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A B S T R A C T

THE STATISTICAL MECHANICS OF HUMAN BEHAVIOR

Christopher W. Lynn

Danielle S. Bassett

In the study of complex systems, it is often the case that large-scale features emerge

from simple properties of the constituent units at the scale below. Nowhere is this

observation more evident – nor are the implications more important – than in the

investigation of human behavior: from the collective firing of thousands or millions

of neurons arises the activity of a single brain region, from the communication be-

tween of hundreds or thousands of brain regions emerge consciousness and other

cognitive functions, and from the interactions between hundreds or thousands of

people appear the collective behaviors of human populations. To study such complex

systems, cutting-edge research increasingly harkens back to centuries-old insights from

statistical mechanics. Here, drawing inspiration from these recent efforts, we adapt and

extend methods from statistical mechanics, information theory, and network science to

investigate the nature of human behavior across scales.

Generally, the dissertation flows in the direction of decreasing scale, which, coinci-

dentally, approximately corresponds to the chronological order in which the research

was produced. We begin in Part I by examining the principles of emergence and

control in human populations. In Part II, we study how individual humans learn and

process information using networks in the world around them. Finally, in Part III, we

investigate whether, and to what extent, the brain operates out of thermodynamic

equilibrium. Together, these analyses aim to shed light on the statistical mechanical

nature of human behavior.
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Figure 1.1 Surges of human activity and failure of the independent ap-
proximation. (a) Distribution of inter-event times for individuals
in a network of email correspondence. The dashed lines indicate
the proportion of inter-event times less than two minutes. (b)
Top: Activity of the 50 most active individuals over a half-day
period, where each dot represents a sent email. Bottom: Network
activity is discretized into two-minute windows. (c) Histogram
of Pearson correlation coefficients ⇢ij between activity time se-
ries for all pairs in the 100-person population. (d) Distribution
of the number of emails sent in a given two-minute window
(black) and the distribution after shuffling each person’s activ-
ity to eliminate correlations (blue). The dashed lines show an
exponential distribution fit to the observed data (black) and a
Poisson distribution fit to the shuffled data (blue). (e) The rate
of each observed activity pattern, plotted against the approx-
imate pattern rate assuming independent people. The dashed
line indicates equality. 5

Figure 1.2 External influences versus internal correlations. (a) An exter-
nal mechanism – here taken to be weekly rhythms – influencing
the activity of a population of non-interacting humans. Intu-
itively, circadian and weekly rhythms might influence people
to send emails more frequently during the daytime and on
weekdays, thereby inducing population-wide correlations. (b)
Alternatively, population-wide correlations could arise from
fine-scale interactions between individuals within a population.
The set of all correlations forms a hierarchy, beginning with
simple pairwise correlations between two individuals, followed
by more complicated higher-order correlations involving three
(triplet), four (quadruplet), or more individuals. 7
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Figure 1.3 The pairwise maximum entropy model accurately describes
human behavior. (a) Learned Ising interactions Jij and exter-
nal fields hi describing a random 10-person group in the email
network. (b) Jensen-Shannon divergences between the true dis-
tribution P and the independent P1 (blue), maximum entropy
P2 (red), and conditionally independent PC (green) models. His-
tograms reflect estimates from 300 random groups of 10 indi-
viduals. Inset: DJS(P2||P) versus DJS(PC||P) for the 300 groups.
The dashed line indicates equality. (c) Fraction of the network
correlation (quantified by the multi-information I) captured
by the maximum entropy (red) and conditionally independent
(green) models, plotted against I for each group of 10 people.
The multi-information is divided by �t to remove dependence
on the window size. (d) Fraction of the total correlation captured
by the pairwise (red) and conditionally independent (green)
models in four different modes of human activity: email corre-
spondence, private messaging, physical interactions, and online
music streaming. Error bars represent standard deviations over
300 random 10-person groups for the email and private mes-
sage datasets and over 200 groups for the physical contact and
music streaming datasets. (e) Fraction of the multi-information
in the email data captured by the maximum entropy model
versus group size, where each data point is averaged over 300
randomly-selected groups. The dashed line represents the best
log-linear fit, with 95% confidence interval indicated by the
shaded region. 8

Figure 1.4 Surges of collective activity are captured by pairwise correla-
tions. (a) Distribution of the observed number of emails in a
given two-minute window (black), the prediction of the indepen-
dent model (blue), and the prediction of the pairwise maximum
entropy model (red). (b) Scatter plot illustrating the relationship
between the observed pairwise correlations in the data ⇢ij and
the learned Ising interactions Jij for all pairs in the 100-person
population. Inset: Histogram of the learned interactions. 11
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Figure 1.5 The learned pairwise interactions uncover pathways of ground
truth communication. (a) Histogram of correspondence rates
Aij between all pairs of individuals that exchanged at least one
email. (b) Scatter plot of the learned Ising interactions versus
email correspondence rates for pairs that exchanged at least
one email. Importantly, Jij and Aij are significantly correlated
with Spearman’s correlation coefficient rs = 0.13 (p = 2⇥ 10-7).
(c) Overlap between the strongest interactions Jij and most
frequently corresponding pairs Aij as a function of the fraction
of pairs being considered. The dashed line indicates the over-
lap with a random selection of user pairs. (d) Structure of the
strongest pairwise interactions (red), highest correspondence
rates (blue), and overlap between the two (green) for all 100
individuals. The three networks represent the strongest 10%
(left), 2% (middle), and 0.4% (right) of user pairs. 12

Figure 1.6 Cumulative distribution of emails versus the activity rank of
the users. The 100 most active individuals account for 56% of
the emails in the network (dashed lines). 16

Figure 1.7 Dependence of the pairwise maximum entropy model on the
bin width. (a-d) Distributions of pairwise couplings for 200
different 10-person groups selected from the 100 most active
individuals in the email dataset. From left to right, the data
is discretized into bins of width �t = 1, 5, 10, and 30 min-
utes. (e-h) Jensen-Shannon divergences between the observed
distribution over activity patterns P and the independent P1
(blue), maximum entropy P2 (red), and conditionally indepen-
dent PC (green) models. The distributions are taken over the 200
groups from panels (a-d). (i-l) Fraction of the network correla-
tion captured by the maximum entropy (red) and conditionally
independent (green) models, plotted against the full network
correlation, quantified by the multi-information I. The average
percentage of the multi-information captured by each model is
displayed in the upper corner. Each dot represents a different
group of 10 people, and I is divided by �t to remove dependence
on the window size. 17
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Figure 1.8 Dependence of the pairwise model on the set of individuals
chosen for analysis in the email dataset. (a-c) Distributions of
pairwise interactions for 200 different groups of 10 individuals,
where the data is discretized with bin width �t = 5 minutes.
From left to right, the 200 groups are chosen from among all
824 people that sent at least one email, the 400 most active
individuals, and the 100 most active individuals, respectively.
(d-f ) Jensen-Shannon divergences between the observed distri-
bution over activity patterns P and the independent P1 (blue),
maximum entropy P2 (red), and conditionally independent PC
(green) models. The distributions are taken over the 200 groups
of users. (g-i) Fraction of the network correlation captured by the
pairwise maximum entropy (red) and conditionally indepen-
dent (green) models, plotted against the full network correlation,
quantified by the multi-information I. The average percentage
of the multi-information captured by each model is displayed
in the upper corner. The multi-information is divided by �t to
remove dependence on the window size. 19

Figure 1.9 Consistency of the pairwise maximum entropy model over
time. (a) Comparison of email user activity rates in the first half
versus the second half of the dataset; the dashed line indicates
equality. (b) Correspondence rates Aij between pairs of users
are strongly correlated across the two halves of the dataset. (c)
Overlap between the most frequently corresponding pairs of
users in the first half and those in the second half as a function of
the fraction of pairs being considered. The dashed line indicates
the overlap with a random selection of user pairs. (d) For 200
random groups of 10 individuals, we compare the local fields
hi of pairwise maximum entropy models fit to either the first
or second half of the email data. (e) For the same 200 random
groups, we compare the Ising interactions Jij of the pairwise
models fit to the two halves of the dataset. (f ) For each half of
the dataset, we average the interactions Jij over all 200 groups
and plot the overlap between average interaction networks as
a function of the fraction of user pairs being considered. As in
panel (c), the dashed line indicates the overlap with a random
selection of pairs. 20
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Figure 1.10 Performance of the pairwise maximum entropy model in a
dataset of private messages. (a) Cumulative distribution of
inter-event times for the 66 most active individuals. Approx-
imately 80% of consecutive messages from the same person
are sent with at least one minute in between (dashed lines).
(b) Distribution of the messages sent in a given one-minute
window in the dataset (black) and after shuffling individuals’
activities to eliminate correlations (blue); dashed lines indicate
an exponential fit to the observed data (black) and a Poisson
fit to the shuffled data (blue). (c) The rate of each observed ac-
tivity pattern, plotted against the approximate rate under the
independent model P1; the dashed line indicates equality. (d)
We plot the rate of each observed activity pattern across 300
randomly selected groups of 10 individuals against the approxi-
mate rates under the independent model P1 (blue), the pairwise
maximum entropy model P2 (red), and the conditionally inde-
pendent model PC (green); the dashed line indicates equality.
(e) Jensen-Shannon divergences between the true distribution P

