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1 Introduction 

In these notes, we prove some general theorems for establishing properties of untyped A-terms, 
using a variant of the reducibility method. These theorems apply to  (pure) A-terms typable in 
the systems of conjunctive types 2)Q and ZY due to  Coppo, Dezani, and Venneri [2, 3, 41. As 
applications, we give simple proofs of the characterizations of the terms having head-normal forms, 
of the normalizable terms, and of the strongly normalizing terms. Versions of these results were first 
obtained by Coppo, Dezani, and Venneri [4], and Pottinger [13]. We follow Krivine's presentation 
rather closely [lo], except that we use a different notion of reducibility, and that we prove more 
general meta-theorems (see below). An excellent survey on Curry-style type assignment systems 
can be found in Coppo and Cardone [I], where similar results are presented. We also give a 
characterization of the terms having weak head-normal forms. This la.st result appears to be new. 
The idea of this method was inspired by a proof of the Church-Rosser property given by Georges 
Koletsos [9]. 

The situation is that we have a unary predicate P describing a property of (untyped) A-terms, 
and a type-inference system S. For example, P could be the property of being head-normalizable, 
or normalizable, or strongly normalizing, and S could be the system D R  of the next section, or 
system D (see Krivine [lo]). Our main goal is to find sufficient conditions on the predicate 'P so 
that every term M that type-checks in S with some "nice" type u satisfies the predicate 'P. 

As an example of the above general schema, conditions (P l ) ,  (P2), (P3s) of definition 3.2 
together with conditions (P4) and (P5n) of definition 3.6 are such conditions on 'P with respect to 
system V R  (see theorem 3.9). Since the property of being head-normalizable satisfies properties 
(P1)-(P5n), as a corollary, we have that every term that type-checks in 2)Q with a nontrivial 
type (see definition 2.3) is head-normalizable (see theorem 3.11). Another exa.mple is given by 
conditions (PI) ,  (P2), (P3) of definition 6.2 together with conditions (P4) and (P5) of definition 
6.6 with respect to  system D (see theorem 6.9). Since the property of being strongly normalizing 
satisfies properties (P1)-(P5), as a corollary, we have that every term that type-checks in 2) is 
strongly normalizing. 

The main technique involved is a kind of realizability argument known as reducibility. The 
crux of the reducibility method is to  interpret every type u as a set [u] of A-terms having certain 
closure properties (see Tait [14, 151, Girard [7, 81, Krivine [lo],  and Gallier [ 5 ,  61). One of the 
crucial properties is that for a "nice" type u ,  the terms in [a] satisfy the predicate 'P (but this 
does not have to be the case for ugly types!). If the sets [a] are defined right, then the following 
"realizability property" holds (for example, see lemma 3.8): 

If P is a predicate satisfying conditions (PI)-(P5n), then for every term M that type-checks in 
DQ with type a, for every substitution y such that p(y) E By]] for every y: y E F V ( M ) ,  we have 

M[vl E UuU- 

Now, if the properties (P1)-(P5n) on the predicate P are right, every variable is in every [u], 
and thus, by chosing y t o  be the identity substitution, we get that A4 E [u] whenever A4 type- 
checks in DO with type u. Furthermore, when a is a nice type (for example, nontrivial), properties 
(P1)-(P5n) imply that nu] c P ,  and thus, we have shown that M satisfies the predicate 'P whenever 
M type-checks in D R  with a nice type u. 

Other examples of this schema are given by lemma 4.8 and lemma 6.8. In order for an argument 



of this kind to  go through, the sets [a] must satisfy some inductive invariant. In the literature, 
this is often referred to  as being a candidate. Inspired by Koletsos [9], we use the notion of a 
P-candidate defined in definition 3.3. This notion has the advantage of not requiring the terms 
to  be strongly normalizing (as in Girard [7, 8]), or to  involve rather strange looking terms such 
as MIN/x]Nl. .  . Nk (as in Tait [15], Mitchell [12], or Krivine [lo]). By isolating the dual notions 
of I-terms and simple terms, we can give a definition that remains invariant no matter what the 
definition of the sets [a] is. Also, the definition of a P-candidate only requires that the predicate 
P be satisfied, but nothing to do with the properties (P1)-(P5) on P. This separation is helpful in 
understanding how to  derive sufficient properties on P. In other presentations, properties of the 
predicate P are often incorporated in the definition of a candidate, and this tends to  obscure the 
argument. Finally, our definition can be easily adapted to  other type disciplines involving explicitly 
typed terms, or t o  higher-order types. Also, nice proofs of confluence can be obtained (see I<oletsos 
[9], and Gallier [6]). We now proceed with the details. 

2 Conjunctive Types and the System D f l  

The conjunctive types, due to  Coppo, Dezani, and Venneri [2,3,4], are constructed from a countably 
infinite set of base types and the undefined type w, using the type constructors -+ and A. We follow 
Krivine [lo] (the reader may also want to consult Coppo, Dezani, and Venneri 141, or Coppo and 
Cardone [I], for additional background). Let 7 denote the set of conjunctive types. 

Definition 2.1 The system DR is defined by the following rules. 

~ , X : O D  M : r  
(abstraction) r~ (Ax.M):a -+ T 

r ~ M : a - + r  r ~ N : a  
(application) 

I' D (MN):  T 

where I' and M are arbitrary. 

We let A denote the set of all (untyped) A-terms and A, denote the set of all A-terms M such 
that l? D M: a for some type a and some context r. In this section, the only reduction rule 
considered is P-reduction: 

(Ax: a. M ) N  --+p M[N/x]. 

Definition 2.2 Given a term M, we let FV(M)  denote the set of free variables in M .  We say 
that M is closed iff F V ( M )  = 0. If FV(M)  = {xl,. . . , x,), the closure of M is the (closed) term 
Ax1.. .Ax,. M. 



Definition 2.3 A type a is nontrivial iff either a is a base type and a # w ,  or a = y + r where 
T is nontrivial and y is arbitrary, or a = a1 A a2 where a1 or a2 is nontrivial. If a type is not 
nontrivial, we call it trivial. A type a is w-free if w does not occur in a. 

3 P-Candidates for Head-Normalizing A-Terms 

It turns out that the behavior of a term depends heavily on the nature of the last typing inference 
rule used in typing this term. A term created by an introduction rule, or I-term, plays a crucial 
role, because when combined with another term, a new redex is created. On the other hand, for 
a term created by an elimination rule, or simple term, no new redex is created when this term 
is combined with another term. It should be noted that the rules (A-intro) and (A-elim) do not 
generate any new I-terms or simple terms, since the term M appearing in the conclusion is identical 
to  the term(s) appearing in the premise(s). This motivates the following definition. 

Definition 3.1 An I-term is a term of the form Ax. M .  A simple term (or neutral term) is a term 
that is not an I-term. Thus, a simple term is either a variable x, a constant c ,  or an application 
MI?. A term M is stubborn iff it is simple and, either M is irreducible, or MI is a simple term 
whenever M f lo M' (equivalently, MI is not  an I-term). 

Let P C A be a (nonempty) set of A-terms. Actually, P is the set of A-terms satisfying a given 
unary predicate. Our goal is to give sufficient conditions on P so that this predicate holds for 
certain sets of terms that type-check with types of a special form in system 2)Q. 

Definition 3.2 Properties (P1)-(P3s) are defined as follows: 

(PI) x E P, c E P ,  for every variable x and constant c. 

(Pa) If M E P and M +p N ,  then N E P. 

(P3s) If M is simple, M E P, N E A, and (Ax. M1)N E P whenever M f p  Ax. A[', then 
M N  E P. 

From now on, we only consider sets P satisfying conditions (P1)-(P3s) of definition 3.2. 

Definition 3.3 A nonempty set C of (untyped) A-terms is a P-candidate iff it satisfies the following 
conditions: 

(Sl) c G P. 

(S2) If M E C and M -p N ,  then N E C. 

(S3) If M is simple, M E P, and Ax. MI E C whenever M f Ax. MI, then M E C. 

(S3) implies that any P-candidate C contains all variables and all constants. More generally, 
(S3) implies that C contains all stubborn terms in P ,  and (PI )  guarantees that variables and 
constants are stubborn terms in P. 

By ( P ~ s ) ,  if M E P is a stubborn term and N E A is any term, then M N  E P. Furthermore, 
M N  is also stubborn since it is a simple term and since it can only reduce to  an I-term (a X- 
abstraction) if M itself reduces t o  a A-abstraction, i.e. an I-term. Thus, if M E P is a stubborn 



term and N E A is any term, then M N  is a stubborn term in P. As a consequence, since variables 
are stubborn, for any terms N1,.  . . , Nk, for every variable x ,  the term xN1 . . . N k  is a stubborn 
term in P (assuming appropriate types for x and N1,. . . , Nk). Instead of (S3), a condition that 
occurs frequently in reducibility arguments is the following: 

(S2n) If M [ N / x ] N i . .  .NI, E C,  then (Ax. M ) N N 1 . .  . N k  E C. 

I t  can be shown easily that  (S2) and (S3) imply (S2n) (see the proof of lemma 3.7). Terms of 
the form xN1 . . . Nk or MIN/x]N1 . . . Nk are known to  play a role in reducibility arguments (for 
example, by Tait, Mitchell, or Krivine), and it is no surprise that  they crop up amgain. However, in 
contrast with other presentations, we do not have to  deal with them explicitly. 

Given a set P ,  for every type a, we define [a] 5 A as follows. 

Definition 3.4 The sets [a] are defined as follows: 

[a] = P ,  where a # w is a base type, 

[a]] = A, where a is a trivial type, 

[a -t r] = { M  I M E P ,  and for all N ,  if N E [a] then M N  E [TI}, 
where a + r is nontrivial, 

[a A  71 = [a] n Ed, 
where a A  r is nontrivial. 

By definition 2.3, a type is trivial if either it is w, or it is of the form a -t r where r is trivial, 
or it is of the form a A T  where both a and r are trivial. We could have defined [a] by changing the 
second clause t o  [w] = A,  and by dropping the conditions a -r T nontrivial and a A  T nontrivial. 
However, it would no longer be true that  [a] = A for every trivial type, and this would be a 
serious obstacle t o  the proof of lemma 3.7. The following lemma shows that  the property of being 
a P-candidate is an  inductive invariant. 

Lemma 3.5 If P is a set satisfying conditions ( P I ) - ( P ~ s ) ,  then the following properties hold for 
every type a: (1) [a]] contains all stubborn terms in P (and in  particular, every variable and every 
constant); (2) [a] satisfies (S2) and (S3); (3) If a is a nontrivial type, then [a] also satisfies (S l ) ,  
and thus it is a P-candidate. 

Proof. We proceed by induction on types. If a is a base type, then by definition [o] = P if 
a # w, and [w]] = A. Then, (1) and (2) are clear by (PI)  and by (P2) (note that  (S3) is trivial). If 
a # w, then ($1) is trivial since [a]] = P .  

We now consider the induction step. 

(3) We prove that  (Sl)  holds for nontrivial types. If a + r is nontrivial, then r is nontrivial, 
and by the definition of [a -t r], we have [a -t r] P. If a = a1 A  a2 is nontrivial, then a1 or 02 is 
nontrivial. Assume a1 is nontrivial, the case where a 2  is nontrivial being similar. By the induction 
hypothesis, [al] c P, and since [al A  021 = [al] n [az], it is clear that  [al A  az] P .  

The verification of (1) and (2) is obvious for trivial types, since in this case, [a]] = A. Thus, in 
the rest of this proof, we assume that we are considering nontrivial types. 



(1) Given a type a i T,  by the induction hypothesis, [T] contains all the stubborn terms in P. 
Let M E P be a stubborn term. Given any N E [a], obviously, N E A. Since we have shown that  
M N  is a stubborn term in P when M E P is stubborn and N is arbitrary, we have M N  E IT]. 
Thus, M E [a i T]. If a = a1 A 0 2 ,  by the induction hypothesis, all stubborn terms in P are in 
[[al] and in [a2], and thus in [a1 A az] = [al] n 1021. 

