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Learning and Asset-Price Jumps

Abstract

We develop a general equilibrium model in which income and dividends
are smooth, but asset prices are subject to large moves (jumps). A promi-
nent feature of the model is that the optimal decision of investors to learn the
unobserved state triggers large asset-price jumps. We show that the learning
choice is critically determined by preference parameters and the conditional
volatility of income process. An important prediction of the model is that the
conditional volatility of income predicts future jump periods, while the level of
income growth does not. We find that indeed in the data large moves in returns
are predicted by consumption volatility, but not by the changes in consumption
level. We show that the model can quantitatively capture these novel features
of the data.



1 Introduction

A prominent feature of financial markets is infrequent but large price movements
(jumps).1 In this paper, we develop a model in which income and dividends have
smooth Gaussian dynamics, however, asset prices are subject to large infrequent
jumps. In our model, large moves in asset prices obtain from the actions of the
representative agent to acquire more information about the unobserved state of the
economy for a cost. We show that the optimal decision to incur a cost and learn
the true economic state is directly related to the level of uncertainty in the economy.
This implies that aggregate economic volatility, as well as market volatility, should
predict jumps in returns. We show that indeed in the data, consistent with the model,
return jumps are predicted by consumption volatility (market volatility). Further, the
implied asset-price implications from our model are consistent with the key findings
from parametric models about frequency and predictability of jumps as discussed
in Singleton (2006) as well as nonparametric jump-detection analysis of Barndorff-
Nielsen and Shephard (2006). Based on our evidence, we argue that our structural
model provides an economic basis for realistic reduced-form models of stock price
dynamics with time-varying volatility and jumps.

We rely on the long-run risks model of Bansal and Yaron (2004), which key in-
gredients are a small and persistent low-frequency expected growth component, time-
varying income volatility, and recursive utility of Epstein and Zin (1989) and Weil
(1989). The expected growth is unobserved and has to be estimated from the history
of the data; in addition, the representative agent also has an option to incur a cost
and learn the true economic state. This setup is designed to capture the intuition that
some of the key aspects of the economy are not directly observable, but the agents
can learn more about them through additional costly exploration. We show that the
optimal decision to pay a cost and observe the true state endogenously depends on
the aggregate volatility, the variance of the filtering error and agent’s preferences. In
particular, with preference for early resolution of uncertainty, the optimal frequency
of learning about the true state after incurring a cost increases when the income
volatility rises. On the other hand, with expected utility, the agent has no incentive
to learn the true state even if costs are zero. Learning about the true state may lead to
large revisions in expectations about future income, which translate into large moves
in equilibrium asset prices. These large moves in asset prices obtain even though
the underlying income and dividends in the economy are smooth and have no jumps.
Such asset-price moves, we show, do not occur in economies where an option to learn
about the true expected growth for a cost is absent.

1 Jump-diffusion models are considered in Merton (1976), Naik and Lee (1990), Bates (1991),
Bakshi, Cao, and Chen (1997), Pan (2002), Eraker, Johannes, and Polson (2003), Eraker (2004),
Liu, Pan, and Wang (2005), Broadie, Chernov, and Johannes (2007). For a high-frequency analysis
of intra-day data, refer also to Barndorff-Nielsen and Shephard (2006) and Andersen, Bollerslev,
Diebold, and Vega (2003).
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The learning mechanisms in our paper complement Van Nieuwerburgh and Veld-
kamp (2006) and Veldkamp (2006b). In these models, the information of the agent is
endogenous and varies with the underlying state in the economy. In particular, the
impact of bad news can be endogenously very large in good times when the informa-
tion is abundant, so that asset prices fall precipitously and a sudden crash occurs. In
a similar vein, in our model the endogenous actions of investors to obtain additional
information about the underlying state lead to discrete changes in their expectations
of future growth and consequently, large moves in the financial markets.

We solve the model from the perspective of the social planner, who optimally allo-
cates social resources for an acquisition of costly information. As argued in Grossman
and Stiglitz (1980), this setup may be difficult to decentralize in the presence of costly
information acquisition. However, Veldkamp (2006a) presents a model which moti-
vates the market price implications of a decentralized model with costly information
acquisition. Veldkamp (2006a) allows the investors to hire a third party to acquire
information on their behalf. The third party pays a fixed cost, determined endoge-
nously in equilibrium, and shares the information to its clients. She shows that as
more investors decide to purchase information, the per-investor cost of being informed
declines in equilibrium, therefore, in many cases, most investors would get informed.
The implications of this equilibrium are very similar to those of the representative
agent setup with costly information acquisition featured in our paper.

One of the key implications of our model is that the income volatility predicts
future large moves in returns. We provide empirical support that large moves in the
stock market can be predicted by the volatility measures in the economy. Specifi-
cally, we document a positive correlation of the return jump indicator with lags of
conditional variance of consumption. On an annual frequency, the volatility of annual
consumption significantly predicts large moves in next-year market returns with an
R2 of 9%, which we show using two alternative measures of consumption volatility,
including the usual GARCH model. Further, in the data there is no evidence for
predictability of large moves in returns by the levels of the real aggregate variables.
We show that the model can match both of these novel and important data features.
Earlier evidence in Bates (2000), Pan (2002) and Eraker (2004) documents that mar-
ket volatility also predicts jumps. In our structural model, the market variance is
related to aggregate income volatility, which consequently enables us to match this
data feature as well and provide an economic motivation for this empirical finding.

Our target is to match the key evidence on frequency, magnitude and predictability
of jumps in the data. In the data we identify 25 years with at least one significant
price move (i.e. jump) in daily returns for the 80 year period from 1926 to 2008; hence,
the frequency of jump-years is once every 3.3 years.2 In our sample, we find that the

2This provides a conservative estimate for the frequency of return jumps in the data, as there
can be more than 1 jump in daily returns in a given year.
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relative contribution of jumps to the total return variance is 7.5%, which is consistent
with the evidence in Huang and Tauchen (2005) and other studies. We calibrate the
model to match these dimensions along with other key asset-market facts. We use
standard calibrations of income and preference parameters, while our calibration of
learning costs is similar to observation and transactions costs in Abel, Eberly, and
Panageas (2007).3 We show that at the calibrated value of learning cost parameter,
investors optimally choose to observe the true state about once every one and a half
years. The expenditure on costly learning is 8.5% of the daily income; hence, the
per annum expenditure on costly learning is about 0.03% of the aggregate income.
Our model generates the mean market return of 6.4%, the volatility of returns of
15.5%, and the model-implied risk-free rate is 1%. Hence, our model can account for
the usual equity premium and risk-free rate puzzles in the data. Further, the model
with constant aggregate volatility delivers the average frequency of jump-years once
every 4.8 years, and the contribution of jumps to return variance of 7.2%. When
we allow for time-varying aggregate volatility, the average frequency of jump-years
increases to once every 3.4 years, while the relative contribution of jumps to 12%. In
standard models with no option to learn the true state for a cost, asset prices do no
exhibit jumps. Further, we show that the model with costly learning delivers positive
and significant correlation of the large return move indicator with endowment and
return variances and zero correlation with endowment growth. The magnitudes of
the correlation coefficients are comparable to the data.

A contribution of our paper is to develop an equilibrium asset-pricing model where
financial markets display jumps even though the underlying economic input (endow-
ment growth) is smooth. In the standard full-information long-run risks model of
Bansal and Yaron (2004), there are no discrete changes in the economy and asset
prices do not exhibit jumps. Croce, Lettau, and Ludvigson (2010) consider a similar
long-run risks setup where the investors can learn from the history of the data only,
i.e. no costly learning. David (1997), Veronesi (1999), Hansen and Sargent (2010),
and Ai (2010) consider learning models in which the agents learn about unobserved
state variables. It is worth noting that learning considered in these models does not
generate jumps in returns. An alternative approach for motivating asset-price jumps
is entertained in Eraker and Shaliastovich (2008), Drechsler and Yaron (2010), Liu
et al. (2005), Barro (2006), Drechsler (2010) via exogenous jumps in the underlying
income process. In these models, asset-price jumps are due to large shifts or disas-
ters in macroeconomic fundamentals. However, our empirical evidence suggests that
many asset-price jumps do not coincide with any tangible economic disasters. Con-
sistent with this evidence, in our model asset price jumps are not linked to economic

3In the context of rational inattention literature, Sims (2003) feature similar adjustments costs
related to information-processing constraint. Costs of acquiring, absorbing and processing informa-
tion are also used to explain infrequent adjustments of stock portfolio ( Duffie and Sun, 1990) or the
consumption and saving plans of investors ( Reis, 2006).
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disasters. We view our approach as complementing the literature which motivates
asset-price jumps by macroeconomic jumps/disasters.

The rest of the paper is organized as follows. In the next section we review the
empirical evidence on large moves in asset prices in the data. In Section 3 we set up
a model and describe preferences, information structure and income dynamics in the
economy. In Section 4 we characterize solutions to the optimal learning policy and
equilibrium asset valuations. Finally, in Section 5 we use numerical calibrations to
quantify model implications for asset-price jumps. Conclusion and Appendix follow.

2 Evidence on Asset Price Jumps

Empirical evidence suggests that asset prices display infrequent large movements
which are too big to be Gaussian shocks. In the first panel of Figure 1 we plot
the time series of daily inflation-adjusted returns on a broad market index for the
period of 1926-2008.4 Occasional large spikes in the series suggest the presence of
large moves (jumps). Consistent with this evidence, the kurtosis of market returns is
21, relative to 3 for Normal distribution, as shown in the first panel of Table 1.

For further evidence on large movements in asset prices, we apply non-parametric
jump-detection methods (see Barndorff-Nielsen and Shephard, 2006), used in a stream
of papers in financial econometrics. This approach allows us to identify years with
one or more large price moves in daily returns.

Let RT stand for a total return from time T − 1 to T, and denote RT,j the jth
intra-period return from T − 1 + (j − 1)/M to T − 1 + j/M, for j = 1, 2, . . . ,M. The
two common measures which capture the variation in returns over the period are the
Realized Variation, given by the sum of squared intra-period returns,

RVT =

M∑

j=1

R2
T,j (2.1)

and the Bipower Variation, which is defined as the sum of the cross-products of the
current absolute return and its lag:

BVT =
π

2

(
M

M − 1

) M∑

j=2

|RT,j−1||RT,j|. (2.2)

4We prorate monthly inflation rate to daily frequency to obtain inflation-adjusted returns from
nominal ones. The results for the nominal returns are very similar.
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When the underlying asset-price dynamics is a general jump-diffusion process, for
finely sampled intra-period returns the Realized Variation RVT measures the total
variation coming both from Gaussian and jump components of the price, while the
Bipower Variation BVT captures the contribution of a smooth Gaussian component
only (see, e.g. Barndorff-Nielsen and Shephard, 2006).5 Hence, these two measures
reveal the magnitudes of smooth and jump components in the total variation of
returns. A scaled difference between these two measures (Relative Jump statistics)
provides a direct estimate of the percentage contribution of jumps to the total price
variance:

RJT =
RVT − BVT

RVT

. (2.3)

Under the assumption of no jump and some regularity conditions, Barndorff-
Nielsen and Shephard (2006) show that the joint asymptotic distribution of the two
variation measures is conditionally Normal. This allows us compute a t-type statistic
to test for abnormally large price movements, which are indicative of jumps. A
popular version of this statistic is

zT =
RVT − BVT√((

π
2

)2
+ π − 5

)
1
M
TPt

, (2.4)

where the jump-robust Tri-Power Quarticity measure TPt estimates the scale of the
variation measures and is defined as

TPT =

(
M2

M − 2

)(
E(|N(0, 1)|4/3)

)−3
M∑

j=3

|RT,j−2|4/3|RT,j−1|4/3|RT,j|4/3. (2.5)

Under the null hypothesis of no jumps and conditional on the sample path, the
jump-detection statistic zT is asymptotically standard Normal. Thus, if the value of
zT is higher than the cut-off corresponding to the chosen significance level, then the
test detects at least one abnormal large price move during the period T.