and the independent P1 (blue), maximum entropy P2 (red), and
conditionally independent PC (green) models; the histograms
reflect estimates from the 300 10-person groups. (f ) Fraction of
the network correlation (i.e., multi-information I) captured by
the pairwise (red) and conditionally independent (green) mod-
els, plotted against the full multi-information. We note that I is
divided by �t to remove the dependence on window size. 22
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Figure 1.11 Performance of the pairwise model in a dataset of face-to-face
contacts between individuals. (a) Distribution of the number of
contacts in a given 20-second window observed in the dataset
(black) and after shuffling individuals’ activities to eliminate
correlations (blue); dashed lines indicate an exponential fit to
the observed data (black) and a Poisson fit to the shuffled data
(blue). (b) The rate of each observed activity pattern across 200
randomly selected groups of 10 individuals is plotted against the
approximate rates under the independent model P1 (blue), the
pairwise maximum entropy model P2 (red), and the condition-
ally independent model PC (green); the dashed line indicates
equality. (c) Jensen-Shannon divergences between the true dis-
tribution P and the independent P1 (blue), maximum entropy
P2 (red), and conditionally independent PC (green) models; the
histograms reflect estimates from the 200 10-person groups. (d)
Fraction of the network correlation (i.e., multi-information I)
captured by the pairwise (red) and conditionally independent
(green) models, plotted against the full multi-information; I
is divided by �t = 20 seconds to remove the dependence on
window size. 23

Figure 1.12 Performance of the maximum entropy model in a dataset of
music streams. (a) Distribution of the number of streams in
a given 150-second window in the dataset (black) and after
shuffling individuals’ activities to eliminate correlations (blue);
dashed line indicates a Poisson fit to the shuffled data (blue). (b)
The rate of each observed activity pattern across 200 randomly
selected groups of 10 individuals is plotted against the approxi-
mate rates under the independent model P1 (blue), the pairwise
maximum entropy model P2 (red), and the conditionally inde-
pendent model PC (green); the dashed line indicates equality.
(c) Jensen-Shannon divergences between the true distribution P

and the independent P1 (blue), maximum entropy P2 (red), and
conditionally independent PC (green) models; the histograms
reflect estimates from the 200 10-person groups. (d) Fraction
of the network correlation (i.e., multi-information I) captured
by the pairwise (red) and conditionally independent (green)
models, plotted against the full multi-information; I is divided
by �t = 150 seconds to remove the dependence on window
size. 25
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Figure 1.13 Learning a pairwise maximum entropy model for a 100-person
population. (a) Reconstructed activity rates for all 100 individ-
uals under the maximum entropy model, plotted against their
true activity rates. The dashed line indicates equality. (b) Re-
constructed pairwise correlations under the maximum entropy
model versus the observed correlations. (c) Distribution of the
differences between the true and model pairwise correlations,
normalized by the error in the data �

⌦
�i�j

↵
. For reference,

the red line is a Gaussian distribution with unit variance. The
empirically measured distribution has nearly Gaussian shape
with standard deviation ⇡ 1.05, demonstrating that the learning
algorithm reconstructs the pairwise correlations within exper-
imental precision. (d) The per-person average log-likelihood
of the data hlogP2(�)i /N, where the average is taken over all
patterns within a given day, computed for the training days
(blue) and test days (red). The data has been sorted so that the
test days follow the training days, but the true choice of test
days was random. 27

Figure 2.1 Optimal and MF optimal external fields for a hub-and-spoke
network. (a) A comparison of the structure of the MF and exact
optimal external fields, denoted h⇤

MF
and h⇤, in a hub-and-

spoke network. (b) The relative performance of h⇤
MF

compared
to h⇤; i.e., M(h⇤

MF
)/M(h⇤

MF
), where M denotes the exact mag-

netization. 40
Figure 2.2 Structure of MF optimal external field for a stochastic block

network. (a) A stochastic block network consisting of a highly-
connected community (Block 1) and a sparsely-connected com-
munity (Block 2). (b) The solution to MF-IIM shifts from focusing
on Block 1 to Block 2 as � increases. (c) Even at �c, the MF solu-
tion outperforms common node-selection heuristics. 41

Figure 2.3 Structure of MF optimal external field for real-world social
network. (a) A collaboration network of 904 physicists where
each edge represents the co-authorship of a paper on the arXiv.
(b) The solution to MF-IIM shifts from high- to low-degree nodes
as � increases. (c) The MF solution out-performs common node-
selection heuristics, even at �c. 41
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Figure 3.1 Shift in the structure of the susceptibility. We consider a small
ferromagnetic network with Jij = Jji 2 {0, 1} and a uniform
positive external field b0 = 0.3. At high temperatures, the node
corresponding to the largest entry in � is the hub node of de-
gree 10, while, at low temperatures, the nodes with the largest
susceptibilities are the peripheral nodes of degree 2. Thus, for
small H, the optimal external field shifts from focusing on the
hub node at high temperatures to the low-degree nodes at low
temperatures. The magnitudes of the entries in � are represented
by the sizes of the nodes in the network snapshots. 56

Figure 3.2 Temperature-dependence of the susceptibility in a heteroge-
neous ring. (a) The ring has nearest-neighbor couplings Ji,i+1

defined in Eq. (3.18) and a positive uniform external field. (b)
At high temperatures, � is nearly uniform and the largest entry
corresponds to the node of highest degree (✓ = 0). At low tem-
peratures, the susceptibility is localized near the node of lowest
degree (✓ = ⇡). (c) The susceptibility density is normalized such
that the integral over all angles is unity, and is shown as a func-
tion of the angle for various temperatures T and system sizes
n. 59

Figure 3.3 Shift in solution structure for a small Erdös-Rényi network.
(a) We consider an Erdös-Rényi network with n = 15 nodes,
Jij = Jji 2 {0, 1}, and b0 = 0. For H = 1 and for an `1 con-
straint, we find that h⇤, h⇤

MC
, and h⇤

MF
all shift from focusing

on high- to low-degree nodes as T decreases. The network snap-
shots illustrate the allocations of the budget in the high- and
low-temperature limits. (b) We compare M(h⇤) with the mag-
netizations under h⇤

MC
, h⇤

MF
, and huniform, verifying that h⇤

achieves the highest magnetization across all temperatures and
that h⇤

MC
compares favorably. 61

Figure 3.4 Shift in solution structure for a real-world social network. (a)
We consider a co-authorship network with n = 904 nodes, Jij =
Jji 2 {0, 1}, and b0 = 0.For an `1 budget constraint with H = 20,
h⇤
MC

and h⇤
MF

both shift from focusing on high- to low-degree
nodes, illustrated by the network snapshots. (b) We compare
M(h⇤

MC
) with the magnetizations under h⇤

MF
and huniform,

demonstrating that h⇤
MC

achieves the highest magnetization
across most temperatures. 61
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Figure 4.1 Performance of PGA for various orders of the Plefka expan-
sion. (a) An Erdös-Rényi network with n = 15 nodes and budget
H = 1. The total activity is calculated exactly using the Boltz-
mann distribution. (b) An Erdös-Rényi network with n = 200

nodes and budget H = 10. (c) A preferential attachment network
with n = 200 nodes and budget H = 10. (d) A collaboration
network of n = 904 physicists on the arXiv and budget H = 20.
The total activities in (b-d) are estimated using Monte Carlo sim-
ulations. The benchmarks are PGA with the exact gradient for
(a) and the gradient estimated using Monte Carlo simulations in
(b-d). 77

Figure 4.2 Comparison of the total Ising activity for greedy algorithms
using various orders of the Plefka expansion. For each net-
work, we ensure

P
j
Jij 6 1/2 and we average over many draws

of the initial bias {b0

i
} ⇠ U[-1/2, 1/2]. (a) An Erdös-Rényi net-

work with n = 15 nodes. The total activity is calculated exactly
using the Boltzmann distribution. (b) An Erdös-Rényi network
with n = 200 nodes. (c) A collaboration network of n = 904

physicists on the arXiv. The total activities in (b-c) are estimated
using Monte Carlo simulations. In (a-b) the benchmark is TAP3,
while for (c) the benchmark is MF. 81

Figure 4.3 Comparison of the spread of influence under the linear thresh-
old model for different greedy algorithms. For each network,
we ensure

P
j
Jij 6 1/2 and we average over many draws of the

initial bias {b0

i
} ⇠ U[-1/2, 1/2]. (a) An Erdös-Rényi network with

n = 15 nodes. (b) An Erdös-Rényi network with n = 200 nodes.
(c) A collaboration network of n = 904 physicists on the arXiv.
The benchmark in all panels is IM. 82

