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The friction coefficient of a particle can depend on its position, as it does when the particle is near a wall.
We formulate the dynamics of particles with such state-dependent friction coefficients in terms of a general
Langevin equation with multiplicative noise, whose evaluation requires the introduction of specific rules. Two
common conventions, the Ito and the Stratonovich, provide alternative rules for evaluation of the noise, but
other conventions are possible. We show that the requirement that a particle’s distribution function approach
the Boltzmann distribution at long times dictates that a drift term must be added to the Langevin equation. This
drift term is proportional to the derivative of the diffusion coefficient times a factor that depends on the
convention used to define the multiplicative noise. We explore the consequences of this result in a number of
examples with spatially varying diffusion coefficients. We also derive a path integral representation for arbi-
trary interpretation of the noise, and use it in a perturbative study of correlations in a simple system.
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I. INTRODUCTION

Brownian motion provides a paradigm for exploring the
dynamics of nonequilibrium systems, especially those that
are not driven too far from equilibrium �1–4�. In particular,
the Langevin formulation of Brownian motion finds applica-
tions that go beyond its original purpose of describing a
micrometer-sized particle diffusing in water. It has been ex-
tended to treat problems in dynamics of critical phenomena
�5�, in glassy systems �6�, and even in evolutionary biology
�7�. Brownian motion is important for soft-matter and bio-
logical systems because they are particularly prone to ther-
mal fluctuations �1,8�, and Langevin theory is an important
tool for describing their properties, such as the dynamics of
molecular motors �9� and the viscoelasticity of a polymer
network �10�.

In most applications, the diffusion coefficient is assumed
to be independent of the state of the system. Yet, there are
many soft-matter systems in which the diffusion coefficient
is state dependent. A simple example of such a system is a
particle in suspension near a wall: its friction coefficient, and
hence its diffusion coefficient, depends because of hydrody-
namic interactions on its distance from the wall �11�, a phe-
nomenon that affects interpretation of certain single-
molecule force-extension measurements �12� and that plays a
crucial role in experimental verification of the fluctuation
theorem in a dilute colloidal suspension near a wall �13�.
Similarly, the mutual diffusion coefficient of two particles in
suspension depends on their separation �14�. Other examples
with state-dependent diffusion include a particle diffusing in
a reversible chemical polymer gel �15� and the dynamics of
fluid membranes �16�. In spite of the recent advances in digi-
tal imaging methods to probe equilibrium properties of soft
matter �17�, there have been relatively few experimental
studies of the dynamical properties of a physical system in
which the diffusion coefficient is state dependent. This is
clearly an area for further experimental exploration. Al-
though the mathematical problem of how to treat systems

with state-dependent diffusion has been studied for some
time �2,10,18–20�, the results of these studies have not been
collected in one place to provide a clear and concise guide to
both theorists and experimentalists who might use them.

In this largely expository paper, we develop a Langevin
theory and its associated path integral representation for sys-
tems with state-dependent diffusion and explore its use in
systems of physical interest. In accord with previous treat-
ments �2,3,10,11,18–20�, we show that a position-dependent
diffusion coefficient leads naturally to multiplicative noise.
This noise is the product of a state-dependent prefactor pro-
portional to the square root of the diffusion coefficient and a
state-independent Gaussian white noise function, and it is
meaningless without a prescription for the temporal order in
which the two terms are evaluated. There are two common
prescriptions or conventions for dealing with multiplicative
noise: the Ito convention, in which the prefactor is evaluated
before the Gaussian noise, and the Stratonovich convention,
which results when the �-correlated white noise is obtained
as a limit of a noise with a nonzero correlation time �2–4�.
There are, however, other conventions, as we will discuss.
Using general thermodynamic arguments, we show that, in
order for Boltzmann equilibrium to be reached, a drift term
proportional to the derivative of the diffusion coefficient
times a factor depending on the convention for the evaluation
of multiplicative noise must be added to the Langevin equa-
tion. Though this drift term has been noted before
�10,18–20�, we have found only one �recent� reference �10�
that specifically associates the form of the drift term with the
convention for evaluating multiplicative noise. On the other
hand, others claim that it is the choice of the convention that
is dictated by physics �11�. In particular, the authors of Ref.
�11�, without allowing for the possibility of the drift term,
argued that neither the Ito nor Stratonovich convention prop-
erly describes the dynamics of a Brownian particle with a
spatially varying friction coefficient, but a third
convention—what the authors called the isothermal
convention—does. Incidentally, for this third convention, the
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drift term in our formalism vanishes. Therefore, the necessity
of the drift term for enforcing thermal equilibrium is not
widely known, and it is often incorrectly ignored �12�. Here,
we aim to provide a clear exposition for clarifying the tech-
nical issues that might have been a source of confusion in the
literature.

This paper is organized as follows. In Sec. II, we first
review the case of a uniform diffusion coefficient and extend
it to the case of spatially varying diffusion coefficient. We
discuss in depth the stochastic interpretation issues associ-
ated with multiplicative noise, we derive the Fokker-Planck
equation, and we show that, depending on the stochastic in-
terpretation, an additional drift term must be added to the
standard friction term in order for the system to relax to
equilibrium. We also discuss how measurements of the ei-
genvalues and eigenfunctions of the probability that a par-
ticle is at position x� at time t+�t, given that it was at posi-
tion x at time t, can be used to obtain information about
whether the diffusion coefficient is state dependent or not. In
Sec. III, we present some exactly solvable toy models that
clearly illustrate the consequences of spatially varying diffu-
sion, and suggest some experimental techniques which may
elucidate its role in colloidal tracking experiments. We also
give numerical confirmation that the extra drift term is
needed to produce equilibrium distribution. In Sec. IV, we
derive and discuss the path integral formulation for a Lange-
vin equation with a multiplicative noise, correlation func-
tions, and perturbation theory. In Sec. V, we briefly summa-
rize the results for multicomponent systems. Technical
details are presented in the Appendixes.

II. FORMALISM IN ONE DIMENSION

A. A review of the case of a uniform diffusion coefficient

Let us first briefly review the simplest case in which a
Brownian particle diffuses in space with a uniform diffusion
constant �2�. In the Langevin formulation of Brownian mo-
tion, the stochastic equation of motion for the particle’s po-
sition �8� is

�tx = − �
�H
�x

+ g��t� , �2.1�

where x denotes the position, � is the dissipative coefficient
�inverse mobility�, H is the Hamiltonian, and g��t� models
the stochastic force arising from the rapid collisions of the
water molecules with the particle. The strength of this force
is set by g, and ��t� is a Gaussian white noise with zero
mean, ���t��=0, and variance ���t���t���=��t− t��, � corre-
lated in time. The first term on the right-hand side of Eq.
�2.1� describes a dissipative process. Thus, Eq. �2.1� can be
viewed as a balancing equation in which the first term drains
the energy of the particle while the random noise pumps it
back. Equation �2.1� neglects an inertial term that is impor-
tant only at short times, typically less than 10−7 s in soft-
matter systems �8�. Thus, Eq. �2.1� tacitly assumes that there
is a separation of time scales in which the time scale of the
fast processes reflecting microscopic degrees of freedom is
much shorter than the typical time scale for the random vari-

able x�t�. Hence the white noise assumption in Eq. �2.1�.
The Fokker-Planck equation �2–4�,

�tP�x,t� = �x��
�H
�x

+
1

2
g2�x�P�x,t� , �2.2�

which can be derived for the Langevin equation, for the
probability density P�x , t� that a particle is at position x at
time t, provides an alternative to the Langevin equation for
describing the motion of Brownian particles. It is easy to
see that Eq. �2.2� has a steady state solution Ps�x�
�exp�−� 2�

g2 �H�. If a particle is in equilibrium with a heat
bath at temperature T, then Ps�x��exp�−�H�, from which
we conclude that g2=2�kBT. If H=0, Eq. �2.2� reduces to a
diffusion equation with diffusion constant D=g2 /2. Hence,
for systems in equilibrium at temperature T, the diffusion
constant obeys the Einstein relation D=kBT�.

B. Extension to the case of a state-dependent
diffusion coefficient

How must the Langevin equation for a Brownian particle
be modified when the friction coefficient � depends on po-
sition x�t�, i.e., when � depends on the state of the system?
Although it is generally understood �2,10,18–21� that an
x-dependent � leads to an x-dependent g and thus to multi-
plicative noise g�x�t����t�, it is less well known that the re-
quirements of long-time thermal equilibrium require an ad-
ditional specific modification to the Langevin equation—the
addition of a convention-dependent drift term. Although
there are discussions in the literature of this drift term
�10,11,18,20�, they are not very detailed, and they generally
treat only a specific convention for dealing with multiplica-
tive noise. Here we show that constraints of equilibrium re-
quire a unique drift term with each noise convention, and
resolve any ambiguities �22� arising from the fact that mul-
tiplicative noise can be interpreted in many ways.