5More precisely, under some technical conditions,

lim
M→∞

RVT =

∫ T

T−1

σ2

p(s)ds+

NT∑

j=1

k2T,j , lim
M→∞

BVT =

∫ T

T−1

σ2

p(s)ds,

where σp(s) is the instantaneous volatility of the Brownian motion component of the price, kT,j is
the jump size and NT is the number of jumps within the period T.
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To calculate the jump-detection statistics over a year, we use the data on 266
daily returns, on average.6 We focus on the annual jump detection frequency, as
it is well-recognized that one requires large number of intra-period observations to
compute jump statistics. M = 266 is a typical number in high-frequency studies,
where it roughly corresponds to using 5-minutes returns to compute daily (24 hours)
statistics. Huang and Tauchen (2005) discuss the performance of the tests in finite
samples.

On Figure 1 we plot daily inflation-adjusted market returns and the corresponding
years detected by jump-detection statistic for the period of 1927 - 2008, while Figure
2 depicts the corresponding jump statistics zT . Notably, high values of zT above the
corresponding cut-off point indicate the presence of large moves in daily returns. At
the 1% significance level, we identify 25 years with at least one significant move in
daily asset prices. 8 of those jump-years occur before 1945, that is, 8 out 18 years
from 1927 to 1945 contain one or more large moves in daily returns. The remaining
17 of the jump-years occur in the post-war period of 63 years. Some of the salient
jump dates include 1982, 1987, 1991, and 2003. The relative contribution of large
movements to the total return variation, as measured by the average relative jump
measure RJ, is 7.5%. This estimate is consistent with other studies.

2.1 Predictability of Large Price Moves

In this section, we provide empirical evidence that macroeconomic volatility and the
market return variance can predict large asset-price moves in the data. On the other
hand, in the data there is no persuasive evidence for the link between large moves
in returns and the growth rates of aggregate macroeconomic variables at all leads
and lags. That is, at the considered frequencies of large moves in returns, jumps in
asset prices neither coincide with significant changes in the real economy, nor can
they be predicted by them. This empirical evidence has important implications for
identifying the sources of jump risk in financial markets, which motivate our model
setup. The inputs in our model (i.e. endowment) are Gaussian. While there are no
jumps in the real side of the economy, learning and costly information acquisition
will trigger endogenous jumps in financial markets. In contrast, works by Eraker and
Shaliastovich (2008), Drechsler and Yaron (2010), Pan (2002), Barro (2006) incor-
porate jumps into the exogenous inputs in the model, namely the consumption (i.e.
endowment) process. Our evidence, of course, suggests that on average there is close
to zero correlation between jumps in growth rates and asset prices.

On top panel of Figure 3 we plot correlation coefficients of jump-year indicators
with annual consumption growth rate, its conditional variance and the conditional

6For predictability regressions, we also construct jump statistics on monthly and quarterly fre-
quencies.
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variance of market returns, up to 5 year leads and lags.7 We further provide the corre-
lation estimates and the standard errors in the top panel of Table 2. The correlations
of large move indicators with lagged aggregate volatility are consistently positive and
reach the 20− 30% range. Similarly, high market variance predicts an increase in fu-
ture jump probability, and the correlations of market variance with contemporaneous
and future jump-year indicators are about 10%. The jump-year indicator correlations
with future variance measures decrease to zero after 2-3 years. Further, we do not find
any strong evidence for the link between the asset-price jumps and contemporaneous
or past consumption growth rates. The correlation coefficients for the jump-year in-
dicator with consumption growth rate are negative at one and two year lags and are
around -0.1. They are essentially zero at three year lags and beyond.

The above predictability patterns are even stronger at quarterly and monthly
frequencies, as the persistence of the variance measure and the frequency of identified
jump periods increase. As consumption data is not available at such frequencies
for a long historical sample, we use the industrial production index growth, whose
monthly and quarterly observations are available from 1930s.8 On the bottom panels
of Figure 3 we plot the lead-lag correlations of the jump indicator with levels and
conditional volatilities of industrial production growth rate and variance of the market
return at quarterly and monthly frequencies. The results present robust evidence for
predictability of asset-price jump periods by the variance measures and absence of
persuasive link between the asset-price jumps and contemporaneous or past levels of
the real economic growth. We are going to match these jump predictability patterns
in the model, alongside other key macroeconomic and financial data features.

To sharpen quantitative results, we construct a measure of macroeconomic volatil-
ity based on the financial markets data; similar volatility measures are entertained
by Bansal, Kiku, and Yaron (2007) and Bansal, Khatchatrian, and Yaron (2005). We
regress annual consumption growth on its own lag, the lags of market price-dividend
ratio and junk bond spread and extract consumption innovation. The square of this
innovation is further projected on the price-dividend ratio and junk bond spread, so
that the fitted value σ̂2

T captures the level of ex-ante aggregate volatility in the econ-
omy. The results of the two projections are summarized in the top panel Table 3.
The R2s are in excess of 20%, and the signs of the slope coefficients are economically
intuitive: low asset valuations and high bond spreads predict low expected growth
and high aggregate volatility.

We use the extracted factor σ̂2
T to forecast next year jump indicator statistic. The

probit regression of the next-period jump indicator on current measure of macroeco-

7Conditional variance computations are based on AR(1)-GARCH(1) fit.
8On annual frequency, the correlation of growth rates in consumption and industrial production

is 0.55, while the correlation of their conditional variances is 0.84.
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nomic volatility yields a statistically significant coefficient on σ̂2
T with a t-statistics in

excess of 2.5, and R2 of 9%. Specifically,

P̂ r(JumpIndicatorT+1) = Φ

(
−0.84
(0.21)

+ 1186.23
(468.00)

σ̂2
T

)
,

where JumpIndicatorT is equal to 1 if year T is flagged as a jump-year and 0 other-
wise. On Figure 2 we plot the jump-detection statistics zT itself and the fitted proba-
bility of contemporaneous jump. The spikes in fitted probabilities broadly agree with
large values of the jump statistics, even for the 1955-1980 period when no significant
price moves were detected.

For robustness, we also check the results using GARCH measure of annual con-
sumption volatility in the data. The bottom panel of Table 3 shows that the estimated
aggregate consumption volatility is very persistent in the data. The probit estimation
of predictability of the future jump-year indicator is given by,

P̂ r(JumpIndicatorT+1) = Φ

(
−0.76
(0.20)

+ 875.84
(406.43)

σ̂2
T

)
,

so that the consumption volatility is a statistically significant predictor of future jump
years with t−statistics of 2.16, and the R2 of 6.3%. 9

While consumption volatility forecasts jump periods, the level of consumption
growth rate does not seem to predict future jump years in the data. In Table 4
we report the R2 in the probit regression of next-period jump-year indicator on the
realized consumption growth. The slope coefficient is insignificant from 0, and the
R2 is below 1%. We show that our calibrated model can match well this quantitative
evidence on the predictability of jumps in returns.

Predictability of future jumps by the consumption variance is a novel dimension
of this paper. Predictability of future return jumps by market variance is consistent
with the evidence in earlier studies which estimate parametric models of asset-price
dynamics, see Bakshi et al. (1997), Bates (2000), Pan (2002), Eraker (2004) and Sin-
gleton (2006). We provide further discussion of these model specifications in Section
5.5.

3 Model Setup

Our model builds on the long-run risks framework developed in Bansal and Yaron
(2004), where the investor has full information about the economy. In contrast, we

9For robustness, we checked the regressions using post-war sample, and found very similar results.
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assume that investors do not observe all the relevant state variables, and hence there
is an important role for learning about the true underlying state of the economy. The
exogenous endowment process is Gaussian and does not contain any exogenous jumps.
However, we show that the optimal actions of the agents to learn the unobserved states
for a cost can lead to asset-price dynamics which exhibits jumps.

3.1 Preferences and Information

Denote It the beginning-of-period information set of the agent, which includes cur-
rent and past observed variables. The information set by the end of the period is
endogenous and depends on the decision of investors to learn about the true state.
Let us introduce a binary choice indicator st ∈ {0, 1}, which is equal to one if the
agent learns about the true state for a cost in period t, and zero otherwise. Let It(st)
be the time-t (end-of-period) information set following a choice st. With no learn-
ing about the true state (st = 0), the end-of-period information set coincides with
that in the beginning of the period: It(0) ≡ It. On the other hand, when st = 1,
investors acquire new information during the day which enriches their information
set: It(1) ⊃ It. Further, let Et denote the conditional expectation with respect to
the information set It, while denote Est

t the conditional expectation based on the
information following a binary choice st : E

st
t (.) ≡ E[.|It(st)].

We consider recursive preferences of Epstein and Zin (1989) over the uncertain
consumption stream, with the intertemporal elasticity of substitution parameter set
to one:

Ut = C1−β
t (Jst

t (Ut+1))
β , (3.1)

Jst
t (Ut+1) =

(
Est

t U
1−γ
t+1

) 1

1−γ . (3.2)

Ct denotes consumption of the agent and Jst(Ut+1) is the certainty equivalent function
which formalizes how the agent evaluates uncertainty across the states. Parameter
β is the subjective discount factor and γ is the risk-aversion coefficient of the agent.
Note that certainty equivalent function depends on the choice indicator st ∈ {0, 1},
as the information set of the agent is different whether the investors learn about the
true state (st = 1) or not (st = 0).

To derive our model implications, we solve the model from the perspective of
the social planner, who optimally allocates social resources for acquisition of costly
information. This setup, as is highlighted in Grossman and Stiglitz (1980), may be
difficult to decentralize in the presence of costly information acquisition. However,
Veldkamp (2006a) presents a mechanism which motivates the decentralized market
price implications of model with costly information acquisition. Veldkamp (2006a)
allows the investors to hire a third party to acquire information on their behalf. The
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third party pays a fixed cost, determined endogenously in equilibrium, and shares the
information to its clients. She shows that as more investors decide to purchase infor-
mation, the per investor cost of being informed declines in equilibrium. Therefore, in
many cases most investors would get informed. While we do not explicitly introduce
such information channels to keep the model tractable and maintain the focus on
large moves in returns, the implications of this equilibrium are similar to those of the
representative agent setup with costly information acquisition featured in our paper.

