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ABSTRACT 

	
FINDING COMMON GROUND TO TREAT PRIMARY AND METASTATIC 

CANCER: THE POTENTIAL OF TARGETING TUMOR STROMA  

 

Albert Lo 

 

Ellen Puré 

 

Primary carcinomas and metastases are complex organ-like structures composed of 

malignant parenchymal epithelial tissues and a desmoplastic stroma formed by 

accumulation of hematopoietic cells, mesenchymal stromal cells and extracellular matrix. 

The crosstalk between malignant epithelial cells and tumor stroma is becoming 

increasingly appreciated as a key determinant in tumor development, progression and 

metastasis, as well as inducing resistance to various cancer treatments including 

chemotherapy, radiotherapy and immunotherapy. Mechanistic understanding of how the 

tumor-stromal interaction contributes to tumor progression and therapeutic resistance will 

advance cancer therapies and improve clinical management, especially for patients with 

metastatic disease. Fibroblast activation protein (FAP) is a membrane surface protease 

found overexpressed in cancer-associated stromal cells. Overexpression of FAP is 

associated with tumor progression, metastasis and recurrence, and predicts a poorer 

prognosis in many types of human tumors. The central goal of my thesis project is to 

investigate whether FAP protease and/or FAP protease-expressing stromal cells play 
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essential roles in tumor progression and metastasis. In collaboration with Drs. Steven 

Albelda and Carl June’s groups, we generated chimeric antigen receptor (CAR) T cells 

redirected against FAP+ stromal cells to study their impact on tumor progression. 

Conditional depletion of FAP+ stromal cells by FAP-CAR T cells restrains tumor 

progression without causing severe toxicity. Mechanistic investigations revealed that 

FAP+ stromal cells promote tumor growth via immune suppression and immune-

independent remodeling of the stromal microenvironment. Additionally, using FAP-

deficient mice, I found that FAP protease promotes early malignant cell seeding and 

pulmonary metastatic outgrowth, possibly through regulating coagulation pathways and 

the inflammatory response, respectively. Finally, I observed that FAP protease promotes 

pancreatic cancer development, as its deletion delays the progression of preneoplastic 

lesions and tumor formation in a genetically engineered mouse model of pancreatic 

ductal carcinoma. FAP protease is also essential for inducing pancreatic cancer resistance 

to necrotic cell death and promoting metastasis and outgrowth in multiple target organs. 

Together, these findings demonstrate that molecular and cellular targeting of FAP 

represents a promising therapeutic approach for a variety of solid tumors.  
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CHAPTER 1 – Introduction 

 

Fibroblasts and desmoplastic response in cancer 

Carcinogenesis is a multistep process that involves the crosstalk between parenchymal 

epithelial cells and various types of mesenchymal stromal cells, including fibroblasts, 

endothelial cells, inflammatory and immune infiltrates, that ultimately drives the 

development of clinically apparent tumors (Bhowmick et al., 2004b; Egeblad et al., 2010; 

Hanahan and Coussens, 2012; Jacob et al., 2012; Kalluri and Zeisberg, 2006). Across 

tumor types, this evolutionary process shares many aspects with the wound-healing 

response in which fibroblasts play critical roles in orchestrating inflammation, 

angiogenesis and generation of connective tissue stromal components required for tissue 

homeostasis and repair. Upon encountering tissue damage, fibroblasts become activated 

and synthesize extracellular matrix (ECM) components, including collagen, hyaluronic 

acid (HA) and fibronectin, and ECM remodeling proteases, resulting in a reactive stroma 

termed the desmoplastic response. This provisional stroma will eventually resolve when 

reactive fibroblasts undergo apoptosis after wound healing. Interestingly, tumors exhibit 

heightened accumulation of cancer-associated fibroblasts (CAFs) and deposition of ECM, 

and have been referred to as wounds that do not heal (Dvorak, 1986; Dvorak, 2015). 

Emerging evidence reveals that CAFs exhibit phenotypic and functional heterogeneity, 

and can regulate determinant processes of tumor initiation, progression and metastasis. 

Thus, it is critical to advance our understanding of CAF biology and develop successful 

strategies to target the epithelial-stromal cell interaction.  
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Molecular markers defining CAFs reveal their heterogeneity  

CAFs are found in virtually all human carcinomas, but their prevalence can vary between 

tumor types and even within the same tumor type. In general, pancreatic, non-small-cell 

lung, colorectal, breast and prostate cancers usually contain high numbers of CAFs, 

whereas ovarian, thyroid, renal, brain, and head and neck cancers exhibit fewer (Garin-

Chesa et al., 1990; Smith et al., 2013). Similar to fibroblasts, CAFs are often identified by 

their elongated fibroblastic appearance, a spindle-like shape. They are the nonvascular, 

nonepithelial and nonhematopoietic cells found in tumors. Currently, there is no 

consensus on the molecular definition of CAFs (Kalluri and Zeisberg, 2006; Ohlund et 

al., 2014; Orimo and Weinberg, 2007; Pietras and Ostman, 2010). Several molecular 

markers have been used to define CAFs including alpha-smooth muscle actin (α-SMA), 

fibroblast-specific protein 1 (FSP-1), cell membrane serine protease fibroblast activation 

protein (FAP), vimentin, desmin, neuron-glial antigen-2 (NG2), platelet-derived growth 

factor receptor-β (PDGFR-β), fibroblast-associated antigen, podoplanin, and prolyl 4-

hydroxylase. Nonetheless, an emerging body of evidence reveals that CAFs are 

heterogeneous and that these markers do not necessarily identify the entire CAF 

population. Moreover, the expression of these markers is not restricted to CAFs or even 

to the fibroblast lineage. For instance, α-SMA is a well-established CAF marker that has 

been used to identify CAFs with a myofibroblast-like phenotype (Desmouliere et al., 

2004). However, α-SMA expression can also be detected in various normal fibroblasts 

(Berdiel-Acer et al., 2014; Hawinkels et al., 2014), as well as other cell types including 

visceral smooth muscle cells, smooth muscle cells surrounding blood vessels, and 

pericytes (Wendling et al., 2009). Another commonly used CAF marker, FSP-1, is also 
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not limited to CAFs, as its expression can be detected in tumor cells undergoing 

epithelial-to-mesenchymal transition (EMT) or in macrophages during liver injury 

(Okada et al., 1997; Osterreicher et al., 2011). FAP is another robust CAF marker 

originally found highly expressed in various solid tumors but not most quiescent stromal 

cells (Garin-Chesa et al., 1990; Scanlan et al., 1994). However, its expression can be 

detected in mesodermal cells in multiple tissue types under homeostatic conditions and in 

tissues that undergo active remodeling (Acharya et al., 2006; Bae et al., 2008; Mathew et 

al., 1995; Niedermeyer et al., 2001; Wang et al., 2008). These observations indicate that 

CAF is a heterogeneous population and may also exhibit functional diversity to regulate 

tumor progression. Furthermore, since there is no single marker that can exclusively 

define the entire CAF population, it is possible that experimental findings targeting a 

certain CAF population may vary and may also depend on the tumor types studied. 

 

Origin of CAFs  

The origin of CAFs can be attributed to multiple sources (Jacob et al., 2012). Normal 

fibroblasts, stellate cells and mesenchymal stem cells (MSCs) within the parenchymal 

tissues contribute to the makeup of CAFs present within tumors (Bachem et al., 1998; 

Kojima et al., 2010; Kordes et al., 2009; Quante et al., 2011; Ronnov-Jessen and 

Petersen, 1993). CAFs may also derive from several cell types that undergo trans-

differentiation. For instance, non-transformed epithelial cells can undergo EMT in 

response to stimuli derived from the tumor microenvironment and contribute to the 

generation of CAFs (Iwano et al., 2002; Petersen et al., 2001). Moreover, a lineage 

tracing study demonstrates that endothelial cells can undergo endothelial-to-
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mesenchymal transition (EndMT), a process that involves downregulation of their CD31 

expression and concomitant upregulation of FSP-1, and become CAFs to drive tumor 

progression (Zeisberg et al., 2007). α-SMA+ or FSP-1+ CAFs can also originate from 

adipocytes or adipose tissue-associated stromal cells (Bochet et al., 2013; Jotzu et al., 

2010; Kidd et al., 2012). Additionally, bone marrow-derived fibrocytes or MSCs can be 

recruited into tumors and differentiate into CAFs (Direkze et al., 2004; Kidd et al., 2012; 

Mishra et al., 2008; Quante et al., 2011). Collectively, these studies demonstrate that 

preneoplastic epithelial cells or established tumors instigate local and/or systemic 

changes to drive the formation of heterogeneous CAFs to enable malignant progression. 

The contribution of CAFs from each source described above is likely to vary depending 

on the experimental conditions, specific tumor type, and stage of tumor progression. 

 

Stromagenic switch to promote tumor initiation, progression, metastasis and 

therapeutic resistance 

Figure 1-1. The stromagenic switch. 
During tumorigenesis, stromal fibroblasts can 
promote transition from tumor-resistant to 
tumor-permissive environment, drive 
neoplastic transformation of epithelial cells, 
promote tumor growth, progression, and 
metastasis and incite therapeutic resistance 
by regulating ECM remodeling, 
angiogenesis, inflammation and anti-tumor 
immunity. Such stromal-cell reprogramming 
can occur by transcriptional, genetic and 
epigenetic regulation. Targeting and/or re-
engineering tumor-promoting stroma may 
have therapeutic implications across a broad 
spectrum of solid tumors.  
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During tumorigenesis, normal fibroblasts and MSCs may have the ability to keep the 

parenchymal epithelial compartments under surveillance. This concept was first 

illustrated by employing normal embryonic fibroblasts to inhibit growth of polyoma 

virus-transformed cells via a contact inhibition-dependent mechanism (Stoker et al., 

1966). This observation was also noted in normal fibroblasts from other sources (Flaberg 

et al., 2011). Interestingly, conditional inactivation of the TGF-β type II receptor gene in 

mouse fibroblasts was shown to enable transgenic mice to develop lethally aggressive 

tumors derived from the forestomach and prostate epithelium. This finding provides 

compelling evidence that normal fibroblasts have the potential to prevent epithelia from 

becoming tumorigenic and that genetically modified fibroblasts can be sufficient to drive 

tumorigenesis (Bhowmick et al., 2004a). Subsequently, several reports revealed that 

PTEN, p53 and IKKβ signaling pathways in fibroblasts could play critical roles in 

restraining the tumorigenic potential of multiple solid tumors using genetically 

engineered mouse models (Lujambio et al., 2013; Pallangyo et al., 2015; Trimboli et al., 

2009). In addition, fibroblast-derived HIF-1α and asporin were shown to inhibit breast 

cancer tumorigenesis and progression, respectively (Kim et al., 2012; Maris et al., 2015). 

Taken together, in addition to the immune-mediated tumor-suppressive mechanisms, the 

stromal surveillance programs may also explain why certain tumors found at autopsy 

appear to be in dormant states (Bissell and Hines, 2011).  

 

Based on these observations, preneoplastic parenchymal tissues and/or established tumors 

must evolve to overcome the intrinsic stromal fibroblast-mediated barriers and transition 
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tumor-suppressive fibroblasts into tumor-supporting CAFs. Indeed, many studies have 

demonstrated that normal fibroblasts are functionally distinct from CAFs. Prostatic CAFs 

were found to be more proliferative and less prone to contact inhibition than normal 

prostate fibroblasts (Madar et al., 2009). Moreover, prostatic CAFs were shown to 

undergo increased anaerobic glycolysis and produced more lactate with respect to normal 

prostatic fibroblasts, a phenomenon known as the Warburg effect, to drive EMT and 

metastatic dissemination (Fiaschi et al., 2012). Colonic CAFs were demonstrated to 

enhance the proliferation and migration of tumor cells at a higher capacity compared to 

that of normal colonic fibroblasts (Berdiel-Acer et al., 2014). Breast CAFs exhibited 

higher capacity to synthesize matrix and contract collagen gels, a measure of their matrix 

remodeling ability, to enhance tumor cell invasion compared to normal mammary 

fibroblasts (Calvo et al., 2013). Gastric and dermal CAFs were found to be more capable 

of driving inflammation and angiogenesis than their normal counterparts (Erez et al., 

2010; Quante et al., 2011). These functional differences between CAFs and their normal 

counterparts have been attributed to genetic or epigenetic changes that drive the 

malignant phenotypes. Although frequent somatic mutations in PTEN and TP53 were 

reported in breast CAFs (Kurose et al., 2002; Patocs et al., 2007), experimental 

approaches utilized by these studies have been criticized. Isolation of limiting numbers of 

CAFs from microdissected formalin-fixed, paraffin-embedded tissues followed by highly 

multiplexed PCR-based analyses may have generated artifacts in these studies (Campbell 

et al., 2009). Some studies indicated lack no frequent somatic mutations in CAFs (Hosein 

et al., 2010; Qiu et al., 2008; Walter et al., 2008). Future studies with fully controlled and 

side-by-side comparison of the analytical procedures are required to address these issues 
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(Weinberg, 2008). On the other hand, several studies demonstrated that CAFs from 

multiple human solid tumors exhibited distinct promoter methylation patterns that 

distinguished them from their normal counterparts, indicating such stromagenic switch 

can occur by epigenetic regulation of gene expression (Hanson et al., 2006; Hu et al., 

2005; Jiang et al., 2008).  

 

Further studies demonstrated that normal fibroblasts could be reprogrammed into CAFs 

to drive tumor progression, invasion, metastasis and therapeutic resistance by modulating 

various aspects of the tumor microenvironment including ECM remodeling, 

angiogenesis, inflammatory and immune responses (Bronisz et al., 2012; Jacobetz et al., 

2013; Lee et al., 2015; Mitra et al., 2012; Procopio et al., 2015; Provenzano et al., 2012; 

Shimoda et al., 2014; Valencia et al., 2014; Zhang et al., 2015). Intriguingly, once normal 

fibroblasts were reprogrammed, the CAF phenotype could persist in vitro even in the 

absence of continued exposure to the stimuli (Orimo et al., 2005). Nonetheless, it should 

be noted that CAFs might still remain some tumor inhibitory mechanisms that can 

impede tumor progression. For instance, certain primary human breast CAF lines 

secreted Slit ligands and when they bound to their cognate receptors, Robo1, expressed 

by human breast cancer cells, activation of Robo1 signaling restrained tumor growth via 

inhibiting PI3K/Akt pathway (Chang et al., 2012).  

 

CAFs remodel ECM and promote angiogenesis  

One of the distinguishing features of CAFs is their ability to synthesize various matrix 

components and remodel the tumor stroma by expressing matrix modification enzymes.  
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By regulating the synthesis and remodeling of the tumor stroma, CAFs can drive tumor 

progression, metastasis and therapeutic resistance through cell-autonomous and non-cell-

autonomous fashions. HA and collagen, two of the major matrix components produced 

by CAFs, could induce tumor cell proliferation, invasion and metastasis through the 

CD44 or collagen receptors, respectively (Aguilera et al., 2014; Draffin et al., 2004; 

Valencia et al., 2012; Wang and Bourguignon, 2006; Zhang et al., 2013). Expression of 

HA and versican could also potentiate lymphangiogenesis, angiogenesis and macrophage 

recruitment to promote tumor growth (Kobayashi et al., 2010; Koyama et al., 2007; 

Koyama et al., 2008). Another ECM component, fibronectin, plays an important role in 

the formation of the premetastatic niche. Increased pulmonary fibroblast fibronectin 

expression was observed in the lung critical for the recruitment of bone marrow-derived 

cells to form a permissive niche for incoming tumor cells (Kaplan et al., 2005). 

Additionally, enrichment of CAFs and deposition of matrix proteins in highly 

desmoplastic tumors, such as PDA, contributes to hypoperfusion and resistance to 

chemotherapy and radiotherapy, and predicts poorer disease outcome (Garrido-Laguna et 

al., 2011). For instance, CAFs could promote radioprotection of pancreatic cancer cells 

by direct upregulation of β1-integrin signaling and abrogation of this signaling in 

pancreatic cancer cells induced radiosensitivity (Mantoni et al., 2011). Moreover, 

heightened accumulation of HA resulted in increased tissue solid stress and interstitial 

fluid pressures, both of which led to vascular compression and dysfunction, thereby 

impairing drug delivery into tumors. Degradation of stromal HA by pegylated 

hyaluronidase was shown to induce a transient increase in vessel density and perfusion, 

and led to increased delivery of gemcitabine to tumors, thereby augmenting efficacy of 
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chemotherapy in pancreatic cancer (Jacobetz et al., 2013; Olive et al., 2009; Provenzano 

et al., 2012; Stylianopoulos et al., 2012). 

 

In addition to increased synthesis of matrix components, CAFs also express ECM 

remodeling lysyl oxidase (LOX) and lysyl hydroxylase 2 (LH2), enzymes that are 

responsible for collagen crosslinking. Enhanced collagen-crosslinking has been shown to 

increase tumor stiffness, thereby driving tumor invasion and metastasis (Chen et al., 

2015; Levental et al., 2009). Although the role of CAF-derived LOX in the formation of 

premetastatic niche has not been investigated, tumor-derived LOX was shown to promote 

collagen IV-crosslinking essential for CD11b+ myeloid cell recruitment, thereby 

enhancing tumor cell invasion and metastasis (Erler et al., 2009). Furthermore, studies 

indicated that FAP protease-mediated collagen and fibronectin fiber organization could 

enhance tumor cell migration by activation of the β1-integrin signaling pathway (Lee et 

al., 2011). CAFs have also been shown to promote and lead collective tumor cell invasion 

in an organotypic culture by Rho-dependent signaling pathways (Gaggioli et al., 2007; 

Goetz et al., 2011; Sanz-Moreno et al., 2011). This observation suggests that generation 

of migratory tracks by the CAFs in the matrix is sufficient to drive neighboring neoplastic 

cells to follow. Caveolin-1 (Cav-1) and JAK signaling pathways in CAFs was identified 

to play an essential role for Rho-dependent cytoskeletal remodeling, thereby promoting 

actomyosin contractility and enhancing invasion (Gaggioli et al., 2007; Goetz et al., 

2011; Sanz-Moreno et al., 2011). Furthermore, expression of Cav-1 also could contribute 

to remodeling of CAF-derived matrix to enhance tumor cell migration (Goetz et al., 

2011).  



	 10	

 

On the other hand, CAFs can also regulate turnover of the matrix molecules by 

expression of matrix metalloproteinases (MMPs), which have been demonstrated to play 

pivotal roles in enhancing tumor growth, invasion, and metastasis (Poulsom et al., 1992; 

Sternlicht et al., 1999; Zigrino et al., 2009). Moreover, MMP-mediated ECM remodeling 

plays an active role in tumor angiogenesis and metastasis. For instance, ECM can 

sequester and hence acts as a “local depot” for a wide range of growth factors and 

cytokines. MMP13 expressed by CAFs was found essential to release VEGF sequestered 

from the ECM to promote angiogenesis and invasion of skin squamous cell carcinomas 

(Lederle et al., 2010). Another cytokine transforming growth factor-beta (TGF-β), which 

is secreted as a latent form associated with a Latency Associated Peptide (LAP), is also 

sequestered in ECM to limit its bioavailability. Cell surface-localized MMP-9 activated 

TGF-β by proteolytically processing of LAP and promoted tumor invasion and 

angiogenesis (Yu and Stamenkovic, 2000). CAFs have also been shown to secrete SDF-

1α/CXCL12 to promote angiogenesis by recruiting endothelial progenitor cells into 

tumors (Orimo et al., 2005).  

 

CAFs modulate inflammatory and immune responses 

Inflammation is becoming increasingly appreciated as an important contributing factor in 

promoting the development of a wide range of malignancies, including colon, gastric, 

liver, lung and pancreatic cancers (Guerra et al., 2007; Peek and Crabtree, 2006; Pikarsky 

et al., 2004; Pine et al., 2011; Terzic et al., 2010). Crosstalk between inflammatory cells 

and tumor stroma regulates the desmoplastic response in tumor and vice versa. CAFs 
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have been shown to orchestrate the inflammatory response by secreting cytokines such as 

IL-6 and IL1-β and by recruiting tumor-associated neutrophils and macrophages through 

chemokines, CXCL1 and CXCL2 (Erez et al., 2010; Torres et al., 2013). CAF-dependent 

proinflammatory gene signatures were found in various human solid tumors including 

breast cancer, lung cancer and pancreatic cancer (Erez et al., 2010; Rudisch et al., 2015; 

Vicent et al., 2012). CAF-dependent proinflammatory gene signatures have been 

demonstrated to be dependent on the NF-κB signaling as knocking down of IKKβ, a 

protein that is essential for NF-κB activation, abrogated the recruitment of macrophage 

and decreases angiogenesis essential for tumor progression (Erez et al., 2010). Moreover, 

CAFs could also promote the survival and polarization of tumor-associated myeloid cells 

to a M2 macrophage phenotype (Stairs et al., 2011). The alternative activation of 

macrophages was likely due to the overexpression of IL-6, TGFβ and CCL2 by CAFs 

(Comito et al., 2014; Gong et al., 2012; Sierra-Filardi et al., 2014). 

 

Conversely, inflammatory myeloid cells have been suggested to promote CAF activation 

and desmoplastic response. IL-6 or SDF-1α/CXCL12 secreted by M2 macrophages has 

been shown to promote human prostatic fibroblast activation as determined by α-SMA 

expression (Comito et al., 2014). Moreover, treatment with the anti-inflammatory drug 

dexamethasone was shown to reduce the recruitment of Gr-1+ CD11b+ cells, to decrease 

CAF accumulation and collagen deposition, thereby attenuating tumor progression in a 

spontaneous squamous carcinoma model (Stairs et al., 2011). Additionally, CAFs and M2 

macrophages have been shown to collaborate in activating endothelial cells to enhance 
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angiogenesis, promoting the escape of cancer cells from the primary tumor and ultimately 

driving metastatic dissemination (Comito et al., 2014).  

 

CAFs and desmoplastic stroma have been observed to promote tumor growth by 

modulating the anti-tumor immune response. Desmoplastic stroma can act as a physical 

barrier to preclude T cells from actively migrating and infiltrating into the human lung 

cancers. Degradation of matrix by collagenase treatment has been shown to augment the 

T cell mobilization, thereby increasing their accessibility to the proximity of tumor cell 

nests ex vivo (Salmon et al., 2012). Based on studies of human pancreatic samples and an 

autochthonous model of pancreatic cancer, it has been shown that activated pancreatic 

stellate cells (PSCs) can secret SDF-1α/CXCL12 to promote CD8+ T cells chemotaxis 

towards the juxtatumoral stromal compartment, thereby preventing the access of CD8+ T 

cells to cancer cells. Knocking down of SDF-1α/CXCL12 or treatment of activated PSCs 

with all-trans retinoic acid (ATRA), a drug that renders PSCs quiescent, can abrogate 

CD8+ T cells chemotaxis towards PSCs. Moreover, ATRA treatment can enhance CD8+ 

T cells infiltration to the proximity of the neoplastic cells in an autochthonous model of 

pancreatic cancer (Ene-Obong et al., 2013). In contrast, SDF-1α/CXCL12 derived from 

FAP+ CAFs has been shown to bind pancreatic cancer cells, and thereby excluding T 

cells from neoplastic cells through an unknown mechanism. Inhibition of CXCR4, a 

receptor of SDF-1α/CXCL12 , by AMD3100 can reverse the immune suppression and 

potentiates the efficacy of checkpoint-blockade immunotherapy to restrain the growth of 

pancreatic tumors (Feig et al., 2013). Additionally, cancer-associated PSCs are able to 

promote the differentiation of peripheral blood mononuclear cells into myeloid-derived 
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suppressor cells (MDSCs) by secreting proinflammatory cytokines including IL-6, 

macrophage colony-stimulating factor, VEGF and SDF-1α/CXCL12. IL-6/STAT3-

mediated signaling is critical for PSC-induced MDSC differention. PSC-induced MDSCs 

are able to inhibit T-cell activation, thereby contributing to tumoral immune suppression 

(Mace et al., 2013). Furthermore, targeted depletion of granulocytic MDSCs by an anti-

Ly6G antibody promotes intra-tumoral accumulation of activated CD8+ T cells, enhances 

tumor cell apoptosis and remodels the tumor stroma in pancreatic tumors (Stromnes et 

al., 2014). Furthermore, CAFs have been shown to secrete immune modulatory enzyme 

including prostaglandin E2 and indoleamine 2,3-dioxygenase that can impair the 

activation, cytokine production and cytotoxicity of NK cells to enable progression of skin 

and liver cancers (Balsamo et al., 2009; Li et al., 2012). Taken together, CAFs and 

desmoplastic stroma maintain a proinflammatory and immune-suppressive 

microenvironment to support tumor progression and therapeutic resistance.   

 

In the following chapters, I will describe investigations into the potential influences of 

FAP-expressing stromal cells and FAP protease in driving primary tumor progression and 

metastasis. 
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CHAPTER 2 – Fibroblast activation protein-expressing stromal cells 

can promote tumor growth by adaptive immunity-independent 

remodeling of the stromal microenvironment 

 

Introduction 

Discovery of FAP 

Solid tumors recruit and activate a heterogeneous population of non-transformed stromal 

cells to promote desmoplasia, inflammation and immune suppression in the tumor 

microenvironment. Crosstalk between tumor cells and tumor-associated stromal cells can 

promote tumor progression and metastasis, as well as induce therapeutic resistance 

leading to treatment failure. Therefore, there has been considerable interest in identifying 

and validating suitable candidate markers to develop stromal cell-targeted therapies 

against cancer. One attractive stromal cell target that is receiving significant attention is 

the fibroblast activation protein (FAP), a transmembrane serine protease that was 

originally discovered by Dr. Lloyd L. Old’s group at the Ludwig Institute at Memorial 

Sloan-Kettering Cancer Center in New York, USA (Rettig et al., 1986). FAP was initially 

designated F19 antigen based on its reactivity with the F19 monoclonal antibody isolated 

from a mouse immunized with human lung fibroblasts. Using immunohistochemical 

analysis with F19 monoclonal antibody, they found that F19 antigen was expressed on 

most astrocytomas and sarcomas, as well as on cultured fibroblasts and a subset of 

melanomas. In addition, studies from the same group also showed that F19 antigen was 

highly expressed in cancer-associated stromal cells of various primary and metastatic 
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carcinomas but not most quiescent stromal fibroblasts. Further analysis of dermal incision 

wounds revealed that F19 antigen was strongly induced during scar formation (Garin-

Chesa et al., 1990; Scanlan et al., 1994). The conclusion from these findings was that 

expression of F19 antigen was restricted to cells of mesenchymal origin, mostly activated 

fibroblasts and a subset of neuroectodermal cells. Therefore, F19 antigen was later 

designated as “fibroblast activation protein”, or FAP (Rettig et al., 1993).  

 

Subsequently, FAP expression was also detected during embryonic development as well 

as within mesenchymal stem cells and in chronic inflammatory and fibrotic conditions 

such as liver cirrhosis and idiopathic pulmonary fibrosis (Acharya et al., 2006; Bae et al., 

2008; Mathew et al., 1995; Niedermeyer et al., 2001; Wang et al., 2008). To better trace 

and identify FAP-expressing cells in vivo, we and others have developed FAP-reporter 

mice for non-invasive bioluminescent imaging of FAP+ stromal cells (Jacob et al., 2012; 

Roberts et al., 2013). FAP+ stromal cells were found to reside in many tissues of the adult 

mouse, including skin, bone marrow, skeletal muscle, pancreas, adipose and lymph node. 

Moreover, FAP+ stromal cells were found to accumulate in transplanted tumors. Recent 

phenotypic analysis of FAP+ stromal cells in human breast cancer specimens 

demonstrated that a majority of intratumoral FAP+ stromal cells expressed CD90 but did 

not express the hematopoietic cell marker CD45; a minor population of M2-like 

macrophages also expressed FAP (Tchou et al., 2013). These findings demonstrate that 

FAP-expressing cells or FAP protease may have homeostatic functions and may regulate 

a wide spectrum of human diseases that involve active tissue remodeling, including 

inflammation, fibrosis and cancer.   
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FAP expression correlates with poor prognosis in various human carcinomas 

Since its discovery, several research groups have investigated whether FAP can be used 

as a cancer biomarker to predict patient outcome. Notably, a clinicopathological study 

demonstrated that FAP overexpression was associated with worse clinical outcome in 

PDA. FAP overexpression correlated with increased risk of lymph node metastasis, 

tumor recurrence and death (Cohen et al., 2008). In patients with non-small cell lung 

cancer, elevated FAP expression was identified as a predictor of worse overall survival 

and might be associated with inflammation and suppressed lymphocyte-dependent 

immune response (Liao et al., 2013). In patients with colon cancer, FAP expression was 

found to inversely correlate with tumor stage, suggesting that stromal FAP may play a 

greater role in the early stage of the tumor development. Furthermore, for patients with 

known metastatic disease, increased FAP expression was demonstrated to associate with 

decreased survival (Henry et al., 2007). These observations have raised an interesting 

question as to whether the FAP-expressing cells or FAP protease itself may regulate 

tumorigenesis, invasion, and/or metastasis. 