(2) We prove (S2) and (S3). 

(S2). Let M E [a -, T] and assume that  M -p M'. Since M E P by (Sl) ,  we have M r  E P 
by (P2). For any N E [a], since M E [a -+ T] we have M N  E [T], and since M -p M r  we have 
M N  -p  M'N.  Then, applying the induction hypothesis a t  type T, (S2) holds for [TI], and thus 
M'N E [T]. Thus, we have shown that  M '  E P and that  if N E [a], then M'N E IT]. By the 
definition of [a -. T], this shows that  M '  E [a -t T], and (S2) holds a t  type a -. r .  

If a = a1 Aa2, by the induction hypothesis, (S2) holds for [[al] and [a2], and thus for [al A a z ]  = 

[ ~ l ]  n Ua2ll. 

(S3). Let M E P be a simple term, and assume that  Ax.Mf E [a i T] whenever M fp A2.M'. 
We prove that  for every N ,  if N E [a], then M N  E [TI. The case where M is stubborn has already 
been covered in (1). Assume tha t  M is not stubborn. First, we prove that  M N  E P ,  and for this, 

we use (P3s). If M f g Az. MI, then by assumption, Ax. M' E [a i T], and for any N E [all, we 
have (Ax. M t ) N  E [[T]. Recall that  we assumed a i T nontrivial, and thus, T is nontrivial. Then, 
by (Sl) ,  (Ax. M' )N E P, and by ( P ~ s ) ,  we have M N  E P. Now, there are two cases. 

If T is a base type, then [[T] = P since T # W ,  and M N  E [T] (since M N  E P ) .  

If r is not a base type, the term M N  is simple. Thus, we prove that  M N  E [TI] using (S3) 
(which by induction, holds a t  type T). The case where M N  is stubborn is trivial. Otherwise, 

+ observe that  if M N  -p Q, where Q = Ay. P is an I-term, then the reduction is necessarily of the 
form 

M N  f p (Ax. Mf)N '  -p Mf[N'/x] -%p Q,  

where M f g Ax. M'  and N AP N'. Since by assumption, Ax. M' E [a i r] whenever 

M f Ax. M f ,  and by the induction hypothesis applied a t  type a, by (S2), N '  E [a], we conclude 
that  (Ax: a. Mr)N '  E [TI. By the induction hypothesis applied a t  type T,  by (S2), we have Q E [r], 
and by (S3), we have M N  E [rj. 

Since M E P and M N  E [[T] whenever N E [a], we conclude that  M E [[a i r ] .  

For the proof of the next lemma, we need t o  add two new conditions (P4) and (P5n) to  (P1)- 
(P3s). 

Definition 3.6 Properties (P4) and (P5n) are defined as follows: 

(P4) If M E P, then Ax. M E P. 

(P5n) If M[N/x]  E P ,  then (Ax. M ) N  E P. 

Lemma 3.7 If P is a family satisfying conditions (PI)-(PSn), and M[N/x]  E [r] for every 
N E A, then Ax. M E [[a -t r ] .  



Proof. The lemma is obvious if a + r is trivial, since in this case, [a -+ r] = A. Thus, in the 
rest of this proof, we assume that a + r is nontrivial. This implies that r is nontrivial. 

We prove that for every every N ,  if N E [a], then (Ax. M )  N E [r]. We will need the fact 
that the sets of the form [a] have the properties (S1)-(S3), but this follows from lemma 3.5, since 
(P1)-(P3s) hold. First, we prove that Ax. M E P. 

By the assumption of lemma 3.7, M[x/x] = M E [r] (by choosing N = x). Then, since r is 
nontrivial, by (Sl),  M E P, and by (P4), we have Ax. M E P. 

Next, we prove that for every every N ,  if N E [a], then (Ax. M ) N  E [TI). Let us assume that 
N E [a]. Then, by the assumption of lemma 3.7, M[N/x] E [r].  Since r is nontrivial, by (Sl) ,  we 
have M[N/x] E P. By (P5n), we have (Ax. M ) N  E P. Now, there are two cases. 

If T is a nontrivial base type, then [r] = P. Since we just showed that (Ax. M ) N  E 'P, we have 
(Ax. M ) N  E [TI). 

If r is not a base type, then (Ax. M ) N  is simple. Thus, we prove that (Ax. M ) N  E [r] using 
+ (S3). The case where (Ax. M ) N  is stubborn is trivial. Otherwise, observe that if (Ax. M ) N  +p Q ,  

where Q = Ay. P is an I-term, then the reduction is necessarily of the form 

where M A p  M t  and N A p  Nt.  But M[N/x] E [TI), and since 

by (S2), we have Q E [r]. Since (Ax. M ) N  E P and Q E [r] whenever (Ax. M ) N  f p Q, by (S3), 
we have (Ax. M ) N  E [r]. 

We now have the following main "realizability lemma". 

Lemma 3.8 If P is a set satisfying conditions (P1)-(P5n), then for every term M E A,, for 
every substitution cp such that ~ ( y )  E [-y] for every y: y E FV(M),  we have M[y] E [a]. 

Proof. We proceed by induction on the proof r D M: a. The lemma is obvious if a is a 
trivial type, since in this case, [[a] = A. Thus, in the rest of this proof, we assume that we are 
considering nontrivial types. 

In the case of an axiom r , x :  a D x: a ,  we have M = x, and then x[y] = cp(x) E [[a] by the 
assumption on cp. If c is a constant, then c[y] = c, and c E [[a] since this is true by lemma 3.5. 

If the last rule is an application, then M = MINI,  where MI has type a i r and N1 has type 
a. By the induction hypothesis, Ml[y] E [a -+ r] and N1[y] E [a]. By the definition of [a i r ] ,  
we get MI [(PI N1 [y] E [r], which shows that (MlNl)[y] E [TI, since MI [ ~ ] N I [ ~ ]  = (A41 Nl)[y]. 

If the last rule is an abstraction, then M =  AX:^. MI. By ( P l )  and (S3), [a] is nonempty 
for every type a. Consider any N E [a] and any substitution cp such that y(y) E [y] for every 
y: y E FV(Xx: a. MI). Thus, the substitution y[x: = N ]  has the property that y(y) E [y] for every 
y: y E FV(Ml).  By suitable a-conversion, we can assume that x does not occur in any y(y) for 
every y E dom(cp), and that N is substitutable for x in MI. Then, Ml[y[x: = N]] = Ml[cp][N/x]. 



the induction hypothesis applied to  MI and y[x: = N], we have Ml[y[x: = N]] E [r], that  is, 
. [y] [N/x] E [T]. Consequently, by lemma 3.7, (Ax: a. MI [y]) E ([a -+ r], that  is, (Ax: a. M1)[y] E 
+ r], since (Ax: a. MI [y]) = (Ax: a. MI)[?]. 

If the last rule is (A-intro), by the induction hypothesis, M[y] E [a] and M[p] E [T]. Since 
a A T is nontrivial, [a A r] = [a] n [r], and thus, M[y]  E [a A r]. 

If the last rule is (A-elim), by the induction hypothesis, M[y]  E [a A r], and since a A r is 
nontrivial, [a A r]  = [a] n [r], and we have M[y]  E [a] and M [y] E [T]. 

As a corollary of lemma 3.8, we obtain the following general theorem for proving properties of 
terms that  type-check in DR. 

Theorem 3.9 If P is a set of A-terms satisfying conditions (PI)-(PSn), then A, C. P for every 
nontrivial type a (in other words, every term typable in DR with a nontrivial type satisfies the 
unary predicate defined by P). 

Proof. Apply lemma 3.8 t o  every term M in A, and t o  the identity substitution, which is 
legitimate since x E [a] for every variable of type a (by lemma 3.5). Thus, A4 E [a] for every 
term in A,, that  is A, C [a]. Finally, by lemma 3.5, if a is nontrivial, ( S l )  holds for [a], that  is 
A, c [a] C P. 

As a corollary of theorem 3.9, we show that  if a term M is typable in DO with a nontrivial 
type, then the head reduction of M is finite (and so, M has a head-normal form, i.e. it is a solvable 
term (see definition 7.10). This result was first shown by Coppo, Dezani, and Venneri [4]. Our 
treatment is heavily inspired by Krivine [lo],  where we found the marvellous concept of a quasi-head 
reduction. 

Definition 3.10 Given a term M = Axl.. .Ax,. ((Ay. P)Q)Nl  . . . N k ,  where m 2 0 and b > 0,  
the terrn (Ay. P)Q is the head redex of M. A head reduction is a reduction sequence in which every 
step reduces the head redex. A quasi-head reduction is a (finite or infinite) reduction sequence 
s = (Mo, MI,. . . ,Mi,. . .) such that ,  for every i 2 0, there is some j 2 i such that ,  if belongs 
t o  s, then M j  -p Mj+1 is a head-reduction step. A term is in head-normal form iff it has no 
head redex, that  is, it is of the form A x l . .  .Ax,. yNl . . . Nk, where m 2 0 and k > 0. The variable 
y is called the head variable. A term is head-normalizable iff the head reduction from M is finite. 

Note that  the last step in a finite quasi-head reduction is necessarily a head-reduction step. Also, 
any suffix of a quasi-head reduction is a quasi-head reduction. The main advantage of quasi-head 
reductions over head-reductions is that  (P2) obviously holds for terms for which every quasi-head 
reduction is finite. 

Theorem 3.11 If a term M is typable in DCl with a nontrivial type, then every quasi-head 
reduction from M is finite. As a corollary, the head reduction from M is finite (and so, 114 has a 
head-normal form). 

Proof. Let P be the set of A-terms for which every quasi-head reduction is finite. To prove 
theorem 3.11, we apply theorem 3.9, which requires showing that  P satifies the properties (P1)- 
(P5n). First, we make the following observation that  will simplify the proof. Since there is only 



a finite number of redexes in any term, for any term M ,  the reduction tree1 for M is finitely 
branching. Thus, if every quasi-head reduction sequence is finite, since the reduction tree is finite 
branching, by Kijnig's lemma, the subtree consisting of quasi-head reduction sequences is finite. 
Thus, for any term M from which every quasi-head reduction sequence is finite, the length of a 
longest quasi-head reduction path in the reduction tree from M is a natural number, and we will 
denote it as l(M). Now, (PI )  is trivial, and (P2) follows from the definition. 

(P3s). Let M be simple, and assume that every quasi-head reduction from M is finite. We 
prove that every quasi-head reduction from M N  is finite by induction on E(M). Let M N  -p Q 
be a reduction step. Because M is simple, M N  is not a redex, and we must have M -p M1 or 
N -p Nl. If Ml is simple, since l(Ml) < l (M) ,  the induction hypothesis yields that every quasi- 
head reduction from M I N  is finite. If N -p N1, because we are considering quasi-head reductions 
from M N ,  there is a first step where a head reduction is applied, and it must be applied to  M .  
Thus, we must have M N  -p MN1 Lp MN; -p MIN;. Since l(Ml) < l (M),  the induction 
hypothesis yields that every quasi-head reduction from MN1 is finite. Otherwise, A l l  = Ax. P ,  
and by assumption, every quasi-head reduction from (Ax. P ) N  is finite. Thus every quasi-head 
reduction from M N is finite. 

(P4). Assume that every quasi-head reduction from M is finite. It is immediate to prove by 
induction on l (M)  that every quasi-head reduction from Ax. M is also finite. 

(P5n). Let k be the index of the first head-reduction step in any quasi-head reduction from 
(Ax. M ) N .  We prove by induction on E that every quasi-head reduction from (Ax. M ) N  is finite. 
If k = 0, then (Ax. M ) N  is a head-redex. However, by the assumption, every quasi-head reduction 
from M[N/x] is finite. Now, consider any quasi-head reduction s from (Ax. M ) N  of index k > 1. 
The first reduction step from (Ax. M ) N  is either (Ax. M ) N  -p (Ax. Ml )N  or (Ax. M ) N  -p 
(Ax. M)Nl. In either case, the index of the first head-reduction step in the quasi-head reduction 
tail(s) is k - 1, and by the induction hypothesis, we get the desired result. 

