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Abstract

In this paper, we formulate a semi-implicit time-stepping model for multibody mechani-
cal systems with frictional, distributed compliant contacts. Employing a polyhedral pyramid
model for the friction law and a distributed, linear, viscoelastic model for the contact, we
obtain mixed linear complementarity formulations for the discrete-time, compliant contact
problem. We establish the existence and finite multiplicity of solutions, demonstrating that
such solutions can be computed by Lemke’s algorithm. In addition, we obtain limiting re-
sults of the model as the contact stiffness tends to infinity. The limit analysis elucidates the
convergence of the dynamic models with compliance to the corresponding dynamic models
with rigid contacts within the computational time-stepping framework. Finally, we report
numerical simulation results with an example of a planar mechanical system with a fric-
tional contact that is modeled using a distributed, linear viscoelastic model and Coulomb’s
frictional law, verifying empirically that the solution trajectories converge to those obtained
by the more traditional rigid-body dynamic model.

1 Introduction

This paper addresses the dynamic simulation of mechanical systems with frictional compliant
contacts. Constraints that arise in systems with contact are called unilateral constraints because
the contact forces and the relative separation and slip between rigid objects can be defined so
that they are always nonnegative [24]. Excellent reviews of the state-of-the-art in rigid-body
dynamic simulation with unilateral constraints can be found in [9, 36].

The use of Coulomb’s friction law with the principles of classical rigid-body dynamics intro-
duces mathematical inconsistencies. Specifically, in a forward dynamics problem, if all contacts
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are known to be rolling (sticking), the existence of a solution for the accelerations can be shown
if the constraints are linearly independent [38]. In all other cases, the initial value problem can
have no solution or multiple solutions for special choices of initial conditions [24, 42]. These
difficulties can be traced back to two distinct aspects of the model. First, when the number
of contact forces (normal and tangential) is greater than three in planar systems (six in spa-
tial systems), the system is statically indeterminate and the contact forces cannot be uniquely
determined. As a result, it is difficult to incorporate any frictional model that relates nor-
mal and tangential forces to relative velocities. Second, in models of dry friction [5], frictional
forces (and moments) depend in a nonsmooth fashion on reaction forces and relative velocities,
which in turn are functions of accelerations. The nonsmooth nature of this dependence leads
to difficulties with proofs of existence and uniqueness.

One approach to overcoming these difficulties is by using an explicit model of the compliance
at contacts between nominally rigid bodies. In a compliant contact model, constitutive laws
are used to relate contact forces with local deformations [15, 34, 43]. The simplest example of
such models can be found in penalty-function methods [1, 44], in simulation of soft tissue [22]
and physics-based simulation in graphics [20]. In these papers, compliance is used to prescribe
normal contact forces as a function of normal displacements. The model considered here is
phenomenologically more correct. In addition to normal compliance, it incorporates tangential
compliance, coupling friction with local deformations in a fundamental way. Continuum models
for modeling the deformations at each contact are described in [16, 32, 41, 43]. Existence and
uniqueness can be shown for continuum models provided the maximum tangential force at each
point is a priori known [16]. Alternatively, lumped models of compliance that capture linear
viscoelastic behavior are used in [15, 34]. Proofs of existence and uniqueness along with a
singular perturbation analysis for a single-contact planar system are provided in [34]. For such
a system, the solution is shown to converge to the traditional rigid-body dynamic model in the
limit of zero compliance.

The forward dynamics problem for mechanical systems with frictional contacts was first
formulated as a Linear Complementarity Problem (LCP) by Lötstedt [24]. Lötstedt also gives
existence and uniqueness conditions for a planar system. These conditions were further gener-
alized by Baraff [6]. Once the problem is formulated as an LCP, the existence and uniqueness
conditions can be derived from LCP theory; see [12] for a comprehensive treatment of the
LCP. Extensive results on LCP formulations for rigid-body dynamics with Coulomb frictional
contacts can be found in [30, 38]. It is shown that the existence and uniqueness of rigid-body
solutions can be guaranteed for three-dimensional systems if the coefficients of friction at both
rolling and sliding contacts are below an upper bound. But it is difficult, in practice, to obtain
an analytical expression for such an upper bound. Our work extends the rigid-body results to
mechanical systems with compliant frictional contact.

The approach we take in this paper is influenced by the extensive recent work on time-
stepping methods for dynamic simulation of rigid-body systems in frictional contact [2, 3, 4,
35, 36, 37, 39]. Instead of developing integrators that numerically solve continuous equations of
motion while respecting the constraints on the state variables, time-stepping methods directly
discretize the equations of motion and the associated constraints automatically, thus guarantee-
ing the satisfaction of the constraints. We will show the existence of solutions for time-stepping
compliant contact models, and demonstrate the convergence of these solutions to solutions ob-
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tained by rigid body dynamic models (when these are available) as the contact compliance is
reduced to zero.

The modeling in the paper is an extension of the first author’s Ph.D. thesis [33] in which
each contact was modeled by a nonlinear but decoupled springs and dampers in the normal
and tangential direction. In contrast, in this work, each contact is modeled as a finite patch
(as opposed to a point contact) and constitutive laws derived from linear viscoelastic theory
are used to relate small normal and tangential deformations to the distribution of stresses in
the contact patch. In so doing, we ignore the effect of the inertia associated with deformations.
An important advantage of this approach is the ability to model more sophisticated aspects
of frictional contacts by allowing for smooth transitions between contact and separation, and
between stick and slip at each point in the contact patch. Thus it incorporates microslip [28]
and can be easily extended to model local adhesion, asperities, and nonlinear, nonlocal frictional
laws [19, 28].

We do not explicitly consider frictional impacts, another important and relevant area in
dynamic simulation. Goyal [15] and Kraus [21] derive models for frictional impacts from com-
pliance models as alternatives to rigid body impact models developed by Brach [8], Chaterjee
and Ruina [11], and Mirtich [27]. Marghitu and Hurmuzlu employ continuum models for the
study of frictional impacts [26]. While the model and the solution methodology proposed in
this paper lends themselves to solving problems with frictional impacts, our goal, in this paper,
is to focus on problems with finite force solutions.

The paper is organized as follows. In the next section, we derive a time-stepping framework
for dynamic simulation of systems with distributed compliance. We show that the discrete-
time, distributed compliant model can be formulated as mixed complementarity problems. In
Section 4, we establish the conditions for existence and finite multiplicity of solutions based
on the complementarity problem formulation. In Section 5, we undertake a limit analysis
within the time-stepping framework and prove that the solution to the distributed compliant
model converges to that of the corresponding rigid-body models. Numerical implementation
and results are presented in Section 6.

2 Time-Stepping Models

We present in this section the semi-implicit time-stepping, frictional compliant contact model
that is the main object of study in this paper. There are three major components of such a
model: the dynamic equations of motion, the distributed compliant model, and the frictional
contact conditions. These are described in three different subsections.

2.1 Equations of motion

The dynamic equation of motion for a multibody system with frictional contacts can be written
in the form

M(q)ν̇ = f(t, q, ν) + G(q)T
[
JΨn(q)T λn + JΨt(q)T λ t + JΨo(q)T λ o

]
, (1)

where q is the nq-dimensional vector of generalized coordinates, ν is the nν-dimensional vector
of the system velocities. M(q) is the nν×nν symmetric positive definite inertia matrix, f(t, q, ν)
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is the nν-dimensional external force vector (excluding contact forces), G(q) is a nq×nν Jacobian
matrix1, λn,t,o are the contact force vectors in the normal direction (labelled n) and the two
tangential directions (labelled t and o) and JΨn,t,o(q) are the Jacobian matrices corresponding
to the contact forces. For rigid-body systems, λn,t,o are nc-dimensional vectors, and JΨn,t,o(q)
are nc × nq matrices, where nc is the total number of contacts. For compliant contact models,
the dimensions of these forces and Jacobians are related to the compliance model being used
— see Subsection 2.2 for details. The kinematics equations relate the system velocity ν to the
time-derivative of the system configuration q̇ ≡ dq/dt via the parametrization matrix G(q):

q̇ = G(q)ν. (2)

Together, (1) and (2) constitute the equations of motion given by the dynamics of the mechanical
system.

