas red doped DOPC 

lipid bilayers incubate at 30 °C over (a) 6 hr and (b) overnight (ex @ 633 nm).  

Confocal laser scanning fluorescence image of Texas red doping DOPC lipid bilayes 

incubate at 40 °C over (c) 6 hr and (d) overnight (ex @ 633 nm). 
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5.3.3  Lateral mobility of DNA-anchored lipid bilayers via FRAP 

measurement.  Next we studied the lateral mobility of the DNA-functionalized lipid 

bilayers.  One of the most essential components of eukaryotic cell membranes is 

cholesterol molecule which orients in a phospholipid membrane with polar hydroxyl 

group encountering water and hydrophobic moiety buried in hydrocarbon chains of 

the phospholipids,
13

 and its lateral mobility and distribution in membranes have been 

well documented.
14

  On the other hand, fluorescence recovery after photobleaching 

(FRAP) is a widely used technology to measure molecular diffusion in membranes 

which is a determining factor in cell signaling and cell function.
15

  To explore the 

lateral mobility of DAN-immobilized lipid bilayers constructed by chol-DNA 

conjugates in this study, fluorescein attached to DNA strand was used as a direct 

probe for the determination of chol-DNA conjugates diffusion in lipid membranes.  

The mobility can be presented as diffusion coefficient D, which is relevant to 

diffusion time τ1/2 and can be calculated from two-dimensional equation as 

following,
16,17

 

              

where R is the radius of the bleach spot, and τ1/2 is the half-life for fluorescence 

intensity recovery.  In the FRAP measurement (Figure 5.3a,b), bleach spot with a 

27.25 μm radius was obtained by using high intensity laser beam.  The half-life for 

recovery, that is, when fluorescence intensity returns to half of its pre-bleach number, 

was reached in 4 min (Figure 5.3c,d).  Therefore, the diffusion constant of 

DNA-tethered lipid bilayer is 0.68 μm
2
/s, which is comparable to typical lipid 
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membranes in previous report.
14

  According to the percentage mobile fraction given 

by
18

 

   
         

           
 

where F(t<0) is the pre-bleach fluorescence, the percent recovery %R is 72% in this 

study.  Note that the beam also induced the photobleaching of fluorescein outside 

bleach spot during FRAP measurement,
19

  thereby the actual %R is expected to be 

higher than 72%.  The diffusion coefficient and percent recovery obtained from 

FRAP measurement show that DNA-anchored lipid bilayers have fluidity and undergo 

lateral diffusion, which plays an essential role in the following the DNA-induced gold 

nanoparticle self-assembly study.   
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Figure 5.3.  Fluorescence Recovery After Photobleaching (FRAP) on supported 

DNA-functionalized lipid bilayers.  (a) Confocal laser scanning fluorescence image 

of DNA-functionalized lipid bilayers before photobleaching.  6-FAM was bleached 

by using a 488 nm laser at 100% intensity and image was acquired immediately after 

(t=0) (b) and a defined period after bleaching (t=4 min) (c), respectively.  (d) 

Fractional fluorescence recovery curve obtained by FRAP. 
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5.3.4  Gold nanoparticle domains formed by hybridization of nanoparticles 

and lipid bilayers.  To fabricate gold nanoparticle self-assembly structure, 

complementary DNA-immobilized gold nanoparticles in 0.1 M PBS buffer were 

introduced to the DNA-tethered lipid membranes in home-built chamber, and allowed 

to hybridize with DNA sequences anchor on lipid surface at room temperature 

overnight (Scheme 5.2).  After overnight incubation, a light pink color thin film by 

eye was obtained inside the chamber (Figure 5.4).  The film was thoroughly washed 

by exchanging 10 times the incubation buffer with 0.1 M PBS to remove unbound 

nanoparticles, never allowing the supported lipid bilayers to dry out.  To confirm that 

the formation of thin film is induced by DNA specific hybridization, two control 

experiments were performed, where gold nanoparticles were mixed with lipid bilayers 