3.2 Social Planner Problem

Consider the life-time utility of the agent Ut(st) for a given learning choice of the
social planner st ∈ {0, 1} :

Ut(st) = Ct(st)
1−β (Jst

t (Ut+1))
β , (3.3)

where Ut+1 is the optimal utility tomorrow, and Ct(st) denotes a choice specific con-
sumption of the agent. The risk-sensitive certainty equivalent operator Jst

t (Ut+1) is
specified in equation (3.2).

The objective of the social planner is to maximize the certainty equivalent of the
life-time utility of the agent Ut(st) with respect to the beginning-of-period information
set It by choosing whether or not to learn about the true state for a cost:

s∗t = argmax
st

{Jt(Ut(st))} . (3.4)

The true value of the state is not known to the planner in the beginning of the period.
As the agents are risk-sensitive to the new information about the state, the planner
chooses to learn about the state for a cost if the certainty equivalent of the agent’s
life-time utility with learning is bigger than the life-time utility without learning.
Following a decision to learn, the social planner then uses part of the endowment to
pay the learning cost.

Denote Yt the aggregate income process. Then, the budget constraint of the social
planner states that the aggregate income is equal to consumption and learning cost
expenditures:

Yt = Ct(st) + stξt. (3.5)

The learning cost ξt represents the resources required to acquire and process the new
information about the underlying economic state. We interpret this cost to be a
social cost in terms of research costs borne by social institutions (e.g Treasury and
the Federal Reserve Bank) to gather information about the underlying state of the
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economy. An alternative interpretation is presented in Veldkamp (2006) who argues
that these costs may be related to media costs (such as hiring a journalist) to gather
information about economy. For analytical tractability, we make ξt proportional to
the aggregate income:

ξt = χYt, (3.6)

for 0 ≤ χ < 1. This specification preserves the homogeneity of the problem and
simplifies the solution of the model.

In Appendix A.1 we show that in equilibrium, the life-time utility of investors
following learning choice st is proportional to the level of income,

Ut(st) = φt(st)Yt, for st ∈ {0, 1}. (3.7)

where the utility per income ratio φt(st) satisfies the following recursive equation:

φt(st) = (1− stχ)
1−β

(
Est

t

[
φt+1

Yt+1

Yt

]1−γ
) β

1−γ

. (3.8)

Learning about the true state has two effects on the utility of investors. First,
the agent’s consumption drops as part of the aggregate endowment is sacrificed to
cover the learning costs. This decreases the agent’s utility, as evident from examining
the first bracket in the expression above. On the other hand, learning enriches the
information set of investors, and the ensuing reduction in the uncertainty about future
economy may increase their utility (second part of the expression (3.8)). The net effect
depends on the attitude of investors to the timing of resolution of uncertainty and
the magnitude of learning costs, as we discuss in detail in Section 4.

In Appendix A.2 we show that the equilibrium discount factor Mt+1 depends on
the income growth, future life-time utility and the endogenous information set of the
agent:

Mt+1 = β

(
Yt+1

Yt

)
−1 U1−γ

t+1

E
s∗t
t (U1−γ

t+1 )
. (3.9)

Hence, we can solve for the price of any asset traded in the economy using a usual
equilibrium Euler equation

E
s∗t
t [Mt+1Ri,t+1] = 1, (3.10)

where Ri,t+1 is the return on the asset, and s∗t is an equilibrium costly learning choice.
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3.3 Income Dynamics

The log income growth rate process incorporates a time-varying mean xt and stochas-
tic volatility σ2

t :

∆yt+1 = µ+ xt + σtηt+1, (3.11)

xt+1 = ρxt + ϕeσtǫt+1, (3.12)

σ2
t+1 = σ2

0 + ν(σ2
t − σ2

0) + σwσtwt+1. (3.13)

where ηt, ǫt and wt are independent standard Normal innovations. Parameters ρ and
ν determine the persistence of the mean and variance of the income growth rate,
respectively, while ϕe and σw govern their scale. The empirical motivation for the
time-variation in the conditional moments of the income process comes from the long-
run risks literature, see e.g. Bansal and Yaron (2004), Hansen, Heaton, and Li (2008)
and Bansal and Shaliastovich (2007).

We assume that the volatility σ2
t is known to the agent at time t, which can be

justified as the availability of high-frequency data allows for an accurate estimation
of the conditional volatility in the economy. On the other hand, the true expected
income state xt is not directly observable to the investors. The investors can learn
about the state from the observed data using standard filtering techniques, and they
also have an additional option to pay a cost to learn its true value. This setup is
designed to capture the intuition that some of the key aspects of the economy are not
directly observable, but the agents can learn more about them through additional
costly exploration.

To solve the learning problem of the agents, we follow a standard Kalman Filter
approach.10 Given the setup of the economy, the beginning-of-period information set
of the agent consists of the history of income growth, income volatility and observed
true states up to time t : It = {yτ , σ2

τ , sτ−1xτ−1}tτ=1 . If the agent does not learn the
true state in period t, the end-of-period information set is the same as in the beginning
of the period: It(0) = It. On the other hand, if the agent learns the true value of
the expected income state, the information set immediately adjusts to include xt :
It(1) = It ∪ xt. Define a filtered state x̂t(st), which gives the expectation of the true
state xt given the information set of the agent and the costly learning decision st:

x̂t(st) = Est
t (xt), (3.14)

and denote ω2
t (st) the variance of the filtering error which corresponds to the estimate

x̂t(st) :
ω2
t (st) = Est

t (xt − x̂t(st))
2. (3.15)

10 For Kalman Filter reference and applications, see Lipster and Shiryaev (2001), David (1997),
and Veronesi (1999).
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If the agent chooses to learn about the true state, we obtain, naturally, that x̂t(1) = xt

and ω2
t (1) = 0.

Given the history of income, income volatility and past observed expected growth
states, the agent updates the beliefs about the unobserved expected income state in
a Kalman filter manner. Indeed, as the income volatility is observable, the evolution
of the system is conditionally Gaussian, so that the expected mean and variance of
the filtering error are the sufficient statistics to track the beliefs of the agent about
the economy. Specifically, for a given choice indicator st today, the evolution of the
states in the beginning of the next period follows from the one-step-ahead innovation
representation of the system (3.11)-(3.13):

∆yt+1 = µ+ x̂t(st) + ut+1(st), (3.16)

x̂t+1(0) = ρx̂t(st) +Kt(st)ut+1(st), (3.17)

ω2
t+1(0) = σ2

t

(
ϕ2
e + ρ2

ω2
t (st)

ω2
t (st) + σ2

t

)
, (3.18)

where the gain of the filter is equal to

Kt(st) =
ρωt(st)

2

ωt(st)2 + σ2
t

. (3.19)

The filtered consumption innovation ut+1(st) = σtηt+1 + xt − x̂t(st) is learning
choice specific, and contains short-run consumption shock and filtering error. The
two cannot be separately identified unless the agent learns the true xt, in which case
the filtered consumption innovation is equal to the short-run consumption shock,
ut+1(1) = σtηt+1. Recall that the variance shocks wt+1 are assumed to be independent
from the income innovations at all leads and lags. That is, future volatility shocks
do not help predict tomorrow’s expected income, and neither can learning about xt

affect the agent’s beliefs about future income volatility. Therefore the dynamics of
the income volatility is independent of the learning choice of the agent and follows
(3.13). In particular, if income volatility is constant, we obtain a standard result
that the variance of the filtering error ω2

t (0) increases in a deterministic fashion since
the last costly learning. On the other hand, when income volatility is stochastic, the
variance of the filtering error fluctuates over time and is high at times of heightened
aggregate volatility.

The key novel economic channel in our model is a discrete adjustment in agent’s
expectation about future growth, x̂t, at times when agent decides to learn the true
state, that is, when st = 1. Indeed, if investors decide to pay a cost to learn the true
state, the expected income growth and variance of the filtering error are immediately
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adjusted to reflect the new information. We can then express the values of the states
in the following way:

x̂t+1(st+1) = st+1xt+1 + (1− st+1)x̂t+1(0), (3.20)

ω2
t+1(st+1) = (1− st+1)ω

2
t+1(0). (3.21)

In equilibrium, such revisions in expected growth state endogenously trigger large
moves in asset-prices which look like jumps, even though the fundamental income
process is smooth Gaussian. We characterize the optimal decision to learn for a cost
and the asset-pricing implications in the next section.

4 Model Solution

4.1 Optimal Costly Learning

We solve for the equilibrium life-time utility of the agent and characterize the optimal
decision to learn about the expected growth for a cost. In Appendix A.4 we show
that the life-time utility of the agent depends on the beginning-of-period information
and, at times when the agent chooses to learn about the true state for a cost, on the
true value of the expected income growth. In particular, as the volatility and income
growth shocks are assumed to be independent, we can separate the expected growth
and volatility components, so that the solution to the life-time utility per income
ratio can be written in the following way:

φt(st) = eBx̂t(st)+f(st,σ2
t ,ω

2
t (0)). (4.1)

The sensitivity of the utility to expected income growth B is independent of the
decision to learn for a cost and is given by

B =
β

1− βρ
. (4.2)

The volatility function f(st, σ
2
t , ω

2
t (0)) depends on the learning choice st, the exoge-

nous income volatility σ2
t and the beginning-of-period filtering variance ω2

t (0), as well
as the risk aversion of the agent γ, learning cost χ and other model and preference
parameters. The recursive solution to this volatility component is provided in the
Appendix equation (A.27).

Let us characterize the solution to the optimal costly learning decision of the
agent and use it to illustrate some of the important features of the model. The agent
chooses to observe the true state if the ex-ante life-time utility with learning exceeds
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the utility with no learning about the true state. Given the equilibrium solution to
the life-time utility per income ratio in (4.1), the investor’s life-time utility with no
learning is equal to

φt(0) = eBx̂t(0)+f(0,σ2
t ,ω

2
t (0)), (4.3)

while the ex-ante life-time utility with costly learning is given by

Jt(φt(1)) = eBx̂t(0)+
1

2
(1−γ)B2ω2

t (0)+ft(1,σ2
t ,ω

2
t (0)). (4.4)

The life-time utility of the agent depends on the estimate of expected growth
x̂t and the volatility factors σ2

t and ω2
t (0), as is evident from the above equations.

Further, the expected growth enters symmetrically across the ex-ante life-time utilities
with and without costly learning (see equations (4.3) and (4.4)). The optimal decision
to pay a cost to learn is optimally determined by evaluating the life-time utility across
the two decisions, that is, comparing (4.3) and (4.4). From this comparison we find
that the optimal costly learning choice s∗t is given by,

s∗t = 1[J0
t (φt(1)) > φt(0)]

= 1

[
1

2
(1− γ)B2ω2

t (0) + ft(1, σ
2
t , ω

2
t (0)) > ft(0, σ

2
t , ω

2
t (0))

]
.

(4.5)

This decision implies the following important result:

Result 1: The optimal costly learning rule depends only on the volatility states w2
t (0)

and σ2
t , and it does not depend on the expected growth x̂t.

Indeed, in our model learning for a cost gives an agent a real option to reduce the
uncertainty about the estimate of expected growth. Because of this option feature
and a Gaussian dynamics of the economy, we obtain that the optimal decision only
depends on the volatility states, as is evident from equation (4.5).