We consider a time discretization of the differential equations (1) and (2) for t ∈ (0, T ]. Fix
a positive integer N and let h ≡ T/N . Partition the interval [0, T ] into N subintervals [t`, t`+1],
where t` ≡ `h, for ` = 0, 1, . . . , N . Write

q` ≡ q(t`), ν` ≡ ν(t`), and λ`
n,t,o ≡ λ n,t,o(t`).

The time derivatives ν̇ and q̇ are replaced by the backward Euler approximations: for all
` = 0, . . . , N − 1,

ν̇(t`+1) ≈ ν`+1 − ν`

h
and q̇(t`+1) ≈ q`+1 − q`

h
.

The various time-stepping schemes differ in how M(q) and the right-hand sides in (1) and (2)
are approximated. In the fully implicit scheme, which is the version employed in the recent
doctoral thesis [40] for the numerical simulation of multi-rigid-body systems with frictional
contact, all functions are evaluated at time ` + 1, resulting in the following nonlinear algebraic
equation:

M(q`+1) ( ν`+1 − ν` ) = h f(t`+1, q
`+1, ν`+1)+

G(q`+1)T
[
JΨn(q`+1)T λ`+1

n + JΨt(q`+1)T λ`+1
t + JΨo(q`+1)T λ`+1

o

]
.

Because the inertia matrix and the Jacobians are functions of q`+1, solving for the unknown
q`+1 involves the solution of nonlinear equations. In contrast to the fully implicit scheme, a
semi-implicit scheme is a modification that results in a linear problem formulation. Specifically,
a semi-implicit discretization of (1) gives us:

M(q`) ( ν`+1 − ν` ) =

h f(t`, q`, ν`) + G(q`)T
[
JΨn(q`)T λ`+1

n + JΨt(q`)T λ`+1
t + JΨo(q`)T λ`+1

o

]
.

(3)

Similarly, a semi-implicit discretization of (2) results in

q`+1 − q` = hG(q`)ν`+1. (4)
1The matrix G(q) allows us to use different parameterizations for SO(3), and to use speeds (ν) that are

different from the derivatives of the coordinates.
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The semi-implicit discretization scheme allows us to apply linear complementarity theory [12]2.
As we will show next, the compliant contact model and the frictional contact constraints can
also be written in a semi-implicit form leading to a consistent problem formulation.

2.2 Distributed compliant contact model

The distributed compliant model relates the contact forces with the local deformations. At any
contact point υ = 1, . . . , nc, we divide the patch that encloses the contact area into ns × ns

small discrete elements with lumped stiffness and damping properties as depicted in Figure 1.
In the 3-dimensional setting, each element has 3 sets of lumped spring-damper units, one for
each of the n, t, and o directions. Further, we will require that the contact patches (contact
points in the limiting case of rigid bodies) be distinct and non-overlapping. We will assume that
the deformations at a contact patch are related to forces at that contact patch. In other words
the local deformations at a particular contact point or contact patch are not directly affected
by the forces at other contact patches. This is equivalent to saying that all deformations occur
over a finite number of non-overlapping contact patches. At each contact patch υ, we can write

λυ = Gυ(δ υ, δ̇ υ), (5)

where Gυ is a smooth function representing the mechanics of the contact patch υ, δ υ is the
vector of body deformations, and δ̇ υ is the vector of deformation rates.

In this paper, we make two assumptions about the form of G. First, we assume that the
contacting objects are viscoelastic and linear. Second, we assume the contacts are counterfor-
mal, an assumption that is common in contact mechanics and in robotics [14, 16, 18, 31]. The
magnitude of the deformations and the size of the contact patch are functions of the material
properties of the contacting objects and to some extent, the relative curvature of the contacting
surfaces. The counterformal assumption means that both these magnitudes are small compared
to the relative curvature of the contacting surfaces. Then, at each contact patch υ, we have

λυ = Kυδ υ + Cυ δ̇ υ, (6)

with

λυ =




λυ
n

λυ
t

λυ
o


 ∈ <3n2

s , δ =




δυ
n

δυ
t

δυ
o


 ∈ <3n2

s ,

and

Kυ ≡




Kυ
nn Kυ

nt Kυ
no

Kυ
tn Kυ

tt Kυ
to

Kυ
on Kυ

ot Kυ
oo


 , Cυ ≡




Cυ
nn Cυ

nt Cυ
no

Cυ
tn Cυ

tt Cυ
to

Cυ
on Cυ

ot Cυ
oo


 .

2Although analysis of the the fully-implicit scheme is possible (using nonlinear complementarity theory similar
to [29] and computational methods similar to those for rigid-body models [40]), the nonlinearity represents an
additional level of complexity.
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Figure 1: Distributed compliant model with coupled spring-damper elements.

The entries of the two symmetric matrices Kυ and Cυ are filled by influence functions that
represent stiffness and damping properties, respectively3. For example, at the given contact
patch υ, (Kυ

nn)ij (with i, j = 1, . . . , n2
s) is the normal force that must be exerted at the ith

element to produce a unit normal deformation at the jth element (and a zero deformation
and a zero rate of deformation at any other element in the contact patch). Similarly, (Cυ

tn )ij

represents the tangential force in the tangential direction t at the ith element that is required
to produce a unit change of deformation in the normal direction at the jth element (with a
zero effect elsewhere). The stiffness matrix Kυ is positive definite, since 1

2(δ υ)T Kυδ υ is the
potential energy stored in the system. The same argument holds for the damping matrix C, since
1
2(δ̇ υ)T Cυ(δ̇ υ) is the energy dissipation corresponding to any vector of possible deformation
rates δ̇υ. While expressions for the damping matrix C are harder to obtain, it is common to
assume [7] that Kυ and Cυ have a similar underlying structure. We will choose Cυ = 2

√
Kυ to

construct a critically damped system. If the material properties are nonlinear or if analytical
expressions for the influence functions are not available, it is possible to obtain the influence
functions using nonlinear finite element models with Rayleigh damping [7].

For a multibody system with nc contacts, the system force variables λn,t,o, body deforma-
tions δn,t,o, and deformation rates δ̇n,t,o are concatenations of nc subvectors λυ

n,t,o, δυ
n,t,o, and

δ̇υ
n,t,o, respectively; i.e.,

λn,t,o ≡ ( λυ
n,t,o )nc

υ=1 ∈ <n2
snc , δn,t,o ≡ ( δ υ

n,t,o )nc
υ=1 ∈ <n2

snc ,

and
δ̇n,t,o ≡ ( δ̇ υ

n,t,o )nc
υ=1 ∈ <n2

snc .

In a time stepping framework, the time superscript ` is added to each of the above variables.
For instance, λ`

n is an n2
snc-dimensional vector of normal contact forces at time instance t`,

with (λ`,υ
n )i for i = 1, . . . , n2

s being the (unknown) normal contact force on the system at the
ith element in patch υ.

3Note although this is reminiscent of the linear Kelvin-Voigt model, it is very different. The relationship
between the total force (summation over elements of λυ) to the gross deformation (penetration) is nonlinear.
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Similarly, the system stiffness matrix K and the system damping matrix C, both of order
3n2

snc × 3n2
snc, are block diagonal concatenations of the respective contact patch stiffness ma-

trices Kυ and contact patch damping matrices Cυ for υ = 1, . . . , nc. Note that the formulation
for the lumped model described in [34] is obtained as a special case by setting ns = 1. In this
case, both the K and C are diagonal matrices.