in water, or gold nanoparticles functionalized with non-complementary DNA were 

added to the membranes (Figure 5.4).  In both cases, since there was no DNA 

specific hybridization between nanoaprticles and lipid bilayers, gold nanoparticles 

were completely removed during the washing step, and no gold thin film formation 

was observed, as expected.  These results confirm the retaining of nanoparticles is 

indeed due to the DNA specific interactions. 
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Scheme 5.2. Schematic Description of the Introduction of DNA-functionalized 

gold nanoparticles on DNA-functionalized Lipid Bilayers Preparation. 
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Figure 5.4.  Thin films formed by the hybridization between DNA-functionalized 

gold nanoparticles and complementary DNA-tethered lipid bilayers using 600 μL (1), 

300 μL (2), and 150 μL of gold nanoparticles stock solution, respectively.  Two 

control experiments, gold nanoparticles were mixed with lipid bilayers in water (4), or 

gold nanoparticles functionalized with non-complementary DNA were added to the 

membranes (5).   
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We further investigated the structure of this as-deposit thin film by optical 

microscope.  The optical microscope images reveal that the as-deposit film is 

actually incontinuous and composed of nanoparticle domains in the size range over 

micrometers.  We attribute the formation of nanoparticle domains to the lateral 

mobility of chol-DNA conjugates as well as van de Waals attraction between gold 

nanoparticles.
20

  Although gold nanoparticles bind to the lipid bilayer surface by 

DNA hybridization, they are free to diffuse parallel to the surface and further cluster 

up.  More importantly, the emission intensities of Texas Red and fluorescein on 

confocal laser scanning fluorescence images are much dimmer compared to before 

nanoparticle deposition under the same laser power condition (Figure 5.5a,b), which 

further confirms that nanoparticles are brought into close contact with the two 

fluorescent dyes via DNA hybridization, and subsequently quenched the fluorescent 

of vicinity dye molecules due to energy transfer mechanism.
21

  Interestingly, the 

emission of fluorescein follows the same patterns as nanoparticles domains implying 

chol-DNA conjugates move along with their counterpart gold nanoparticles and form 

green fluorescent domains right underneath nanoparticle clusters.  We further reveal 

the nanostructure of as deposit film by SEM.  Nanoparticle as-deposit films were 

washed with excess amount of 0.3 M ammonium acetate and deattached from the 

home-built chamber, and later dried out under vacuum to remove ammonium acetate 

before imaging.  SEM images of as-deposit nanoparticle films clearly show that they 

are consisted of discrete nanoparticles.  They also show that nanoparticles form 

domains whose sizes range from a hundred to several hundred nanometers when they 
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Figure 5.5.  (a,b) Confocal laser scanning fluorescence image of Texas red (ex @ 

633 nm) and 6-FAM (ex @ 488 nm) after hybridization with gold nanoparticles, 

respectively.  (c,d) Transmission images of DNA-functionalized gold nanoparticle 

clusters on DOPC lipid bilayes.  (e,f) SEM images of as-deposit gold nanoparticles. 
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are dried (Figure 5.5e,f). 

5.3.5  Formation of gold nanoparticle self-assembly induced by DNA linker 

and thermal annealing.  To induce the self-assembly within nanoparticle domains, 

a linker DNA which is complementary to the DNA sequences immobilized on 

nanoparticle surface and with a sticky end, was introduced to the system.  The 

sample was then annealed at 40 °C overnight (Scheme 5.3).  The color of 

nanoparticles films didn’t change after the addition of linker DNA and annealing 

process.  Note that the color of the nanoparticle sheets in this work is much lighter 

than those of gold nanoparticle films created by other methods reported on literatures 

due to fewer layers of nanoparticles.
4,5

  Optical microscope images taken after 16 h 

annealing showed an optically uniform nanoparticle sheet with free nanoparticle 

sedimentation occasionally laid on top (Figure 5.6a).  SEM was used to evaluate the 

arrangement of nanoparticle self-assembly.  Glass slides were detached from culture 

dishes and washed with excess amount of 0.3 M ammonium acetate to replace with 

sodium chloride.  The glass slides were dried under vacuum chamber for 16 hr to 

remove trace of ammonium acetate.  In order to obtain good signal for samples on 

glass substrate which is not an ideal substrate for SEM imaging, 4 nm thick of Ir was 

deposited on top of the assembly to increase conductivity.  The SEM images of gold 

nanoparticles after assembly process again show discrete nanoparticle features.  

