
Randomized Pursuit-Evasion with Limited Visibility

Volkan Isler∗ Sampath Kannan† Sanjeev Khanna‡

Abstract

We study the following pursuit-evasion game: One or
more hunters are seeking to capture an evading rabbit
on a graph. At each round, the rabbit tries to gather
information about the location of the hunters but it
can see them only if they are located on adjacent
nodes. We show that two hunters suffice for catching
rabbits with limited visibility with high probability.
We distinguish between reactive rabbits who move only
when the hunter is visible and general rabbits who
can employ more sophisticated strategies. We present
polynomial time algorithms that decide whether a graph
G is hunter-win, that is, if a single hunter can capture
a rabbit of either kind on G.

1 Introduction

Pursuit-evasion games are problems of fundamental
interest in many diverse fields such as computer-science,
operations-research, game theory and control theory.
The goal of a pursuit-evasion game is to find a strategy
for a pursuer trying to catch an evader who, in turn,
tries to avoid capture indefinitely. The game has many
variations based on the environment in which it is played
(E.g. plane, grid, graph), the information available to
the the players (Do they know each others’ positions all
the time? Does the pursuer know evader’s strategy?),
the controllability of their motion (Is there a bound on
their speed? Can they turn whenever they want?), and
the meaning of a capture (whether the evader must be
intercepted, seen or surrounded).

Earlier studies of pursuit-evasion were motivated by
control tasks such as intercepting missiles [4]. The prob-
lem is addressed in the robotics community for its ap-
plications in collision avoidance, search and rescue, and

∗Department of Computer and Information Science, Uni-

versity of Pennsylvania, Philadelphia, PA, USA. Email: is-

leri@cis.upenn.edu. Supported in part by NSF-IIS-0083209, NSF-

IIS-0121293 and MURI DAAH-19-02-1-03-83
†Department of Computer and Information Science, Uni-

versity of Pennsylvania, Philadelphia, PA, USA. Email: kan-

nan@cis.upenn.edu. Supported in part by NSF Grants

CCR0105337 and CCR9820885.
‡Department of Computer and Information Science, Uni-

versity of Pennsylvania, Philadelphia, PA, USA. Email: san-

jeev@cis.upenn.edu. Supported in part by an Alfred P. Sloan

Research Fellowship and an NSF Career Award CCR-0093117.

air-traffic control [10, 9]. In these models typically the
motion of the evader is modeled by a stochastic pro-
cess. However, recently there has been increasing inter-
est in modeling games where the evader is more “intelli-
gent” and has certain sensing capabilities [18]. Pursuit-
evasion games on graphs [17, 15, 13, 12, 6, 1] have been
studied not only for their applications in network secu-
rity and protocol design (e.g. [3, 11]) but also for their
relations to fundamental properties of graphs such as
vertex separation [7]. A remark about the terminology:
In the literature, the names pursuer-evader, cop-robber,
monster-princess, hunter-rabbit, sheriff-thief have been
used somewhat synonymously. We adopt the hunter-
rabbit term for it emphasizes the discrete nature of the
game [5, 1].

In this paper, we address a different aspect of the
problem that has not received much attention so far. We
study the relationship between the information available
to the rabbit and the conditions to capture it. The basic
model of our game is as follows: The players are located
on the nodes of a graph. At every time step, they
move to nodes in their neighborhoods (which includes
the current node) simultaneously. We say a rabbit is
caught or captured if at the beginning of a time step it
occupies the same node as a hunter. We associate the
information available to the rabbit with its visibility. If
the rabbit has complete information about the location
of the hunter(s) during the entire game, we say the
rabbit has full visibility. On the contrary, if the rabbit
has no information about the hunters, then we say it
has no visibility.

In our present work, we study the game when the
rabbit has limited visibility. That is, it can only see the
nodes that are adjacent to its current location. When
the hunter is located at an adjacent node, the rabbit
has complete information about his location. However,
if the hunter is not visible, then the rabbit must infer
the hunter’s location based on the time and location of
their last encounter. Note that this model is different
from the “visibility-based pursuit evasion” work [9, 16],
where the goal is to eventually “see” an evader which
has complete visibility and unbounded speed.

Recently, Adler et al. studied this game when the
rabbit has no visibility [1]. They showed that a single
hunter can catch the rabbit on any (connected) graph.



The full visibility version has also been studied [15, 6].
It is known that under the full-visibility model, the class
of graphs on which a single hunter suffices is the class of
dismantlable graphs. The number of hunters necessary
to capture the rabbit on a graph G is known as the
cop (hunter) number of G. It is known that [2] the
cop number of planar graphs is at most 3 but the cop
number of general graphs is still an open question [14, 8].

We will focus on randomized strategies. The pre-
vious body of work for the full visibility case [15, 6,
14, 8, 2] derandomized the game by forcing the players
to move in turns, rabbit followed by the hunter. Note
that when the players move simultaneously, the game
is not well-defined for deterministic strategies: Suppose
the game is played on a complete graph. In this case it
is easy to see that a single hunter can catch the rabbit
simply by guessing its location in the next turn. How-
ever, if the hunter’s strategy is deterministic, knowing
it, the rabbit would never get caught. Similarly, the
hunter could always catch the rabbit in a single move if
he knew its strategy.