Note that we could have proved directly that (P2) holds using the following simple lemma. 

Lemma 3.12 If M is head-normalizable and M -p MI, then M' is head-normalizable. 

Proof. We prove the following stronger property: If M is head-normalizable and M' is obtained 
from M by reducing in parallel any set of independant redexes in M (where the reduction applied 
to  each redex is a one-step reduction), then M'  is head-normalizable. 

The above property is proved by induction on the length Z(M) of the head reduction from 
M .  If E(M) = 0, then M = Axl.. .Axm. yNl . .  .Nk, and MI = Axl.. .Axm. y N i . .  . Nk, where 
N;' is obtained from N; by performing reductions on independant redexes. We are done since 
M' = Axl.. .Axm. yNi . . . N; is a head-normal form. If M = Ax1 . . .Ax,. ((Ay. P ) Q ) N l . .  . Nk, 
then either M'  = Axl.. .Axm. ((Xy. P')Qf)N; . . . NL, or M' = Axl.. .Axm. (P [Q/x ] )Ni . .  . N;.  
In the second case, letting M1 = Axl.. .Axm. (PIQ/x])Nl. .  . Nk be the result of reducing the 
head redex in M ,  we have l(Ml) < 1(M), and since MI is obtained from MI by reducing in- 
dependant redexes, we conclude by applying the induction hypothesis. In the first case, letting 
Mi = Axl.. .Axm. (P'[Qf/x])Ni. .  . NL be the result of reducing the head redex in A4', since Mi is 

'the tree of reduction sequences from M 



obtained from M1 by reducing independant redexes, we also conclude by applying the induction 
hypothesis. 

The converse of theorem 3.11 is true: if a A-term is head-normalizable, then it is typable in DR 
with a nontrivial type a .  The proof requires a careful analysis of type-ckecking in system DR. For 
the time being, we prove the following weaker result. 

Lemma 3.13 Given a term M = Axl. .  .Ax,. yN1. .  . Nk in head-normal form, there are non- 
trivial types a = al -. . . .a, + r and y, where r is a base type, such that: if y # x; for all i ,  then 
kVn y :  y D M :  a and the a; are arbitrary, else if y = x;, then kvf l  D M :  a, a; = y, and the c ~ j  are 
arbitrary for j # i .  

Proof. Let y = w + . . . + w + T with k occurrences of w. Let I' = 21: 01,. . . , x,: a,, y: T if 
y # x;. It is easy t o  see that  we have 

and thus, 
k.Dn y: y t> Axl . . . AX,. yN1 . . . Nk:  a, 

where the a; are arbitrary. If y = x;, let a; = y and r = X I :  al l . .  . , z,: a,. It is easy to  see that  
we have 

I' D yNl . . . N k :  r, 

and thus, 
kDn D Axl . . .AX,. yN1 . .  . N k :  a, 

where the aj are arbitrary for j # i. 
Note that  there are head-normalizable terms that  are not normalizable. If S = Ax. xx,  then 

y(6S) is in head-normal form, but it is not normalizable since SS is not. 

4 P-Candidates for Normalizable A-Terms 

In this section, we modify the definition of condition (P3s) in definition 3.2, so that  our main 
theorem applies t o  the normalizable A-terms. Although definition 3.1 is unchanged, we repeat it 
for the reader's convenience. 

Definition 4.1 An I-term is a term of the form Ax. M. A simple term (or neutral term) is a term 
that  is not an I-term. Thus, a simple term is either a variable x, a constant c, or an application 
MN. A term M is stubborn iff it is simple and, either M is irreducible, or M' is a simple term 
whenever M f MI (equivalently, M' is not an I-term). 

Definition 4.2 Properties ( P  1)-(P3) are defined as follows: 

( P l )  x E P ,  c E P ,  for every variable x and constant c. 

(P2) If M E P and M - i p  N, then N E P .  

(P3) If M is simple, M E P, N E P, and (Xz. M1)N E P whenever M Ax. M', then 
M N  E P. 



Note that the difference with (P3s) of definition 3.2 is that we now require that N E P. From 
now on, we only consider sets P satisfying conditions (P1)-(P3) of definition 4.2. Definition 3.3 is 
also unchanged, but we repeat it for convenience. 

Definition 4.3 A nonempty set C of (untyped) X-terms is a P-candidate iff i t  satisfies the following 
conditions: 

(Sl) c c P .  

(S2) If M E C and M -p N ,  then N E C. 

(53) If M is simple, M E P, and Ax. MI E C whenever M f Ax. MI, then M  E C. 

(S3) implies that any P-candidate C contains all variables and all constants. More generally, 
(S3) implies that C contains all stubborn terms in P ,  and (PI )  guarantees that variables and 
constants are stubborn terms in P .  

By (P3), if M E P is a stubborn term and N E P is any term, then M N  E P .  Furthermore, M N  
is also stubborn since it is a simple term and since it can only reduce to an I-term (a  X-abstraction) 
if M itself reduces to  a X-abstraction, i.e. an I-term. Thus, if M E P is a stubborn term and 
N E P is any term, then M N  is a stubborn term in P .  The difference with the previous section is 
that N too must be in P for M N  to  be stubborn if M E P is stubborn. As a consequence, since 
variables are stubborn, for any terms N1,. . . , Nk E P ,  for every variable x ,  the term xN1. . . Nk is 
a stubborn term in P (assuming appropriate types for x and N1,. . . , Nk). 

Given a set P ,  for every type a ,  we define [a] A as follows. 

Definition 4.4 The sets [a] are defined as follows: 

[a] = P ,  where a f w is a base type, 

[a] = A, where a contains w, 

[a -+ T] = {M I M E P ,  and for all N ,  if N E [a] then M N  E [[r]}, 

where a -+ T is w-free, 

ua A 711 = %a11 n [IT], 
where a A r is w-free. 

Lemma 4.5 If P is a set satisfying conditions (P1)-(P3), then the following properties hold for 
every type a: (1)  [a] contains all stubborn terms in  P (and in  particular, every variable and every 
constant); (2) [a] satisfies (S2) and (S3); (3)  If a is w-free, then [a] also satisfies (Sl),  and thus 
it is a P-candidate. 

Proof. We proceed by induction on types. The proof is identical to  that given in lemma 3.5 
when a is a base type. 

We now consider the induction step. 

(3) We prove that ( S l )  holds for w-free types. If a + r is w-free, then by the definition of 
[a -, T ] ,  we have [a -, T] c P .  If a = a1 A a 2  is w-free, then a1 and a 2  are w-free. By the 



induction hypothesis, [al] P and [a2] G P, and since [al A an] = [al] n [a2], it is clear that 
[a1 A a 2 1  c P. 

The verification of (1) and (2) is obvious for types containing w, since in this case, [a] = A. 
Thus, in the rest of this proof, we assume that we are considering w-free types. 

(1) Given a type a + r ,  by the induction hypothesis, [r]  contains all the stubborn terms in 
P. Let M E P be a stubborn term. Given any N E [a], because a + r is w-free, so is a, and by 
(Sl), N E P. Since we have shown that M N  is a stubborn term in P when M E P is stubborn 
and N E P ,  we have M N  E [TI. Thus, M E [a -t r]. If a = a1 A a 2 ,  by the in.duction hypothesis, 
all stubborn terms in P are in [al] and in [a2], and thus in [al A a2] = [al] n [a2]. 

(2) We prove (S2) and (S3). 

(S2). The proof is identical to  that given in lemma 3.5. 

(S3). Let M E P be asimple term, and assume that Ax.M1 E [a -, T] whenever M f p Ax.M1. 
We prove that for every N ,  if N E [a], then M N  E [r]. The case where M is stubborn has already 
been covered in (1). Assume that M is not stubborn. First, we prove that M N  E P ,  and for this, 

we use (P3). If M f p Ax. MI, then by assumption, Ax. MI E [a + T], and for any N E [a], we 
have (Ax. M1)N E [r]. Recall that we assumed that a + r is w-free, and thus, both a and r are 
w-free. Then, by (Sl) ,  N E P and (Ax. M1)N E P ,  and by (P3), we have M N  E P. The rest of 
the proof is identical to  that given in lemma 3.5. 

Conditions (P4) and (P5n) of definition 3.6 are unchanged, but we repeat them for convenience. 

Definition 4.6 Properties (P4) and (P5n) are defined as follows: 

(P4) If M E P, then Ax. M E P. 

(P5n) If M[N/x] E P ,  then (Ax. M ) N  E P. 

Lemma 4.7 If P is a family satisfying conditions (P1)-(P5n), and M[N/x]  E [rlj for every 
N E A, then Ax. M E [a -+ r]. 

Proof. The lemma is obvious if a + r contains w ,  since in this case, [a -+ r] = A. Thus, in 
the rest of this proof, we assume that a + r is w-free. This implies that both a and r are w-free. 

We prove that for every every N, if N E [a], then (Ax. M ) N  E [T]. We will need the fact 
that the sets of the form [a] have the properties (S1)-(S3), but this follows from lemma 4.5, since 
(P1)-(P3) hold. First, we prove that Ax. M E P. 

By the assumption of lemma 4.7, M[x/x] = M E [r] (by choosing N = x). Then, since r is 
w-free, by (Sl) ,  M E P, and by (P4), we have Ax. M E P. 

Next, we prove that for every every N ,  if N E [a], then (Ax. M ) N  E [TI. Let US assume that 
N E [a]. Then, by the assumption of lemma 4.7, M[N/x] E [r]. Since T is w-free, by (Sl) ,  we 
have M[N/x] E F.  By (P5n), we have (Ax. M ) N  E P. The rest of the proof is identical to  that of 
lemma 3.7. 

Lemma 4.8 If P is a set satisfying conditions (P1)-(P5n), then for every term M E A,, for 
every substitution cp such that y(y) E [y] for every y: y E FV(M) ,  we have M[v] E [a]. 



Proof. We proceed by induction on the proof tDn I' D M: a. This proof is identical to  that of 
lemma 3.8, with "nontrivial type" replaced by " w-free type". 

Theorem 4.9 If P is a set of X-terms satisfying conditions (P1)-(PSn), then A, C_ P for every 
w-free type a ( in  other words, every term typable i n  V R  with an  w-free type satisfies the unary 
predicate defined by P ) .  

Proof. Apply lemma 4.8 to every term M in A, and to  the identity substitution, which is 
legitimate since x E [a] for every variable of type a (by lemma 4.5). Thus, M E [[a] for every 
term in A,, that is A, C [a]. Finally, by lemma 4.5, if a is w-free, (Sl) holds for [ u ] ,  that is 
A, 2 [a] G P. 

As a consequence of theorem 4.9, if I'M: a where a and all the types in I' are w-free, then 
M E P .  

As a corollary of theorem 4.9, we show that if a term M is typable in V R  with an w-free type, 
then M is normalizable. A version of this theorem was first shown by Coppo, Dezani, and Venneri 
[4]. Again, our treatment is heavily inspired by Krivine [lo], where we found the concept of a 
quasi-leftmost reduction. 

Definition 4.10 Given a term M ,  the leftmost redex in M is either the head-redex (Xy. P)Q of 
M if M = Axl.. .Axm. ((Xy. P)Q)N1..  . Nk, (where m > 0 and k > 0), or the leftmost redex in 
the leftmost reducible subterm N; in M if M = Axl.. .Ax,. yNl . . . Nk, 1 5 i 5 k (and thus, 
Nl, . . . , N;-l are irreducible). A leftmost reduction is a reduction sequence in which every step 
reduces the leftmost redex. A quasi-leftmost reduction is a (finite or infinite) reduction sequence 
s = (Mo, MI , .  . . ,Mi , .  . .) such that, for every i 2 0, there is some j > i such that ,  if Mj+l belongs 
to  s, then M j  -+p Mj+1 is a leftmost reduction step. A term is in normal form (or irreducible) iff 
it has no redex. A term is normalitable iff the leftmost reduction from M is finite. 