Furthermore, nanoparticles domains grow bigger after the addition of linker DNA and 

annealing process compared to as-deposit nanoparticles films.  The domain sizes 

span from a few hundred nanometers to micrometers indicated by SEM images 
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Scheme 5.3. Schematic Description of the formation of gold nanoparticle 

self-assemblies on DNA-functionalized lipid bilayers induced by linker DNA and 

annealing. 
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Figure 5.6.  (a) Optical microscope image of gold nanoparticle assemblies induced 

by linker DNA and annealing.  (b,c) SEM images of gold nanoparticle assemblies on 

lipid bilayers. 
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5.6b,c).  We reason that the linker DNA connects adjacent gold nanoparticles and the 

annealing process provides sufficient energy to facilitate the lateral motions of 

nanoparticles on lipid bilayers.  Two control experiments were carried out to 

examine the necessary conditions to create self-assembly structure.  The first control 

experiment was performed annealing process in the absence of linker DNA.  SEM 

image presents similar overall shape to as-deposit nanoparticle film whose domain 

sizes are small, indicating the self-assembly was not successfully achieved (Figure 

5.7a).  In the second control experiment, gold nanoparticles were allowed to 

hybridize with linker DNA at room temperature.  Similar result was obtained and 

large domain size of assembly structures was not observed.  The two control 

experiments emphasize the importance of linker DNA and annealing.  The linker 

DNA offers the driven force for the lateral movements of nanoparticles via DNA 

hybridization, while the annealing process provides energy to promote the movements.  

And neither of them can be negligible. 

The extent of order in nanoparticle self-assemblies was investigated using 

grazing incidence small-angle X-ray scattering (GISAXS).  The sample preparation 

for GISAXS measurement was similar to the preparation for SEM.  Nanoparticle 

film was first deattached from the home-built chamber and washed with large amount 

of 0.3 M ammonium acetate.  The glass slide with nanoparticle film was further 

dried under vacuum overnight to remove ammonium acetate.  The GISAXS data 

show broad rings, suggesting poorly ordered and essentially amorphous structure 

(Figure 5.8a).  The rings indicate a preferred local packing distance, however, no 



165 
 

long-range coherent order.  It is consistent with SEM images which are difficult to 

assign any type of crystal structures.  In spite of lacking long-range order, we are still 

able to calculate the inter-particle distance dAu according to the Bragg equation, 

       

where q is the first order scattering vector.  In our study, qy is 0.04078 Å
-1

 (Figure 

5.8b), and dAu is calculated to be 15.4 nm.  The number of inter-particle distance in 

this study is two times smaller than the numbers reported on other literatures,
5
 

resulting from different sample preparation methods of GISAXS measurements.  In 

previous papers, samples were coated with silica to maintain nanoparticles in the solid 

state.  However, in our study, sample glass slides were completely dried out.  We 

speculate that the drying process shrinks down the inter-particle distance.  The 

UV-vis spectrum of gold nanoparticle assemblies on lipid bilayers in 0.1 M PBS 

buffer solution preserves nanoparticle plasmonic properties, yet the surface plasmon 

resonance (SPR) peak at 542 nm is red-shifted around 20 nm compared to isolated 

gold nanoparticles, indicating close nanoparticle distance (Figure 5.8c) 
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Figure 5.7.  Two control experiments were performed to examine the importance of 

linker DNA and annealing.  (a) SEM image of gold nanoparticles film incubated at 

40 °C overnight in the absence of linker DNA.  (b) SEM image of gold nanoparticles 

film incubated with linker DNA at room temperature overnight. 
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Figure 5.8.  Characterization of gold nanoparticle assemblies on lipid bilayers.  (a) 