Our results and techniques: Our main result is
an algorithmic characterization for the limited visibility
case. We show that two hunters always suffice on
general graphs and present a polynomial time procedure
that decides whether a single hunter is sufficient to
capture the rabbit on an input graph G. In order
to obtain an efficient decision procedure, we establish
that the uncertainty in rabbit’s knowledge of hunter’s
location satisfies an interesting monotonicity property.
This monotonicity property turns out to be crucial for
obtaining a polynomial time characterization.

In the winning strategy for two hunters, a central
component is to have one hunter mainly focus on
keeping the rabbit on the move. This motivated us to
study a natural class of reactive rabbit strategies, where
the rabbit moves only when the hunter is in its sight. We
show that the class of hunter-win graphs (i.e graphs on
which a single hunter suffices) against general rabbits
is strictly smaller than the class of hunter-win graphs
against reactive rabbits. We present a characterization
algorithm for reactive rabbits as well.

The characterization algorithms presented mark
pairs of vertices according to certain rules, where the
pairs correspond to players’ positions. To under-
stand the corresponding hunter strategies on hunter-
win graphs, we first present a hunter strategy for the
full visibility case. Next, we show that omitting one
of the rules from the characterization algorithms yields
an algorithm that recognizes graphs that are hunter-
win against rabbits with full visibility. Using these two
results, we show how the hunter exploits the limited
visibility if the game is played on a graph G such that

on G, the hunter can win against a rabbit with limited
visibility but not against a rabbit with full visibility.

We note that when the rabbit’s visibility is extended
to distance 2, there exist graphs for which Ω̃(

√
n)

hunters are necessary.
Organization of the paper: The paper is

organized as follows: In Section 2, we review necessary
concepts that will be used throughout the paper. In
Section 3 we present a winning strategy for two hunters
on general graphs. Next, we study the graphs on which
a single hunter suffices, both for reactive (Section 4.1)
and general rabbits (Section 4.2). Section 5 is dedicated
to the study of hunter strategies on hunter-win graphs.
A gap example distinguishing the power of the two types
of rabbit strategies is also presented in Section 5. We
conclude the paper with a discussion on extensions of
our work.

2 Preliminaries

Throughout the paper, we use the notation N(v) to
denote the set of vertices that are adjacent to v and we
always assume that v ∈ N(v). Unless otherwise stated,
n denotes the number of vertices.

The game we study is formally defined as follows: It
is played in rounds. In the beginning of a round, suppose
a player (either a hunter or a rabbit) is located at vertex
v. First, the player checks N(v) and if there is another
player located at a vertex u ∈ N(v), this information
is revealed to the player. In this case we say the two
players see each other. Next, all the players make a
decision about where to move and choose a vertex in
their neighborhoods. At the end of the round, all players
move to their chosen vertex simultaneously. A hunter
catches the rabbit if they are located on the same vertex.

A reactive rabbit strategy is a rabbit strategy where
the rabbit is not allowed to move from a vertex v unless
the hunter is in N(v). A rabbit strategy is general if
it is not reactive. In other words, the rabbit can move
even if the hunter is not visible. A (resp. non-)reactive
rabbit is a rabbit that employs a (resp. non-)reactive
strategy. A graph G is hunter-win against reactive
rabbits if there exists a hunter strategy that catches any
reactive rabbit on G with non-zero probability for all
possible starting configurations. A graph that is hunter-
win against general rabbits is defined similarly.

Configuration versus state: For a single hunter
game, a configuration refers to an ordered pair (h, r)
which corresponds to the locations of the hunter and
the rabbit respectively. Note that this information may
not be available to the rabbit at all times due to its
limited visibility. A configuration (h, r) is adjacent if
h ∈ N(r). We use the notation < H, r > to denote
the state of the game where r is the location of the



rabbit and H corresponds to the set of vertices where
the hunter can possibly be located. For the full visibility
case, if the current configuration is (h, r), the state is
< {h}, r >. For the zero visibility case, the state is
either < G − {r}, r > or < {r}, r >. For the limited
visibility case that we study, state has a more complex
structure, and it evolves over time even when neither
the hunter nor the rabbit is in motion.

Suppose u and v are two nodes of a graph G such
that N(u) ⊆ N(v). Then, the operation of deleting
u from G is called a folding of G and we say u folds
onto v. A graph is called dismantlable if there is a
sequence of folds reducing it to a single vertex. We
say u eventually folds onto v, if there is a sequence
u0 = u, u1, . . . , uk = v such that ui folds onto ui+1,
0 ≤ i < k. Let G be a dismantlable graph and ψ be a
folding sequence reducing G to a single vertex v. We can
visualize ψ as a tree T whose vertices are the vertices
of G such that when rooted at v every vertex in T is
folded onto its immediate parent.

If a graph G is not dismantlable, this means that
after a sequence of foldings ψ it reduces to a graph H
which can not be folded any further. We refer to the
graph H as the residual graph of G, or just the residual,
if G can be inferred from the context. It is known
that the residual is unique up to isomorphism [6]. We
can visualize the folding process for non-dismantlable
graphs as a forest of trees Th hanging from each vertex
h ∈ H (see Figure 2). Th is composed of vertices that
eventually fold onto h and each vertex is folded onto
its parent. We define ψ(u) = w if and only if u ∈ Tw,
w ∈ H . We note that the tree representation depends
on the folding sequence ψ and in general it is not unique.

