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We study the lattice model of a random alloy whose Hamiltonian is 3¢ = — X, ;¢ ala, .+ 3, eala,,
where § are nearest-neighbor vectors and €, is a random site-diagonal energy uniformly distributed over
the interval 0 <€, < W. We prove that the integrated density of states per site N"! Z(E) satisfies the
inequality, N*' Z(E) = C,e€2E, where C, and C, are constants.

I. INTRODUCTION

Recently, much theoretical' and experimental®
efforts have gone into understanding the many-body
properties of alloys. In this paper we study the
simplest theoretical model of such an alloy, name-
ly, one in which the hopping matrix elements are
periodic, as in a pure system, but in which the
site-diagonal energies are random variables. In
particular, we study the case when these site-diag-
onal energies are uniformly distributed over the
range of energy from 0 to W. According to the
well-known argument of Lifshitz, 3 one expects to
realize arbitrarily large regions where the site-
diagonal energies are arbitrarily close to zero.
This reasoning shows that the addition of such ran-
dom potentials does not change the location of the
low-energy band edge. Lifshitz’s argument leads
to the estimate for the density of states, p(E), at
energies just above the band edge (taken to be at
Zero energy),

- 3/2
p(E)~e™/ETT (1)

where K is a constant.

In many ways the alloy problem resembles that
of phase transitions. Recently, Ma* has attempted
to apply the renormalization-group arguments of
Wilson® to this problem. His result, in marked
disagreement with that, [Eq. (1)] of Lifshitz, is

p(E)~E* , (2)

where the critical index B is found to be about 0. 80.
Inasmuch as Lifshitz’s argument is physically so
appealing, we have sought to give a rigorous proof
of his estimate. Indeed, in one dimension his es-
timate becomes p(E)~e™’/F"'® and this result has
been rigorously confirmed by Eggarter.® Although
we have not been able to prove Lifshitz’s result in
the three-dimensional case, we have obtained rig-
orously the weaker result that there exists an en-

ergy E, such that
NZ([E)< C,e 2/ | E<E, (3)

where C, and C,are constants and N™! Z(E) is the in-

8

tegrated density of states per site:
NZ(E) = [Fp(E")AE" @)

In view of the form of Eqs. (1) and (3) we define a
critical index y through

-InZ(E)~E7, E-0. (5)

Then our work yields the rigorous lower bound y
= 1 whereas Lifshitz’s argument suggests that y
=3, Infact, Lifshitz’s value is a rigorous upper
bound.

II. PROOF OF BOUND

The model we consider is described by the Ham-
iltonian
Hp=—2o taIa,,5+E€,aZa, , (6)
7,0 r

where a! creates an excitation at the lattice site at

7¥. For convenience we treat a simple cubic lattice
in the form of a rectangular parallelepiped with
N,, N,, and N, lattice sites on its three edges. In
Eq. (6), 6 is summed over the nearest-neighbor
vectors of the 7th site. We do not introduce peri-
odic boundary conditions, so that sites on the bound-
ary of the system have fewer neighbors than those
in the interior. Also, in Eq. (6) €, is a random
site-diagonal energy. We assume that each g, is
an independent random variable governed by a
bounded probability distribution, i.e., one for
which

pl€)=0 for e€<e, or €>¢; 7)

and for which p(€) is bounded for €, <€<€;. For
simplicity we set

ple)=w?, 6 0<e<W (8a)
p€)=0,

From what follows it will become clear that the
assumption of this special form for p(€) is inessen-
tial to our arguments. We will study the density

of single-particle states of ¥¢;, i.e., those for
which Z,a} a,=1. Accordingly, it is immaterial as
to whether the a,’s obey Fermi or Bose statistics.

otherwise . (8b)
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It is convenient to shift the zero of energy, so
that the band edge, when all the €,’s vanish, occurs
at zero energy. We therefore study the Hamilto-
nian

JC({Er})= 2 ta:(ar —@ypi0)+ Z>€r a:ar . (9)
7,6 r

Furthermore, it is convenient to study the inte-
grated density of states Z(E). For a fixed set of
¢,’s, Z(E,{e,}) is defined to be the number of sin-
gle-particle states of 3¢({€,}) having energy less
than E. Ultimately, we are interested in the con-
figurationally averaged density of states Z(E), giv-
en as

Z(E)= f 2B, {, D11 [ple,)de,] . (10)

Our proof of Eq. (3) involves repeated use of the
following theorem.”