 

FAP-expressing stromal cells are promising targets in the tumor microenvironment  

To evaluate the potential impact of FAP at a cellular level within the tumor 

microenvironment, Dr. Eli Gilboa’s group employed an immunotherapeuctic approach 

using a dendritic cell vaccine to target FAP+ stromal cells in multiple tumor types. This 

approach resulted in tumor growth inhibition without morbidity or mortality associated 

with anti-FAP vaccination, except for a small delay in wound healing (Lee et al., 2005). 
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Subsequent experiments with an oral vaccine targeting FAP demonstrated suppression of 

primary tumor growth and metastasis of mouse colon and breast carcinoma (Loeffler et 

al., 2006). Moreover, tumor tissues of FAP-vaccinated mice showed significantly 

decreased collagen levels and enhanced uptake of chemotherapeutic drugs. No overt 

toxicity or impact on wound healing was observed (Loeffler et al., 2006). Other studies 

utilizing immunoconjugate (Ostermann et al., 2008) and enzyme-activated pro-drug 

therapy (Brennen et al., 2012) also achieved tumor growth inhibition without causing 

obvious toxicity or side effects. Collectively, these studies demonstrate that FAP+ stromal 

cells are attractive targets and have therapeutic implications across a broad spectrum of 

solid tumors.  

 

Development of chimeric antigen receptor (CAR) T cells redirected against FAP+ 

stromal cells 

The adoptive transfer of T cells engineered with chimeric antigen receptor (CAR) has 

achieved unprecedented clinical responses in both adults and children with chronic or 

acute leukemia (Garfall et al., 2015; Grupp et al., 2013; Maude et al., 2014; Porter et al., 

2015; Porter et al., 2011). Given the potential efficacy and translational value of adoptive 

T cell therapy, we and others hypothesized that using engineered T cells to target FAP+ 

stromal cells would be more effective than therapeutic vaccination (Kakarla et al., 2013; 

Schuberth et al., 2013; Tran et al., 2013). In collaboration with Dr. Carl June’s and Dr. 

Steven Albelda’s labs, we generated CAR T cells redirected against FAP+ stromal cells. 

We hypothesized that depletion of FAP+ stromal cells and disruption of stromal 
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cell/ECM-dependent pathways would alter the tumor microenvironment, thereby inhibit 

tumor growth and reduce resistance to therapy. 

In this chapter, I describe using FAP-CAR T cells as an approach to deplete FAP+ 

stromal cells in human tumor xenografts and poorly immunogenic pancreatic tumors, as 

well as investigating the potential immune-independent mechanism by which FAP+ 

stromal cells promote tumor growth.  
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Materials and methods 

Cell lines 

A mouse AE17 mesothelioma cell line expressing chicken ovalbumin (AE17.OVA) was 

obtained from Dr. Delia Nelson (University of Western Australia). Syngeneic 4662 

pancreatic cancer cells were derived from a pancreatic tumor isolated from a fully 

backcrossed C57BL/6 KrasG12D:Trp53R172H:Pdx-1-Cre (KPC) mouse (Hingorani et al., 

2005). A human A549 lung adenocarcinoma cell line and 3T3 fibroblastic line were 

obtained from the American Type Culture Collection. The human sarcomatoid type 

mesothelioma cell line I45 was provided by Dr. J. Testa (Fox Chase Cancer Center, 

Philadelphia, PA). M30 and EM cell lines were derived from the pleural effusion of 

patients with malignant mesothelioma. EM-meso cells were generated via transduction of 

a lentivirus encoding human mesothelin (Crisanti et al., 2009; Moon et al., 2011). Cells 

were tested mycoplasma-free and frozen and were used less than 1 month after 

resuscitation. 

 

Animals 

C57BL/6 mice and NOD/SCID/IL2-receptor γ chain knockout (NSG) mice were 

purchased from Charles River Laboratories Inc. (Wilmington, MA), Jackson Labs (Bar 

Harbor, ME) and the Children’s Hospital of Philadelphia. FAP-deficient mice 

(FapLacZ/LacZ) provided by Boehringer Ingelheim (Niedermeyer et al., 2000) were 

backcrossed 12 generations onto a C57BL/6 genetic background. These mice were then 

crossed with NSG mice to generate NSG FAP-deficient mice. KPC mice were provided 

by the Mouse Hospital at the University of Pennsylvania. Experimental protocols were 
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approved by the Institutional Animal Care and Use Committee and were in compliance 

with guidelines for the care and use of animals. 

 

Generation of anti-mouse FAP-CAR constructs 

Total RNA from the 73.3 hybridoma was isolated and reverse-transcribed to obtain 

cDNA. Variable heavy (VH) and light (VL) chains of the 73.3 immunoglobulin were 

PCR-amplified and sequenced (Fig. 2-4A and B). The VH and VL sequences were fused 

with a CAR construct encoding CD8α hinge, CD8α transmembrane domain, human 4-

1BB and CD3ζ intracellular signaling domains (Milone et al., 2009). This CAR construct 

was then inserted into the pELNS lentiviral vector or an internal ribosome entry site 

(IRES)-containing the retroviral MigR1 vector (Fig. 2-4C) (Pear et al., 1998). A fully 

mouse FAP-CAR construct was also generated by fusing the 73.3 scFv with the mouse 

CD3ζ chain and the mouse CD28 ICD. This construct was inserted into another retroviral 

vector MSGV (Fig. 2-4D). Two additional control FAP-CAR constructs, encoding either 

human CD3ζ or mouse CD3ζ ICD, were also generated to evaluate the function of the 

costimulatory domains. 

 

Recombinant lentivirus preparation 

The anti-mouse FAP-CAR was subcloned into a third-generation self-inactivating 

lentiviral expression vector (pELNS). High-titer replication-defective lentiviruses were 

produced and concentrated as described previously (Moon et al., 2011). Briefly, 293T 

cells were transfected with 18 µg of pRSV.REV (Rev expression plasmid), 18 µg of 

pMDLg/p.RRE (Gag/Pol expression plasmid), 7 µg pVSV-G (VSV glycoprotein 
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expression plasmid) and 15 µg of pELNS transfer plasmid using Express Inn transfection 

reagents (Open Biosytems). Viral supernatant was harvested and concentrated for T cell 

transduction. 

 

Isolation, transduction, and expansion of primary human T lymphocytes 

Primary human T cells isolated from healthy volunteer donors were purchased from the 

Human Immunology Core at University of Pennsylvania. All specimens were collected 

under a university Institutional Review Board-approved protocol, and written informed 

consent was obtained from each donor. Human T cells expressing CAR were prepared as 

described (Parry et al., 2003). T cells were cultured in RPMI 1640 supplemented with 

10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin 

sulfate and 10 mM HEPES, and stimulated with anti-CD3/anti-CD28-coated magnetic 

beads (Invitrogen) at a 3:1 bead-to-cell ratio. Approximately 24 hours after activation, T 

cells were transduced with lentiviral vectors at a multiplicity of infection of 5. Cells were 

counted and nourished with fresh culture medium containing 30 U/mL of recombinant 

human interleukin-2 every two days. Once the T cells appeared to rest down, as 

determined by both decreased growth kinetics and cell size, they were either used for 

functional assays or cryopreserved. 

 

Recombinant retrovirus preparation 

Anti-mouse FAP-CAR was subcloned into MigR1 or MSGV retroviral vectors. 293T 

cells were transfected with 9 µg of pHIT (Rev expression plasmid), 9 µg of pCGP 
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(Gag/Pol expression plasmid) and 18 µg of MigR1 transfer plasmid using Lipofectamine 

2000 (Thermo Fisher Scientific). Viral supernatant was harvested for T cell transduction. 

 

Isolation, transduction and expansion of primary mouse T cells 

Mouse splenic T cells were isolated using negative selection (Miltenyi Biotec). T cells 

were then cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine 

serum, 100 U/mL penicillin, 100 µg/mL streptomycin sulfate, 10 mM HEPES and 100 

U/mL IL-2 and activated by plate-bound anti-CD3 (1 µg/mL) and anti-CD28 (2 µg/mL). 

After 48 hours, cells were mixed with retrovirus and transferred to a 24-well plate coated 

with retronectin (50 µg/mL; Clontech) and were then centrifuged, without braking, at 

room temperature for 45 minutes at 1200G. After overnight incubation, cells were 

expanded with 50 U/mL of IL-2 for an additional 48 hours. Cells were then harvested for 

functional assays or adoptive transfer. 

 

Cytokine release and cytotoxicity assays  

3T3 and 3T3.FAP fibroblasts were transduced with a lentivirus to force expression of 

GFP and luciferase. FAP-CAR T cells and control T cells were co-cultured with 3T3 or 

3T3.FAP fibroblasts at various effector-to-target ratios. After 18 hours, the culture 

supernatants were collected for IFNγ analysis using an ELISA (BD Bioscience). 

Cytotoxicity of transduced T cells was determined by detecting the remaining luciferase 

activity from the adherent fibroblasts using a luciferase assay system (Promega). Results 

were shown as percent of cytolysis by normalizing the luciferase signal obtained from co-

culture experiments to that obtained from 3T3 and 3T3.FAP fibroblast cultures only. 
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Intravenous transfer of FAP-CAR T cells in mice bearing established tumors 

NSG or NSG-FAP null mice were injected subcutaneously with 2×106 A549, M30 or I45 

cells mixed with matrigel (BD Biosciences). Mice bearing established tumors were then 

intravenously injected with one dose of 1×107 FAP-CAR human T cells or non-

transduced T cells, or left untreated. NSG mice were injected subcutaneously with 2×106 

EM-meso cells. Mice bearing established tumors were then intravenously injected with 

one dose of 5×106 FAP-KIR, DAP-12 or non-transduced human T cells. C57BL/6 mice 

and NSG mice were injected subcutaneously with 3×105 4662 tumor cells mixed with 

matrigel. Tumor-bearing mice were randomly assigned to three groups that received 

FAP-CAR or MigR1-transduced (control) mouse T cells or that remained untreated. KPC 

mice were monitored by ultrasound and randomly assigned for treatment when they had 

established pancreatic tumors with volumes of 95 to 270 mm3. Mice bearing established 

tumors were treated intravenously with two weekly doses of 1×107 FAP-CAR mouse T 

cells. At the endpoint, tumors were harvested for flow cytometric or histopathological 

analyses.   

 

Antibodies 

Monoclonal anti-mouse FAP antibody was generated and characterized by our lab. 

Briefly, FAP-deficient mice were immunized and boosted twice by intraperitoneal 

injection of 3T3 fibroblasts expressing FAP. Splenocytes were harvested and fused with 

myeloma cells to generate hybridomas three days after the final boost. Supernatant 

derived from each hybridoma was collected and screened for reactivity with 3T3.FAP 
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fibroblasts and activated primary FAP-intact fibroblasts but not the parental 3T3 

fibroblasts or the activated primary fibroblasts from FAP-deficient mice. The 73.3 

hybridoma was selected and further characterized by ELISA and by immunoblotting with 

purified recombinant mouse FAP extracellular domain (rFAP-ECD) provided by Dr. 

Jonathan Cheng (Fox Chase Cancer Center, Philadelphia, PA). 73.3 antibody does not 

cross-react with human FAP expressed by human foreskin fibroblasts or with primary 

human tumor-associated stromal cells.  

 

Purified anti-mouse CD3ε (145-2C11), anti-mouse CD28 (37.51) and anti-mouse 

CD16/32 antibodies were purchased from eBioscience. Anti-CD45 (30-F11; PE-Cy7), 

anti-CD90 (53-2.1; FITC, PE), anti-F4/80 (BM8; APC) and anti-CD206 (C068C2; FITC) 

antibodies were purchased from Biolegend. Anti-CD8α (53-6.7; APC) was purchased 

from BD Bioscience. A polyclonal sheep anti-human antibody that cross-reacts with 

mouse FAP was purchased from R&D and the specificity was confirmed based on its 

reactivity with A549 human lung cancer xenografts derived from wild-type but not FAP-

deficient NSG mice. 

 

Surface staining and flow cytometry analysis  

Tumor tissues were harvested and dissected into small pieces, after which the tissues 

were enzymatically dissociated with collagenase type I (100 U/mL, Worthington), II (100 

U/mL, Worthington) and IV (100 U/mL, Worthington), as well as DNase I (100 U/mL, 

Worthington), in Leibovitz's L-15 Medium (Thermo Fisher Scientific) at 37°C for one 

hour. Digested tumors were then filtered through 70 µm nylon mesh cell strainers (BD 
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Bioscience), and red blood cells lysed by ACK buffer (BD Bioscience). Fc receptors 

were blocked by incubating cells with anti-mouse CD16/CD32 antibody for 15 minutes 

and then stained with primary antibodies at 4°C for 30 minutes, followed by incubation 

with streptavidin-APC or BV421 for another 15 minutes. Dead cells were excluded using 

propidium iodide (Thermo Fisher Scientific). Cell acquisition was performed on LSR-II 

using FACSDiva software (BD Bioscience). Data were analyzed using FlowJo software 

(Tree Star). 

 

Histopathological, histochemical and immunohistochemical analysis 

Tumors were harvested, fixed with Prefer (Anatech), dehydrated and paraffin-embedded. 

Tissue sections were deparaffinized, rehydrated and stained with Masson’s trichrome, 

Alcian blue or H&E. H&E stained tumor sections were evaluated by two board-certified 

veterinary pathologists at the Ryan Veterinary Hospital of the University of Pennsylvania 

(Amy C. Durham and Elizabeth L. Buza). For each sample, 9 to 10 consecutive 40X HPF 

images were evaluated and scored based on the predominant tumor phenotype (greater 

than 50% of the field of view): necrotic, well-differentiated, moderately differentiated, 

and poorly differentiated. For immunohistochemical staining, tissue sections were further 

subjected to 10 mM sodium citrate or Tris-EDTA buffer for antigen retrieval, followed 

by quenching endogenous peroxidases with 3% H2O2. Sections were then blocked with 

10% goat or rabbit serum in 1% BSA/PBS at room temperature for an hour, and then 

incubated with avidin-biotin or streptavidin-biotin block (Vector Labs). Primary 

antibodies were applied overnight at 4°C and incubated with biotinylated secondary 

antibody at room temperature for an hour. Bound antibodies were detected with 
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horseradish peroxidase (HRP), using either streptavidin-HRP (Jackson ImmunoResearch) 

or Vectastain Elite ABC (Vector Laboratories), followed by counterstaining with 

hematoxylin. Digital images were captured using a Nikon E600 microscope at 20X HPF, 

with at least 5 images per sample. Computer-based quantification was performed using 

Fiji software. Proliferation or apoptotic indices were calculated by the ratio of Ki-67+ 

cells or cleaved-caspase-3+ cells to hematoxylin+ cells. Histochemical-reactive or 

immuno-reactive signals were calculated and normalized to the total area of 20X HPF 

images (n = 3 to 6 per group). 

 

Statistical Analyses 

Statistics were calculated using GraphPad Prism 6. For studies comparing two groups, the 

Student’s t-test was used. For studies comparing more than two groups, one-way 

ANOVA with post-hoc Tukey testing was used. Data are represented as mean ± SEM. 

Differences were considered significant when p < 0.05. 
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Results 

Mouse and human tumors exhibit varying degrees of desmoplasia which correlate 

with the prevalence of intratumoral FAP+ stromal cells 

We investigated the extent of desmoplasia in multiple mouse tumors and human 

xenografts by histopathological, histochemical and immunohistochemical analyses. ECM 

components, including collagen, total glycosaminoglycans (GAGs), hyaluronic acid (HA) 

and a proteoglycan versican, were overexpressed in 4662 and A549 tumors. In contrast, 

mouse mesothelioma AE17.OVA tumors and human mesothelioma I45 xenografts 

displayed moderate and sparse desmoplasia, respectively (Fig. 2-1). Moreover, these 

matrix components were found to accumulate and be confined to the juxtatumoral 

stromal regions in 4662 and A549 tumors. On the contrary, all matrix components 

investigated were dispersed throughout the AE17.OVA and I45 tumors.  

 

Next, we determined the phenotypes of FAP+ stromal cells and whether there was a 

correlation between the degree of tumor desmoplasia and the accumulation of FAP+ 

stromal cells within the tumors. In established A549 lung cancer xenografts, most FAP+ 

stromal cells were found to be CD45− CD90+, though a minor population of FAP+ stromal 

cells was found to be CD45+ (Fig. 2-2A). These CD45+ FAP+ cells were further 

characterized as F4/80+ CD206+ (M2-like) macrophages (Fig. 2-2B). Interestingly, we 

found that the number of both intratumoral CD45− CD90+ FAP+ stromal cells and CD45+ 

FAP+ cells correlated with the degree of desmoplasia in mouse tumors and human 

xenografts (Fig. 2-3). In 4662 tumors and A549 xenografts, approximately 8% to 12% of 

total cells were CD45− CD90+ FAP+, compared to only 0.3% to 1.2% in AE17.OVA 
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tumors and I45 xenografts. About 0.34% to 1.65% of total cells in 4662 tumors and A549 

xenografts were CD45+ FAP+, compared to only 0.1% in AE17.OVA tumors and I45 

xenografts. These results raised the possibility that intratumoral FAP+ stromal cells may 

play critical roles in the formation and/or maintenance of desmoplastic tumor stroma.  

 

Development of chimeric antigen receptor (CAR) T-cells redirected against FAP-

expression stromal cells 

To test whether FAP+ stromal cells are required for the formation and/or maintenance of 

desmoplastic tumor stroma, we utilized a specific mouse monoclonal antibody 73.3 

generated in our lab to generate murine FAP-specific chimeric antigen receptors. Briefly, 

variable heavy (VH) and light (VL) chains of the 73.3 immunoglobulin were determined 

by PCR amplification and sequencing using RNA from 73.3 hybridomas (Fig. 2-4A and 

B). The VH and VL sequences were cloned into a CAR construct including CD8α hinge, 

CD8α transmembrane domain, and two human intracellular signaling domains (ICD) 

derived from 4-1BB and CD3ζ. This CAR was then cloned into a lentiviral vector 

pELNS for transducing human T cells or an internal ribosome entry site (IRES)-GFP 

containing retroviral MigR1 vector for transducing mouse T cells (Fig. 2-4C). A fully 

mouse FAP-CAR construct was also generated using 73.3 variable heavy and light chains 

with the mouse CD3ζ chain and mouse CD28 ICD. This construct was inserted into a 

retroviral vector MSGV for transducing mouse T cells (Fig. 2-4D). We were able to 

transduce activated mouse T cells with FAP-CAR or MigR1 vector control with high 

efficiency (Fig. 2-5A). To evaluate the effector functions, transduced mouse T cells were 

co-cultured with 3T3 fibroblasts or with 3T3 fibroblasts expressing mouse FAP 
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(3T3.FAP) (Fig. 2-5B). After 18 hours of co-incubation, FAP-CAR T cells secreted 

IFNγ and killed 3T3.FAP fibroblasts in a dose-dependent fashion, but exhibited no 

activity against parental 3T3 fibroblasts (Fig. 2-5C and D). 

 

FAP-CAR T cells inhibit growth of desmoplastic human cancer xenografts 

To investigate whether host FAP+ stromal cells are essential for growth of human tumors, 

we evaluated the impact of FAP-CAR T cells on the growth of established A549 human 

lung cancer xenografts in NSG and FAP-deficient NSG mice. Administration of FAP-

CAR human T cells directed against murine FAP+ stromal cells reduced tumor growth by 

42% at 8 days post-adoptive T-cell transfer (Fig. 2-6A). Interestingly, we noticed that the 

adenocarcinoma ductal-like structure of the tumor nodules was disrupted and also 

observed an increase in necrotic cell death following FAP-CAR T-cell transfer. 

Immunohistochemical staining indicated that treatment with FAP-CAR human T cells 

decreased tumor cell proliferation and increased apoptotic cell death (Fig. 2-6C). In 

contrast, FAP-CAR T cells did not affect growth of A549 tumors in FAP-deficient NSG 

hosts, demonstrating that FAP expression in stromal cells is critical for FAP-CAR T-cell-

dependent anti-tumor activity and unlikely due to direct targeting of tumor cells 

themselves (Fig. 2-6B). Further experiments also showed that FAP-CAR T cells inhibited 

growth of highly desmoplastic human M30 and EM-meso mesothelioma xenografts (Fig. 

2-7A and B), but had no impact on the growth of poorly-desmoplastic human I45 

mesothelioma xenografts (Fig. 2-7C). These data demonstrate that human tumors exhibit 

varying degrees of desmoplasia and that it is the desmoplastic tumor types that are 

susceptible to the anti-tumor activity of FAP-CAR T cells. Furthermore, although initial 
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studies indicated that FAP+ stromal cells might subvert anti-tumor immune response to 

promote tumor growth (Kraman et al., 2010), our human xenograft studies revealed that 

FAP+ stromal cells could also enhance tumor growth in the absence of host adaptive 

immunity. 

 

FAP-CAR T cells disrupt stromagenesis and angiogenesis and reduce desmoplasia 

in highly-desmoplastic human lung cancer xenografts 

To study the potential non-immune mechanisms by which FAP+ stromal cells support 

growth of desmoplastic human tumors, we investigated the impact of their depletion on 

the composition and architecture of the stromal microenvironment in A549 xenografts. 

Administration of FAP-CAR T cells reduced the number of FAP+ stromal cells by 84%. 

In addition, we found that the number of SMA+ myofibroblasts was reduced by 83%. 

 

As mentioned earlier, we found that the prevalence of FAP+ stromal cells correlated with 

the degree of desmoplasia (Fig. 2-1 and 2-3). Therefore, we next determined whether 

depletion of FAP+ stromal cells altered the tumor desmoplasia in established A549 

tumors. Treatment with FAP-CAR T cells resulted in 72% decrease in collagen content, 

57% reduction in total GAGs, 75% decrease in HA, and 93% depletion in versican (Fig. 

2-8B).  

 

We also examined the impact of FAP-CAR T cells on tumor angiogenesis, as 

angiogenesis is known to be important for tumor progression and dependent on stromal 

cells and ECM. CD31 (endothelial cell) and NG2 (pericyte) immunohistochemical 
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staining showed that administration of FAP-CAR T cells resulted in a 53% decrease in 

tumor endothelial cells and 92% decrease in pericytes in A549 tumors (Fig. 2-8A). These 

data indicate that FAP+ stromal cells are essential for synthesis and/or maintenance of 

tumor desmoplasia. We therefore posit that the immune-independent tumor-promoting 

effect of FAP+ stromal cells in this model is dependent on the extrinsic signals or 

provisional matrix derived from FAP+ stromal cells. 

 

FAP-CAR T cells also inhibit growth of non-immunogenic but highly desmoplastic 

pancreatic tumors through immune-independent stromal remodeling of the tumor 

microenvironment 

To further determine whether FAP+ stromal-cell-mediated immune-independent 

remodeling of the tumor microenvironment is a general tumor-promoting mechanism, 

and can even uncover this potential non-immune mechanism in the immune competent 

hosts, we studied the roles of FAP+ stromal cells in mouse models of pancreatic cancer, 

as it is one of the most desmoplastic and least immunogenic tumor types described to 

date. We first employed the 4662 tumor cell line generated by Dr. Vonderheide’s lab. 

This line was derived from a tumor that spontaneously developed in a  

KrasLSL-G12D/+, Trp53LSL-R172H/+ and Pdx-1-Cre (KPC) mouse. Interestingly, 4662 tumors 

were found to be non-immunogenic as the growth of this tumor did not significantly 

change when implanted subcutaneously into syngeneic C57BL/6 versus NSG mice (Fig. 

2-9A). Further studies from Dr. Vonderheide’s lab using antibody-mediated depletion of 

either CD4+ or CD8+ T cells did not impact tumor growth compared to isotype-treated 

controls. Forcing expression of a nominal antigen ovalbumin in 4662 cells resulted in 
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complete rejection in syngeneic C57BL/6 mice, demonstrating that the 4662 line is 

antigenic but non-immunogenic.  

 

We treated established 4662 tumor-bearing C57BL/6 or NSG mice with two doses (one 

week apart) of FAP-CAR or MigR1 T cells. At the endpoint, we found that FAP-CAR T-

cell treatment reduced the growth of 4662 tumors in immune-competent C57BL/6 mice 

by 36% (Fig. 2-9B). Importantly, FAP-CAR T-cell treatment had a similar impact on the 

growth of 4662 tumors in NSG mice. These results demonstrate that FAP-CAR T cells 

impact 4662 tumor growth via immune-independent mechanisms (Fig. 2-9B). 

Histopathological and immunohistochemical analyses showed that FAP-CAR T-cell 

treatment altered tumor architecture, reduced proliferation and increased apoptosis in 

4662 tumors (Fig. 2-9C). As discussed above, as FAP+ stromal cells can modulate the 

immune response, we also characterized the impact of FAP-CAR T-cell treatment on 

immune infiltrates. We found that the number of CD11b+ Ly6G+ cells was slightly 

reduced in tumors from FAP-CAR T-cell treated C57BL/6 mice (Fig. 2-10A, p<0.05), 

and that there was a very modest increase of total GFP− CD8+ host T cells (Fig. 2-10B, 

p<0.05). We also observed that GFP+ FAP-CAR T cells were able to traffic into 4662 

tumors (Fig. 2-10B).  

 

Furthermore, we extended these studies to the autochthonous KPC mouse model of 

pancreatic ductal adenocarcinoma (PDA). KPC mice were monitored by high-resolution 

ultrasound and randomly assigned for treatment when they had established pancreatic 

tumors with volumes of 95 to 270 mm3. Tumor-bearing mice were treated with two 
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weekly doses of FAP-CAR T cells or MigR T cells. Tumor progression was monitored 

pre- and post-adoptive T-cell transfer over a two-week period. FAP-CAR T-cell 

treatment significantly inhibited tumor growth in KPC mice (Fig. 2-11A). Interestingly, 

we again observed that the adenocarcinoma ductal-like structure of the tumor nodules 

was disrupted and resulted in poorly differentiated tumors, as defined by loss of tumor 

stroma, following FAP-CAR T-cell transfer. Immunohistochemical staining 

demonstrated that treatment with FAP-CAR T cells decreased tumor cell proliferation 

and increased apoptotic cell death as seen in the transplanted 4662 models (Fig. 2-11B).  

 

We investigated tumor stromagenesis, angiogenesis and desmoplasia following FAP-

CAR T-cell transfer in transplanted and autochthonous mouse models of PDA. We found 

that FAP-CAR T-cell treatment decreased FAP+ stromal cells by 62% and 91% in 4662 

tumors and autochthonous PDAs, respectively (Fig. 2-12A and 13A). Similar to the 

finding from FAP-CAR T treated A549 tumors, we also observed 70% reduction of 

SMA+ cells in both models of PDA (Fig. 2-12A and 13A). Based on dual 

immunofluorescence staining, we observed that FAP and SMA defined distinct, yet 

overlapping, subsets of stromal cells in A549 tumors (Fig. 2-14A). Moreover, flow 

cytometry analysis demonstrated that FAP+ stromal cells isolated from A549 tumors 

expressed varying levels of the MSC marker CD105 and CD44 (Fig. 2-14B). Similarly, 

immunofluorescence staining revealed that FAP and SMA identified distinct subsets of 

stromal cells, with few FAP and SMA double expressing cells in either mouse or human 

pancreatic tumors. FAP+ stromal isolated from human pancreatic tumors also expressed 

the MSC marker CD105 (Fig. 2-14C). Additionally, we found that majority of cancer-
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associated stromal cells isolated from human tumor explants expressed FAP, whereas few 

stromal cells expressed SMA (Fig. 2-14D). These observations demonstrate the stromal 

cells are highly heterogeneous. Depletion of FAP+ stromal cells by FAP-CAR T cells also 

altered tumor angiogenesis, resulting in 50% reduction in CD31+ endothelial cells and 

70% decrease in NG2+ pericytes in both models (Fig. 2-12A and 13A). Collagen was 

decreased by 70-80%, and HA and versican were reduced by 34% and 52% respectively 

following treatment with FAP-CAR T cells (Fig. 2-12B and 13B). 