In general, the timing of costly learning is stochastic and determined by the income
volatility σ2

t and variance of filtering error ω2
t , as well as the model and preference

parameters. In a particular case when income volatility is constant, the optimal costly
learning rule considerably simplifies, as we demonstrate in the next result:

Result 2: When income volatility is constant, investors optimally learn about the

true state for a cost at constant time intervals.

Indeed, when income shocks are homoscedastic, the optimal learning rule is driven
only by the variance of the filtering error, and the agent chooses to exercise costly
learning option and reduce the uncertainty about expected growth when this vari-
ance is high enough. However, since income volatility is constant, the variance of
the filtering error is a deterministic function of time since the last costly learning.
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Hence, investors optimally choose to learn the true state for a cost at determined in
equilibrium constant time intervals. This result is similar to Abel et al. (2007), who
show in a partial equilibrium setting that investors optimally choose to update their
information in the presence of observation costs at equally spaced points in time.

The frequency of costly learning in our model depends on the model and prefer-
ence parameters. In particular, we can show that the optimal costly learning policy
depends on the risk-aversion and learning cost parameters in an intuitive way:

Result 3: When income volatility is constant and agents prefer early resolution of

uncertainty, the frequency with which agents learn for a cost increases when risk-

aversion parameter increases, or when learning becomes less costly.

The formal proof for these comparative statics results are shown in the Appendix
A.6, and the importance of the preference for early resolution of uncertainty is dis-
cussed in detail in the next Section.

In the time-varying volatility model, the optimal learning policy depends both
on the variance of the filtering error and the stochastic volatility of income growth,
which complicates the formal comparative statics analysis of the model. In particular,
the frequency of costly learning is no longer constant and depends on the conditional
volatility of income growth. Using numerical solution to the model, we document the
following result:

Result 4: When income volatility is time-varying, agents exercise costly learning

option more frequently when income volatility is high.

While we do not provide a formal proof for this finding, it appears to be quite
intuitive and follow from our previous discussion of the homoscedastic model. Indeed,
as filtering uncertainty accumulates very quickly at times of heightened aggregate
volatility, the incentives to learn and reduce the uncertainty are thus bigger in high
relative to low income volatility periods. Hence, the frequency of costly learning
is increasing in income volatility. This result implies that costly learning times are
predictable by the income volatility in economy, which, we show, provides an economic
basis for the predictability of asset-price jumps in financial markets.

4.2 Preferences and Information Acquisition

One of the key ingredients of the model which determines the optimal learning choice
is the preferences of the agent. In our setup, the agent has recursive preferences when
the risk-aversion coefficient γ is different from 1; when γ = 1 preferences collapse
to a standard expected log utility case. The incentive to learn the unobserved state
for a cost critically requires the recursive preferences of the agent, and in particular,
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the preference for early resolution of uncertainty (γ > 1). We establish the following
important result:

Result 5: With standard expected utility preferences, the agent is indifferent to the

timing of the resolution of uncertainty, and as a consequence, has no incentive to

learn for a cost.

Indeed, consider a case when learning costs are zero, that is χ = 0, so that and
the consumption of the agent is equal to the income. Then, the utility of the agent
corresponding to the indicator variable st ∈ {0, 1} satisfies

Ut(st) = Est
t

∞∑

j=0

βju(Yt+j). (4.6)

The optimal learning policy in the expected utility case is based on the ex-ante
expected utility given the beginning of period information. Applying the law of
iterated expectations, we find that the ex-ante utility of the agent with the new
information is equal to the life-time utility without the new information:

E0
t Ut(1) = E0

t

(
E1

t

∞∑

j=0

βju(Yt+j)

)
= E0

t

∞∑

j=0

βju(Yt+j) ≡ Ut(0). (4.7)

In expectation, new information does not increase the utility of the agent. There-
fore, with power utility investors have no incentive to gather new information about
the economy, even if this information is costless. On the other hand, in Appendix A.3
we show that with recursive utility investors have incentives to learn the new informa-
tion as long as they have a preference for early resolution of uncertainty (γ > 1). In
this case, the value of learning the new information can exceed the immediate learn-
ing costs, so the agents optimally choose to pay a cost and acquire the information.
This underscores the economic importance of the preference for early resolution of
uncertainty in learning models.

4.3 Risk Compensation and Asset Prices

Using the solution to the agent’s learning model, we can express the equilibrium
discount factor (3.9) in terms of the underlying variables in the economy; see equation
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(A.30) in Appendix for details. In particular, the innovation into the log discount
factor satisfies,

mt+1(st)− Est
t mt+1(st) =− (1 + (γ − 1)(1 +BKt(st))) ut+1(st)

− (γ − 1)(ft+1 − Est
t ft+1)− (γ − 1)Bs∗t+1(xt+1 − x̂t+1(0)).

(4.8)

In our economy the agent is exposed to three sources of risk: Gaussian consump-
tion shocks ut+1(st), volatility shocks (ft+1 − Est

t ft+1) and discrete revisions in the
true state s∗t+1(xt+1 − x̂t+1(0)). The key novel dimension of the paper is the endoge-
nous costly learning by the agent s∗t+1, which triggers large adjustments, i.e. jumps,
in the discount factor and equilibrium asset prices when investors decide to pay a
cost and learn the true state. The non-trivial costly learning policy is essential to
generate endogenous jumps in our model in the absence of corresponding jumps in
economic fundamentals. The special cases of our model when agents always know the
true state (st ≡ 1) or never know the true value of the state (st ≡ 0) do not lead to
asset-price jumps when model inputs are smooth.

Indeed, when the agent knows the true expected growth state at all times (st ≡ 1),
our model collapses to a standard long-run risks setup of Bansal and Yaron (2004).
In this case, the price of short-run consumption risk is γ, the price of long-run risk is
(γ − 1)B and the price of volatility risk is constant and provided in the above study.
In a standard long-run risks model, asset prices do not exhibit jumps as economic
inputs are smooth and shocks are Normal. With costly learning, our model features
an additional source of risk due to the discrete revisions of the expected growth state,
s∗t+1(xt+1− x̂t+1(0)). A discrete revision in the expected growth can be quite large, in
absolute value, as agent’s estimate of expected growth moves away from the true un-
derlying state between the relatively infrequent times of costly learning. Notably, the
revision of the expected growth introduces an endogenous jump risk in the economy,
as both the timing and the magnitude of the discount factor jump is determined in
equilibrium by underlying states and model and preference parameters. Eraker and
Shaliastovich (2008), Drechsler and Yaron (2010), Barro (2006) introduce exogenous
jumps in the underlying endowment process, which trigger corresponding jumps in
the equilibrium asset prices. However, as discussed earlier in the empirical section, an
important feature of the data is that many of the jumps in asset markets do not seem
to coincide with jumps in the real economy. Motivated by this empirical evidence,
our model specification features instead smooth income dynamics and endogenous
jumps in asset prices due to optimal actions of investors to pay a cost and learn the
true state.

An alternative case considered in the literature is when investors never know the
true value of the state (st ≡ 0), and they optimally estimate the unknown expected
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growth using the history of the data. Such an approach, within the long-run risks
setup, is pursued in Croce et al. (2010), while Ai (2010), David (1997) and Veronesi
(1999) develop a model where the agents learn about the regime shifts. It is worth
emphasizing that learning considered in these models does not generate jumps in
the asset prices. Hansen and Sargent (2010) consider an alternative approach and
introduce preference for robustness in agent’s learning. This, they show, magnifies
the level and variation in risk premia relative to the standard models. However,
to deliver jumps in the asset-prices, such specifications require exogenous jumps in
the inputs of the economy (endowment process), as shown in Liu et al. (2005) and
Drechsler (2010). On the other hand, our approach complements the approach taken
in Veldkamp (2006b) and Van Nieuwerburgh and Veldkamp (2006), where information
is endogenous and varies with the state in the economy. For example, in Veldkamp
(2006b) the impact of bad news can be endogenously very large in good times when
the information is abundant, so that asset prices move sharply. In a similar vein,
in our model, the endogenous actions of investors to obtain additional information
leads to discrete changes in expectations about future growth and therefore large
asset-price movements.

To bring our model implications closer to the data, we calibrate a dividend asset,
which is a levered claim with a dividend stream proportional to income growth:

∆dt = µ+ ϕd(∆yt − µ). (4.9)

Bansal and Yaron (2004) specify dividend dynamics which includes idiosyncratic
dividend shock. The specification above is simpler as it does not require extension of
the model to multivariate Kalman filter, but preserves model results and intuition.

Using the equilibrium solution to the discount factor in (4.8) and the Euler con-
dition (3.10), we can solve for the equilibrium log price-dividend ratio,

vt(st) = Hx̂t(st) + h(st, σ
2
t , ω

2
t (0)), (4.10)

where the solutions for a constant H and the volatility component h(st, σ
2
t , ω

2
t (0)) are

given in Appendix A.5.

The asset valuations depend on filtered or, if st = 1, true expected income growth,
and the volatility factors in the economy. When investors pay a cost and learn the
true state, their estimate of expected growth can change substantially from what it
was a period ago. The equilibrium price-dividend ratio responds to this change in
the expected growth state magnified by H . For example, as H is positive in the
model, when the true xt is much lower than what the agent expected, asset prices
can fall sharply. This discrete decline in asset prices, triggered by optimal decision
of investors to learn the true state, is detected as a jump in the financial markets.
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Hence, the distribution of asset prices in our economy is heavy-tailed, even though
the underlying macroeconomic inputs are smooth Gaussian.

The probability of costly learning, and consequently, large asset-price moves de-
pends on the volatility states in the economy. In particular, when aggregate volatility
is high, investors learn for a cost more often, which triggers more frequent large
moves in returns. Hence, asset-price jump times are predictable by the aggregate
macroeconomic volatility. Further, as the volatility of equilibrium returns is posi-
tively related to aggregate volatility, the model can also explain the predictability of
future asset-price jumps by the variance of the market return. Notably, in the model
the probability of asset-price jumps is not related to the level of real economy, so the
financial jumps are not predicted by the endowment growth rate.

In the next Section we calibrate the economy and show that the model-implied
jump implications are quantitatively consistent with the data.

5 Model Output

5.1 Model Calibration

The model is calibrated on a daily frequency. The baseline calibration parameter
values, which are reported, annualized, in Table 5, are similar to the ones used in
standard long-run risks literature ( see e.g. Bansal and Yaron, 2004). Specifically, we
set the persistence in the expected income growth ρ12×22 at 0.4 on annual frequency.
The choice of ϕe and σ0 ensures that the model matches the annualized aggregate
volatility of about 1.4%, while the annualized volatility persistence is set to 0.77. To
calibrate dividend dynamics, we set the leverage parameter of the corporate sector
ϕd to 5. We calibrate the model on a daily frequency and then time-aggregate to
annual horizon. Table 6 shows that we can successfully match the unconditional
mean, volatility, and auto-correlations of the endowment dynamics in the data.