Using the argument that the stochastic force is balanced
by the dissipative term as in the case of a uniform dissipative
coefficient above, we may reasonably postulate a Langevin
equation, which trivially generalizes Eq. �2.1� to the case of
spatially varying dissipative coefficient, to take the following
form:

�tx = − ��x�
�H
�x

+ g�x���t� , �2.3�

where g�x�=	2kBT��x�. But we must first confront the issue
of interpreting the multiplicative noise g�x���t�, which by
itself is not defined �2,21�. This is because of the stochastic
nature of ��t�, which in general consists of a series of
�-function spikes of random sign. The value of g�x�t����t�
depends on whether g�x�t�� is to be evaluated before a given
spike, after it, or according to some other rule. It turns out, as
we will show shortly, that this naive generalization of Eq.
�2.1� to Eq. �2.3� is valid only for a particular interpretation
of the noise.

There are a number of approaches to assigning meaning
to the multiplicative noise, but they all boil down to provid-
ing rules for the evaluation of the integral
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J�t,�t� = 

t

t+�t

ds g�x�s����s� , �2.4�

in the limit of small �t. If g�x� and ��s� are both continuous
functions, this integral could, for arbitrary �t, be expressed
via the first integral mean-value theorem as

Jcont�t,�t� = g�x�ti��

t

t+�t

ds ��s� , �2.5�

where ti is a uniquely determined time in the interval �t , t
+�t�. In the limit of small �t, this expression, Eq. �2.5�,
reduces trivially to g�x�t����t��t, to lowest order in �t. The
noise ��s� is, however, not continuous and Eq. �2.5� with a
uniquely determined time does not apply. One can, however,
use Eq. �2.5� to motivate a definition of J�t ,�t� for a sto-
chastic ��s�. There are two commonly used conventions for
defining J�t ,�t�: the Stratonovich convention

JS�t� = g��x�t� + x�t + �t��/2�

t

t+�t

ds ��s� , �2.6�

in which g�x�t�� is evaluated at the midpoint of the interval
�x�t� ,x�t+�t��, and the Ito convention

JI�t� = g�x�t��

t

t+�t

ds ��s� , �2.7�

in which g�x�t�� is evaluated before any noise in the interval
�t , t+�t� occurs. We will use a generalized definition:

J��t,�t� = g��x�t + �t� + �1 − ��x�t��

t

t+�t

ds ��s� ,

�2.8�

which is parametrized by a continuous variable �� �0,1�,
that reduces to the Ito convention when �=0, to the Stra-
tonovich convention when �=1/2, and to the isothermal
convention of Ref. �11� when �=1.

We note in passing that, in the mathematics community,
the Ito calculus is most commonly used. Perhaps this is be-
cause of the conceptual simplicity arising from the property
that the noise increment 
t

t+�tds ��s� and x�t� are statistically
independent as implied in Eq. �2.7�, i.e., �g�x���t��=0 �23�.
On the other hand, in the physics community, the Stratonov-
ich interpretation is favored. In addition to the advantage that
it gives rise to the ordinary rules of calculus, the Stratonov-
ich convention also has a deeper physical origin. Since the
noise term in Eq. �2.3� models, in a coarse-grained sense, the
effects of microscopic degrees of freedom that have finite
�albeit short� correlation times, this term should be physi-
cally interpreted as the limit in which these correlation times
go to zero. By the Wong-Zakai theorem, this limit corre-
sponds to a white noise that must be interpreted using the
Stratonovich convention �23�. However, Eq. �2.3� does not
provide a correct description for systems in constact with a
thermal bath at temperature T for either interpretation: their
associated Fokker-Planck equations do not have long-time
thermal-equilibrium solutions.

To return to our main discussion, it is clear that J��t ,�t�
depends on the value of �. Integration of Eq. �2.3� yields

�x�t + �t� � x�t + �t� − x�t� = J��t,�t� , �2.9�

when H=0. The integral 
t
t+�tds ��s� is statistically of the

order of 	�t, implying that �x�t+�t� is also of the order of
	�t. Thus, �x�t+�t�+ �1−��x�t�=x�t�+��x�t+�t� has a
term of order 	�t proportional to �, and the order-�t term in
J��t ,�t� depends on �. An alternative approach to defining
J�t ,�t� is simply to expand g�x�s�� in the integrand as
g�x�s��=g�x�t��+ �x�s�−x�t��g��x�t��+¯. In this approach,
which we outline in Appendix A, ambiguities in the interpre-
tation of J�t ,�t� are resolved by specifying the value of the
Heaviside unit step function 	�t� at t=0. Setting 	�0�=� is
equivalent to using Eq. �2.8� for J�t ,�t�.

The stochastic integral J��t ,�t� depends on our conven-
tion for evaluating it, i.e., on �. Thus, different values of �
define different dynamics. But the requirements of thermal
equilibrium should imply a unique dynamics. What is miss-
ing? To resolve this dilemma, we consider the general sto-
chastic equation

�tx = f�x� + g�x���t� , �2.10�

where

f�x� = − ��x�
�H
�x

+ f1�x� , �2.11�

in which we leave f1�x� unspecified for the moment. Equa-
tion �2.10� is easily integrated using the rules we just out-
lined to yield

x�t + �t� − x�t� = 

t

t+�t

ds�f�x�s�� + g�x�s����s��

= f�x�t� + ��x��t + g�x�t� + ��x�




t

t+�t

ds ��s� , �2.12�

from which we obtain, to the first order in �t,

��x� = f�x0��t + �g�x0�g��x0��t , �2.13�

���x�2� = g2�x0��t , �2.14�

where we set x�t�=x0. Thus, there is a stochastic contribution
�gg��t to ��x� arising from the x dependence of g and de-
pending on the convention for evaluating J�t ,�t�. In equi-
librium, ��x� should be independent of �. Thus, it is appar-
ently necessary to include a contribution to f�x� depending
on �.

C. Derivation of the Fokker-Planck equation
and equilibrium conditions

To determine the appropriate form of f�x� and g�x� to
describe equilibrium systems with a spatially varying friction
coefficient ��x�, we derive the Fokker-Planck equation for
the probability density P�x , t�. The Fokker-Planck equation is
most easily derived using the identity
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P�x,t + �t� =
 dx0P�x,t + �t�x0t�P�x0t� , �2.15�

where P�x , t+�t �x0t� is the conditional probability distribu-
tion of x at time t+�t, given that it was x0 at time t. It is
defined by

P�x,t + �t�x0t� = ���x − x�t + �t���x0,t, �2.16�

where the average is over the random noise ��s�, and x�t
+�t� is determined by Eq. �2.12� with x�t�=x0. Taylor ex-
panding the conditional probability around x0 yields

P�x,t + �t�x0t� = ��x − x0� − ��x�
�

�x
��x − x0�

+
1

2
���x�2�

�2

�x2��x − x0� + ¯ .

Then, using this in Eq. �2.15�, we obtain

�tP�x,t� =
�

�x
�− f�x� − �g�x�g��x��P�x,t� +

1

2

�2

�x2 �g2�x�P�x,t��

�2.17�

=
�

�x
���x�

�H
�x

− f1�x� + �1 − ��g�x�g��x�

+
1

2
g2�x�

�

�x
�P�x,t� . �2.18�

For an equilibrium system, this equation must have a steady-
state solution with the canonical form

P�x,t� � e−H/�kBT� �2.19�

that is always approached at long times. Such a solution is
guaranteed if

g2�x� = 2kBT��x� , �2.20�

f1�x� = �1 − ��g�x�g��x� = 2�1 − ��kBT���x� . �2.21�

Thus, an additional drift term f1�x�, which depends on the
convention for evaluating J�t ,�t�, must be added to the
standard friction term −��x��xH in the equation for �tx in
order for the system to evolve to the Boltzmann distribution
at long times, i.e., be consistent with thermodynamics. Note
that f1�x� is proportional to the temperature T, indicating that
its origin arises from random fluctuations rather than from
forces identified with a potential. It is clear now from Eq.
�2.21� that if we insist on using the Langevin equation in the
form of Eq. �2.3�, we are forced to take �=1 �11�.

It is customary to express the Fokker-Planck equation in
terms of the diffusion constant rather then the friction coef-
ficient. From Eq. �2.14� for ���x�2�, we can identify g2�x�
with the short-time diffusion constant D�x�=2kBT��x�. With
this definition of D�x� and f1�x� given by Eq. �2.21�, the
Fokker-Planck equation becomes

�tP�x,t� =
�

�x
D�x���

�H
�x

+
�

�x
�P�x,t� , �2.22�

where �=1/ �kBT�. As required, this equation is independent
of �: different conventions now give the same equilibrium
condition, as they should. For a free particle diffusing in
spatially varying D�x�, H=0 and Eq. �2.22� becomes

�tP�x,t� =
�

�x
D�x�

�

�x
P�x,t� . �2.23�

This implies that the correct generalization of Fick’s law for
equilibrium systems with a spatially varying diffusion coef-
ficient is given by

J�x,t� = − D�x��xP�x,t� . �2.24�

Historically, the generalization of Fick’s law has long been
debated �24�. It is commonly acknowledged that Eq. �2.24� is
right even though many derivations of the right-hand side of
Eq. �2.24� seem not to be as transparent as the one given
above.