It is immediate that M is in normal form iff it is of the form Axl.. .Axm. yN1. .  .Ark, where 
N1,. . . , Nk are also in normal form (m > 0 and k > 0). Note that the last step in a finite quasi- 
leftmost reduction is necessarily a leftmost reduction step. Also, any suffix of a quasi-leftmost 
reduction is a quasi-leftmost reduction. The main advantage of quasi-leftmost reductions over 
leftmost reductions is that (P2) obviously holds for terms for which every quasi-leftmost reduction 
is finite. 

Theorem 4.11 If a term M is typable in  V R  with an w-free type, then every quasi-leftmost 
reduction from M in  finite. A s  a corollary, the Eeftmost reduction from M is finite (and so, M has 
a normal form). 

Proof. Let P be the set of X-terms for which every quasi-leftmost reduction is finite. To 
prove theorem 3.11, we apply theorem 3.9, which requires showing that P satifies the properties 
(P1)-(P5n). First, note that the observation made at  the beginning of the proof of lemma 3.11 
also applies. If every quasi-leftmost reduction sequence is finite, since the reduction tree is finite 
branching, by Konig's lemma, the subtree consisting of quasi-leftmost reduction sequences is finite. 
Thus, for any term M from which every quasi-leftmost reduction sequence is finite, the length of 
a longest quasi-leftmost reduction path in the reduction tree from M is a natural number, and we 
will denote it as Z(M). Now, (PI )  is trivial, and (P2) follows from the definition. 



(P3s). Let M be simple, and assume that every quasi-leftmost reduction from M or N is finite. 
We prove that every quasi-leftmost reduction from M N  is finite by induction on 1(M) + l(N).  Let 
M N  ---+p Q be a reduction step. Because M is simple, M N  is not a redex, and we must have 
M -p MI or N -p Nl. If MI is simple, since E(Ml) + I (N) < E(M) + l (N),  the induction 
hypothesis yields that every quasi-leftmost reduction from MIN is finite. If N -p N1, since 
l (M) + l(N1) < 1(M) + 1(N), the induction hypothesis yields that every quasi-leftmost reduction 
from MNl  is finite. Otherwise, MI = Ax. P ,  and by assumption, every quasi-leftmost reduction 
from (Ax. P ) N  is finite. Thus every quasi-leftmost reduction from M N  is finite. 

(P4). Assume that every quasi-leftmost reduction from M is finite. It is immediate to prove by 
induction on Z(M) that every quasi-leftmost reduction from Ax. M is also finite. 

(P5n). Let k be the index of the first leftmost reduction step in any quasi-leftmost reduction 
from (Ax. M ) N .  We prove by induction on k that every quasi-leftmost reduction from (Ax. M ) N  is 
finite. If k = 0, then (Ax. M ) N  is a head-redex. However, by the assumption, every quasi-leftmost 
reduction from M[N/x] is finite. Now, consider any quasi-leftmost reduction s from (Ax. M ) N  
of index k >_ 1. The first reduction step from (Ax. M ) N  is either (Ax. M ) N  -0 (Ax. Ml)N or 
(Ax. M ) N  -p (Ax. M)N1. In either case, the index of the first leftmost reduction step in the 
quasi-leftmost reduction tail(s) is k - 1, and by the induction hypothesis, we get the desired result. 

Actually, it is possible to  prove directly that (P2) holds for leftmost reductions. 

Lemma 4.12 If M is normalizable and M -p MI, then M' is normalizable. 

Proof. We prove the following stronger property: If M is normalizable and M' is obtained from 
M by reducing in parallel any set of independant redexes in M (where the reduction a,pplied to  
each redex is a one-step reduction), then M' is normalizable. 

The above property is proved by induction on the length 1(M) of the leftmost reduction from 
M.  If l (M)  = 0, then M is in normal form and the lemma is trivial. If M = C[(Ay. P)Q] where 
(Ay. P ) &  is the leftmost redex in M ,  then either M' = C1[(Ay. PI)&'], or M' = Cf[P[Q/x]]. In the 
second case, letting MI = C[P[&/x]] be the result of reducing the leftmost redex in M ,  we have 
l(Ml) < I ( M ) ,  and since M' is obtained from MI by red.ucing independant redexes, we conclude 
by applying the induction hypothesis. In the first case, letting Mi = C'[P1[Q'/x]] be the result of 
reducing the leftmost redex in M', since Mi is obtained from MI by reducing independant redexes, 
we also conclude by applying the induction hypothesis. 

The converse of theorem 4.11 is true: if a A-term M is normalizable, then kVn r D M:  a where 
a and all the types in r are w-free. For the time being, we prove that every term in normal form is 
typable in system D. First, observe that because the first axiom in both systems DO and D is of 
the form I?, x: a ~ x :  a, for any two contexts r and A, if r C A and kvn ~ D M :  a, then tDn A D  M :  a 
(and similarly for kv).  

Lemma 4.13 If I fvn  x: 01, I'D M :  a ,  then for any type TI, kVn x: a1 A TI, r D M :  a (and similarly 

for kv). 

Proof. We proceed by induction on the proof. The only nonobvious case is the case where 
x: 01, I 'b M :  a is an axiom, with M = x and a = al. In this case, x: a1 A TI, I' D x: a1 A r1 is also an 
axiom, and by (A-elim), we get kvn x: a1 A TI, I? b x: 01. 



Lemma 4.14 If kVn rl D M : a  and kvn r2 D N :  r ,  then there is a context rl A r2 such that, 
kvn rl A r2 D M :  a and kvn rl A r2 D N :  r (and similarly for Fv). 

Proof. By the remark before lemma 4.13, rl and r2 can be extended to  contexts l?i and 
rh which are of the form ri = X I :  a l ,  . . . , x,: a ,  and = X I :  7 1 , .  . . , x,: rm. Then, letting 
rl A r 2  = X I :  01 Ar l , .  . . ,xm: amArm,  by lemma 4.13 (applied m times), we have kvn rl A r 2 b  M :  a 
and kvn rl A r2 D N : ~  

We can now prove the desired result. 

Lemma 4.15 If M is i n  normal form, then there is a context I' and a type a (both w-free) stich 
that kv I' D M :  a .  Furthermore, i f  M is not a A-abstraction, the type a  can be chosen arbitrarily. 

Proof. We proceed by induction on M .  If M = x is a variable, for every w-free type a ,  and any 
w-free r ,  x: a ,  r D x:  a  is an axiom. 

If M = Ax. M I ,  by the induction hypothesis, there is a context I' and a type T (both w-free) such 
that kv I ' D  M I :  r. If x dom(r) ,  we can pick any w-free type a and extend I' so that we still have 
kv x:  a ,  I 'D M I :  7 .  Thus, we assume that we are in the second case. But then, kv r D Ax. M I :  a -t r.  

If M = M1M2,  because M is in normal form, MI cannot be a A-abstraction. By the induction 
hypothesis, there is a context r2 and a type r (both w-free) such that kv I'2 D hJ2: r ,  and for any 
arbitrary w-free type a ,  there is some w-free context rl such that kv rl D M I :  r -, a .  By lemma 
4.14, we have kv rl A r2 D M I :  r -+ a and kz, rl A I'2 D M2: T ,  and thus, kV A r2 D M1M2:  a .  

Note that there are nornializable terms that are not strongly normalizing. If 6 = Ax. x x ,  then 
M = (Ax.  y)(SS) is normalizable since M +p y, but it is not strongly normalizing since S S  is not. 
There are even normalizable terms such that every subterm is SN that are not SN! For example, 
M = [Ax. ((Xy. z)(x6))]6 is such a term. 

5 Conjunctive Types and the System 2) 

We will now consider w-free conjunctive types and the system 2) obtained from DZ)R by deleting the 
axiom involving the special type w. The system 2) was introduced by Coppo and Dezani [3]. 

Definition 5.1  The system ;I) is defined by the following rules. 

r , x : a ~ M : r  
(abstraction) r D (Ax .  M ) :  a  -t r 

r ~ M : a + r  I ' D N : ~  
(application) 

I? D ( M N ) :  r 



We let A denote the set of all (untyped) X-terms and SNA, denote the set of all X-terms M 
such that FV F D M :  a for some type a and some context r. In this section, the only reduction rule 
considered is P-reduction: 

(Ax: a. M ) N  +p M[N/x]. 

6 P-Candidates for Strongly Normalizing X-Terms 

Although definition 4.1 is unchanged, we repeat it for convenience. 

Definition 6.1 An I-term is a term of the form Ax. M. A simple term (or neutral term) is a term 
that is not an I-term. Thus, a simple term is either a variable x,  a constant c, or an application 
M N .  A term M is stubborn iff it is simple and, either M is irreducible, or MI is a simple term 
whenever M f M' (equivalently, MI is not an I-term). 

Similarly, although definition 4.2 is unchanged, we repeat it for convenience. 

Definition 6.2 Properties (P1)-(P3) are defined as follows: 

( P l )  x E P ,  c E P ,  for every variable x and constant c. 

(P2) If M E P and M ---to N ,  then N E P. 

(P3) If M is simple, M E P, N E P ,  and (Ax. M1)N E P whenever 64 f Xz. MI, then 
M N  E P. 

From now on, we only consider sets P satisfying conditions (P1)-(P3) of definition 6.2. Definition 
4.3 is also unchanged, but we repeat it for convenience. 

Definition 6.3 A nonempty set C of (untyped) X-terms is a P-candidate iff it satisfies the following 
conditions: 

(Sl)  c c P. 

(S2) If M E C and M -p N ,  then N E C. 

(S3) If M is simple, M E P, and Ax. MI E C whenever M f Ax. MI, then M E C. 

The remarks following definition 4.3 apply here too. Thus, (S3) implies that C contains all 
stubborn terms in P ,  and ( P l )  guarantees that variables and constants are stubborn terms in P.  
Also, by (P3), if M E P is a stubborn term and N E P is any term, then MN E P is stubborn. 
Instead of (S3), a condition that occurs frequently in reducibility arguments is the following: 

(S2sn) If N E P and M[N/x]Nl. .  . Nk E C,  then (Ax. M ) N N l . .  . Nk E C. 

It can be shown easily that (S2) and (S3) imply (S2sn) (see the proof of lemma 6.7). 

Given a set P ,  for every type a, we define [a] A as follows. 



Definition 6.4 The sets [a] are defined as follows: 

[a] = P ,  where a is a base type, 

[ a t r ] =  { M  I M E P ,  and for all N , i f  N E [a] then M N  E [r]) ,  

[a A T ]  = [a] n [r]. 

L e m m a  6.5 If P is a set satisfying conditions (PI)-(P3), then the following properties hold for 
every type a: (1) [a] contains all stubborn terms in P (and in particular, every variable and every 
constant); (2) [a] satisfies (Sl) ,  (S2), and (S3), and thus it is a P-candidate. 

Proof. We proceed by induction on types. If a is a base type, then by definition [a] = P .  
Then, (1) and (2) are clear by (PI )  and by (P2) (note that (Sl) and (S3) are trivial). 

We now consider the induction step. 

(1) Given a type (T + r, by the induction hypothesis, [r] contains all the stubborn terms in P. 
Let M E P be a stubborn term. Given any N E [a], by (Sl), N E P. Since we have shown that 
M N  is a stubborn term in P when M E P is stubborn and N E P, we have M N  E [ [ T I ] .  Thus, 
M E [[a -+ r]. If a = a1 A 02, by the induction hypothesis, all stubborn terms in 7' are in [al] and 
in [a2], and thus in [al A a2] = [al] n [a2]. 

(Sl). By the definition of [a + TI, we have [a t r] P. If a = al A 02, by the induction 
hypothesis, [all c P and [a2] c P, and since [al A an] = [a1] n [a2], it is clear that [a1 A a2] P .  