3 A winning strategy with two hunters

In this section, we present a strategy with two hunters
that catches the rabbit on any graph. In general, a
single hunter can not always capture the rabbit. This
can be seen by considering a cycle of of length at
least 4 as the input graph: The rabbit’s strategy is
to wait until the hunter becomes visible and move to
its neighbor which does not contain the hunter. This
strategy guarantees that it will never get caught.

The strategy of the two hunters is divided into
epochs that are comprised of two phases. An epoch
starts with the hunters located at a predetermined
vertex. The first phase starts at time t = 1.

In Phase One, two hunters move together and their
goal is to see the rabbit. To achieve this, the hunters
generate a random vertex label v ∈ {1 . . . n} and move
together to v. Afterwards, they wait at v until either
(t mod n) = 0 or the rabbit becomes visible. If the
rabbit becomes visible at any time, the first phase is over

and the second phase starts. Otherwise, the hunters
repeat the same process by generating a new label v.

We claim that the first phase lasts only n2 logn
steps with high probability. To see this, let r1, r2, . . . be
the location of the rabbit at times n, 2n, 3n, . . . Suppose
the hunters have not seen the rabbit until time i×n. At
that time, the probability that they generate a label in
N(ri+1) is at least 1

n
. Since they generate a label after

every n steps, the first phase will be over in n2 logn
steps with high probability.

In Phase Two the hunters try to catch the rabbit as
follows: Suppose the second phase starts at time t = t1
and let ti = t1 + (i− 1). At that time both hunters H1

and H2 are at vertex h and the rabbit is at vertex r,
with r ∈ N(h). For the rest of the second phase, let ri
denote the position of the rabbit at time t = ti and let
us define r0 = h.

The strategy of H1 is as follows: At time t = ti, he
is located at ri−1. With probability p1 = 1

n2 , he attacks
the rabbit by generating a random neighbor of ri−1 and
going there in the next step. With probability 1−p1, he
chases the rabbit by going to ri in the next step. The
second phase ends with failure if H1 attacks and misses
the rabbit.

The strategy of H2 is based on the following obser-
vation: If H1 chases the rabbit for more than n steps,
the rabbit must revisit a vertex by the pigeonhole prin-
ciple. Let u be the first vertex revisited and suppose at
time tr, the rabbit visits a vertex v ∈ N(u) for the first
time before revisiting u. The goal of H2 is to enter v
at the same time with the rabbit. To achieve this, first
he guesses u, v and tr. In order to reach u, he chases
H1 by moving to his location in the previous time step
until u. Afterwards, H2 waits until time t = tr − 1 and
goes to v from u. We say H2 is in chasing mode if he is
following H1 and he is in attacking mode after he arrives
at u. The second phase ends with failure if H2 misses
the rabbit when it arrives at v. To summarize, at time
t = t1, the hunters are at r0 and the rabbit is at r1.
When the hunters are chasing, the locations of the rab-
bit, H1 and H2 at time ti are ri, ri−1, ri−2 respectively.
The phase ends when either hunter attacks. If no hunter
attacks within n2 steps, they end the phase and move
to the predetermined vertex to start a new epoch.

Next, we state the crucial property of the strategy
of the hunters.

Lemma 3.1. During Phase Two, the rabbit can not
distinguish between the modes of hunter H2.

Proof. If the attacking mode starts at time t = t1, the
location of H2 is the same for both modes. If it starts
afterwards, we show that if the rabbit sees H2, it will
get caught with non-zero probability.



Suppose the rabbit sees H2 at time t = t2 which
implies r2 ∈ N(r0). In this case, with probability at
least p1

n
, H1 can decide to attack from r0 to r2 at time

t = t1 and catch the rabbit.
Next, suppose the rabbit sees H2 at time t > t2.

If H2 was in chasing mode at that time, the fact that
rabbit sees H2 implies ri ∈ N(ri−2). In this case as well,
H1 could decide to attack in the previous step and catch
the rabbit with probability p1

n
. Therefore H2 must be

invisible to the rabbit during the chasing mode. But,
H2 will also be invisible in the attacking mode because
as soon as the rabbit enters a vertex v where it can see
H2, H2 can catch it by guessing v and the arrival time
correctly.

Therefore in order to avoid getting caught, the
rabbit must avoid seeing H2. But then the information
available to the rabbit will be same, no matter which
mode H2 is in: H2 is out of its sight since the beginning
of the second phase.

Lemma 3.2. During Phase Two, the hunters succeed
with non-zero probability.

Proof. As discussed previously, after the start of the
second phase, the rabbit must revisit a vertex u at time
k ≤ n. If the rabbit does not see H2 until t = k, H2

can catch it with probability 1

n3 at least by guessing
tr, u, v ≤ n. Note that H1 will still be chasing the rabbit
with probability at least 1 − k

n2 ≥ 1 − 1

n
. On the other

hand, if the rabbit sees H2, it is caught with probability
at least 1

n3 = min{ p1

n
, 1

n3 }, by Lemma 3.1.

The length of an epoch is O(n2 logn): Phase One
lasts O(n2 logn) time with high probability and Phase
Two lasts Θ(n2) steps. We have established that in
Phase Two, the rabbit is caught with probability at
least 1

n3 . Therefore after n3 logn epochs, each of which
last O(n2 logn) steps at most, the rabbit will be caught,
yielding our main result.

Theorem 3.1. Two hunters can catch a rabbit with
limited visibility on any graph with high probability.