Figure 5.1 Transitions between syllables in the fabricated language of
Saffran et al. (576). (a) A sequence containing four different
pseudowords: tudaro (blue), bikuti (green), budopa (red), and
pigola (yellow). When spoken, the sequence forms a continuous
stream of syllables, without clear boundaries between words.
The transition probability from one syllable to another is 1 if the
transition occurs within a word and 1/3 if the transition occurs
between words. This difference in transition probabilities allows
infants to segment spoken language into distinct words (360,
564, 576). (b) Transitions between syllables form a network, with
edge weights representing syllable transition probabilities. A
random walk in the transition network defines a sequence of
syllables in the pseudolanguage. The four pseudowords form
distinct communities (highlighted) that are easily identifiable by
eye. Reprinted from (360) with permission from Elsevier. 91



list of figures xxiii

Figure 5.2 Human behavior depends on network topology. (a) We con-
sider a serial reaction time experiment in which subjects are
shown sequences of stimuli and are asked to respond by per-
forming an action. Here, each stimulus consists of five squares,
one or two of which are highlighted in red (left); the order of
stimuli is determined by a random walk on an underlying net-
work (center); and for each stimulus, the subject presses the
keys on the keyboard corresponding to the highlighted squares
(right). (b) Considering Erdös-Rényi random transition networks
with 15 nodes and 30 edges (left), subjects’ average reaction
times to a transition i! j increase as the degree ki of the pre-
ceding node increases (right). Equivalently, subjects’ reaction
times increase as the transition probability Pij = 1/ki decreases
(419). (c) To control for variations in transition probabilities, we
consider two networks with constant degree k = 4: a modu-
lar network consisting of three communities of five nodes each
(left) and a lattice network representing a 3⇥5 grid with peri-
odic boundary conditions (right). (d) Experiments indicate two
consistent effects of network structure. First, in the modular net-
work, reaction times for between-cluster transitions are longer
than for within-cluster transitions (351, 361, 362, 419). Second,
reaction times are longer on average for the lattice network than
for the modular network (351, 419). 93

Figure 5.3 Mesoscale and global network features emerge from long-
distance associations. (a) Illustration of the weight function f(t)
(left) and the learned network representation P̂ for learners that
only consider transitions of length one. The estimated structure
resembles the true modular network. (b) For learners that down-
weight transitions of longer distances, higher-order features of
the transition network, such as community structure, organi-
cally come into focus, yielding higher expected probabilities for
within-cluster transitions than for between-cluster transitions.
(c) For learners that equally weigh transitions of all distances,
the internal representation becomes all-to-all, losing any resem-
blance to the true transition network. Panels a-c correspond to
learners that include progressively longer transitions in their
network estimates. Adapted from (419). 97
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Figure 5.4 Generalizations of the graph learning paradigm. (a) Transition
networks often shift and change over time. Such non-stationary
transition probabilities can be described using dynamical transi-
tion networks, which evolve from one network (for example, the
modular network on the left) to another (for example, the ring
network on the right) by iteratively rewiring edges. (b) Many
real-world sequences have long-range dependencies, such that
the next state depends not just on the current state, but also
on a number of previous states (18, 337). For example, path 1
in the displayed network yields two possibilities for the next
state (left), while path 2 yields a different set of three possible
states (right). (c) Humans often actively seek out information by
choosing their path through a transition network, rather than
simply being presented with a prescribed sequence. Such infor-
mation seeking yields a subnetwork containing the nodes and
edges traversed by the walker. 100

Figure 5.5 Real transition networks exhibit hierarchical structure. (a) A
language network constructed from the words (nodes) and tran-
sitions between them (edges) in the complete works of Shake-
speare. (b) A knowledge network of hyperlinks between pages
on Wikipedia. (c, d) Many real-world transition networks exhibit
hierarchical organization (547), which is characterized by two
topological features: (c) Heterogeneous structure, which is often
associated with scale-free networks, is typically characterized by
a power-law degree distribution and the presence of high-degree
hub nodes (50). (d) Modular structure is defined by the presence
of clusters of nodes with dense within-cluster connectivity and
sparse between-cluster connectivity (250). 101
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Figure 5.6 A primer on network properties. (Center) Nodes, illustrated by
circles, represent stimuli, items, or states in a sequence. Edges,
illustrated by lines, connect pairs of nodes if it is possible to
transition from one node to the other. The organization of edges
among nodes is referred to as the network’s topology or struc-
ture. (Circumjacent) A network’s topology can be described using
properties that characterize its local, mesoscale, or global organi-
zation. For example, the simplest local property is the degree of
a node (green), or the number of edges emanating from a node.
Two notions of mesoscale structure include (i) the clustering co-
efficient (blue), or the ratio of connected triangles to connected
triples of nodes, and (ii) modularity (turquoise), where there
exist communities of nodes with internally dense and externally
sparse connections. Finally, global measures include (i) core-
ness (red), or the ability of a node to withstand the removal of
nodes with low degree, (ii) notions of centrality (purple) such
as betweenness centrality, which quantifies the importance of
a node for facilitating long-distance connections, and (iii) com-
municability (magenta), which captures the number of paths of
various lengths connecting two nodes. Collectively, the network
representation and associated properties can provide critical
insights into the structure of the system under study. 103

Figure 6.1 Subjects respond to sequences of stimuli drawn as a random
walk on an underlying transition graph. (a) Example sequence
of visual stimuli (left) representing a random walk on an under-
lying transition network (right). (b) For each stimulus, subjects
are asked to respond by pressing a combination of one or two
buttons on a keyboard. (c) Each of the 15 possible button com-
binations corresponds to a node in the transition network. We
only consider networks with nodes of uniform degree k = 4 and
edges with uniform transition probability 0.25. (d) Subjects were
asked to respond to sequences of 1500 such nodes drawn from
two different transition architectures: a modular graph (left) and
a lattice graph (right). (e) Average reaction times for the different
button combinations, where the diagonal elements represent
single-button presses and the off-diagonal elements represent
two-button presses. (f ) Average reaction times as a function of
trial number, characterized by a steep drop-off in the first 500
trials followed by a gradual decline in the remaining 1000 trials.
In (e) and (f ), averages are taken over responses during ran-
dom walks on the modular and lattice graphs. Source data are
provided as a Source Data file. 106
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Figure 6.2 The effects of higher-order network structure on human re-
action times. (a) Cross-cluster surprisal effect in the modular
graph, defined by an average increase in reaction times for
between-cluster transitions (right) relative to within-cluster tran-
sitions (left). We detect significant differences in reaction times
for random walks (p < 0.001, t = 5.77, df = 1.61⇥ 105) and
Hamiltonian walks (p = 0.010, t = 2.59, df = 1.31⇥ 104). For
the mixed effects models used to estimate these effects, see
Tabs. 7.1 and 7.3. (b) Modular-lattice effect, characterized by
an overall increase in reaction times in the lattice graph (right)
relative to the modular graph (left). We detect a significant dif-
ference in reaction times for random walks (p < 0.001, t = 3.95,
df = 3.33⇥ 105); see Tab. 7.2 for the mixed effects model. Mea-
surements were on independent subjects, statistical significance
was computed using two-sided F-tests, and confidence intervals
represent standard deviations. Source data are provided as a
Source Data file. 108

Figure 6.3 A maximum entropy model of transition probability esti-
mates in humans. (a) Illustration of the maximum entropy
distribution P(�t) representing the probability of recalling a
stimulus �t time steps from the target stimulus (dashed line).
In the limit � ! 0, the distribution becomes uniform over all
past stimuli (left). In the opposite limit � ! 1, the distribu-
tion becomes a delta function on the desired stimulus (right).
For intermediate amounts of noise, the distribution drops off
monotonically (center). (b) Resulting internal estimates Â of the
transition structure. For � ! 0, the estimates become all-to-
all, losing any resemblance to the true structure (left), while
for � ! 1, the transition estimates become exact (right). At
intermediate precision, the higher-order community structure
organically comes into focus (center). (c-d) Predictions of the
cross-cluster surprisal effect (c) and the modular-lattice effect (d)
as functions of the inverse temperature �. 112
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Figure 6.4 Predicting reaction times for individual subjects. (a-f ) Esti-
mated parameters and accuracy analysis for our maximum en-
tropy model across 358 random walk sequences (across 286
subjects; see Methods). (a) For the inverse temperature �, 40
sequences corresponded to the limit �!1, 73 corresponded
to the limit � ! 0. Among the remaining 245 sequences, the
average value of � was 0.30. (b) Distributions of the intercept
r0 (left) and slope r1 (right). (c) Predicted reaction time as a
function of a subject’s internal anticipation. Grey lines indicate
20 randomly-selected sequences, and the red line shows the
average prediction over all sequences. (d) Linear parameters for
the third-order competing model; data points represent individ-
ual sequences and bars represent averages. (e-f ) Comparing the
performance of our maximum entropy model with the hierar-
chy of competing models up to third-order. Root mean squared
error (RMSE; e) and Bayesian information criterion (BIC; f ) of
our model averaged over all sequences (dashed lines) compared
to the competing models (solid lines); our model provides the
best description of the data across all models considered. (g-j)
Estimated parameters and accuracy analysis for our maximum
entropy model across all Hamiltonian walk sequences (120 sub-
jects). (g) For the inverse temperature �, 20 subjects were best de-
scribed as performing maximum likelihood estimation (�!1),
19 lacked any notion of the transition structure (� ! 0), and
the remaining 81 subjects had an average value of � = 0.61. (h)
Distributions of the intercept r0 (left) and slope r1 (right). (i)
Average RMSE of our model (dashed line) compared to that of
the competing models (solid line); our model maintains higher
accuracy than the competing hierarchy up to the second-order
model. (j) Average BIC of the maximum entropy model (dashed
line) compared to that of the competing models (solid line); our
model provides a better description of the data than the second-
or third-order models. Source data are provided as a Source
Data file. 113



list of figures xxviii

Figure 6.5 Measuring the memory distribution in an n-back experiment.
(a) Example of the 2-back memory task. Subjects view a sequence
of stimuli (letters) and respond to each stimulus indicating
whether it matches the target stimulus from two trials before.
For each positive response that the current stimulus matches
the target, we measure �t by calculating the number of trials
between the last instance of the current stimulus and the target.
(b) Histograms of �t (i.e., measurements of the memory distri-
bution P(�t)) across all subjects in the 1-, 2-, and 3-back tasks.
Dashed lines indicate exponential fits to the observed distribu-
tions. The inverse temperature � is estimated for each task to be
the negative slope of the exponential fit. (c) Memory distribution
aggregated across the three n-back tasks. Dashed line indicates
an exponential fit. We report a combined estimate of the inverse
temperature � = 0.32 ± 0.01, where the standard deviation is
estimated from 1,000 bootstrap samples of the combined data.
Measurements were on independent subjects. Source data are
provided as a Source Data file. 116