 

Combined FAP-CAR T cells with gemcitabine treatment provide an additive anti-

tumor effect in 4662 tumors 

Prior studies showed that accumulation of HA in pancreatic tumors increased tissue solid 

stress and interstitial fluid pressures, which prevented drug delivery into tumor by 

causing vascular compression and dysfunction (Jacobetz et al., 2013; Provenzano et al., 

2012; Stylianopoulos et al., 2012). Enzymatic targeting of stromal HA by pegylated 

hyaluronidase transiently restored vessel density and perfusion for delivery of 

gemcitabine into tumors, thereby augmenting efficacy of chemotherapy in a highly 

desmoplastic mouse model of pancreatic cancer (Jacobetz et al., 2013; Provenzano et al., 

2012). Having determined that FAP-CAR T cells can disrupt and resolve tumor 

desmoplasia, we sought to test whether it can facilitate drug delivery into pancreatic 

tumors to further inhibit tumor progression. We treated 4662 tumors with FAP-CAR T 

cells and gemcitabine. Our initial results showed that the combination therapy provided 

an additive anti-tumor effect compared to treatment with the single agent (Fig. 2-14).  
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Conclusions and discussion 

Tumor cells exhibit intra-tumor heterogeneity and high levels of genomic instability, 

rendering tumors resistant to therapeutic intervention and ultimately causing treatment 

failure. Developing therapeutic strategies to target non-transformed cancer-associated 

stromal cells is appealing but requires an in-depth understanding of the targeted 

population, as distinct stromal cell populations may have opposing effects on tumor 

growth, progression and metastasis. It is likely that depletion of specific stromal cell 

populations may have either therapeutic or detrimental effects. For instance, 

accumulation of SMA+ myofibroblasts was shown to correlate with better prognosis, and 

depletion of these cells enhanced hypoxia and accelerated tumor progression in mouse 

models of pancreatic cancer (Ozdemir et al., 2014). Importantly, depletion of SMA+ 

myofibroblasts in this study did not alter the prevalence of FAP+ stromal cells in 

pancreatic tumors, indicating these two stromal cell populations are, for the most part, 

non-overlapping in this model (Ozdemir et al., 2014). In contrast, we found that depletion 

of FAP+ stromal cells by adoptive transfer of FAP-CAR T cells could restrain growth of 

desmoplastic human lung cancer and mesothelioma xenografts and syngeneic murine 

pancreatic cancers (Lo et al., 2015). Studies by another group also showed that targeting 

FAP+ stromal cells in pancreatic tumors resulted in an anti-tumor response (Feig et al., 

2013). These data indicate that deleting FAP+ stroma cells and SMA+ myofibroblasts can 

have opposing effects, highlighting the phenotypic and functional heterogeneity of tumor 

stromal cells, at least in pancreatic cancer. 
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For many years, investigators have been equating SMA+ myofibroblasts with cancer 

associated fibroblasts/stromal cells. However, as mentioned earlier, recent data from 

several groups, including ours, demonstrated that tumor stromal cells could exhibit 

phenotypic and functional heterogeneity (Feig et al., 2013; Lo et al., 2015; Ozdemir et al., 

2014; Quante et al., 2011). In fact, although virtually all desmoplastic carcinomas contain 

FAP+ stromal cells, as well as SMA+ myofibroblasts, nonetheless, these two populations 

are not coincident. Depending on the tumor type, and also with variability between 

tumors of a particular type, the overlap between FAP+ and SMA+ cells can be as little as 

<5% (eg. human breast cancer and human pancreatic cancer, as well as the mouse 

autochthonous model of PDA utilized in this study), or as great as near 100% (eg. in 

squamous cell lung carcinomas, unpublished observation). These findings are consistent 

with a recent study in which gastric tumors from SMA promoter-driven RFP reporter 

mice were shown to contain multiple phenotypically distinct subsets of tumor stromal 

cells, including SMA− MSCs, (Quante et al., 2011), while others showed that MSC 

expressed FAP (Bae et al., 2008). Therefore, MSCs likely account for at least a portion of 

the FAP+ SMA− cells we, and others, have observed in the microenvironment of many 

human and murine carcinomas. Interestingly, these cells were shown to have the capacity 

to both self-renew, as well as differentiate into SMA+ myofibroblasts both in the wound 

healing and the tumor microenvironment (Lee et al., 2010; Quante et al., 2011), 

suggesting a lineage relationship exists between some terminally differentiated SMA+ 

myofibroblasts and mesenchymal progenitor cells that at some stage may express both 

SMA and FAP, but at least some of which at a later stage, down regulate or lose FAP 

expression but express SMA. This being the case, the elimination of terminally 
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differentiated SMA+ myofibroblasts would not be expected to deplete the SMA− but 

FAP+ progenitor population consistent with the results reported (Ozdemir et al., 2014). 

Therefore, based on this paradigm and consistent with the results we present in this study, 

FAP+ cell depletion, would be expected to target and deplete not only the FAP+ SMA− 

and FAP+ SMA+ subsets, but also to result in the loss of SMA+ FAP− myofibroblasts 

derived from FAP+ progenitors, as we indeed observed. Another, not mutually exclusive 

explanation, is that FAP+ cells might be required to support the recruitment and/or 

differentiation of a distinct FAP+ progenitor population to SMA+ myofibroblasts. 

 

To further investigate the impact of FAP+ stroma cells on tumor-promoting desmoplastic 

response, we screened several mouse and human tumors and found that the extent of 

matrix accumulation correlated with the prevalence of intratumoral FAP+ stromal cells, 

consistent with prior studies showing that stromal cells are an important source of ECM 

(Egeblad et al., 2010; Hanahan and Coussens, 2012; Jacob et al., 2012; Kalluri and 

Zeisberg, 2006). Experimental depletion studies revealed markedly depleted intratumoral 

ECM including reduced levels of collagen, HA and versican. These observations confirm 

that FAP+ stromal cells are essential for the formation and/or maintenance of provisional 

tumor stroma and for promoting angiogenesis. While initial studies have attributed the 

FAP+ stromal cell-mediated tumor-promoting effect to the immune suppression (Arnold 

et al., 2014; Feig et al., 2013; Kraman et al., 2010), our finding here indicates there is 

indeed an immune-independent mechanism in action. This immune-independent stromal 

remodeling and tumor-promoting angiogenesis effect was uncovered in the highly 

desmoplastic tumor types, as depletion of FAP+ stromal cells resolved desmoplasia and 
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reduced angiogenesis, and therefore inhibited tumor progression (Lo et al., 2015). Along 

with a recent study of the impact of SMA+ myofibroblast depletion (Ozdemir et al., 

2014), the data presented herein indicate that while both FAP+ and SMA+ stromal cells 

regulate intratumoral collagen content, only FAP+ stromal cells are important for the 

maintenance of intratumoral HA, suggesting that either FAP+ stromal cells are the major 

source of HA or that FAP+ stromal cells are required to drive SMA+ myofibroblast 

deposition of HA. We also observed that depletion of FAP+ stromal cells and loss of 

matrix components reduced tumor cell proliferation and increased apoptosis. Moreover, 

FAP-CAR T-cell treatment disrupted ductal adenocarcinoma-like structure, suggesting 

that extrinsic signals provided by tumor stroma are critical to the spatial orientation of 

tumor cells. Finally, as it is well established that tumor stroma can limit drug delivery and 

confer resistance to chemotherapeutics, we postulate that depletion of FAP+ stromal cells 

can ameliorate desmoplastic response and hence reduce therapeutic resistance. Our data 

to date indicate that the combination of stromal cell depletion with gemcitabine treatment 

provides at least additive anti-tumor effects in 4662 tumors. 

 

In summary, intratumoral FAP+ stromal cells are attractive targets in the tumor 

microenvironment and can be therapeutically targeted by FAP-CAR T cells. FAP+ 

stromal cells are essential in promoting immune-independent remodeling of tumor stroma 

and angiogenesis in highly desmoplastic tumors. Developing combinatorial strategies that 

incorporate targeting FAP+ stromal cells may offer therapeutic advantages in cancer 

treatment. 
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Figure 2-1. Mouse tumors and human tumor xenografts exhibit varying degrees of 
desmoplasia. C57BL/6 mice bearing established syngeneic 4662 pancreatic tumors and 
AE17.OVA mesotheliomas and NSG mice bearing established human A549 lung tumors 
and I45 mesotheliomas were harvested to evaluate the extent of desmoplasia. Collagen 
deposition was revealed by trichrome staining (blue). The total amount of 
glycosaminoglycans was determined by Alcian blue staining (aqua blue). IHC staining 
was performed with hyaluronan-binding protein (HABP) or anti-versican to reveal the 
total amount of HA and versican, respectively. n>5 per group, scale: 100 µm. 
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Figure 2-2. Identification of FAP
+
 stromal cells in A549 human lung 

adenocarcinoma xenografts. Established A549 xenografts from NSG FAP-WT and 
FAP-KO mice were harvested and digested with a collagenase cocktail to obtain single-
cell suspensions. (A) Cells were stained with anti-CD45, anti-CD90, anti-F4/80, anti-
CD206 and anti-FAP antibodies, and flow cytometry was performed to identify FAP+ 
stromal cells. Live cells were gated using propidium iodide exclusion. (B) A subset of 
CD11b+ 

CD206+ M2 macrophages express FAP.  
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Figure 2-3. The extent of desmoplasia in mouse tumors and human tumor 
xenografts correlates with the abundance of intratumoral FAP+ stromal cells. 
C57BL/6 mice bearing established highly desmoplastic 4662 pancreatic tumors and 
moderately desmoplastic AE17.OVA mesotheliomas and NSG mice bearing established 
highly desmoplastic human A549 lung tumors and poorly desmoplastic I45 
mesotheliomas were harvested and dissociated using a collagenase cocktail to obtain 
single-cell suspensions. Flow cytometry was performed to identify CD90+ stromal cells 
and CD45+ hematopoietic cells that express FAP.  Results are shown as mean ± SEM 
(n>5 per group), **p<0.01. 
 
  



	 42	

Figure 2-4. Development of FAP-specific chimeric antigen receptors. A monoclonal 
antibody (73.3) against murine FAP was generated by immunization of FAP-KO mice 
with 3T3 fibroblast-expressing FAP. Total RNA from the 73.3 hybridoma was extracted 
and reverse-transcribed to generate cDNA. The immunoglobulins were PCR-amplified to 
obtain the sequences of (A) variable heavy (VH) and (B) light (VL) chains. The FAP-CAR 
construct was synthesized by fusing the VH and VL sequences of 73.3 antibody with a 
CD8α hinge and transmembrane (TM) domain, plus human CD3ζ and human 4-1BB 
domains (73.3-hBBz), and was cloned into the MigR1 retroviral vector (C) to transduce 
mouse T cells or was cloned into the pELNS lentiviral vector to transduce human T cells. 
(D) A fully murine FAP-CAR construct was also synthesized by fusing the VH and VL 
sequences of 73.3 antibody with CD8α hinge, CD28 transmembrane domain and mouse 
CD28 and CD3ζ intracellular signaling domains (73.3-m28z), and was cloned into the 
MSGV retroviral vector to transduce mouse T cells.  
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Figure 2-5. Ex-vivo characterization of murine FAP-CAR T cells using 3T3 
fibroblasts. (A) Mouse T cells were transduced with a retroviral vector expressing GFP 
(MigR1) or GFP and anti-murine FAP-CAR. FAP-CAR was detected using goati anti-
mouse IgG antibody conjugated with fluorochrome APC-Cy7. Transduction efficiency 
was evaluated by flow cytometry. (B) Flow cytometry analysis of FAP expression in 3T3 
fibroblasts, or 3T3 fibroblasts transfected of murine FAP (3T3.FAP). (C) FAP-CAR T 
cells and MigR1 T cells were used to determine their IFNγ production and (D) cytolytic 
activity upon reacting with 3T3 or 3T3.FAP fibroblasts at various effector-to-target ratio. 
Results are shown as mean ± SEM (n=3 per group), *p<0.05. 
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Figure 2-6. FAP-CAR T cells inhibit growth of desmoplastic A549 xenografts by 
inhibiting proliferation and increasing apoptosis in a target-specific fashion in the 
absence of adaptive immunity. (A) NSG mice bearing established A549 tumors were 
intravenously injected with 1×107 FAP-CAR human T cells or left untreated (n=5 per 
group). (B) To determine the target specificity, NSG FAP-KO mice bearing established 
A549 tumors were treated with 1×107 FAP-CAR human T cells through tail vein or left 
untreated (n=5 per group). Tumor growth was monitored by electronic caliper.	The blue 
arrow indicates the time of adoptive T-cell transfer. (C) Tumor tissues were harvested 8 
days post T-cell transfer for H&E, Ki67 and cleaved-caspase 3 staining. Computer-based 
quantification was performed using Fiji software. Results are shown as mean ± SEM 
(n=3 per group), *p<0.05; **p<0.01. Scale: 100 µm.	
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Figure 2-7. FAP-CAR T cells inhibit growth of desmoplastic M30 and EM-meso but 
not poorly-desmoplastic I45 xenografts. (A) NSG mice bearing highly desmoplastic 
M30 were intravenously injected with 1×107 FAP-CAR human T cells (FAP-CAR) or 
untransduced T cells (NTD). (B) NSG mice bearing highly desmoplastic EM-meso 
xenografts were intravenously injected with 5×106 enhanced FAP-CAR human T cells 
(killer immunoglobulin-like receptor-based FAP-CAR, also known as FAP-KIR), control 
vector T cells (DAP12) or untransduced T cells (NTD). (C) NSG mice bearing poorly 
desmoplastic I45 human mesothelioma xenografts were intravenously injected with 
1×107 FAP-CAR human T cells (FAP-CAR) or untransduced T cells (NTD). Tumor 
growth was monitored by electronic caliper. The blue arrow indicates the time of 
adoptive T-cell transfer (n=5 per group). *p<0.05; **p<0.01. 
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Figure 2-8. FAP-CAR T-cell-induced anti-tumor activity is associated with 
disrupted stromagenesis and angiogenesis in desmoplastic A549 xenografts. NSG 
mice bearing established A549 tumors were intravenously injected with 1×107 FAP-CAR 
human T cells through tail vein or left untreated as described in Figure 2-6. (A) Tumors 
were harvested 8 days post-adoptive T-cell transfer and sections were stained with anti-
FAP, anti-αSMA, anti-CD31 and anti-NG2 antibodies to assess the impact of FAP-CAR 
T cells on tumor stromagenesis and angiogenesis. (B) The impact of FAP-CAR T cells on 
tumor stroma was evaluated by Masson’s trichrome staining (collagen), Alcian blue 
staining (GAGs), and IHC staining for HA and versican. Computer-based quantification 
was performed using Fiji software. Results are shown as mean ± SEM (n=3 per group), 
*p<0.05; **p<0.01. Scale: 100 µm. 
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Figure 2-9. FAP-CAR T cells inhibit the growth of non-immunogenic but highly 
desmoplastic syngeneic PDAs by inhibiting proliferation and increasing apoptosis. 
(A) 4662 PDA growth was comparable in untreated B6 and NSG mice. (B) Established 
4662 tumor-bearing C57BL/6 and NSG mice were intravenously injected with 2 doses of 
1×107 FAP-CAR or MigR1 mouse T cells (n=5 per group). Tumor growth was monitored 
by electronic caliper. The blue arrow indicates the time of adoptive T-cell transfer. 
Tumor tissues were harvested for flow analysis shown in Fig. 2-10. (C) In another 
independent experiment, established 4662 tumor-bearing C57BL/6 mice were treated 
with 2 doses of 1×107 FAP-CAR or MigR1 mouse T cells (n=6 per group). Tumor tissues 
were harvested 3 days after the second dose of transferred T cells for H&E, Ki-67 and 
cleaved-caspase 3 staining. FAP-CAR T cell-induced anti-tumor effect is comparable to 
that shown in (B). Computer-based quantification was performed using Fiji software. 
Results are shown as mean ± SEM (n=6 per group), *p<0.05; **p<0.01. Scale: 100 µm. 
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Figure 2-10. Depletion of FAP+ stromal cells alters CD8+ T cell and CD11b+ Ly6G+ 
cell infiltration in desmoplastic syngeneic PDAs. Established 4662 tumor-bearing 
C57BL/6 and NSG mice were intravenously injected with 2 doses of 1×107 FAP-CAR or 
MigR1 mouse T cells as described in Figure 2-9. Tumor tissues were harvested 7 days 
after the second dose of T-cell transfer and dissociated using a collagenase cocktail to 
obtain single-cell suspensions. (A) Flow cytometry was performed to identify CD11b+ 
F4/80+ macrophages, CD11b+ Ly6G+ neutrophils and (B) GFP− CD8+ host T cells and 
GFP+ adoptive transferred FAP-CAR T cells or MigR1 T cells. Results are shown as 
mean ± SEM (n=6 per group), *p<0.05. 
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Figure 2-11. FAP-CAR T cells restrain tumor progression in an autochthonous 
mouse model of pancreatic cancer. (A) KPC mice bearing autochthonous PDA were 
intravenously injected with 2 doses of 1×107 FAP-CAR or MigR1 mouse T cells (n=3 per 
group). Tumor progression was followed by ultrasound. The blue arrow indicates the 
time of adoptive T-cell transfer. (B) Tumor tissues were harvested 4 days after the second 
dose of T-cell transfer for H&E, Ki-67 and cleaved-caspase 3 staining. Computer-based 
quantification was performed using Fiji software. Results are shown as mean ± SEM 
(n=3 per group), # p-value=0.05; * p<0.05. Scale: 100 µm. 
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Figure 2-12. FAP-CAR T cells disrupt stromagenesis and angiogenesis in non-
immunogenic but highly desmoplastic syngeneic PDAs. Established 4662 tumor-
bearing C57BL/6 mice were intravenously injected with 2 doses of 1×107 FAP-CAR or 
MigR1 mouse T cells. Tumor tissues were harvested 3 days after the second dose of T-
cell transfer and sections were stained with anti-FAP, anti-αSMA, anti-CD31 and anti-
NG2 antibodies to determine the impact of FAP-CAR T cells on tumor stromagenesis 
and angiogenesis. Masson’s trichrome staining and immunohistochemical staining for 
HA and versican were also performed to evaluate the tumor stroma. Computer-based 
quantification was performed using Fiji software. Results are shown as mean ± SEM 
(n=6 per group), *p<0.05; **p<0.01. Scale: 100 µm. 
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Figure 2-13. Depletion of FAP+ stromal cells disrupts tumor-promoting desmoplasia 
in an autochthonous mouse model of pancreatic cancer. KPC mice bearing 
autochthonous PDA were intravenously injected with 2 doses of 1×107 FAP-CAR or 
MigR1 mouse T cells as described in Figure 2-11. Tumor tissues were harvested 3 days 
post the second dose of T-cell transfer and sections were stained with anti-FAP, anti-
αSMA, anti-CD31 and anti-NG2 antibodies to determine the impact of FAP-CAR T cells 
on tumor stromagenesis and angiogenesis. Masson’s trichrome and immunohistochemical 
staining for HA and versican were also performed to evaluate the impact of FAP-CAR T 
cells on the tumor stroma. Computer-based quantification was performed using Fiji 
software. Results are shown as mean ± SEM (n=3 per group), *p<0.05; **p<0.01. Scale: 
100 µm. 
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Figure 2-14. Identification of tumor stroma by FAP and SMA reveals stromal cell 
heterogeneity. (A) Established A549 lung xenografts were harvested and tumor sections 
were stained with FAP and SMA to identify mesenchymal tumor stromal cells. Arrows 
indicate cells that express both FAP and SMA. Scale: 100 µm. (B) A subpopulation of 
CD45− CD90+ FAP+ cells in A549 tumor xenografts express mesenchymal stem cell 
marker CD105 and CD44. (C) Human and murine PDA tumors were stained with FAP 
and SMA. Arrows indicate cells that express both FAP and SMA. Scale: 100 µm. 
Expression of CD105 in human PDA FAP+ stromal cells. (D) Cancer-associated stromal 
cells were isolated from human PDA explants and stained with FAP and SMA. Scale: 50 
µm. 
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Figure 2-15. Combination of FAP-CAR T cells and chemotherapy provides additive 
anti-tumor response in desmoplastic syngeneic PDAs. Established 4662 tumor-bearing 
C57BL/6 mice were randomly grouped and assigned to the following treatments: (1) a 
cohort of mice were intravenously injected with two doses of 1×107 FAP-CAR T cells 
(blue arrows); (2) a cohort of mice received gemcitabine (120 mg/kg) treatment 
(intraperitoneal) on day 4 (orange arrow); (C) a cohort were given gemcitabine 4 days 
after the second dose of FAP-CAR T cells (red arrow); and (4) left untreated. Tumor 
growth was followed. Results are shown as mean ± SEM (n=5 per group); * denotes a 
significant difference between FAP-CAR, gemcitabine and the combo groups (p<0.05).  
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CHAPTER 3 – Depletion of fibroblast activation protein-expressing 

stromal cells can enhance host adaptive anti-tumor immunity 

 

Introduction 

FAP-expressing cells regulate anti-tumor immunity  

The first indirect indication of the potential influence of FAP+ stromal cells in modulating 

anti-tumor immunity was eluded by Dr. Eli Gilboa’s group. Specifically, they 

demonstrated that depletion of CD8+ T cells partially abrogated the anti-tumor effects 

induced by anti-FAP vaccination (Lee et al., 2005). However, their approach could not 

determine whether the loss of anti-tumor activity was due to elimination of FAP+ stromal 

cell-specific CD8+ T cells induced by anti-FAP vaccination, or it was due to loss of the 

tumor-reactive CD8+ T cells that could contribute to the anti-tumor response. To better 

understand the impact of FAP+ stromal cell on host anti-tumor immune response, a Bac 

transgenic mouse expressing the human diphtheria toxin receptor (DTR) driven by the 

Fap promoter was developed by Dr. Fearon’s group to study the effects of FAP+ stromal 

cell ablation on anti-tumor immunity (Kraman et al., 2010). They reported that 

elimination of FAP+ stromal cells inhibited growth of Lewis lung carcinoma cells forced 

to express a nominal antigen ovalbumin (LLC-OVA). The anti-tumor effect of FAP+ 

stromal cell ablation was abolished in RAG-1-deficient mice or by administration of anti-

TNF-α and IFN-γ antibodies, indicating that FAP+ stromal cells can induce immune 

suppression to enable tumor growth. Using this genetic approach, heme-oxygenase-1 

(HO-1) and stromal-derived factor-1 alpha (SDF-1α), secreted by the hematopoietic and 

mesenchymal FAP+ stromal cells, respectively, were shown to inhibit anti-tumor 
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immunity (Arnold et al., 2014; Feig et al., 2013). Notably, genetic ablation of FAP+ 

stromal cells or pharmacologic targeting of HO-1 and SDF-1α overcame immune 

suppression and potentiated an anti-tumor immune response to control the growth of 

transplanted and autochthonous pancreatic tumors, respectively. 

 

In this chapter, I describe using FAP-CAR T cells as an approach to deplete FAP+ 

stromal cells in multiple syngeneic mouse tumor models, and investigate the potential 

immune-dependent mechanism by which FAP+ stromal cells promote tumor growth. We 

also explored several approaches to enhance FAP-CAR T-cell-mediated anti-tumor 

activity by repeated dosing, enhancing FAP-CAR T-cell persistence and/or effector 

functions, and combining treatment with a cancer vaccine.  
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Materials and methods  

Cell lines 

A mouse mesothelioma cell line AE17.OVA was obtained from Dr. Delia Nelson 

(University of Western Australia). TC1 lung cancer cells derived from mouse lung 

epithelial cells immortalized with human papillomavirus (HPV)-16 E6 and E7 antigens, 

and then transformed with the c-Ha-ras oncogene (Lin et al., 1996), were acquired from 

Dr. Steven Albelda at the University of Pennsylvania. A mouse LKR cell line was 

derived from an explant of a pulmonary tumor from an autochthonous mutant Kras-

induced lung cancer generated by the laboratory of Tyler Jacks at MIT (Johnson et al., 

2001). The mouse 4T1 mammary carcinoma cell line and CT26 colon cancer cell line 

were purchased from the American Type Culture Collection. Cells were tested 

mycoplasma-free and frozen and were used less than one month after resuscitation. 

 

Animals 

Sources and generation of the C57BL/6, NSG FAP-WT and FAP-deficient mice were 

described in the methods section of Chapter 2. Additionally, C57BL/6:129pf/j hybrid 

mice were generated for LKR lung cancer studies. BALB/c mice were purchased from 

Charles River Laboratories Inc. (Wilmington, MA). DGKζ-knockout (Riese et al., 2013) 

and Thy1.1 congenic C57BL/6 mice were obtained from Dr. Gary Koretzky at the 

University of Pennsylvania and Dr. Wayne Hancock at the Children’s Hospital of 

Philadelphia, respectively. Experimental protocols were approved by the Institutional 

Animal Care and Use Committee and were in compliance with guidelines for the care and 

use of animals. 
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Intravenous transfer of FAP-CAR T cells in mice bearing established tumors.  

Mice were injected subcutaneously with 2×106 AE17.OVA (FAP-WT and FAP-KO 

C57BL/6 mice), 1×106 TC1 (C57BL/6 mice), 2×106 LKR (C57BL/6:129pf/j hybrid 

mice), 0.5×106 4T1 (BALB/c mice), or 1×106 CT26 (BALB/c mice) tumor cells into the 

dorsolateral flank. Tumor-bearing mice were randomly assigned to three groups that 

either received one dose of 1×107 WT FAP-CAR or MigR1-transduced mouse T cells or 

were left untreated. Established AE17.OVA tumor-bearing mice were treated with either 

one dose or two doses of 1×107 WT FAP-CAR (one week apart), or left untreated. In 

another experiment, AE17.OVA tumor-bearing mice were treated with one dose of 1×107 

WT FAP-CAR or DGKζ-KO FAP-CAR T cells, or left untreated. To test if FAP-CAR T 

cells can increase the efficacy of cancer vaccination, large TC1 tumor-bearing mice were 

subcutaneously injected with saline or a vaccine consisting of 109 plaque-forming units 

(pfu) of an adenovirus expressing the HPV-E7 antigen. Four days later, one dose of 

1×107 FAP-CAR T cells was administered intravenously. At the endpoint, tumors were 

harvested for flow cytometric or histopathological analyses. 

 

Antibodies  

Purified anti-mouse CD3ε (145-2C11), anti-mouse CD28 (37.51), anti-mouse CD16/32 

and anti-Thy1.1 (HIS51; APC) antibodies were purchased from eBioscience. Anti-CD45 

(30-F11; PE-Cy7) and anti-CD90 (53-2.1; FITC, PE) antibodies were purchased from 

Biolegend. Anti-CD8α (53-6.7; APC, PE), anti-CD69 (H1.2F3; PE), anti-TNF (MP6-

XT22; PE) and anti-IFNγ (XMG1.2; PE) antibodies were purchased from BD Bioscience.  
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H-2Kb tetramer loaded with ovalbumin peptide (SIINFEKEL; APC) was purchased from 

iTagTM MHC Tetramer (Beckman Coulter). H-2Db tetramer loaded with E7 peptide 

(RAHYNIVTF; PE) was purchased from the National Institute of Allergy and Infectious 

Diseases Tetramer Core. A polyclonal sheep anti-human antibody that cross-reacts with 

mouse FAP was purchased from R&D.  

 

Surface staining and flow cytometry analysis  

This experimental method is described in detail in the methods section of Chapter 2. 

 

Intracellular Staining.  

Surface staining was first performed as described in the methods section of Chapter 2 

using anti-CD8α (53-6.7; APC, PE) antibody. Cells were washed and incubated with a 

viability probe (Thermo Fisher Scientific) for 30 minutes. Cells were then fixed and 

permeabilized for another 45 minutes at 4°C, followed by staining with anti-TNFα or 

anti-IFNγ antibody. 

 

Histopathological, histochemical and immunohistochemical analysis 

These experimental methods are described in detail in the methods section of Chapter 2. 