Let H and H' be two NXN Hermitian matrices
such that

H=H'+V, (11)

where V is a non-negative NXN Hermitian matrix,
and let Z(E) and Z'(E) be their respective integrated
density of eigenvalues. Then the set of eigenvalues
of H' are lower bounds for those of H, or equiva-
lently,

Z(E)s Z'(E) . (12)

Here a non-negative operator V is one which can
be written in bra-ket notation in the form

V=2 |ndv,(n| , v,20. (13)

We now divide the total system of lattice sites
into subsystems. That is, if & denotes the lattice
sites of the system, we write

Q=29 , (14)
i

where §&; denotes the lattice sites of the ith subsys
tem, which consists of a parallelepiped of sites
having N,;, N,;, and N,; sites on its three edges.
We now show that

Za(E)< 2 Zo,(B) (15)

where the subscript on the single-particle density
of states indicates the system of sites to which it
pertains. To prove Eq. (15) we write

xg=23€g' +Z; V” (16)
i i<y
in the notation of Eq. (15).
of the ith subsystem is

3o, = 2 Ltalla, -a,.)+ 20 €,ala, , 17)
r€qQ; 6 reQ;

Here the Hamiltonian
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where, as in Eq. (6), we do not impose periodic
boundary conditions. The interaction between sub-
systems is of the form

Viy= ' ta} -a})a, -a,) , (18)
req;
r'eq;
where the double prime indicates that only terms
for which » and 7’ are nearest neighbors are to be
included. Clearly V;; is non-negative in the sense
of Eq. (13). Hence, according to the theorem,
dropping the interaction terms in Eq. (16) cannot
decrease the density of states. However, in the
absence of these interaction terms the density of
single-particle states is simply the sum of the den-
sities of states of the subsystems. Thus Eq. (15)
is proved.
For simplicity we now introduce an inequality in
terms of a discrete probability distribution for the
€,’s. According to the theorem we can write

zEeD<zE 5D, (19)

if 6, <€, for all ». Now we apply Eq. (19) by taking,
for each 7,

6,=0 if O<e¢,<a, (20a)
(20b)

Use of Egs. (19), (20), and (8) allows us to write

O,=a if a<e€, <W.

Z(E)< (Z)) z(E,{s,)I1 p(5,) , (21)

where the ¢’s are summed over the two values 0
and a, and

p0)=a/w (22a)
pla)=1-5(0) . (22b)

To bound Z(E) for small E we choose the subsys-
tems to be as large as possible within the restric-
tion that

A"/N,>E , (23)

where N; is the number of sites in the ith subsys-
tem and A’’ is the constant in Eq. (A10). Thus, we
write

$A""/E<N;<A"/E . (24)

Furthermore, we consider energies small enough
that N; is large enough for the bounds in Eq. (A10)
to hold. With this construction it is clear that the
lowest single-particle energy level of any subsys-
tem having one or more nonzero ¢’s has an energy
greater than E, so that for such subsystems Z(E,
{o,-})=0. Since only subsystems having all ¢o’s zero
contribute to Eq. (15) we may write

Zq(E)< ‘E(a/w)"‘ Zq,(B,{0,=0}) . (25)
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We need to evaluate Zg,(E,{0,=0}), which is the
density of states of the unperturbed Hamiltonian,
i.e., that of Eq. (17) with all €,=0. The single-
particle energies for this case are readily found to
be

_ Ir mmw nr
E,,m,"-t(6—2cos N, -2cos Ny, —2cosN ),

zi

(26)
where I, m, and n are integers satisfying 0<1

<N,; 0sm<Ny; and 0sn<N,;. Apart from Egyy,
the lowest single-particle energy level occurs for
either I, m, or z equal to 1 and is of order N~2/3,
Since N“2/3» N we see that for sufficiently large
Nwe may set Zq,(E,{0,=0})=1. This evaluation,
together with the inequality of Eq. (24), shows that
Eq. (25) implies that there exists an E, such that

N-IZO(E)S cle(A’/E)ln(a/W) , for E<E0 , (27)

where C, is a constant. This result is equivalent
to that stated in Eq. (3).

III. DISCUSSION

The variational principle can be used to obtain
upper bounds for the energies and thence lower
bounds for Z(E). Use of Lifshitz’s wave functions
as trial functions shows that his result, [Eq. (1)],
is a lower bound for Z(E).

ACKNOWLEDGMENTS

The author would like to thank Dr. B. Nickel for
stimulating my interest in this problem. I also
appreciate the helpful comments of Dr. R. Stinch-
combe and Professor R. Weinstock.

APPENDIX A: MINIMUM ENERGY FOR SINGLE-DEFECT
POTENTIAL

In this Appendix we obtain rigorously a formula
for the minimum single-particle energy in the
presence of a single-defect potential. To do this,
we use the well-known® procedure of solving the
Schrodinger eigenvalue problem by constructing the
Green’s function

?
Galr, r)=2 L0 (A1)
n E - En
where 1,(r) is the nth eigenfunction with energy
eigenvalue E, when all but one of the ¢’s in Eq. (17)
are zero. In particular, we take o,.. =a, so that
there is a site-diagonal repulsive potential at that
site of strength a. In the absence of defect poten-
tials, the Green’s function, denoted G%(»,7’), is

Pa)]* ga@r’)
G, )= L (A2)
E\T " (E —ES)
where $2(») and E? are the nth eigenfunction and
eigenvalue, respectively, in this case.

We may express G in terms of G° as
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FIG. 1. Schematic behavior of G% (', ).