Figure 6.6 Network violations yield surprise that grows with topologi-
cal distance. (a) Ring graph consisting of 15 nodes, where each
node is connected to its nearest neighbors and next-nearest
neighbors on the ring. Starting from the boxed node, a sequence
can undergo a standard transition (green), a short violation of
the transition structure (blue), or a long violation (red). (b) Our
model predicts that subjects’ anticipations of both short (blue)
and long (red) violations should be weaker than their antici-
pations of standard transitions (left). Furthermore, we predict
that subjects’ anticipations of violations should decrease with
increasing topological distance (right). (c) Average effects of
network violations across 78 subjects, estimated using a mixed
effects model (see Tabs. 7.10 and 7.11), with error bars indi-
cating one standard deviation from the mean. We find that
standard transitions yield quicker reactions than both short vio-
lations (p < 0.001, t = 4.50, df = 7.15⇥ 104) and long violations
(p < 0.001, t = 8.07, df = 7.15⇥ 104). Moreover, topologically
shorter violations induce faster reactions than long violations
(p = 0.011, t = 2.54, df = 3.44⇥ 103), thus confirming the pre-
dictions of our model. Measurements were on independent sub-
jects, and statistical significance was computed using two-sided
F-tests. Source data are provided as a Source Data file. 118
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Figure 6.7 The effects of node degree on reaction times. (a) The average
expectation Âij plotted with respect to the degree of the pre-
ceding node i across a range of inverse temperatures �. As
expected, expectations decrease as the degree of the preceding
node increases; and for � = 10, we have Âij ⇡ Aij = 1/ki. The
lines and shaded regions represent averages and 95% confidence
intervals over 1000 randomly-generated Erdös-Rényi networks.
(b) People exhibit sharp increases in reaction time following
nodes of higher degree, with Spearman’s correlation rS = 0.23.
The data is combined across 177 subjects, each of whom was
asked to respond to a sequence of 1500 stimuli drawn from a
random Erdös-Rényi network. Each data point represents the
average reaction time for one node of a graph, and so each sub-
ject contributes 15 points. The line and shaded region represent
the best fit and 95% confidence interval, respectively. (c) The
average expectation Âij plotted with respect to the degree of the
current node j across the same range of inverse temperatures
as in (a). (d) People exhibit a steady decline in reaction times
as the current node degree increases, with Spearman’s corre-
lation rS = -0.10. Source data are provided as a Source Data
file. 128

Figure 6.8 Cross-cluster surprisal while controlling for recency. (a) In-
crease in reaction times for between-cluster versus within-cluster
transitions in the modular graph after controlling for the recency
of stimuli. We note that, due to the topology of the modular
graph, there do not exist between-cluster transitions with re-
cency three. We find significant cross-cluster surprisal effects for
all recency values besides eight. (b) Increase in reaction times
for between- versus within-cluster transitions after controlling
for the number of times that the current stimulus has appeared
in the previous 10 trials. We observe significant cross-cluster
surprisal for all numbers of recent stimulus appearances besides
two. Effect sizes (represented by bar plots), standard deviations
(represented by error bars), and p-values are estimated using
mixed effects models. The results are measured for all 173 sub-
jects that observed random walks in the modular graph. Source
data are provided as a Source Data file. 134
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Figure 6.9 Modular-lattice effect while controlling for recency. (a) Differ-
ence in reaction times between the lattice and modular graphs
after controlling for the recency of stimuli. We observe a sig-
nificant increase in reaction times for the lattice graph relative
to the modular graph for all recency values besides three, nine,
and > 10. (b) Difference in reaction times between the lattice
and modular graphs after controlling for the number of times
the current stimulus has appeared in the previous 10 trials. We
find a significant modular-lattice effect for one and two stimulus
appearances in the last 10 trials. Effect sizes (represented by
bar plots), standard deviations (represented by error bars), and
p-values are estimated using mixed effects models. The results
are measured for all 72 subjects that observed random walks in
both the modular and lattice graphs. Source data are provided
as a Source Data file. 136

Figure 6.10 Comparing standard transitions to network violations while
controlling for recency. (a) Difference in reaction times between
standard transitions and short violations (blue) or long viola-
tions (red) in the ring graph after controlling for the recency
of stimuli. We observe at least one significant effect of network
violations for all recency ranges less than 40. (b) Increase in
reaction times for short (blue) and long (red) network violations
after controlling for the number of times the current stimulus
has appeared in the previous 10 trials. For long violations, we
find a significant increase in reaction times across all numbers
of recent stimulus appearances. For short violations, we find a
significant increase in reaction times across all numbers of recent
stimulus appearances besides zero. Effect sizes (represented by
bar plots), standard deviations (represented by error bars), and
p-values are estimated using mixed effects models. The results
are measured for all 78 subjects that observed random walks
with violations in the ring graph. Source data are provided as a
Source Data file. 141
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Figure 6.11 Comparing short versus long network violations while con-
trolling for recency. (a) Difference in reaction times between
short and long network violations after controlling for the re-
cency of stimuli. We find significant increases in reaction times
for long violations in the recency ranges 21-30 and 31-40. (b)
Difference in reaction times between short and long network
violations after controlling for the number of times the current
stimulus has appeared in the previous 10 trials. Effect sizes (rep-
resented by bar plots), standard deviations (represented by error
bars), and p-values are estimated using mixed effects models.
The results are measured for all 78 subjects that observed ran-
dom walks with violations in the ring graph. Source data are
provided as a Source Data file. 142
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Figure 7.1 Human behavioral experiments reveal the dependence of per-
ceived information on network topology. (a-c) Experimental
setup for our serial reaction time tasks. (a) Subjects are shown
sequences of 1500 stimuli, with each stimulus consisting of five
squares with one or two highlighted in red. (b) The sequential
order of stimuli is determined by a random walk on an under-
lying network. (c) In response to each stimulus, subjects press
keys on a keyboard corresponding to the highlighted squares.
We use both one- and two-button responses because they allow
for networks of size up to N = 15. To control for the behavioral
effects of the different one- and two-button responses, we (i)
randomize the assignment of stimuli to nodes for each subject
and (ii) regress out behavioral dependencies on individual stim-
uli (351). (d-e) Effect of produced information on reaction times,
referred to as the entropic effect. (d) For each subject, we draw
an Erdös-Rényi random network with N = 15 nodes and E = 30

edges; the information produced by a transition i ! j (or its
surprisal) is logki, where ki is the degree of node i. (e) Reaction
times, averaged over all transitions that begin at nodes of a given
degree k, are significantly correlated with the produced informa-
tion logk (Pearson correlation coefficient rp = 0.99, p < 0.001,
n = 177 subjects). (f -h) Effects of network topology on reaction
times after controlling for produced information. (f ) We control
for variations in produced information by focusing on networks
of constant degree k = 4, such as the modular network, which
contains three distinct types of transitions: those deep within
clusters (dark blue), those at the boundaries of clusters (purple),
and those between clusters (light blue). (g) Each type of tran-
sition produces reaction times that are distinct from the other
two; differences in reaction times and p-values are estimated
using mixed effects models (n = 173 subjects; see Sec. 7.8.4). (h)
The difference in reaction times �RT between random degree-4
networks and the modular network; the modular network yields
consistently faster reactions (n = 84 subjects). In addition to the
population-level results in panels e, g, and h, we also find sig-
nificant individual variation in subjects’ sensitivity to network
topology (see Sec. 7.8.7). 148
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Figure 7.2 Modeling human estimates of transition probabilities. (a) Il-
lustration of the internal estimates of the transition probabilities
P̂ in the modular network. For ⌘! 0 (left), the estimates become
exact, while for ⌘ ! 1 (right), the estimates become all-to-all,
losing any resemblance to the true network. For intermediate ⌘

(center), transitions within clusters maintain higher probabilities
(and therefore lower surprisal) than transitions between clus-
ters, thereby explaining the differences in reaction times in Fig.
7.1g. Percentages indicate the proportion of subjects, across all
tasks, belonging to each category. (b) Distribution of the accuracy
parameter ⌘ estimated from subjects’ reaction times (see Sec.
7.8.3); the distribution is over all 518 completed tasks (n = 434

subjects). (c) Cross entropy S(P, P̂) as a function of ⌘ for all k-4
networks of size N = 15 (shaded region). The modular network
(solid line) maintains a lower cross entropy than the average
across all k-4 networks (dashed line), thereby explaining the
difference in reaction times in Fig. 7.1h. 150