 

Cytokine release and cytotoxicity assays  

FAP-CAR T cells encoding different intracellular signaling domains including the mouse 

CD3ζ chain (73.3-mz), mouse CD3ζ along with mouse CD28 domains (73.3-m28z), 

human CD3ζ chain (73.3-hz), and human CD3ζ along with human 4-1BB domains (73.3-
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hBBz) were co-cultured with 3T3 or 3T3.FAP fibroblasts expressing GFP and luciferase 

at various effector-to-target ratios. After 18 hours, the culture supernatants were collected 

for IFNγ analysis using an ELISA (BD Bioscience). The cytotoxicity of transduced T 

cells was determined using a luciferase assay system (Promega). 

 

Activation-induced T cell death assay 

Recombinant FAP-extracellular domain (residues 99–761) or bovine serum albumin 

(BSA) was chemically crosslinked to tosylactivated 4.5 µm Dynabeads (Thermo Fisher 

Scientific). Mouse MigR1 or FAP-CAR T cells encoding different intracellular signaling 

domains including mouse CD3ζ along with mouse CD28 domains (m28z) and human 

CD3ζ along with human 4-1BB domains (hBBz) were cultured with FAP-ECD or BSA-

coated beads. The number of live cells was determined at various time points using 

trypan blue exclusion. 

 

Statistical Analyses 

Statistics were calculated using GraphPad Prism 6. For studies comparing two groups, 

Student’s t-test was used. For studies comparing more than two groups, one-way 

ANOVA with post-hoc Tukey testing was used. Data are represented as mean ± SEM. 

Differences were considered significant when p < 0.05. 
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Results 

FAP-CAR T cells inhibit growth of multiple moderately-desmoplastic solid tumors 

in syngeneic hosts 

In the previous chapter, we specifically tested whether FAP+ stromal cells can augment 

growth of highly desmoplastic human tumors and syngeneic mouse models of PDA via 

immune-independent stromal remodeling of the tumor stroma. Consistent with the data 

described in those studies, we observed that syngeneic tumors, including AE17.OVA, 

TC1 and LKR, all exhibited moderate desmoplasia and recruited FAP+ stromal cells into 

the tumor microenvironment in immune-competent hosts (Fig. 2-1 and 3-2). Here, we 

explore the capability of FAP-CAR T cells to inhibit tumor growth using three different 

tumor lines that do not express FAP: AE17.OVA mesothelioma cells and TC1 and LKR 

lung cancer cells and investigate the contribution of immune-dependent and immune-

independent mechanisms to their anti-tumor activity in these models.  

 

Adoptive transfer of FAP-CAR T cells, but not MigR1 T cells, significantly reduced the 

growth of AE17.OVA tumors (Fig. 3-1A), TC1 tumors (Fig. 3-1C), LKR tumors (Fig. 3-

1D) and 4T1 tumors (Fig. 3-1E) by 35-50%. FAP-CAR T cell treatment inhibited the 

growth of CT26 tumors at day 1 to day 3 post-adoptive transfer, but tumor resurged at the 

later time point (Fig. 3-1F). To confirm specificity, AE17.OVA-bearing FAP-deficient 

C57BL/6 mice were treated with FAP-CAR T cells. In contrast to the effect on 

AE17.OVA tumors in FAP-intact C57BL/6 mice, FAP-CAR T cells had no effect on the 

growth of AE17.OVA tumors in FAP-deficient mice (Fig. 3-1B).  



	 61	

At the endpoint, around 7-9 days post-T-cell transfer, FAP-CAR T-cell treatment 

decreased the number of CD45− CD90+ FAP+ and CD45+ FAP+ populations by about 50% 

compared to those in the untreated group of AE17.OVA tumors, TC1 tumors and LKR 

tumors (Fig. 3-2). To further characterize this FAP-CAR T-cell-mediated depletion of 

intratumoral FAP+ stromal cells, we treated AE17.OVA tumors with FAP-CAR T cells 

and evaluated the prevalence of FAP+ stromal cells at 3 days post-T-cell transfer. At this 

earlier time point, we observed a dramatic decrease of CD90+ FAP+ stromal cells (a 

reduction of 82%) and CD45+ FAP+ leukocytes (a reduction of 56%), whereas MigR1 T 

cells had no impact on the numbers of either population (Fig. 3-3A). We also identified 

both low- and high-FAP-expressing cells in both the CD45− CD90+ and CD45+ 

populations in untreated tumors. When we gated on these specific populations, we noted 

that the FAP-CAR T cells selectively depleted the FAP-high expressers but had little 

effect on FAP-low expressers (Fig. 3-3B and C). 

 

FAP-CAR T cells alter tumor angiogenesis and desmoplastic response in syngeneic 

AE17.OVA tumors 

Having established that FAP+ stromal cells are required for the formation and 

maintenance of a provisional tumor stroma in multiple desmoplastic tumor models 

described in chapter 2, we also sought to investigate the impact of FAP-CAR T cells on 

the tumor microenvironment in moderately-desmoplastic AE17.OVA tumors by 

histochemical and immunohistochemical analyses. FAP-CAR T-cell treatment showed 

altered tumor morphology and nuclear condensation, reduced tumor cell proliferation and 

increased tumor cell apoptosis. The tumor stroma was also remarkably changed. The 
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number of CD31+ vessels was decreased by 30% following FAP-CAR T-cell transfer. 

Collagen and HA content were reduced by 57% and 83%, respectively (Fig. 3-4). 

Although AE17.OVA tumors are not as desmoplastic as the other tumor types examined 

(Fig. 2-1 and 2-3), these data indicate that FAP+ stromal cell-mediated immune-

independent stromal remodeling may have contributed to tumor growth. 

 

Role of the adaptive immune response in FAP-CAR T-cell-induced anti-tumor 

activity 

As discussed above, depletion of FAP+ stromal cells may have induced anti-tumor 

activity by abrogating immune-independent stromal remodeling and reducing 

angiogenesis, nonetheless, we also aimed to investigate the potential contribution of host 

adaptive anti-tumor immunity in these immunogenic tumors in the immune-competent 

mice. We examined the potential impact of FAP+ stromal cells on host anti-tumor 

immunity using AE17.OVA and TC1 tumor cells that are highly immunogenic due to 

expression of human papilloma virus (HPV) oncoproteins E6 and E7. Interestingly, we 

found a significant increase of total CD8+ T cells within the AE17.OVA and TC1 tumors 

at 8 days following FAP-CAR T-cell treatment (Fig. 3-5). Further analyses using 

tetramer staining showed that FAP-CAR T-cell-treated tumors had a higher number of 

OVA-specific T cells and E7-specific T cells within AE17.OVA tumors and TC1 tumors, 

respectively (Fig. 3-5).  

 

To further study the impact of FAP+ stromal cell depletion on host adaptive anti-tumor 

immunity, we treated AE17.OVA tumor-bearing mice with FAP-CAR T cells and 
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analyzed the endogenous (non-GFP-expressing) T cells at 3 and 8 days post T-cell 

transfer. We found that the number of intratumoral CD3+ T cells did not change at 3 days 

post T-cell transfer (Fig. 3-6A), consistent with a previous report in which a genetic 

approach was used to ablate FAP+ stromal cells (Kraman et al., 2010). Nevertheless, we 

found that at this time point, the number of CD4+ T cells producing TNFα was 

significantly higher in tumors that received FAP-CAR T-cell treatment (Fig. 3-6C), while 

the numbers of activated CD69+ T cells and IFNγ-producing CD8+ T cells remained 

unchanged (Fig. 3-6D and E). Interestingly, the number of CD3+ T cells was higher in 

tumors at 8 days following treatment with FAP-CAR T cells (Fig. 3-6B). At this time 

point, the numbers of CD69+ and IFNγ+ CD8+ T cells had increased (Fig. 3-6D and E), 

while the numbers of TNFα-producing T cells remained similar between FAP-CAR T 

cell- and MigR T cell-treated group (Fig. 3-6C). Taken together, these data show that 

depletion of intratumoral FAP+ stromal cells might augment the anti-tumor immune 

response by initially activating intratumoral host CD4+ T cells, followed by enhanced 

CD8+ T-cell infiltration and activation at the later time point.  

 

To further elucidate the relative contributions of FAP+ stromal-cell-mediated immune 

suppression and immune-independent remodeling of the tumor microenvironment to the 

inhibition of AE17.OVA tumor growth, we compared the impact of FAP-CAR T cells in 

AE17.OVA tumor-bearing C57BL/6 (Fig. 3-7A) and immunodeficient NSG mice (Fig. 

3-7B). Notably, AE17.OVA tumors grew much more rapidly in NSG mice than in 

C57BL/6 mice, indicating that tumors were highly immunogenic and that the endogenous 

anti-tumor activity was lost in NSG mice. As above, administration of FAP-CAR T cells 
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significantly inhibited the growth of AE17.OVA tumors in immune-competent C57BL/6 

mice, but this anti-tumor effect was not observed in immune-deficient NSG mice (Fig. 3-

7). This loss in activity was not due to the loss of FAP expression in the NSG tumor 

microenvironment, as we confirmed that AE17.OVA tumors recruited comparable levels 

of FAP+ stromal cells in C57BL/6 and NSG mice. Therefore, the impact of FAP-CAR T 

cells on tumor growth in this model is dependent on endogenous anti-tumor immunity. 

 

FAP-CAR T-cell therapy augments the efficacy of a cancer vaccine 

As FAP+ tumor cell depletion can augment endogenous adaptive anti-tumor immunity, 

we hypothesized that the combination of tumor vaccination and FAP-CAR T-cell 

treatment may increase therapeutic efficacy compared to either approach alone. To test 

this possibility, mice bearing established large TC1 tumors (approximately 200mm3) 

were treated with a tumor vaccine consisting of an adenovirus expressing HPV-E7 

(Ad.E7) to augment the T-cell response against E7-expressing TC1 tumor cells (Fig. 3-8, 

red arrow). FAP-CAR T cells were then administered intravenously (Fig. 3-8, blue 

arrow) four days after injection with the Ad.E7 vaccine. Individually, the Ad.E7 cancer 

vaccine and FAP-CAR T cells each only resulted in modest effects on these large 

established tumors. However, the combination treatment suppressed tumor growth for up 

to two weeks before further tumor progression (Fig. 3-8). 

 

Enhancement of FAP-CAR T-cell therapy 

We noticed that tumors that received a single infusion of FAP-CAR mouse T cells 

eventually progressed 6-8 days after T-cell transfer (Fig. 3-1). We reasoned that the rapid 
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loss of FAP-CAR T cells was due to their limited persistence and/or suppression of their 

effector functions in an immune-suppressive tumor microenvironment, thereby leading to 

tumor resurgence. To address the first possibility, we assessed the number of intratumoral 

FAP-CAR T cells in the AE17.OVA model at various time points after adoptive transfer. 

We found that the number of FAP-CAR T cells peaked at day 3 post-infusion and had 

diminished by 7 to 10 days by approximately 65% (Fig. 3-9). To confirm that this rapid 

loss of T cells was not due to abnormal function of the human 4-1BB and CD3ζ 

intracellular signaling domains in the context of mouse T cells, we engineered a fully 

mouse FAP-CAR construct encoding the mouse CD28 cytoplasmic domain and the 

mouse CD3ζ chain (73.3m28z) (Figure 2-4D). When transduced into mouse T cells, 

73.3-hBBz FAP-CAR and 73.3m28z FAP-CAR T cells released comparable levels of 

IFNγ (Fig. 3-10A) and induced comparable levels of cytotoxicity when co-cultured with 

3T3.FAP fibroblasts (Fig. 3-10B). To further evaluate the importance of the co-

stimulatory cytoplasmic domains, we synthesized two additional FAP-CAR constructs 

that lack these co-stimulatory domains, i.e. 73.3-human CD3ζ and 73.3-mouse CD3ζ. 

Neither the mouse nor the human CD3ζ construct was sufficient to induce IFNγ 

production (Fig. 3-10A) or cytotoxicity (Fig. 3-10B) when co-cultured with 3T3.FAP 

fibroblasts. Moreover, FAP-CAR T cells employing either human or mouse ICDs were 

able to traffick into tumors (Fig. 3-10C) and induced comparable anti-tumor activity in 

AE17.OVA tumors (Fig. 3-10D). These data demonstrate that mouse CAR T cells 

injected into syngeneic hosts persisted for only a short time, regardless of the origin of 

cytoplasmic co-stimulatory domains. Additionally, mouse CAR T cells may undergo 

activation-induced cell death (ACID) as they are highly activated, a requirement for 
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retroviral transduction. We observed that FAP-CAR T cells employing either human or 

mouse ICDs were equally susceptible to activation-induced cell death (Fig. 3-11), ruling 

out the possibility that human ICD-based FAP-CAR T cells were prone to AICD and 

therefore resulted in tumor resurgence. Therefore, since FAP-CAR mouse T cells only 

persisted for only a short period of time in vivo, we hypothesized that a second infusion 

of FAP-CAR T cells may enhance therapeutic efficacy. Indeed, administration of a 

second dose of FAP-CAR T cells prevented the resurgence of tumor in AE17.OVA 

tumors (Fig. 3-12). 

 

Another, not mutually exclusive, explanation for the lack of tumor regression may be 

related to suboptimal CAR signaling in mouse T cells and/or functional suppression of 

CAR T cells in the immune-suppressive tumor microenvironment. Recent studies from 

showed that mesothelin-targeted CAR mouse T cells deficient in the inhibitory enzyme 

diacylglycerol kinase zeta (DGKζ) exhibited enhanced effector functions in vitro and in 

vivo, as well as increased persistence (Riese et al., 2013). Therefore, we generated 

DGKζ-deficient FAP-CAR T cells and found that these DGKζ-deficient FAP-CAR T 

cells released more IFNγ (Fig. 3-13A) and induced higher cytotoxicity (Fig. 3-13B) when 

co-cultured with 3T3.FAP fibroblasts. DGKζ-deficient FAP-CAR T cells induced more 

potent anti-tumor activity compared to the WT FAP-CAR T cells (Fig. 3-13C). At the 

endpoint, we also observed more numbers of DGKζ-deficient FAP-CAR T cells in the 

AE17.OVA tumor cells, indicating DGKζ-deficiency increased the persistence of FAP-

CAR T cells (Fig. 3-13D). 
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Conclusions and discussion 

The host adaptive immune response possesses great potential to restrain the growth of 

solid tumors. Nevertheless, immune suppression often occurs to prevent the efficient 

arrest of tumor growth (Leach et al., 1996). Checkpoint-blockade antibodies antagonizing 

CTLA-4, PD-1 and PD-L1 have been shown to promote sustained and heightened T-cell 

activation and achieve favorable clinical outcomes in a subset of cancer patients. 

Nevertheless, many patients fail to respond to these treatments (Brahmer et al., 2015; 

Brahmer et al., 2012; Hamid et al., 2013; Hodi et al., 2010; Larkin et al., 2015; Le et al., 

2015; Motzer et al., 2015; Royal et al., 2010; Wolchok et al., 2013). Further 

understanding of the molecular and cellular components that govern tumoral immune 

suppression will offer new opportunities to invigorate the adaptive immune system to 

inhibit tumor progression.  

 

Using FAP-CAR T cells, we observed that depletion of FAP+ stromal cells inhibited 

tumor growth in multiple syngeneic tumor models. We again confirmed that the FAP-

CAR T-cell-induced anti-tumor response was lost in FAP-deficient mice, indicating that 

the anti-tumor activity is dependent on FAP expression by host stromal cells. Consistent 

with the reported immune-suppressive functions of FAP+ stromal cells (Arnold et al., 

2014; Feig et al., 2013; Kraman et al., 2010), we found that the impact on growth of 

immunogenic but moderately-desmoplastic AE17.OVA tumors depended on anti-tumor 

immunity, as the effect of FAP-CAR T cells was associated with enhanced infiltration of 

tumor-reactive T cells and the effect was abrogated in immune-deficient mice. In 

addition, we detected pronounced alterations in the tumor stroma, demonstrating that 
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FAP+ stromal cells are required for the formation and/or maintenance of desmoplasia. We 

expected that the alteration in tumor stroma and angiogenesis induced by FAP-CAR T 

cells might partially contributed to the anti-tumor activity in AE17/OVA tumors observed 

in FAP-CAR T cell-treated desmoplastic human tumors and syngeneic pancreatic tumors. 

Nonetheless, the drastic growth increase in highly-immunogenic, modestly-desmoplastic 

AE17.OVA tumors in NSG mice may have overwhelmed the potential for FAP-CAR T-

cell-induced immune-independent effects.  

 

Moreover, it will be interesting in future studies to determine whether FAP-CAR T cell-

induced stromal changes contribute to the enhanced infiltration of endogenous T cells 

into tumors. We hypothesize that FAP-CAR T-cell-mediated matrix destruction may 

permit more efficient T cell recruitment and infiltration, and likely enhances anti-tumor 

immunity to restrict tumor progression. A recent study demonstrating that matrix 

architecture excludes T cells from migrating and infiltrating into the tumor cell nests 

supports this idea (Salmon et al., 2012). T cell accumulation was more pronounced in the 

stroma than in tumor islets of human lung tumors. Matrix degradation by collagenase 

enhanced mobilization of T cells and increased the accessibility of T cells to cancer cells 

ex vivo. Intriguingly, another study showed that expression of heparanase, which 

degrades heparan sulfate proteoglycans in the ECM, promoted tumor infiltration and 

augmented the anti-tumor activity of CAR-redirected T cells (Caruana et al., 2015). 

Identification of an immunogenic and highly desmoplastic syngeneic tumor model will 

enable further studies into the relationship between tumor desmoplasia and anti-tumor 

immunity.  
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We evaluated the endogenous T cells within the tumors at 3 days and 8 days post CAR-T 

cell infusion. At the earlier time point, we observed no difference between the total 

number of T cells and activated CD8+ T cells, but found an increase in the number of 

TNFα-producing CD4+ T cells, consistent with similar findings using a genetic ablation 

mouse model (Kraman et al., 2010). Interestingly, at the later time point, we observed an 

increase in total CD8+ T cells as well as antigen-specific CD8+ T cells in AE17.OVA and 

TC1 tumors. Moreover, these CD8+ T cells displayed a more activated phenotype, as 

there were more IFNγ-producing CD8+ T cells and CD69+ T cells. Given the potential 

immune activation with conditional depleting of FAP+ stromal cells, we tested the 

combination of FAP-CAR T cells and an Ad.E7 cancer vaccine. This combination 

therapy was able to induce synergistic effects to control the growth of established large 

tumors, while either monotherapy did not induce significant anti-tumor activity. 

Similarly, a strategy combining tumor and stromal cell-targeted CAR T cells also resulted 

in an augmented therapeutic efficacy (Kakarla et al., 2013). Moreover, combination of an 

anti-FAP DNA vaccination with doxorubicin inhibited breast cancer metastasis by 

reducing proinflammatory cytokine IL-6 and by shifting of the immune 

microenvironment from a Th2 to Th1 polarization (Liao et al., 2009). These observations 

demonstrate that conditional depletion of FAP+ stromal cells can augment anti-tumor 

immune response and reduce tumor-promoting inflammation, and therefore reduce 

therapeutic resistance. Further studies are needed to fully understand the mechanisms by 

which FAP+ stromal cells modulate inflammatory and immune responses. 
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We also noted that limited persistence of the FAP-CAR T cells eventually led to tumor 

resurgence. To determine if the FAP-CAR T-cell-induced anti-tumor effect can be further 

extended, a second dose of T cells was administered one week after the initial infusion. 

The repeated dosing also demonstrated increased efficacy. This finding suggests that 

enhanced persistence of FAP-CAR T cells may augment therapeutic efficacy. Our prior 

observations indicated that genetic deletion of DGKζ, an enzyme that limits T-cell 

activation, augmented the cytotoxic potential and persistence of mouse CAR T cells 

targeted to mesothelin (Riese et al., 2013). Similarly, we now found that FAP-CAR T 

cells deficient in DGKζ exhibited an enhanced ability to control tumor growth. 

Collectively, these data demonstrate that optimizing the persistence and potency of FAP-

CAR T cells may further increase their therapeutic efficacy. 

 

In summary, we conclude that depletion of FAP+ stromal cells can enhance the host 

adaptive immune response in controlling growth of immunogenic tumors, and that 

depletion of FAP+ stromal cells can render the tumor vulnerable to other treatments 

including immunotherapy and/or chemotherapy. 
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Figure 3-1. FAP-CAR T cells inhibit growth of multiple syngeneic solid tumors in a 
target-specific fashion. Mice were injected subcutaneously with 2×106 AE17.OVA, 
1×106 TC1, 2×106 LKR, 0.5×106 4T1, or 1×106 CT26 tumor cells into the dorsolateral 
flank of FAP-WT or FAP-KO syngeneic mice. Mice bearing established tumors derived 
from AE17.OVA (A), TC1 (C), LKR (D), 4T1 (E) and CT26 (F) were injected 
intravenously with 1×107 FAP-CAR or MigR1 T cells. (B) AE17.OVA-bearing FAP-KO 
mice were given 1×107 FAP-CAR or MigR1 T cells. The blue arrows indicate the time of 
adoptive T-cell transfer. Results are shown as mean ± SEM (n=4~5 per group); *denotes 
statistical significance between untreated, MigR1 and FAP-CAR-treated specimens, 
p<0.05. 
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Figure 3-2. Adoptive transfer of FAP-CAR T cells depletes intratumoral FAP+ 
stromal cells in multiple syngeneic solid tumor models. C57BL/6 mice bearing 
established AE17.OVA tumors, TC1 tumors or LKR tumors were intravenously injected 
with 1×107 FAP-CAR T cells or left untreated. Tumors were harvested 7-9 days post-
adoptive T-cell transfer to assess depletion of FAP+ stromal cells. Results are shown as 
mean ± SEM (n=3~5 per group), *p<0.05; **p<0.01.  
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Figure 3-3. Preferential acute depletion of intratumoral FAPhi stromal cells by FAP-
CAR T cells in syngeneic AE17.OVA tumors. Established AE17.OVA tumor-bearing 
mice were intravenously injected with 1×107 FAP-CAR or MigR1 T cells. At 3 days 
post-adoptive T-cell transfer, tumors were harvested and dissociated with a collagenase 
cocktail to obtain single-cell suspensions. Flow cytometry was performed to evaluate 
depletion of (A) total FAP+ stromal cells, (B) FAPhi cells and (C) FAPlo cells by FAP-
CAR T cells. Results are shown as mean ± SEM (n=5 per group); *indicates statistical 
significance between untreated, MigR1 and FAP-CAR-treated samples, p<0.05. 
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Figure 3-4. FAP-CAR T cells inhibit growth of moderately desmoplastic AE17.OVA 
tumors by inhibiting proliferation, increasing apoptosis and altering tumor stroma. 
Syngeneic C57BL/6 mice bearing AE17.OVA tumors were injected intravenously with 
1×107 FAP-CAR or MigR1 T cells. Tumor tissues were harvested and sections were 
stained with antibodies against Ki-67, cleaved-caspase3 and CD31. Trichome and HABP 
stains were performed to reveal the tumor stroma. Computer-based quantification was 
performed using Fiji software. The proliferation index was calculated by the ratio of Ki-
67+ cells to hematoxylin+ cells. The apoptotic index was calculated by the ratio of CC-3+ 
cells to hematoxylin+ cells. CD31 was quantified by the number of immunoreactive 
vessels. Trichrome and HA were determined by blue or brown colors normalized to the 
total area; n=3 per group, *p<0.05, **p<0.01. Scale: 100 µm.  
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Figure 3-5. FAP-CAR T-cell-induced anti-tumor activity in AE17.OVA and TC1 
tumors is associated with enhanced CD8 T-cell response. C57BL/6 mice bearing (A) 
AE17.OVA or (B) TC1 tumors were intravenously injected with 1×107 FAP-CAR or 
MigR1 T cells or left untreated. Tumors were harvested 8 days after T-cell infusion and 
digested with a collagenase cocktail to prepare single-cell suspensions. Cells were stained 
with anti-CD8 antibody and fluorochrome-conjugated tetramer loaded with HPV E7 or 
OVA peptide. Flow cytometry was performed to determine the total intratumoral CD8 
and antigen-specific T cells. Results are shown as mean ± SEM (n=5 per group); 
*p<0.05. 
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Figure 3-6. Depletion of intratumoral FAP+ stromal cells recruits and/or activates 
endogenous T cells expressing TNFα or IFNγ at distinct kinetics in AE17.OVA 
tumors. Established AE17.OVA tumor-bearing mice were intravenously injected with 
1×107 FAP-CAR or MigR1 T cells. Tumors were digested to evaluate the number of total 
host CD3+ T cells 3 days (A) and 8 days (B) post-adoptive T-cell transfer. Endogenous 
CD4+ T cell expressing TNFα (C), CD8+ T cell expressing IFNγ (D) CD3+ T cell 
expressing CD69 (E) were analyzed at 3 and 8 days after adoptive T-cell transfer. Results 
are shown as mean ± SEM (n=5 per group); *denotes statistical significance between 
untreated, MigR1 and FAP-CAR-treated groups, p<0.05. 
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Figure 3-7. Adaptive immunity is critical for FAP-CAR T-cell-induced anti-tumor 
response to AE17.OVA tumors. Established AE17.OVA tumor-bearing C57BL/6 mice 
(A) and NSG mice (B) were intravenously injected with 1×107 FAP-CAR or left 
untreated. Tumor growth was followed. Blue arrows indicate the time of adoptive T-cell 
transfer. Results are shown as mean ± SEM (n=5 per group), *p<0.05.  
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Figure 3-8. FAP-CAR T cells enhance the efficacy of tumor antigen vaccination in 
the TC1 tumor model. TC1 tumor cells were injected into the right flanks of C57BL/6 
mice. When tumors reached 200 mm3 in volume, 109 pfu adenovirus-encoding HPV E7 
(Ad.E7) was injected subcutaneously to the contralateral side of the flank tumors (red 
arrow). 1×107 FAP-CAR T cells were intravenously injected 4 days later (blue arrow). 
Results are shown as mean ± SEM (n=5 per group); *indicates a significant difference 
between the combined treatment group and untreated or single-regimen treated groups, 
p<0.05.  
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Figure 3-9. Murine FAP-CAR T cells do not persist in vivo. Established AE17.OVA 
tumor-bearing C57BL/6 mice were intravenously injected with 1×107 FAP-CAR T cells. 
Tumors were harvested at 3, 7 and 10 days post-T cell transfer to determine the frequency 
of GFP+ CD3+ FAP-CAR T cells. Results are shown as mean ± SEM (n=5 per group), 
*p<0.05. 
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Figure 3-10. Murine FAP-CAR T cells employing either human 4-1BB (hBBz) or 
mouse CD28 (m28z) exhibit comparable effector functions, trafficking and anti-
tumor activity in AE17.OVA tumors. Mouse FAP-CAR T cells encoding different 
intracellular signaling domains including the mouse CD3ζ chain (73.3-mz), the mouse 
CD3ζ along with mouse CD28 domains (73.3-m28z), the human CD3ζ chain (73.3-hz), 
and the human CD3ζ along with human 41BB domains (73.3-hBBz) were used to react 
with 3T3 or 3T3.FAP to (A) determine their ability to secrete IFNγ at an effector-to-
target ratio of 10:1 and (B) determine their cytolytic activity at various effector-to-target 
ratios, 18 hours after co-culture. Results are shown as mean ± SEM (n=3 per group); 
*indicates statistical significance between the first generation (CD3ζ constructs) and 
second generation (CD28ζ and 4-1BBζ constructs), p<0.05. (C) To determine if different 
costimulatory domains may govern trafficking and persistence in vivo, Thy1.1+ C57BL/6 
mouse T cells were transduced with FAP-CAR constructs encoding CD28ζ or 4-1BBζ 
and injected into Thy1.2 C57BL/6 mice bearing established AE17.OVA tumors. Tumors 
were harvested 3 days after adoptive T-cell transfer to evaluate the presence of FAP-CAR 
T cells by flow cytometry using fluorochrome-conjugated anti-Thy1.1 and anti-CD3 
antibodies. (D) Established AE17.OVA tumor-bearing mice were intravenously injected 
with 1×107 FAP-CAR T cells encoding CD28ζ or d 4-1BBζ domains. Tumor growth was 
followed. Blue arrows indicate the time of adoptive T-cell transfer. Results are shown as 
mean ± SEM (n=5 per group); * and # represent statistical significance between untreated 
and FAP-CAR-treated samples, p<0.05.  
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Figure 3-11. Murine FAP-CAR T cells undergo activation-induced cell death.	Mouse 
MigR1 or FAP-CAR T cells encoding different signaling intracellular signaling domains 
including the mouse CD3ζ along with mouse CD28 domains (m28z), and the human 
CD3ζ along with human 4-1BB domains (hBBz), were exposed to either BSA- or FAP-
ECD-coated beads. Live cells were determined by trypan blue exclusion. 
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Figure 3-12. Enhancement of FAP-CAR T-cell-mediated anti-tumor activity by 
repeated dosing. Established AE17.OVA tumor-bearing mice were intravenously 
injected with 1×107 FAP-CAR T cells. Anti-tumor efficacy was further enhanced by a 
second dose of FAP-CAR T-cell infusion given a week after the initial dose. Tumor 
growth was monitored by electronic caliper. Blue arrows indicate the time of adoptive T-
cell transfer. Results are shown as mean ± SEM (n=5 per group); *indicates statistical 
significance between untreated and FAP-CAR-treated samples, p<0.05; #denotes 
statistical significance between the single-dose FAP-CAR treated group versus the 
double-dose group. 
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Figure 3-13. Enhancement of FAP-CAR T-cell-mediated anti-tumor activity 
through increased effector functions and persistence. Wild-type FAP-CAR T cells 
(WT) and DGKζ knockout FAP-CAR T cells (DGKzKO) were used to react with 3T3 or 
3T3.FAP to (A) determine their ability to secrete IFNγ and (B) determine their cytolytic 
activity at various effector-to-target ratios, 18 hours after co-culture. Results are shown as 
mean ± SEM (n=3 per group); *indicates statistical significance between non-reactive 
(FAP-CAR T cells co-cultured with 3T3) and reactive samples (FAP-CAR T cells co-
cultured with 3T3.FAP), p<0.05. #indicates statistical significance between WT and 
DGKζ KO FAP-CAR-treated samples, p<0.05. (C) Established AE17.OVA tumor-
bearing mice were intravenously injected with 1×107 WT or DGKζ-KO FAP-CAR T 
cells. Tumor growth was monitored by electronic caliper. Blue arrows indicate the time 
of adoptive T-cell transfer. (D) Tumors were harvested 11 days post-T cell transfer. 
Intratumoral GFP+ FAP-CAR T cells were determined using flow cytometry. Results are 
shown as mean ± SEM (n=5 per group). *indicates statistical significance between 
untreated and FAP-CAR-treated samples, p<0.05; #denotes statistical significance 
between the WT FAP-CAR T cell-treated samples versus the DGKζ-KO FAP-CAR T-
cell-treated samples, p<0.05.  
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CHAPTER 4 – Therapeutic window exists for adoptive T-cell therapy 

against fibroblast activation protein-expressing stromal cells 

 

Introduction 

One of the major determinants of tumor-targeted therapy, including cancer 

immunotherapy using CAR T-cell technology, is identifying a target antigen that is 

differentially expressed in the tumor versus normal tissues. Targeting antigens that are 

overexpressed in the tumor milieu with minimal or no expression in essential normal 

tissues would help minimize toxicity. FAP expression has been detected in the somite of 

the mouse embryo (Niedermeyer et al., 2001), in the placenta and uterus (Dolznig et al., 

2005) and in mesenchymal stem cells from multiple origins (Bae et al., 2008; Jeong et al., 

2005; Jeong et al., 2007). Therefore, it is important to understand the normal 

physiological functions of FAP+ stromal cells and study the potential impact and potential 

adverse effects of their depletion in normal tissues.  

