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Abstract 

A system for video tracking of a moving object by the robot-held camera is 
presented, and efficient tracking methods are proposed. We describe our initial imple- 
mention of a system which is capable of tracking a single moving object against highly 
textured background. A pyramid-based image processor, PVM-1 is employed to sup- 
port some fast algorithms in locating the moving object from the difference image. 
Object tracking is accomplished in the static look-and-move mode by the translational 
motion of a CCD camera mounted on the robot arm. Discussion is given on the 
implementation of tracking filters and on the effective utilization of multi-resolution 
processing for the object searching. Finally a method for dynamic look-and-move 
tracking is proposed for the future improvement of tracking performance. 
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1. Introduction 

One of the goals of image motion analysis is to recover the 3-D geometric shape 
of a scene as well as its relative motion with repect to the camera. Although there 
have been many algorithms developed towards this goal, few of them have shown their 
robustness in unstructured environments. This is partly due to the fact that most of the 
algorithms proposed so far rely on small number of frames (usually two or three) and 
consequently they are extremely sensitive to the noise in the input (either the image 
flow or the disparity vector). It is only recently that researchers started investigating 
the temporal behavior of a moving scene for an extended period of time, in an attempt 
to improve both the 2-D motion and the 3-D motion (in terms of the translation and 
rotation of moving bodies) over time by utilizing the explicit model for the 3-D motion 
[Broidal986a, Weng1987a, Broidal986b, Iu1989a, Kumar1989al. While the motion 
analysis for a relatively long period of time has many expected advantages, it requires 
the ability of real-time tracking to keep the moving object of interest always in sight. 

Another advantage of tracking ability was addressed by Bandyopahathy et. al. 
[Bandyopadhayl985a] who suggested that the procedure of recovering 3-D motion and 
structure can be simplified if one traces a fixed point of moving object continuously so 
that the viewing axis of camera coordinates is always coincident with the moving 
point. Another insightful remark is due to Bajcsy who claimed that visual perception 
is highly exploratory; we move our heads or change our position to get a better view 
of the scene [Bajcsyl988a]. One necessary condition to realize the exploratory percep- 
tion is the ability to solve the correspondence problem; which region of an image phy- 
sically corresponds to which region of another image. Although exploratory percep- 
tion may be based on the static-jrst approach such as stereo vision and multi-view 
analysis, image motion as an independent perceptual module must be incorporated to 
the static-first modules to deal with more complex, dynamic environment. For exam- 
ple, if one wants to handle a moving object on the conveyer belt, it is necessary for 
the system to keep track the moving part while it conducts exploratory perception. 
Moreover, in robot hand-eye coordination which is one of the primary target domains 
of our current investigation, demanded is a vision system which is able to respond to a 
moving environment and generate the proper feedback in real time. 

Perhaps the simplest senario on target tracking would be the one in which an 
object moves againt the uniform background. The moving object is isolated easily by 
the thresholding technique. In noisy environments, one can determine the thresholding 
level adaptively based on the stochastic analysis to distinguish the object of interest 
from the background. Radar target tracking falls into this category. 

The above technique cannot be applied to natural scenes of highly textured back- 
ground. There are several techniques, however, for detecting moving objects against 
the textured, but stationary background. Jain claimed that some useful information can 
be extracted by analyzing the difference image between two successive frames in time 
[Jainl98la]. Anderson et. al. implemented a real-time tracking system based on the 
motion energy computed from the difference between two consecutive 
frames[Anderson1985a]. Note that these methods will not work wherever the relative 



motion between the background and the camera exists. 

The most general and versatile method would be the one based on the image flow 
analysis [Burt1989a]. Image flows are obtained either by the local analysis which 
establishes the correspondance of features such as gray levels, edge segments and 
feature points [Hornl98la,Hildrethl984a, Waxmanl985a1, or by the global anaysis 
which identifies global features such as closed contours or regions, and computes the 
image motion directly from their changes (e.g., [Kanatani1984a,Brown1987a]). By 
segmenting image motion field, one can discriminate moving objects from the moving 
background [Adiv1985a]. Although there have been some concerns on the architec- 
tural issues for the motion estimation [Burt1982a,Anandanl987a, Waxmanl988a1, the 
task of recovering and segmenting image flows is computationally too costly to be of 
any practical use in real time. More effective and reliable methods as well as the 
hardware that can carry out the required computation handling enormous amount of 
data are yet to come. 