D. Experimental probes of D„x…

One interesting property of Eq. �2.22� is that it necessarily
has an eigenstate with eigenvalue zero and eigenfunction
given by the equilibrium distribution Peq�x��e−�H�x�. This
fact is exploited by Crocker and Grier �17� to measure di-
rectly the interaction between an isolated pair of colloidal
particles. In these experiments, the data from tracking the
motion of the particles are used to compute the conditional
probability P�x , t+�t �x�t�, which may be viewed as the
Green’s function or the inverse of the Fokker-Planck equa-
tion, Eq. �2.22�. The equilibrium distribution is then the so-
lution to

Peq�x� =
 dr�P�x,t + �t�x�,t�Peq�x�� , �2.25�

from which the interaction potential can be constructed via
U�x�=−kBT ln Peq�x�.

Since the conditional probability contains all the dynami-
cal information of the system, one could, in principle, char-
acterize how the system relaxes to equilibrium by extracting
the nonzero eigenvalues of Eq. �2.22�. In particular, the
Fokker-Planck equation describing a system with a state-
dependent diffusion coefficient would have eigenvalues and
eigenfunctions that are, in general, different from those of a
system with a uniform diffusion coefficient, even though the
two systems have the same Hamiltonian. Thus, in principle,
one could extract the Hamiltonian from image analysis fol-
lowing the procedures of Crocker and Grier �17�, and solve
Eq. �2.22� with uniform diffusion constant to obtain a set of
eigenvalues �probably numerically� and compare it with ex-
perimentally measured eigenvalues, which can be extracted
from the measured conditional probability. If they are differ-
ent, then the diffusion coefficient is state dependent, and one
needs to model the diffusion coefficient to understand the
dynamical behaviors of the system. We suggest this proce-
dure as a possible general method for experimentalists to
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explore the dynamics and measure the state-dependent fric-
tion coefficient in, for example, hydrodynamic interactions
between two spheres �25�, diffusion of particles in polymer
solutions �26�, and rods in a nematic environment �27�.

III. ILLUSTRATIVE EXAMPLES

In this section, we consider some exactly solvable toy
models to illustrate some central ideas presented in the last
section. In particular, we address the effects of spatial depen-
dence in the diffusion coefficient and use numerical solution
of the Langevin equation to show that the equilibrium distri-
bution is obtained only if f1�x�, Eq. �2.21�, is added to the
standard friction term.

A. Diffusion of a particle near a wall

How does a diffusion coefficient acquire a spatial depen-
dence? The simplest example is a Brownian particle diffus-
ing near a wall located at z=0. Brenner �28� has shown that,
for z�0, the diffusion coefficient acquires a spatial depen-
dence in which it is zero at the wall, rises linearly in z, and
approaches a uniform bulk value of D0 at large z as

D�z�
D0

= 1 −
9

8

a

z
+ ¯ . �3.1�

Note the long-range component of D�z� in Eq. �3.1�, which
reflects the long-ranged nature of the hydrodynamic interac-
tion. Recently, it has been pointed out that, in single-
molecule experiments, it is crucial to take the spatial depen-
dence in the diffusion coefficient properly into account �12�.

Rather than treating the system with the above D�z�, we
consider a toy model, which correctly describes diffusion
close to a wall, in which D�z�=�z. This diffusion coefficient
has another experimental realization: diffusion of a colloidal
particle bounded by two parallel walls, with one of the walls
slightly tilted �11�. Then, the diffusion coefficient acquires a
spatial dependence, approximately given by D�z��z, for the
motion of the particle parallel to the walls. In this case, the
Fokker-Planck equation becomes

�tP�z,t� = �
�

�z
z

�

�z
P�z,t� , �3.2�

which can be solved exactly. Let P�z , t�=�ncne−
nt�n�z�,
where 
n are a set of eigenvalues. With the transformation
y=	z, Eq. �3.2� can be written as

�n��y� +
1

y
�n��y� +

4
n

�
�n�y� = 0, �3.3�

whose solution is the Bessel function ��y�=J0�ky�, and
whose eigenvalues form a continuous spectrum given by 

=�k2 /4. The probability distribution as a function of time
can be written as

P�z,t� = 

0

�

dk c�k�e−�k2t/4J0�k	z� . �3.4�

The probability distribution for a particle at z=z0 at time t
=0 evolves as

P�z,t� =
1

�t
e−��z+z0�/��t��I0�2	zz0/��t�� . �3.5�

Unlike its counterpart for a uniform diffusion coefficient, this
probability distribution is non-Gaussian. It is straightforward
to calculate the moments

�z�t�� = z0 + �t ,

��z�t� − z0�2� = 2�t�z0 + �t� .

These behaviors are very different from those of a constant
diffusion. In particular, the mean-squared displacement ex-
hibits ballistic behavior. It is interesting to observe that the
second moment can be written as ��z�t�−z0�2�=2��z�t��t.
This suggests that in order to extract the diffusion coefficient
for this simple problem, we need to know not only the sec-
ond moment ��z�t�−z0�2�, but also the first moment �z�t��.
Only for short times does the second moment reduce to
��z�t�−z0�2��2�z0t=2D�z0�t, which is the formula com-
monly used to extract the diffusion coefficient. It is clearly
incorrect to use this formula for times greater than z0 /�. The
method we suggested at the end of the last section comple-
ments this approach. Note also that the �z�t��� t behavior has
been measured in Ref. �11�.

If the particle is subject to a constant force F, like gravity,
in the −z direction, then the Fokker-Planck equation is

�tP�z,t� = �
�

�z
z��F +

�

�z
�P�z,t� . �3.6�

This problem can also be solved exactly. Let P�z , t�
=e−�Fz�ncne−
nt�n�z�, we find that the eigenfunctions satisfy
the Laguerre equation

x�� + �1 − x��� +

n

��F
� = 0, �3.7�

with eigenvalues 
n=n��F. The eigenvalue spectrum is dis-
crete rather than continuous, as it is in the case of a constant
diffusion coefficient. If the particle is initially at z0, the dis-
tribution evolves as

P�z,t� =
�F

1 − e−��Ft exp − ��F�z + z0e−��Ft�
1 − e−��Ft �


 I0�2�F	z0ze−��Ft

1 − e−��Ft � . �3.8�

Note that, at t→�, this distribution reaches the equilibrium
distribution Peq�e−�Fz. The first two moments of z�t� are

�z�t�� = z0e−��Ft +
1

�F
�1 − e−��Ft� ,
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�z2�t�� = z0
2e−2��Ft +

4z0e−��Ft

�F
�1 − e−��Ft�

+
2

��F�2 �1 − e−��Ft�2. �3.9�

Note that, at long time, �z�t��=kBT /F as thermal equilibrium
dictates.

We numerically solve the Langevin equation correspond-
ing to this problem,

�tz�t� = � + ��Fz + 	2�z��t� , �3.10�

in the Ito convention �29�. Note that the first term in the
right-hand side arises from the additional drift f1�x� given by
Eq. �2.21�. The result for the stationary distribution is plotted
in Fig. 1. Obviously, it agrees with the equilibrium distribu-
tion Peq�e−�Fz.

B. Diffusion of a particle bounded by two parallel walls

Next, we consider the diffusion of a particle bounded by
two walls, which was studied experimentally in Ref. �30� and
more recently in Ref. �31�. We approximate the spatially
varying diffusion coefficient of this system by D�x�=D0�1
− �x /L�2�. The resulting Fokker-Planck equation is

�tP�x,t� = D0
�

�x
�1 − �x/L�2�

�

�x
P�x,t� , �3.11�

with boundary conditions that particles cannot penetrate the
walls, i.e., that the flux at both walls be zero:

J�x,t� = D0�1 − �x/L�2�
�

�x
P�x,t� = 0 at x = ± L .

�3.12�

Again, the solution to this problem differs considerably from
that with a spatially uniform diffusion coefficient. The spec-
trum is discrete rather than continuous, with eigenvalues 
n
=n�n+1�D /L2 �n=1,2 , . . . �, and the associated eigenfunc-
tions are Legendre polynomials rather than linear combina-
tions of plane waves. The first two moments of x�t� are

�x�t�� = x0e−2D0t/L2
,

�x�t�2� = x0
2e−6D0t/L2

+
L2

3
�1 − e−6D0t/L2

� . �3.13�

These moments again are different from those in the case in
which the diffusion is uniform.

We performed numerical simulation of the Langevin
equation,

�tx = − 2D0x/L2 + 	2D0�1 − x2/L2���t� , �3.14�

where the first term arises from the gg� term. In Fig. 2, we
plot the long time distribution �solid line� which is uniform,
as it should be. We also show the numerical results for the
case in which we did not add gg� �dotted line�. Clearly, we
get the wrong answer if we do not add the gg� term.