Figure 7.3 The entropy and KL divergence of real communication net-
works. (a) Entropy of fully randomized versions of the networks
listed in Tab. 7.1 (Srand) compared with the true values (Sreal). (b)
KL divergence of fully randomized versions of the real networks
(Drand

KL ) compared with the true values (Dreal
KL ). Human expecta-

tions P̂ are calculated with ⌘ set to the average value 0.80 from
our experiments; however, the results remain qualitatively the
same across all values of ⌘ (Sec. 7.8.8). (c) Difference between
Sreal and Srand (top) and difference between Dreal

KL and Drand
KL

(bottom) for different network types, with error bars indicating
standard deviation over networks of each type. (d) Entropy of
degree-preserving randomized networks (Sdeg) compared with
Sreal. (e) KL divergence of degree-preserving randomized net-
works (Ddeg

KL ) compared with Dreal
KL with fixed ⌘ = 0.80. In panels

a, b, d, and e, data points and error bars (standard deviations) are
estimated from 100 realizations of the randomized networks. All
networks are undirected; for examination of directed versions
see Sec. 7.8.8. 153
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Figure 7.4 The impact of network topology on entropy and KL diver-
gence. (a) Scale-free (SF) network, characterized by a power-law
degree distribution and the presence of high-degree hub nodes.
(b) Entropy as a function of the average degree hki for Erdös-
Rényi (ER) and SF networks with different scale-free exponents
�. Data points are exact calculations for ER and SF networks
generated using the static model (258) with size N = 104. Lines
are derived from the expected degree distributions: dashed lines
are numerical results for N = 104 and solid lines are analytic
results for N ! 1 (see Sec. 7.8.11 for derivations). Note that
the thermodynamic limit for � = 2.1 does not appear in the
displayed range. (c) Entropy as a function of � for SF networks
with fixed hki. In the thermodynamic limit (solid lines), the
entropy diverges as � ! 2, and the analytic results are nearly
exact for � > 3. (d) Entropy as a function of degree heterogeneity
H = h|ki - kj|i/hki, where h|ki - kj|i is the absolute difference in
degrees averaged over all pairs of nodes (410), for SF networks
with fixed hki and variable �. (e) Stochastic block (SB) network,
characterized by dense connectivity within communities and
sparse connectivity between communities. (f ) KL divergence as
a function of the accuracy parameter ⌘ for ER and SB networks
with communities of size Nc = 100 and different fractions f of
within-community edges. Data points are exact calculations for
networks with N = 104 and hki = 100, and lines are analytic
calculations for N = 104 (dashed) and N ! 1 (solid; see Sec.
7.8.12 for derivations). (g) KL divergence as a function of f for SB
networks with fixed ⌘. The analytic results are nearly exact for
⌘ < 0.8. (h) KL divergence as a function of the average clustering
coefficient for SB networks with fixed ⌘ and variable f. 155
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Figure 7.5 Hierarchically modular networks support the efficient com-
munication of information. (a) Hierarchically modular (HM)
network, characterized by a power-law degree distribution and
modular structure (Sec. 7.8.13). (b) Entropy as a function of the
scale-free exponent � and the fraction of within-community
edges f for HM networks with size N = 104, average degree
hki = 100, and community size Nc = 100. Solid lines denote net-
works of equal entropy. (c) KL divergence as a function of � and
f for HM networks with the same size and density as panel b and
⌘ set to the average value 0.80 from our experiments (Fig. 7.2b).
Solid lines denote networks of equal KL divergence. (d) Average
entropies and KL divergences of real and model networks com-
pared to fully randomized versions. Data points are averages
over the set of networks in Tab. 7.1, where for each real network
we generate SF networks with variable � (red), SB networks with
communities of size n ⇡

p
N and variable f (blue), and HM net-

works with n ⇡
p
N and variable � (fixed f = 0.72; light green)

or variable f (fixed � = 2.2; dark green), all with N and E equal
to the real network. HM networks with � = 2.2 and f = 0.72
yield the same average entropy and KL divergence as real com-
munication networks. 157

Figure 7.6 Estimated model parameters relating human expectations to
reaction times. (a) Human expectations P̂ for the modular net-
work. For ⌘ ! 0, expectations become exact (left; 10% of sub-
jects), while for ⌘! 1, expectations become all-to-all, losing any
resemblance to the true structure (right; 21% of subjects). At
intermediate values of ⌘, the communities maintain probability
weight, while expectations for cross-cluster transitions weaken
(center; 69% of subjects). (b-d) Distributions of model parameters
estimated from subjects’ reaction times. Distributions are over
all 518 completed sequences. For the integration parameter ⌘ (b),
53 subjects were best described as having exact representations
(⌘ ! 0) and 107 lacked any notion of the transition structure
(⌘! 1), while across all subjects the average value was ⌘ = 0.80.
The intercept r0 is mostly positive (b), with an average value of
743 ms. The slope r1 is also mostly positive (d), with an average
value of 50 ms/bit. 167
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Figure 7.7 Network effects on human reaction times beyond entropy. (a)
Modular network with three modules of five nodes each. By
symmetry the network contains three distinct types of edges:
those deep within communities (blue), those at the boundaries
of communities (purple), and those between communities (red).
(b) Perceived information - log P̂ij for the three edge types as a
function of ⌘. Across all values of ⌘, the perceived information is
highest for cross-cluster edges, followed by boundary edges, and
lowest for internal edges, thus explaining the observed differ-
ences in human reaction times (Fig. 7.1e). (c) Cross entropy (or
network-averaged perceived information) h- log P̂ijiP as a func-
tion of ⌘ for the modular network (green) and all k-4 networks
(the grey region denotes the range and the dashed line denotes
the mean). The modular network maintains nearly the lowest
cross entropy among k-4 networks across all values of ⌘, thereby
explaining the overall decrease in reaction times in the modular
network relative to random k-4 networks (Fig. 7.1f). 168

Figure 7.8 Effects of modular topology on error rates. (a) Modular net-
work with three types of edges: internal edges within communi-
ties (dark blue), boundary edges within communities (purple),
and cross-cluster edges between communities (light blue). (b)
Differences in error rates between the different types of transi-
tions; we find significant differences in error rates between all
three types of transitions (n = 173 subjects). 174

Figure 7.9 Distributions of network effects over individual subjects. (a-e)
Distributions over subjects of the different reaction time effects:
the entropic effect (n = 177), or the increase in reaction times for
increasing produced information (a); the extended cross-cluster
effects (n = 173), or the difference in reaction times between
internal and cross-cluster transitions (b), between boundary and
cross-cluster transitions (c), and between internal and boundary
transitions (d) in the modular graph; and the modular effect
(n = 84), or the difference in reaction times between the modular
network and random k-4 networks (e). (f -j) Distributions over
subjects of the different effects on error rates: the entropic effect
(f ), the extended cross-cluster effects (g-i), and the modular effect
(j). 177
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Figure 7.10 Correlations between different network effects across sub-
jects. (a) Pearson correlations between the entropic and extended
cross-cluster effects on reaction times. (b) Pearson correlations
between the entropic and extended cross-cluster effects on error
rates. In a and b, the modular effects on reaction times and error
rates are not shown because they were measured in a different
population of subjects. (c) For each network effect, we show the
Pearson correlation between the corresponding reaction time
effect and error rate effect. Statistically significant correlations
are indicated by p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01
(⇤⇤), and less than 0.05 (⇤). 177

Figure 7.11 KL divergence of real networks for different values of ⌘. (a)
KL divergence of fully randomized versions of the real networks
listed in Tab. 7.13 (Drand

KL ) compared with the true value (Dreal
KL ) as

⌘ varies from zero to one. Every real networks maintains lower
KL divergence than the corresponding randomized network
across all values of ⌘. (b) Difference between the KL divergence
of real and fully randomized networks as a function of ⌘. (c)
KL divergence of degree-preserving randomized versions of
the real networks (Ddeg

KL ) compared with Dreal
KL as ⌘ varies from

zero to one. The real networks display lower KL divergence
than the degree-preserving randomized versions across all val-
ues of ⌘. (d) Difference between the KL divergence of real and
degree-preserving randomized networks as a function of ⌘. All
networks are undirected, and each line is calculated using one
randomization of the corresponding real network. 179

Figure 7.12 KL divergence of real networks under the power-law model
of human expectations. (a) KL divergence of fully randomized
versions of the real networks listed in Tab. 7.13 (Drand

KL ) compared
with the true value (Dreal

KL ). Expectations P̂ are defined as in Eq.
(7.9) with f(t) = (t+ 1)-↵, and we allow ↵ to vary between 1
and 10. The real networks maintain lower KL divergence than
the randomized network across all values of ↵. (b) Difference
between the KL divergence of real and fully randomized net-
works as a function of ↵. (c) KL divergence of degree-preserving
randomized versions of the real networks (Ddeg

KL ) compared with
Dreal

KL as ↵ varies from 1 to 10. The real networks display lower
KL divergence than the degree-preserving randomized versions
across all values of ↵. (d) Difference between the KL diver-
gence of real and degree-preserving randomized networks as
a function of ↵. All networks are undirected, and each line is
calculated using one randomization of the corresponding real
network. 180
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Figure 7.13 KL divergence of real networks under the factorial model of
human expectations. (a) KL divergence of fully randomized ver-
sions of the real networks listed in Tab. 7.13 (Drand