GISAXS map of nanoparticle assemblies dry film, (b) linecuts from GISAXS 

scattering pattern, and (c) extinction spectrum of nanoparticle assembly film in 0.1 M 

PBS buffer solution.  
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5.3.6  Nanoparticle concentration dependency.  We also investigated the 

influence of nanoparticle concentration to the formation of nanoparticle assemblies.  

Gold nanoparticle assemblies on lipid bilayers were prepared with varying gold 

nanoparticles concentrations.  The initial gold nanoparticle amount added to the 

chamber (26.8 pmol) was not sufficient to cover the whole lipid membranes and left 

blank areas where few nanoparticles occupied.  High nanoparticle density areas 

appear dark grey color, while low density areas are represented by light grey color 

(Figure 5.9a).  As the amount of gold nanoparticles increases by two times, the blank 

areas reduce (Figure 5.9b).  A further increase amount of nanoparticles to 107.2 

pmol, the lipid membranes were covered by nanoparticles with occasional blank areas 

(Figure 5.9 c).  Thus, the amount of nanoparticles influences the coverage of lipid 

membranes. 
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Figure 5.9.  Transmission images of gold nanoparticle assembly thin films using 

different amount of gold nanoparticles, (a) 26.8 pm, (b) 53.6 pmol, and (c) 107.2 

pmol.   
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5.4  Conclusions. 

In summary, we demonstrate a strategy to assemble DNA-functionalized gold 

nanoparticles into macroscopic sheets assisted by DNA-tethered lipid bilayers.  

Cholesterol-DNA conjugates are tethered on lipid bilayers by hydrophobic interaction.  

We show that the DNA strands are mobile on modified lipid membrane surface by 

fluorescence recovery after photobleaching (FRAP) experiment.  The DNA-tethered 

lipid bilayers can hybridize with complementary DNA-functionalized gold 

nanoparticles, and further self-assemble into micron-size nanoparticle sheets by 

adding linker DNA and annealing.  By varying the amount of gold nanoparticles 

input, the surface coverage can be tuned.  We believe our mobile 

DNA-functionalized lipid-bilayers will serve as a versatile platform for a diverse 

range of applications.  And our assembly strategy provides a route to generate arrays 

of nanoparticles and organizing them into more sophisticated structures.  For 

example, using this strategy, ordered arrangement of nanorods, such as end-to-end, 

may be achieved, which may show promising applications in surface-enhanced raman 

spectroscopy.  We also anticipate that our approach will further expand the scope of 

nanoparticles that are used to organize to other nanomaterials, including carbon 

nanotube, nanowires, magnetic, electronic, and optical materials, and make them 

candidates for novel devices and sensors.  
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5.6  Appendix 

5.6.1  Preparation of gold nanorods.  Gold nanorods were synthesized by 

following the previously published silver-assisted growth procedures.
1
  

Hexadecyltrimethylammoniumbromide (CTAB) solution (1 mL, 0.2 M) was mixed 

with chloroauric acid (HAuCl4) (1 mL, 0.0005 M), then ice cold sodium borohydride 

(NaBH4) (120 μL, 0.01 M) was added to the mixture and vigorously mixed for 2 min.  

The seed solution was aging at 25 °C for 1 hr.  To prepare growth solution, CTAB 

solution (5 mL, 0.2 M), silver nitrate (AgNO3) (375 μL, 0.004 M), and HAuCl4 (5 mL, 

0.001 M) were mixed together.  Reducing agent ascorbic acid (70 μL, 0.0788 M) 

was added to the mixture and a color change of growth solution from orange to 

colorless was observed immediately.  In the final step, 12 μL of seed solution was 

added to the prepared growth solution and allowed to age at 25 °C overnight. 