C. Diffusion constant: D„x…=D0„1+�x2
…

As a final example, let us consider a free particle diffusing
with D�x�=D0�1+�x2� in the bulk. The Fokker-Planck equa-
tion is given by

�tP�x,t� = D0
�

�x
�1 + �x2�

�

�x
P�x,t� . �3.15�

Multiplying both sides by x2 and integrating, we find

�t�x2�t�� = 2D0 + 6D0��x2�t�� , �3.16�

whose solution is

�x2�t�� =
1

3�
�exp�6D0�t� − 1� . �3.17�

Thus, the second moment grows exponentially with time;
this peculiar behavior illustrates the dramatic effects of
the noise in problems with a spatial-dependent diffusion
coefficient.

IV. PATH INTEGRAL FORMULATION

Path integral formalisms provide an alternative to the
Fokker-Planck and Langevin equations for the description of

1 2 3 4 5

0.2

0.4

0.6

0.8

1

βFz

P
(
z
)

FIG. 1. Stationary distribution for a particle diffusing in a dif-
fusion coefficient D�z�=�z subject to a constant force F=−Fẑ.
What is shown here is the numerical simulation of the Langevin
equation Eq. �3.10�; it is of the form e−�Fz, as expected.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1 P(x)

x/L

FIG. 2. Stationary distribution for a particle diffusing between
two walls with a diffusion coefficient D�x�=D0�1− �x /L�2�. The
solid line is the numerical simulation of the Langevin equation in
Eq. �3.14�, and the dotted line is the numerical simulation of the
Langevin equation without the extra gg� term.
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stochastic dynamics. They have the advantage that well-
established perturbative and nonperturbative field-theoretic
techniques �5,32� can be used to calculate the effects of non-
linearities. They also provide a convenient treatment of cor-
relation and response functions. The path integral for a state-
dependent dissipation coefficient has been derived
previously in either the Stratonovich or Ito convention
�5,22,33,34�. In this section, we derive the path integral for
the general � convention, use it along with the detailed bal-
ance, a condition that any thermal system must satisfy, to
give further insight into the additional drift term derived in
Sec. II C. We also discuss the equilibrium correlation and
response functions and prove the fluctuation-dissipative
theorem for a state-dependent diffusion coefficient. We then
set up perturbation theory for systems with a coordinate-
dependent friction coefficient.

The path integral is based on the statistics of a path x�t�.
We discretize the path into segments xi=x�ti� with t0� t1

� ¯ � tN−1� tf and �t� tn− tn−1 small. The joint probability
distribution P�xNtN ;xN−1tN−1 ; . . . ;x1t1 �x0t0� that x�t� takes on
values of x1 at time t1, x2 at time t2, and so on, given that it
has value of x0 at time t0, is then

P�xftf ;xN−1tN−1; . . . ;x1t1�x0t0� = ���xN − ��tN;x0,t0�� . . . ��x1

− ��t1;x0,t0��� ,

where the average is taken with respect to the noise and
��ti ;xi−1 , ti−1� is the solution to the Langevin equation, Eq.
�2.10�, for x�ti�, given that x�ti−1�=xi−1. Since the noise in Eq.
�2.10� is �-correlated in time, the noise in different time in-
tervals is not correlated, and xi depends only on xi−1. Thus,
we can write

P�xNtN; . . . ;x1t1�x0t0� = �
i=1

N

���xi − ��ti;xi−1,ti−1��� .

The function

P�xiti�xi−1ti−1� = ���xi − ��ti;xi−1,ti−1��� �4.1�

gives the conditional probability that the random variable
x�t� has the value xi at time ti given that it had a value xi−1 at
ti−1. Using Eq. �4.1� and the identity P�xt�=
dx�P�xt ;x�t��, it
is easy to see that

P�xiti�xi−2ti−2� =
 dxi−1P�xiti�xi−1ti−1�P�xi−1ti−1�xi−2ti−2� ,

�4.2�

P�xiti� =
 dxi−1P�xiti�xi−1ti−1�P�xi−1ti−1� . �4.3�

Equation �4.2� is the Chapman-Kolmogorov equation, which
defines a Markov process �2�, while Eq. �4.3� is just an iden-
tity, true for all stochastic processes. Note that a Markov
process is completely specified if we know P�xiti� and
P�xiti �xi−1ti−1�, but they are not arbitrary because they are
linked through Eqs. �4.2� and �4.3�. Using Eq. �4.2�, the con-
ditional probability for the particle to go from x0 at time t0 to
xf at time tf is

P�xftf�x0t0� =
 dxN−1 ¯
 dx1���xf − ��tf ;xN−1,tN−1��� ¯


���x1 − ��t1;x0,t0��� . �4.4�

This is the basic construct for the path integral. First, we
have to evaluate ���xi−��ti ;xi−1 , ti−1���. We discretize Eq.
�2.10� as follows:

xi = xi−1 + �tf i + gi

ti−1

ti

dt���t�� , �4.5�

where �t= ti− ti−1, f i= f��xi+ �1−��xi−1�, and gi=g��xi+ �1
−��xi−1�. We next introduce the function h�xi ,xi−1�:

h�xi,xi−1� =
xi − xi−1 − �tf i

gi
− 


ti−1

ti

dt���t�� , �4.6�

which vanishes when xi is the unique solution to Eq. �4.5�,
��ti ;xi−1 , ti−1�, i.e., h���ti ;xi−1 , ti−1� ,xi−1�=0. Using the prop-
erty of the � function

��h�xi,xi−1�� = � �h

�xi
�

xi=��ti�

−1

��xi − ��ti�� ,

and noting that ��h /�xi�xi=��ti�
−1 depends only on xi and xi−1,

which are set by the � function, and not explicitly on the
noise, we have

���h�xi,xi−1��� =�� �h

�xi
�

xi=��ti�

−1

��xi − ��ti���
= � �h

�xi
�−1

���xi − ��ti��� ,

since for any function q���ti��, �q���ti����xi−��ti���=q�xi�

���xi−��ti���. We can, therefore, write the conditional
probability as

P�xiti�xi−1ti−1� = ���xi − ��ti;xi−1,ti−1���

= � �h�xi,xi−1�
�xi

����h�xi,xi−1��� ,

with

�h

�xi
=

1

gi
�1 − ��tf i� − �

gi�

gi
�xi − xi−1 − �tf i�� ,

where the prime denotes the derivative. The average over
noise can be easily done with the aid of the Fourier repre-
sentation of the � function:

���h�xi,xi−1��� =
 dki

2�
e+ı�ki/gi��xi−xi−1−�tf i�


�exp�− ıki

ti−1

ti

dt���t����
=
 dki

2�
e+ı�ki/gi��xi−xi−1−�tf i�−ki

2
�t/2,
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where we have made use of the fact that 
ti−1

ti dt���t�� is a
zero-mean Gaussian random variable with variance �t. Put-
ting these results together, we can express P�xiti �xi−1ti−1� as

P�xiti�xi−1ti−1� =
 dki

2�gi
e+ı�ki/gi��xi−xi−1−�tf i�−ki

2
�t/2


�1 − ��tf i� − �
gi�

gi
�xi − xi−1 − �tf i�� .

�4.7�

Next, in order to derive the path integral, which is of the
form �e−S, we need to “exponentiate” the term in parenthe-
ses in Eq. �4.7� and keep all the terms that are of order of �t
in the exponential. However, we cannot simply exponentiate
the third term in the parentheses because this term contains
�xi�xi−xi−1, which is of the order of 	�t. This is noted in
Ref. �22�, where the author derives the path integral for the
Stratonovich convention, and circumvents this difficulty by
keeping the second-order term in �x in the exponential and
replacing this term with its average value. Although the final
expression is correct, that derivation might be inconsistent
with the concept of the path integral, since the derivation is
valid only in the mean-squared sense instead of for all paths,
as required by the path integral. Here, we provide an alter-
native derivation that is valid for each path. First, we note
that the last term in the parentheses can be written as

−
 dki

2�gi
��

gi�

gi
��xi − �tf i��e+ı�ki/gi���xi−�tf i�−ki

2
�t/2

= − �gi�
 dki

2�gi
e−ki

2
�t/2�− ı

�

�ki
�e+ı�ki/gi���xi−�tf i�

= + �gi�
 dki

2�gi
�ıki�t�e+ı�ki/gi���xi−�tf i�−ki

2
�t/2, �4.8�

where the last line is explicitly of order of �t and can, there-
fore, be exponentiated without incurring any error to the first
order in �t. Returning to the conditional probability, we have