4 Hunter-win graphs

In this section, we start the study of graphs on which
a single hunter suffices. An interesting feature of the
strategy of two hunters is that one hunter makes the
rabbit move constantly, therefore forces it into making
mistakes. This suggests that moving when a hunter is
not visible may be a disadvantage for the rabbit.

To study this phenomenon we introduce reactive
strategies where the rabbit moves only when the hunter
is visible and ask the question whether the class of
hunter-win graphs against reactive graphs is equivalent

to the class of hunter-win graphs against general rabbits.
The answer turns out to be negative: The graph in

h r

Figure 1: This graph is hunter-win against reactive
rabbits but not against general rabbits.

Figure 1 is hunter-win against reactive rabbits. The
input graph consists of a cycle and the gadget shown
in the figure. It is easy to see that any rabbit can
be driven into the gadget by simply chasing it along
the cycle. It can also be verified that, once the rabbit
is in the gadget, the hunter can reach a vertex whose
neighborhood dominates rabbit’s neighborhood without
being seen. In this case the reactive rabbit would never
leave the gadget and get caught. However, a general
rabbit can keep moving in the opposite direction of
where it saw the hunter last until it leaves the gadget.
If the cycle is big enough, the hunter can not reach
the other entrance of the gadget before the rabbit and
therefore a general rabbit is safe on this graph.

4.1 Characterization of hunter-win graphs
against reactive rabbits In this section, we describe
an algorithm that recognizes hunter-win graphs against
reactive rabbits. The algorithm marks configurations
(h, r) according to the following rules.

Algorithm Mark-Reactive:
Mark all configurations (v, v) for every vertex v. (Ini-
tialization)
Repeat

Mark (h, r) if for all r′ ∈ N(r), there exists a vertex
h′ ∈ N(h) with (h′, r′) marked. (Stride Rule)

For all (h′, r) that are marked, for all h ∈ N(h′) \
N(r), mark (h, r). (Stealth Rule)
Until no further marking is possible.

Next, we prove the soundness (if all configurations
are marked, then the graph is hunter-win) and complete-
ness (if the graph is hunter-win, then all configurations
will be marked) properties of the marking algorithm.

Soundness: The proof is by induction on the round k
in which a configuration is marked.

When k = 1 only the configurations (v, v) are
marked and the hunter trivially wins the game in these
configurations.

Suppose the configurations marked in the first k
rounds are sound and consider the configuration (h, r)



marked during step k+1. If (h, r) was marked using the
stride rule, during the execution of the game, the hunter
can force a configuration marked during the kth step
with non-zero probability. Hence these configurations
are sound. If, on the other hand, the configuration
(h, r) is marked by the stealth rule, we observe that the
rabbit will remain at vertex r since the hunter is out of
its sight and hence hunter can reach the configuration
(h′, r) which has been marked during the previous steps.
Therefore the stealth rule is also sound by the inductive
hypothesis.

Completeness: Clearly, if the rabbit is captured the
game ends at a marked configuration. Otherwise, we
show that the rabbit can always stay in an unmarked
configuration and hence never get caught. Suppose
there is an unmarked configuration (h, r) and the hunter
and the rabbit are at vertices h and r respectively.
There are two cases: If h ∈ N(r), the rabbit must
have a move to a vertex r′ such that there exists no
h′ ∈ N(h) with (h′, r′) is marked. Otherwise (h, r)
would be marked by the stride rule. On the other hand,
if h /∈ N(r), no matter which vertex h′ the hunter moves,
(h′, r) is unmarked. Otherwise (h, r) would be marked
by the stealth rule.

We can now state the result of this section which
follows from the soundness and completeness of the
marking algorithm.

Theorem 4.1. A graph G is hunter-win against reac-
tive rabbits if and only if the algorithm Mark-Reactive
marks all configurations.

4.2 Characterization of hunter-win graphs
against general rabbits For reactive rabbits, it is
easy to see that on a hunter-win graph every rabbit
walk can be intercepted (i.e. the rabbit gets caught)
by the hunter in O(n3) steps. However, it is far from
being clear that such a polynomial length intercepting
walk (i.e a witness) exists for non-reactive rabbits. The
difficulty is that at any point in time, the rabbit can
infer a subset H ⊆ V of possible hunter locations and
plan its motion accordingly. This suggests that the state
of the game may require specifying arbitrary subsets of
vertices, potentially leading to exponential witnesses.
Fortunately, we can establish a monotonicity property
to establish once again polynomial-size witnesses.

Let < H, r > be the state of the game where H is
the set of possible hunter locations when the rabbit is
at r. When the rabbit and the hunter are at adjacent
vertices r and h respectively, the rabbit knows the
hunter’s position with certainty and therefore H = {h}.
Now suppose the game starts at configuration (h, r).

Proposition 4.1. The hunter can reach an adjacent

configuration from any starting configuration (h, r).

The proof of Proposition 4.1 is implicit in the strategy
presented in Section 3. During Phase One, the two-
hunters act as one and we showed that their strategy
ensures that the hunters and the rabbit will end up in
adjacent vertices in n steps with non-zero probability.
This means that, no matter which path rabbit takes,
there exists a hunter-path of length at most n that leads
to an adjacent configuration.

Proposition 4.2. A graph G is hunter-win if and
only if the hunter wins starting from any adjacent
configuration.

Proof. If the graph is hunter-win, the hunter must win
from all starting configurations including the adjacent
ones. Conversely, if the hunter can win from any adja-
cent configuration, then starting from any configuration
he can reach an adjacent configuration by Proposition
4.1, and win the game from here on.