In this paper we describe our initial development of a system which is capable of 
tracking a single moving object against highly textured background. Our method of 
detecting and locating a moving object is based on the image differencing method and 
utilizes the pyramid processing algorithms developed by Anderson et. al. 
[Andersonl985a]. A CCD camera is mounted on a robot arm (PUMA 560) which 
moves perpendicular to the camera axis so that the moving object appears at the center 
of the image plane (or at least near the fovea) all the time. See Figure 1 for the exper- 
imental setup. The system employs an existing pyramid-based image processor 
(PVM-1) which supports some fast algorithms in locating a moving object. We have 
accomplished a moderate success so far, the speed of object motion is limited to 10 
degrees of viewing angle per second (It roughly corresponds to the motion of an object 
which is located 2 feet away from the camera and moves 6 inches per second). 

As indicated before, the image differencing method imposes a requirement that 
the camera should be in a quienscent state at the time of image acquisition, otherwise 
there is no way of discriminating moving part of an image from its moving back- 
ground. The limitation of tracking speed is mainly attributed from the momentary 
suspension of tracking motion. To alleviate the large discontinuity in monitoring an 
object, we propose a tracking method based on the spatio-temporal analysis of image 
flow. The method of compensating the background drift due to the camera motion is 
described in Section 5, and now under implementation. In section 2 the configuration 
and the operation of the system is described, and the detailed presentation on object 
searching algorithms is given in Section 3. Section 4 discusses the estimation and 
prediction of a moving object for the compensation for the delay between the visual 
observation and the actual tracking by the manipulator. 

2. The System Configuration 

The video trackig system has been implemented by combining the pyramid image 
processing unit with the PUMA 560 system supported by its own controller. As shown 



in Figure 2, the image processing unit consists of the PVM-1, a prototype pyramid 
processor developed at the Sarnoff Research Center, the image controller with video 
buffers, and the dedicated microcomputer-level processor (IBM-RT). This unit per- 
forms the image acquisition from the robot-held camera and processes the sequence of 
images at the video rate, for the calculation of the position variables of the moving 
object. The master control processor (VAX 11/750) receives the position variables 
from the image processing unit, and performs the temporal filtering for the estimation 
and prediction. We use our existing software for the communication between the mas- 
ter processor and the robot controller. 

The system operation is in the static look-and-move (SLAM) mode, that is, the 
robot is not moving at the time of visual observation. Upon obtaining a measured 
position of an object, the robot-held camera follows the object within a designated 
period of time. The camera motion is translational in 2-D x-y coordinates, and the 
perceived 2-D position of a moving object is uniquely mapped into the camera position 
by simple scaling and calibration. Although this SLAM system imposes a restriction 
that the speed of the object should be substantially lower than that of the tracking 
robot, the object is assumed to be highly maneuvering. 

2.1. Pyramid Processing and Motion Detection 

An image pyramid is a set of multi-resolution images in which both the 
bandwidth and the image size are varied in regular steps [Burt1983a]. A Gaussian 
pyramid is constructed by successive application of Gaussian low-pass filtering and 
decimation by a half, as shown in Figure 3. In the figure, G o  denotes the original 
image of 256 by 256 pixels, and GI,  G2, .... are low-passed and decimated copies of 
Go with the images sizes 128 by 128, 64 by 64, ..., repectively. A Laplacian pyramid is 
a set of band-pass images Lk's which are obtained by subtracting the undecimated 
images of G k + l ' ~  from Gk9s. AS a result, the band-passed images Lk's are the ones 
that can be obtained by applying Laplacian operators on the images GkYs. 

The pyramid processor is a special-purpose hardware for constructing pyramids in 
real time [Wa11985a]. It is capable of producing complete Gaussian or Laplacian 
pyramid from a 256 by 256 image in one video image frame (1/30 of a second). This 
pyramid processor supports fast algorithms for several image analysis tasks, among 
others, the coarse-fine target detection is our primary concern. 