(S2). The proof is identical to  that of lemma 4.5. 

(53). Let M E P be a simple term, and assume that Ax.M1 E [a -+ T] whenever M fo Ax. Mt. 
We prove that for every N ,  if N E [a], then M N  E [T]. The case where M is stubborn has already 
been covered in (1). Assume that M is not stubborn. First, we prove that MN E P, and for this, 

we use (P3). If M f Ax. Mt ,  then by assumption, Ax. MI E [a -+ r] ,  and for any N E [a], we 
have (Ax. Mt )N  E [r]. By (Sl), N E P and (Ax. M')N E P ,  and by (P3), we have MN E P .  The 
rest of the proof is identical to  that of lemma 4.5. [7 

Condition (P5n) of definition 4.6 is modified so that our main theorem applies to strongly 
normalizing terms. 

Definition 6.6 Properties (P4) and (P5) are defined as follows: 

(P4) If M E P, then Ax. M E P.  

(P5) If N E P and M[N/x] E P ,  then (Ax. M ) N  E P. 

Note that the difference between (P5n) of definition 4.6 and (P5) is that we are now requiring 
that N E P. 

L e m m a  6.7 If P is a family satisfying conditions (P1)-(P5) and for every N ,  ( N  E [a] implies 
M[N/x] E [r]), then Ax. M E [a -+ r]. 



Proof. We prove that for every every N ,  if N E [a], then (Ax. M )  N E [r] .  We will need the 
fact that the sets of the form [a] have the properties (S1)-(S3), but this follows from lemma 6.5, 
since (P1)-(P3) hold. First, we prove that Ax. M E P.  

By the assumption of lemma 6.7, M[x/x] = M E [T], since by lemma 6.5, x E [a]. Then, by 
(Sl),  M E P, and by (P4), we have Ax. M E P. 

Next, we prove that for every every N ,  if N E [a], then (Ax. M ) N  E [TI. Let US assume that 
N E [a]. Then, by the assumption of lemma 6.7, M[N/x] E [r]. By (Sl),  we have N E P and 
M[N/x] E P. By (P5), we have (Ax. M ) N  E P. The rest of the proof is identical to  that of lemma 
4.7. 

Lemma 6.8 If P is a set satisfying conditions (P1)-(P5), then for every term M E SNA,, for 
every substitution y such that y(y) E 174 for every y : ~  E FV(M),  we have M[y] E [a]. 

Proof. We proceed by induction on the proof tv I' D M: a. The proof is actually identical to 
that of lemma 4.8, except that we don't even have to  bother with types containing w. 

Theorem 6.9 If P is a set of A-terms satisfying conditions (P1)-(P5), then SNA, C P for 
every type a (in other words, every term typable in 'D satisfies the unary predicate defined b y  P ) .  

Proof. Apply lemma 6.8 to  every term M in SNA, and to  the identity substitution, which 
is legitimate since x E [a] for every variable of type a (by lemma 6.5). Thus, M E [a] for 
every term in SNA,, that is SNA, C [a]. Since by lemma 6.5, (Sl)  also holds for [a], we have 
SNA, c [a] c P. 

As a corollary of theorem 6.9, we show that if a term M is typable in 'D, then M is strongly 
normalizing. This result was first proved by Pottinger [13]. 

Definition 6.10 A term M is strongly normalizing (or SN) iff every reduction sequence from M 
(w.r.t. -p) is finite. The reduction relation -p is strongly normalizing (or SN) iff every term 
is normalizing (w.r.t . ---+p). 

Theorem 6.11 If a term M is typable in 'D, then M is strongly normalizing. 

Proof. Let P be the set of A-terms that are strongly normalizing. To prove theorem 6.11, we 
apply theorem 6.9, which requires showing that P satifies the properties (P1)-(P5). First, note that 
the observation made at  the beginning of the proof of lemma 3.11 also applies. If M is any strongly 
normalizing term, every path in its reduction tree is finite, and since this tree is finite branching, by 
Konig7s lemma, this reduction tree is finite. Thus, for any SN term M ,  the depth2 of its reduction 
tree is a natural number, and we will denote it as d(M). We now check the conditions (P1)-(P5). 
(PI )  and (P2) are obvious. 

(P3) Since M and N are SN, d(M) and d(N) are finite. We prove by induction on d(M) + d(N) 
that M N  is SN. We consider all possible ways that M N  -p P. Since M is simple, M N  itself is 
not a redex, and so P = MINI where either N = N1 and M -p MI, or M = MI and N -p N 1 .  

'the length of a longest path in the tree, counting the number of edges 
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If MI is simple or MI = M ,  d(Ml) + d(Nl) < d(M) + d(N), and by the induction hypothesis, 
P = MINI is SN. Otherwise, MI = Ax. MI, Nl = N. By assumption, (Ax. M')N is SN, and so P 
is SN. Thus, P = MIN1 is SN in all cases, and M N  is SN. 

(P4) Any reduction from Ax. M must be of the form Ax. M _f tp  Ax. M' where M f p M'. 
We use a simple induction on d(M). 

(P5) Since N and M[N/x] are SN, the term M itself is SN. Thus, d(M) and d(N) are finite. 
We prove by induction on d(M) + d(N) that (Ax. M ) N  is SN. We consider all possible ways that 
(Ax.M)N +p P. Either P = (Ax.Ml)N where M +p MI, or P = (Ax.M)N1 where N +p N1, 
or P = M[N/x]. In the first two cases, d(Ml)+d(N) < d(M)+d(N),  d(M)+d(N1) < d(M) +d(N) ,  
and by the induction hypothesis, P is SN. In the third case, by assumption M[N/x] is SN. But 
then, P is SN in all cases, and so (Ax. M ) N  is SN. 

The converse of theorem 6.11 is true: if a A-term M is strongly normalizing, then kD r D M :  a 
for some I' and some type a. 

7 Typability in DL? and D 

We now prove the converse of each of the theorems 3.11, 4.11, and 6.11. Versions of these results 
were first obtained by Coppo, Dezani, and Venneri [4], and Pottinger [13]. Our treatment is 
basically that of Krivine [lo]. The crucial property of system DO, and this is where essential use of 
conjunctive types and of the type w is made, is the following: if Eva I' D N:  a and M -p N, then 
we also have FDn I' D M: a. This property fails in general for system V, but holds in the special 
case where kD I'D M[N/x]: a and kv I' D N: a1 for some al. In that case, kz, I' D (Ax. M)N:  a. We 
will need a number of preliminary results. First, we have the usual substitution lemma. 

Lemma 7.1 Let S E {DO, V). If ks I', x: a D M: r and ts r D N :  a ,  then ks I? D M[N/x]: T .  In 
particular, i f  x @ FV(M),  then kvn I' D M: r. 

Proof. An easy induction on typing derivations. 

We say that a type a is prime iff a # w and a is not of the form a1 A 02. A type a is a prime 
factor of a type r iff it is a subtype of T and it is prime. The following permutation lemma is 
technically very important. 

Lemma 7.2 Let S E {VQ,V}, and let a be a prime type. (1) If Fs I? D x: a, then there is a 
type a' such that x: a' E I' and a is a prime factor of a'. (2) If ks I' D M N :  a, then either the last 
rule used i n  the proof is (application), or there is a type a' such that a is a prime factor of a', 
ks I' D M N :  a', and the last rule used in  the proof is (application). (3) Given a proof ks I' D Ax. M:  a 
then there is  a proof i n  which the last rule is (abstraction), and given a proof ks I'D Ax. M :  a1 A u2, 
then there is a proof in  which the last rule applied is (A-intro). 

Proof. (1) We prove the slightly more general fact that (1) holds for any type a ,  where a is a 
factor of a', provided that the last step in the proof is not (A-intro),  by induction on the depth k 
of the derivation. Since a is prime, the last rule in ks I' D x: a cannot be (A-intro).  If ts r D x: a is 
not an axiom, then the last rule must be (A-elim) and either ks I' D x: r A a or ks I' D x: a A T is a 
proof of depth k - 1. If the last step is (A-intro), then we have a proof ks I' D x: a of depth k - 2, 



and we conclude by applying the induction hypothesis. Otherwise, by the induction hypothesis, 
there is some a' such that  either T A a is a factor of a' or a A r is a factor of a', and x: a' E r. In 
either case, a is a prime factor of a'. 

(2) We prove the slightly more general fact that  (2) holds for any type a, where a is a factor 
of a', provided that  the  last step in the proof is not (A-intro), by induction on the depth k of the 
derivation. Since a is prime, the last rule in in ks I' D M N :  a cannot be (A-intro). If the last 
rule in ks I' D M N :  a is not (application), it must be (A-elim), and either ks r D M N :  a A TI or 
ks I' D M N :  TI A a is a proof of depth k - 1. If the last step is (A-intro), then we have a proof 
ks  D M N :  a of depth k - 2, and we conclude by applying the induction hypothesis. Otherwise, by 
the induction hypothesis, there is some a' such that  either a A r 1  is a factor of a' and ks T D  M N :  a', 
or rl A a is a factor of a' and ks I' D M N :  a', and the last rule applied is (npplicntion). In either 
case, a is a prime factor of a'. 

(3) We prove that  given a proof ks I' D Ax. M :  a of depth k, then there is a proof of depth a t  
most k in which the last rule is (abstraction), and given a proof Fs I' D Ax. M :  a1 A a2 of depth 
k, then there is a proof of depth a t  most k in which the last rule applied is (A-intro). Since a is 
prime, the last rule in ks I' D Ax. M :  a cannot be (A-intro). If the last rule in ks I' D Ax. M :  a is 
not (abstraction), then it must be (A-elim), and either ks I'D Ax. M :  a A TI or Fs I' D Ax. M: r1 A a 
is a proof of depth k - 1. By the induction hypothesis, there is a proof of depth a t  most k - 1 in 
which the last rule is (A-intro). But then, we have a proof ts I' D Ax. M :  a of depth a t  most k - 2, 
and we conclude by applying the induction hypothesis. 

If the last rule in ks r D Ax. M :  a1 A a2 is not (A-intro), then it must be (A-elim). So, either 
ts I'D Ax. M :  rl A (a l  A a 2 )  or ts I'D Ax. M :  (a l  A 02) A rl is a proof of depth k - 1. By the induction 
hypothesis, there is a proof of depth a t  most k - 1 jn which the last rule in (A-intro). But then, 
we have a proof Fs I' D Ax. M: (al  A a 2 )  of depth a t  most k - 2, and we conclude by applying the 
induction hypothesis. 

We can now prove that  P-reduction preserves typing. This property is often known as "subject- 
reduction" property. 

Lemma 7.3 Let S E {Z)O,D).  If ks I'D 44: a and M +g N ,  then ks I'D N: a .  As n corollnry, 
if ts r D 44: a and M L p  N ,  then ts r D N :  a. 

Proof. We proceed by induction on the typing derivation. Since M +p AT, the last rule used 
in the proof ks r D M :  a cannot be an  axiom. 

If the last rule is (abstraction), then M = Ax. MI and N = Ax. N1, where A l l  -p N1, and we 
have 

ks  I ' , x : y ~  M1:S 

with y --+ S = a. By the induction hypothesis, we have 

and thus Fs I' D Ax. N1: y -+ 6. 

If the last rule is (application), then M = MIMz and we have 

ks I 'bM1:y + a and ks I ' D M z : ~ .  



There are three cases depending on the reduction M - p  N .  

If M = M1M2 and N = N1M2, where MI -p N1, then by the induction hypothesis, we have 

and thus, ks I'D N1M2:a. 

If M = M1M2 and N = M1N2, where M2 -D N2, then by the induction hypothesis, we have 

and thus, ks I? D M1N2: a. 

If M = (Ax. MI) Nl and N = MI [Nl/x], since 

by lemma 7.2 (3), we have 
t-s I", x: y D MI: a. 