As for the preference parameters, we let the subjective discount factor equal 0.997
and set the risk aversion parameter at 10. The learning expenditure includes the
resources that the investors spend to acquire and process the information about true
value of the underlying economic state, which includes opportunity costs of time and
effort. We calibrate the cost parameter similar to observation and information costs
emphasized in Abel et al. (2007). They set the observation cost to a fraction of annual
income, and show that investors choose to update their information once every 8
months. Motivated by the empirical evidence on the frequency of jumps, we calibrate
expenditure on costly learning accounts to be 0.03% of annual aggregate income (8.5%
of daily income). At this level of learning costs, investors are willing to optimally learn
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the true state about once every one and a half year. Even though the level of costly
expenditure appears to be quite small, we show that it has important implications
for the distributions of the asset prices and financial jumps in the economy, which
are impossible to obtain when the costly learning option is absent. Naturally, the
calibration of the learning cost parameter is sensitive to the assumed values of other
model parameters, such as risk aversion and level of the volatility shocks.

As the model does not admit convenient closed-form solutions for the asset prices,
we use calibrated parameter values to solve the model numerically. We first start
with the model specification when income volatility is constant, that is, σt = σ0. As
shown in Result 2, the optimal learning policy in this setup is purely time-dependent,
and the agents learn about the true state at constant, determined in equilibrium,
time intervals. The details of the model solution for the optimal learning choice
and the equilibrium asset prices are provided in Appendix A.6. In the general case
when income volatility is time-varying, we first put income and filtering volatility
states on a fine grid and search for a fixed-point solutions to the recursive volatility
function equations (A.29) and (A.35). It turns out that the optimal solutions to the
volatility components can be very accurately approximated by the linear functions
of the volatility states, where the loading coefficients are learning-choice specific. We
utilize these linear approximations to speed up and stabilize numerical computations.

5.2 Constant Volatility Case

Table 1 reports asset-pricing implications of the model with constant income volatility.
Model-implied mean and volatility of market returns are 6.7% and 15.5%, respectively,
and the risk-free rate is 1.1%, which match the empirical data. Hence, the model
can account for the usual equity premium, the return volatility and the risk-free
rate puzzlez. The model specification where agents have no option to pay a cost
and learn the true state delivers comparable values for the first two moments of the
return distributions; this is consistent with Bansal and Yaron (2004) who show that a
standard long-run risks model without costly learning can explain the unconditional
mean and volatility of returns.

The costly learning option, however, is central to account for large asset-price
moves and the heavy tails of the distribution of returns. To illustrate the jump
implications of our model, on Figure 4 we plot a typical simulation of the economy
for 80 years. The log income growth is conditionally Normal, and the filtered expected
income state closely tracks the true state with a correlation coefficient in excess of 70%.
About every 2 years the agent pays the cost and learns the true state. The revision
in expectations about future income growth triggers proportional adjustments to the
equilibrium asset prices, as can be seen from equation (4.10). In presence of persistent
expected growth shocks, asset prices are very sensitive to changes in expected income
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state. Therefore, even small deviations in the filtered state from the truth, when
uncovered, can lead to large changes in asset valuations which are empirically detected
as jumps.11 As shown in Table 1, the frequency of detected jump-years is about once
every 4.8 years, and the contribution of jumps to the total return variation is 7.2%,
which is consistent with the data. Due to large moves in returns, the unconditional
distribution of returns is heavy-tailed: the kurtosis of the return distribution in the
model is equal to 18, which is close to the empirical estimate of 21 in the data.
Notably, as the market volatility is constant, the heavy tails in return distribution
obtain through the discrete adjustments to the asset prices due to costly learning.

Large asset-price moves cannot be obtained in the model where the agent had no
option to learn for a cost and had to exclusively rely on standard Kalman filtering
from the history of the data, as can be seen from the return simulations on the bottom
panel of Figure 4 and the summary statistics in the second panel of Table 1. Indeed,
with no costly learning, we do not find more than 1 or 2 instances of large price moves
in 80 years of simulated daily data; the detected jumps represent pure-chance large
random draws in the simulation. Consistent with the lack of large move in returns,
the unconditional distribution of market returns does not possess heavy tails, as the
kurtosis of return distribution of 3 is equal to that of Normal distribution.

Our constant volatility model can deliver the key result that the equilibrium as-
set prices can display infrequent large movements, while there are no corresponding
jumps in the macroeconomic inputs (endowment growth). These asset-price jumps
arise endogenously due to the optimal actions of investors pay a cost and learn the true
expected growth state. However, since income shocks are homoscedastic, the agents
exercise a costly learning option at constant time intervals, and steady-state volatili-
ties of macroeconomic and financial variables are constant, which cannot account for
the predictability of asset-price jumps in the data. We can address these issues by
opening up stochastic volatility channel, which we discuss in the next section.

5.3 Time-Varying Volatility Model

The bottom panel of Table 1 depicts summary statistics for model-implied return
distribution in the time-varying volatility specification. When agents have an option
to learn for a cost, the model generates the mean market return of 6.4% and the
volatility of returns of 15.5%. The model-implied risk-free rate is 1%. Hence, as in
the constant volatility case, the model accounts for the usual equity premium and
risk-free rate puzzles. Notably, while the model specification without costly learning

11Although costly learning occurs at constant time intervals, the years with flagged jumps do not
always occur at regular intervals, as can be seen on Figure 4. Indeed, the jump-detection statistics is
designed to pick out only large jumps, hence the significance level of 1%, so that some of the smaller
price adjustments remain undetected.
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can generate similar level of the equity premium, an option to learn for a cost leads to
a considerably higher variation in the conditional equity premium in the time-series.
For the consumption asset, the annualized volatility of the equity premium is 0.44%
with costly learning versus 0.16% without costly learning (the total volatility of return
on consumption asset is about 2%). For the dividend asset, the variation in annualized
equity premium is 2.4% versus 0.32% without costly learning. This underscores the
economic importance of the costly learning channel for the risk premium fluctuations.

Time-variation in income volatility implies that the optimal costly learning is
stochastic and no longer occurs at constant time intervals. In particular, an important
prediction of the model, stated in Result 4, is that the frequency of costly learning and
consequently, asset-price jumps, increases at times of heightened income volatility. For
a graphical illustration of these model implications, we show a typical simulation of
income growth, income volatility and the variance of filtering error on Figure 5, and
the equilibrium returns with and without costly learning option on Figure 6. The
income growth process is conditionally Gaussian and hence does not exhibit large
moves. Further, unlike the constant volatility model, the variance of the filtering
error now fluctuates over time, and one can observe the occasional sharp reductions
of the filtering uncertainty to zero at times when agents choose to learn the true state
for a cost. These times of costly learning correspond to the periods of high income
volatility and high variance of the filtering error. We highlight the dependence of the
costly learning rule on the volatility states on Figure 7, which depicts the expected
number of periods till the next costly learning given current filtering variance for high,
medium and low values of aggregate volatility. Consistent with our earlier discussion,
investors choose to learn for a cost if the variance of the filtering error grows too high
in the economy, and the frequency of costly learning increases at times of heightened
income volatility.

The actions of investors to learn about the underlying state can lead to large ad-
justments in daily asset prices, detected as jumps by annual jump-detection statistics,
as shown in return simulation on Figure 6. To illustrate the response of the asset val-
uations to the revisions of the expected growth, we show a scatter plot of the change
in price-dividend ratio ∆vt versus the revision in expectations xt − x̂t(0) on Figure
8. When the agents do not exercise the costly learning option, the unobserved gap
between the true and filtered state has no information about asset prices, hence, the
horizontal line in the middle of the graph. On the other hand, when agents pay a cost
and observe the true state, the price-dividend ratio changes to reflect the adjustment
in the agent’s expectations about future growth. Positive revisions lead to upward
moves in the asset prices, while lower than expected growth implies large negative
jumps in returns.

Relative to constant volatility case, the detected jump-years are more frequent,
averaging once every 3.4 years, and contribute more to the total variation in returns,
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12% versus 7% in a constant-volatility case and in the data (see Table 1). These
large moves in returns cannot be obtained in the economy without costly learning, as
can be visually seen on the time-series plot of returns on Figure 6. Without costly
learning, the average frequency of detected jump-years is less than 2 in 80 years, and
the detected ”jumps” are merely pure-chance large random draws. The comparison of
the higher-order moments of model-implied return distribution is revealing: without
an option to learn, the kurtosis of market returns is 3, and it reaches 36 when the
agent can learn the true state for a cost.

Naturally, the frequency of detected jump-years depends on the significance of
the jump detection test, which we set to 1%.. For robustness, on Figure 9 we show
the jump-year frequency for a range of significance levels from 0.5% to 10%. As the
significance level increases, the null of no jumps is rejected more often, so that the
frequency of detected jump-years increases. As the Figure shows, the model can
match very well the evidence on the average frequency of jump-years in the data, as
the model-implied jump-year frequency is nearly on top of the empirical one and is
well within the 5%− 95% confidence band.

5.4 Predictability of Jumps

An important prediction of our model is that asset-price jumps are predictable by
the persistent variance measures, such as endowment and market volatility. To put
our results in perspective, note that if the jump arrival intensity is constant, as
is sometimes assumed in reduced-form asset-pricing models, the number of periods
between successive jumps follows an exponential distribution. On Figure 10 we plot
the unconditional distribution of the number of periods between the detected jump-
years from the long simulation of the time-varying volatility model, alongside with the
an exponential fit to this distribution. The mean of the fitted exponential distribution
is 3.6 years, which agrees with the estimate of the jump-year frequency reported in
Table 1. While the exponential distribution generally fits the distribution of jump
duration, there is evidence for clustering of jumps – the unconditional distribution
has heavier left tail than an exponential, so a jump-year is likely to follow another.

The persistence of asset-price jumps is a natural outcome of the model result that
the frequency of learning and consequently, the likelihood of price jumps, is increas-
ing with aggregate volatility. As discussed before in Section 2, the predictability of
return jumps by the aggregate volatility is an important feature of the data, and our
model can capture this effect. Furthermore, as the aggregate volatility also drives the
variation in equilibrium market returns, our model can provide an economic explana-
tion for the predictability of large asset-price moves by the variance of returns in the
data. Finally, as in the data, the level of endowment growth does not predict future
return jumps, as the optimal learning choice depends only on the income volatility
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and variance of filtering error. This highlights an important aspect of the model and
the data that the second moments are critical to forecast future jumps, while the
movements in the level are not informative about future jumps in returns.

The model can quantitatively reproduce the key features of predictability of re-
turn jumps by consumption and market variance, and absence of predictability of
future jumps by the level of consumption growth. In the lower panels of Table 2 we
show model-implied population values for the lead-lag correlations of jump indicator
with endowment growth and conditional variance of endowment growth and returns
at an annual frequency, constructed in the same way as the empirical counterparts
in the data. As shown in Table, return jump indicator and the consumption growth
rate have zero correlation, and return jumps and macroeconomic volatility have pos-
itive correlations of about the same magnitude as in the data. Most of the model
correlations are within one standard deviation from their estimates in the data. For
robustness, we checked the results using monthly frequency, and obtained similar
results. In sharp contrast, in the model without costly learning all correlations are
zeros (shown in lower panel of Table). That is, in the absence of endogenous jumps
due to costly learning, the model is unable to capture the correlation between return
volatility and the jump indicator, as well as the correlation between macro-volatility
and the jump indicator. That is, it misses on key economically significant jump di-
mensions of the data. This underscores the importance of the costly learning channel,
developed in the paper, to explain asset-price jumps.