P�xiti�xi−1ti−1� =
 dki

2�gi
e+ı�ki/gi���xi−�tf i�−ki

2
�t/2�1 − ��tf i�

+ ı��tkigi�� �4.9�

=
 dki

2�gi
e+ı�ki/gi���xi−�tf i+��tgigi��−ki

2
�t/2−��tf i�

�4.10�

=
1

	2��tgi

e−��t/2gi
2���xi/�t − f i + �gigi��2−��tf i�,

�4.11�

where the last line is valid to the first order in �t. It should
be noted that the Fokker-Planck equation, Eq. �2.17�, can
also be derived using Eq. �4.11� and the identity of Eq. �4.3�.
This is done in Sec. IV A. Returning to Eq. �4.4�, we have

P�xftf�x0t0� =
 dx1

	2��tg1

¯
 dxN−1

	2��tgN−1

1
	2��tgN


exp�− �
i

�t

2gi
2� xi − xi−1

�t
− f i + �gi�gi�2

− �
i

��tf i�� �4.12�

=

x0

xf

Dx exp�− 

t0

tf

dt� 1

2g�x�2 ��tx − f�x�

+ �g�x�g��x��2 + �f��x���
= 


x0

xf

Dx e−S, �4.13�

with Dx��i=1
N dxi /	2��tgi, and the action given by

S = 

t0

tf

dt� 1

2g�x�2 ��tx − f�x� + �g�x�g��x��2 + �f��x�� ,

�4.14�

where we have taken the formal limit by letting N→� and
�t→0. Note the extra terms in S coming from the Jacobian
��h /�xi�; they are needed in order to ensure that

dxfP�xftf �x0t0�=1. This can be demonstrated by explicit,
but tedious, calculation for general � �see Appendix B�.
From Eq. �4.14�, it is clear that the Ito convention with �
=0 is the simplest to deal with. Another particularly useful
form of the path integral is obtained using the Hubbard-
Stratonovich transformation, which linearizes the quadratic
term,

P�xftf�x0t0� =
 Dy

x0

xf

Dx exp − 

t0

tf

dt�g�x�2

2
y2�t� − ıy�t�


��tx − f�x� + �g�x�g��x�� + �f��x�� , �4.15�

where the measure now is 
Dy
x0

xfDx=
dyN /2�¯
�dy1 /
2��
dxN−1¯
dx1. This result could, of course, also have
been obtained directly by substituting ki�giyi in Eq. �4.10�
and taking the continuum limit. Note that, in the discretized
version of Eq. �4.15�, yn is associated with time tn

*=�tn+ �1
+��tn−1. This form of the path integral is closely related to
the Martin-Siggia-Rose �MSR� formalism �32� to calculate
the response and correlation functions. This will be explored
in Sec. IV B.

It is interesting to see how the additional drift tern f1�x� in
the Langevin equation �Eq. �2.11�� arises from the con-
straints that equilibrium statistical mechanics impose on the
path integral formulation �35�. Thermal systems must obey
detailed balance, which states that

P�xftf�x0t0�Peq�x0� = P�x0tf�xft0�Peq�xf� . �4.16�

The equilibrium distribution has the form Peq�x�
=exp− ��H�x��, and P�x0tf �xft0� is the conditional probabil-

A. W. C. LAU AND T. C. LUBENSKY PHYSICAL REVIEW E 76, 011123 �2007�

011123-8



ity for the reversed path, i.e., for x̄�t�=x�−t�. It turns out that
the Stratonovich convention is simplest for the discussion of
time-reversal properties not only because it obeys the ordi-
nary rule of differential calculus, but also because it has the
property that the forward and backward paths are evaluated
at the same points. We will employ the Stratonovich conven-
tion below. First, we note that

Peq�xf�
Peq�x0�

= exp − ��H�xf� − �H�x0��

= exp − �

t0

tf

dt��tx�
��H�x�

�x � , �4.17�

and that P�x0tf �xft0� can be obtained simply by noting that
the path associated with this distribution is the time-reversal
path of P�xftf �x0t0�, which can be written as

P�x0tf�xft0� =
 Dỹ

x0

xf

Dx exp�− 

t0

tf

dt�g2

2
ỹ2 + ıỹ��tx + f

−
1

2
gg�� +

1

2
f��� . �4.18�

Now, using Eqs. �4.16�–�4.18� and comparing them term by
term with the exponential in Eq. �4.15� �in the Stratonovich
convention �=1/2�, we see that

ıỹ�t� = − �ıy�t� +
��H�x�

�x
� , �4.19�

f�x� =
1

2
g�x�g��x� −

g2�x�
2

��H�x�
�x

. �4.20�

The first term in Eq. �4.20� is identical to Eq. �2.21� in the
Stratonovich interpretation. The second term is the standard
frictional term, from which we identify the dissipation coef-
ficient as ��x�=�g2�x� /2, which is the Einstein relation. This
derivation again demonstrates that equilibrium distribution is
the only physics needed to fix f�x� for a given stochastic
interpretation.

A. Derivation of the Fokker-Planck equation
from the path integral

In this section, we derive the Fokker-Planck equation di-
rectly from the conditional probability Eq. �4.11�, thereby
establishing the equivalence of the path integral formulation
and the Fokker-Planck equation for general �. Let us rewrite
the conditional probability, Eq. �4.10�, where we set x=xi, t
= ti, x�=xi−1, t�= ti−1, and ki�giyi:

P�xt�x�t�� =
 dyi

2�
e−�t��gi

2/2�yi
2−ıyi��xi/�t−f i+�gigi��+�f i��,

=
 dyi

2�
e−�tAi+ıyi�xi, �4.21�

where

Ai�xi,xi−1;yi� �
gi

2

2
yi

2 + ıyi�f i − �gigi�� + �f i�, �4.22�

�xi=x−x�, and �t= t− t�. Our aim is to calculate

P�x,t� =
 dx�P�xt�x�t��P�x�,t�� , �4.23�

to first order in �t. Expanding P�x� , t�,

P�x�,t�� = P�x − �xi,t��

= P�x,t�� − �xi
�

�x
P�x,t�� +

��xi�2

2

�2

�x2 P�x,t�� ,

and putting this back in Eq. �4.23�, we find that it can be cast
in the form

P�x,t� − P�x,t��
�t

= ��x�P�x,t�� + ��x�
�

�x
P�x,t��

+ ��x�
�2

�x2 P�x,t�� , �4.24�

where ��x�� lim�t→0�I0�x�−1� /�t, ��x��−lim�t→0I1�x� /
�t, and ��x�� lim�t→0I2�x� / �2�t�. The main task is to
evaluate integrals of the form

Im�x� � 
 dyi

2�

 d�xi��xi�mQ�x,�xi;yi�eiyi�x,

�4.25�

where

Q�x,�xi;yi� = e−�tAi�x,x�;yi�,

=��
k

��xi�k

k!

�k

��xi
kQ�x,�xi;yi��

�xi=0

, �4.26�

where in the last line, we have Taylor expanded the function
Q�x ,�xi ;yi�. It is easy to see that


 d�xi��xi�meiyi�xi = 2��− ı�m �m

�yi
m��yi� , �4.27�

and therefore

Im�x� = ��
k

�ı�k+m

k!

�m+k

�yi
m+kQ�k��x,0;yi��

yi=0

, �4.28�

where Q�k��x ,0 ;yi����kQ�x ,�xi ;y� /��xi
k��xi=0. Using Eq.

�4.28�, it is straightforward to compute Im�x� to the first or-
der in �t; we obtain

I0�x� = 1 − f��x��t + �1 − ����g��x��2 + g�x�g��x���t ,

�4.29�

I1�x� = �f�x� − �2 − ��g�x�g��x���t , �4.30�

I2�x� = g2�x��t , �4.31�

with vanishing higher-order terms, i.e., In�x�=0 for n�3.
Therefore, we have
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��x� = − f��x� + �1 − ���g��x�2 + g�x�g��x�� , �4.32�

��x� = − f�x� + �2 − ��g�x�g��x� , �4.33�

��x� =
1

2
g�x�2. �4.34�

This is equivalent to the Mori expansion �3�. It is clear that
with these coefficients Eq. �4.24� becomes Eq. �2.17�, the
Fokker-Planck equation.

B. Correlation, response functions,
and fluctuation-dissipation theorem

One of the advantages of the particular form of the path
integral in Eq. �4.15� is that correlation and response func-
tions can be computed conveniently from it. The average of
any functional O�x�t� ,y�t�� of x�t� and y�t� at fixed x0 is
given by

�O�x�t�,y�t���x0
=
 Dy


x0

Dx O�x�t�,y�t��e−S,

�4.35�

where ln�x� is the modified Bessel function. In particular, the
two-point correlation function is

�x�t1�x�t2��x0
=
 Dy


x0

Dx x�t1�x�t2�e−S, �4.36�

and the propagator function

G�t2,t1� � �x�t2��− ıy�t1���x0
=
 Dy


x0

Dx x�t2��− ıy�t1��e−S.