 

FAP-expressing cells in normal tissues and their homeostatic functions 

In the past, studies of the distribution of FAP+ stromal cells in tumors or normal tissues 

were largely relied on immunohistochemistry or immunofluorescence analyses, capturing 

areas of interest at a tissue-section level. To better understand FAP expression at an 

organism level, we and others have developed FAP-reporter mice, enabling noninvasive 

bioluminescent imaging of FAP+ stromal cells in normal tissues (Jacob et al., 2012; 
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Roberts et al., 2013). FAP+ stromal cells were found to reside in many tissues of the adult 

mouse, including skin, bone marrow, skeletal muscle, pancreas, adipose and lymph 

nodes. Genetic ablation (Roberts et al., 2013) or immune-targeting studies by using FAP-

CAR, based on the FAP5 anti-FAP antibody (Tran et al., 2013), showed that depletion of 

FAP+ stromal cells induced bone marrow hypoplasia, cachexia and anemia. FAP+ stromal 

cells from skeletal muscle were found to be the major cell population to produce 

follistatin, a protein that can promote muscle growth. Moreover, FAP+ stromal cells in the 

bone marrow were shown to produce SDF-1α and KitL, which are essential in regulating 

B-lymphopoiesis and erythropoiesis (Roberts et al., 2013). Further studies revealed that 

fibroblastic reticular cells in lymph nodes also expressed FAP, and experimental ablation 

of these cells in mice disrupted lymph node homeostasis and impaired launching an 

effective immune response to clear influenza virus infection (Denton et al., 2014). These 

studies demonstrate that FAP+ stromal cells are important in the maintenance of normal 

muscle mass, lymph node homeostasis and hematopoiesis. 

 

Conditional depletion of FAP-expressing cells can achieve tumor inhibition without 

inducing severe toxicities  

As described in the literature, targeting FAP+ stromal cells via several approaches, 

including vaccine, immunoconjugate and enzyme-activating prodrug therapies (Brennen 

et al., 2012; Lee et al., 2005; Loeffler et al., 2006; Ostermann et al., 2008), as well as two 

independent CAR T-cell therapies (Kakarla et al., 2013; Schuberth et al., 2013), resulted 

in therapeutic efficacy without inciting severe toxicities such as bone marrow destruction, 

muscle wasting or anemia, and did not induce a significant impact on the wound healing 
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response. In contrast, genetic ablation (Roberts et al., 2013) or FAP5-CAR T-cell 

therapy, which induced little anti-tumor effects (Tran et al., 2013), were shown to trigger 

bone marrow hypoplasia and cachexia in mice. These variations in toxicity raise serious 

concerns as to whether FAP+ stromal cells are indeed good cancer targets; perhaps 

alternative strategies should be taken, such as targeting the molecular mediators secreted 

by FAP+ stromal cells (Arnold et al., 2014; Feig et al., 2013), or targeting the protease 

activity of FAP itself (Santos et al., 2009) as will be discussed in later chapters. 

 

In this chapter, I address the potential toxicity versus safety of 73.3 FAP-CAR T cells as 

an approach to deplete FAP+ stromal cells in the mouse tumor models described earlier in 

chapters 2 and 3, as well as in the mouse models of wound healing and atherosclerosis. 

We also conducted experiments to understand differences in the efficacy and toxicity 

profiles of 73.3 FAP-CAR T cells versus FAP5-CAR T cells. 
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Materials and methods  

Animals 

C57BL/6, BALB/c and C57BL/6:129pf/j F1 hybrid mice were used for the experiments 

as described in chapter 2 and 3. Apolipoprotein E-deficient C57BL/6 mice were 

purchased from Charles River Laboratories Inc. (Wilmington, MA). Experimental 

protocols were approved by the Institutional Animal Care and Use Committee and were 

in compliance with guidelines for the care and use of animals. 

 

Body weight monitoring 

The body weights of mice treated with FAP-CAR T cells or control T cells were 

monitored by electronic scale. 

 

Amylase assay 

Blood from mice treated with FAP-CAR T cells or control T cells was obtained by 

cardiac puncture. Serum amylase levels were measured in the clinical laboratory of the 

Ryan Veterinary Hospital of the University of Pennsylvania. 

 

Hematocrit assay 

Blood from mice treated with FAP-CAR T cells or control T cells was obtained by 

cardiac puncture. Hematocrit levels were measured in the clinical laboratory of the Ryan 

Veterinary Hospital of the University of Pennsylvania. 

 

Generation of full-thickness excisional wounds  
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C57BL/6 mice were anesthetized with intraperitoneal administration of 70 mg/kg 

ketamine and 7 mg/kg xylazine. Hair was removed from the skin using Nair. Exposed 

skin was sterilized with betadine and cleaned with 70% ethanol before creating excisional 

wounds with a 4 mm disposable biopsy punch.  

 

Intravenous transfer of FAP-CAR T cells in wounded mice or apoE-deficient mice 

Wounded mice were randomly assigned to two groups and treated with 1×107 FAP-CAR 

T cells or MigR1 T cells at 2 hours and 3 days post-wounding. Wound closure was 

followed using the IVIS Imaging 200 system. Mice were monitored daily for signs of 

distress caused by toxicity of the T cells. At day 8, wounded tissue and visceral organs 

were collected for further analysis. In another experiment, 24-week-old female apoE-KO 

mice were randomly grouped to receive 1×107 FAP-CAR T cells or MigR1 T cells. The 

second dose was administered one week after the first dose. The aorta was harvested 3 

days after the second dose of T cells. 

 

Oil red staining for evaluating total atherosclerotic lesion burden in the aorta 

Each aorta was fileted with the aid of a dissecting microscope to allow better penetration 

of the Oil Red O dye into lesions. Aortas were equilibrated in 60% isopropanol for 5 

minutes at room temperature. Each specimen was then immersed in 0.3% Oil Red O 

staining solution (Sigma) for 10 minutes at room temperature. Following this, samples 

were briefly washed with 60% isopropanol and distilled water. The lumenal side of the 

aorta was positioned on a sheet of dental wax and then imaged using a tripod-mounted 
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SLR camera (Canon). The total lesion area was calculated as a percentage of total 

lumenal surface area using Fiji computer-based quantification software.   

 

H&E staining for evaluating atherosclerotic lesion burden in the aortic root 

Quantification of the atherosclerotic lesion burden in the aortic root was performed as 

previously described (Cuff et al., 2001), with some minor modifications. Briefly, 10 µm 

serial sections of each frozen OCT-embedded aortic root were collected across 16 

Superfrost Plus slides (Thermo Fisher Scientific) with 3 sections per slide, totaling 

approximately 450-500 µm. Six sections (equally spaced throughout the entire aortic 

root) were stained with hematoxylin and eosin, and imaged at 10X magnification using 

an Olympus BX51 upright microscope with a SPOT RT2540 camera. Computer-based 

quantification was performed to quantify lesion areas across the six representative 

sections to determine the average atherosclerotic burden across the entire aortic root.  

 

Statistical Analyses 

Statistics were calculated using GraphPad Prism 6. For studies comparing two groups, 

Student’s t-test was used. For studies comparing more than two groups, one-way 

ANOVA with post-hoc Tukey testing was used. Data are represented as mean ± SEM. 

Differences were considered significant when p < 0.05. 
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Results 

Conditional depletion of FAP+ stromal cells by FAP-CAR T cell therapy provides 

anti-tumor efficacy without causing severe toxicity in multiple solid tumor models 

Recent studies have raised concerns that depletion of normal FAP+ stromal cells by either 

genetic ablation or FAP-CAR T cells might induce severe toxicities including weight 

loss, bone marrow destruction and anemia (Roberts et al., 2013; Tran et al., 2013). 

Therefore, we carefully assessed off-tumor/on-target adverse side effects following FAP-

CAR T-cell infusion. In contrast to those studies, we observed no toxicity or anemia in 

any CD3ζ-based 73.3 FAP-CAR T-cell therapy in multiple solid tumor models. The body 

weights of tumor-bearing mice remained constant or increased throughout each 

experiment (Fig. 4-1). We further evaluated toxicities in visceral organs post FAP-CAR 

T-cell therapy. The heart, lungs, pancreas, liver, spleen, kidneys, skeletal muscle, and 

bone marrow were harvested, sectioned, stained and analyzed in a blinded fashion by a 

board-certified pathologist. We did not observe any significant abnormality in mice that 

received CD3ζ-based FAP-CAR T cells. Specifically, we did not observe bone marrow 

hypoplasia (Fig. 4-2A), skeletal muscle wasting or an increased incidence of lung 

metastasis, consistent with the findings of other groups (Lee et al., 2005; Loeffler et al., 

2006; Ostermann et al., 2008), and the studies that employed two independently-

generated FAP-CAR constructs (Kakarla et al., 2013; Schuberth et al., 2013). 

Interestingly, we found that treatment with hyperactive DGKζ-deficient FAP-CAR T 

cells in AE17.OVA tumor-bearing mice, which induced more potent anti-tumor activity 

as described in chapter 3 (Fig. 3-12B), resulted in limited focal perivascular and peri-islet 

lymphocytic infiltration in the pancreas (Fig. 4-2B). These changes were not seen in the 
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tumor-bearing mice treated with wild-type FAP-CAR T cells. No other abnormalities 

were found. 

 

In order to reconcile the differences in the efficacy and toxicity profiles between our 73.3 

FAP-CAR construct and the FAP5-CAR construct (Tran et al., 2013), we compared the 

antibodies used as the foundation for the scFv to generate the respective CAR constructs. 

The 73.3 antibody and FAP5 antibody proved to have similar affinities for mouse FAP. 

The affinity of the FAP5 antibody has been reported to be 0.6 nmol/L. Biacore analysis 

reveals that the affinity of the 73.3 antibody is less than 1 nmol/L (0.1-0.3 nmol/L), 

which is modestly less than that reported for FAP5 and therefore we think unlikely to 

explain the dramatic difference in their efficacy and toxicity profiles.  

 

As a potential alternative, we investigated the relationship between the epitope specificity 

of two monoclonal antibodies against FAP. We found that 73.3 specifically reacted with 

mouse FAP while FAP5 bound to an epitope shared by both mouse and human FAP, 

indicating they are reactive with distinct epitopes (Fig. 4-3). Interestingly, the position of 

the targeted epitope of a scFv has previously been shown to determine the efficacy of 

activation of CAR T cells (Hombach et al., 2007). We therefore hypothesized that this 

distinct epitope specificity may allow our FAP-CAR T cells to efficiently eliminate the 

intratumoral FAP-high expressers (Fig. 3-3) while sparing FAP-low expressers that are 

more prevalent in normal tissues. Specifically, flow cytometry analysis indicated that 

tumor-associated stromal cells exhibited higher FAP expression than pancreatic stromal 

cells (Fig. 4-4). Based on these observations, we concluded that the limited persistence of 
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73.3 FAP-CAR T cells in vivo (Fig. 3-9) and the preferential depletion of FAP+ stromal 

cells (Fig. 3-3) provide for a therapeutic window with limited toxicity for specific FAP-

CAR constructs. 

 

FAP-CAR T-cell therapy does not impact wound healing response nor exacerbates 

atherosclerotic lesion development and architecture in apoE-deficient mice 

Since stromal fibroblasts play critical roles in tissue regeneration and FAP+ stromal cells 

have been demonstrated to present in injury sites and atherosclerotic lesions (Brokopp et 

al., 2011; Garin-Chesa et al., 1990; Scanlan et al., 1994), it is imperative to study the 

potential impacts of FAP-CAR T-cell therapy on these processes as this could limit the 

use of FAP-CAR in cancer patients. We tested whether FAP-CAR T-cell therapy may 

alter the wound-healing response or progression of atherosclerosis. Wounded mice were 

treated with two doses of FAP-CAR T cells at 2 hours and 3 days post-wounding (Fig. 4-

5A). We monitored the wound healing and body weight over an 8-day period. We found 

that FAP-CAR T-cell therapy did not alter wound closure (Fig. 4-5B) or cause changes in 

body weight (Fig. 4-5C) or circulating amylase levels (Fig. 4-5D). We employed apoE-

deficient mice, which spontaneously develop atherosclerotic lesions at 4-6 months of age, 

to test whether FAP-CAR T cells would cause any adverse effect on the development or 

progression of atherosclerotic lesions. 24-week-old female apoE-deficient mice were 

treated with two weekly doses of FAP-CAR T cells or MigR1 T cells (Fig. 4-6A). We 

found that FAP-CAR T-cell therapy did not exacerbate atherosclerotic lesion 

development and morphology (Fig. 4-6B) or cause changes in body weight (Fig. 4-6C), 

circulating amylase levels (Fig. 4-6D) or hematocrit levels (Fig. 4-6E). These data 
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support a regimen that offers anti-tumor activity, as seen in several solid tumor models, 

that does not impact atherosclerosis or the wound-healing response, which is consistent 

with other studies (Kakarla et al., 2013; Loeffler et al., 2006). 

 

Complete depletion of FAP+ stromal cells using enhanced FAP-CAR T-cell therapy 

offers potent anti-tumor activity but is associated with increased toxicities   

In an attempt to enhance the efficacy of FAP-CAR T-cell therapy using a killer 

immunoglobulin-like receptor (KIR)-based CAR system described in Fig. 2-7B, we 

found that the growth of highly desmoplastic EM-meso tumors was completely 

abrogated. However, this response was associated with bone marrow hypocellularity 

(Fig. 4-7B), weight loss (Fig. 4-7C), reduced circulating amylase (Fig. 4-7D) and anemia 

(Fig. 4-7E). These observations are consistent with the toxicities reported in a genetic 

model of complete FAP ablation and the FAP5 CAR T-cell study (Roberts et al., 2013; 

Tran et al., 2013). In fact, we found that the KIR-based FAP-CAR T-cell system achieved 

complete depletion of intratumoral FAP+ stromal cells for up to 26 days following T-cell 

transfer (Fig. 4-7A), which was much protracted and more potent than what we have 

observed using any CD3ζ-based FAP-CAR T-cell therapy.  
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Conclusions and discussion 

Given the potential on-target/off-tumor toxicity in normal tissues, we carefully examined 

the tumor-bearing mice that received FAP-CAR T-cell therapy. Using a regimen of one 

dose or two doses of 1×107 WT FAP-CAR T cells, we observed conditional depletion of 

intratumoral FAP+ stromal cells and anti-tumor effects in multiple solid tumor models in 

both immune-competent and immune-deficient mice without associated bone marrow 

destruction or changes in total body weight. These results are consistent with prior 

findings that targeting FAP+ stromal cells could induce anti-tumor activity without 

toxicity in either immune-competent or immune-deficient mice (Kakarla et al., 2013; Lee 

et al., 2005; Loeffler et al., 2006; Ostermann et al., 2008; Schuberth et al., 2013). In 

contrast, another study that used FAP5-CAR T cells demonstrated negligible anti-tumor 

effects but severe toxicities (Tran et al., 2013).  

 

We hypothesize that the differences in efficacy can be attributed to the following. Firstly, 

FAP5-CAR T-cell-induced host anti-tumor immune responses may have been lost as the 

result of the lymphodepletion protocol by systemic radiation used by Tran et al (Tran et 

al., 2013) that was not part of our regimen. Moreover, the differences in efficacy of the 

FAP-CAR T cells may be due to the differences in epitope specificity of the anti-FAP 

antibodies used to generate the scFv regions of the CARs in different studies. Recent 

studies revealed that the target epitopes of CARs might dictate their efficacy (Hombach 

et al., 2007), supporting this hypothesis, and we found that 73.3 and FAP5 reacted with 

different epitopes of murine FAP. It will therefore be critical to define the epitope 
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specificity of anti-FAP antibodies to understand how they contribute to the different 

efficacies and associated toxicities observed among the various FAP-CARs.  

 

Additionally, we attribute the lack of toxicity to the ability of 73.3 FAP-CAR T cells to 

only transiently deplete FAP+ stromal cells, and/or the fact that 73.3 FAP-CAR T cells 

preferentially depleting cells that express high levels of FAP (such as intratumoral 

stromal cells) but not cells expressing low levels of FAP (for example, basal levels of 

FAP in normal cells). Recent studies demonstrating the antigen-dependent threshold of 

CAR redirected T cells support this hypothesis. ErbB2-specific CAR T cells were shown 

to release IFNγ and induced target-cell toxicity when co-cultured with ErbB2hi tumor 

cells, while co-culturing ErbB2-specific CAR T cells with ErbB2lo tumor cells did not 

induce IFNγ secretion nor cytolytic activity (Chmielewski et al., 2011). Interestingly, we 

found that intratumoral stromal cells in our multiple tumor models expressed higher 

levels of FAP compared to normal pancreatic stromal cells. Therefore, the differential 

surface-antigen density between intratumoral FAP+ stromal cells and normal FAP+ 

stromal cells may determine the activation and effector functions of FAP-CAR T cells, 

thereby allowing FAP-CAR T cells to specifically eliminate intratumoral FAP+ stromal 

cells, while protecting normal FAP+ stromal cells, which express physiological levels of 

FAP antigen, from T-cell attack. 

 

Furthermore, we demonstrated that the same FAP-CAR T-cell regimen did not impact 

wound closure, exacerbate atherosclerosis or induce systemic toxicities including bone 

marrow destruction, muscle wasting or anemia. Nevertheless, when we attempted to 



	 96	

increase the potency and persistence of the T cells, for example with DGKζ-deficient 

FAP-CAR T cells, we began to observe some histological abnormalities in the pancreas. 

Furthermore, when we utilized killer immunoglobulin-like receptor-based FAP-CAR, 

also known as FAP-KIR (Wang et al., 2015), growth of highly-desmoplastic 

mesothelioma was abolished likely due to complete depletion of intratumoral FAP+ 

stromal cells. However, this complete response was associated with systemic toxicities 

including bone marrow hypoplasia, anemia, decreased circulating amylase and loss of 

body weight. 

 

Based on these results, we propose that there may be an optimal therapeutic window i.e. 

maximum efficacy in the face of minimum/tolerable toxicity of intratumoral FAP+ 

stromal cell depletion using appropriate CAR constructs. Results from other research 

groups (Lee et al., 2005; Loeffler et al., 2006; Ostermann et al., 2008), including two 

independently-generated FAP-CAR constructs (Kakarla et al., 2013; Schuberth et al., 

2013), also support this concept. In addition, we showed that conditional depletion of 

FAP+ stromal cells could augment the efficacy of immune- and chemotherapy. Lastly, 

many novel approaches have been developed to regulate the duration, location and timing 

of CAR activity, which can limit the potential on-target/off-tumor toxicity (Desnoyers et 

al., 2013; Fedorov et al., 2013; Kloss et al., 2013; Wu et al., 2015; Zhao et al., 2010). We 

conclude that FAP-CAR T-cell therapy is a promising strategy to disrupt tumor-

promoting desmoplasia and augment anti-tumor immunity across many types of human 

malignancies. 
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Figure 4-1. FAP-CAR T-cell therapy does not cause weight loss in multiple 
syngeneic flank tumor models. Mice bearing established tumors derived from 
AE17.OVA (A), TC1 (B), LKR (C), 4T1 (D) and CT26 (E) were injected intravenously 
with 1×107 wild-type FAP-CAR or MigR1 T cells. (F) Mice bearing AE17.OVA tumors 
were injected with 1×107 wild-type FAP-CAR T cells or DGKζ-knockout FAP-CAR T 
cells. Body weight was measured by electronic scale following adoptive T-cell transfer. 
Blue arrows indicate the time of adoptive T-cell transfer. Results are shown as mean ± 
SEM (n=5 per group). 
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Figure 4-2. FAP-CAR T-cell therapy does not trigger bone marrow or pancreatic 
destruction. (A) AE17.OVA tumor-bearing mice were injected intravenously with one 
dose of 1×107 wild-type FAP-CAR or MigR1 T cells. Femurs were harvested one week 
after adoptive T-cell transfer. H&E staining was performed to assess the integrity of the 
bone marrow. (B) Mice bearing AE17.OVA tumors were injected with one dose of 1×107  
wild-type FAP-CAR T cells or DGKζ-knockout FAP-CAR T cells. Pancreatic tissues 
were harvested and evaluated by H&E staining. Islets of Langerhans are marked by 
asterisks; blood vessels are labeled with “v”. No significant changes were detected in the 
pancreas in the wild-type FAP-CAR T-cell-treated group. Mice that received hyperactive 
DGKζ-knockout FAP-CAR T cells had focal lymphocytic aggregates in peri-islet (arrow) 
and perivascular (arrowheads) regions. Scale: 20µm. 
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Figure 4-3. mAb 73.3 and mAb FAP5 bind to distinct epitopes of murine FAP 
expressed by fibroblasts. (A) Flow cytometry analysis was performed to detect FAP 
expression in 3T3 and 3T3.FAP cells using following anti-FAP antibodies: 73.3, FAP5 
acquired from Boehringer Ingelheim and sheep polyclonal anti-human FAP that cross-
reacts with murine FAP purchased from R&D. (B) Pre-incubation with the indicated 
concentrations of 73.3 did not impact the binding of FAP5 to 3T3.FAP cells.  
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Figure 4-4. Tumor and pancreatic stromal cells express different levels of FAP. 
Tumor and pancreas tissues from multiple tumor-bearing mice were harvested and 
digested with a collagenase cocktail to obtain single-cell suspensions. Cells were then 
stained with biotin-conjugated anti-FAP polyclonal antibody and streptavidin-conjugated 
fluorochrome, together with anti-CD90 and anti-CD45 antibodies. Live cells were gated 
by propidium iodide exclusion. Representative figures demonstrate FAP expression on 
CD90+ CD45− stromal cells in tumors (red) and pancreatic tissue (blue). 
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Figure 4-5. FAP-CAR T-cell therapy does not impact skin wound healing. (A) 
Schematic illustration of the experimental design. Full-thickness excisional wounds were 
created by biopsy punches in the dorsal skin of the C57BL/6 mice on day 0. Wounded 
mice were intravenously injected with 1×107 FAP-CAR or MigR1 T cells 2 hours post-
wounding. A second dose of 1×107 FAP-CAR or MigR1 T cells was intravenously 
injected on day 3. Wound closure and body weight were monitored every other day from 
day 0 to day 8. (B) Representative images showing wound closure in mice treated with 
FAP-CAR or MigR1 T cells, scale: 1 cm. Wound closure was measured by computer-
based quantification using Fiji software. Blue arrows indicate the time of adoptive T-cell 
transfer. (C) Body weight was monitored post T-cell infusion. (D) Serum amylase levels 
were measured at the endpoint. Results are shown as mean ± SEM (n=6 per group).  
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Figure 4-6. FAP-CAR T-cell therapy does not exacerbate atherosclerosis in APOE-
deficient mice. (A) Schematic illustration of the experimental design. 24-week-old 
female apoE-deficient mice were intravenously injected with 1×107 FAP-CAR or MigR1 
T cells. A second dose of 1×107 FAP-CAR or MigR1 T cells was administered 
intravenously one week after the initial dose. Mice were taken down on day 10. (B) The 
aorta was harvested to assess total atherosclerotic lesions by Oil Red staining (scale: 1 
cm) and H&E staining (scale: 250 µm). Computer-based quantification was performed 
using Fiji software. (C) Body weight was monitored post T-cell infusion. (D) Serum 
amylase and hematocrit levels (E) were assessed at the endpoint. Results are shown as 
mean ± SEM (n=5 per group). 
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Figure 4-7. Enhanced FAP-CAR T-cell therapy results in complete intratumoral 
FAP+ stromal depletion and is associated with systemic toxicities. EM-meso 
xenografts were intravenously injected with 5×106 enhanced FAP-CAR human T cells 
(FAP-KIR T cells), control vector T cells (DAP12) or untransduced T cells as shown in 
Fig. 2-7C.  (A) Tumors were harvested 26 days post T-cell transfer and dissociated with a 
collagenase cocktail to obtain single-cell suspensions. Flow cytometry was performed to 
evaluate depletion of FAP+ stromal cells. (B) Representative H&E stains of the bone 
marrow from each group; scale: 20µm. (C) Body weight was monitored post T-cell 
infusion. (D) Serum amylase and hematocrit levels (E) were analyzed at the endpoint. 
Results are shown as mean ± SEM (n=5 per group); *p<0.05; **p<0.01; ****p<0.0001. 
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CHAPTER 5 – Fibroblast activation protein governs malignant cell 

colonization and outgrowth to drive pulmonary metastasis 

Introduction 

In the previous chapters, I described using CAR T cells redirected against FAP+ stromal 

cells to study the tumor-promoting effects of FAP at a cellular level. An alternative 

approach to target the tumor stroma is by disrupting specific molecular stromal 

cell/ECM-dependent pathways that are critical for tumor progression and therapeutic 

resistance. In the following two chapters, I will discuss the potential impacts of FAP on 

tumor development, progression and metastasis at a molecular level, specifically using 

FAP-deficient mice.  