Therefore by Proposition 4.2, on a hunter-win
graph, we can assume that the game starts from an
initial configuration where the players see each other.
In addition, without loss of generality, we assume that
the rabbit moves so as to maximize the time taken for
capture and the hunter moves so as to minimize it.

We can view any hunter-win game as a sequence
of rounds R1, . . . , Rp where each round starts with the
players located at adjacent vertices. Hence, the rabbit
has full knowledge of the hunter’s position. Clearly,
there are at most n2 rounds and the rounds do not
repeat.

Lemma 4.1. The length of each round is bounded by n2.

Proof. Partition the round into segments of length n
each. The rabbit must revisit a vertex r within the
same segment. Let < H1, r1 > and < H2, r2 > be
the state of the game during the first and second visits.
First, we show that H1 ⊆ H2. This is because, between
r1 and r2, the rabbit can not visit any vertex u with
u ∈ N(h), h ∈ H1: If the hunter is at h, the rabbit
would be captured. Next, if H1 = H2, then the part of
the hunter strategy between r1 and r2 is redundant and
hence the hunter can shorten the game. Therefore as the
rabbit keeps visiting the same vertex, its uncertainty is
monotonically increasing and after at most n revisits
the state of the game becomes < G − N(r), r >. In
this case, either the rabbit gets caught if it moves or
the hunter reveals himself, ending the round. Since the
rabbit has to revisit a vertex every n steps and there
are at most n revisits, the lemma follows.



Since the length of a round is bounded by n2 and
there are n2 rounds, we conclude that the total length
of a hunter-win game is O(n4).

Our characterization algorithm for general rabbits
is based on the existence of such a polynomial size wit-
ness. We will mark only adjacent configurations: if the
adjacent configurations are all marked, by Proposition
4.2 the hunter wins from all starting configurations. A
general rabbit can move even if the hunter is not visible.
In order to capture this capability we need to generalize
the stealth moves, described next.

4.2.1 Stealth Moves A k-stealth move from config-
uration (h, r) with h ∈ N(r) to a marked configura-
tion (h′, r′) is defined as follows: For every rabbit path
Pr = {r, r1, . . . , rk = r′} of length k, the hunter has a
path Ph = {h, h1, . . . , hk = h′} such that hi /∈ N(ri) for
i = 1, . . . , k− 1, hk ∈ N(rk) and (hk, rk) is marked. We
refer to Ph as the stealth path corresponding to Pr. A
configuration (h, r) is marked by the Stealth Rule if for
all r′ ∈ Nk(r), there exists a k-stealth move to a marked
configuration (h′, r′). Note that the Stealth Rule for
k = 1 subsumes the Stride Rule.

Lemma 4.2. The markings corresponding to stealth
moves are sound.

Proof. Suppose all previously marked adjacent configu-
rations are sound and consider the next adjacent con-
figuration (h, r) marked by a stealth move of length k.
At time t = 0 the rabbit is located at r. Since we
mark only the adjacent configurations, the state of the
game is < {h}, r >. Take any rabbit path of length k,
and suppose at time t = i the rabbit is at vertex ri.
Let r′1, . . . , r

′

p be the vertices accessible from ri in the
remaining k − i steps and P1, . . . Pp be the correspond-
ing stealth paths such that at the end of k steps, Pi

ends at vertex h′i and (h′i, r
′

i) is marked. Let Ei be the
event that the hunter has chosen path Pi, i = 1, . . . , p
and let hi be the ith vertex on Pi. The claim follows
from the observation that no matter which path Pi the
hunter chooses, the information available to the rabbit
is the same, namely hunter was not visible for the last
i steps. Therefore the state of the game is < H, r >
where {hi|1 ≤ i ≤ p} ⊆ H . Since the rabbit can not
distinguish between the events Ei, no matter which final
destination r′j it chooses, the hunter can be at the cor-
responding vertex hj and arrive at the already marked
configuration (h′j , r

′

j).

The stealth moves starting from configuration (h, r)
and ending at configuration (h′, r′) can be computed
efficiently by dynamic programming.

We will need an intermediate look-up table T , with
T [h, r, h′, r′, k] = TRUE if and only if for any rabbit

path {r, r1, . . . , rk = r′} of length k there is a stealth
path of length k that starts from h and ends at h′.

The entries of the Table T are filled as follows:
(i) T [h, r, h′, r′, 0] = TRUE iff h = h′, r = r′ and

h′ ∈ N(r′).
(ii) T [h, r, h′, r′, 1] = TRUE iff h′ ∈ N(h), r′ ∈ N(r)

and h′ ∈ N(r′).
(iii) T [h, r, h′, r′, k+ 1] = TRUE iff for all u ∈ N(r)

there is a vertex v ∈ N(h)\N(u) with T [u, v, h′, r′, k] =
TRUE, for 1 ≤ k ≤ n2.

We now present a marking algorithm that uses the
look-up table T to compute the stealth moves.

Algorithm Mark-General:
Mark all configurations (v, v) for every vertex v. (Ini-
tialization)
Repeat

For all configurations (h, r) with h ∈ N(r),
mark (h, r) if there exists an index k ≤ n2 such
that ∀r′ ∈ Nk(r), there exists a vertex h′ with
T [h, r, h′, r′, k] = TRUE and (h′, r′) is marked. (Stealth
Rule).
Until no further marking is possible.