It has been demonstrated by Anderson et. al. [Andersonl985a] that the pyramid 
processor can effectively be utilized for the real-time detection and tracking of image 
changes. In their approach, the motion detection is accomplished by the image 
differencing in time. (See Figure 4.) The difference of images is obtained by subtract- 
ing an image from another adjacent in time. This pixel-by-pixel subtraction works as a 
temporal high-pass filter; a fast moving object would leave more energy in the 
difference image. The difference image is then decomposed into a set of spatial fre- 
quency bands through the construction of a Laplacian pyramid, each level of which 
shows the different temporal and spatial information on the moving object. Slow 



motion of an object is mostly apparant in the top level Lo. Therefore the image at Lo 
is selected and the absolute value of pixels is taken as the measure for the motion 
energy. From the absolute-valued image of Lo, is constructed the Gaussian pyramid 
which represents the locally integrated measures for the motion energy in various reso- 
lutions. 

With the final Gaussian pyramid, motion of an object can be located in a highly 
efficient manner. The coarse-fine search begins by examining the 16 by 16 image at 
G4.  If there is any noticiable change in energy at G 4 ,  a 16 by 16 subimage at G j  are 
examined around the center of energy change detected at G4, resulting in a more pre- 
cise information on the position of object. This refinement process continues towards 
Go until the number of pixels with non-zero motion energy exceeds a predefined thres- 
hold. The threshold value is calibrated before the tracking begins so that the window 
of examination does not get smaller than the size of object. By successively confining 
the region of search in this way, the size of image data for the searching operation can 
be greatly reduced. For instance, searching of an object in five 16 by 16 images 
instead of the entire 256 by 256 image results in a data reduction of about 1/50, facili- 
tating the real-time operation. 

2.2. Timing Scheme for Synchronization 

Figure 5 shows the timing diagram for video tracking. Most of the image 
acquisition and processing are synchronized with the vertical sync pulse of the video 
display signal and thus the period of processing time can be denoted in the unit of 
VFT, video frame time (1 VFT = 1/30 seconds). 

The image acquisition time ta is 2 VFT's with the sampled images for the 
differencing apart in time by 1 VET. After t a ,  tp ( = 2 VFT) is required for the 
pyramid processor to construct the Laplacian and Gaussian pyramids. The next delay 
of tc is required for the calculation of position variables by the dedicated rnicrocom- 
puter which is capable of examinig two 16 by 16 images in 1 VFT. t, could be up to 
3 VFT's depending upon the searching algorithms which will be discussed in the fol- 
lowing sections. It is after tc that the measured values of position varibles x and y 
(denoted by 8,) are obtained, and sent to the master processor (VAX 750). 

Upon receiving the position variables, the master processor performs the estima- 
tion and prediction filtering which takes less than 1 VFT. This time span is denoted as 
tf . The delay of 9 VFT's (denoted as t,) is reserved for the robot motion as well as 
for the calculation of the inverse kinematics in the world coordinates x and y . This 
long delay is necessary for the static look-and-move tracking mode which assumes a 
complete quiescence of the camera at the time of next visual observation. With our 
prototype system, the software that drives the robot controller introduces a significant 
delay of 5 VFT's in sending the position data from the master processor to the robot 
manipulator. This can be reduced substantially with some future efforts of connecting 
the image processing unit directly to the robot controller, avoiding the presence of the 
master processor. The remaining 4 VFT's are required to ensure that the robot has 



moved to the destination before the next cycle starts. In summary, it takes 15 to 17 
VFT's (approximately 0.5 seconds) to complete one operation cycle. Although it is 
very difficult to further reduce the time required for the image processing, there is 
enough room to improve the speed by establishing a faster communication to the robot 
controller. 