KL ) compared
with the exact value (Dreal

KL ). Expectations P̂ are defined as in Eq.
(7.9) with f(t) = 1/t!. (b) KL divergence of degree-preserving
randomized versions of the real networks (Ddeg

KL ) compared with
Dreal

KL . In both cases, the real networks maintain lower KL diver-
gence than the randomized versions. Data points and error bars
(standard deviations) are estimated from 10 realizations of the
randomized networks. 181

Figure 7.14 Entropy and KL divergence of directed versions of real net-
works. (a) Entropy of directed versions of the real networks
listed in Tab. 7.13 (Sreal) compared with fully randomized ver-
sions (Srand). Entropy is calculated directly from Eq. (9.1) with
the stationary distribution ⇡ calculated numerically. (b) KL di-
vergence of directed versions of the real networks (Dreal

KL ) com-
pared with fully randomized versions (Drand

KL ). Expectations P̂

are defined as in Eq. (7.10) with ⌘ set to the average value
0.80 from our human experiments. (c) Entropy of randomized
versions of directed real networks with in- and out-degrees pre-
served (Sdeg) compared with Sreal. (d) KL divergence of degree-
preserving randomized versions of directed real networks (Ddeg

KL )
compared with Dreal

KL . Data points and error bars (standard devi-
ations) are estimated from 100 realizations of the randomized
networks. 182

Figure 7.15 Entropy and KL divergence of temporally evolving versions
of real networks. (a) Entropy of temporally evolving versions of
the real networks listed in Tab. 7.13 (Sreal) compared with fully
randomized versions (Srand). Each line represents a sequence
of growing networks and each symbol represents the final ver-
sion of the network. (b) KL divergence of evolving versions of
the real networks (Dreal

KL ) compared with fully randomized ver-
sions (Drand

KL ). Expectations P̂ are defined as in Eq. (7.10) with
⌘ set to the average value 0.80 from our human experiments.
(c) Entropy of temporally evolving versions of real networks
(Sreal) compared with degree-preserving randomized versions
(Sdeg). (d) KL divergence of temporally evolving versions of real
networks (Dreal

KL ) compared with degree-preserving randomized
versions (Ddeg

KL ). Across all panels, each point along the lines
represents an average over five realizations of the randomized
networks. 184
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Figure 7.16 Evolution of the difference in entropy and KL divergence be-
tween real networks and randomized versions. (a) Difference
between the entropy of temporally evolving real networks (Sreal)
and the entropy of fully randomized versions of the same net-
works (Srand) plotted as a function of the fraction of the final
network size. Each line represents a sequence of growing net-
works that culminates in one of the communication networks
studied in the main text. (b) Difference between the KL diver-
gence of temporally evolving real networks (Dreal

KL ) and that of
fully randomized versions (Drand

KL ) plotted as a function of the
fraction of the final network size. When calculating the KL diver-
gences, the expectations P̂ are defined as in Eq. (7.10) with ⌘ set
to the average value 0.80 from our human experiments. Across
both panels, each point along the lines represents an average
over five realizations of the randomized networks. 185

Figure 7.17 Comparison of directed citation and language networks. (a)
Out-degrees kout

i
=

P
j
Gij of nodes in the arXiv Hep-Th citation

network compared with the in-degrees kin
i
=

P
j
Gji of the same

nodes; we find a weak Spearman’s correlation of rs = 0.18. (b)
Out-degrees compared with in-degrees of nodes in the Shake-
speare language (noun transition) network; we find a strong
correlation rs = 0.92. (c) Entries in the stationary distribution
⇡i for different nodes in the citation network compared with
the node-level entropy Si; we find a weakly negative correlation
rs = -0.09. (d) Entries in the stationary distribution compared
with node-level entropies in the language network; we find a
strong correlation rs = 0.87. 186

Figure 7.18 Comparison of all-word transition networks and noun tran-
sition networks. (a-b) Difference between the KL divergence
of language (word transition) networks (Dreal

KL ) and degree-
preserving randomized versions of the same networks (Ddeg

KL ).
We consider networks of transitions between all words (a) and
networks of transitions between nouns (b). (c, d) Difference be-
tween the average clustering coefficient of language networks
(CCreal) and degree-preserving randomized versions of the same
networks (CCdeg), where transitions are considered between
all words (c) or only nouns (d). In all panels, data points and
error bars (standard deviations) are estimated from 100 real-
izations of the randomized networks, and the networks are
undirected. 188
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Figure 7.19 Entropy of random walks in Poisson distributed networks. (a)
Entropy of random walks as a function of the average degree
hki for Poisson distributed networks. Data points are exact cal-
culations using the degree sequences of randomly-generated
Erdös-Rényi networks of size N = 104. Dashed lines are nu-
merical results for N = 104, calculated using the Poisson degree
distribution. Solid lines are analytic results for the thermody-
namic limit N ! 1. (b) Entropy as a function of the degree
heterogeneity H for variable hki. (c) Degree heterogeneity as a
function of the average degree. 190

Figure 7.20 Entropy of random walks in power-law distributed networks.
(a) Entropy of random walks as a function of the scale-free expo-
nent � for power-law distributed networks. Data points are exact
calculations from networks of size N = 104 generated using the
configuration model (450). Dashed lines are numerical results
for N = 104, calculated using the power-law degree distribu-
tion. Solid lines are analytic results for the thermodynamic limit
N ! 1. (b) Entropy as a function of the degree heterogeneity
H for variable �. (c) Degree heterogeneity as a function of the
scale-free exponent. 191

Figure 7.21 Entropy of random walks in static model networks. (a) En-
tropy of random walks as a function of the average degree
hki for various values of the scale-free exponent � in the static
model. Data points are exact calculations using the degree se-
quences of networks with N = 104 generated using the static
model. Dashed lines are numerical results for N = 104, calcu-
lated using the average degree relationship in Eq. (7.19). Solid
lines are analytic results for the thermodynamic limit N!1.
(b) Entropy as a function of � for various values of hki. (c) The
quantity S - loghki collapses to a single function of � across
various values of hki. (d) Entropy as a function of the degree
heterogeneity H for varying �. (e) The quantity S- loghki in-
creases with H for varying �. (f ) Degree heterogeneity increases
as � decreases toward the critical value � = 2. 193
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Figure 7.22 Entropy of random walks in exponentially distributed net-
works. (a) Entropy of random walks as a function of the degree
cutoff  for exponentially distributed networks. Data points are
exact calculations from networks of size N = 104 generated
using the configuration model (450). Dashed lines are numerical
results for N = 104, calculated using the exponential degree dis-
tribution. Solid lines are analytic results for the thermodynamic
limit N ! 1. (b) Entropy as a function of the degree hetero-
geneity for variable . (c) Degree heterogeneity as a function of
the exponential cutoff. 194

Figure 7.23 KL divergence from human expectations in Erdös-Rényi net-
works. (a) KL divergence between random walks and human
expectations as a function of the inaccuracy parameter ⌘ for
Erdös-Rényi networks. Data points are exact calculations for
networks of size N = 104 with average degree hki = 100. Dashed
line is the analytic prediction using Eq. (7.30) with N = 104.
Solid line is the analytic result for the thermodynamic limit
N!1. (b) KL divergence as a function of the average degree
hki for ⌘ equal to the value 0.80 measured in the serial response
experiments. Dashed line represents the high-density analytic
approximation in Eq. (7.30) with N = 104, while the solid line is
the low-density approximation in Eq. (7.32). (c) KL divergence
as a function of the average clustering coefficient for variable
hki. (d) Average clustering coefficient as a function of hki. In the
thermodynamic limit the clustering tends toward zero for all
values of hki (solid line). 197

Figure 7.24 KL divergence from human expectations in stochastic block
networks. (a) KL divergence as a function of the integration
parameter ⌘ for stochastic block networks with average degree
hki = 100 and communities of size Nc = 100. Data points are
exact calculations for networks of size N = 104. Dashed lines are
analytic predictions using Eq. (7.38) with N = 104. Solid lines
are analytic results for the thermodynamic limit N!1. (b) KL
divergence as a function of the fraction of within-community
edges f for different values of ⌘. (c) KL divergence as a function
of the average clustering coefficient for variable f and different
values of ⌘. (d) Average clustering coefficient as a function of f.
Dashed line is the analytic prediction in Eq. (7.41) with N = 104.
Solid line is the analytic result in the limit N!1. 201
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Figure 7.25 Information and structural properties of hierarchically modu-
lar networks. (a) Entropy as a function of the scale-free exponent
� and the fraction of within-community edges f for hierarchi-
cally modular networks with average degree hki = 100 and
communities of size Nc = 100. Each point is an exact calculation
for a network of size N = 104. (b) KL divergence as a function of
� and f in the same networks with ⌘ fixed to the average value
0.80 from our experiments. (c) Degree heterogeneity H varies
as a function of � and f in a similar fashion to the entropy (a).
(d) Average clustering coefficient varies as a function of � and f

much like the KL divergence (b). 203
Figure 7.26 Comparing the information properties of real and model net-

works. Entropies and KL divergences of real and model net-
works compared to fully randomized versions. For each model
network in Tab. 7.1, we generate SF networks with variable �

(red), SB networks with communities of size Nc ⇡
p
N and vari-

able f (green), and HM networks with Nc ⇡
p
N and variable

� (fixed f = 0.72; blue) or variable f (fixed � = 2.2; purple),
all with the same number of nodes N and edges E as the real
network. Each real and model network is then compared with
100 randomized versions; data points are first averaged over
the 100 randomized networks and then averaged over the set
of real networks in Tab. 7.1. HM networks with � = 2.2 and
f = 0.72 match the average entropy and KL divergence of real
networks. 204

Figure 8.1 A primer on network properties. (Center) Nodes, illustrated by
circles, represent stimuli, items, or states in a sequence. Edges,
illustrated by lines, connect pairs of nodes if it is possible to
transition from one node to the other. The organization of edges
among nodes is referred to as the network’s topology or struc-
ture. (Circumjacent) A network’s topology can be described using
properties that characterize its local, mesoscale, or global orga-
nization. 212
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Figure 8.2 Measuring and modeling brain network structure. (a) The
measurement of brain network structure begins with experi-
mental data specifying the physical interconnections between
neurons or brain regions. As an example, we consider a dataset
of white matter tracts measured via DTI. First, the data is dis-
cretized into non-overlapping gray matter volumes representing
distinct nodes. Then, one constructs an adjacency matrix A,
where Aij represents the connection strength between nodes i

and j. This adjacency matrix, in turn, defines a structural brain
network constructed from our original measurements of physical
connectivity. (b) To capture an architectural feature of structural
brain networks, we utilize generative network models. The sim-
plest generative network model is the Erdös–Rényi model, which
has no discernible non-random structure. Networks with modu-
lar structure, divided into communities with dense connectivity,
are constructed using the stochastic block model. Small-world
networks, which balance efficient communication and high clus-
tering, are generated using the Watts–Strogatz model. Networks
with hub structure, characterized by a heavy-tailed degree distri-
bution, are typically constructed using a preferential attachment
model such as the Barabási–Albert model. Spatially embedded
networks, whose connectivity is constrained to exist within a
physical volume, are generated through the use of spatial net-
work models. 214

Figure 8.3 Brain networks at various scales. (a) Molecular networks com-
posed of interacting molecules. (b) Neuronal networks composed
of firing neurons. (c) Regional network composed of disparate
brain areas communicating with one another. (d) Social network
composed of individuals interacting with one another. 218
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Figure 8.4 Measuring and modeling brain network function. (a) The
measurement of brain network function begins with experi-
mental data specifying the activity of neurons or brain regions.
As an example, we consider variations in blood oxygen level in
different parts of the brain measured via fMRI. Calculating the
similarity (e.g., correlation or synchronization) between pairs
of activity time series, one arrives at a similarity matrix. This
matrix, in turn, defines a functional brain network constructed
from our original measurements of neural activity. (b) We divide
models of neural activity into two classes: abstract models with
artificial dynamics (left) and biophysical models with realistic
dynamics (right). Models of artificial neurons, such as the MP
neuron, typically take in a weighted combination of inputs
and pass the inputs through a nonlinear threshold function to
generate an output. Networks of artificial neurons, from deep
neural networks to Hopfield networks, have been shown to
reproduce key aspects of human information processing, such
as learning from examples and storing memories. By contrast,
biophysical models of individual neurons, such as the Hodgkin–
Huxley or FitHugh–Nagumo models, capture realistic functional
features such as the propagation of the nerve impulse. When
interconnected with artificial synapses, researchers are able to
simulate entire neuronal networks. Complimentary mesoscale
approaches, including neural mass models such as the Wilson–
Cowan model, average over all neurons in a population to
derive a mean firing rate. To simulate the large-scale activity of
an entire brain, researchers use neural mass models to represent
brain regions and embed them into a network with connectivity
derived from measurements of neural tracts (e.g., as measured
via DTI). 222
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Figure 8.5 Targeted perturbations and brain network control. (a) Meth-
ods for targeted control are used in the study, design, and
optimization of external control processes, such as transcra-
nial magnetic stimulation and deep brain stimulation. These
targeted perturbations of neural activity are being utilized in
clinical settings to treat major depression, epilepsy, and Parkin-
son’s disease. By simultaneously stimulating and measuring
neural activity, researchers can now perform closed-loop con-
trol, continuously updating stimulation strategies in real time.
(b) Controllability metrics provide summary statistics regarding
the ease with which a given node can enact influence on the
network. Two common metrics are the average controllability,
which assesses the ease of moving the system to all nearby states,
and the modal controllability, which assesses the ability to move
the system to distant states (see Fig. 8.6). Notions of control-
lability have proven useful in the study of the brain’s internal
control processes, such as homeostatic regulation and cognitive
control. For example, the human brain displays marked levels
of both average and modal controllability, and the proportion of
average and modal controllers differs across cognitive systems,
suggesting the capacity for a diverse repertoire of dynamics
(284). 229

Figure 8.6 Control theory in the brain. (a) Linear control theory describes
how to influence a linear system to move along a desired tra-
jectory. (b) Controllability metrics, including average and modal
controllability, quantify the ease with which a given system can
be controlled. 231



list of figures xlvi

Figure 9.1 Macroscopic non-equilibrium dynamics in the brain. (a-b) A
simple four-state system, with states represented as circles and
transition rates as arrows. (a) At equilibrium, there are no net
fluxes of transitions between states – a condition known as de-
tailed balance – and the system does not produce entropy. (b)
Systems that are out of equilibrium exhibit net fluxes of transi-
tions between states, breaking detailed balance and producing
entropy in the environment. (c) Brain states defined by the
first two principal components of the neuroimaging time-series,
calculated for all time points and all subjects. Colors indicate
the z-scored activation of different brain regions, ranging from
high-amplitude activity (green) to low-amplitude activity (or-
ange). Arrows represent possible fluxes between states. (d-e)
Probability distribution (color) and net fluxes between states
(arrows) for neural dynamics at rest (d) and during a gam-
bling task (e). In order to use the same axes in panels d and
e, the dynamics are projected onto the first two principal com-
ponents of the combined rest and gambling time-series data.
The flux scale is indicated in the upper right, and the disks
represent two-standard-deviation confidence intervals for fluxes
estimated using trajectory bootstrapping (604) (see Methods;
Fig. 9.5). 235

Figure 9.2 Simulating complex non-equilibrium dynamics using an asym-
metric Ising model. (a) Two-spin Ising model with asymmetric
interactions (left), where the interaction J↵� represents the
strength of the influence of spin � on spin ↵. Simulating the
model with synchronous updates, the system exhibits a clear
loop of flux between configurations (right). (b) Asymmetric
version of the Sherrington-Kirkpatrick (SK) model, wherein
directed interactions are drawn independently from a zero-
mean Gaussian with variance 1/N, where N is the size of the
system. (c) For an asymmetric SK model with N = 100 spins,
we plot the probability distribution (color) and fluxes between
states (arrows) for simulated time-series at temperatures T = 0.1
(left), T = 1 (middle), and T = 10 (right). In order to visualize
the dynamics, the time series are projected onto the first two
principal components of the combined data across all three
temperatures. The scale is indicated in flux-per-time-step, and
the disks represent two-standard-deviation confidence intervals
estimated using trajectory bootstrapping (see Methods). 237
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possible fluxes between clusters. (b) Entropy production in the
asymmetric SK model as a function of the number of clusters
k for the same time-series studied in Fig. 9.2c, with error bars
reflecting two standard deviations estimated using trajectory
bootstrapping (see Methods). 239
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Figure 9.11 Flux networks reveal non-equilibrium dynamics unique to
each cognitive task. (a) Coarse-grained brain states calculated
using hierarchical clustering (k = 8), with surface plots indi-
cating the z-scored activation of different brain regions. For
each state, we calculate the cosine similarity between its high-
amplitude (green) and low-amplitude (orange) components and
seven pre-defined neural systems (662): default mode (DMN),
frontoparietal (FPN), visual (VIS), somatomotor (SOM), dorsal
attention (DAT), ventral attention (VAT), and limbic (LIM). We
label each state based on its largest high-amplitude cosine simi-
larities. (b-i) Flux networks illustrating the fluxes between the
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gambling (h), and motor execution (i). Edge weights indicate flux
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Figure 9.12 Second-order approximation of entropy production in the
brain. (a) Second-order entropy production at rest and during
seven cognitive tasks (dark bars), estimated using hierarchical
clustering with k = 8 clusters. For comparison, we also include
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Figure 9.13 Entropy production in the brain at different levels of coarse-
graining. (a) Entropy production at rest and during seven cog-
nitive tasks as a function of the number of clusters k used in
hierarchical clustering. The raw entropy production (Eq. 9.9)
is divided by the fMRI repetition time �t = 0.72 s to compute
an entropy production rate, and error bars reflect two standard
deviations estimated using trajectory bootstrapping. (b) Slope
of the relationship between entropy production and physical
response rate across tasks for different numbers of clusters k.
Error bars represent one-standard-deviation confidence inter-
vals of the slope and asterisks indicate the significance of the
correlation between entropy production and response rate. (c)
Difference between the entropy production during high-load
and that during low-load conditions of the working memory
task as a function of the number of cluster k. Error bars represent
two standard deviations estimated using trajectory bootstrap-
ping, and the entropy production difference is significant across
all values of k (one-sided t-test, p < 0.001). 256