 

FAP protease regulates proteolysis that may potentially influence the tumor 

microenvironment 

FAP is a type II transmembrane cell surface proteinase belonging to the prolyl dipeptidyl 

aminopeptidase (DPP) family, which cleaves amino-terminal dipeptides from 

polypeptides with proline or alanine in the penultimate position (P1Pro or P1Ala) (Park et 

al., 1999). FAP also exhibits endopeptidase activity that preferentially cleaves after the 

Gly-Pro sequence motif (P2GlyP1Pro) (Edosada et al., 2006). Although FAP was initially 

discovered in a membrane-bound form, low concentrations of circulating soluble FAP, 

also known as α2-antiplasmin-cleaving enzyme (APCE), in human and mouse serum 

have also been reported (Keane et al., 2013; Lee et al., 2004; Lee et al., 2006). While 
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FAP protease activity in vitro has been studied extensively, its substrate repertoire in vivo 

is not fully defined. In vitro screening of natural substrates has demonstrated that FAP 

DPP activity can efficiently process neuropeptide Y, B-type natriuretic peptide, substance 

P and peptide YY. Moreover, CCL22/MDC, CXCL2/Groβ and CXCL12/SDF-1α can be 

cleaved by FAP, albeit less efficiently (Keane et al., 2011). FAP also has an 

endopeptidase activity that is capable of modifying gelatin, type I and type III collagens, 

FGF21 and α2-antiplasmin (Christiansen et al., 2007; Keane et al., 2013; Lee et al., 2004; 

Lee et al., 2006; Levy et al., 1999; Zhen et al., 2015). Many of these substrates have been 

implicated in tumor progression; for instance, CXCL12/SDF-1α is crucial for promoting 

tumor cell invasion, angiogenesis and T-cell exclusion (Ene-Obong et al., 2013; Feig et 

al., 2013; Maroni et al., 2007; Orimo et al., 2005); collagen is important in enhancing 

tumor cell proliferation, invasion and metastasis (Aguilera et al., 2014; Valencia et al., 

2012; Zhang et al., 2013). Nonetheless, the functional consequences of FAP-dependent 

proteolytic processing in the context of the tumor microenvironment are poorly 

understood. 

 

Expression of FAP in parenchymal epithelial tissues may promote tumor growth, 

invasion or metastasis in a cell-autonomous fashion 

FAP expression has been detected mostly in tumor stromal fibroblasts but not tumor 

epithelial cells; however, several groups have ectopically overexpressed FAP, or an 

enzymatically inactive mutant, in tumor cells to study the potential influence of FAP in 

the tumor microenvironment (Cheng et al., 2002; Cheng et al., 2005; Huang et al., 2004). 

Although initial results from these studies have demonstrated that FAP promotes tumor 



	 106	

growth in vivo, the experimental approaches failed to recapitulate the cardinal features of 

the tumor microenvironment, and mechanistic investigations were not performed. 

Importantly, the impact of ectopic overexpression of FAP on tumor cell proliferation in 

vitro was not determined (Cheng et al., 2002; Cheng et al., 2005). Further in vitro studies 

also suggested that FAP overexpression in HT-1080 fibrosarcoma cells might increase 

metastatic potential by upregulation of the integrin-mediated signaling pathway (Baird et 

al., 2015). Interestingly, a recent report described that FAP expression in the parenchyma 

of human oral squamous cell carcinoma (OSCC) was associated with poor prognosis 

(Wang et al., 2014a). Loss-of-function studies, employing two human primary OSCC 

cells that endogenously express FAP, revealed that FAP could enhance tumor cell 

proliferation, EMT, migration, invasion and metastasis through regulating 

PTEN/PI3K/AKT, Ras-ERK pathways. Since FAP only has a short cytoplasmic tail, it is 

intriguing how FAP potentiates signal transduction pathways in cancer cells. In summary, 

it is likely that FAP expression in tumor cells can drive malignant progression in a cell-

autonomous fashion.   

 

Expression of FAP in mesenchymal stromal cells enhances tumor growth and 

migration 

One approach that has been taken to explore the potential non-cell-autonomous tumor-

promoting functions mediated by FAP was employing rabbit anti-FAP polyclonal 

antibodies to inhibit FAP protease activity (Cheng et al., 2002). In vitro, polyclonal anti-

FAP antibodies significantly inhibited murine FAP DPP activity. HT-29 colon cancer 

xenografts treated with these inhibitory anti-FAP antisera resulted in reduced tumor 
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growth compared to those treated with preimmunization antisera. Subsequent studies 

demonstrated that a pharmacologic inhibitor targeting the endopeptidase activity of FAP 

also attenuated the growth in the same xenograft model (Cheng et al., 2005). These 

results suggest that FAP may promote tumor growth through its DPP and endopeptidase 

activity. Nevertheless, the mechanisms involved were not investigated and the 

approaches taken did not distinguish the potential inhibitory effects on other DPP 

members e.g. DPP-IV, which has been detected in HT-29 colon cancer cells (Darmoul et 

al., 1992), and/or other proteins that exhibit endopeptidase activity that may have 

contributed to the tumor growth. To investigate whether mesenchymal FAP plays a 

determinant role in tumorigenesis, Dr. Puré’s lab utilized FAP-deficient mice and showed 

that genetic deletion of FAP inhibited the growth of mutant Kras-induced lung cancers 

and CT26 colon cancer syngeneic transplants (Santos et al., 2009). Pharmacological 

targeting of DPP and the endopeptidase activity of FAP also replicated this finding. 

Tumor inhibition induced by FAP deficiency was attributed to decreased tumor 

angiogenesis and altered ECM remodeling that resulted in increased accumulation of 

collagen associated with altered integrin signaling in residual tumors. Collectively, these 

studies indicate that FAP is not merely a marker for tumor-associated stromal cells, but 

indeed plays a significant role in the growth of primary tumors.  

 

Interestingly, a recent study indicated that FAP-dependent matrix remodeling could 

augment tumor cell migration though β1-integrin signaling (Lee et al., 2011), suggesting 

that endogenous FAP may promote tumor invasion and metastasis. In this chapter, I 

describe the investigations of the requirement for FAP protease expressed by 
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mesenchymal stromal cells in driving the formation of pulmonary metastasis. I also 

explored the potential mechanisms by which FAP regulates tumor cell seeding and 

metastatic outgrowth. 
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Materials and methods  

Cell lines 

Murine Lewis lung carcinoma cells (LLC), human A549 lung adenocarcinoma cells and 

MDA-MB-231 human breast cancer cells (231) were purchased from the American Type 

Culture Collection. MDA-MD-231 cells expressing firefly luciferase (231-luc) were 

provided by Dr. Qihong Huang (Wistar Institute, Philadelphia, PA). A549 cells 

expressing GFP and luciferase (A549-GL) were generated as described (Moon et al., 

2015). Mouse adult lung fibroblasts (MAF) were isolated from 8-12 week old C57BL/6 

wildtype and FAP-deficient mice. 

 

Animals 

C57BL/6 mice and NOD/SCID/IL2-receptor γ chain knockout (NSG) mice were 

purchased from Charles River Laboratories Inc. (Wilmington, MA) and Jackson Labs 

(Bar Harbor, ME). FAP-deficient mice (FapLacZ/LacZ) provided by Boehringer Ingelheim 

(Niedermeyer et al., 2000) were backcrossed 12 generations onto a C57BL/6 genetic 

background. These mice in turn were crossed with NSG mice to generate NSG FAP-

deficient mice. Experimental protocols were approved by the Institutional Animal Care 

and Use Committee and were in compliance with guidelines for the care and use of 

animals. 

 

In vivo tumor growth assay 

NSG or NSG FAP-KO mice were subcutaneously injected with 2×105 A549-GL cells 

mixed with matrigel (BD Biosciences), or were orthotopically implanted into mammary 
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fat pad with 2×105 MDA-MB231-luc cells mixed with matrigel. C57BL/6 or C57BL/6 

FAP-KO mice were subcutaneously injected with 2×105 LLC lung cancer cells. Tumor 

growth was followed using bioluminescence imaging or caliper measurements. Tumor 

volume was calculated using the formula: length × width2 × π/6.  

 

Experimental metastasis assay 

NSG or NSG FAP-KO mice were intravenously injected with 1 to 6×105 A549 parental 

cells, A549-GL cells, 231 cells or 231-luc cells. C57BL/6 or C57BL/6 FAP-KO mice 

were intravenously injected with 4×105 LLC cells. The presence of pulmonary metastasis 

was determined by sectioning and H&E staining of Prefer (Anatech)-fixed paraffin-

embed lung tissue at three different levels at the endpoint or followed over time by 

bioluminescence imaging. 

 

Bioluminescence imaging 

The IVIS Lumina III Bioluminescence and Fluorescence Imaging System (Perkin Elmer, 

Waltham, MA) was used for in vivo bioluminescent imaging. Primary tumor or 

pulmonary metastasis-bearing animals were injected intraperitoneally with 150mg/kg 

body D-luciferin (Gold Biotechnology, St. Louis, MO, USA) suspended in PBS. Mice 

were imaged under isoflurane anesthesia 15 minutes post D-luciferin injection as kinetic 

studies demonstrated peak bioluminescent intensity of tumors around this time. 

Bioluminescent signal from tumor cells expressing luciferase was quantified by Living 

Image software and reported as units of tissue radiance (photons/second).  

 



	 111	

Isolation of lung matrisome for proteomic study 

FAP-heterozygous and FAP-deficient mice were gently perfused with PBS. Lung tissues 

were harvested, washed twice with PBS, and dissected into small pieces. Tissue 

fragments were incubated with 10 mL decellularization buffer composed of 1% SDS, 20 

mM EDTA and protease inhibitor (Roche) in PBS for 24 hours at 4°C. Tissue fragments 

were further incubated with new 10 mL of decellularization buffer for another 24 hours at 

4°C. Tissue fragments were washed with 10 mL washing buffer composed of 20 mM 

EDTA and protease inhibitor in distilled water for 24 hours at 4°C. Decellularized lung 

tissues were homogenized and sonicated with protein extraction buffer (Sigma), and then 

spun at 15000 rpm for 10 minutes at 20°C. Tissue supernatant was used for 

electrophoresis and mass spectrometry.  

 

Prothrombin Time and Partial Thromboplastin Time assay 

Blood from NSG-FAP-intact and NSG-FAP-deficient mice was obtained by cardiac 

puncture. Prothrombin time and partial thromboplastin time were measured at the clinical 

lab of the Ryan Veterinary Hospital of the University of Pennsylvania. 

 

Vascular permeability and leakage assay 

Assays for lung and liver vascular permeability and leakage were performed as 

previously described with minor modifications (Hiratsuka et al., 2011; Radu and 

Chernoff, 2013). NSG or NSG FAP-KO mice were intravenously injected with 10 mg/kg 

of Evans blue (EB, Sigma) in PBS. Mice were sacrificed and perfused gently with PBS at 

4 hours post EB injection. Lung and liver tissues were harvested and dissected for EB 
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extraction. Formamide (Sigma) was added to dissected tissues for 20-hour incubation at 

55°C. Tissue EB content (µg EB/g lung) was calculated by correcting A620 for the 

presence of heme pigments from the supernatant: A620 (corrected) = A620 − (1.426 × 

A740 + 0.030) (Hiratsuka et al., 2011). 

 

Antibodies 

Purified anti-mouse CD16/32 antibody was purchased from eBioscience. Anti-CD45 (30-

F11; PE-Cy7, biotin), anti-CD90 (53-2.1; FITC, PE), anti-CD11b (M1/70, PE-Cy7, 

Pacific blue), anti-F4/80 (BM8; APC), anti-CD206 (C068C2; FITC, PE), anti-CD8α (53-

6.7; PECy7) and anti-CD4 (GK1.5; FITC) antibodies were purchased from Biolegend. A 

polyclonal sheep anti-human antibody that cross-reacts with mouse FAP was purchased 

from R&D and the specificity was confirmed based on its reactivity with A549 human 

lung cancer xenografts derived from wild-type but not FAP-deficient NSG mice. 

 

Surface staining and flow cytometry analysis  

Normal mice and pulmonary metastasis-bearing mice were gently perfused with PBS. 

Lung tissues were harvested, washed twice with PBS, and dissected into small pieces. 

Lung tissues were enzymatically dissociated with collagenase type I (100 U/mL, 

Worthington), II (100 U/mL, Worthington) and IV (100 U/mL, Worthington) as well as 

DNase I (100 U/mL, Worthington), in Leibovitz's L-15 Medium (Thermo Fisher 

Scientific) for an hour at 37°C. Digested tissues were then filtered through 70 µm nylon 

mesh cell strainers (BD Bioscience), and red blood cells were lysed by a ACK buffer (BD 

Bioscience). Fc receptors were blocked by incubating cells with anti-mouse CD16/CD32 
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antibody for 15 minutes and then stained with primary antibodies at 4°C for 30 minutes, 

followed by incubation with streptavidin-BV421 for another 15 minutes. Dead cells were 

excluded using propidium iodide (Thermo Fisher Scientific). Cell acquisition was 

performed on LSR-II using FACSDiva software (BD Bioscience). Data were analyzed 

using FlowJo software (Tree Star). 

 

Intracellular Staining 

Cells were incubated with a viability probe (Thermo Fisher Scientific) for 30 minutes and 

then fixed with 4% formaldehyde for 10 min. The cells were then permeabilized and 

blocked with 10% rabbit serum/ 1% BSA/ 15mM glycine in 0.1% PBS-Tween for 20 

minutes. Cells were stained with Alexa Fluor 647-conjugated anti-human APOE antibody 

(Abcam) or Alexa Fluor 647-conjugated isotype-matched control for 30 minutes. 

 

RNA extraction, gene expression profiling and bioinformatics analysis of 

microarray data 

Serially transplanted A549-GL tumor cells (WT.p1, WT.p3, KO.p1, KO.p3) were sorted 

from single-cell suspensions derived from 4 to 8 pulmonary metastasis-bearing mice. 

RNA was extracted with TriZol (Invitrogen). Subsequently, RNA was purified and 

DNase treated on RNeasy (Qiagen) columns. The eukaryote total RNA nano bioanalyzer 

(Agilent) assay confirmed the quality of RNA, and all RNA used for the following steps 

had a RIN > 8.  Equal amounts of total RNA for each sample (400 ng) were amplified as 

recommended by Illumina and hybridized to the Human-HT12 v4 human whole genome 

bead arrays. Illumina GenomeStudio software was used to export expression levels and 
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detection p-values for each probe of each sample. Signal intensity data was quantile-

normalized and genes that showed insignificant detection p-value (p>0.05) in all samples 

were excluded from further analysis. Genes different by at least 2-fold between any two 

of four samples (WT.p1, WT.p3, KO.p1, KO.p3) were included in further analysis. Gene 

expression was used to calculate Pearson correlation coefficient with each of 38 distinct 

expression patterns and the gene was assigned to a pattern that resulted in the maximum 

absolute correlation coefficient. Gene set enrichment analysis for canonical pathways and 

upstream regulators was performed using QIAGEN’s Ingenuity Pathway Analysis 

software (IPA, QIAGEN Redwood City,www.qiagen.com/ingenuity), and the 

significance of enrichment was defined at FDR<10% for pathways and p<10-5 for 

upstream regulators. 

 

Online dataset-based gene expression and survival analysis  

Data was acquired from publicly available microarray databases from Oncomine and 

cancer survival analyses (Gyorffy et al., 2013; Rhodes et al., 2004). APOE expression in 

lung adenocarcinomas and normal lung tissues was compared in the following microarray 

datasets: the Okayama dataset, composed of 20 normal lung tissues and 226 stage I-II 

lung adenocarcinomas treated at National Cancer Center Hospital, Tokyo (Okayama et 

al., 2012); the Stearman dataset, composed of 10 pairs of adjacent normal lung tissues 

and invasive lung adenocarcinomas treated at University of Colorado Cancer Center 

(Stearman et al., 2005); the Su dataset, composed of 27 pairs of adjacent normal lung 

tissues and lung adenocarcinomas treated at the Taipei Veterans General Hospital, 

Taiwan; two commercially available human normal lung tissues; and one immortalized, 
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non-tumorigenic human bronchial epithelial cell line (Su et al., 2007). Large cohort 

survival analysis of lung adenocarcinoma patients was performed using the APOE 

Affymetrix ID 203382_s_at. (the 2015 version of the database was used). Patients with 

lung adenocarcinoma were divided by the best cutoff, and no further restrictions were 

applied. Both the hazard ratio and log-rank test p-value are provided.   

 

Histopathological, histochemical and immunohistochemical analysis.  

Mice were gently perfused with PBS, and lung tissues were inflated intratracheally and 

fixed with Prefer (Anatech), followed by dehydration and paraffin embedding. Four-

micron sections were cut at three different levels and stained with H&E. The percentage 

of total lung area occupied by tumor in each of the five lobes was quantified by 

computer-based morphometry using either Image-Pro 6.2 or Fiji on H&E-stained 

sections. For immunohistochemical staining, tissue sections were further subjected to 10 

mM sodium citrate buffer for antigen retrieval, followed by quenching endogenous 

peroxidases with 3% H2O2. Sections were then blocked with 10% goat serum in 1% 

BSA/PBS at room temperature for one hour, and then incubated with avidin-biotin or 

streptavidin-biotin block (Vector Labs). Rabbit monoclonal anti-human APOE antibody 

(Novus Biologicals) was applied overnight at 4°C and incubated with biotinylated 

secondary antibody at room temperature for an hour. Bound antibodies were detected 

with horseradish peroxidase (HRP) using Vectastain Elite ABC (Vector Laboratories), 

followed by counterstaining with hematoxylin. 

 

Statistical Analyses 
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Statistics were calculated using GraphPad Prism 6. For studies comparing two groups, 

Student’s t-test was used. For studies comparing more than two groups, one-way 

ANOVA with post-hoc Tukey testing was used. Data are represented as mean ± SEM. 

Differences were considered significant when p < 0.05. 
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Results 

Accumulation of FAP-expressing cells in pulmonary metastasis 

To determine whether host expression of FAP can regulate pulmonary metastasis, we 

employed three commonly used pulmonary metastasis models including A549 human 

lung adenocarcinoma, MDA-MB-231 human breast adenocarcinoma (231) and Lewis 

lung cancer (LLC). Flow cytometry analysis demonstrated that these cells did not express 

detectable FAP in vitro, while mouse adult lung fibroblasts exhibited basal-level FAP 

expression (Figure 5-1). We first compared the primary tumor growth in these models 

and found that genetic deletion of FAP decreased growth of subcutaneous A549 and LLC 

flank tumors and 231 orthotopic tumors (Figure 5-2), consistent with our previous 

finding that FAP enhances primary tumor growth (Santos et al., 2009). As this would 

complicate any data obtained in spontaneous metastasis in these models, we instead 

conducted our subsequent experiments using an experimental metastasis approach i.e. 

intravenous injection of tumor cells for hematogenous spread to circumvent the potential 

impact of FAP on primary tumor growth. Interestingly, we observed abundant CD90+ 

FAP+ tumor-associated mesenchymal stromal cells accumulated in the pulmonary 

metastases compared to the normal lung tissues (Figure 5-3). This finding raised the 

interesting possibility that FAP protease or FAP+ stromal cells are in a position to 

regulate pulmonary metastasis.  

 

FAP protease enhances tumor cell seeding and metastatic outgrowth in lung 

To test whether FAP protease plays a role in regulating pulmonary metastasis, A549, 231 

or LLC cells were intravenously injected into FAP-intact or FAP-deficient hosts. We 
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found that FAP deficiency resulted in decreased tumor burden, colony number and 

colony size in A549, LLC and 231 pulmonary metastasis models (Figure 5-4). To better 

get a first estimate of what stage FAP impacts the metastatic process, specifically tumor 

cell seeding and metastatic tumor outgrowth, we performed non-invasive bioluminescent 

imaging using A549 cells expressing GFP/Luciferase (A549-GL) and 231 cells 

expressing luciferase (231-luc) and conducted a kinetic analysis. Notably, the tumor cell-

derived luciferase activity from lung tissue was significantly reduced in the FAP 

deficiency mice one hour post-intravenous inoculation in both models (Figure 5-5, 

upper panel). Moreover, the luciferase activity remained markedly decreased at later 

time points in the FAP deficiency mice in both models (Figure 5-5, bottom panel). 

Along with observations that the colony size was significantly reduced in the FAP 

deficiency mice (Figure 5-4B), these data indicate that FAP may regulate the early steps 

of tumor cell colonization and the outgrowth of metastatic tumor colonies. 

 

FAP protease may govern fibrinolysis to permit tumor cell seeding  

To understand how FAP promotes tumor cell seeding in the lung, I analyzed the 

proteomic data of the matrisomes isolated from FAP-heterozygous and FAP-deficient 

mice performed by a former postdoctoral fellow in the lab (Figure 5-6A). Gel 

electrophoresis demonstrated that various differentially-expressed proteins were evident 

in the FAP-heterozygous and FAP-deficient lung matrisomes  (Figure 5-6B). Proteomic 

analysis revealed that several coagulation proteins known to regulate pulmonary 

metastasis were altered in the lung matrisome derived from FAP-deficient mice (Figure 

5-6C). Among these candidates, we focused on fibrinogen, which has been implicated as 
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a key determinant in governing tumor cell seeding without interfering with metastatic 

tumor outgrowth in the lung (Palumbo et al., 2000). Analyses of prothrombin time and 

partial thromboplastin time indicated that the integrities of extrinsic, intrinsic and 

common coagulation pathways were not altered in the homeostatic condition between 

FAP-intact and FAP-deficient mice (Figure 5-7). These results rule out the possibility 

that FAP may directly regulate the levels of circulating hemostatic factors that play 

critical roles in the formation of tumor cell-fibrin clot complexes to enable metastatic 

seeding. Additionally, we did not observe any differences in lung vascular permeability 

between FAP-intact and FAP-deficient mice, suggesting that FAP does not increase 

vascular perfusion to facilitate tumor cell seeding (Figure 5-8). Given that FAP can 

convert native Met-α2 antiplasmin into Asn-α2 antiplasmin, which is 10 to 15 times more 

potent than its native form in inhibiting plasmin function (Lee et al., 2004; Lee et al., 

2006), and that FAP has been shown to promote tissue plasminogen activator turnover 

(Koczorowska et al., 2016), we hypothesize that FAP deficiency would render tumor 

cell-fibrin clots more susceptible to plasmin-mediated fibrinolysis, thereby reducing 

tumor cell colonization in the lung (Figure 5-6D). Further experiments will be performed 

to test this hypothesis. 

 

FAP protease is dispensable for the recruitment and/or retention of CD90+ 

mesenchymal stromal cells in pulmonary metastasis 

Prior studies have shown that endogenous FAP protease is essential for the migration of 

bone-marrow-derived stem cells (Chung et al., 2014), suggesting that knocking out FAP 

may impede tumor stromagenesis by abrogating the recruitment and/or retention of 
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tumor-associated mesenchymal stroma cells and therefore potentially inhibiting 

pulmonary metastasis. To evaluate this possibility, we dissociated metastasis-bearing 

lung tissues and performed flow cytometry. We did not find any differences in the 

numbers of CD90+ tumor-associated mesenchymal stromal cells between FAP-intact and 

FAP-deficient mice in our metastasis models (Figure 5-9), making this unlikely to be the 

relevant mechanism.  

 

FAP protease promotes inflammatory M2 macrophage response to enable tumor 

metastatic outgrowth 

In contrast, we constantly observed a decrease of CD45+ hematopoietic cells in the 

pulmonary metastasis derived from FAP-deficient mice. Flow analyses demonstrated that 

the number of CD11b+ F4/80+ macrophages, also known as metastasis-associated 

macrophages (MAMs), was decreased in the pulmonary metastasis derived from FAP-

deficient mice, while the level of CD11b+ Ly6G+ neutrophils remained unchanged. This 

decreased population was further characterized as CD206+ CD11b+ F4/80+ M2-like 

macrophages (Figure 5-10). These data demonstrate that genetic deletion of FAP inhibits 

the M2 macrophage response in pulmonary metastasis. In future studies, it will be 

important to assess whether targeting M2 macrophages suppresses pulmonary metastatic 

outgrowth. 

 

Serial transplantation in FAP deficient mice reduces the lung metastatic potential of 

A549 tumor cells 
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To determine whether propagation in a FAP-deficient microenvironment could 

reprogram the metastatic potential of tumor cells, we performed serial transfer 

experiments designed to address three questions: 1) whether the residual tumor cells 

derived from initial passage in FAP-deficient mice are capable of propagating in a 

permissive microenvironment, and 2) test whether these residual tumor cells may still be 

subjected to FAP-inhibition, whether serial transplantation could imprint tumor cells with 

a reduced metastatic phenotype. A549-LG tumor cells were recovered from the lungs 

after a single passage through FAP-intact and FAP-deficient mice and designated as 

WT.p1 and KO.p1, respectively (Figure 5-11A, upper panel). These tumor cells were 

briefly expanded in vitro, sorted based on GFP expression and then transferred into either 

FAP-intact or FAP-deficient mice for an additional two in vivo passages. Cells recovered 

from the third passage were designated as WT.p3 and KO.p3, respectively (Figure 5-

11A, bottom panel). Interestingly, regardless of prior conditioning in FAP-intact (e.g. 

WTp.1 and WTp.2) or FAP-deficient environments (e.g. KOp.1 and KOp.2), A549 tumor 

cells transferred into FAP-deficient hosts in the second or third transplants showed 

reduced seeding at one hour post tumor-cell transfer (Figure 5-11B, upper panel). These 

observations indicate that serial transplantations in FAP-deficient microenvironment may 

not alter the pulmonary seeding capacity of A549-LG tumor cells. Notably, we found that 

A549 tumor cells that had been passaged twice in FAP-deficient hosts (KO.p2) grew less 

efficiently than WT.p2 when transferred into FAP-intact hosts (Figure 5-11B, bottom 

panel), indicating that serial transplantations in FAP-deficient microenvironment might 

impact the metastatic outgrowth of A549-LG tumor cells. Nevertheless, the conditioning 

of tumor cells in FAP-intact and FAP-deficient hosts did not alter their growth potential 
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in vitro (Figure 5-12). Collectively, these data suggest that tumor cell conditioning in a 

FAP-deficient environment might impose either genetic and/or epigenetic alterations in 

the tumor cells such that these tumor cells lose their ability to grow in a permissive 

microenvironment.  

 

APOE is a candidate target for FAP-dependent enhancement of tumor metastatic 

outgrowth and may serve as a potential negative prognostic marker in human lung 

cancer. 

To further explore the molecular mechanisms by which FAP targeting restricts tumor 

outgrowth in the lung, we performed a microarray analysis to compare the gene 

expression profiles of WT.p1, KO.p1, WT.p3 and KO.p3 recovered by cell sorting. 

Principal component analysis demonstrated that tumor cells that underwent in vivo 

transplantation exhibited marked changes in gene expression (Figure 5-13A). More 

genes are differentially expressed in the third transplant compared to the first transplant 

(Figure 5-13A). Microarray analysis identified two expression patterns that may reflect 

FAP-dependent genetic and/or epigenetic alterations (Figure 5-13B). APOE was 

decreased 3-fold and 9-fold during a single and three serial passages in FAP-deficient 

hosts, respectively. On the other hand, miRNA-1974 was found to increase 9.1-fold after 

three serial passages in FAP-deficient hosts. Further canonical pathways and upstream 

regulators analyses indicated that “atherosclerosis” and “inflammatory” signaling were 

altered (Figure 5-13C). Moreover, we found that the number of CD11b+ F4/80+ 

macrophages was decreased in FAP-deficient mice in the serial transplants (Figure 5-14), 

reflecting that FAP-dependent tumor metastatic outgrowth gene signature may correlate 
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with its ability to regulate the recruitment, retention and/or alternative activation of 

macrophage to drive proinflammatory response. 

 

Given that APOE has been suggested to be a candidate marker for lung cancer 

progression (Liu et al., 2014; Su et al., 2011), we chose to study the pro-tumorigenic 

activity of APOE in our model. We first assessed the clinical relevance of APOE 

expression in publicly available lung adenocarcinoma databases. Bioinformatic analyses 

via the Oncomine platform confirmed that APOE was overexpressed in multiple human 

lung adenocarcinoma gene expression datasets (Figure 5-15). Kaplan-Meier analyses of 

lung adenocarcinoma datasets showed that APOE overexpression correlated with tumor 

progression and decreased patient survival (Figure 5-16). These data highlight the 

importance of APOE in progression of lung adenocarcinoma. Immunohistochemical 

staining (Figure 5-17A) and flow cytometry analysis (Figure 5-17B) confirmed that 

APOE expression was downregulated in A549 tumors in the FAP-deficient mice 

following intravenous transfer, suggesting that APOE may play a role in the outgrowth of 

the A549 tumors. Further gain-of-function and loss-of-function experiments will be 

performed to determine the role of APOE in the growth of A549 tumor and to test if 

exogenous APOE expression can rescue A549 tumor growth in the FAP-deficient mice.  
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Conclusions and discussion 

Metastasis is the major cause of cancer-related deaths and represents one of the most 

difficult challenges in the clinical management of cancer patients. Despite improvements 

in surgical procedures, chemotherapy and radiation therapy, the prognosis for patients 

with distant metastases remains dismal. This challenge underlies the importance of 

advancing our mechanistic understanding of how metastasis occurs.  