In Table 4 we show the probit regression results for the predictability of jump-years
by consumption variance and consumption growth. Using the consumption variance,
we obtain the R2 of 6% and 5% in the data and in the model, respectively. The
R2 drops to less than 1% in the data and 2% in the model when we use the lags of
consumption growth rate to predict future jumps. Without the costly learning option,
the R2s are zero. Hence, our costly learning model can capture the predictability
evidence of jumps in the data.In the next section we show that the jump predictability
implications from the model are also consistent with the evidence from the parametric
asset-pricing models.

5.5 Parametric Jump Model

The predictability of large moves in returns that our model is able to capture is
consistent with the evidence from parametric models for asset prices, which feature
stochastic volatility and jumps in returns whose arrival intensity is increasing in mar-
ket variance; see examples in Bates (2000), Pan (2002), Eraker (2004) and Singleton
(2006). To further compare our model implications to the results from the para-
metric studies of return dynamics, we fit a discrete-time GARCH-jump specification
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for returns, which feature autoregressive stochastic volatility and time-varying arrival
intensity of jumps in returns.12 Specifically, the return dynamics is given by

rt = µr + a1,t + a2,t. (5.1)

The first component a1,t represents a smooth Gaussian component of returns, whose
conditional volatility is time-varying and follows GARCH(1,1) process:

a1,t = σr,t−1ãt, ãt ∼ N(0, 1), (5.2)

σ2
r,t = σ2

v + βvσ
2
r,t−1 + αv(rt − µr)

2. (5.3)

The second shock a2,t is driven by Poisson jumps:

a2,t =
nt∑

k=1

ξt,k − µjλt−1. (5.4)

The jump size distribution is assumed to be Normal:

ξt,k ∼ N(µj , σ
2
j ), (5.5)

and the arrival of number of jumps nt = 0, 1, 2, . . . is described by a conditional
Poisson distribution with intensity λt, so that

Prt−1(nt = j) =
exp(−λt−1)λ

j
t−1

j!
. (5.6)

As we are interested in the predictability of jumps by market variance, we follow the
literature and model the jump intensity to be linear in the variance of returns,

λt = λ0 + λlσ
2
r,t. (5.7)

The above specification of return dynamics can be readily estimated by MLE
using the sample and simulated data. In particular, we use monthly returns from
1926 to 2008 in the data, and perform a Monte-Carlo study with 100 simulations of
85 years of monthly returns from a time-varying volatility model.13 The estimation
results in the data and the model are shown in Table 7. As can be seen in Table 7,
the model matches quite well the dynamics of the time-varying volatility of smooth
component of the returns, as the volatility persistence parameters αv and βv are

12Similar specification is considered in Bates and Craine (1999). See Maheu and McCurdy (2004)
for extensions and estimation details.

13We chose to focus on monthly rather than daily data as estimation using monthly data is more
stable and shows less evidence of model mis-specification.
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quite close in the data and in the model. The model can also capture the key findings
regarding the frequency and predictability of jumps. The estimated probability of
jumps loads positively and significantly on the market variance in the data, and the
slope coefficient in the model matches the data estimate very well. The estimated
mean jump size is −7% in the data, and the estimate is not statistically significant.
In the model, as investors can learn that the true state is bigger or smaller than their
estimate, the jumps are symmetric, so that the mean jump size is zero. The standard
deviations of the jump distribution in the data and model are very close and equal
to 6% and 7%, respectively.

Thus, the model can account for the key features of the conditional distribution
of returns in the data, so it can serve as an economic basis for realistic reduced-form
models of asset prices which incorporate time-varying volatility and jump components.

6 Conclusion

We present a general equilibrium model which features smooth Gaussian dynamics of
income and dividends and large infrequent movements in asset prices (jumps). The
large moves in asset prices are triggered by the optimal actions of investors to learn
the unobserved expected growth. We show that the optimal decision to learn the true
state is stochastic and depends on the time-varying volatility of income growth and
the variance of the filtering error, as well as the preference parameters. The revisions
in the expected income due to costly learning lead to large moves in asset valuations
which look like jumps. These large price moves cannot be obtained in the economy
without costly learning of the true state, or in the economy with standard expected
utility.

A prominent feature of the model is that the frequency of costly learning, and
consequently, the likelihood of asset price jumps, increases in the income volatility,
so that returns jumps are more frequent at times of high aggregate volatility. We
show that predictability of returns jumps by consumption variance is an important
and novel aspect of the data. Furthermore, the model can provide an economic
explanation for the predictability of large asset-price moves by the variance of returns,
and lack of return jump predictability by the levels of consumption growth in the
data. This highlights an important aspect of the model and the data that the second
moments are critical to forecast future jumps, while the movements in the level are
not informative about future jumps in returns.

Using calibrations, we find that the model can quantitatively reproduce the key
features of predictability of return jumps by consumption and market variance, and
absence of predictability of future jumps by the level of consumption. In addition,
the model can account for the frequency and magnitude of price jumps in the data,
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fat-tail distribution of market returns, equity premium, and other asset-pricing fea-
tures. We argue that our structural model can serve as an economic basis for realistic
reduced-form models of asset prices which incorporate time-varying volatility and
jump components.
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A Model Solution

A.1 Social Planner’s Problem

The learning decision of the social planner maximizes the ex-ante utility of the agent:

s∗t = argmax
s

{Jt(Ut(s))} , (A.1)

subject to the resource constraint (3.5):

Yt = Ct(st) + stξt, (A.2)

where the learning cost ξt is proportional to the aggregate income Yt :

ξt = χYt, (A.3)

for 0 ≤ χ < 1. From the resource constraint, it immediately follows that

Ct(st) = Yt(1− χst). (A.4)

Therefore, when the planner does not learn about the true state (st = 0), the agent’s
consumption is equal to the aggregate income. On the other hand, when the planer learns
about the true state, (st = 1), part of the endowment is sacrificed to cover the learning
cost.

Conjecture that the life-time utility functions are proportional to income:

Ut(st) = φt(st)Yt, (A.5)

for st ∈ {0, 1}. The optimal utility of the agent then is given by the learning choice specific
counterpart evaluated at the optimal indicator s∗t : Ut = Ut(s

∗

t ). The optimal utility next
period takes into account the optimal learning choice tomorrow and can be written as
Ut+1 = φt+1Yt+1, where to simplify the notations, we denote φt+1 ≡ φt+1(s

∗

t+1).

Substitute the conjecture for Ut(st) and Ut+1, and the consumption rule (A.4) into
the definition of the life-time utility of the agent in (3.3) to obtain the following recursive
formula for the utility per income φt(st) :

φt(st) = (1− stχ)
1−β

(
Est

t

[
φt+1

Yt+1

Yt

]1−γ
) β

1−γ

. (A.6)
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As aggregate income Yt is known in the beginning-of-the period, it can be factored out
from the optimal condition for learning (A.1). We can then rewrite it in the following way:

s∗t = 1 if Jt(φt(1)) > Jt(φt(0))

= 0 if Jt(φt(1)) ≤ Jt(φt(0)).
(A.7)

A.2 Representative Agent Problem

For completeness, we also show the solution to the representative agent problem.

Denote Wt the agent’s wealth in period t. Denote ωt the fraction of agent’s wealth
invested into each asset (i.e., the portfolio weights), so that ω′

t1 = 1. Then, for a vector of
asset returns Rt+1, we can write down the return on the aggregate wealth,

Rc,t+1 = ω′

tRt+1. (A.8)

Hence, we can write down the budget constraint of the agent in the following way:

Wt+1 = (Wt − Ct − stξt)Rc,t+1. (A.9)

For convenience, we make the learning costs ξt be a fixed proportion of the consumption
level of the agent,

ξt =
χ

1− χ
Ct, (A.10)

It is easy to see that with this parametrization, in equilibrium the learning costs are going
to be proportional to the aggregate income of the agent with a coefficient of proportionality
χ, as stated in (3.6).

The budget constraint can then be rewritten in the following way:

Wt+1 =

(
Wt −

Ct

1− χst

)
Rc,t+1. (A.11)

The optimization problem of the agent is given by:

Ut(st) = max
Ct, wt

{Jt(Ut(s))} (A.12)

subject to the budget constraint above.

Taking a first-order condition with respect to consumption, we obtain, after some alge-
bra, the optimal consumption rule

Ct

Wt
= (1− β)(1− stχ). (A.13)
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Now let us take a first-order condition with respect to a portfolio weight i, subject to
the restriction ω′

t1 = 1 :

Est
t

(
(Ut+1/Wt+1)

1−γ R−γ
c,t+1Ri,t+1

)
= const, ∀i. (A.14)

Multiplying each of these conditions by a corresponding asset weight and summing up, we
obtain that

Est
t

(
(Ut+1/Wt+1)

1−γ R−γ
c,t+1Ri,t+1

)
= Est

t

(
(Ut+1/Wt+1)

1−γ R1−γ
c,t+1

)
,

from where we can read the discount factor,

Mt+1 =
(Ut+1/Wt+1)

1−γ R−γ
c,t+1

Est
t

(
(Ut+1/Wt+1)

1−γ R1−γ
c,t+1

) . (A.15)

Let us impose equilibrium restrictions that income is equal to consumption plus learning
costs, Yt = Ct + stξt. For our parametrization of the learning cost in (A.10), this implies
that in equilibrium, the learning costs are proportional to the aggregate income, ξt = χYt.

Note that while consumption per wealth ratio is not constant (see (A.13)), the total
income per wealth ratio is constant:

Yt

Wt
= 1− β. (A.16)

Using the budget constraint in (A.11), we obtain that the equilibrium aggregate wealth
return is proportional to the income growth:

Rc,t+1 =
1

β

Yt+1

Yt
. (A.17)

From here, we obtain that in equilibrium,

(Ut+1/Wt+1)Rc,t+1 =

(
Ut+1

Wt+1

)(
1

β

Yt+1

Yt

)

=
1− β

β

Ut+1

Yt
.

Substitute this into the expression for the discount factor (A.15) to obtain

Mt+1 = β

(
Yt+1

Yt

)
−1 U1−γ

t+1

Est
t U1−γ

t+1

. (A.18)

This is the equilibrium discount factor for a given model choice of the agent st.
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We can also plug in the optimal consumption policy into the utility equation (A.12)
to verify the solution to the utility per wealth in (A.6) obtained using the social planner
problem.

A.3 Timing of Resolution of Uncertainty

The key aspect of our model is that the agent has a preference for a timing of the resolution
of uncertainty. In Section 4 we showed that with standard utility preferences, the agents
have no incentive to learn for a cost, even if the cost is zero. Let us now formally prove
that when investors have preference for early resolution of uncertainty (γ > 1), they have
incentives to learn the new information.

Using the recursive solution for the utility per income ratio in (A.6), the solution to the
optimal choice indicator above can be expanded in the following way:

s∗t = 1


(1− χ)1−β


E0

t

[
E1

t

(
φt+1

Yt+1

Yt

)1−γ
]β


1

1−γ

>

[
E0

t

(
φt+1

Yt+1

Yt

)1−γ
] β

1−γ


 .

(A.19)

Consider a case when the learning cost is zero, χ = 0. As β < 1, using Jensen’s inequality
argument it follows that E(Uβ) < (E(U))β for any random variable U with positive support.