Since we also have ks r D N1: 7, by lemma 7.1, we have 

The cases where the last rule is (A-intro) or (A-elim) are trivial. The corollary is obtained by 
induction on the number of steps in the reduction M Ap N.  

We now show a crucial lemma about type-checking in the systems DO and 2). It is in this 
lemma that the power of conjunctive types is really used. Again, we follow Krivine [lo]. 

Lemma 7.4 (1) If kvn  I' D M[N/x]: T, then there is a type a such that tDn I?, x: a D M: r and 
kvn ~ D N : u .  

(2) If kv I' D M[N/x]: T and kv I' D N :  7 ,  then there is a type a that kv I', x: a D M: r and 
kv r r , N : a .  

Proof. We proceed by induction on ( 1  M 1 ,  I T / ) ,  where I M I is the size of M and Irl is the size of 
7. 

(1) The case where T = w is trivial, we take a = w. 

If T = TI A 72, since kvn I'D M[N/x]: TI A 7 2 ,  by (A-elim), we have 

Fvn I' D M[N/x]: 7-1 and kvn r D M[N/x]: r;!. 

Since Ir1l <  IT^ and 1721 < IT], by the induction hypothesis, there are types a1 and a;! such that 
kva r , x :  a1 D M :  r1 and Fvst I' D N:  01, and kvn r , x : a 2  D M: r2 and kvn I' D N:  a2. Taking 
a = a1 A 0 2 ,  by lemma 4.13, we have kvn r ,  x: a D M:  TI and kDn I?, x: a D M: 72, and by (A-intro), 
we get I', x: a D M :  r1 A ~ 2 .  From t-Vn r D N :  al and kvn I' D N :  a2, by (A-intro), we get 
kvn r D N:  a. 

From now on, we can assume that T is prime. 



If M = x, then M[N/x] = x[N/x] = N ,  and kva I'DN: r. Take a = r, and then kVn I',x: ~ D X :  T 

is an axiom. 

If M = y with y # x, then M[N/x] = y[N/x] = y, and kvn I'D y: r .  Take a = w ,  and then 
kvn I ' ,x:wD y: r  and kvn I ' D N : ~ .  

If M = M1M2, then M[N/x] = (MlM2)[N/x] = Ml[N/x]M2[N/x], and we have kvn I' D 

Ml[N/x]M2[N/x]: T where r is prime. By lemma 7.2 (2)) there is a type T' such that T is a prime 
factor of r', kvn r~ Ml[N/x]M2[N/x]: r', and the last rule used in the proof is (application). Then, 
we have kvn I'D MI [NIX]: 7 + T', and kVn I' D Jd2[N/x]: 7, for some type 7.  Since I MI I < 1 M 1 and 
IM21 < [MI, by the induction hypothesis, there are types a1 and a 2  such that, 

kvn I', x: a2 D M2: 7, and kvn I' D N:  02. 

Then, taking a = a1 A 0 2 ,  by lemma 4.13, we have kvn I', x: a D MI: 7 -+ T' and Fvn I', x: a D 

M2: 7. Then, by (application), we have kvst I', x: a D M1M2: r'. Since o is a prime factor of T', by 
application(s) of (A-elim), we have kvn I', x: a D M1M2: r. Since kvn I' D N:  a1 and kVn I' D N:  a2, 
by (A-intro), we also have kvn I' D N: a. This concludes this case. 

If M = Xy. MI,  by suitable a-renaming, we can assume that y $ FV(N) .  Then, A4[N/x] = 
(Xy. Ml)[N/x] = Xy. M1[N/x], and kvn I' D Xy. Ml[N/x]: T where r is prime. By lemma 7.2 (3) ,  
there is a proof kvn I' D Xy. Ml[N/x]: r where the last rule used is (abstraction). Then, we have 
kvi2 I ' ,y:y D Ml[N/x]:6for some types 7 and 6 such that r = y + 6. Since JMII < )MI, by the 
induction hypothesis, there is some type a such that 

kvn r, y: 7, x: O D  MI: 6 and k v n  I', y: y D N :  a. 

Since y $ FV(N) ,  by lemma 7.1, we have kvn I' D N :  a. Since kvs2 I?, y: y ,  x: a D MI: 6, we have 
kDn I', x: a D Xy. MI: y + 6, that is, tvn I', x: a D Xy. MI: T. This concludes the proof of (1). 

(2) The proof is similar to  that of (1)) but we have to  be careful not to  use any type containing 
w. A careful inspection reveals that this only happens when r = w, which is ruled out in system D, 
or in the case where M = y and y # x. But in the second case, since we assumed that k2, I' D N: y, 
we can take a = 7. C7 

As a consequence of lemma 7.4 we obtain the following important lemma. 

Lemma7.5 (l)Ifkvn~~MIN/x]:r,thenkvnI'~(Ax.M)N:r. 
(2) If kv I'D M[N/x]: r and kv I' D N:  y, then kV I' D (Ax. M)N:  r. 

Proof. (1) By lemma 7.4 ( I ) ,  if k v n  I'D M[N/x]: r, then there is a type a such that 

kvn I', x: a D M:  r and kvn I' D N :  a.  

Then, by (abstraction), we have kvn I' D (Ax. M):  a + r, and since kvn  I'D N:  a ,  by (application), 
we get 

kvn I' D ( A X .  M)N:  7. 

(2) By lemma 7.4 (2)) if kv I' D M[N/x]:r  and kv I' D N: y, then there is a type a that 
kV I', x: a D M :  r and kv I' D N: a. The rest of the proof is as in (1). 

The following lemma generalizes lemma 7.5, and will be needed to  prove that every strongly 
normalizing term is typable in system D. 



Lemma 7.6 (1) If !-.on I' D MIN/x]Nl. .  . Nk: 7, then kvn I' D ((Ax. M)N)N1. .  . Nk: r. 
(2) If I-2, I' D M[N/x]Nl .  . . Nk: T ~ n d  kv I' D N: 7, then tV I' D ((Ax. M)N)N1.  . . Nk: r .  

Proof. We proceed by induction on (k, I T  1). 

(1) If k = 0, we conclude by lemma 7.5 (1). If r = rl A rz, by (A-elim), we have 

Fvn I' D MIN/x]Nl . . . Nk: rl and Fvn I' D MIN/x]N1.. . Nk: 72. 

By the induction hypothesis, we have 

kvn I' D ((Ax. M)N)Nl  . . . Nk: rl and kvst I' D ((Ax. M)N)N1 . . . Nk: 7-2, 

and thus, Fvn I' D ((Ax. M)N)Nl  . . . Nk: T. 

We can now assume that r is prime and k 2 1. Since Fvn I' D MIN/x]Nl . .  . Nk: r, by lemma 
7.2 (2), there are types y and r' where r is a prime factor of r' such that,  

Fvn I 'D MIN/x]Nl. .  .Nk-1: y + r' and Fvn I 'D Nk: y .  

By the induction hypothesis, we have 

and thus, Fvn I' D ((Ax. M)N)N1. .  .Nk: TI. Since r is a prime factor of r', by application(s) of 
(A-elim), we have FVn I' D ((Ax. M)N)Nl . . . Nk: T. 

(2) In the base case k = 0, we use lemma 7.5 (2). The rest of the proof is identical to  that of 

(1). 

The following lemma will be needed in showing that a term has a head-normal form iff it is 
solvable (see definition 7.10). 

Lemma 7.7 If the term M = Ax. MI or  the term M = MINI is typable in system Dfl with a 
nontrivial type, then MI itself is typable in system DQ with a nontrivial type. 

Proof. Assume Fva I' D Ax. MI: a or Fvn I' D MI Nl: a. We proceed by induction on the typing 
derivation. The last rule cannot be an axiom since the terms involved are not variables and a # w. 

If the last rule is (abstraction), then we must have 

with a = y i 6, and since a is nontrivial, 6 is nontrivial. 

If the last rule is (application), then we must have 

F V n I ' r > M l : y + a  and F v n I ' ~ N 1 : y  

Since a is nontrivial, y + a is nontrivial. 

If the last rule is (A-intro), we have 

kvn I' D M: al and kvn r D M: a2, 



and a = 01 A a;?. Since a is nontrivial, either a1 or a;? is nontrivial. The result follows from the 
induction hypothesis. 

If the last rule is (A-elim), we have 

kvn I' D M :  a1 A a;?, 

and either a = 01 or a = a;?. Since a is nontrivial, in either case, a1 A a;? is nontrivial. The result 
follows from the  induction hypothesis. [7 

We can now prove the following fundamental theorem about type-checking in system DR. It 
is a dual of lemma 7.3, in the sense that it shows that  in system DO, typing is preserved under 
reverse 0-reduction. This theorem first proved by Coppo, Dezani, and Venneri [4], also appears in 
Krivine [ lo] .  

Theorem 7.8 (1) If kvn I' D N :  T and M +p N ,  then kVn I' D M: T. 

(2) If kvn I' D M: T and M Ap N ,  then kDn I' D N:  T. 

Proof. Assume that  M -p N and kvn r D  N:  T. We proceed by induction on (11141, IT\), where 
IMI is the size of M and Irl is the size of T. 

(1) The case where r = w is trivial. 

If T = rl A 3-2, since kvn I' D N :  TI A T;?, by (A-elim), we have 

kvn I' D N :  T~ and kvn I' D N :  r2. 

Since Irll < ] T I  and Ir2J < IT\, by the induction hypothesis, 

D M: T~ and kVn I' D M :  T;?, 

and by (A-intro), we have kvn I' D M :  TI A T;?. 

Thus, from now on, we can assume that  r is prime. The case where M is a variable is impossible. 

If M = Ax. MI,  then we must have N = Ax. N1 where MI -p N1, and kvn I ' D X X .  N1: T where 
T is prime. By lemma 7.2 (3), there are some types y and 6 such that  T = y -+ 6, and we have 

Since I MlI < I MI, by the induction hypothesis, we have 

and by (abstraction), we get kvn I' D Ax. MI: y + 6, that  is, kvn r D M: r .  

If M = M1M2, there are three cases. Either N = NlMz where MI - i p  N1, or N = M1N2 
where M2 -p N 2 ,  or A4 = ( A x .  MI) N1 and N = MI [Nl 1x1. 

If N = Nl M2 where MI -0 N1, we have kvn I' D N1M2: T where T is prime. By lemma 7.2 
(2), there are some types y and T' where T is a prime factor of T' such that  

k v n I ' r > N 1 : y - + r '  and k.onI'DM;?:y. 



Since I M I \  < I MI, by the induction hypothesis, we have 

and since kvn I' D M2: y ,  we get 
tvSt r D M ~ M ~ :  TI 

Since T is a prime factor of TI, by application(s) of (A-elim), we get 

The case where N = M1N2 and M2 -p N2 is similar to  the previous case. 

If M = (Ax. Ml)Nl and N = Ml[Nl/x], since kDs2 I' D Ml[Nl/x]: r ,  by lemma 7.5 (I) ,  we have 

(2) is obtained by induction on the number of steps in M Ap N using lemma 7.3 and theorem 
7.8 (1). 

Theorem 7.8 fails for system D, even for terms M that type-check in D, as shown next. Let 
M = Xy. ((Ax. y)(yy)). We have M --+p N = Xy. y, and clearly N = Xy. y type-checks in 23 with 
type r -+ r, where r is a base type. However, we prove that M does not type-check in D with 
the type r t T, even though M type-checks in D with type a A ( a  -+ r )  -+ a A ( a  -+ r ) .  

Indeed, if kv D Xy. ((Ax. y)(yy)): r -+ T, by lemma 7.2 (3) ,  we must have 

Since T is prime, by lemma 7.2 (2), we must have 

kV y: T D (yy): a 

for some type a. Now, a is not necessarily prime, but since a is a type in D, a is a conjunction 
of prime types different from w ,  and thus, by application(s) of (A-elim), we can assume that 
t-z, y: T D (yy): a where a is prime. Again, by lemma 7.2 (3), we must have 

where a is a prime factor of a'. But now, y -+ a' is not a prime factor of T since r is a base type, 
which contradicts lemma 7.2 (1). Thus, M does not type-check in D with the type r -+ r .  