In any sensor-based tracking and servoing system, inherent are the time delays 
introduced by the computation of control variables (positions) and by the motion of 
camera mount (robot). Furthermore there is the intrinsic noise resulting from errors in 
the visual measurement as well as the positioning errors of the robot. In order to keep 
the camera foveated at the object as closely as possible, the provision for estimation 
and prediction is essential for the compensation for the detection error and the process- 
ing delay. As shown in Figure 7, the estimated position 6(k) at the discrete cycle 
reference k ,  is calculated from the measured value B,(k) and the previously obtained 
prediction GP(k lk-1). 6(k) is then used for the prediction of the next position 
8, (k+l l k )  which is sent to the robot manipulator so that the tracking camera can be 
forwarded to the next position of the object. 

3. Searching and Detecting a Moving Object 

The first step in tracking with the pyramid processor is to locate the small region 
of search at each of the five levels of multi-resolution images, over the series of track- 
ing cycles. A few algorithms have been implemented and been tested under various 
object/background scenarios. 

One obvious way of locating the moving object is to successively examine 16 by 
16 subimages in each of the five levels until the change energy meets the predefined 
threshold. As mentioned before, the threshold is set such that the size of the window 
for examination does not become smaller than the object size. Figure 6a shows a tim- 
ing diagram of level transition for a level-0 object (the size of which is perceived to be 
smaller than the window size at the level 0). In each of the 5 levels, the positions of 
local energy change are integrated to find the object center which is then used for 
centering a searching window at the next higher level. Note that the level is preset to 
the bottom level before each cycle of tracking. This searching method requires t, of 
2.5 VFT in each cycle due to the limitation of the computing speed (two 16 by 16 
image searching in 1/30 msec) of the microcomputer. Figure 6b and Figure 6c depict 
the level transition and the window converging (for a level-2 object), respectively. 

The 5-level searching has the advantage that, since the whole visual area is exarn- 
ined from the bottom level, any single object within the field of view can be located in 
a complete tracking cycle, that is, this searching is robust for a sudden change of 
object position. On the other hand, an apparent disadvantage of 5-level searching is 
long t, of 2.5 VFT's. Besides, it is susceptable to the background noise due to the 
wide view of searching. If there is a sudden change of local illumination in the back- 
ground and the motion energy of background is comparable to that of the moving 
object, the tracking window tends to follow the background noise, temporarily losing 



track of the object. The mistracking also occurs when the camera does not reach a 
static state at the time of visual observation. The searching window then responds to a 
global drift of the structured backgrounds. 

One of our searching algorithms to avoid the instability of 5-level searching is the 
predictive 2-level searching. With this algorithm, only two 16 by 16 subimages are 
examined at each of two selected pyramid levels in a tracking cycle, thereby requiring 
1 VFT for the searching. Let us first consider the tracking of a manuevering level-0 
object in a steady state (Figure 7). As shown in Figure 7a, once the object location is 
identified at the level 0 in a tracking cycle, the searching window for the next cycle 
can be preset at the one-step lower level centered at the predicted position. This 
predictive down-leveling is depicted in Figure 7b. While stepping down one level 
around the predicted center ensures a relatively wide view of searching, the window is 
still confined to a region of interest, thus insensitive to the background noise or the 
drift outside the region. 

However, for the initial detection of the object position, the 2-level searching 
algorithm of 1-step-up-down leveling will never guarantee the convergence of the 
searching window to the higher level of interest as depicted in Figure 8a. Therefore 
another detection strategy is conceived for a level-0 or level-1 object (for which the 
pyramid processing is most effective) for the bootstrapping stage, assuming that the 
object moves without significant changes in size. First, we detect any change of 
energy at the level 3 or 4; the next searching window is deliberately located at the two 
level above, i.e., the level 1 or 2, respectively. This abrupt jump between levels 
guarantees the fast convergence of the searching window until the search is stabilized 
at the appropriate level. One-step level-down also occurs before the beginning of each 
tracking cycle, as directed by the algorithm. At the level 2, a predetermined threshold 
for up-leveling is used to determine the destination, either the level 0 or 1, depending 
upon the number of active pixels. Figure 8a shows the timing diagram of leveling at 
the initial detection of a level-0 object. As shown in the figure, only two cycles are 
needed to reach the steady state. The level-transition diagram for the 2-level predictive 
searching is shown in Figure 8c. Note that all the levels have unique up- and down- 
path, except the level 2 at which the up-leveling path is determined by an extra energy 
threshold. 