Lemma 4.3. If the graph is hunter-win, then the mark-
ing algorithm Mark-General will mark all adjacent con-
figurations.

Proof. Let (h, r) be an adjacent configuration left un-
marked after the execution of algorithm Mark-General.
We claim that the rabbit can get to an adjacent con-
figuration (h′, r′) that is unmarked. Suppose not. This
means that for any rabbit path r, r1, r2, . . . , rk there is
a hunter path h, h1, h2, . . . , hk with hk ∈ N(rk) and
(hk, rk) is marked. By Lemma 4.1, we have k ≤ n2.
This implies that (h, r) would be marked by the stealth
rule, which gives us the desired contradiction.

Therefore, starting from any unmarked adjacent
configuration (h, r), the rabbit can reach another un-
marked adjacent configuration. This means that the
rabbit will never get caught, since a capture implies that
the game enters the configuration (v, v) for some vertex
v which is a marked adjacent configuration.

Theorem 4.2. A graph G is hunter-win against gen-
eral rabbits if and only if the algorithm Mark-General
marks all adjacent configurations.

Proof. If all the configurations are marked, G is hunter-
win due to the fact that the stealth rule is sound
(Lemma 4.2). Conversely, if there is an unmarked
configuration, the rabbit is never caught by Lemma 4.3.



5 Complete visibility and dismantlable graphs

When the rabbit has full visibility, the stealth rule does
not make sense. In fact, we will show that the stride rule
against reactive rabbits is sound and complete against
rabbits with full visibility.

Algorithm Mark-FullVisibility:
Mark all configurations (v, v) for every vertex v.
Repeat

Mark (h, r) if for all r′ ∈ N(r), there exists a vertex
h′ ∈ N(h) with (h′, r′) marked. (Stride Rule)
Until no further marking is possible.

It turns out that the algorithm Mark-FullVisibility
recognizes hunter-win graphs against rabbits with full
visibility.

u

v

w
x

u′

Tw

H

Figure 2: Visualization of the folding procedure for a
non-dismantlable graph. The vertices w,v and x are in
the residual H . Since there is no edge from w to x, the
edges shown with dashed lines can not exist.

We will need the following property of non-
dismantlable graphs:

Proposition 5.1. Let G be a non-dismantlable graph,
ψ be a folding sequence and H be the residual. Let x and
w be two distinct vertices in H and Tx and Tw be the
corresponding folding trees (see Figure 2). If there exist
a vertex u ∈ Tw that is adjacent to a vertex u′ ∈ Tx,
then x ∈ N(w).

Proof. Without loss of generality, suppose u was folded
before u′. This implies that the parent of u must
be adjacent to u′. We replace u with its parent and
continue this process of propagating the edge between
u and u′, which must eventually reach the roots w and
x of the corresponding trees.

Theorem 5.1. The algorithm Mark-FullVisibility
marks all configurations if and only if the input graph
is dismantlable.

Proof. Suppose the input graph G is dismantlable. We
can prove that all configurations will be marked by
induction on the order of G. Since G is dismantlable,
it must have two vertices u and v with N(u) ⊆ N(v).
Let G′ = G−{u} and run algorithm Mark-FullVisibility
on G′. Suppose, inductively, that all configurations in
G′ are marked. Consider the marking algorithm for
G which marks (u, u) first and simulates the marking
algorithm on G′ afterwards. In addition, whenever
(x, v) is marked for a vertex x ∈ G′, we also mark (x, u).
This is possible since (x, v) is marked implies that for
all v′ ∈ N(v), there exists a vertex x′ ∈ N(x) with
(x′, v′) marked and N(u) ⊆ N(v). Next, we show that
all the configurations (x, y) in G′ will also get marked
in G. Suppose there exists a configuration (x, y) that
is marked in G′ but not in G. Consider the first such
configuration that is discovered in the marking of G.
It must be that u ∈ N(y) and that for all x′ ∈ x,
(x′, u) is not marked at this point. Also, v ∈ N(y)
since N(u) ⊆ N(v). Now using the fact that (x, y) gets
marked at this stage in G′, we know that there exists
x

′′ ∈ N(x) such that (x
′′

, v) is already marked. But
then (x

′′

, u) must also be marked at this point according
to the modified marking rule. A contradiction! Thus,
any (x, y) marked in G′ will also be marked in G. It
follows that for any x such that (x, v) is marked in G′,
we can mark (x, u) in G. It is easy to see that for any x,
the configuration (u, x) will also be marked in G since
u is adjacent to v and, by the argument above, for all
x′ ∈ N(x), (v, x′) is marked.

Now suppose the input graph is not dismantlable.
Let ψ be a sequence of folds reducing G to a residual
graph H . For any two vertices u ∈ G and v ∈ H , we
claim that (u, v) is unmarked if ψ(u) 6= v. Suppose
this is not true and let (u, v) be the first marked
configuration such that ψ(u) 6= v (Figure 2). Let
w = ψ(u), w 6= v. Note that v must have a neighbor
x such that x /∈ N(w), otherwise v would fold onto
w. When (u, v) gets marked, there must be a vertex
u′ ∈ N(u) such that (u′, x) is marked. If ψ(u′) = x, this
would imply x ∈ N(w) by Proposition 5.1. So it must be
the case that ψ(u′) 6= x. But then, the fact that (u′, x)
is marked contradicts with the fact that (u, v) is the
first configuration marked with ψ(u) 6= v. Therefore,
we conclude that if the graph is not dismantlable, the
marking process will not mark all configurations.