We now prove that every strongly normalizing term M is typable in system 'D. This theorem 
first proved by Pottinger [13], also appears in Krivine [lo]. 

Lemma 7.9 If a term M is strongly normalizing, then it is typable in system D. 



Proof. We proceed by induction on ( d ( M ) ,  / M I ) ,  where d ( M )  is the depth of the reduction tree 
from M and IMI is the size of M .  There are two cases, the first one being the case where M is in 
head-normal form, the second one where it is not. 

If M is in head-normal form, it is of the form M = Axl . .  .Ax,. yN1 . .  . N k ,  and the proof is 
similar t o  that of lemma 3.13. Since I Nil < I MI and d(N;)  5 d ( M ) ,  by the induction hypothesis, 
each Ni is typable in D, and by lemma 4.14, we can assume that they are typable in the same 
context, that is, 

kD I?, x l :  01 , .  . . ,x,: a,, y :  y  D N;: ri, 

if y  # xi for all i ,  or 
tv r ,  xl:  01,. . . ,Ern:  0, D N;: Ti,  

if y  = x;. Now, letting 
a = y A ( r l +  ...+ r k + 6 ) ,  

for any base type 6, with y  = a; if y  = xi, it is immediate (using lemma 4.13) that we have 

with r = (a l  t . . . -+ a ,  -+ 6 )  if y  # xi for all i ,  or 

with r = (a l  + ...+ a ,  t 6 )  and a; = a  if y = x;. 

If M = Axl . .  .Ax,. ( (Xy.  P)Q)Nl  . . .Nk has head-redex (Xy. P ) Q ,  then 

is such that d ( N )  < d ( M ) ,  and clearly we also have d(PIQ/x ]N l . .  . N k )  5 d ( N )  and d ( Q )  < d ( N ) .  
By the induction hypothesis, 

kD r', x l :  a:, . . . , x,: a; P PIQ/x]Nl  . . . Nk:  6 ,  

and 
kv r t t , x 1 : ~ ;  ,..., X , : O ; D Q : ~ ,  

and by lemma 4.14, letting a; = a: A  a!, there is a context I' such that 

and 
kV r ,  x ~ :  a l ,  . . . , x,: 0, D Q :  7 .  

By lemma 7.6 ( 2 ) ,  we have 

I', 21: 01,  . . . , x,: a ,  P ( (Xy .  P)Q)N1 . . . Nk:  6, 

and thus, 
kV r D Axl . . . Ax,. ((Ay. P)Q)Nl  . . . Nk:  r ,  

with T = (a1 + ... + a,  + 6) .  



We are now ready to  prove the fundamental theorems characterizing the terms that have head- 
normal forms, the terms that are normalizable, and the terms that are strongly normalizing, in 
terms of typability in the systems DR and D. These theorems are proved in Krivine [ lo] .  Before 
we do so, we define the notion of a solvable term, a notion that turns out to  be equivalent to  the 
property of having a head-normal form (a result due to  Wadsworth). 

Definition 7.10 A closed term M is solvable iff there are terms N1,. . . , Nk, where k > 0, such 
that,  MNl  . . . Nk AP Ax. x. A nonclosed term M is solvable iff its closure is solvable. 

If a term M is not closed and FV(M)  = {xl,. . . ,xm) ,  its closure is Axl. .  .Axm. M, and M 
solvable means that there are terms Nl, . . . , Nk such that 

(Axl.. .Axm. M)Nl . .  . Nk Ap Ax. x. 

Thus, if k < m,  this means that 

and if k 2 m, this means that 

Thus, solvability can also be defined by saying that a term (closed or open) is solvable iff there 
is a substitution cp for some of the free variables of M and some terms N1,. . . , Nk such that,  
M[q]N1.. . Nk AP AX. X. 

It is also easy t o  see that M is solvable iff for every term Q, there is a substitution q for some of 
the free variables in M and some terms N1,. . . , Nk such that, M[(p]Nl . . . Nk Lp Q. Indeed, this 
second definition implies the first by picking Q = Ax. x. Conversely, if M[q]N1 . . . Nk Arc Ax. x, 
then M[cp]Nl.. . NkQ Q. Finally, we prove our three major theorems. A version of the next 
theorem was first obtained by Coppo, Dezani, and Venneri 141. 

T h e o r e m  7.11 For any term M of the (untyped) A-calculus, th8e fo2lowing properties a,re equiv- 
alent. 

(1) M is solvable; 

(2) M has a head-normal form (i.e., there is some head-normal form N such that M Lp N). 

(3) M is  typable i n  system DO with a nontrivial type; 

(4)  Every quasi-head reduction from M is finite. In particular, the head-reduction from M is 
finite. 

Proof. (1) + (3). If M is solvable, then there are terms N1, . . . , Nk such that 

(Axl.. .AX,. M)Nl . .  . Nk AP Ax. x, 

where m = 0 if M is closed. Since Ax. x is typable with the type T + T where T is any nontrivial 
type, by theorem 7.8, (Axl.. .Ax,. M)Nl . . . Nk is also typable in DR with the nontrivial type 
T + T .  Then, by application(s) of lemma 7.7, M itself is typable in DR with a nontrivial type. 



(3) =+ (4). This follows from theorem 3.11. 

(4) =+ (2). This is trivial. 

(2) + (1). If M is equivalent to  a head-normal form, clearly its closure is equivalent to  a 
head-normal form, and thus we assume that M is closed. By assumption, 

where Axl . . . Ax,. x;Ql . . .Qk is a closed head-normal form. Let 

and N j  any arbitrary term for j # i ,  1 5 j 5 m. Then, it is immediate that M N l  . . . N ,  X Z . ~ ,  
and M is solvable. 

I t  should be noted that the implication (2) + (3) follows directly from lemma 3.13 and theorem 
7.8, and no detour via the solvable terms is necessary. Furthermore, this implication shows that 
every head-normalizable term is typable in 'DO with a nontrivial type of a rather special kind (since 
the types arising in lemma 3.13 are quite special). Next we consider normalizable terms. A version 
of the next theorem was first obtained by Coppo, Dezani, and Venneri [4]. 

Theorem 7.12 For any term M of the (untyped) X-calculus, the following properties are equiv- 
alent. 

(1) M is  normalizable; 

(2) There exist a context I? and a type a ,  both w-free, such that FDn I' t. M :  a ;  

(3) Every quasi-Eeftmost reduction from M is finite. In particular, the leftmost reduction from 
M is  finite. 

Proof. (1) + (2). This follows from lemma 4.15 and theorem 7.8. 

(2) =+ (3). This follows from theorem 4.11. 

(3) =+ (1). This is trivial. 

The implication (1) + (2) shows that every normalizable term is typable in 'DQ with an w-free 
(context and) type of a rather special kind (since the types arising in lemma 4.15 are quite special). 
Finally, we consider strongly normalizing terms. A version of the next theorem was first obtained 
by Pottinger [13]. 

Theorem 7.13 For any term M of the (untyped) X-calculus, the following properties are equiv- 
alent. 

(1) M is strongly normalizing; 

(2) M is typable in system 'D. 

Proof. (1) j (2). This follows from lemma 7.9. 

(2) + (1). This follows from theorem 6.11. 

Other interesting results can be obtained, for example the finite developments theorem (see 
Krivine [lo]). In the next section, we characterize the terms that have a weak head-normal form. 
This result appears t o  be new. 



8 P-Candidates for Weakly Head-Normalizing A-Terms 

In this section, we generalize theorem 3.9 and theorem 7.11 to  the terms that are weakly head- 
normalizable. First, we need to  adapt definition 2.3 so that our results apply to  weakly head- 
normalizable A-terms. We thank Mariangiola Dezani for suggesting a simplification in the definition 
of a weakly nontrivial type. The difference between head-normalizable A-terms and weakly head- 
normalizable A-terms is that a n y  A-abstraction Ax. M is considered a weak head-normal form, even 
if M has a head redex. 

Definition 8.1 A type a is w-free iff w does not occur in a. A type is weakly nontrivial iff either 
a is a base type and a # w, or a = y -+ r where r is weakly nontrivial and y is arbitrary, or 
a = al A a2 where a1 or 02 is weakly nontrivial, or a = w -+ o. A type is weakly trivial iff it is not 
weakly n~n t r iv i a l .~  

Definition 3.1 remains unchanged, as well as definition 3.2, but we repeat definition 3.2 for 
convenience. 

Definition 8.2 Properties (P1)-(P3s) are defined as follows: 

( P l )  x E E, c E E, for every variable x and constant c. 

(Pa) If M E P and M -p N ,  then N E P. 

(P3s) If M is simple, M E P, N E A, and (Ax. M')N E P whenever M Ax. Ad', then 
M N  E P. 

From now on, we only consider sets P satisfying conditions (P1)-(P3s) of definition 8.2. Defi- 
nition 3.3 remains unchanged, as well as the remarks on stubborn terms following this definition. 
However, we need to  modify definition 3.4. Given a set P ,  for every type a,  we define [a]] A as 
follows. 

Definition 8.3 The sets [a] are defined as follows: 

[a]  = E, where a + w is a base type, 

[a] = A, where a is a weakly trivial type, 

[a -+ r ]  = { M  1 M E P, and for all N ,  if N E [a] then M N  E [ r ] } ,  

where a -, r is weakly nontrivial, 

[a 7-1 = la1 n urn, 
where a A r is weakly nontrivial. 

By definition 8.1, a type is weakly trivial if either it is w ,  or it is of the form a i T where T 
is weakly trivial (except for w + w ) ,  or it is of the form a A r where both a and T are weakly 
trivial. We could have defined [a] by changing the second clause to  [w ]  = A, and by dropping the 

31n an earlier version, we were also considering types a --, w where a is w-free, among the weakly nontrivial types. 
However, as suggested by Mariangiola Dezani, it is simpler to use the type w --, w. 



conditions a i r weakly nontrivial and a A r weakly nontrivial. However, it would no longer be 
true that  [a] = A for every weakly trivial type, and this would be a serious obstacle t o  the proof 
of lemma 8.6. The following lemma shows that  the property of being a P-candidate is an inductive 
invariant. 

Lemma 8.4 If P is a set satisfying conditions (P1) - (P~s ) ,  then the following properties hold for 
every type a: (1) [a] contains all stubborn terms i n  P (and i n  particular, every variable and every 
constant); (2)  [a] satisfies (S2) and (S3); (3)  If a is weakly nontrivial, then [a] also satisfies (Sl) ,  
and thus it is a P-candidate. 

Proof. We proceed by induction on types. If a is a base type, then by definition [[a] = P if 
a # w, and [w] = A. Then, (1) and (2) are clear by ( P l )  and by (P2) (note that (S3) is trivial). If 
a # w, then (Sl)  is trivial since [a] = P. 

We now consider the induction step. 

(3) We prove that  (Sl)  holds for weakly nontrivial types. If a -+ r is weakly nontrivial, then 
there are two cases: (a) the  type r is weakly nontrivial, and by the definition of [o -+ r], we have 

[a -+ r] P. (b) a = w + w. In this case, since [w] = A, it is clear from definition 8.3 that  
[w + W] = P. 

If a = a1 A 02 is weakly nontrivial, then a1 or a 2  is weakly nontrivial. Assume a1 is weakly 
nontrivial, the case where 8 2  is weakly nontrivial being similar. By the induction hypothesis, 
[[a1] c P ,  and since [[al A a2] = [al] n [a2], it is clear that  [a1 A a2] c P. 

The verification of (1) and (2) is obvious for weakly trivial types, since in this case, [a] = A. 
Thus, in the  rest of this proof, we assume that  we are considering weakly nontrivial types. 