�4.37�

Physically, the propagator describes the response of the sys-
tem to a � perturbation. One of the nice features of the propa-
gator function, which is useful in perturbative expansions, is
that causality is automatically built in, i.e., G�t , t��=0 if t
� t�. To see this, we go back to the discretized form of the
path integral, and write G�t , t�� as

G�tm,tn� =
 dyN

2�
¯
 dy1

2�

 dxN ¯
 dx1


xm�− ıyn�exp�− �
i

�tAi + �
i

ıyi�xi� ,

�4.38�

where Ai�xi ,xi−1 ;yi� is defined in Eq. �4.22�. First, let us
consider tn� tm; each pair of the integrals 
�dyi /2��
dxi in
Eq. �4.38� gives 1 for i�n. When integrating over xn, we
make use of the identity


 dxnQ�xn−1,�xn;yn�e+ıyn�xn = �
k

�ı�kQ�k��xn−1,0,yn�
k!



�k

�yn
k ��yn� , �4.39�

which gives zero when integrating yn. Thus, we have shown
that �xm�−ıyn��x0

=0 for all n�m. Now, suppose m=n, one
can show that, using the above identity, �xn�−ıyn��x0

=1.
Clearly, �xm�−ıyn��x0

�0, if m�n. Thus, we have shown how
the path integral enforces causality, i.e., G�t , t��=0 if t� t�,
and G�t , t���0 if t� t�. However, there is a subtle point
about the value of G�t , t� in the continuum limit, which has
to be consistent with the � convention. The simplest way do
this is to note that, since yn is really associated with time at
tn
*=�tn+ �1−��tn−1, we have to evaluate

G�t,t� � �x�tn
*��− ıyn��x0

= ���xn + �1 − ��xn−1��− ıyn��x0
= � .

Now, we specialize to a system near equilibrium, and we
investigate how the path integral describes properties such as
the fluctuation-dissipation theorem. The equilibrium average
of any function O�x�t� ,y�t�� of x�t� and y�t� is defined as

�O�x�t�,y�t���eq =
 Dy
 Dx O�x�t�,y�t��e−SPeq�x0� .

�4.40�

Note that equilibrium averages are independent of �, pro-
vided that we add the additional drift f1�x�. When the system
is under a time-dependent physical force h�t�, the total
Hamiltonian is HT=H0�x�−x�t�h�t�, so that

f�x,t� = �1 − ��gg� − ��x�
�HT

�x

= f0�x� + ��x�h�t� ,

f0�x� = �1 − ��gg� − ��x�
�H0

�x
.

Therefore, we have

���x�t��
�h�t��

�
h�t�=0

=
1

2kBT
�x�t��− ıy�t��g�x�t���2��eq

−
�

kBT
�x�t�g�x�t���g��x�t����eq

� �xx�t,t�� . �4.41�

We observe that the response �xx�t , t�� to a physical forces
and the propagator G�t , t�� defined in Eq. �4.37� are different,
although they are proportional to each other for the case of
uniform diffusion constant. In particular, there is an addi-
tional term arising from the normalization factor f� in the
action and it is absent when the diffusion constant is spatially
uniform. By integration by parts, the first term in Eq. �4.41�
can be evaluated to be

�x�t��− ıy�t��g�x�t���2��eq = �x�t���t�x�t�� − f0�x�t���

+ �g�x�t���g��x�t�����eq.

Therefore, the physical response function is
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�xx�t,t�� =
1

2kBT
�x�t���t�x�t�� − B�x�t�����eq, �4.42�

where B�x��gg�−��x��H0 /�x. Note that the physical re-
sponse function is independent of �, as it should be; note
also that the drift proportional to gg� arises from a spatial
varying diffusion constant. To proceed further, we note that,
as a consequence of the detailed balance condition, Eq.
�4.16�, the equilibrium correlation function is symmetric
with respect to exchange of t↔ t�:

�O1�x�t��O2�x�t����eq = �O1�x�t���O2�x�t���eq.

Applying this to Eq. �4.42� and subtracting the results, we
have

��t − �t���x�t�x�t���eq = 2kBT��xx�t�,t� − �xx�t,t��� .

Since the correlation function is time-translation invariant,
we must have �t��x�t�x�t���eq=−�t�x�t�x�t���eq. Thus,

�t�x�t�x�t���eq = − kBT��xx�t,t�� − �xx�t�,t�� .

This is the fluctuation-dissipation theorem �FDT�. To put it in
a more traditional form, we note that �xx�t� , t�=0 when t
� t�, and we can write

�xx�t − t�� = −
1

kBT
�t�x�t�x�t���eq	�t − t�� ,

where 	�t� is the Heaviside unit step function. The Fourier
transform of the response function is given by

�x���x�− ���eq =
2kBT

�
Im �xx��� , �4.43�

which is of the form that is commonly quoted in the
literature.

C. Perturbation theory

One of the advantages of the path integral formulation of
stochastic dynamics is that it is by construction a field theory
that facilitates systematic perturbative calculation of correla-
tion functions. In particular, for systems with state-dependent
dissipative coefficients, the resulting Langevin equation is
generally nonlinear, and perturbation theory is a convenient
way to derive the mode-coupling theory �36�. Thus, in this
section, we set up the perturbation theory for a systematic
calculation of correlation and response functions in the de-
viation of the diffusion coefficient from spatial uniformity.
First, we need to set up the generating functional. Note that
Peq�x0� satisfies

Peq�x� =
 dxsP�xt�xsts�Peq�xs� , �4.44�

which implies that

Peq�x� = lim
ts→−�

P�xt�xsts� . �4.45�

Thus, the equilibrium averages can be written as

�O�x�t�,y�t���eq =
 Dy
 Dx O�x�t�,y�t��e−SPeq�x0�

=
 Dy
 Dx O�x�t�,y�t��e−S,

where, in the last line, the limit of the time integration in the
action S is extended to −� to �. This allows us to define the
generating function for equilibrium averages by

Z�F,F̃� =
 Dy
 Dx exp�− S +
 dt�x�t�F�t� − ıy�t�F̃�t��� .

�4.46�

The correlation functions and the propagator are simply
functional derivatives of Z. This sets up the MSR perturba-
tion scheme �32�, which allows the immediate application of
all of the powerful techniques of field theory, including the
renormalization group, to nonlinear stochastic problems. It is
customary to introduce the variables x̂�t��−iy�t�. Note that,
in the perturbation expansion, all the �-dependent terms can-
cel provided that we use �x�t�x̂�t��0=� �see Appendix C�.
Therefore, it is convenient to use �=0 at the outset.

As an informative model calculation, we explore the
problem in which a particle diffuses with D�x�=D0�1+�x2�
confined in a harmonic potential H=kx2 /2. If the confining
potential is turned off, this problem is exactly solvable, as
shown in Sec. III C. It can also be solved exactly when �
=0 but not when ��0, and a perturbative expansion in � is
useful. The goal of this exercise is to compute the propagator
�xx̂� and the correlation function �xx� separately and to check
that the fluctuation-dissipation theorem is satisfied. For sim-
plicity, we work in the Ito convention �see Appendix C for
general ��, and set kB=1. According to the formalism, we
have

f�x� = g�x�g��x� − ��x�
�H
�x

= − �0�k − 2�T�x − �0k�x3.

�4.47�

It should be pointed out that from Eq. �4.47� one might at
first sight conclude that there is a broken-symmetry state,
when k�2�T, with �x��0. But we know that this cannot
happen because the stationary distribution is in fact the Bolt-
zmann distribution. Therefore, one could get the wrong phys-
ics if one only looked at the “classical” trajectory, i.e., the
solution to �tx= f�x�, which maximizes the action S in the Ito
convention. This shows again the importance of noise in
these problems.

The unperturbed and perturbing actions are

S0 =
 dt�− D0x̂2 + x̂��tx + �0k�x�� , �4.48�

SI = �0�
 dt�kx3x̂ − Tx2x̂2� , �4.49�

where k��k−2�T. Introducing the state vector x�= �x̂ ,x�, we
can write S0 as

STATE-DEPENDENT DIFFUSION: THERMODYNAMIC… PHYSICAL REVIEW E 76, 011123 �2007�

011123-11



S0 =
1

2

 d�

2�
x����G��

−1 ���x��− �� , �4.50�

where

G��
0−1��� = � − 2D0 − ı� + �0k�

ı� + �0k� 0
� ,

and thus

G��
0 ��� =� 0

1

ı� + �0k�

1

− ı� + �0k�

2D0

�− ı� + �0k��2
� ,

from which we can read off the bare propagator and the
zeroth-order correlation function:

�x̂���x̂�����0 = 0,

�x̂���x�����0 =
1

ı� + �0k�
��� + ��� ,

�x���x̂�����0 =
1

− ı� + �0k�
��� + ��� ,

�x���x�����0 =
2D0

�− ı� + �0k��2
��� + ��� .