 

Cancer metastasis is a complex multistep process that involves local tumor cell invasion 

and dissemination from the primary tumor, intravasation into the circulation, adhesion to 

the vascular endothelium of distant organs, extravasation into those tissues, and finally 

growth at distant sites (Gupta and Massague, 2006). The current paradigm is that primary 

tumor-host interactions establish a pre-metastatic niche in distant target organs (Kitamura 

et al., 2015a; McAllister and Weinberg, 2014; Psaila and Lyden, 2009), and/or that 

disseminated metastatic cells guide the formation of early metastatic niches during 

hematogenous dissemination and colonization (Gay and Felding-Habermann, 2011; 

Labelle and Hynes, 2012). Therefore, it is crucial to understand how mesenchymal 

stromal cells are involved in regulation of the metastatic cascade. Herein, I describe that 

FAP protease is crucial in governing the early steps of tumor cell seeding and metastatic 

outgrowth to drive pulmonary metastasis.  

 

Metastatic colonization and outgrowth is a highly inefficient process, as less than 0.1% of 

tumor cells that enter the circulation eventually form pulmonary metastasis (Luzzi et al., 

1998). Our data demonstrate that deficiency in FAP protease further decreased the initial 
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tumor cell seeding, suggesting that FAP has an essential role in governing the early steps 

of metastatic colonization (Figure 5-5). Multiple hemostatic factors have been linked to 

the formation of early metastatic niches to promote pulmonary metastasis. Prior studies 

using molecular, cellular and pharmacological approaches as well as gene-targeted mice 

unequivocally demonstrated that tumor-cell-associated tissue factor, circulating 

prothrombin and multiple downstream thrombin pro-coagulant targets including platelets 

and fibrinogen, robustly enhanced the metastatic potential of tumor cells.  (Camerer et al., 

2004; Horowitz et al., 2011; Mueller et al., 1992; Mueller and Ruf, 1998; Palumbo et al., 

2000; Palumbo et al., 2002; Palumbo et al., 2007; Yokota et al., 2014). Importantly, 

genetic deletion of fibrinogen abrogated tumor cell seeding without affecting the 

outgrowth of seeded tumor colonies in both spontaneous and experimental pulmonary 

metastasis models (Palumbo et al., 2000; Palumbo et al., 2002). These studies indicate 

that tumor cell-clot formation is one of the key rate-limiting steps for the establishment of 

early metastatic niches, in which interactions among tumor cells, platelets and 

inflammatory cells collectively drive pulmonary metastatic colonization and outgrowth 

(Gay and Felding-Habermann, 2011; Labelle and Hynes, 2012). Nonetheless, less is 

known about the regulatory mechanisms involved in the maintenance of the tumor cell-

fibrin clot after its formation. Interestingly, our proteomic analysis of the lung matrisome 

showed that fibrinogen was downregulated in FAP-deficient mice (Figure 5-6C). This 

led us to consider the possibility that FAP might play an active role in regulating 

fibrin/fibrinogen turnover to impact pulmonary metastasis. In vitro, FAP protease has 

been implicated to prevent plasmin-mediated fibrinolysis by abrogating the synthesis and 

activity of plasmin via regulation of proteolytic processing of α2-antiplasmin and 
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turnover of tissue plasminogen activator, respectively (Koczorowska et al., 2016; Lee et 

al., 2004; Lee et al., 2006). Thus, we hypothesize that FAP is a key determinant in 

enhancing tumor-fibrin clot resistance to plasmin-mediated fibrinolysis in vivo, thereby 

promoting tumor cell colonization in the lung (Figure 5-6D). The rationale of this 

hypothesis is supported by a recent study demonstrating that plasminogen activator 

inhibitor-1 deficiency reduced the number but not growth of pulmonary metastasis (Yan 

and DeMars, 2014). Our initial studies showed that levels of hemostatic factors required 

for fibrin clot formation were not altered under homeostatic conditions in FAP-deficient 

mice. Further experiments will be performed to determine if the levels of Met-α2 

antiplasmin and tissue plasminogen activator and clot dissociation time are altered in 

FAP-deficient mice. 

 

Growing evidence indicates that macrophages play active roles in the development of 

pulmonary metastasis (Kitamura et al., 2015a). Experimental targeting of these 

metastasis-associated macrophages (MAMs) at different stages of the metastatic cascade 

demonstrated their supportive roles in tumor cell seeding and persistent outgrowth 

(Kitamura et al., 2015b; Qian et al., 2009; Qian et al., 2011; Qian et al., 2015). 

Interestingly, we observed that FAP deficiency reduced the number of MAMs in our 

pulmonary metastasis models (Figure 5-10). Serial transplant and microarray studies also 

revealed that FAP-dependent metastatic tumor outgrowth programs correlated with the 

recruitment and/or retention of MAMs (Figure 5-13 and 5-14). These data indicate that 

FAP may augment the inflammatory response to drive persistent metastatic tumor 

outgrowth. A recent report employing unbiased proteomic approaches demonstrated that 
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FAP protease activity could have a strong impact on the secreted CAF proteome. 

Notably, TGFβ and CCL2 were found downregulated in FAP-deficient CAFs or CAF-

expressing endopeptidase inactive mutant (FAPS624A) (Koczorowska et al., 2016). Given 

the established roles of TGFβ and CCL2 in macrophage recruitment, retention and 

alternative activation as well as their potential roles in stromagenesis and pulmonary 

metastasis (Gong et al., 2012; Kitamura et al., 2015b; Pang et al., 2013; Qian et al., 2011; 

Sierra-Filardi et al., 2014), we postulate that FAP may impact metastatic tumor 

outgrowth by driving the inflammatory response and/or stromagenesis via TGFβ and 

CCL2. Further experiments will be performed to test this hypothesis. 

 

The tumor microenvironment and host milieu have considerable influence on the 

establishment of pulmonary metastasis, and targeting pro-metastatic niches may offer an 

opportunity to control the growth of these lesions. As with any other anti-cancer therapy, 

tumor cells may eventually develop acquired resistance, even for stroma-targeted 

therapies. Therefore, we performed a serial transplant study using A549-LG cells to 

explore whether persistent FAP inhibition may induce cancer resistance. Our data 

indicated that serial transplantation in the FAP-deficient hosts might not alter the 

pulmonary seeding ability of A549-LG tumor cells, but rather restrained their outgrowth 

capacity to drive the formation of pulmonary metastasis (Figure 5-11). Taken together, 

these data suggest that sustained exposure to a FAP-deficient environment does not drive 

the development of FAP-independent growth in the residual tumors, but rather, it may 

impose genetic and/or epigenetic alterations to inhibit metastatic outgrowth, at least in 

this model. We have identified several candidates that may drive tumor metastatic 
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outgrowth (Figure 5-12). Notably, APOE, was found highly upregulated and correlated 

with poor outcome in lung adenocarcinomas (Figures 5-13, 5-15 and 5-16). We 

confirmed that APOE expression was downregulated in A549 experimental pulmonary 

metastasis in the FAP-deficient mice (Figure 5-17), indicating that APOE is indeed a 

FAP-dependent molecular target. It remains to be investigated how FAP protease 

modulates APOE expression. It may either directly activate the upstream LXR/RXR 

signaling pathway or indirectly regulate macrophage recruitment, retention, and 

alternative activation to potentiate APOE expression. Further gain-of-function and loss-

of-function experiments employing APOE overexpression or knockdown are underway 

to determine the role of APOE in pulmonary metastatic outgrowth.  
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Figure 5-1. Flow cytometry analysis of FAP expression in A549, 231 and LLC tumor 
cells and mouse lung fibroblasts. A549 human lung adenocarcinoma cells, MDA-MB-
231 human breast cancer cells (231), Lewis lung mouse lung cancer cells (LLC) and 
mouse adult lung fibroblasts (MAF) isolated from FAP-intact (FAP-WT) C57BL/6 mice 
or FAP-deficient mice (FAP-KO) were stained with sheep polyclonal anti-human/mouse 
FAP and analyzed by flow cytometry. 
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Figure 5-2. FAP protease enhances growth of primary A549, 231 and LLC tumors.  
(A) A549 cells expressing GFP and luciferase (A549-GL) were inoculated 
subcutaneously into the right flank of the FAP-WT and FAP-KO NSG mice (n=5). (B) 
MDA-MB-231 cells expressing luciferase (231-luc) were injected orthotopically into the 
mammary fat pad of the FAP-WT and FAP-KO NSG mice (n=7). Tumor growth was 
monitored by bioluminescence imaging. (C) LLC cells were injected subcutaneously into 
the right flank of the FAP-WT and FAP-KO C57BL/6 mice (n=8). Tumor growth was 
monitored by electronic caliper. Results are shown as mean ± SEM; *p<0.05, **p<0.01. 
 
 
 
 
  



	 131	

Figure 5-3. Accumulation of FAP-expressing stromal cells in A549, 231 and LLC 
pulmonary metastasis models. NSG or C57BL/6 mice were intravenously injected with 
A549-GL, 231-luc or LLC tumor cells or were left untreated. Tumor-bearing lung 
metastases (Mets) and normal lung tissues were harvested and dissociated with a 
collagenase cocktail to obtain single-cell suspensions. Flow cytometry was performed to 
identify CD90+ stromal cells and CD45+ hematopoietic cells that express FAP. Results 
are shown as mean ± SEM (n=5~7 per group); **p<0.01, ***p<0.001, ****p<0.0001.  
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Figure 5-4. FAP protease promotes A549, 231 and LLC pulmonary metastasis. (A) 
FAP-WT and FAP-KO NSG or C57BL/6 mice were injected intravenously with A549 
cells, MDA-MB-231 or LLC cells. Tumor-bearing lung tissues were harvested and 
stained with H&E to determine the tumor burden. (B) Computer-based quantification was 
performed using Fiji or imageJ software. The tumor burden was determined by the 
tumor-to-lung area ratio at three different levels of lung sections from each genotype. 
Colony size was calculated by dividing the total tumor burden by the colony number. 
Results are shown as mean ± SEM (n≥6 per group); *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 
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Figure 5-5. FAP protease enhances A549 and 231 tumor-cell seeding and metastatic 
outgrowth. FAP-WT and FAP-KO NSG mice were injected intravenously with A549-
GL (n=8 per group) or 231-luc tumor cells (n=5-6 per group). Tumor cell colonization 
and metastatic outgrowth were monitored by bioluminescence imaging. Results are 
shown as mean ± SEM; #p=0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 5-6. Proteomic analysis of the lung matrisome uncovers altered coagulation 
pathways in FAP-deficient mice. (A) Schematic illustration of the experimental design. 
Normal lung tissues from FAP+/− (FAP-Het) and FAP-/- (FAP-KO) mice were de-
cellularized to extract the lung extracellular matrix. Lung matrisomes were subjected to 
electrophoresis and mass spectrometry to identify global FAP-dependent matrix 
remodeling candidate targets. (B) Results of the lung matrisome electrophoresis using 4-
12% bis-tris gel; *indicates potential differential expression of matrix molecules between 
FAP-Het and FAP-KO. (C) Various coagulation molecules that have been demonstrated 
to positively or negatively govern lung metastasis are down-regulated or up-regulated in 
the FAP-deficient lung matrisome. (D) Hypothetical mechanisms by which FAP 
regulates the synthesis and activity of plasmin via regulation of proteolytic processing of 
α2-antiplasmin and turnover of tissue plasminogen activator for the maintenance of the 
tumor cell-fibrin clots during metastatic seeding. Note: lung matrisome extraction and the 
proteomic assay were performed by a former post-doctoral fellow Lisa Chang. 
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Figure 5-7. FAP is dispensable for fibrin clot formation under homeostatic 
conditions. Serum from FAP-WT and FAP-KO NSG mice were obtained by cardiac 
puncture after euthanasia. The integrity of extrinsic, intrinsic and common coagulation 
pathways was assessed using prothrombin time and partial thromboplastin time, 
respectively. Results are shown as mean ± SEM (n=5 per group). 
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Figure 5-8. Genetic deletion of FAP does not affect lung or liver permeability. FAP-
WT and FAP-KO NSG mice were injected intravenously with evans blue (EB) or PBS. 
At 4 hours post-injection, lung and liver tissues were harvested to determine evans blue 
microvascular leakage. Results are shown as mean ± SEM (n=3 per group). 
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Figure 5-9. Genetic deletion of FAP does not impact the recruitment of CD45− 

CD90+ cancer-associated stromal cells in A549, 231 and LLC pulmonary metastases. 
FAP-WT and FAP-KO NSG or C57BL/6 mice were injected intravenously with A549-
GL, 231-luc or LLC cells. Tumor-bearing lung tissues were harvested and digested with a 
collagenase cocktail to obtain single-cell suspensions. Flow cytometry was performed to 
identify total CD45− CD90+ stromal cells. Results are shown as mean ± SEM (n≥5 per 
group). 
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Figure 5-10. FAP-dependent A549, 231 and LLC tumor metastatic outgrowth in the 
lung correlates with macrophage infiltration. FAP-WT and FAP-KO NSG or 
C57BL/6 mice were injected intravenously with A549-GL, 231-luc or LLC cells. Tumor-
bearing lung tissues were harvested and digested with a collagenase cocktail to obtain 
single-cell suspensions. (A) Flow cytometry was performed to identify CD11b+ F4/80+ 
macrophages and CD11b+ Ly6G+ neutrophils. (B) M2 macrophages were further defined 
by gating CD206+ macrophages. Results are shown as mean ± SEM (n≥5 per group); 
*p<0.05, **p<0.01. 
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Figure 5-11. FAP protease promotes A549 pulmonary metastasis in a serial 
transplant study. (A) Schematic illustration of the experimental design. FAP-WT and 
FAP-KO NSG mice were injected intravenously with A549-GL. Tumor cell colonization 
and metastatic outgrowth were monitored by bioluminescence imaging. Tumor-bearing 
lung tissues were digested, and A549GL cells were sorted directly by FACS for 
microarray analysis or briefly expanded for 2-3 passages, followed by sorting and 
reinjecting recovered cells into FAP-WT and FAP-KO NSG mice for serial 
transplantation. (B) Tumor cell colonization and metastatic outgrowth in the second and 
third serial transplants were monitored by bioluminescence imaging. Results are shown 
as mean ± SEM (n≥4 per group); **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 5-12. Conditioning of A549 tumor cells in FAP-intact and FAP-deficient 
hosts by serial transplantation does not impact their growth in vitro. A549-GL cells 
that underwent serial transplants were recovered from FAP-WT and FAP-KO lung 
tissues by cell sorting. Tumor cell growth from the first transplant (WT.p1 and KO.p1) 
and second transplant (WT.p2 and KO.p2) were determined by trypan blue exclusion. 
Results are shown as mean ± SEM (n=3 per group). 
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Figure 5-13. Identification of potential molecular targets implicated in FAP-
mediated metastatic tumor outgrowth using A549 pulmonary metastasis model. (A) 
Principal component analysis of samples based on expression of all detected probes. (B) 
Two expression patterns of interest and heatmap of expression levels of genes that 
demonstrated the pattern. down=genes that were downregulated at KO.p3, up=genes that 
were upregulated at KO.p3. Expression fold was calculated vs averaged across samples. 
(C) Canonical pathways and upstream regulators enriched with 311 genes had an at least 
2-fold difference between any two KO/WT samples. 
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Figure 5-14. FAP-mediated tumor metastatic gene signature is associated with 
altered macrophage infiltration in A549 pulmonary metastasis. Tumor-infiltrating 
cells in the serial transplant studies were obtained by dissociation of tumor-bearing lung 
tissues. Flow cytometry was performed to identify CD11b+ F4/80+ macrophages and 
CD11b+ Ly6G+ neutrophils. Results are shown as mean ± SEM (n=8 per group in the 1st 
transplant and n=4-5 in the 3rd transplant); **p<0.01, ****p<0.0001. 
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Figure 5-15. APOE is a potential tumor-promoting factor in human lung cancer. 
Median-centered intensity of APOE expression in three different datasets of human lung 
adenocarcinomas was obtained from Oncomine. Fold change is presented as relative 
expression compared with normal lung tissues. 
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Figure 5-16. APOE is a potential negative prognostic factor in human lung cancer. 
Kaplan-Meier analysis of overall survival, progression free survival and post progression 
survival using publicly available lung adenocarcinoma microarray dataset, stratified 
according to APOE expression. HR = hazard ratio.  
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Figure 5-17. APOE expression is down-regulated in A549 tumor cells passaged in 
FAP-deficient mice. (A) FAP-WT and FAP-KO NSG mice were injected intravenously 
with A549 cells (n≥6 per group). Tumor-bearing lung tissues were harvested 30 days 
after tumor-cell transfer and immunohistochemical analysis was performed using anti-
APOE antibodies. Representative images demonstrate that APOE is decreased in the 
FAP-deficient mice. (B) Tumor-bearing lung tissues were harvested and digested with a 
collagenase cocktail to obtain single-cell suspensions for APOE intracellular staining. 
Tumor cells from culture were used to demonstrate baseline APOE expression (ie, in 
vitro). Results are shown as mean fluorescence intensity ± SEM (n=7 per group); 
**p<0.01. 
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CHAPTER 6 – Fibroblast activation protein augments autochthonous 

pancreatic ductal carcinoma progression and metastasis 

 

Introduction 

Pancreatic cancer 

Pancreatic ductal adenocarcinoma (PDA), characterized by extensive desmoplastic 

stroma and proinflammatory cell infiltration, has among the worst prognoses of all 

human malignancies (Hidalgo, 2010; Ryan et al., 2014). Despite significant 

advancements in surgery, radiotherapy, and chemotherapy, the clinical outcome for PDA 

remains dismal, with a median survival of less than 6 months and 5-year survival rate of 

less than 5%. The poor clinical outcome can be attributed to several factors. Firstly, early 

detection and diagnosis of pancreatic cancer is severely limited by the anatomic location 

and imaging characteristics of the pancreas, enabling tumors to develop relatively 

undetected until progression to advanced stages where surgical intervention, considered 

the only potentially curative therapy, is no longer feasible. Secondly, pancreatic cancer is 

refractory to chemotherapy as the formation of desmoplastic tumor stroma results in 

increased tissue solid stress and interstitial fluid pressures, both of which lead to vascular 

compression and dysfunction, thereby impairing drug delivery into tumors (Jacobetz et 

al., 2013; Olive et al., 2009; Provenzano et al., 2012; Stylianopoulos et al., 2012). 

Moreover, the inflammatory and immunosuppressive environment of pancreatic cancer 

renders it resistant to checkpoint blockade-based immunotherapy (Feig et al., 2013). 

Currently, PDA is the fourth-leading cause of cancer-related deaths in the United States, 

and is estimated to rank second by 2020 due to the ageing population and increasing 
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prevalence of two major risk factors, obesity and diabetes (Rahib et al., 2014). Therefore, 

thorough understanding of the pathogenesis and therapeutic resistance of PDA is 

necessary to overcome this devastating disease. 

 

Pancreatic cancer pathogenesis 

The mechanisms of pancreatic cancer initiation and progression were originally inferred 

from analyses of resected clinical specimens (Hruban et al., 2001; Hruban et al., 2004). 

Histologically, normal pancreatic ducts comprise a single layer of cuboidal ductal 

epithelial cells with the nucleus localized toward the basal lumen. Invasive pancreatic 

tumors arise from a spectrum of preneoplastic mucinous lesions with ductal-like 

morphology, also known as pancreatic intraepithelial neoplasia (PanIN). Based on the 

morphologic alterations, it can be further categorized into: PanINA, which is 

characterized by transition from the cuboidal morphology to a columnar phenotype with 

prominent mucin-containing cytoplasm; PanIN1B, which is characterized by additional 

papillary projections; PanIN2, which is characterized by significant loss of polarity and 

moderate nuclear atypia; and PanIN3, also known as carcinoma in situ, which is 

characterized by complete loss of cellular polarity, significant nuclear atypia, and 

budding of cell clusters into the ductal lumen. Genomics analyses of human PanINs have 

revealed that disease progression is paralleled by the successive accumulation of genetic 

mutations, including in KRAS, TP53, CDKN2A and DPC4, which may lead to an 

increasing degree of nuclear atypia and ultimately development of pancreatic cancer 

(Feldmann et al., 2007). The earliest detectable mutations identified in human 

preneoplastic lesions involve the KRAS gene (Kanda et al., 2012). 
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Mouse models of pancreatic cancer 

Given the high mutation rate and the importance of KRAS signaling pathways in driving 

cell proliferation and survival, a genetically engineered mouse model of pancreatic cancer 

was developed using Cre-loxP recombination technology (Sauer and Henderson, 1988). 

Oncogenic Kras (KrasG12D) is introduced into the endogenous Kras allele along with 

genetic elements upstream that inhibit transcription and translation (stop cassette) flanked 

by LoxP sites (LSL). Expression of Cre recombinase is targeted to the pancreas through 

the use of pancreas-specific promoters including Pdx-1 or Ptf1a. This compound strain is 

designated as KC mouse model. Once the stop cassette is removed by Cre recombinase, 

oncogenic Kras expression is driven by the endogenous promoter at the physiological 

level. Expression of oncogenic Kras in the mouse pancreas stochastically forms 

preinvasive PanINs with 100% penetrance and that eventually spontaneously progress to 

PDA, albeit with a prolonged latency (Hingorani et al., 2003). Concomitant targeted 

expression of point-mutated Trp53 allele (Trp53R172H) in the KC mouse model accelerates 

pancreatic tumorigenesis and results in the development hemorrhagic ascites and 

widespread metastases to the liver, lung, mesentery, peritoneum and lymph nodes, as well 

as inciting a paraneoplastic syndrome that includes cachexia and anemia (Hingorani et 

al., 2005). This autochthonous pancreatic cancer mouse model, also known as KPC mice, 

faithfully recapitulates the clinical manifestations, histological features, metastatic 

profiles, chemoresistance phenotypes and immunological-tolerant hallmarks of PDA, 

highlighting its utility for mechanistic understanding of the pancreatic cancer biology and 

the development of therapeutic strategies or early detection methods for this disease. 
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Further genetically engineered mouse models employing conditional deletion of Cdkn2a, 

Ink4a, Smad4 or Tgfbr2 tumor suppressors also cooperate with oncogenic Kras to drive 

formation of pancreatic cancer (Aguirre et al., 2003; Bardeesy et al., 2006; Ijichi et al., 

2006; Izeradjene et al., 2007; Kojima et al., 2007). Nonetheless, loss of either of these 

tumor suppressors does not directly induce pancreatic cancer formation, indicating that 

expression of oncogenic Kras is required for pancreatic tumorigenesis within the 

compound mutant models. Lineage tracing also revealed that despite the ductal 

appearance of pancreatic cancer lesions, acinar cells instead of ductal epithelial cells 

might be the origin for most pancreatic tumors (Kopp et al., 2012). 

 

FAP protease and pancreatic cancer 

Given the extensive desmoplastic stromal response associated with pancreatic cancer, it is 

perhaps not surprising that clinicopathological studies demonstrated that expression of 

fibroblast activation protein (FAP) was associated with worse clinical outcome in PDA 

patients (Cohen et al., 2008; Shi et al., 2012). Higher FAP expression correlated with 

lymph node metastasis and increased risk of tumor recurrence and death. A recent study 

also revealed that FAP protease is important in matrix remodeling to drive pancreatic 

tumor cell migration through the β1-integrin signaling pathway (Lee et al., 2011). 

Collectively, these data suggest that FAP protease may regulate pancreatic tumor 

invasion and/or metastasis. In this chapter, I describe using a genetically engineered 

mouse model of pancreatic cancer to study the potential impacts of FAP protease on 

pancreatic tumorigenesis, progression and metastasis.  
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Materials and methods 

Animals 

C57BL/6 mice were purchased from Charles River Laboratories, Inc. (Wilmington, MA). 

FAP-luciferase reporter mice (FapLuc/Luc) and FAP-deficient mice (FapDTR/DTR) were 

generated using a targeting construct originally provided by Dr. Andreas Schnapp 

(Boehringer-Ingelheim, Germany). KrasLSL-G12D/+ and Pdx-1-Cre C57BL/6 mice were 

kindly provided by Drs. Sandra Ryeom and Robert Vonderheide, respectively, at 

University of Pennsylvania (Philadelphia, PA). Trp53LSL-R172H/+ mice on a mixed 

129/SvJae/C57BL/6 background were acquired from the Mouse Repository at the 

National Cancer Institute. Mice were backcrossed at least 8 generations onto a C57BL/6 

genetic background and interbred to generate triple-mutant mice. Experimental protocols 

were approved by the Institutional Animal Care and Use Committee and were in 

compliance with guidelines for the care and use of animals. 

 

Orthotopic pancreatic tumor model 

Mice were anesthetized under 2% isoflurane, after which the abdomen was shaved and its 

skin disinfected. A laparotomy was performed with an approximately 1 cm incision in the 

left upper quadrant of the abdomen using a sterile scalpel. The peritoneal cavity was 

exposed with spreaders, and cotton swab sticks were used to displace the intestines to 

expose the spleen and pancreatic tail for orthotopic tumor injection. 2.5×105 PanO2 cells 

in a volume of 30 µL serum-free medium or medium only were injected using insulin 

syringes. After injection, all abdominal organs were carefully replaced into the peritoneal 

cavity using cotton swabs. The peritoneal incision was closed using a continuous chromic 
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gut 4-0 Vicryl suture (Covidien), followed by an interrupted Sofsilk 6-0 silk suture 

(Covidien) for the abdominal wall incision. The procedure typically lasted approximately 

20 minutes and was well tolerated by all the animals. After the tumor cell implantation, 

these mice were monitored daily for signs of distress, infection or tumor formation. 

 

Bioluminescence imaging 

The IVIS Lumina III Bioluminescence and Fluorescence Imaging System (Perkin Elmer, 

Waltham, MA) was used for in vivo bioluminescent imaging. Pancreatic tumor-bearing 

mice and animals that underwent sham surgery were injected intraperitoneally with 

150mg/kg body D-luciferin (Gold Biotechnology) suspended in PBS. Mice were imaged 

under isoflurane anesthesia 15 minutes post D-luciferin injection as kinetic studies 

demonstrated peak bioluminescent intensity of tumors around this time. Bioluminescent 

signal from tumor cells expressing luciferase was quantified by Living Image software 

and reported as units of tissue radiance (photons/second).  

 

Ultrasound imaging 

High-resolution sonography was performed using the Vevo 2100 imaging system 

equipped with a 55 MHz MicroScan transducer (Visual Sonics). Mice were enrolled at 

around 8 to 10 weeks of age for weekly ultrasound scans to detect presence of pancreatic 

tumors or metastatic disease. Mice were anesthetized under 2% isoflurane and transferred 

to the imaging stage. Fur was removed from the abdomen using a depilatory cream and 

the abdomen was swabbed with sterile water to remove any residuals. A thin layer of 

ultrasound gel was applied over the abdominal area and monitored by the transducer. 
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Each imaging session lasted 10-15 minutes. Mice were provided with heat support and 

were monitored until they recovered from anesthesia. Mice with pancreatic tumors 

underwent further scanning using a 3D motor to acquire serial images at either 0.076 mm 

(for tumors smaller than 10 mm) or 0.127 mm (for tumors larger than 10 mm) intervals 

through the entire tumor. Pancreatic tumors were then digitally visualized and 

reconstructed to determine tumor volumes using the Integrated Vevo Workstation 

software package. Mice were excluded from the survival study if they developed 

ulcerated facial or vaginal papillomas, or exhibited large thymic lymphomas. Study 

endpoint criteria included tumor diameter exceeding 20 mm or mice becoming moribund 

or showing signs of distress such as anorexia and cachexia. 