As stated earlier, it has been shown that the class
of graphs that are hunter-win against rabbits with full
visibility are precisely the class of dismantlable graphs
[6]. Therefore we obtain:

Corollary 5.1. A graph G is hunter-win against rab-
bits with full visibility if and only if the algorithm Mark-



FullVisibility marks all configurations.

1

2

3

4

5

6

7

8

9 10

1112

Figure 3: This graph is hunter-win against rabbits with
limited visibility. However, a rabbit with full visibility
never gets caught.

We know that there are non-dismantlable graphs
that are hunter-win against rabbits with limited visibil-
ity. An example is shown in Figure 3. The labels on the
vertices indicate their folding order: First, vertex 1 folds
onto vertex 2, afterwards vertex 2 folds onto vertex 9,
etc. After folding vertices 1 to 8, vertices 9 to 12 can not
be folded, leaving a four-cycle as the residual. There-
fore this graph is not dismantlable and consequently it
is not hunter-win against rabbits with full visibility. To
see that the hunter wins against rabbits with limited
visibility, let us define the mapping p : V → V where V
is the set of vertices. For v ∈ V with 1 ≤ v ≤ 8, p(v)
is the vertex which v folds onto. We define p(9) = 2,
p(10) = 8, p(11) = 6 and p(12) = 4. The first observa-
tion is that the hunter wins the game if he can force the
rabbit to go to vertex 1 while he is at vertex 2. Next,
we observe that if the rabbit is at vertex v 6= 1 and the
hunter is at p(v), the rabbit must move to a lower num-
bered vertex. Now suppose the rabbit is reactive. In
this case, it can be verified that for any rabbit location
r and for any hunter location h /∈ N(r), the hunter has
a path to p(r) that does not enter N(r). Therefore, by
visiting p(r) repeatedly the hunter can force a reactive
rabbit to eventually move to vertex 1 and win the game
afterwards.

Hence, the rabbit must have a non-reactive strategy,
meaning that it must move when the hunter is not
visible. Consider the first time this happens: Suppose
the hunter and the rabbit are at vertices h and r with

h ∈ N(r) and the rabbit takes the path r → r′ → r′′

such that the hunter is not visible from r′. It can
be shown, by enumeration, that for any such vertices
h, r, r′ and r′′, the hunter has a path h→ h′ → r′′ that
captures the rabbit. Therefore the rabbit can not have a
non-reactive strategy either and the graph is hunter-win
against both types of rabbits.

We conclude this section with an interpretation of
Theorem 5.1: If G is a graph that is hunter-win against
rabbits with limited visibility but not against rabbits
with full-visibility, the hunter captures the rabbit with
limited visibility using the stealth moves.

5.1 Hunter strategy for dismantlable graphs
Given a folding tree T rooted at vertex v, consider the
vertex r rabbit is located. We say the hunter is an
ancestor of the rabbit if he is located on the path from
r to v. Suppose the vertices of T are ordered by their
deletion times. The hunter strategy is based on the
following two lemmas.

hhh

r

rr
h′

h′

h′

r′

r′r′

r′

h > r′ > r r′ > h r′ < r

Figure 4: Hunter can always stay above the rabbit.
The height of a vertex is proportional to its label.

Lemma 5.1. Hunter can always maintain ancestry.

Proof. Suppose the hunter is at vertex h and is an
ancestor of the rabbit who is located at vertex r. Let
r′ be the rabbit’s location in the next round. If h is
a common ancestor of r and r′ on the folding tree T ,
then the lemma is trivially true. Otherwise, since h
is an ancestor of r and (r, r′) is an edge, using basic
properties of foldings it can be shown that h is adjacent
to a vertex on the path that connects r′ to the root of
T . We show that there is always such a vertex h′ with
h′ ≥ r′ by a case analysis on r′ (See Figure 4). Suppose
for contradiction h′ < r′. We will show that h must
be adjacent to r′ thus allowing the hunter to catch the
rabbit in one step.

Case (h > r′ > r): In this case all the ancestors of
h′ deleted before h (including r′) must have edges to h.

Case (r′ > h): All the ancestors of r deleted before
r′ (including h) must have an edge to r′.

Case (r′ < r): All the ancestors of h′ deleted before
r (including r′) must have an edge to h.



In fact, not only the hunter can maintain ancestry,
but also he can reduce his height in the tree gradually
and therefore get closer and closer to the rabbit.

v

p(v) Cr

Cp

Ch

r

hp

Figure 5: Hunter can make progress every time the
rabbit revisits a vertex.

Lemma 5.2. Every time the rabbit revisits a vertex, the
hunter can reduce its height in the tree while maintain-
ing ancestry .

Proof. Fix any rabbit cycle Cr and let v be the vertex
with the lowest label on this cycle and p(v) be its parent
(see Figure 5). Since v was deleted first, p(v) must have
edges to the neighbors of v on the cycle, so we can make
a new cycle by replacing v with p(v). We continue this
process until the cycle reaches h, the location of the
hunter (this must happen since hunter is an ancestor at
all times). Let us call this cycle C. Let Cp be the cycle
just before C which contains h’s child hp, instead of h.
Consider the path P = {h} ∪ (C ∩ Cp) ∪ {hp}. If the
rabbit follows the cycle Cr , hunter can follow the path
P and end up at hp which is lower than h.