From the experiments with some highly maneuvering objects of various sizes, it 
was observed that, inspite of the complexity involved in the initial detection, the 2- 
level predictive searching is quite insensitive to the background noise or drift, while 
promptly responding to a moving object upon detection. This algorithm can further be 
extended to include larger objects at the level 2 or 3 with extra energy thresholds at 
the levels 3 and 4. 

4. Estimation and Prediction of the Target Position 

The 2-level searching works best when the target moves with a constant velocity, 
with the maximum speed confined by the size of searching window. The method 



breaks down whenever the target travels outside the preditive window. Such situation 
is depicted in Figure 9, as the target moves too fast for the searching window to keep 
up with. It is desirable for the searching window to move ahead to the predicted tar- 
get position so that the searching is carried out from the center of predicted position 
rather than the current target position. There has been a great deal of work on the 
high performance tracking estimators and predictors [Fitzgeralda, Houles 1978al. 
Among others, the famed extended Kalman filter has extensive applications as an 
optimal filter with proper modeling of target dynamics. At this stage of our work, how- 
ever, we do not assume any specific application domain for our developmental system. 
We thus seek a simple estimation scheme for a highly manuevering object in clutter 
without utilizing a priori model for the object dynamics. For our experiment, therfore, 
adaptive filters are considered to be suited in that they are not based on the knowledge 
of object statistics but rely only on the data obtained. 

The general form of N-point adaptive estimator can be written as 

where the adaptive constants an's are to be updated to give the minimum mean- 
squares error (MSE) of 6(k). As well noted, since full adaptation of an's  requires 
complex computation involving the calculation of the inverse of the covariance matrix 
of 8, (k), 8, (k -I), ..., 8, (k-N+l), the computational burden for a small general pur- 
pose processor is not trivial for realtime processing with N larger than 3 
[Papoulisl965a]. Thus we have used a simpler form of adaptive estimates for our 
experiment without expecting a significant degradation. 

Assuming that we have a predictor which provides the predicted value Bp (k lk-1) 
before the time k ,  we wish to form an estimate 6(k) as a linear combination of 
6p(k lk-1) and the measured 8,(k) obtained by the pyramid processing. Thus we 
write 6(k) as 

where the adaptive weighting factors al and a2 are to be determined for 0(k) to have 
minimum mean-squares error (MSE) under the constraint; 

The MSE is then 

Assuming that hP and 0, are independent, we can easily get al and a;? that minimize 
MSE as 



where the variances 02 and a: can be approximated by instantaneous estimation 
errors ; 

Note that the estimated values rely more on the measured values when there is a larger 
error in the predicted values, and vice versa. 

The obtained 6(k) is then used for the calculation of a predictive value 
bP (k +l lk ) at the time indexed k +l . The predictor can also be a linear combination of 
simple extrapolation filters rather than a fully adaptive filter. We used a linear combi- 
nation of a linear 2-point predictor and a quadratic 5-point predictor (6q) as in 
[Flachs1977a]. 

bp(k+l lk) = Pl bl(k+llk) + P2bq(k+llk) , (7) 

where 

Weighting factors PI and P2 are also to be determined in the same manner as are al 
and at for 6; 

where 



The 2-point predictor, requiring only two previous values, has an advantage of 
promptly initiating a prediction upon detecting an object, while the 5-point predictor 
provides a better curve fitting of the object trajectory. The estimation and prediction 
loop is shown in Figure 10. The operation is computationally efficient involving less 
than 20 mutiplications for each position variable. An alternative approach to the same 
problem is discussed in [Safadil987a], which utilizes the image velocity estimates in 
addition to the position data. 

Figure 11 illustrates the performance of the 2-level searching with the estimation 
and prediction. Initially the target moves upward (Figure lla,b,c), then it reverses the 
motion abruptly (Figure lld). It further moves down along a smooth path (Figure 
1 le,f). During the intitial upward motion the estimated position (depicted as "+") and 
the predicted position (depicted as "X") almost coincide. Notice the large difference 
between two positions just after the target changed its motion. Two positions come 
close each other as the target undergoes the smooth motion thereafter. 