The analytical expression for the influence function Kυ for counterformal contacts can be
derived from the elastic half-space theory and can be found in standard texts on elasticity and
contact mechanics (see for example, [17, 25]). The relevant results are provided in Appendix A.
The stiffness matrix Kυ is the inverse of the compliance matrix Ξυ whose entries are multiples
of a small, positive scalar ε, the inverse of the Young’s modulus of the material. Thus, we can
write:

K ≡ 1
ε

K̃,

for some symmetric positive definiteness matrix K̃ that is independent of ε. With C = 2
√

K,
we have

C =
1√
ε

C̃,

where C̃ ≡ 2
√

K̃. Concatenating the equation (6) over all the contact patches υ = 1, . . . , nc,
and writing

δ`
n,t,o ≡ δn,t,o(t`), ` = 0, 1, . . . , N,

we obtain the following discrete-time algebraic equations:



λ`+1
n

λ`+1
t

λ`+1
o


 =




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`+1
n

δ`+1
t

δ`+1
o


+

1
h




Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo







δ`+1
n − δ`

n

δ`+1
t − δ`

t

δ`+1
o − δ`

o


 .

(7)

Note the stiffness matrix K and the damping matrix C are constants and therefore independent
of q`+1 and δ`+1. The system (7) is of order 3n2

snc, with each of the 18 block matrices (such
as Knt etc.) being an n2

snc block diagonal matrix with nc diagonal blocks, one for each contact
patch, and each such diagonal sub-block in turn being a square matrix of order n2

s.
To complete the description of the distributed compliance model, we note that each matrix

JΨn,t,o(q)T is of order nq × n2
snc, with each column corresponding to an element (n2

s of these)
in a contact patch (nc of these). For convenience, we label these columns as i = 1, . . . , n2

snc

and call each index a contact element.
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2.3 Frictional contact conditions

To complete the formulation of the model, we need to include the contact conditions. In the
normal direction, the contact condition at each i = 1, . . . , n2

snc is governed by

0 ≤ λ`+1
in ⊥ s`+1

in ≥ 0.

where the ⊥ notation means perpendicularity and s`+1
in denotes the normal separation speed

between two contacting bodies corresponding to the ith contact element,

s`+1
in ≡ δ`+1

in − δ`
in

h
+
∇Ψin(q`)T ( q`+1 − q`)

h
.

Unlike the contact constraints in the rigid-body model or the lumped compliant model, even in
the same contact patch, each contact element has a different contact constraint Ψi depending
on the local geometry over that contact patch. Figure 2 illustrates this for the normal springs
associated with JΨn(q)T . When A and B are in contact, each spring has a line of action
associated with it, and the ith line of action is described by the ith column of JΨn(q)T .

 

ni

niδA 

B deformed 

undeformed 

Figure 2: The separation between contact bodies depends on both the deformation δi and the
contact constraint Ψi.

The tangential frictional conditions stipulate that, for each i = 1, . . . , n2
snc,

( λ`+1
it , λ`+1

io ) ∈ argmin
{

s`+1
it λ̃`+1

it + s`+1
io λ̃`+1

io : ( λ̃`+1
it , λ̃`+1

io ) ∈ Fi(µi λ
`+1
in )

}
,

where µi > 0 is the friction coefficient at contact element i and Fi : <+ → <2 is the friction
map at that contact, which is given by

Fi(τ) ≡



{ ( a, b ) ∈ <2 :

√
a2 + b2 ≤ τ } the Coulomb cone

{ ( a, b ) ∈ <2 : max( | a |, | b | ) ≤ τ } a simple pyramid cone,

for all τ ≥ 0. s`+1
it,o is the tangential slip velocity given by

s`+1
it ≡ δ`+1

it − δ`
it

h
+
∇Ψit(q`)T ( q`+1 − q`)

h
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and

s`+1
io ≡ δ`+1

io − δ`
io

h
+
∇Ψio(q`)T ( q`+1 − q`)

h

Note that the slip velocities depend on both the deformations of the compliant elements and
the rigid body motions.

3 Complementarity Formulations

In this section, we show that the discrete-time compliant contact model at time t`+1 can be
formulated as a mixed complementarity problem, provided that the friction maps Fi correspond
to either the Coulomb cone or its polyhedral approximations. The inputs to such a discrete-time
complementarity problem are the quantities at time t`:

q`, ν`, λ`
n,t,o, and δ`

n,t,o,

and the unknown variables are the corresponding quantities at time t`+1:
(

q`+1, ν`+1, λ`+1
n,t,o, and δ`+1

n,t,o

)
. (8)

The key to the reformulation of the semi-implicit model is to use the dynamics equations of
motion (3), the kinematics equation (4), and the force-displacement equations (7) to eliminate
the state variables q`+1, ν`+1, and δ`+1

n,t,o in favor of s`+1 and λ`+1. In vector-matrix form, we
have 



δ`+1
n

δ`+1
t

δ`+1
o


 =




δ`
n

δ`
t

δ`
o


 + h




s`+1
n

s`+1
t

s`+1
o


−




JΨn(q`)

JΨt(q`)

JΨo(q`)


 ( q`+1 − q` ).

It is convenient for us to define the system Jacobian matrix:

W(q`) =




Wn(q`)

Wt(q`)

Wo(q`)


 ≡




JΨn(q`)

JΨt(q`)

JΨo(q`)


 G(q`) ∈ <3n2

snc×nν .

In terms of the matrix W(q`), and substituting the kinematics equation (4) for q`+1, we obtain



δ`+1
n

δ`+1
t

δ`+1
o


 =




δ`
n

δ`
t

δ`
o


 + h








s`+1
n

s`+1
t

s`+1
o


−




Wn(q`)

Wt(q`)

Wo(q`)


 ν`+1





. (9)
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Substituting this into the compliant force equation (7), we obtain



λ`+1
n

λ`+1
t

λ`+1
o


 ≡




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`
n

δ`
t

δ`
o


+




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo











s`+1
n

s`+1
t

s`+1
o


−




Wn(q`)

Wt(q`)

Wo(q`)


 ν`+1





,

(10)

where

E ≡




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo


 ≡ h




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo


 +




Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo


 .

Substituting (10) into the motion equation:

M(q`) ν`+1 = M(q`)ν` + h f(t`, q`, ν`) + h




Wn(q`)

Wt(q`)

Wo(q`)




T 


λ`+1
n

λ`+1
t

λ`+1
o


 , (11)

we obtain

M` ν`+1 = M(q`) ν` + h f(t`, q`, ν`)+

h




Wn(q`)

Wt(q`)

Wo(q`)




T







Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`
n

δ`
t

δ`
o


 +




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







s`+1
n

s`+1
t

s`+1
o








,

where

M` ≡ M(q`) + h




Wn(q`)

Wt(q`)

Wo(q`)




T



Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







Wn(q`)

Wt(q`)

Wo(q`)


 .

is symmetric positive definite. Consequently,

ν`+1 = r` + h (M` )−1




Wn(q`)

Wt(q`)

Wo(q`)




T



Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







s`+1
n

s`+1
t

s`+1
o


 , (12)

10



where

r` ≡ (M` )−1





M(q`)ν` + h f(t`, q`, ν`) + h




Wn(q`)

Wt(q`)

Wo(q`)




T



Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`
n

δ`
t

δ`
o








.

Equation (12) expresses the system velocity ν`+1 in terms of the slip velocities. Substituting
this equation into (10), we obtain




λ`+1
n

λ`+1
t

λ`+1
o


 =




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`
n

δ`
t

δ`
o


−




W̃n(q`)

W̃t(q`)

W̃o(q`)


 r`+








Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo


−




W̃n(q`)

W̃t(q`)

W̃o(q`)


 ( h−1M` )−1




W̃n(q`)

W̃t(q`)

W̃o(q`)




T







s`+1
n

s`+1
t

s`+1
o




where

W̃(q`) ≡




W̃n(q`)

W̃t(q`)

W̃o(q`)


 ≡




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







Wn(q`)

Wt(q`)

Wo(q`)




The matrix

H` ≡




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo


−




W̃n(q`)

W̃t(q`)

W̃o(q`)


 ( h−1M` )−1




W̃n(q`)

W̃t(q`)

W̃o(q`)




T

plays an important role in the subsequent analysis. The proposition below establishes an
important property of this matrix. Its proof is given in Appendix B.