Now apply this inequality for U = E1
t

(
φt+1

Yt+1

Yt

)1−γ
to obtain

E0
t

[
E1

t

(
φt+1

Yt+1

Yt

)1−γ
]β

<

[
E0

t

(
φt+1

Yt+1

Yt

)1−γ
]β

.

To plug this inequality into optimal policy equation (A.19), we need to take both sides of
it to the 1/(1−γ) power. With preference for early resolution of uncertainty, γ > 1 and the
exponent 1/(1 − γ) is negative, so the inequality reverses. Hence, with preference for early
resolution of uncertainty, agents can always increase their life-time utility by learning addi-
tional information at zero cost. On the other hand, when γ ≤ 1, agents have no preference
for early resolution of uncertainty, and hence they have no incentive to acquire additional
information even if it is costless. Hence, preference for early resolution of uncertainty plays
a key role in investors decision to pay a cost and learn the new information.

A.4 Utility and Learning Choice

As the volatility and consumption shocks are uncorrelated, we can separate the expected
growth and volatility components in the equilibrium utility per income ratio, which simpli-
fies the solution to the fixed-point recursion in (3.8). In this section we consider a general
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case with time-varying volatility, while in Appendix A.6 we show that the solution can be
simplified even further when the volatility is constant.

Conjecture that for each choice indicator st and corresponding states x̂t(st), ω
2
t (0) and

σ2
t today, the life-time utility per income ratio satisfies,

φ(st, x̂t(st), ω
2
t (0), σ

2
t ) = eBx̂t(st)+f(st,σ2

t ,ω
2
t (0)), (A.20)

for some utility loading B and volatility function f(st, σ
2
t , ω

2
t (0)). Note that the variance of

the filtering error used in the value function is based on the beginning of period information;
the actual value ω2

t (st) depends deterministically on the beginning-of-period estimate ω2
t (0)

and learning choice st, see equation (3.21).

Conjecture that the optimal learning choice tomorrow s∗t+1 depends only on the income
volatility and beginning-of-period variance of the filtering error, and not on the expected
income and dividend factors, i.e. s∗t+1 = s∗(σ2

t+1, ω
2
t+1(0)). Consider the equilibrium life-time

utility from next period onward:

φt+1 = φ(s∗t+1, x̂t+1(s
∗

t+1), ω
2
t+1(0), σ

2
t+1)

= eBx̂t+1(s∗t+1
)+ft+1 ,

(A.21)

where for notational simplicity, we define ft+1 = f(s∗t+1, σ
2
t+1, ω

2
t+1(0)). Now, using (3.20),

log

(
φt+1

Yt+1

Yt

)
= B

(
x̂t+1(0) + s∗t+1(xt+1 − x̂t+1(0))

)
+ ft+1 +∆yt+1. (A.22)

Consider a recursive equation for the optimal utility per income ratio (A.6) for a given

choice indicator st today. To evaluate Est
t

(
φt+1

Yt+1

Yt

)1−γ
, we use the law of iterated ex-

pectations where we first condition on It+1. Then, ∆yt+1, σ
2
t+1 and therefore x̂t+1(0), s

∗

t+1

and ft+1 are known, while the only random component is the true state xt+1. Due to the
Kalman filter procedure,

xt+1|It+1 ∼ N(x̂t+1(0), ω
2
t+1(0)), (A.23)

where x̂t+1(0) and ω2
t+1(0) satisfy (3.20) and (3.21). Therefore the right-hand side expec-

tation in the utility recursion (3.8) is equal to,

Est
t

(
φt+1

Yt+1

Yt

)1−γ

= Est
t e(1−γ)[Bx̂t+1(0)+ft+1+∆yt+1+

1

2
(1−γ)B2ω2

t+1
(0)s∗t+1]

= e(1−γ)(µ+(Bρ+1)x̂t(st))Est
t e(1−γ)[(BKt(st)+1)ut+1(st)+ft+1+

1

2
(1−γ)B2ω2

t+1(0)s
∗

t+1].

(A.24)
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Now by conjecture, s∗t+1 and thus ft+1 and ωt+1(s
∗

t+1) are driven by income volatility
shocks, which are independent from income innovations and therefore, from the filtered
shock ut+1(st). Thus,

Est
t

(
φt+1

Yt+1

Yt

)1−γ

= e(1−γ)(µ+(Bρ+1)x̂t(st)+
1

2
(1−γ)(BKt(st)+1)2(ω2

t (st)+σ2
t ))

× Est
t e(1−γ)[ft+1+

1

2
(1−γ)B2ω2

t+1(0)s
∗

t+1]
(A.25)

Therefore, using the equilibrium utility recursion (A.6) and the conjectured solution
for the life-time utility of the agent (A.20) and matching the coefficients, we obtain that
loading on expected growth is equal to

B =
β

1− βρ
, (A.26)

while the volatility function satisfies

f(st, σ
2
t , ω

2
t (0)) = (1− β) ln(1− stχ) + βµ

+ β
1

2
(1− γ)(BKt(st) + 1)2(ω2

t (st) + σ2
t ) +

β

1− γ
lnEst

t e(1−γ)[ft+1+
1

2
(1−γ)B2ω2

t+1
(0)s∗t+1].

(A.27)

Solution to B and f verifies the conjecture for the life-time utility of the agent.

Now, given the utility equation (A.20) and the dynamics of the factors, we can rewrite
the optimal condition for a learning choice (3.4). Notably, the expected growth component
drops out, so that the optimal choice indicator depends only on the learning and aggregate
variance:

s∗t = 1

[
1

2
(1− γ)B2ω2

t (0) + ft(1, σ
2
t , ω

2
t (0)) > ft(0, σ

2
t , ω

2
t (0))

]
. (A.28)

Using the optimal condition for s∗t+1 tomorrow to rewrite the recursive equation of the
volatility function (A.27) in the following way:

f(st, σ
2
t , ω

2
t (0)) = (1− β) ln(1− stχ) + βµ+ β

1

2
(1− γ)(BKt(st) + 1)2(ω2

t (st) + σ2
t )

+
β

1− γ
lnEst

t e(1−γ) max[ 1
2
(1−γ)B2ω2

t+1
(0)+ft+1(1,σ2

t+1
,ω2

t+1
(0)),ft+1(0,σ2

t+1
,ω2

t+1
(0))].

(A.29)

That is, the volatility function f can be obtained as fixed-point solution to the equation
above, given the evolution of the variance of the filtering error in (3.18) and (3.21).
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Using the solution to the equilibrium discount factor in (A.18), we can express the
equilibrium discount factor in terms of the underlying variables in the economy:

mt+1(st) = log β − µ− x̂t(st)−
1

2
(1− γ)2(BKt(st) + 1)2(ω2

t (st) + σ2
t )

− lnEst
t e(1−γ)[ft+1+

1

2
(1−γ)B2ω2

t+1(0)s
∗

t+1]

− (1 + (γ − 1)(1 +BKt(st))) ut+1(st)− (γ − 1)Bs∗t+1(xt+1 − x̂t+1(0))− (γ − 1)ft+1.

(A.30)

Using the equilibrium solution to the discount factor, we obtain that the risk-free rate
satisfies,

rft = − log β + µ+ x̂(st)−
1

2
(2γ − 1)(BKt + 1)2(ω2

t + σ2
t ) (A.31)

A.5 Dividend Asset

We follow a standard approach of Bansal and Yaron (2004) to solve for the equilibrium
price-dividend ratio in the economy.

Conjecture that the equilibrium price-dividend ratio satisfies

vt(st) = Hx̂t(st) + h(st, σ
2
t , ω

2
t (0)), (A.32)

We log-linearize the market return, which, using the dividend specification in (4.9),
the conjectured solution for the price-dividend ratio and the dynamics of the state, can be
expressed in the following way:

rd,t+1 = κ0 + ϕdµ+ (H(κ1ρ− 1) + ϕd)x̂t(st)− h(st, σ
2
t , ω

2
t (0))

+ (κ1HKt(st) + ϕd)ut+1(st) + κ1h(s
∗

t+1, σ
2
t+1, ω

2
t+1(0)) + κ1Hs∗t+1(xt+1 − x̂t+1(0)).

(A.33)

for endogenous log-linearization coefficients κ0 and κ1.

Using Euler conditions and the equilibrium solution for discount factor for the log-
linearized dividend return, we obtain that the loading H is given by

H =
ϕd − 1

1− κ1ρ
, (A.34)
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while the price-dividend volatility component satisfies a recursive equation

ht(st, σ
2
t , ω

2
t (0)) = ln β + κ0

+
1

2
(ϕd − 1 + κ1HKt(st))(ϕd − 1 + κ1HKt(st)− 2(γ − 1)(1 +BKt(st)))(σ

2
t + ω2

t (st))

+ lnEst
t eκ1ht+1+

1

2
(κ1H−(γ−1)B)2s∗t+1

ω2
t+1

(0)−(γ−1)ft+1 − lnEst
t e(1−γ)(ft+1+

1

2
(1−γ)B2s∗t+1

w2
t+1

(0)).

(A.35)

To solve for the approximating constants κ0 and κ1, we use the numerical procedure
discussed in Bansal et al. (2007), who develop a method to solve for the endogenous con-
stants associated with each return and document that the numerical solution to the model
is accurate.

A.6 Constant Volatility Case

When the income volatility is constant σt = σ2
0 , the variance of the filtering error becomes

a deterministic function of time since the last learning about the true state. In this case,
the optimal learning decision is purely time-dependent, so that the investors choose to learn
about the underlying state if the last time they did so was N or more periods ago.

Assume we know the optimal N, and consider the time interval from 1 to N. In equi-
librium, the agent starts filtering in period 1 and learns about the true state for a cost in
period N, afterwards the solution repeats itself.

The equilibrium volatility functions are non-random functions of time, so to simplify
the notations, denote them fi :

fi = f(0, σ2
0 , ω

2
i (0)), 1 ≤ i < N,

fN = f(1, σ2
0 , ω

2
N (0)).

Now we can rewrite the recursions in (A.27) as a system of linear equations (to simplify
the exposition, we consider the case N > 2):

f1 − βf2 = βµ+
1

2
β(1 − γ)(BK1(0) + 1)2(ω2

1(0) + σ2
0),

. . .

fi − βfi+1 = βµ+
1

2
β(1 − γ)(BKi(0) + 1)2(ω2

i (0) + σ2
0), 2 ≤ i < N − 1

fN−1 − βfN = βµ+
1

2
β(1 − γ)

(
(BKN−1(0) + 1)2(ω2

N−1(0) + σ2
0) +B2ω2

N(0)
)
,

fN − βf1 = (1− β) ln(1− χ) + βµ+
1

2
β(1− γ)(BKN (1) + 1)2(ω2

N (1) + σ2
0).

(A.36)

This system can be easily solved for equilibrium volatility functions fi, i = 1, 2, ...N.
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Now we need to make sure that the chosen N is indeed optimal, that is, the agent is not
better off deviating from the conjectured learning rule. If investors were to learn about the
state earlier than in the Nth period, their utility would be fN . To preclude this deviation,
we need to have that (see condition (A.28))

1

2
(1− γ)B2ω2

i (0) + fN < fi, (A.37)

for 1 ≤ i < N.