5. Dynamic Look-and-Move Tracking 
In the static look-and-move tracking scheme described so far, the major impedi- 

ment to increasing the tracking speed is the unavoidable delay time for searching, 
filtering and for manipulator motion. To separate the moving object from the station- 
ary background, the camera held by the manipulator has to be completely without 
motion at the time of visual observation, otherwise we observe serious mistracking as 
the camera responds to the background. Since the delay time required for the manipu- 
lator motion being substantially longer than that for filtering and searching, major 
efforts in improving the tracking performance may be directed to minimizing the mani- 
pulator motion or avoiding the need for the momentary stop of the manipulator. In 
addition, the minimization of the delay in the communication between the modules is 
equally important. The improvement of the prediction filter by better modelling of 
object dynamics is another concern too. 

In improving of tracking performance in terms of reducing or avoiding the mani- 
pulator delay time, the followings are the major considerations. 

1) To reduce the time interval of operation cycle by replacing the robot manipulator 
with a faster one, which is very costly and even impossible beyond a certain 
limit. 

2) To control the manipulator to move with angular motion only. This has the 
advantage over the tranlational motion that a small change in camera angle covers 
a large change in the view of the scene, thereby tracking motion can be com- 
pleted in a shorter interval even for larger motion of the object. Another advan- 
tage of the angular-motion-only scheme is discussed later in this section associ- 
ated with the method as follows. 

3) To develop a new tracking scheme that continuously monitors the target motion 
without the need of a momentary stop during the image acquisition. This method 
which we call dynamic look-and-move (DLAM) shall perform the best. 



In the rest of this section, we shall describe a simple version of DLAM with the 
camera under the angular-motion-only. It is interesting to note that the change in 
image (or image motion) of stationary scene is always predictible whenever the camera 
undergoes only the rotational motion. It can be seen from the mathematical analysis 
motivated by the projection relations from a 3-D scene to a 2-D image for an object 
undergoing a smooth space motion. Adopting a 3-D coordinate system ( X ,  Y ,  Z ) as 
in previous works on the structure from motion [Waxmanl985b,Longuet- 
Higginsl980a1, relative rigid body motion can be represented in terms of monocular 
viewer motion (camera motion): the translational velocity V = (Vx , Vy , Vz), and the 
rotational velocity Q = (fix, Q y ,  Rz ). (See Figure 12.) The origin of the image coor- 
dinate system (x , y ) is located at (X , Y ,  Z ) = (0, 0, 1). 

As a point P in space (located by position vector R )  moves with a relative velo- 
city U = - (V + a x  R), the corresponding point p in the image plane moves with a 
velocity v (x, y )  given by 

These equations define an instantaneous image flow field, assigning a unique 2-D 
image velocity v to each direction (x, y )  in the observer's field of view. One can 
notice that, although the image flow is determined by many 3-D parameters - transla- 
tion, rotation and the distance to the 3-D point, the contribution by the rotational 
motion to the image flow is independent of other parameters. This is no more true for 
the translational motion as they are coupled with Z ,  the distance parameter, that is, the 
change in camera location by translation will cause the image to change inversely pro- 
portional to the distance between camera and scene, due to the perspective effect. 
Having known the rotational parameter of camera motion, one can compensate for the 
effect of rotational motion from the image flow. Any non-zero image flow after the 
compensation is due to the target motion. 

A simple DLAM tracking with the angular-motion-only scheme can be imple- 
mented using the following methods of motion compensation. 

1) Compensation of image velocity; The image flow v, and vy generated due to the 
camera motion C l  is calculated and subtracted from the image flow field obtained 
from the two frames of images, as illustrated in Figure 13a. Since this method is 
based on the general image flow analysis, the computaional load for the extraction 
of the image flow field 'is not trivial. 

2)  Compensation of image itself; Prior to the image differencing, one can compen- 
sate for the image displacement due to the camera motion during the short period 
of sampling interval (1 VFT) as shown in Figure 13b. Although pixel by pixel 
operation is required due to the non-uniform displacement of the image, the com- 
putation is less involved than the above method. 