Proposition 1 The matrix H` is symmetric positive definite. ¤

Letting

p` ≡




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`
n

δ`
t

δ`
o


−




W̃n(q`)

W̃t(q`)

W̃o(q`)


 r`,

11



we arrive at the following compact formulation of the compliant contact model:



λ`+1
n

λ`+1
t

λ`+1
o


 = p` + H`




s`+1
n

s`+1
t

s`+1
o




0 ≤ λ`+1
n ⊥ s`+1

n ≥ 0

(13)

and for each i = 1, . . . , n2
snc,

( λ`+1
it , λ`+1

io ) ∈ argmin
{

s`+1
it λ̃`+1

it + s`+1
io λ̃`+1

io : ( λ̃`+1
it , λ̃`+1

io ) ∈ Fi(µi λ
`+1
in )

}
.

From the solution of (13), the complete solution (8) of the problem at time t`+1 can be deter-
mined by simple substitutions: ν`+1 from (11), q`+1 from (4), and δ`+1

n,t,o from (9).

3.1 The semi-implicit rigid-body model

For the purpose of subsequent comparison, it is useful for us to briefly review an associ-
ated multi-rigid-body model within the same time-stepping framework. Specifically, given the
mass/inertia matrix M(q), the system Jacobian matrix W(q), and the friction maps Fi, the
semi-implicit time-stepping multi-rigid-body frictional contact model are described by the fol-
lowing four sets of condition at all time steps t` for ` = 0, . . . , N − 1,

ν`+1 = ν` + hM(q`)−1
[
f(t`+1, q

`, ν`) + Wn(q`)T λn + Wt(q`)T λt + Wo(q`)T λo

]

q`+1 = q` + hG(q`)ν`+1

0 ≤ λ`+1
n ⊥ Wn(q`)ν`+1 ≥ 0,

(14)

and for each i = 1, . . . , nc,

(λ`+1
it , λ`+1

io ) ∈ argmin
{

s`+1
it λ`+1

it + s`+1
io λ`+1

io : (λ`+1
it , λ`+1

io ) ∈ Fi(µi λ
`+1
in )

}
,

where s`+1
it,o ≡ Wit,o(q`)ν`+1. Much is known about the above discrete-time problem [2, 29, 37,

40]. In particular, under the assumption that, for all ` = 0, 1, . . . , N − 1,

Wn(q`)T λn + Wt(q`)T λ t + Wo(q`)T λ o = 0

λn ≥ 0



 ⇒ λn,t,o = 0, (15)

a discrete-time solution trajectory exists for the above rigid-body model. Moreover, it was
argued in [29] that without this assumption or one of its variants (such as the more restrictive
linear independence of all the vectors {Win(q`), Wit(q`),Wio(q`)}nc

i=1), the rigid-body model is
unlikely to have solutions unless the external load f(t, q, ν) is properly restricted (see [30] for
such exceptional cases). As we see in the next section, an advantage of a compliant contact
model is that a solution exists for all external loads without the assumption (15).

12



4 Existence, Multiplicity, and Computation

Since H` is positive definite, thus invertible, the first equation in the problem (13) can be
written as: 



s`+1
n

s`+1
t

s`+1
o


 = −(H` )−1p` + (H` )−1




λ`+1
n

λ`+1
t

λ`+1
o


 .

The latter equation, along with the remaining conditions in (13) are of exactly the same math-
ematical form as the “all-rolling” multi-rigid-body model studied in [30]. Moreover, due to the
positive definiteness of the matrix H`, we can directly apply the results in the cited reference
(see also Theorem 1 in [39]) and obtain the existence of a discrete-time solution trajectory to the
compliant contact model, without any restriction on the original system Jacobian matrix W (q).
We summarize this existence result and show that such a trajectory must be unique when the
friction coefficients are sufficiently small; see Appendix B for the proof. See Theorem 4 for a
multiplicity result for arbitrary friction coefficients.

Theorem 2 For any fixed h > 0, the following two statements hold for the semi-implicit
discrete-time, frictional compliant contact problem.

(a) For every ` = 0, 1, . . . , N − 1, the problem (13) has a solution; therefore, a discrete-time
solution trajectory { (

q`+1, ν`+1, λ`+1
n,t,o, δ

`+1
n,t,o

)N−1

`=0

}

exists for the compliant contact problem with friction.

(b) There exists a scalar µ̄ > 0 such that if µi ∈ [0, µ̄] for all i = 1, . . . , n2
snc, a unique solution

trajectory exists. ¤

4.1 Friction pyramid models

The numerical solution of (13) can be accomplished by complementarity methods. In what
follows, we restrict the discussion to the case of the simple pyramid friction cone and show
that the well-known Lemke’s complementary pivot algorithm [12] can successfully compute a
solution of the discrete-time compliant contact model. For the extended treatment of other
polygonal approximations of the friction cone, we can employ a technique similar to that in the
Ph.D. thesis [23] for the multi-rigid-body problem. The details are omitted.

Write

−(H` )−1p` ≡




b`
n

b`
t

b`
o


 and (H` )−1 ≡




J `
nn J `

nt J `
no

J `
tn J `

tt J `
to

J `
on J `

ot J `
oo


 .

With
Fi(µiλ

`+1
in ) ≡

{
( λ`+1

it , λ`+1
io ) ∈ <2 : max( |λ`+1

it |, |λ`+1
io | ) ≤ µi λ

`+1
in

}
,

13



introducing auxiliary variables u`+1
t,o and v`+1

t,o , we can write the frictional condition:

(λ`+1
it , λ`+1

io ) ∈ argmin
{

s`+1
it λ`+1

it + s`+1
io λ`+1

io : (λ`+1
it , λ`+1

io ) ∈ Fi(µi λ
`+1
in )

}
,

as the following equivalent complementarity conditions:

s`+1
it = u`+1

it − v`+1
it

s`+1
io = u`+1

io − v`+1
io

0 ≤ u`+1
it ⊥ µi λ

`+1
in + λ`+1

it ≥ 0

0 ≤ v`+1
it ⊥ µi λ

`+1
in − λ`+1

it ≥ 0

0 ≤ u`+1
io ⊥ µi λ

`+1
in + λ`+1

io ≥ 0

0 ≤ v`+1
io ⊥ µi λ

`+1
in − λ`+1

io ≥ 0

(16)

Using the first two equations to eliminate the variables s`+1
it and s`+1

io , we obtain the following
mixed linear complementarity formulation (MLCP) in the variables

λ`+1
n,t,o, u`+1

t , v`+1
t , u`+1

o , v`+1
o

for the compliant contact model at time t`+1:

0

free

free

0

0

0

0

≤

≤

≤

≤

≤




λ`+1
n

λ`+1
t

λ`+1
o

u`+1
t

v`+1
t

u`+1
o

v`+1
o




⊥

⊥

⊥

⊥

⊥




b`
n

b`
t

b`
o

0

0

0

0




+ J`




λ`+1
n

λ`+1
t

λ`+1
o

u`+1
t

v`+1
t

u`+1
o

v`+1
o




≥

=

=

≥

≥

≥

≥

0

0

0

0

0

0

0,

(17)

where

J` ≡




J `
nn J `

nt J `
no 0 0 0 0

J `
tn J `

tt J `
to −I I 0 0

J `
on J `

ot J `
oo 0 0 −I I

diag(µ) I 0 0 0 0 0

diag(µ) −I 0 0 0 0 0

diag(µ) 0 I 0 0 0 0

diag(µ) 0 −I 0 0 0 0




,
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with diag(µ) being the n2
snc × n2

snc diagonal matrix of the friction coefficients at the contact
elements. The matrix J` is easily seen to be copositive on the cone <n2

snc

+ ×<2n2
snc×<4n2

snc

+ that
defines the MLCP (17). In order to obtain a pure LCP formulation of the compliant contact
problem, we use the equation:




b`
t

b`
o


 +




J `
tn

J `
on


λ`+1

n +




J `
tt J `

to

J `
ot J `

oo





 λ`+1

t

λ`+1
o


−


 u`+1

t − v`+1
t

u`+1
o − v`+1

o


 = 0

to solve for the tangential forces λ`+1
t,o , obtaining


 λ`+1

t

λ`+1
o


 = −




J `
tt J `

to

J `
ot J `

oo



−1 







b`
t

b`
o


 +




J `
tn

J `
on


λ`+1

n −

 u`+1

t − v`+1
t

u`+1
o − v`+1

o






 ;

substituting this into (17), we get

0

0

0

0

0

≤

≤

≤

≤

≤




λ`+1
n

u`+1
t

v`+1
t

u`+1
o

v`+1
o




⊥

⊥

⊥

⊥

⊥




b̃`
n

b̃`
t

−b̃`
t

b̃`
o

−b̃`
o




+ J̃`




λ`+1
n

u`+1
t

v`+1
t

u`+1
o

v`+1
o




≥

≥

≥

≥

≥

0

0

0

0

0,

(18)

where

b̃`
n ≡ b`

n − J `
ntb̃

`
t − J `

nob̃
`
o,

(
b̃`
t

b̃`
o

)
≡ −




J `
tt J `

to

J `
ot J `

oo



−1 


b`
t

b`
o


 ,

J̃` ≡




J̃ `
nn J̃ `

nt −J̃ `
nt J̃ `

no −J̃ `
no

−J̃ `
tn J̃ `

tt −J̃ `
tt J̃ `

to −J̃ `
to

J̃ `
tn −J̃ `

tt J̃ `
tt −J̃ `

to J̃ `
to

−J̃ `
on J̃ `

ot −J̃ `
ot J̃ `

oo −J̃ `
oo

J̃ `
on −J̃ `

ot J̃ `
ot −J̃ `

oo J̃ `
oo




+




0 0 0 0 0

diag(µ) 0 0 0 0

diag(µ) 0 0 0 0

diag(µ) 0 0 0 0

diag(µ) 0 0 0 0




≡ J̃`
1 + J̃`

2

J̃ `
nn ≡ J `

nn −
[

J `
nt J `

no

]



J `
tt J `

to

J `
ot J `

oo



−1 


J `

tn

J `
on




15



[
J̃ `

nt J̃ `
no

] ≡ [
J `

nt J `
no

]



J `
tt J `

to

J `
ot J `

oo



−1

,




J̃ `
tt J̃ `

to

J̃ `
ot J̃ `

oo


 ≡




J `
tt J `

to

J `
ot J `

oo



−1

.

We note that the matrices

J̃ `
nn and




J̃ `
tt J̃ `

to

J̃ `
ot J̃ `

oo




are positive definite.
We refer the reader to [12] for the description of Lemke’s algorithm for solving LCPs.

Exploiting the structure of the matrix J̃ `, we can establish the following result, whose proof is
given in Appendix B.

Theorem 3 Lemke’s algorithm will compute a solution to the LCP (18). ¤

Our next result asserts the finite multiplicity of solutions to the discrete-time, semi-implicit,
frictional compliant contact problem for arbitrary positive friction coefficients µi, i = 1, . . . , n2

snc.
The same conclusion also applies to the multi-rigid-body model, which, to the best of our knowl-
edge, is a new result even for this well studied problem. In order not to digress from the main
topic of this paper, we will omit the details of the rigid model.

Theorem 4 There exists a finite set Ω ⊂ <n2
snc

++ of positive friction coefficients µi, i = 1, . . . , n2
snc,

such that the discrete-time, semi-implicit, frictional compliant contact problem has finitely
many solution trajectories

{ (
q`+1, ν`+1, λ`+1

n,t,o, δ
`+1
n,t,o

)N−1

`=0

}

for each fixed but arbitrary µ 6∈ Ω. ¤

Remark. It is possible to show that for every µ ∈ Ω, the solution trajectories to the semi-
implicit compliant contact model must be bounded (while again no such boundedness is claimed
for the auxiliary u and v variables). We omit the details of the proof.

5 Limit Analysis of a Lumped Model

The analysis so far deals with the discrete-time, semi-implicit, frictional compliant contact
problem corresponding to a given (but arbitrary) stiffness matrix K. In this section, we carry
out a limit analysis of the solutions to the model by letting the Young’s modulus of the system
tend to infinity, i.e., by letting the scalar ε, which is the reciprocal of the Young modulus,
tend to zero. Throughout the analysis, the time step h is held fixed; hence, the analysis is
being made in a discrete-time framework. A similar analysis has been suggested for frictionless
impacts [1], where a limit analysis of results produced by a fixed-step time stepping algorithm
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for regularized contact models (which can be used for rigid-body dynamic simulation) shows
that the trajectory converges to that produced by rigid-body impact models for frictionless
impacts.

Our limit analysis is restricted to a lumped compliant contact model where ns = 1. Although
it is possible to extend the analysis to the distributed model when ∇Ψi nto are the same for all
i belonging to the same contact patch, we prefer to simplify the analysis by focusing on the
lumped model. (In the said extension, the result would pertain to the sum of the contact forces
at each contact patch.) For the analysis to follow, we need several conditions, the first two of
which, (A1) and (A2), are as follows.

(A1) The stiffness matrix K and the damping matrix C, both dependent on ε, are such that

lim
ε↓0

εE

exists and is positive definite, where E ≡ hK + C.

(A2) The initial conditions, allowed to depend on ε, satisfy

lim sup
ε↓0

‖ ( q0, ν0 ) ‖ < ∞ and lim sup
ε↓0

1√
ε
‖ δ0

n,t,o ‖ < ∞.

Assumption (A1) implies

lim sup
ε↓0

ε ‖K ‖ < ∞ and lim sup
ε↓0

ε ‖C ‖ < ∞.

The second limit in (A2) holds if, for example, the initial deformations are zero.

The following lemma, whose proof is given in Appendix B, establishes the boundedness
of the velocities {ν`} and the configurations {q`} at all time steps as ε tends to zero (part
(c)). Part (a) of this lemma is useful for relating the compliant model to the rigid model (see
Theorem 6); part (b) and (A2) together imply that for all ` = 0, 1, . . . , N ,

lim
ε↓0

δ`
n,t,o = 0. (19)

Part (d) asserts that the resultant forces at the center of mass due to the contacts must be
bounded.

Lemma 5 Let (ν`+1,ε, q`+1,ε, λ`+1,ε
n,t,o , δ`+1,ε

n,t,o , s`+1,ε
n,t,o ), for ` = 0, 1, . . . , N − 1, denote any discrete-

time solution of the semi-implicit compliant contact model. Under assumptions (A1) and (A2),
it holds that

(a) lim sup
ε↓0

1√
ε

∥∥∥s`+1,ε
n,t,o −Wn,t,o(q`,ε)ν`+1,ε

∥∥∥ < ∞;

(b) lim sup
ε↓0

1√
ε
‖δ`+1,ε

n,t,o ‖ < ∞;
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(c) lim sup
ε↓0

‖(q`+1,ε, ν`+1,ε)‖ < ∞;

(d) lim sup
ε↓0

‖Wn(q`,ε)T λ`+1,ε
n + Wt(q`,ε)T λ`+1,ε

t + Wo(q`,ε)T λ`+1,ε
o ‖ < ∞,

for all ` = 0, 1, . . . , N − 1. ¤

The above lemma does not address the boundedness of the trajectory of compliant contact
forces

{
(λ`,ε

n,t,o)
N
`=1

}
as ε ↓ 0, nor does the lemma assert what the accumulation points, which

must exist, of the (discrete-time) state trajectory
{
(q`,ε, ν`,ε)N

`=0

}
are as ε ↓ 0. Theorem 6

below deals with these two issues; in particular, it identifies any accumulation point of the state
trajectory as a solution of a corresponding discrete-time rigid-body model. Before presenting
the theorem, we explain the key condition that we impose in order to ensure the boundedness of
the compliant contact forces. To begin, let {εk} be any sequence of positive scalars converging
to zero. The sequence of state variables

{
(q`,εk , ν`,εk)N

`=0

}
is bounded; it therefore has an

accumulation point; let (q`,∞, ν`,∞)N
`=0 be any such point and let κ be an infinite subset of

positive integers such that

lim
k(∈κ)→∞

( q`,εk , ν`,εk ) = (q`,∞, ν`,∞ ), ∀ ` = 0, 1, . . . , N.