The interacting SI consists of two vertices that are depicted
in Fig. 3. To second order in �, the inverse of the propagator,
G−1���, can be written in frequency space as

G−1��� = − ı� + �0�k + �T� + ���� . �4.51�

The self-energies ���� are computed from the diagrams
listed in Fig. 4 and it is given by

���� = 6k��0��2�2TA��� − 3kB���� ,

where

A��� =
 d�1

2�

 d�2

2�
G0�� − �1 − �2�G0��1�C0��2� ,

B��� =
 d�1

2�

 d�2

2�
G0�� − �1 − �2�C0��1�C0��2� ,

where C0���= �x���x�−���0 is the zero-order correlation
function. After some algebra, we obtain

G−1��� = − ı� + �0k�1 + �T/k − 6��T/k�2���/�0k�� ,

where ��s���−ıs+3�−1.
Next, we turn to the correlation function C�t , t��

= �x�t�x�t���, which can be written in the form C���
=2D����G����2, with D��� computed from diagrams listed
in Fig. 5 and it is given by

D��� = D0�1 +
�T

k
� + k�0

2�2�3kE��� − 8TH���� ,

E��� =
 d�1

2�

 d�2

2�
C0�� − �1 − �2�C0��1�C0��2� ,

H��� =
 d�1

2�

 d�2

2�
C0��1�C0��2��G0�� − �1 − �2�

+ G0��1 + �2 − ��� .

After some algebra, we find

D��� = 2D0�1 + ��T/k� − 6��T/k�2 Re ���/�0k�� ,

and we evaluate the correlation function

C�t,0� =
T

k
�3�2 − �1�1 + �T/k�

�2
2 − �1

2 �e−�1t

+
T

k
��2�1 + �T/k� − 3�1

�2
2 − �1

2 �e−�2t, �4.52�

with decay rates

�1 �
�0k

2
�4 + �T/k − 	4 − 4�T/k + 25��T/k�2� ,

��0k�1 + �T/k − 3��T/k�2� for �T/k � 1,

FIG. 3. The two vertices corresponding to Eq. �4.49� for a par-
ticle diffusing in a spatially varying diffusion coefficient given by
D�x�=D0�1+�x2�, and confined in a harmonic potential.

(b)(a)

(c) (d)

FIG. 4. Diagrams that contribute to the self-energy ����. Note
that diagram �d� is identically zero.

(b)(a)

(c) (d)

FIG. 5. Diagrams that contribute to the noise D���.

A. W. C. LAU AND T. C. LUBENSKY PHYSICAL REVIEW E 76, 011123 �2007�

011123-12



�2 �
�0k

2
�4 + �T/k + 	4 − 4�T/k + 25��T/k�2� ,

�3�0k�1 + ��T/k�2� for �T/k � 1.

Note that there are now two decaying modes with a fast
mode �2 and a slow mode �1 in the system, in contrast to the
case with uniform diffusion. Note also that �x2�0��=T /k, as it
should be. If we did not put in the extra drift term gg� in
f�x�, this relation would not hold. In fact, it would have been
�x2�0��=T / �k−�T�, which violates the equipartition theorem.
This is yet another demonstration that this extra drift term
gg� is needed to ensure the correct thermodynamic proper-
ties. In Fig. 6, we plot the correlation function in Eq. �4.52�
and the numerical simulation of the Langevin equation de-
scribing this system for �T /k=0.15. Clearly, the second-
order perturbation theory agrees very well with the simula-
tion. Note, however, that when �T /k�1, �1 becomes
negative, signaling the breakdown of perturbation theory.

Finally, we demonstrate the FDT to second order in per-
turbation theory. The physical response function is given by

�xx�t,t�� = �0�x�t�x̂�t���1 + �x2�t���e−SI�0

= �0G�t,t�� + �0�G0�t,t��C0�0�

− �0��x�t�x̂�t��x2�t��SI�0,

which corresponds to the diagrams in Fig. 7. We find

�xx��� = �0G����1 + �T/k − 6��T/k�2���/�0k�� .

�4.53�

Note that this clearly shows that the physical response func-
tion and the propagator are different. Taking the imaginary
part of Eq. �4.53�, it can be easily verified that the
fluctuation-dissipation theorem Eq. �4.43� is indeed satisfied
to second order in perturbation theory.

V. N-COMPONENT LANGEVIN EQUATION

Many physical problems involve more than one variable,
and some of the issues we have addressed so far may not
apply to higher-dimensional systems. For example, the drift
term f�x� in one dimension �1D� can always be written as a
derivative of another function, i.e., 1D systems are conserva-
tive; however, for higher-dimensional systems, this may not
be true. A complete analysis of higher-dimensional systems
requires a separate publication. Here, we briefly discuss the
Fokker-Planck equation and the path integral in the � con-
vention for a multidimensional Langevin equation of the
form

�txi = f i�x1, . . . ,xN� + gij�x1, . . . ,xN�� j�t� , �5.1�

where �i�t� are the noises, with zero mean and correlation
given by

��i�t�� j�t��� = �ij��t − t�� . �5.2�

In Eq. �5.1� and the following, Einstein summation is as-
sumed. We focus on the case where the system is near ther-
mal equilibrium and address, as we did in the 1D case, how
the Boltzmann distribution determines the form of f i and gij
in the � convention. The Fokker-Planck equation corre-
sponding to Eq. �5.1� can be derived following the same
procedure as outlined in Sec. II C. In the � convention, we
find

�P
�t

=
�

�xi
�− � f i + �

�gil

�xk
gkl�P +

1

2

�

�xj
�gilgjlP�� , �5.3�

where P��x� , t� is the joint probability distribution of xi at
time t. If there are only dissipative terms and no reactive
terms in f i, the constraint that P reach a long-time state of
thermal equilibrium value proportional to exp−�H requires
that

f i��x�� =
1

2

�

�xj
�gikgjk� − �

�gij

�xl
glj −

1

2
�gikgjk

�H
�xj

, �5.4�

in order that Eq. �5.3� reduce to

�P
�t

=
�

�xi
�1

2
gilgjl���

�H
�xj

P +
�P
�xj

� , �5.5�

with the steady state solution P�exp−�H.

0.5 1 1.5 2 2.5 3

0.05

0.1

0.2

0.5

1
C
(
t
,
0
)
*
k
/
T

Γ kt0

FIG. 6. Correlation function of x, C�t ,0�, as a function of t for
�T /k=0.15. The solid line represents C�t ,0� as given by Eq. �4.52�,
which is calculated from the perturbation theory to second order in
�T /k. The data points are obtained from numerical simulation of
the corresponding Langevin equation. Clearly, the result from the
perturbation theory agrees excellently with the simulation. The
dashed line represents the bare �zeroth-order� correlation function,
which has a decaying rate that is different from the case of a spa-
tially varying dissipative coefficient.

(b)(a)

(c) (d)

(e)

FIG. 7. Diagrams that contribute to the physical response func-
tion �xx���.
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The diffusion matrix is defined as

Dij��x�� =
1

2
gilgjl = kBT�ij��x�� , �5.6�

where �ij��x�� is the matrix of dissipative coefficients. Thus,

f i��x�� =
�Dij��x��

�xj
− �

�gij

�xl
glj − �ij��x��

�H
�xj

. �5.7�

Note that, since the diffusion matrix Dij��x�� is symmetric
with respect to i↔ j, it has only N�N+1� /2 independent en-
tries, and we may impose N2−N�N+1� /2=N�N−1� /2 con-
straints on gij��x�� without sacrificing the physical content.
We could, for example chose gij to be symmetric, in which
case it is simply the square root of kBT�ij.

To derive the path integral, we first discretize Eq. �5.1� as

xi
�n� = xi

�n−1� + �tf i
�n� + gij

�n�

tn−1

tn

ds � j�s� , �5.8�

and introduce

hi��xk
�n��,�xk

�n−1��� � �g�n��ij
−1�xj

�n� − xj
�n−1� − �tf j

�n��

− 

tn−1

tn

ds �i�s� , �5.9�

where f i
�n�= f i���xi

�n�+ �1−��xi
�n−1��� and gij

�n�=gij���xi
�n�+ �1

−��xi
�n−1���. Following the basic steps as outlined in Sec. IV,

we can write the conditional probability as

P��xk
�n��tn��xk

�n−1��tn−1� = det� �hi

�xk
�n��


��
i=1

N

��hi��xk
�n��,�xk

�n−1����� .

�5.10�

Taking the derivative of hi explicitly, we find

�hi

�xk
�n� = gil

−1��lk − Mlk� ,

where we have defined the matrix Mlk by

Mlk � ��t
�f l

�xk
+ �

�glm

�xk
gij

−1�xj
�n� − xj

�n−1� − �tf j
�n�� .