 

Histopathological, histochemical and immunofluorescent analysis 

The pancreas, pancreatic tumors and visceral organs were harvested, fixed with Prefer 

(Anatech), dehydrated and paraffin-embedded. Tissue sections were deparaffinized, 

rehydrated and stained with Masson’s tricrhome, Alcian blue or H&E. H&E-stained 

sections were evaluated by a board-certified pathologist (Elizabeth L. Buza) at the Ryan 

Veterinary Hospital of the University of Pennsylvania. For each tumor sample, the 

predominant tumor phenotype (glandular, sarcomatoid or anaplastic) was determined by 

the presence of greater than 50% of the field of view for each subtype. PanIN lesions 

were evaluated and scored based on the 10 consecutive high power field (40X) images. 

For immunofluorescent staining, frozen sections were fixed in acetone, dried, washed 

with PBS, and incubated with 10% goat serum in 1% BSA/PBS at room temperature for 

an hour, and then incubated with streptavidin-biotin block (Vector Labs). An F19-FAP 
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antibody (20 µg/mL) was applied overnight at 4°C and incubated with biotinylated goat 

anti-mouse IgG antibody (10 µg/mL, Jackson ImmunoResearch) at room temperature for 

an hour. Bound antibodies were detected with streptavidin-TRITC (3 µg/mL, Jackson 

ImmunoResearch). Tissue sections were further incubated with an EpCAM antibody 

conjugated with Alexa488 (10 µg/mL, Cell Signaling) at room temperature for an hour. 

Nuclei were counterstained with DAPI for 10 minutes and sections were mounted with 

Slowfade (Thermo Fisher Scientific). Digital images were captured using a Nikon E600 

microscope at 20X HPF. 

 

Statistical Analyses 

Statistics were calculated using GraphPad Prism 6. For studies comparing two groups, 

Student’s t-test was used. For survival and tumor detection studies, log-rank tests were 

performed. For studies comparing outcomes between two groups, the Chi-square test was 

used. Data are represented as mean ± SEM. Differences were considered significant when 

p < 0.05. 
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Results 

FAP accelerates tumor progression and decreases survival in a mouse model of 

pancreatic cancer 

To determine whether FAP might be a therapeutic target in pancreatic cancer, we first 

examined the expression of FAP in clinical specimens. Immunofluorescent staining 

showed that the stromal cells in pancreatic tumors predominantly expressed FAP, and 

that expression was much lower in the adjacent pancreatic tissue (Figure 6-1A). This 

selective expression pattern was further confirmed by using Fap luciferase reporter mice, 

demonstrating that while basal FAP expression was detected in the normal pancreatic 

tissue, FAP was highly expressed in syngeneic pancreatic tumors (Figure 6-1B).  

 

Our prior study suggested that FAP deficiency might impair tumor initiation or tumor 

progression in mutant Kras-driven lung tumors; we were therefore interested in whether 

FAP may also play a critical role in pancreatic cancer development. We employed an 

autochthonous mouse model of pancreatic cancer to determine if endogenous FAP 

regulates tumor initiation, progression and/or metastasis. We globally deleted Fap alleles 

by crossing FAP-deficient mice (FapDTR/DTR) with KrasLSL-G12D/+, Trp53LSL-R172H/+ and 

Pdx-1-Cre (KPC) to generate KPC-FAP heterozygous (FAP-Het) and KPC global FAP-

deficient (FAP-KO) mice (Figure 6-3). Both genotypes of these mice were born at 

expected Mendelian ratios and appeared phenotypically normal at birth. FAP deletion had 

no impact on pancreatic development (Figure 6-2). We assessed pancreatic tumor 

formation and found pancreatic tumors arose in both KPC-FAP-Het and KPC-FAP-KO 

mice, and the number of tumors between these two groups was not different, indicating 
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that FAP is not essential for pancreatic tumor tumorigenesis driven by oncogenic Kras in 

this model (Figure 6-6). Remarkably however, genetic deletion of FAP prolonged the 

median survival of KPC mice. KPC-FAP-KO mice had a median survival of 192.5 days, 

compared to a median survival of 153 days for KPC-FAP-Het mice (p<0.05) (Figure 6-

4). Sonographic studies revealed that FAP-deficiency delayed the onset of PDA, shifting 

the median time to tumor detection from 14.9 to 20.1 weeks (p<0.05) (Figure 6-5). 

Furthermore, histological analysis showed a lower frequency of pancreatic intraepithelial 

neoplasia (PanIN)-2 in 24-week-old KC-FAP-KO compared to KC-FAP-Het mice 

(p<0.05) (Figure 6-7). Taken together, these data indicate that FAP is not involved in the 

initiation of pancreatic cancer development, but rather plays a critical role in disease 

progression. 

 

FAP augments pancreatic cancer resistance to necrosis and drives tumor metastasis 

to multiple target organs 

Recent studies have shown that pancreatic tumors exhibiting poorly-differentiated and 

undifferentiated histologies are highly aggressive and lethal. To determine if the delayed 

onset of pancreatic tumors in the KPC-FAP-KO mice is associated with altered tumor 

histology, we performed histopathological analyses to assess the composition of the 

pancreatic tumors. Targeting FAP did not impact the distribution of pancreatic cancer 

subtypes, as 80% of the tumors in KPC-FAP-Het and KPC-FAP-KO mice exhibited 

primary ductal structure, while the remainder showed undifferentiated phenotypes 

(Figure 6-8).  
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Interestingly, sonographic and histopathological analyses revealed that pancreatic tumors 

from KPC-FAP-KO mice exhibited marked necrotic tumor death relative to the tumors in 

KPC-FAP-Het mice (Figure 6-9 and 6-10). We also noted that this necrotic tumor death 

induced by FAP deficiency was associated with increased lymphocytic cell infiltration, 

suggesting that FAP expression may render pancreatic tumors resistant to immune-

mediated control of tumor progression.  

 

To determine whether FAP is essential in tumor invasion and metastasis, we examined 

the metastatic lesions in multiple target organs. At the endpoint, primary tumor weights 

between the KPC-FAP-Het and KPC-FAP-KO groups were not different (1.60 ± 0.19 

versus 1.53 ± 0.31 grams, Figure 6-11A). Interestingly, the frequency of tumor invasion 

and metastasis in multiple organs including liver, lung, mesentery, pleura/peritoneum and 

lymph nodes was decreased in KPC-FAP-KO mice, indicating FAP may regulate tumor 

invasion and metastasis (Figure 6-11B). In addition, the frequency of both liver and 

pulmonary macro-metastatic lesion identified at the time of necropsy was reduced in 

KPC-FAP-KO mice, suggesting that FAP may drive the outgrowth of the metastatic 

lesions. Collectively, these data indicate that FAP protease activity plays a critical role in 

the progression and metastasis of pancreatic cancer. The mechanisms underlying this 

impact of FAP deficiency on the tumor stroma and anti-tumor immunity are currently 

under further investigation.   
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Conclusions and discussion 

Pancreatic cancer drives the formation of a robust desmoplastic stroma, with stromal cells 

and the extracellular matrix encompassing up to 90% of the total tumor volume. Stromal 

elements are highly expressed in clinical specimens and predict poor prognostic 

outcomes (Infante et al., 2007; Moffitt et al., 2015; Von Hoff et al., 2011; Whatcott et al., 

2015). This widely noted stromal reaction has led researchers to emphasize studying the 

interaction between the tumor cells and the surrounding stromal elements (Kern et al., 

2001; Mahadevan and Von Hoff, 2007). Studies employing in vitro culture or in vivo 

transplantation approaches have reached to an unambiguous conclusion that various 

stromal elements can promote pancreatic cancer proliferation, migration, invasion and 

metastasis (Hwang et al., 2008; Ikenaga et al., 2010; Shields et al., 2011; Xu et al., 2010). 

These observations, collectively, exemplify one of the hallmarks of cancer in which 

tumor stroma functions to support the growth of tumor (Hanahan and Weinberg, 2011).  

 

Nonetheless, despite these lines of evidence, results from two studies challenge the 

current paradigm, demonstrating that stromal elements can also restrain rather than 

support tumor progression, at least in pancreatic cancer (Ozdemir et al., 2014; Rhim et 

al., 2014). Pancreas-specific deletion or pharmacological targeting of Sonic hedgehog 

(Shh), a soluble ligand overexpressed by pancreatic tumor cells critical for driving 

formation of a desmoplastic stroma, was shown to reduce stromal contents in 

autochthonous pancreatic tumors. However, Shh-deficient tumors developed earlier and 

were more aggressive, exhibiting undifferentiated histology and heightened levels of 

angiogenesis and proliferation. Administration of VEGFR blocking antibody improved 
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survival of Shh-deficient tumor-bearing mice, indicating that Hedgehog-driven 

stromagenesis suppresses tumor growth in part by restraining tumor angiogenesis (Rhim 

et al., 2014). Specific ablation of SMA+ myofibroblasts in two autochthonous mouse 

models of pancreatic cancer resulted in minimal tumor growth reduction and exhibited 

higher mortality rate. Deletion of SMA+ myofibroblasts was shown to promote tumor 

aggressiveness by inducing hypoxia, EMT and immune suppression in primary tumors, 

as well as increasing tumor emboli found in lung tissue. Treatment of anti-CTLA4 

immunotherapy reversed disease acceleration and prolonged animal survival in the SMA+ 

myofibroblasts depleted pancreatic tumors (Ozdemir et al., 2014). Together, these studies 

raise substantial concerns as to whether targeting the tumor stroma remains an 

encouraging therapeutic approach for pancreatic cancer.  

 

My studies described in this chapter reveal that stromal FAP protease is important in 

pancreatic tumor progression. Specifically genetic deletion of FAP delayed the 

progression of pancreatic preneoplastic lesions and tumor formation. FAP deficiency did 

not impact pancreatic development or function. Importantly, FAP deficiency induced 

pancreatic tumor necrosis and impeded pancreatic tumor metastasis and outgrowth in 

multiple target organs. These findings support targeting FAP protease as a promising 

approach to treat pancreatic cancer. The mechanisms underlying the impact of FAP 

protease on the ECM remodeling, angiogenesis, inflammatory and immune response are 

currently under further investigation. My investigation will specifically focus on 

following key FAP-proteolysis dependent factors including collagen, TGFβ, CCL2 and 
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CXCL12/SDF-1α that play critical roles for stromagenesis, ECM remodeling, and 

macrophage and T-cell recruitment to impact tumor progression, invasion and metastasis.  

 

The ECM provides essential signals to maintain tissue polarity and architecture, as well 

as regulating cell growth and turnover. In the appropriate context, the ECM is sufficient 

to restrain tumorigenesis (Bissell and Hines, 2011). For instance, accumulation of high 

molecular weight HA has been reported to protect naked mole rats against cancer by 

impeding malignant transformation (Tian et al., 2013). Additionally, expression of type 

III collagen has been shown to restrain spontaneous tumor development and inhibit the 

growth and metastasis of transplanted breast tumors by regulating ECM remodeling 

(Brisson et al., 2015). However, during tumor development and progression, the ECM 

becomes deregulated and disorganized resulting in the generation of distinct biochemical 

and biophysical signals that drive tumor proliferation, migration, invasion and metastasis 

(Bonnans et al., 2014; Pickup et al., 2014).  

 

In primary pancreatic tumors, extracellular matrix deposition, such as collagen and HA, 

was shown to negatively correlate with patient survival. Moreover, both primary tumors 

and metastases of pancreatic cancer exhibited stromal fibrosis (Whatcott et al., 2015). 

These observations indicate that aberrant desmoplastic response may impact progression 

of primary tumor as well as distant metastasis. Interestingly, FAP protease-mediated 

remodeling of the tumor stroma was shown to promote tumor cell migration, suggesting 

that FAP protease may regulate early steps of the metastasis cascade i.e. tumor cell 

dissemination and/or invasion (Lee et al., 2011). This may in part explain our data 
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showing the frequency of pancreatic cancer metastasis to multiple target organs is 

reduced in FAP-deficient KPC mice. Future studies utilizing three-dimensional 

organotypic culture with fibroblast or fibroblast-derived matrix will inform whether FAP 

protease is essential for tumor invasion and dissemination. Another, not mutually 

exclusive explanation is that FAP protease play a crucial role in formation of a 

premetastatic niche. It will therefore be interesting to examine FAP expression level in 

metastasis target organs at the preneoplastic stage and determine whether disruption of 

FAP protease will alter the matrix modeling thereby inhibits malignant cell seeding. 

Furthermore, the presence of macroscopic liver and pulmonary metastases is less frequent 

in FAP deficient KPC mice, indicating FAP protease may drive the outgrowth of the 

metastatic lesions. Our prior studies indicate that disruption of FAP protease inhibits 

pulmonary metastatic outgrowth and this inhibition correlates with reduced macrophage 

infiltration, which may be due to down-regulation of CCL2 from FAP-deficient CAFs 

(Koczorowska et al., 2016). Further studies are required to determine if this mechanism 

can be extended to the pancreatic cancer metastasis. 

 

The immune surveillance program has great potential to identify and destroy nascent 

tumors, thereby functions as a primary defense against cancer. Nevertheless, tumors 

evolve multiple strategies to prevent the generation of an effective anti-tumor immunity. 

In pancreatic cancer, one of such tumoral immune suppression mechanism is exclusion of 

effector T cells from neoplastic cells orchestrated by the desmoplastic stroma. Evidence 

suggests that the extracellular matrix is a contributing factor that presents a physical 

barrier that impairs T cell infiltration, migration and engagement with tumor cells, as 
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treatment with collagenase has been demonstrated to enhance T-cell mobilization to the 

vicinity of tumor nests (Salmon et al., 2012). Moreover, based on investigations of 

human pancreatic tumor specimens and the tumors-derived from KPC mice, activated 

pancreatic stellate cells (PSCs) was shown to reduce migration of CD8+ T cells to 

juxtatumoral stromal compartments, thereby preventing the access of CD8+ T cells to 

cancer cells. SDF-1α/CXCL12 secreted by activated PSCs was then identified as the key 

mediator that drive the CD8+ T cells chemotaxis towards PSCs in vitro. Molecular 

targeting of SDF-1α/CXCL12 or pharmacological treatment of activated PSCs with all-

trans retinoic acid (ATRA), a drug that rendered PSCs quiescent, abrogated CD8+ T cells 

chemotaxis towards PSCs. Notably, ATRA treatment enhanced CD8+ T cells infiltration 

to the proximity of the neoplastic cells in tumor-bearing KPC mice (Ene-Obong et al., 

2013). In contrast to the theory mentioned above, it has been proposed that SDF-

1α/CXCL12 derived from FAP+ stromal cells could bind to the high mobility group box 1 

(HMGB1) expressed by pancreatic cancer cells, and therefore excluded T cells from 

neoplastic cells through an unknown mechanism. Nonetheless, inhibition of CXCR4, a 

receptor of SDF-1α/CXCL12, by AMD3100 induced rapid T-cell accumulation among 

cancer cells and potentiated the efficacy of checkpoint-blockade based immunotherapy to 

restrain growth of pancreatic tumors (Feig et al., 2013). Based on these observations, it is 

interesting to address whether FAP protease is involved the regulation of T cell-exclusion 

in pancreatic tumors. Prior studies revealed that FAP could mediate proteolytic 

processing of SDF-1α/CXCL12 by its DPP acitivity (Keane et al., 2011). Truncated SDF-

1α/CXCL12 (residues 3–68) was shown to act as an antagonist, losing both lymphocyte 

chemotactic and CXCR4-signaling properties (Proost et al., 1998). Therefore, we 
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hypothesize that disruption of FAP protease activity may permit T-cell recruitment and 

infiltration into pancreatic tumors. Preliminary histopathological observations suggest 

that the heightened necrotic death noted in FAP-deficient primary pancreatic tumors is 

associated with increased lymphocytic cell infiltration. Further immunohistochemical 

staining and flow cytometry analysis will be performed to better characterize immune and 

inflammatory cell infiltrates in tumors derived from KPC-FAP-Het and KPC-FAP-KO 

mice.   
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Figure 6-1. FAP is overexpressed in pancreatic ductal adenocarcinoma. (A) Human 
pancreatic tumors and adjacent normal pancreatic tissues were subjected to hematoxylin 
and immunofluorescent staining with FAP and EpCAM; scale: 100 µm. (B) FAP 
luciferase reporter knock-in or wild-type C57BL/6 mice were orthotopically implanted 
with syngeneic PanO2 pancreatic cancer cells or serum-free medium (sham surgery) into 
the tail of the pancreas. Tumor and adjacent pancreatic tissues were harvested and 
subjected to bioluminescent imaging; scale: 1 cm.   
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Figure 6-2. FAP is dispensable for pancreatic development. (A) The pancreas was 
harvested from FAP-WT and FAP-KO C57BL/6 mice and weighed. Serum glucose and 
circulating amylase levels were measured. Results are shown as mean ± SEM (n=6). (B) 
Representative hematoxylin and eosin (H&E), trichrome, hyaluronan-binding peptide 
(HABP) and periodic acid–Schiff (PAS)-stained pancreas from FAP-WT and FAP-KO 
C57BL/6 mice; scale: 100 µm. No statistical significance was found.  
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Figure 6-3. Genetic targeting of FAP in a preclinical mouse model of pancreatic 
ductal adenocarcinoma. LSL-KrasG12D/+, LSL-Trp53R172H and Pdx-1-Cre (KPC) mice 
were crossed with FAP-deficient mice to generate KPC-FAP heterozygous (FAP-Het) 
and KPC global FAP-deficient (FAP-KO) mice. Mice were backcrossed to the C57BL/6 
background for at least 8 generations prior to enrollment in the experiment. 
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Figure 6-4. FAP protease reduces survival of KPC mice. Kaplan-Meier survival 
curves of KPC FAP-Het (n=23) and KPC FAP-KO (n=14) mice. All mice eventually 
succumbed to pancreatic cancer-related morbidity and mortality. KPC-Het mice have a 
median survival of 153 days, while KPC FAP-KO mice have a median survival of 192.5 
days, log-rank test *p<0.05. 
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Figure 6-5. FAP protease promotes development of pancreatic ductal 
adenocarcinoma. KPC FAP-Het (n=29) and KPC FAP-KO (n=15) mice underwent 
sonographic examination to evaluate for pancreatic ductal adenocarcinoma. KPC-Het 
mice have a median time to tumor detection at 14.9 weeks of age, while KPC FAP-KO 
mice have a median time to tumor detection at 20.1 weeks of age, log-rank test: *p<0.05. 
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Figure 6-6. Targeting FAP does not impact the multiplicity of pancreatic tumors. 
The number of tumors in the KPC FAP-Het and FAP-KO mice was assessed during 
ultrasound scanning. Results are shown as mean ± SEM; Student T test for demonstrates 
no significance. 
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Figure 6-7. Targeting FAP delays the progression of pancreatic intraepithelial 
neoplasia (PanIN). Pancreas from KC FAP-Het and KC FAP-KO mice at 24-week-old 
were harvested for histopathological analysis. H&E stained pancreas tissues were 
assessed by a board-certified pathologist at the Ryan Veterinary Hospital of the 
University of Pennsylvania. ADM: acinar to ductal metaplasia. Results are shown as box-
and-whisker plots (n=6 per group), *p<0.05. 
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Figure 6-8. Targeting FAP does not impact the distribution of pancreatic tumor 
subtypes. Pancreatic tumors derived from KPC FAP-Het (n=23) and KPC FAP-KO 
(n=14) mice exhibit a mix of histological phenotypes (subtypes): glandular type, 
sarcomatoid type and anaplastic type. The predominant histology of each tumor is 
defined by the presence of more than 50% of a subtype within each sample as determined 
by a board-certified pathologist at the Ryan Veterinary Hospital of the University of 
Pennsylvania. Chi-square test for trend demonstrates no significance. 
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Figure 6-9. Targeting FAP alters internal tumor architecture associated with 
necrotic cell death. (A) Representative ultrasound images of the pancreatic tumors 
derived from KPC FAP-Het and KPC FAP-KO mice; * and # indicate tumor necrosis and 
a small cyst within the tumor, respectively. (B) Tumors were harvested at the endpoint 
and stained with H&E, scale: 0.5 cm.  



	 174	

Figure 6-10. Targeting FAP results in pronounced tumor necrosis. Pancreatic tumors 
derived from KPC FAP-Het (n=23) and KPC FAP-KO (n=14) mice were stained with 
H&E. The degree of necrosis within each tumor was assessed by a board-certified 
pathologist at the Ryan Veterinary Hospital of the University of Pennsylvania. In the 
cases that exhibit various degrees of necrosis, statistical analysis was performed using the 
Chi-square test for trend: ***p<0.0001. 
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Figure 6-11. Targeting FAP impedes pancreatic cancer metastasis. (A) Pancreatic 
tumor weight of KPC FAP-Het and FAP-KO mice at the endpoint or death (B) 
Metastases in multiple organs from KPC FAP-Het (n=23) and KPC FAP-KO (n=14) 
mice were evaluated at necropsy and further confirmed by H&E staining. Chi-square test. 
(B). Liver and lung metastases were further categorized into presence of macroscopic 
lesions found at necrospy and micro-metastases identified by H&E staining. Scale: 100 
µm.  
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CHAPTER 7 – Conclusion and future directions 

 

Solid tumors are abnormal organs composed of dysregulated parenchymal tissues, 

mesenchymal stromal cells and connective tissue stroma. Accumulation and 

reprogramming of these cancer-associated mesenchymal stromal cells induces tumor 

desmoplasia, angiogenesis, inflammation and immune suppression, thereby contributing 

to tumor progression, metastasis and therapeutic resistance. Based on the tumor-

promoting functions and the therapeutic resistance conferred by tumor stroma, it has been 

hypothesized that destruction of stromal cells and/or disruption of molecular stromal 

cell/ECM-dependent pathways would inhibit tumor growth and augment efficacy of other 

therapeutic modalities (Bhowmick et al., 2004b; Jacob et al., 2012; Kalluri and Zeisberg, 

2006; Ohlund et al., 2014). Even though many studies indicate that cancer-associated 

mesenchymal stromal cells are functionally distinct from their normal counterparts, 

which is essential for inhibiting tumorigenesis and malignant progression, it is important 

to keep in mind the heterogeneity and potential plasticity of this compartment (Augsten, 

2014; Jacob et al., 2012; Kalluri and Zeisberg, 2006; Ohlund et al., 2014; Scherz-Shouval 

et al., 2014; Waterman et al., 2012). Distinct mesenchymal stromal cell subpopulations 

may have opposing impacts on tumor growth, progression and metastasis. 

Subpopulations of cancer-associated mesenchymal stromal cells may retain activity of 

certain molecular pathways that can inhibit tumor progression (Chang et al., 2012). Based 

on these observations, it is possible that depletion of specific stroma cell subpopulations 

may have either therapeutic or detrimental effects. This impact may also depend on tumor 

type, stage of tumor progression, and variation in the degree of desmoplasia and tumor 
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immunogenicity. Therefore, careful investigation of the impact of distinct subpopulations 

on tumor progression and delineation of their roles in regulating desmoplasia, 

angiogenesis and anti-tumor immunity are required to inform the rational design of 

stromal cell-targeted therapies. 

 
Figure 7-1. FAP/FAP+ stromal cells modulate several aspects of tumor microenvironment to 
promote tumor progression and metastasis. 
 

In the above chapters, I described how FAP-expressing cancer-associated stromal cells 

accumulate in various primary tumors and metastatic diseases and how FAP+ stromal 

cells may drive tumor progression by themselves and/or through FAP protease activity. 

Conditional depletion of intratumoral FAP+ stromal cells by FAP-CAR T cells inhibits 

tumor growth without causing systemic toxicity in multiple syngeneic transplanted 

tumors, xenografts and an autochthonous tumor model, suggesting that a therapeutic 

opportunity exists for FAP-CAR T-cell therapy. Notably, combination therapy with 

tumor antigen vaccination or chemotherapy can augment the therapeutic efficacy of FAP-

CAR T-cell therapy. It is therefore critical to develop a human FAP knock-in mouse 
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model to assess the efficacy and toxicity profile of human FAP-CAR T cells before 

taking this approach to the clinic. In addition, my observation that tumors exhibit various 

degrees of desmoplasia raises several fundamental questions about the essence of the 

tumor desmoplastic response. For instance, what is the basis of the tumor desmoplastic 

response driven by FAP+ stromal cells? Do tumors recruit the FAP+ stromal cells and/or 

induce a fibroproliferative response in vivo? Meanwhile, targeting FAP protease activity 

using FAP-deficient mice also demonstrates that FAP plays a central role in pancreatic 

cancer progression and metastasis to multiple target organs as well as pulmonary 

metastases from various primaries. Although the mechanistic investigations are still 

underway, my studies suggest that targeting FAP protease may have the potential to 

impede tumor cell colonization and metastatic tumor outgrowth. In summary, I propose 

that FAP+ stromal cells and FAP protease are promising treatment targets and warrant 

further investigation as a potential therapeutic approach for a variety of solid tumors. 

 

As eluded earlier that the conventional view for cancer-associated stromal cells is their 

net pro-tumorigenic effects, nevertheless, two recent studies targeting Sonic hedgehog 

(Shh)-driven stromagenesis or SMA+ myofibroblasts accelerated tumor progression and 

aggressiveness, thereby increasing morbidity and mortality in mouse models of 

pancreatic cancer (Ozdemir et al., 2014; Rhim et al., 2014). Mechanistic investigations 

demonstrated that Shh deficiency enhanced tumor angiogenesis and tumor cell 

proliferation; administration of VEGFR blocking antibody reversed malignant 

progression of Shh-deficient tumors (Rhim et al., 2014). Deletion of SMA+ 

myofibroblasts induced hypoxia, EMT and Treg infiltration-mediated immune 
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suppression; treatment of anti-CTLA4 immunotherapy blocked tumor progression and 

prolonged survival of the SMA+ myofibroblasts depleted pancreatic tumor-bearing 

animals (Ozdemir et al., 2014). Although it remains to be investigated whether those 

finding can be extended to other tumor types, these studies raise great concerns as to 

whether targeting the tumor stroma remains a suitable therapeutic approach for cancer 

treatment, at least for pancreatic cancer.  

 

It is also important to note that depletion of terminally differentiated SMA+ 

myofibroblasts in prior study did not alter the prevalence of FAP+ stromal cells in 

pancreatic tumors (Ozdemir et al., 2014), consistent with our findings that FAP and SMA 

identify distinct subsets of stromal cells, with few overlapping population in either mouse 

or human pancreatic tumors. Moreover, analyses of matrix components in the stromal cell 

depletion studies indicate that while both FAP+ and SMA+ stromal cells regulate 

intratumoral collagen content, only FAP+ stromal cells are important for the maintenance 

of intratumoral HA. Finally, in contrast to the immune suppression effects induced by 

depletion SMA+ myofibroblasts, we and others demonstrated deletion of FAP+ stromal 

cells could augment anti-tumor immunity to inhibit tumor growth (Arnold et al., 2014; 

Feig et al., 2013; Kraman et al., 2010; Wang et al., 2014b). Therefore, these data suggest 

that SMA+ and FAP+ stromal cells may differentially regulate tumorigenesis. 

 

In addition to developing therapeutic strategies aiming to deplete specific stromal cell 

population or disrupt particular molecular stromal cell/ECM-dependent pathways, an 

emerging concept is to reprogram cancer-associated mesenchymal stromal cells back to 
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their normal homeostatic quiescent state where they may regain their tumor suppression 

ability and reduce therapeutic resistance induced by tumor stroma. This important new 

paradigm was evolved from two recent studies demonstrating the usage of Vitamin D 

receptor (VDR) agonists to reprogram hepatic and pancreatic stellate cells expressing 

VDR in context of liver fibrosis and pancreatic cancer, could reduce desmoplasia and 

inflammation (Ding et al., 2013; Sherman et al., 2014). The VDR-mediated pancreatic 

stellate cell reprogramming resulted in increased gemcitabine delivery and reduced tumor 

volume in autochthonous pancreatic tumors. Notably, use of the VDR agonist resulted in 

a 57% increase in the survival of tumor-bearing animals as compared to gemcitabine 

treatment only (Sherman et al., 2014). Thus, conversion of the tumor stroma to a state 

that is more common of normal homeostasis, such as would occur naturally during the 

completion of wound healing response (Dvorak, 1986; Dvorak, 2015), may be critical for 

restraining tumor growth and inhibiting therapeutic resistance. Future mechanistic 

investigations of the stromal reprogramming and identifying the factors that govern the 

functional and phenotypic switch of reactive tumor stroma may hold significant promise 

in combating cancer.  
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