Since s`+1,εk
n ≥ 0 for all k, by taking limits k →∞ and using part (a) of Lemma 5, we deduce

Wn(q`,∞)ν`+1,∞ ≥ 0, ∀ ` = 0, 1, . . . , N − 1.

Clearly if Win(q`,∞)ν`+1,∞ > 0 at some contact point i, then

s`+1,εk
in = 0 = λ`+1,εk

in = λ`+1,εk
it = λ`+1,εk

io

for all k ∈ κ sufficiently large. It is natural to call such a contact point i breaking relative to the
pair (q`+1,∞, ν`+1,∞). Clearly the contact forces (λ`+1,εk

in , λ`+1,εk
it , λ`+1,εk

io ) at a breaking contact
point must converge to zero. Hence we need to concentrate only on the convergence of these
forces at a non-breaking contact point. For this reason, we let

I` ≡ { i : Win(q`,∞)ν`+1,∞ = 0 }

be the set of “active contacts” corresponding to the pair (q`+1,∞, ν`+1,∞) at time t`+1. We
further let

J` ≡ { i ∈ I` : Wit(q`,∞)ν`+1,∞ = Wio(q`,∞)ν`+1,∞ = 0 }
be the set of rolling contacts at the same pair. The sufficient condition to ensure the bound-
edness of the corresponding sequence of contact forces {(λ`+1,εk

n,t,o )N−1
`=0 : k ∈ κ} is that for each

` = 0, 1, N − 1, the system gradients in the normal direction n:
{

Win(q`,∞)
}

i∈I`
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are “positively linearly independent” of the system gradients in the two tangential directions t
and o: {

Wjt(q`,∞), Wjo(q`,∞)
}

j∈J`

,

which themselves are linearly independent. Specifically, this sufficient condition stipulates that
the following algebraic implication holds for all ` = 0, 1, . . . , N − 1:

∑

i∈I`

Win(q`,∞)T λ in +
∑

j∈J`

[
Wjt(q`,∞)T λ jt + Wjo(q`,∞)T λ jo

]
= 0

λ in ≥ 0, i ∈ I`

( λ jt, λ jo ) ∈ Fj(µjλ jn), j ∈ J`





⇒




λ in = 0, i ∈ I`

λ jt = 0 = λ jo, j ∈ J` .

(20)

Incidentally, the above implication is considerably weaker than (15) because the former pertains
only to the active contact gradients whereas the latter involves all contact gradients.

Once we have established that the force sequence is bounded, we can then show that the pairs
of state variables (q`,∞, ν`,∞)N

`=0 must be a solution to the corresponding rigid-body model with
the same input data. We summarize the above discussion in the following main result whose
proof is given in Appendix B.

Theorem 6 Let {εk} be a sequence of positive scalars converging to zero. Suppose that, for
all ` = 0, 1, . . . , N ,

lim
k→∞

( q`,εk , ν`,εk ) = (q`,∞, ν`,∞ ).

If the implication (20) holds for all ` = 0, 1, . . . , N−1, then the force trajectory
{

(λ`+1,εk
n,t,o )N−1

`=0

}

is bounded; moreover, if κ is any infinite subset of positive integers such that, for all ` =
0, 1, . . . , N − 1,

lim
k(∈κ)→∞

λ`+1,εk
n,t,o = λ`+1,∞

n,t,o ,

then for all ` = 0, 1, . . . , N −1, the limiting tuple (q`+1,∞, ν`+1,∞, λ`+1,∞
n,t,o ) satisfies the following

conditions:

M(q`,∞)ν`+1,∞ = M(q`,∞)ν`,∞ + h f(t`+1, q
`,∞, ν`,∞) + h




Wn(q`,∞)

Wt(q`,∞)

Wo(q`,∞)




T



λ`+1,∞
n

λ`+1,∞
t

λ`+1,∞
o




q`+1,∞ = q`,∞ + hG(q`,∞)ν`+1,∞

0 ≤ λ`+1,∞
n ⊥ Wn(q`,∞)ν`+1,∞ ≥ 0,
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and for each i = 1, . . . , nc,

(λ`+1,∞
it , λ`+1,∞

io ) ∈ argmin
{

s`+1,∞
it λ`+1

it + s`+1,∞
io λ`+1

io : (λ`+1
it , λ`+1

io ) ∈ Fi(µi λ
`+1,∞
in )

}
,

where s`+1,∞
it,o ≡ Wit,o(q`,∞)ν`+1,∞. ¤

6 Numerical Implementation and Results

In this section, we first present an algorithm that implements the discrete-time, distributed
compliant contact model for dynamic simulation described in Section 2. We then illustrate the
application of this algorithm by solving a planar frictional contact problem.

The following simulation algorithm computes the states variables (q`+1, ν`+1, λ`+1, δ`+1) of
the multibody system given the known states (q`, ν`, λ`, δ`) obtained from the previous time
step. There are four computational steps:

1. Determine the contact location from the system configuration (q`, q̇`) and the geometry
of the contacting objects. Discretize the surface patch surrounding the contact point into
ns × ns elements.

2. Solve the MLCP (17) for contact forces λ`+1
n, t, o and the separation speeds s`+1

n, t, o. In practice,
we can solve the LCP (18) instead. Our numerical implementation uses Lemke’s algorithm
for solving the LCP (18).

3. Solve for the states variables ν`+1, q`+1, and δ`+1, using equations (3), (4), and (9),
respectively

4. Repeat steps 1–3 for the next time step.

Our test problem is a 2-dimensional elliptical object contacting a horizontal surface as shown
in Figure 3. Rolling or sliding may occur between the object and the surface depending on the
coefficient of friction. The generalized coordinates of the ellipse, q ≡ (x, y, θ), consist of (x, y),
the coordinates of the center of mass, and θ, the angle of the major axis of the ellipse from the
the horizontal surface. The object used in the test has a major axis of 0.2m and a minor axis
of 0.1m. The mass of the object is 0.05kg. The moment of inertia about the center of mass
is 1.5 × 10−4kg·m2. The coefficient of friction is µ = 0.2. The number of spring-damper sets
is ns = 3 and the distance between the reference point of the adjacent spring-damper units is
ρ0 = 10−6m. Other than the contact forces, gravity is the only external force acting on the
object. The initial configuration of the ellipse is q0 = (0, 0.0975, 75◦) with the object touching
the surface. In this test problem, the Jacobian matrices of the distributed model (ns = 3) can
be expressed as

JΨT
n (q) =




0 0 0
1 1 1

p 1, x(q) p 2, x(q) p 3, x(q)


 , JΨT

t (q) =




1 1 1
0 0 0

p 1, y(q) p 2, y(q) p 3, y(q)


 ,
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Figure 3: Contact between an elliptical object and a horizontal surface

where p i, x and p i, y denote, respectively, the x and y components of the position vector of the
ith contact element.