The key to the successful compensation for the background shift is to provide an 
apparatus for the camera to move with respect to the origin (0, 0, 0). Also crucial is 
the precise knowledge of the angular velocity as well as the reference position of the 
manipulator. As we are dealing with the whole image plane in DLAM tracking, it is 
necessay to compensate for the nonlinearity in the visual observation with camera. 

As discussed before, in SLAM mode, the manipulator control and the data 
acquisition/processing are completely separated in time, while in DLAM mode the 
image acquisition can be done anytime since the camera does not have to wait for a 
quiescence of the manipulator. Therefore image acquisition and the manipulator 
motion can proceed simultaneously though perhaps at different sampling rate. 

In addition to the DLAM tracking, there are many topics demanding further 
developments. Among others, tracking of multiple-moving objects is an obvious exten- 
sion of the single object tracking. It requires separate management of mutiple windows 
for searching in one image, that is, upon detecting multiple-moving objects in a 
pyramid level, several independent windows should be set up at the next higher level 
centered at each center of motion energy. For the realization of this scheme, more 
computation is required but it can be highly parallelized. In tracking multiple objects, 
a strategy should be provided in maintaining the field of view as the objects are getting 
apart. For instance, one can increase the field of view by changing either the camera 
zoom or the camera position along the line of sight, or the combination of both. An 
alternative way is to follow only one object of the most interest. In this case a decision 
of which object to follow should be made on some criteria, for example, the motion 
energy, the size and the shape of object. Another concern is the identification of mov- 
ing object, that is, identifying the object shape within the searching window using 
some pattern recognition techniques. The pyramid structure can also be exploited in 
the shape recognition [Burt1988a]. The object feature in turn is potentially another 
source of visual information for tracking. This will lead to a feature-based tracking 
combined with the position-based scheme. 

6. Concluding Remark 

A video tracking system in SLAM mode has been realized for a moving object in 
highly textured background. We described the initial implementation of the tracking 
system as a testbed for further development towards various applications in the 
exploratory vision and the robot hand-eye coordination. The pyramid processing offers 
some efficient ways of reducing the computation time for the object searching, and the 
time delay between the visual observation and the manipulator motion is compensated 
for by a simple, yet efficient predictionJestimation filter. While SLAM tracking has 
been implemented using communication protocols between existing systems, significant 
challenge arises in the development of tracking systems of the DLAM scheme. Our 
future work will be mainly focused on the development of the algorithms as well as on 
the design of systems for the DLAM tracking as outlined in the the paper. 
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Figure 1. 
The experimental setup. The robot manipulator tracks an object which moves 
against the campus model. 
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Figure 2. 
The schematic diagram of the tracking system. 
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Figure 3. 
Gaussian and Laplacian pyramids constructed by the PVM- 1. 

Figure 4. 
Target detection is carried out by differencing two consecutive frames. The 
Gaussian and Laplacian pyramids are constructed to locate the target in real-time. 



image 
acquisition 

1 VFT 

Figure 5. 
The basic timing diagram of the tracking system. 
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Figure 6. 
The 5-level searching. (a) The timing diagram of level transition for a level-0 
object. (b) The level transition. (c) The window converging to the target. 
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Figure 7. 
The Zlevel searching in the normal operational mode. (a) The timing diagram of 
level transition for a level-0 object. (b) The window predicting the target posi- 
tion. 
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Figure 10. 
The procedure for the position estimation and prediction. 
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Figure 8. 
The Zlevel searching with the bootstrapping. (a) The timing diagram without the 
bootstrapping provision. (b) The timing diagram with the bootstrapping. (c) The 
level transition. 
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Figure . - 9. 
The performance of 2-level searching when the target moves too fast. The 
searching window keeps increasing until it looses the target completely. Four 
M e s  are shown. 





Figure 12. 
The camera coordinate system under the 3-D motion. 
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Figure 13. 
(lompemation for the camera motion. (a) The motion compensation prior to the . 
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Aow estimation. (b) The motion compensation posterior to the image I 
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