5.6.2  Preparation of DNA-functionalized gold nanorods.  It was reported 

that as-synthesized nanorods made by silver-assisted growth procedures have 

difficulty in conjugation with thiolated-DNA due to the presence of a thin layer of 

silver on nanorod surface.  To address this issue, an additional growth of gold on the 

nanorod was used to facilitate the DNA functionalization.
2
  Gold nanorods (5 mL, 

LSPR=5) were spun down at 13400 rpm for 10 min and redispersed in 5 mL water.  

The nanorods were spun down again and resuspended in CTAB (5 mL, 0.01 M).  

Ascorbic acid (50 μL, 100 mM) and HAuCl4 (50 μL, 0.5 mM) were added to the 

nanorod CTAB solution, and the mixture was allowed to wait an hour for the 



174 

 

overgrowth to complete.  The solution was brought to 0.05 M CTAB by adding 

1.335 mL of 0.2 M CTAB solution and later spun down twice at 13400 rpm for 10 

min and redispersed in 5 mL of thiolated DNA water solution (DNA 1 5’ 10A AAT 

ATT GAT AAG GAT 3’, 15 OD260 nm) in a glass vial.  The solution was aging on a 

shaker for 70 min.  Sodium phosphate (555 μL, 100 mM) and sodium dodecyl 

sulfate (SDS, 17.3 μL, 100 mM) were added to the solution and waited for overnight.  

The solution was brought to 0.05 M, 0.1 M, 0.2 M, 0.3 M, 0.4 M and 0.5 M NaCl by 

adding 293 μL, 326 μL, 774 μL, 995 μL, 1326 μL, and 1857 μL of 0.1 M NaCl, 

sequentially.  There was approximate an hr between each salt addition.  After salt 

addition completed, nanorods were sit on the shaker overnight to achieve maximum 

functionalization.  To remove unbounded DNA, nanorod solution was spun down 

twice at 8000 rpm for 10 min and resuspended in 0.01% SDS and the solution was 

later brought to 0.1 M sodium phosphate and 0.5 M NaCl for storage (Figure 5.10). 
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Figure 5.10.  Extinction spectra of gold nanorods before (black) and after (red) 

deposition, DNA-modified gold nanorods (green) and over several days (> 3 days) 

(blue).  
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5.6.3  DNA-functionalized gold nanorods DNA recognition property.  

DNA recognition properties of DNA-functionalized gold nanorods were evaluated by 

hybridizing gold nanorods to a complementary DNA sequence 2 (5’-ATC CTT ATC 

AAT ATT 6-FAM-3’) labeled by a green fluorescent dye.  Gold nanorods (100 μL) 

were mixed with DNA sequence 2 (0.022 nmol) at 55 °C for 5 min to facilitate the 

hybridization.  A pronounced fluorescence quenching due to energy transfer between 

dye and nanorods was observed by fluorescence spectra, and the energy transfer 

process is reversible.  As the temperature increases above the DNA melting 

temperature, dsDNA dehybridize and the distance between nanoparticles and 

fluorophores is increased resulting in the recovery of 6-FAM fluorescence intensity 

(Figure 5.11).  Theses experimental observations confirm that after the modified 

DNA conjugation processes, gold nanorods were successfully coated with a dense 

layer of DNA sequences and possess DNA binding properties.   
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Figure 5.11.  (a) Photoluminescence spectra of dehybridization of DNA-modified 

gold nanorods and complementary DNA strands in PBS buffer (0.5 M NaCl, 100 mM 

phosphate buffer, pH=7.17) with increasing temperatures.  (b) Melting profile by 

monitoring fluorescence intensity at 520 nm with increasing temperature.  (c) First 

derivative of the melting profile.  
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5.6.4  Hybridization of DNA-functionalized gold nanorods and 

DNA-modified lipid bilayers.  DNA-functionalized gold nanorods (200 μL) were 

hybridized with complementary DNA-modified DOPC lipid bilayers which were 

prepared by procedures described in Chapter 5.  Following the protocols in Chapter 