We are now ready to present the hunter strategy on
a dismantlable graph G. First, the hunter builds the
folding tree T for any folding sequence ψ. Afterwards,
he simply guesses the vertex the rabbit will jump to
and jumps to the lowest possible ancestor of this vertex
(see Figure 5). By Lemma 5.1 he can always remain an
ancestor of the rabbit. Further, he can reduce his height
in T every time the rabbit revisits a vertex (Lemma 5.2).
Since the tree has a finite height, he can eventually catch
the rabbit.

5.2 Extension to non-dismantlable graphs For
non-dismantlable graphs, we can extend the notion of
ancestry as follows. Suppose the rabbit is at r and the

hunter is at h. We say hunter is an ancestor of the
rabbit if there is a folding of the vertices such that in
the corresponding forest representation, h is located on
the path from r to the root of the tree that contains
r. Once the hunter establishes ancestry, it is easy to
see that Lemma 5.1 and Lemma 5.2 still hold –both
for reactive and general rabbits. Therefore the hunter
can win the game afterwards. Note that the hunter can
trivially establish ancestry on dismantlable graphs.

In addition, if we define each vertex as its trivial
parent, it is clear that the rabbit wins the game if the
hunter can never become an ancestor. Therefore the
class of hunter-win graphs is precisely the class of graphs
on which the hunter can become an ancestor. One can
view the stealth moves as giving the hunter the power
to become an ancestor on non-dismantlable but hunter-
win graphs such as the one in Figure 3.

6 Concluding Remarks

Let us define rabbits with i-visibility as the rabbits
who can see all vertices within distance i. It is known
that one hunter always suffices to catch rabbits with
0-visibility [1]. In this paper, we studied rabbits with
1-visibility and established that 2 hunters always suffice
to catch such rabbits. A natural question is how
many hunters suffice when the rabbit has i-visibility.
Surprisingly, the number of hunters required for 2-
visibility is unbounded: using the probabilistic method,
one can show that there exist random bipartite graphs
where Ω̃(

√
n) hunters are needed.

Another aspect of the game is the time required to
catch the rabbit. For 0-visibility, one hunter succeeds
in time O(n log n) [1]. For 1-visibility we showed that
two hunters succeed in Õ(n5) time. However, it is not
clear whether a single hunter can catch a rabbit on a
hunter-win graph in polynomial time. We leave this as
a direction for future work.

References

[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and
B. Vöcking. Randomized pursuit-evasion in graphs.
Proceedings of the International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2002.

[2] M. Aigner and M. Fromme. A game of cops and
robbers. Discrete Applied Math, 8:1–12, 1984.

[3] T. Basar and P. R. Kumar. On worst case design
strategies. Computers and Mathematics with Appli-
cations: Special Issue on Pursuit-Evasion Differential
Games, 13(1-3):239–245, 1987.

[4] T. Basar and G. J. Olsder. Dynamic Noncooperative
Game Theory. SIAM, 1998.

[5] P. Bernhard, A.-L. Colomb, and G. P. Papavassilopou-
los. Rabbit and hunter game: two discrete stochastic



formulations. Comput. Math. Appl., 13(1-3):205–225,
1987.

[6] G. Brightwell and P. Winkler. Gibbs measures and
dismantlable graphs. J. Comb. Theory (Series B), 78,
2000.

[7] J. A. Ellis, I. H. Sudborough, and J. S. Turner.
The vertex separation and search number of a graph.
Information and Computation, 113(1):50–79, 1994.

[8] S. Fitzpatrick and R. Nowakowski. Copnumber of
graphs with strong isometric dimension two. ARS
COMBINATORIA, 59:65–73, 2001.

[9] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and
R. Motwani. A visibility-based pursuit-evasion prob-
lem. International Journal of Computational Geome-
try and Applications, 9(4/5):471–, 1999.

[10] J. P. Hespanha, G. J. Pappas, and M. Prandini.
Greedy control for hybrid pursuit-evasion games. In
Proceedings of the European Control Conference, pages
2621–2626, Porto, Portugal, September 2001.

[11] I.Chatzigiannakis, S.Nikoletseas, and P.Spirakis. An
efficient communication strategy for ad-hoc mobile
networks. In Proc. of 15th Symposium on Distributed
Computing (DISC’2001), pages 285–299, 2001.

[12] A. S. LaPaugh. Recontamination does not help to
search a graph. J. ACM, 40:224–245, 1993.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson,
and C. H. Papadimitriou. The complexity of searching
a graph. J. ACM, 1988.

[14] S. Neufeld and R. Nowakowski. A game of cops and
robbers played on products of graphs. DISCRETE
MATHEMATICS, 186:253–268, 1998.

[15] R. Nowakawski and P. Winkler. Vertex-to-vertex
pursuit in a graph. Discrete Math, 43:235–239, 1983.

[16] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-
based pursuit-evasion in a polygonal region by a
searcher. Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP),
2076, 2001.

[17] T. D. Parsons. Pursuit evasion in a graph. In Y. Alavi
and D. R. Lick, editors, Theory and Application of
Graphs, pages 426–441. Springer Verlag, 1976.

[18] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry.
Probabilistic pursuit-evasion games: Theory, imple-
mentation and experimental evaluation. IEEE Trans-
actions on Robotics and Automation, 18:662–669, 2002.