�5.11�

Using the identity det X̂=exp TrX̂, the determinant can be
evaluated to give

det� �hi

�xk
�n�� =

1

det gij
�1 − Mll +

1

2
�MllMkk − MlkMkl�

+ ¯ � . �5.12�

Therefore, the conditional probability can be written as

P��xk
�n��tn��xk

�n−1��tn−1� = �
i=1

N 
 dki

2� det gij
�1 − Mll

+
1

2
�MllMkk − MlkMkl��


eıkigij
−1��xj−�tf j�−ki

2
�t/2, �5.13�

where we have only kept terms up to order �t. Following a
procedure similar to that leading to Eq. �4.11� for the 1D
case, we find

P��xk
�n��tn��xk

�n−1��tn−1� = �
i=1

N 
 dki

2� det gij
�1 − ��t�l f l + �ıkm�lglm�t +

�2

2
�t��kglm�lgkm − �lglm�kgkm��eıkigij

−1��xj−�tf j�−ki
2
�t/2,

=
 dyk

2�
e+ıyk��xk−fk�t+�gkj�lglj�t�−glkgkjylyj/2−��t�lf l−��2/2���kglm�lgkm−�lglm�kgkm��t, �5.14�

where, in the last line, we have exponentiated the terms in the parentheses and substituted yi=gijkj. In the continuum limit, we
have

P��xk
�f��tf��xk

�0��t0� = 

xk

�0�

xk
�f�

Dxk
 Dyke
−S,

S =
 dt�1

2
glkgjkylyj − ıyk��txk − fk + �gkj�lglj� + ��l f l +

�2

2
��kglm�lgkm − �lglm�kgkm�� . �5.15�
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Note that there is an extra term proportional to �2. This
term is identically zero for a 1D system. If we start with Eq.
�5.14� and follow the procedure as outlined in Sec. IV A, we
can show that the path integral is equivalent to the Fokker-
Planck equation in Eq. �5.3�.

VI. CONCLUSION

In this paper, we have examined a thermodynamically
consistent Langevin formulation of the Brownian motion
with a diffusion coefficient that depends on space. We argue,
in particular, that the requirement that the Boltzmann distri-
bution be reached in equilibrium determines the interpreta-
tion of stochastic integrals arising from multiplicative noise
in the Langevin equation. We hope that this paper clarifies
some of the confusion over these stochastic issues that have
persisted for some time. We have also constructed path inte-
gral representations of the Langevin equations with multipli-
cative noise, and we used this representation as a starting
point for the development of a systematic perturbation
theory. Such a formulation can be employed to treat nonlin-
ear stochastic equations arising from a variety of problems.
Future work includes generalizing this formulism to “fields”
and examines how state-dependent dissipative coefficients
may give rise to long-time tails and corrections to scaling in
dynamic critical phenomena. Of course, one of the most in-
teresting open questions is whether there is an equivalent
criterion for systems that are driven far from equilibrium.
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APPENDIX A: CONNECTION BETWEEN � and �„0…

In this appendix, we outline the connection between �
and the Heaviside unit step function 	�t� evaluated at t=0.
For simplicity, we set f�x�=0 in Eq. �2.10�:

�tx = g�x���t� . �A1�

Using the �-convention rule Eq. �2.8�, we have for �x�t�
�x�t+�t�−x�t�

�x�t� = g�x�t� + ��x�

t

t+�t

ds ��s�

= g�x�t��

t

t+�t

ds ��s� + �g��x�t���x�t�

t

t+�t

ds ��s�

+ ¯

= g�x�t��

t

t+�t

ds ��s�

+ �gg�

t

t+�t

ds

t

t+�t

ds���s���s�� + ¯ .

Therefore, the average �x�t� over the noise is

��x�t�� = �gg�

t

t+�t

ds

t

t+�t

ds���s − s�� . �A2�

The integral



−�

t

ds���s − s�� = �0, s � t

1, s � t
� �A3�

=	�t − s� �A4�

defines the Heaviside unit step function 	�t�, and Eq. �A2�
becomes

��x�t�� = �gg�

t

t+�t

ds�	�t + �t − s� − 	�t − s�� = �gg��t .

�A5�

On the other hand, we can directly integrate Eq. �A1� to
obtain

�x�t� = 

t

t+�t

dsg�x�s����s� . �A6�

Expanding g�x�s�� as

g�x�s�� = g�x�t� + �x�s�� = g�x�t�� + g��x�t���x�s� + ¯ ,

�A7�

we find

�x�t� = g

t

t+�t

��s� + gg�

t

t+�t

ds

t

s

ds���s���s�� .

�A8�

Note that the upper limit of integration for s� is different
from that in Eq. �A2�. Therefore, we find

��x�t�� = 	�0�gg��t . �A9�

Comparing this with Eq. �A5�, we conclude that 	�0�=�.

APPENDIX B: EQUIVALENCE BETWEEN EQ. (4.7)
AND EQ. (4.11)

In this appendix, we demonstrate that the conditional
probability given in Eq. �4.7� and its exponentiated form Eq.
�4.11� are indeed equivalent. Note that the latter expression
involves a subtle step which is required for the construction
of the path integral in Sec. IV. Therefore, it is crucial to
confirm that Eq. �4.11� is correct at least to order of �t. We
have already checked that the correct Fokker-Planck equa-
tion, Eq. �2.17�, can be derived from Eq. �4.11� in Sec. IV A.
Here, we check that the normalization condition


 dxiP�xiti�xi−1ti−1� = 1 �B1�

for general � is satisfied by Eq. �4.11�. First, let us check that
Eq. �B1� is true for Eq. �4.7�. For simplicity, we set f�x�=0.
We have
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 dxiP�xiti�xi−1ti−1� =
 d�xi

	2��tgi

e−��t/2gi
2���xi/�t�2�1 − �

gi�

gi
�xi� =
 dw

	2�gi

�1 − �
gi�

gi

	�tw�e−w2/2gi
2
, �B2�

where we have made a change of variable: �xi=	�tw. Remembering that gi=g�xi−1+�	�tw� and expanding them in Eq. �B2�
in powers of �t, we have


 dxiP�xiti�xi−1ti−1� =
 dw
	2�g

e−w2/2g2�1 −
2�g�

g
	�tw + �3�2g�2

g2 −
3�2g�

2g
��tw2 +

�g�

g3
	�tw3 + ��2g�

2g3 −
7�2g�2

2g4 �w4

+
�2g�2

2g6 �tw6 + ¯ � �B3�

=1 + O��t3/2� , �B4�

where g�g�xi−1�. Thus, Eq. �4.7� indeed satisfies the normalization condition, which is hardly surprising since it must be true
by construction. Now, let us check the exponentiated from, Eq. �4.11�. We have


 dxiP�xiti�xi−1ti−1� =
 d�xi

	2��tgi

e−��t/2gi
2���xi/�t + �gigi��2

=
 dw
	2�gi

e−��t/2gi
2��w/	�t + �gigi��2

=
 dw
	2�g

e−w2/2g2�1 −
1

2
�2g�2

−
2�g�

g
	�tw + �7�2g�2

2g2 −
3�2g�

2g
��tw2 +

�g�

g3
	�tw3 + ��2g�

2g3 −
7�2g�2

2g4 �w4 +
�2g�2

2g6 �tw6 + ¯ �
�B5�

=1 + O��t3/2� . �B6�

Thus, Eq. �4.11� also satisfies the normalization condition.
We note in passing that, although the expansions Eqs. �B3�
and �B5� are different, they both give one the lowest order,
and the next-order term is of the order �t3/2.

APPENDIX C: �-DEPENDENT PERTURBATION THEORY
FOR THE MODEL SYSTEM WITH D„x…=D0„1+�x2

…

In this appendix, we carry out a first-order perturbation
calculation for general � of the model system studied in Sec.
IV C in which D�x�=D0�1+�x2�, in order to clarify some
subtle issues associated with the � convention. It is straight-
forward to work out the action in Eq. �4.15�. Up to an irrel-
evant constant, we have

S0 =
 dt�− D0x̂2 + x̂��tx + �0kx��

SI = �0�
 dt�2�2� − 1�xx̂ +
k

T
x3x̂ − x2x̂2 − 3�

k

T
x2� .

Note that there are more diagrams to evaluate than there are
for �=0. Consider first the propagator G�t , t��= �x�t�x̂�t���,

which can be written as G−1���=G0
−1���+����, where the

diagrams for the self-energy are displayed in Fig. 8. Note
that the closed loop diagram �c� in Fig. 8 contains G0�t=0�,
which must be set to � as explained in Sec. IV B. We find

���� = 2�2� − 1�D0� + 3D0� − 4D0�G0�0� = D0� ,

which agrees with the calculation for �=0. Note that the
final result is independent of �, as it should be. To first order,
the noise D��� renormalizes exactly the same way as in the
�=0 calculation. However, the physical response function is
different. It is given by Eq. �4.41� with an extra �-dependent
term:

�xx�t,t�� = �0�x�t�x̂�t���1 + �x2�t���e−SI�0

−
�

T
�x�t��2�D0x�t���e−SI�0

= �0�1 +
�T

k
�G�t,t�� + 2��0�C0�t,t��

− 2��0�C0�t,t�� + O��2�

= �0�1 +
�T

k
�G�t,t�� .

Without the cancellation of the �-dependent terms, �xx�t , t��
would not have been causal.

(b)(a) (c)

FIG. 8. Diagrams that contribute to the self-energy ����.
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