Gelr,v")=G%(r, ")+ G r, »' ) tGY(r'", 7') . (A3)

Here we have introduced the { matrix, which satis-
fies

t=a+aGdl",»'")t, (A4)
and thus is
t=all -aG%(",»'")] . (A5)

Based on the fact that the poles of Gg(»,7’) yield
the eigenvalues, an analysis of Eqs. (A3) and (A5)
shows that eigenvalues occur when (i) E =EQ, in the
case when E? is a degenerate eigenvalue of the sys-
tem in the absence of defect potentials, or (ii) when

1=aG%(",7»""), i.e., when

0f.77\ ] 2
a'l:Gg(r",r")=Z)' E(V_I)Z(! . (A8)

n

To find the minimum single-particle eigenvalue we
need only consider case (ii), i.e., Eq. (A6). Since
G%('’,7'") has poles at E%, and since dG%('’,7'")/
dE is negative for E # E?, the right-hand side of Eq.
(A6) has the familiar form shown in Fig. 1.

The discussion in Appendix B shows that for a
three-dimensional system E., the minimum single-
particle energy for a==, i.e., for an infinite po-
tential at »’’, is of order N!:

NE.~gr'")!, N=w (A7)

where gy(r’’) is defined in Eq. (B4a). For finite a

it is clear that E<E.. A treatment similar to that
leading to Eq. (B3) shows that for a three-dimen-

sional system the minimum single-particle energy
for finite a, denoted E,, obeys the inequality

(1 -v€)gor’')= (NE,) ! —a™ = gor"") , (A8)

where €=NE. and 7 is of the order N™'/3, Thus,
for sufficiently large N we have that E, is of order
N7
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NE,~[a+g,(r'")]*, N~ (A9)

In particular, Eq. (A8) shows that for a >0 and for
sufficiently large N there exists a nonzero A’’ such
that

E,>A"/N . (A10)

APPENDIX B: PROOF THAT E_ IS OF ORDER N'!

In this Appendix we show that E.. is of order N
for large N. We define E. as the lowest single-
particle energy when the defect potential at '’ is
infinite. As discussed in Appendix A, the eigenval-
ue condition, in this case, may be written

0(.27y 2
» e g g<p =g,

D (B1)

where EY is the energy of the next-to-lowest energy
eigenvalue of the perfect crystal. It is clear from
Fig. 1 that a solution to Eq. (B1) does exist and is
unique. We now set E.. =¢€/N, and note that the low-
est-energy eigenvalue and eigenvector of the per-
fect crystal are, respectively, E3=0 and yJ(r)
=N"1/2 whence we may write

1 _ , | !!0(‘)"”) l 2
€ ‘? E0—¢/N (B2)

where the prime indicates that the lowest-energy
term which gives rise to the left-hand side of Eq.
(B2) is to be omitted from the summation. Since
E? — ¢/N must be positive, we have the inequality

A. BROOKS HARRIS 8

(1 -7 gor'"")> €= gr") (B3)
where

Solr'")= ?' Lﬂg:ﬁ (B4a)
and

y=(EJ™. (B4b)
We may write Eq. (B3) as

(1 -ve)gor' )= e=gor'")* . (B5)

For one- and two-dimensional systems, g,(r) di-
verges in the limit N— ~. We will adopt the sim-
ple, although perhaps over-restrictive, definition
of a three-dimensional system as one for which
N,/N, and N,/N, remain of order unity as N -,
With this definition it is straightforward to establish
bounds for g,(») for a three-dimensional system of
the form

0<A=g,lr)= B<wo (B6)

where A and B are constants independent of N and
7 for sufficiently large N. Then since E}~N"2/3,
Eqgs. (B4b), (B5), and (B6) imply that for sufficient-
ly large N,

(1-A'/NY3)=eg,r')=1, (B7)
where A’ is a constant, independent of N and 7.
From Eq. (B7) we conclude that

NE.~goyr'')', N=wo (B8)

*Work supported in part by the National Science Foundation.

tJohn Simon Guggenheim Fellow, 1972-1973. Permanent
address: Department of Physics, University of Pennsylvania,
Philadelphia, Pa. 19104.

P, Soven, Phys. Rev. 156, 809 (1967), D. W. Taylor, Phys.
Rev. 156, 1017 (1967).

2E. C. Svensson, W. J. L. Buyers, T. M. Holden, R. A.
Cowley, and R. W. H. Stephenson, AIP Conf. Proc. §, 1315
1972).

’I. M. Lifshitz, Adv. Phys. 13, 483 (1964).

4S. K. Ma, report of work prior to publication (1973). (Note
added in proof. This work has been retracted.)

K. G. Wilson, Phys. Rev. B 4, 3174 (1971).

°T. P. Eggarter, Phys. Rev. B 5, 3863 (1972).

'R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York 1953), Vol. I, p. 133.

8R. G. Newton, Scattering Theory of Waves and Particles,
(McGraw-Hill, New York, 1966).