We apply our simulation algorithm to this test problem and the results are reported in
Figure 4. In this test, we set the compliance parameter ε = 10−10(m2/N). The number of
spring sets is ns = 3 and they are labelled as contact elements 1, 2, and 3 from left to right
(refer to Figure 3). The time step h is 10−4 seconds and the number of time steps is N = 2×104.
The object starts with the rolling state, after several transitions between rolling and sliding, the
object settles in a condition of rolling. This steady rolling state causes a ripple in the normal
contact force and the offset is roughly equal to the weight of the object. The distribution of
the contact forces and friction forces at different contact elements are depicted in Figure 4(a)
and (b) respectively. Figure 4(c) shows the transitions between the rolling and sliding contact
states. A zoomed-in view at one of these transitions reveals the so-called microslip phenomenon,
that is, during this particular transition, the sliding starts at the rightmost contact element first
and gradually shifts to the left elements on the contact patch.

To demonstrate the convergence of the solution of the distributed compliant contact model
to the rigid-body solution, we simulate the motion of the object using the former model with
different ε (ε = 10−11, 10−10, 10−9) and compare the results with the solutions of the semi-
implicit rigid-body model described in equation (14). The time step h is set to be 10−4 seconds
for both models. The snapshots of the object motion is depicted in Figure 5(a). In this example,
the rigid-body model always yields unique solutions for the accelerations and the contact forces.

The history of the normal displacement at the center of the mass is shown in Figure 5(b).
Figure 5(c,d) show the comparisons between the sum of the contact forces by using the dis-
tributed compliant model and the results from rigid-body LCP model in the normal and tan-
gential directions, respectively. We can see that as the stiffness of the object increases, both the
motion trajectories and the force histories of the compliant model converge to the respective
rigid-body solutions.

7 Conclusion

Extending the Ph.D. thesis of the first author [33], this paper presents for the first time a
formal, discrete time-stepping model for dynamic simulation with compliant, frictional contacts.
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Figure 4: Simulation results using the the distributed compliant model.

Our contact model incorporates distributed parameter models of the contact interactions using
viscoelastic constitutive laws and pointwise Coulomb-like friction laws. The main contribution
of this paper is a set of results that (a) show the existence and uniqueness of solutions for
this model (Theorem 3), and for the case of a friction pyramid cone, the finite multiplicity
of solutions (Theorem 4); and (b) the convergence of the solution trajectory to that obtained
by the rigid body dynamic model as the compliance tends to zero (Theorem 6). A related
contribution is the demonstration that Lemke’s algorithm can solve the linear complementarity
problem formulation of the time-stepping compliant model (Section 6).

From a practical standpoint it is clear that the distributed compliant contact model is more
complex than the rigid-body model. The former requires more parameters to describe the local
behaviors of the contacts, and more importantly from an algorithmic standpoint, it increases
the computational cost by a factor of n2

s. However, the distributed compliant model can model
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Figure 5: Convergence of the distributed compliant model (DCM) to the rigid-body model
(RBM)
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the stress distribution and microslip thus allowing more complex frictional models. Moreover,
the compliant model does allow solutions for problems that are statically indeterminate where
rigid-body models do not provide solutions in such situations. The methodology presented in
this paper has potential applications in the dynamic simulation of systems consisting of rigid
and deformable bodies. Examples of such systems can be found in medical robotics [22] and
virtual environments [10].
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A Influence matrix of stiffness coefficients

The analytical expressions given below pertain to a contact patch and are derived from the
classical approach by Boussinesq and Cerruti. See [17, 25] for the details of the derivation. For
simplicity, the patch index υ is omitted.

K =




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo


 = Ξ−1 ≡




ξnn ξnt ξno

ξtn ξtt ξto

ξon ξot ξoo



−1

ξnn(ri, rj) =





1− ν2

π‖rij‖ ε i 6= j

0.95
1− ν2

πρ0
ε i = j

ξtt(ri, rj) =





1 + ν

π‖rij‖
(

1− ν +
<rij, t̂>2

‖rij‖2
ν

)
ε i 6= j

(1 + ν)(2− ν)√
πρ0

ε i = j

ξoo(ri, rj) =





1 + ν

π‖rij‖
(

1− ν +
<rij, ô>2

‖rij‖2
ν

)
ε i 6= j

(1 + ν)(2− ν)√
πρ0

ε i = j

ξnt(ri, rj) =





(1− 2ν)(1 + ν)
2π

<rij, t̂>
‖rij‖2

ε i 6= j

0 i = j

ξtn(ri, rj) =




−(1− 2ν)(1 + ν)

2π

<rij, t̂>
‖rij‖2

ε i 6= j

0 i = j

ξno(ri, rj) =





(1− 2ν)(1 + ν)
2π

<rij, ô>

‖rij‖2
ε i 6= j

0 i = j

ξon(ri, rj) =




−(1− 2ν)(1 + ν)

2π

<rij, ô>

‖rij‖2
ε i 6= j

0 i = j

ξto(ri, rj) =





(1 + ν)
π

<rij, ô><rij, t̂>
‖rij‖3

ε i 6= j

0 i = j

ξot(ri, rj) =





(1 + ν)
π

<rij, ô><rij, t̂>
‖rij‖3

ε i 6= j

0 i = j
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where rij ≡ ri − rj, ri and rj are the position vectors of the ith node and jth node in the
contact patch respectively. t̂ and ô are the unit vectors that span the plane perpendicular to
the contact normal. ρ0 is the characteristic length between two adjacent nodes. ε is the inverse
of Young’s modulus for the material and ν is the Poisson ratio.

B Proofs of Results

Proof of Proposition 1. The matrix H` is the Schur complement of the matrix

h−1M` = h−1 M(q`) +




Wn(q`)

Wt(q`)

Wo(q`)




T



Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







Wn(q`)

Wt(q`)

Wo(q`)




in



Enn Ent Eno W̃n(q`)

Etn Ett Eto W̃t(q`)

Eon Eot Eoo W̃t(q`)

W̃n(q`)T W̃t(q`)T W̃o(q`)T h−1M`




=




Enn Ent Eno 0

Etn Ett Eto 0

Eon Eot Eoo 0

0 0 0
1
h

M(q`)




+




0 0 0

0 0 0

0 0 0

Wn(q`)T Wt(q`)T Wo(q`)T







Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







0 0 0 Wn(q`)

0 0 0 Wt(q`)

0 0 0 Wo(q`)


 ,

which is symmetric positive definite. Consequently, so is H`. ¤

Proof of Theorem 2. The proof of part (a) is already sketched in Section 4. That of part (b)
follows from the fact that for each `, the problem (13) has a unique solution when the friction
coefficients are sufficiently small [38]. Since there are only N such problems, one for each time
step, part (b) follows readily. ¤

Proof of Theorem 3. The matrix J̃` is copositive on the nonnegative orthant <5n2
snc

+ . Thus
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the theorem holds if we demonstrate that

0

0

0

0

0

≤

≤

≤

≤

≤




λ`+1
n

u`+1
t

v`+1
t

u`+1
o

v`+1
o




⊥

⊥

⊥

⊥

⊥

J̃`




λ`+1
n

u`+1
t

v`+1
t

u`+1
o

v`+1
o




≥

≥

≥

≥

≥

0

0

0

0

0

⇒




b̃`
n

b̃`
t

−b̃`
t

b̃`
o

−b̃`
o




T 


λ`+1
n

u`+1
t

v`+1
t

u`+1
o

v`+1
o




≥ 0.

By the structure of J̃`, if the left-hand side holds, then we must have λ`+1
n = 0 and

u`+1
t − v`+1

t = u`+1
o − v`+1

o = 0.