5, overnight incubation at room temperature only led to the sedimentation of gold 

nanorods.  During washing step, most of DNA-functionalized gold nanorods were 

removed by buffer solution, leaving a very thin layer of nanoparticles on top of the 

lipid membranes (Figure 5.12 a).  Confocal images (Figure 5.12 b,c) reveal that 

nanoparticles domains were also formed as expected; however, the density of 

nanorods hybridized with DNA-tagged lipid bilayers is much lower than that of 

spherical gold nanoparticles in Chapter 5.  Linker DNA and annealing process were 

later applied to the gold nanorods thin films following the description in Chapter 5.  

After overnight incubation at 40 °C, the formation of 2D nanorods self-assemblies 

was absent, instead gold nanorods clustered up and their aggregates floated inside the 

home-build chamber.  Moreover, confocal images show that nanorods aggregates are 

surrounded by chol-DNA strands which are labeled by a green fluorescence dye while 

the fluorescence of lipid bilayers is much dimmer (Figure 5.13).  We hypothesize 

that in DNA functionalization step, SDS as a water soluble surfactant was introduced 

to solution to stabilize the charged DNA-modified nanrods.  When 

DNA-functionalized gold nanorods were mixed with lipid bilayers, free SDS 
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molecules in the solution solubilized and removed chol-DNA strands from lipid 

bilayers.   

 

 

 

 

Figure 5.12.  (a) Thin films formed by the hybridization between 

DNA-functionalized gold nanorods and complementary DNA-tethered lipid bilayers 

using as-modified gold nanorods (left) and extra cleaned gold nanorods (right).  (b,c) 

Optical microscope images of gold nanorod thin films. 
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Figure 5.13.  Representative confocal laser scanning and transmission images of 

gold nanorods thin films after overnight incubation (ex@488 nm).  Scale bars: 10 

μm. 
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5.6.5  Effect of SDS.  Extra SDS was effectively removed by multiple 

centrifugation cycles.  Before hybridized with DNA-tethered lipid bilayers, 

DNA-modified gold nanorods were spun down at 8000 rpm for 10 min and 

resuspended in water twice to remove excess SDS in the solution.  As expected, 

purified gold nanorods readily bind with lipid bilayers and generate gold nanorod thin 

films which contain higher density of nanoparticles (Figure 5.14). 
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Figure 5.14.  Representative confocal laser scanning and transmission images of 

gold nanorods thin films after overnight incubation using purified 

DNA-functionalized gold nanorods (ex@488 nm).   
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CHAPTER 6. Future Directions 

6.1  Future directions 

6.1.1  DNA rafts.  In Chapter 3, we fabricated hybrid giant vesicles from 

DNA diblock copolymers of polymethylacrylate-block-DNA (PMA-b-DNA) using a 

prototypical block copolymer of poly(butadiene)-block-poly(ethylene oxide) 

(PBD-b-PEO) as a matrix polymer and demonstrated that the hybrid vesicles undergo 

efficient phase segregation upon the introduction of complementary DNA.  The 

hybridization-induced phase segregation led to high density DNA rafts on the vesicle 

surface creating patchy assembly structures.   

Booming interest in anisotropic particles, such as patchy, multicompartment and 

Janus particles, has predominately focused on their design and preparation, and higher 

order self-assembly in recent years, although their real world applications appear to be 

far away from realization.  Given their unique structures, anisotropic particles have 

many applications as interface stabilizers,
1
 controllable pores in lipid membranes,