On the other hand, consider a scenario when investors fail to learn about the true state
at time N. By conjecture, the optimal behavior in period N +1 is to learn, therefore, from
the expression (A.27), the utility that the investors would get by deviating is given by,

f̃N = βµ+
1

2
β(1− γ)

(
(BKN (0) + 1)2(ω2

N (0) + σ2
0) +B2ω2

N+1(0)
)
+ βfN .

Following the optimality condition for the choice indicator (A.28), we then need to have
that

1

2
(1− γ)B2ω2

N (0) + fN > f̃N . (A.38)

In practice, we loop from a low value of N until we satisfy both optimality conditions
(A.37)-(A.38), solving a linear system (A.36) for the volatility functions fi. In numerical
calibrations we verify that the optimal N is always unique: when N is lower than optimum,
we violate the last condition (A.38), so that the agent can increase the utility by estimating,
rather than learning about the state for a cost; for N higher than optimum, (A.37) is not
satisfied, and investors would want to learn sooner.

We follow the same approach to find the volatility functions in the price-dividend ratio.
As hs are no longer random, we can rewrite their recursion in (A.35) much in the same way
as (A.36). The solution for the price-dividend volatility components then follows directly
as we already know the optimal choice indicator and utility functions fi. To solve for the
approximating constants κ0 and κ1, we use the numerical procedure discussed in Bansal
et al. (2007).

Now let us prove formally that if investors have preference for early resolution of un-
certainty, the frequency of costly learning increases when the agents get more risk-averse
or learning becomes less costly. Indeed, when γ > 1, we can express the constraint (A.37)
using the system of equations (A.36) as

0 >
fi − fN
1− γ

− 1

2
B2ω2

i (0) = −(1− β)2

1− βN
ln(1− χ)

1

1− γ
+ qi, (A.39)

where the term qi does not depend on the risk-aversion γ or learning cost χ parameters.
Notably, the sign of the inequality critically depends on γ > 1, that is, preference for early
resolution of uncertainty. When γ < 1, the inequality would reverse, and in this case, as we
discussed in Section 4.2, it is never optimal to learn for a cost, and N is infinity.
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It is easy to see that the right-hand side of the inequality (A.39) is unambiguously
increasing in the risk-aversion, and decreasing in the learning cost parameter. Hence, if
we start with an equilibrium solution to the model and increase the risk-aversion (decrease
learning cost), the optimality constraint on number of period N (A.37) gets monotonically
more restrictive. When the risk aversion rises high enough (learning cost drops low enough),
the constraint gets violated and the agent optimally chooses to decrease the number of
learning periods N. That is, the frequency of costly learning increases with the risk-aversion
coefficient and decreases with the costly learning parameter.
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Tables and Figures

Table 1: Summary Statistics: Data and Model

Mean Std Kurt Jump-year Jump
Dev Freq Contribution

Data:

Return 7.36 17.09 21.03 3.32 7.48

Model:

Constant Volatility:

Return with costly learning 6.70 15.49 17.69 4.84 7.16
Return, no costly learning 6.95 15.55 3.01 41.42 1.95

Time-Varying Volatility:

Return with costly learning 6.35 15.52 35.51 3.35 11.93
Return, no costly learning 6.22 13.94 3.17 44.78 1.99

Mean, standard deviation and kurtosis of returns, and frequency and variance contribution

of jumps. The first panel presents statistics in the data, while the second one – for the model

specifications with constant and time-varying volatility, respectively. No costly learning

refers to the case when the agent has no option to learn the true state for a cost. Jump-year

frequency is the average frequency of years with jumps detected by the jump statistics, in

years. Jump Contribution measures the average percent contribution of large price moves

to the total return variance. Data are daily inflation-adjusted market returns from 1926 to

2008. Model statistics are based on the average across 100 simulations of 85 years of data.

Jump-detection statistics are based on 1% significance level.
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Table 2: Jump Correlations: Data and Model

-2y -1y 0y 1y 2y

Data:

Growth Rate -0.15 -0.08 -0.08 -0.07 0.10
(0.16) (0.14) (0.10) (0.12) (0.15)

Macro vol 0.18 0.23 0.26 0.26 0.20
(0.11) (0.10) (0.09) (0.11) (0.10)

Return Vol 0.10 0.11 0.12 0.03 0.01
(0.14) (0.15) (0.15) (0.13) (0.13)

Costly Learning Model:

Growth Rate 0.00 0.00 0.00 0.00 0.00
Macro Vol 0.07 0.09 0.16 0.13 0.12
Return Vol 0.04 0.07 0.11 0.09 0.06

Model Without Costly Learning:

Growth Rate 0.00 0.00 0.00 0.00 0.00
Macro Vol 0.00 0.00 0.00 0.00 0.00
Return Vol 0.00 0.00 0.00 0.00 0.00

Correlation of return jump indicator with past and future economic growth rate, aggregate

economic volatility and conditional variance of returns, at 1 and 2 year leads and lags. The

data are annual observations of real consumption growth and returns from 1930 to 2008.

Model statistics are population values at annual frequency.
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Table 3: Estimation of Consumption Volatility

∆c pd spread R2

Projection:

∆̂c 0.351 0.006 -0.004 0.268
(0.063) (0.006) (0.003)

σ̂2 × 104 22.358 -0.571 5.046 0.232
(33.241) (1.057) (2.112)

GARCH Model:

ρ0 σ̄ αc βc R2

∆̂c 0.30 1.81e-05 0.72 0.18 0.10
(0.11) (1.5e-05) (0.14) (0.09)

Estimation of the conditional consumption volatility. Top panel presents slope coefficients
and R2 in the projections of consumption growth and squared consumption residual on
price-dividend ratio and junk bond spread. Bottom panel presents estimation results of
the AR(1)-GARCH(1,1) specification ∆ct+1 = µ0 + ρ0∆ct + σ̂tǫc,t+1, σ̂

2
t+1 = σ̄ + αcσ̂

2
t +

βc(σ̂tǫc,t+1)
2. Annual observations of real consumption growth, price-dividend ratio and

AAA-BAA junk bond spread from 1930 to 2008. Standard errors are in parentheses.

Table 4: Jump Predictability: Data and Model

Data R2,% Model R2,%

Consumption Variance 6.28 4.92
Consumption Growth 0.60 1.94

Predictability of jump-years by the consumption volatility and realized consumption growth.

The table reports R2 in probit regressions of jump-year indicator on the lags of the level or

variance of consumption growth. Data is based on annual observations of consumption and

returns from 1930 to 2008. Model output is based on 100 simulations of 85 years of daily

data aggregated to annual horizon.
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Table 5: Configuration of Model Parameters

Preferences and Learning β γ χ

0.997∗ 10 8.5%

Consumption and Dividend µ ρ σ ϕe ϕd

1.92∗ 0.38∗ 1.39∗ 0.15∗ 5

Volatility σw ν

1.37e-02∗ 0.77∗

The model is calibrated on daily frequency. Stars indicate annualized parameter val-

ues. On average, there are 22 × 12 trading days a year, so the annualized values are,

12 × 22µ, ρ12×22,
√
12 × 22σ,

√
12× 22σw, ν

12×22,
√
12× 22ϕe, β

12×22. Mean and volatility

parameters are in percent.

Table 6: Consumption Dynamics: Data and Model

Data Model
Estimate S.E. Median 5% 95%

Mean 1.92 (0.29) 1.88 1.24 2.53
Vol 2.13 (0.59) 2.18 1.81 2.62
AR(1) 0.45 (0.11) 0.51 0.36 0.65
AR(2) 0.16 (0.14) 0.14 -0.06 0.36
AR(5) -0.01 (0.09) -0.01 -0.25 0.18

Calibration of consumption dynamics. Data is annual real consumption growth for 1930-

2008. Model is based on 100 daily simulation of 85 years of consumption growth aggregated

to annual horizon. Standard errors are Newey-West with 10 lags.
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Table 7: Estimation of GARCH-Jump Model

Data Model
Estimate S.E. Mean S.E.

σv 0.01 (0.01) 0.01 (0.01)
βv 0.85 (0.03) 0.88 (0.13)
αv 0.07 (0.02) 0.01 (0.01)
λ0 -0.06 (0.03) -0.03 (0.10)
λl 73.33 (32.46) 62.62 (64.19)
µj -0.07 (0.04) 0.00 (0.02)
σj 0.06 (0.02) 0.07 (0.02)

MLE estimation of parametric GARCH-jump model. Data is monthly real returns from

1926 to 2008. Model is based on 100 simulation of 85 years of daily returns aggregated to

monthly horizon.
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Figure 1: Time-series of Returns

Daily observations on real market returns from 1926 to 2008. Grey regions correspond to

periods with at least one significant large price move, at 1% significance level.

Figure 2: Predicted Probability of Large Price Moves
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Annual jump statistics (solid line with values on the left Y-axis) and the predicted probabil-

ity of large price moves (dashed line with values on the right Y-axis), based on the ex-ante

consumption variance. Stars indicate years with at least one large price move.
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Figure 3: Jump Correlations in the Data
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Correlation of return jump indicator with the level of economic growth rate (left panel),

aggregate economic volatility (middle panel) and conditional variance of returns, at up to 5

year leads and lags. Top panel is based on annual observations of real consumption growth

and returns from 1930 to 2008; middle and bottom panels are based on industrial production

and return data from 1926 to 2008 at quarterly and monthly frequency, respectively.
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Figure 4: Income and Return Simulation in Constant Volatility Model

Simulation of the economy for 85 years in constant volatility model. Top panel depicts

daily income growth. The next two panels show daily market returns in the models when

the agent has an option to learn the true state for a cost and with no option to learn,

respectively. Red stars indicate days of costly learning, while grey regions correspond to

the years with at least one significant jump, detected by the jump statistics.
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Figure 5: Income Simulation in Time-Varying Volatility Model

Simulation of the economy for 85 years in time-varying volatility model. Top panel depicts

daily income growth. The next two panels show conditional volatility of income growth and

the volatility of filtering error, annualized in percent.
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Figure 6: Return Simulation in Time-Varying Volatility Model

Simulation of the economy for 85 years in time-varying volatility model. The two panels

show daily market returns in the models when the agent has an option to learn the true

state for a cost and with no option to learn, respectively. Red stars indicate days of learning,

while grey regions correspond to the years with at least one significant jump, detected by

the jump statistics.
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Figure 7: Costly Learning Frequency in Time-Varying Volatility Model
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Average number of periods until next costly learning update, in years, for a given filtering

variance and 3 levels of income volatility. Based on a long simulation of the time-varying

volatility model. Volatilities are annualized, in percent.

Figure 8: Change in PD Ratio Due to Revision in Expected Growth

Scatter plot of the change in price-dividend ratio, ∆vt, versus the revision in expected

growth xt − x̂t(0). Based on a long simulation of the time-varying volatility model.
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Figure 9: Frequency of Jump-Years
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of the jump-detection test. Data (solid line) is based on daily observations on real market

returns from 1926 to 2008, while model average (dashed line) and 5% − 95% confidence

band are based on 100 simulations of the time-varying volatility model.

Figure 10: Model Frequency of Large Moves
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Model-implied distribution of time between years with detected large asset-price moves and

an exponential distribution fit. Based on a long simulation of the time-varying volatility

model.
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