This clearly implies that the right-hand side, hence, the desired implication, holds. ¤

Proof of Theorem 4. It suffices to identify the set Ω such that the problem (13) has finitely
many solutions for every µ 6∈ Ω. We rely on the equivalent LCP (18) to accomplish this task.
Let (λ`+1

n , u`+1
t,o , v`+1

t,o ) be an arbitrary tuple of solution to (18). Let

αn ≡ { i : λ`+1
n > 0 },

αt ≡ { i : u`+1
it or v`+1

it > 0 },

αo ≡ { i : u`+1
io or v`+1

io > 0 }

be the supports of the respective variables. Recalling the variables s`+1
it,o = u`+1

it,o − v`+1
it,o , we see

that

xα ≡
{ (

λ`+1
in

)
i∈αn

,
(

s`+1
it

)
i∈αt

,
(

s`+1
io

)
i∈αo

}

must satisfy a system of linear equations of the form:

bα + Mαα(µ)xα = 0

where Mαα(µ) is the sum of a positive definite matrix (an appropriate submatrix of J̃`
1), which

is independent of µ, and a simple matrix (an appropriate submatrix of J̃`
2), which depends on

µi for i ∈ αn. As such, Mαα(µ) is nonsingular for all but finitely many µ. Since there is only
a finite number of different index sets α, it follows that for each µ not in a finite set Ω (where
Mαα(µ) is singular), there can only be a finite number of λ`+1

n and of induced s`+1
t,o that satisfy

the LCP (18). (Note: we make no claim about the finiteness of the auxiliary u and v variables.)
Hence the number of s`+1

n is also finite for each µ 6∈ Ω. Since these variables λ`+1
n and s`+1

n,t,o

completely determine the solution trajectories of the compliant contact model, it follows that
there are only finitely many such trajectories for each µ 6∈ Ω. ¤
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Proof of Lemma 5. We proceed by induction on `. Suppose that the assertions are valid for
` ≥ 0. The induction hypothesis on (b) implies (19) at step `. On the one hand, we have

( ν`+1,ε )T M(q`,ε) ν`+1,ε − ( ν`+1,ε )T
[
M(q`,ε)ν`,ε + h f(t`, q`,ε, ν`,ε)

]

=
[

ν`+1,ε − 1
2 ν`,ε − 1

2h
f(t`, q`,ε, ν`,ε)

]T

M(q`,ε)
[
ν`+1,ε − 1

2 ν`,ε − 1
2h

f(t`, q`,ε, ν`,ε)
]

− 1
4

[
ν`,ε − 1

h
f(t`, q`,ε, ν`,ε)

]T

M(q`,ε)
[
ν`,ε − 1

h
f(t`, q`,ε, ν`,ε)

]

≥ −1
4

[
ν`,ε − 1

h
f(t`, q`,ε, ν`,ε)

]T

M(q`,ε)
[
ν`,ε − 1

h
f(t`, q`,ε, ν`,ε)

]
;

on the other hand, premultiplying (11) by (ν`+1,ε)T , we obtain

( ν`+1,ε )T M(q`,ε) ν`+1,ε − ( ν`+1,ε )T
[
M(q`,ε)ν`,ε + h f(t`, q`,ε, ν`,ε)

]

= h




Wn(q`,ε)ν`+1,ε

Wt(q`,ε)ν`+1,ε

Wo(q`,ε)ν`+1,ε




T



λ`+1,ε
n

λ`+1,ε
t

λ`+1,ε
o




= h




Wn(q`,ε)ν`+1,ε − s`+1,ε
n

Wt(q`,ε)ν`+1,ε − s`+1,ε
t

Wo(q`,ε)ν`+1,ε − s`+1,ε
o




T 


λ`+1,ε
n

λ`+1,ε
t

λ`+1,ε
o




+ h




s`+1,ε
n

s`+1,ε
t

s`+1,ε
o




T 


λ`+1,ε
n

λ`+1,ε
t

λ`+1,ε
o




≤ h




Wn(q`,ε)ν`+1,ε − s`+1,ε
n

Wt(q`,ε)ν`+1,ε − s`+1,ε
t

Wo(q`,ε)ν`+1,ε − s`+1,ε
o




T 


λ`+1,ε
n

λ`+1,ε
t

λ`+1,ε
o




= h




Wn(q`,ε)ν`+1,ε − s`+1,ε
n

Wt(q`,ε)ν`+1,ε − s`+1,ε
t

Wo(q`,ε)ν`+1,ε − s`+1,ε
o




T 






Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







δ`,ε
n

δ`,ε
t

δ`,ε
o




+




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







s`+1,ε
n −Wn(q`,ε)ν`+1,ε

s`+1,ε
t −Wt(q`,ε)ν`+1,ε

s`+1,ε
o −Wo(q`,ε)ν`+1,ε








.
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Consequently, we deduce



1√
ε

(
s`+1,ε
n −Wn(q`,ε)ν`+1,ε

)

1√
ε

(
s`+1,ε
t −Wt(q`,ε)ν`+1,ε

)

1√
ε

( s`+1,ε
o −Wo(q`,ε)ν`+1,ε )




T 



ε




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







1√
ε

δ`,ε
n

1√
ε

δ`,ε
t

1√
ε

δ`,ε
o




+

ε




Enn Ent Eno

Etn Ett Eto

Eon Eot Eoo







1√
ε

(
s`+1,ε
n −Wn(q`,ε)ν`+1,ε

)

1√
ε

(
s`+1,ε
t −Wt(q`,ε)ν`+1,ε

)

1√
ε

(
s`+1,ε
o −Wo(q`,ε)ν`+1,ε

)








≤ 1
4

[
ν`,ε − 1

h
f(t`, q`,ε, ν`,ε)

]T

M(q`,ε)
[

ν`,ε − 1
h

f(t`, q`,ε, ν`,ε)
]

By (A1), assertion (a) holds. This implies

lim
ε↓0

[
s`+1,ε
n,t,o −Wn,t,o(q`,ε)ν`+1,ε

]
= 0.

Thus (b) follows readily from (9) and the induction hypothesis. From the above derivation, we
have

( ν`+1,ε )T M(q`,ε) ν`+1,ε − ( ν`+1,ε )T
[
M(q`,ε)ν`,ε + h f(t`, q`,ε, ν`,ε)

]

≤




1√
ε

(
s`+1,ε
n −Wn(q`,ε)ν`+1,ε

)

1√
ε

(
s`+1,ε
t −Wt(q`,ε)ν`+1,ε

)

1√
ε

( s`+1,ε
o −Wo(q`,ε)ν`+1,ε )




T 



ε




Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo







1√
ε

δ`,ε
n

1√
ε

δ`,ε
t

1√
ε

δ`,ε
o








,

which easily yields (c). Finally, (d) follows from (11) and the boundedness of ν`+1,ε and
(q`,ε, ν`,ε). ¤

Proof of Theorem 6. Assume for the sake of contradiction that for some `, the sequence
{(

λ`+1,εk
n , λ`+1,εk

t , λ`+1,εk
o

)}

is unbounded as k →∞. We can then further assume, without loss of generality, that

lim
k→∞

∥∥∥
(

λ`+1,εk
n , λ`+1,εk

t , λ`+1,εk
o

)∥∥∥ = ∞
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and

lim
k→∞

(
λ`+1,εk

n , λ`+1,εk
t , λ`+1,εk

o

)
∥∥∥

(
λ`+1,εk

n , λ`+1,εk
t , λ`+1,εk

o

)∥∥∥
=

(
λ`+1,∗

n , λ`+1,∗
t , λ`+1,∗

o

)

for some nonzero tuple λ`+1,∗
n,t,o . Since

lim sup
k→∞

‖Wn(q`,εk)T λ`+1,εk
n + Wt(q`,εk)T λ`+1,εk

t + Wo(q`,εk)T λ`+1,εk
o ‖ < ∞,

it is easy to show, by a straightforward limiting argument, that λ`+1,∗
n,t,o satisfies the left-hand

conditions in the implication (20). But this is a contradiction because this tuple is nonzero.
Consequently, the boundedness of the forces follows. The last assertion about the limiting tuple
(q`+1,∞, ν`+1,∞, λ`+1,∞

n,t,o ) can be proved by a similar limit argument. ¤
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