(1) Given a type a -+ r, by the induction hypothesis, [r] contains all the stubborn terms in P. 
Let M E P be a stubborn term. Given any N E [a], obviously, N E A. Since we have shown that  
M N  is a stubborn term in P when M E P is stubborn and N is arbitrary, we have M N  E [r]. 
Thus, M E [a -+ r]. If a = a1 A 0 2 ,  by the induction hypothesis, all stubborn terms in P are in 
[al] and in [a2], and thus in [al A a2] = [al] n [a2]. 

(2) We prove (S2) and (S3). 

(S2). Let M E [a -+ T] and assume that  M -p M'. Since M E P by (Sl) ,  we have h1' E P 
by (P2). For any N E [a], since M E [a -+ r] we have M N  E [r], and since M -p M' we have 
M N  +p M ' N .  Then, applying the induction hypothesis a t  type r, (S2) holds for [T], and thus 
M'N E [r]. Thus, we have shown that  M' E P and that  if N E [a], then M'N E [IT]]. By the 
definition of [a -+ TI], this shows that  M' E [a -+ r], and (S2) holds a t  type a -+ r. 

If a = a1 Aa2, by the induction hypothesis, (S2) holds for [al] and [a2], and thus for [[ul A U ~ ]  = 

[all n [az]. 

(S3). Let M E P be a simple term, and assume that  Xx.M1 E [a -+ T] whenever 41 fa Xx.Mf.  
If a -+ r = w -+ W, then we saw that  [w + w] = P. In this case, (S3) is trivial. Thus, we now 
assume that  a t r is weakly nontrivial and not w -+ w. 

We prove that  for every N ,  if N E [a], then M N  E [r]. The case where M is stubborn has 
already been covered in (1). Assume that  M is not stubborn. First, we prove that  M N  E P ,  and 



for this, 

N E [all 
not w -4 

we have 

we use (P3s). If M f Ax. M', then by assumption, Ax. M' E [a -+ r ] ,  and for any 
, we have (Ax. M')N E [r]. Recall that we assumed that a -+ T is weakly nontrivial and 
w. This implies that T is weakly nontrivial. Then, by (Sl), (Ax. M')N E P ,  and by ( P ~ s ) ,  
M N  E P. Now, there are two cases. 

If T is a base type, then [T] = P since r # w, and M N  E [T] (since M N  E P ) .  

If T is not a base type, the term M N  is simple. Thus, we prove that M N  E [TI using (S3) 
(which by induction, holds at type T). The case where M N  is stubborn is trivial. Otherwise, 

observe that if M N  f g Q, where Q = Ay. P is an I-term, then the reduction is necessarily of the 
form 

M N  f g (AX. M')Nt -p M1[N'/x] Q, 

where M f g Ax. M' and N Ap N'. Since by assumption, Ax. M' E [a -+ r] whenever 

M f g Ax. MI, and by the induction hypothesis applied at type a ,  by (S2), N' E [a], we conclude 
that (Ax: a. M')N1 E IT]. By the induction hypothesis applied at type T, by (S2), we have Q E [[r], 
and by (S3), we have M N  E [T]. 

Since M E P and M N  E [r] whenever N E [a], we conclude that M E [a + r] .  

For the proof of the next lemma, we need to add two new conditions (P4w) and (P5n) to 
(P1)-(P3s). 

Definition 8.5 Properties (P4w) and (P5n) are defined as follows: 

(P4w) If M E A, then Ax. M E P. 

(P5n) If M[N/x]  E P, then (Ax. M ) N  E P. 

Note that by ( P ~ w ) ,  terms of the form Ax. M are automatically in P ,  no matter what M is. 

Lemma 8.6 If P is a family satisfying conditions (P1)-(PSn), and M[N/x] E [r] for every 
N E A, then Ax. M E [a + T]. 

Proof. The lemma is obvious if a -+ T is weakly trivial, since in this case, [a -+ r] = A. If 
a + T = w + w, by ( P ~ w ) ,  Ax. M E P, and since [w + w] = P, the result holds. Thus, in the 
rest of this proof, we assume that a + r is weakly nontrivial and not w -+ w. This implies that r 
is weakly nontrivial. 

We prove that for every every N ,  if N E [a], then (Ax. M ) N  E [r]. We will need the fact 
that the sets of the form [a] have the properties (S1)-(S3), but this follows from lemma 8.4, since 
(P1)-(P3s) hold. By ( P ~ w ) ,  we have Ax. M E P. 

Next, we prove that for every every N ,  if N E [a], then (Ax. M ) N  E [[TI]. Let us assume tha.t 
N E [a]. Then, by the assumption of lemma 8.6, M[N/x] E [T]. Since r is weakly nontrivial, by 
(Sl),  we have M[N/x] E P. By (P5n), we have (Ax. M ) N  E P. The rest of the proof is identical 
t o  that of lemma 3.7. 

Lemma 8.7 If P is a set satisfying conditions (P1)-(PSn), then for every term M E A,, for 
every substitution y such that y(y) E [y] for every y: 7 E FV(M),  we have M[y] E [a]]. 



Proof. We proceed by induction on the proof I? b M: 0. The lemma is obvious if a is a 
weakly trivial type, since in this case, [a]  = A. Thus, in the rest of this proof, we assume that 
we are considering weakly nontrivial types. The rest of the proof is identical t o  that of lemma 3.8, 
with "nontrivial" replaced by "weakly nontrivial". 

Theorem 8.8 If P is a set of A-terms satisfying conditions (P1)-(PSn), then A, C F for every 
weakly nontrivial type a (in other words, every term typable in VR with a weakly nontrivial type 
satisfies the unary predicate defined by P). 

Proof. Apply lemma 8.7 t o  every term M in A, and to  the identity substitution, which is 
legitimate since x E [a]  for every variable of type a (by lemma 8.4). Thus, M E [a]  for every term 
in A,, that is A, C [a] .  Finally, by lemma 8.4, if a is weakly nontrivial, (Sl )  holds for [a] ,  that is 
A, c [a]  G F .  

As a corollary of theorem 8.8, we show that if a term M is typable in VR with a weakly 
nontrivial type, then the weak head reduction from M is finite (and so, M has a weak head-normal 
form). 

Definition 8.9 Given a term M = ((Ay.P)Q)Nl . . . Nk, where m 2 0 and k > 0, the term (Xy. P)Q 
is the weak head redex of M .  A weak head reduction is a reduction sequence in which every step 
reduces the weak head redex. A weak quasi-head reduction is a (finite or infinite) reduction sequence 
s = (Ma, MI, .  . . ,Mi , .  . .) such that, for every i > 0, there is some j 2 i such that, if Mj+1 belongs 
t o  s ,  then M j  -0 Mj+l is a weak head-reduction step. A term is in weak head-normal form iff it 
has no weak head redex, that is, either it is a A-abstraction Ax. MI, or it is of the form yN1 . . . Nk, 
where k > 0. The variable y is called the head variable. A term is weak head-normalizable iff the 
weak head reduction from M is finite. 

Note that the last step in a finite weak quasi-head reduction is necessarily a weak head-reduction 
step. Also, any suffix of a weak quasi-head reduction is a weak quasi-head reduction. The main 
advantage of weak quasi-head reductions over weak head-reductions is that (P2) obviously holds 
for terms for which every weak quasi-head reduction is finite. 

Theorem 8.10 If a term M is typable in V R  with a weakly nontrivial type, then every weak 
quasi-head reduction from M is finite. As  a corollary, the weak head reduction from A4 is finite 
(and so, M has a weak head-normal form). 

Proof. Let P be the set of A-terms for which every weak quasi-head reduction is finite. To 
prove theorem 8.10, we apply theorem 8.8, which requires showing that F satifies the properties 
(P1)-(P5n). The remark made at the beginning of the proof of lemma 3.11 also applies here. If 
every weak quasi-head reduction sequence is finite, since the reduction tree is finite branching, by 
I<onig7s lemma, the subtree consisting of weak quasi-head reduction sequences is finite. Thus, for 
any term M from which every weak quasi-head reduction sequence is finite, the length of a longest 
weak quasi-head reduction path in the reduction tree from M is a natural number, and we will 
denote it as l(M). Now, (P I )  is trivial, and (P2) follows from the definition. 

(P3s). Let M be simple, and assume that every weak quasi-head reduction from M is finite. 
We prove that every weak quasi-head reduction from M N  is finite by induction on 1(M). Let 



M N  -p Q be a reduction step. Because M is simple, M N  is not a redex, and we must have 
M ---to MI or N +p N1. If MI is simple, since l(Ml) < l (M),  the induction hypothesis yields 
that every weak quasi-head reduction from MIN is finite. If N -p N1, because we are considering 
weak quasi-head reductions from M N ,  there is a first step where a weak head reduction is applied, 
and it must be applied t o  M.  Thus, we must have M N  -p MN1 A p  MN; -p MIN;. Since 
!(MI) < l(M), the induction hypothesis yields that every weak quasi-head reduction from MN1 is 
finite. Otherwise, MI = Ax. P, and by assumption, every weak quasi-head reduction from (Ax. P ) N  
is finite. Thus every weak quasi-head reduction from M N  is finite. 

(P4w). Assume that every weak quasi-head reduction from M is finite. By definition, Ax. M is 
a weak head normal form, and the result is trivial. 

(P5n). Let k be the index of the first weak head-reduction step in any weak quasi-head reduction 
from (Ax. M)N.  We prove by induction on k that every weak quasi-head reduction from (Ax. M ) N  
is finite. If k = 0, then (Ax. M ) N  is a weak head-redex. However, by the assumption, every 
weak quasi-head reduction from M[N/x] is finite. Now, consider any weak quasi-head reduction s 
from (Ax. M ) N  of index k 2 1. The first reduction step from (Ax. M ) N  is either (Ax. M ) N  -p 
(Ax. Ml)N or (Ax. M ) N  -p (Ax. M)N1. In either case, the index of the first weak head-reduction 
step in the weak quasi-head reduction tail(s) is k - 1, and by the induction hypothesis, we get the 
desired result. 

The converse of theorem 8.10 is true: if a A-term is weak head-normalizable, then it is typable 
in Vfl with a weakly nontrivial type a. First, we prove the following weaker result. 

Lemma 8.11 Given a term M = yNl . . . Nk, there are nontrivial types a and y, where a is 
a base type, such that Fvn  y: y D M: a. Given a term M = Ax. MI, for any type a ,  we have 
kDR r > M : a t w .  

Proof. Let y = w t . . . + w t a with k occurrences of w. It is easy to  see that we have 

If M = Ax. MI, for any type a, by the w-axiom, we have 

and thus Fvn D A X .  M 1 : a - t ~ .  I7 

Note that there are weakly head-normalizable terms that are not head-normalizable. If 6 = 
Ax. xx, then Ax. (66) is in weak head-normal form, but it is not head normalizable since 66 is not. 

We are now ready to  prove the theorem characterizing the A-terms that are weakly head- 
normalizable in terms of type-checking in DSt. However, we do not have a notion of "weak solv- 
ability". 

Theorem 8.12 For any term M of the (untyped) A-calculus, the following properties are equiv- 
alent. 

(1) M has a weak head-normal form (i.e., there is some weak head-normal form N such that 
M Ap N). 



(2) M is typable in system D!2 with a weakly nontrivial type; 

(3) Every weak quasi-head reduction from M is finite. In  particular, the weak head-reduction 
from M is finite. 

Proof. (1) + (2). This follows from lemma 8.11 and theorem 7.8. 

(2) + (3). This follows from theorem 8.10. 

(3) + (1). This is trivial. 

It should be noted that  the implication (1) + (2) shows that  every weakly head-normalizable 
term is typable in VC! with a weakly nontrivial type of a rather special kind (since the types arising 
in lemma 8.11 are quite special). 

The method of P-candidates can also be applied t o  various typed X-calculi (see Gallier [6]). 
In a recent paper, McAllester, KuEan, and Otth [ l l ] ,  prove various strong normalization results 
using another variation of the reducibility method. It would be interesting t o  understand how this 
method relates t o  the method presented in this paper. 

Acknowledgment. We thank Mariangiola Dezani for some very incisive comments. 
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