2
 

biological sensors, and anisotropic building blocks for complex structures.
3
  In 

nature, cell compartmentalization has been long identified as a critical role in 

enormous number of biological reactions and processes.
4
  Other structural analogues 

are found useful in modern materials science.  For example, hydrophobins which 

have hydrophilic and hydrophobic patches can form coatings and further attach to 

different surfaces.
5
 

There are a variety of techniques for the preparation of patchy particles, 
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including templating, colloidal assembly, particle lithography, and electrospray usinga 

biphase nozzle.
6
  As have shown in Chapter 3, the hybridization of complementary 

hybrid DNA polymersomes offers an extremely simple and efficient way to fabricate 

patchy particles.  However, the patchy particles formed in this chapter are bound 

with their complementary analogues, and the stability of DNA rafts on isolated 

polymersomes has not been studied yet.  It will be interesting to see whether or not 

the DNA rafts maintain even after hybrid DNA polymersomes dehybridize.  Discher 

et al reported calcium cations crossbridge polyacrylic acid (PAA) which is a 

polyanionic polymer, and hence demix from matrix polymers and create spots or rafts 

in vesicle structures.
7
  Likewise, DNA phosphate backbones which have similar 

electron structure to PAA can strongly chelate with multivalent cations to provide 

driving force for domain formation.  It is expected that the addition of multivalent 

cations (e.g. Ca
2+

) acting as glue in the solution during melting process will crosslink 

DNA amphiphiles and lead to the formation of DNA rich domains in an isolated 

patchy particle.  The hybrid DNA polymersomes presents a good material candidate 

as anisotropic particles for targeted drug/gene delivery considering their unique DNA 

binding properties. 

6.1.2  DNA hybrid assemblies on substrates.  In Chapter 4, we prepared a 

new set of hybrid assemblies from a DNA triblock copolymer of 

poly(butadiene)-block-poly(ethylene oxide)-block-DNA (PBD-b-PEO-b-DNA) and 

used them for the fabrication of microarrays.   

Colloidal science is beginning to face the challenge of organizing nanoparticles 
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into controllable architectures on micron- or even submicron-size substrates, which 

open the door to fabricate the new generation of microarrays and nanodevices.  The 

most common strategy for nanoparticles immobilization is covalent reactions such as 

maleimides, amides and thiols.  However, it will not necessarily be applicable as 

generic protocol to prepare complex nanoarrays where it needs different functional 

nanoparticles to be located on designated areas.  In contrast to covalent bonds, DNA 

specific interaction has emerged as a promising substituent when using DNA 

nanoparticles.  Unlike chemical bonds, DNA hybridization is a reversible process.  

In other words, the microarrays constructed via DNA hybridization response on and 

off to temperature or salt concentration change.  The DNA hybrid assemblies shine 

light on the synthesis of much more complicated and multifunctional systems and 

patterned arrays.  Owing to the spacious hydrophobic compartment of hybrid 

assemblies, various types of hydrophobic nanoparticles can be encapsulated into 

assembly cores and tagged on the same desired spot increasing the diversity of 

building blocks, which eventually leads to highly functionalized systems. 

6.1.3  Alignments of anisotropic nanostructures on lipid bilayers.  

Anisotropic metallic nanoparticles (e.g. gold and silver nanorods or nanowires) have 

been extensively exploited for applications such as sensing, electronics, or optics 

because of their unique shape-dependent electronic and optical properties.  Control 

of nanoparticles immobilization on substrates or their incorporation into soft material, 

like polymers,
8,9

 is essential, for the reason that their performance is dictated by the 

orientation of anisotropic nanoparticles.  
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In Chapter 5, we developed a method to immobilize gold nanoparticles on lipid 

bilayers and furthermore form 2D self-assembly structures.  However, in terms of 

gold nanorods, there is still difficulty in controlling their orientation on lipid bilayers, 

which eventually will weaken their real world applications.  As shown in Chapter 5, 

due to strong attraction, gold nanorods easily aggregate into clusters before the 

addition of linker DNA and the alignment of gold nanorods was failed.  Capping 

agents can be used not only as a stabilizer to prevent nanoparticles from aggregating, 

but also as a spacer to keep distance between nanoparticles.  Therefore, in future 

study introducing longer length of ligands or even polymers can potentially help to 

minimize the aggregation effect.  It is also imperative to study how the length of 

DNA sequences on gold nanorods surface would affect the orientation. 
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