Figure 9.14 Entropy production in the brain cannot be explained by head
movement nor signal variance. Entropy production versus the
average DVARS (a) and the variance of the neural time-series
(b) at rest and during seven cognitive tasks. Across both panels,
entropy productions are estimated using hierarchical clustering
with k = 8 clusters and are divided by the fMRI repetition
time �t = 0.72 s to compute entropy production rates. Error
bars reflect two standard deviations estimated using trajectory
bootstrapping. 257



Part I

E M E R G E N C E A N D C O N T R O L O F C O L L E C T I V E H U M A N
A C T I V I T Y

In the study of complex systems, it is often assumed that the fundamental
building blocks are the pairwise connections between elements. In human
populations specifically, pairwise connections combine to form social net-
works, the early investigations of which marked the birth of network science.
But does collective human activity actually emerge from pairwise interac-
tions between individuals? If so, which individuals are most influential
in driving the behavior of the population? In Chapter 1, we demonstrate
that large-scale patterns in a range of different human activities emerge
from simple correlations between pairs of individuals. To do so, we employ
maximum entropy modeling techniques, making our description of each
population equivalent to an Ising model from statistical mechanics. In Chap-
ters 2-4, we use the Ising model to investigate which nodes (or individuals)
in a population are most influential. In Chapter 2, we develop a tractable
algorithm for answering this question based on the mean-field approxima-
tion. In Chapter 3, we show that the set of influential individuals depends
critically on the amount of noise in a system, shifting from central hub
nodes in noisy systems to peripheral nodes in deterministic systems. Finally,
in Chapter 4, we present a hierarchy of approximation algorithms based on
the Plefka expansion that provide increasingly accurate predictions for the
set of influential nodes. Together, these results demonstrate that many col-
lective human behaviors can be understood as emerging from networks of
pairwise interactions, and that the structure of these interactions determines
the optimal strategy for influencing a population.
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S U R G E S O F C O L L E C T I V E H U M A N A C T I V I T Y E M E R G E F R O M
S I M P L E PA I RW I S E C O R R E L AT I O N S

This chapter contains work from Lynn, Christopher W., Lia Papadopoulos, Daniel D. Lee,
and Danielle S. Bassett. “Surges of collective human activity emerge from simple pairwise
correlations." Physical Review X 9.1 (2019): 011022.

Abstract

Human populations exhibit complex behaviors – characterized by long-range corre-
lations and surges in activity – across a range of social, political, and technological
contexts. Yet it remains unclear where these collective behaviors come from, or if
there even exists a set of unifying principles. Indeed, existing explanations typically
rely on context-specific mechanisms, such as traffic jams driven by work schedules or
spikes in online traffic induced by significant events. However, analogies with statistical
mechanics suggest a more general mechanism: that collective patterns can emerge
organically from fine-scale interactions within a population. Here, across four different
modes of human activity, we show that the simplest correlations in a population –
those between pairs of individuals – can yield accurate quantitative predictions for the
large-scale behavior of the entire population. To quantify the minimal consequences
of pairwise correlations, we employ the principle of maximum entropy, making our
description equivalent to an Ising model whose interactions and external fields are
notably calculated from past observations of population activity. In addition to pro-
viding accurate quantitative predictions, we show that the topology of learned Ising
interactions resembles the network of inter-human communication within a population.
Together, these results demonstrate that fine-scale correlations can be used to predict
large-scale social behaviors, a perspective that has critical implications for modeling
and resource allocation in human populations.

1.1 introduction

In the study of human behavior, significant effort has focused on understanding the
actions of one or two individuals at a time. It has been observed, for instance, that
people engage in “bursts” of actions in quick succession (49, 574, 683), and significant
effort has concentrated on understanding the correlated activity of pairs and triplets
of individuals (198, 574). But if we broaden our perspective to an entire population, it
becomes increasingly clear that humans also exhibit large-scale patterns of correlated

2



1.1 introduction 3

activity. For example, urban transportation systems undergo surges of correlated
activity known as traffic jams (514), first responders are required to handle correlated
spikes in demand for emergency services (42), and internet and telephone networks
must be designed to withstand surges of collective activity (122, 163). But where do
these large-scale patterns come from? Does it even make sense to discuss such distinct
phenomena in the same breath?

Existing explanations for collective human behaviors have focused primarily on
external mechanisms, such as fluctuations in urban traffic based on the time of the
week (514) or spikes in demand for emergency services in response to natural disasters
(42). While external influences are an important part of the story, such explanations
are inherently limited by their reliance on context-specific mechanisms like daily and
weekly rhythms and natural disasters. By contrast, interactions between individuals
are present in almost every human context, providing the possibility for a much more
general explanation for the emergence of large-scale correlations. Precisely this line of
reasoning has fostered vibrant efforts linking the study of social systems to tools and
intuitions from statistical physics (126). By adapting established models of collective
behavior in physical systems, such as the Ising model and similar agent-based models,
scientists have gained a deeper understanding of the nature of collective behaviors in
social systems. This program, for example, has resulted in Ising-like models of social
dynamics and human cooperation (238, 239, 516), viral models aiding in the design of
vaccination strategies (697), descriptions of the evolution of social networks (51), and
statistical models of criminal activity (166, 303).

Here we draw inspiration from these seminal results to investigate the role of fine-
scale correlations in generating large-scale patterns of human activity. Focusing on
four datasets of human activity, from email and private message correspondence to
physical contact and music streaming, we find that each population exhibits periods of
intense collective activity, which cannot be explained by commonly-used models that
assume independence in human behavior (245, 290, 358, 546). Intuitively, these surges
in activity could be driven by a common external influence, such as people’s daily and
weekly schedules. Instead, to quantify the collective impact of pairwise correlations,
we construct a pairwise maximum entropy model that is formally equivalent to an
Ising model from statistical mechanics. While the Ising model has previously been
used to understand qualitative aspects of human activity (126, 237, 239, 240, 416), here,
in order to make quantitative predictions, we calculate the specific external fields and
pairwise interactions that best describe each population. In what follows, we show
that this maximum entropy model (i) accurately predicts the frequencies of different
patterns of collective human activity, and (ii) bears a close resemblance to the network
of inter-human communication within a population. Taken together, these results
constitute an important step in the development of quantitative models of collective
human behavior based on fine-scale correlations within a population. Such models, in
turn, have important implications for resource allocation in communication (122) and
transportation (514) networks, understanding social organization (490), and preventing
viral epidemics (513).
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1.2 the network effects of correlations

As a salient example of collective human activity, we begin by studying patterns of
email correspondence, focusing specifically on the email activity of 100 scientists at
a European research institution over 526 days (504, 506). To understand the role of
correlations in the timing of people’s actions – and in order to compare against other
types of activities that are not directed from one individual to another (42, 163, 185,
514, 620) – we initially focus on the timing of sent emails, while blinding our analysis
to the email recipients. Importantly, this will later allow us to compare the architecture
of functional interactions derived from our maximum entropy model with the network
of communication within the population.

In a sufficiently small window of time �t, each action appears binary – either
individual i sent an email (�i = 1) or they were silent (�i = 0). By discretizing human
activity in this way, we can begin to quantify correlations between people’s actions.
We wish for the time window �t to be as large as possible (to detect correlations
between individuals) without being so large that individuals perform multiple actions
within the same window. We find that nearly 90% of consecutive emails from the same
individual are sent with at least two minutes in between (Fig. 7.10a), defining a natural
time scale that we use as our �t. Discretizing the data, as shown in Fig. 7.10b, we
produce a set of ⇠ 3.8⇥ 105 binary vectors (patterns) �, each of which captures the
activity of the entire population within a given two-minute window.

The simplest and most common models of human activity assume that each individ-
ual behaves independently, implying that the number of people performing an action
in a given window follows a Poisson distribution (290). Indeed, the Poisson distribution
has been widely used to quantify the effects of various human actions, including
telephone calls to a call center (546), internet activity (358), industrial accidents (290,
546), and highway traffic flow (245). In our population of email users, most pairs of indi-
viduals are only weakly correlated (Fig. 7.10c), suggesting that small groups should be
well-approximated by an independent model. However, if we extend the independent
approximation to the entire population of 100 email users, it fails dramatically. While
the Poisson distribution predicts a super-exponential drop off in the number of actions
performed in a given window, we find instead that human activity actually follows an
exponential distribution (Fig. 7.10d). This exponential distribution is characterized by a
heavy tail, representing moments in time when many more people are sending emails
than would be expected if they were behaving independently. Additionally, we report
similar heavy-tailed distributions in separate datasets of private messages, physical
contacts, and music streams (Figs. 1.10-1.12). For comparison, after shuffling the timing
of the emails to eliminate correlations (589), we do not witness a window involving
six or more active users (Fig. 7.10d), while we do observe ⇠1500 such instances in the
original dataset – nearly three per day.

The independent approximation also makes straightforward predictions for the rate
of each activity pattern. Denoting the probability of individual i sending an email in
a given two-minute window by pi(�i), the probability of observing a given activity
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Figure 1.1: Surges of human activity and failure of the independent approximation. (a)
Distribution of inter-event times for individuals in a network of email correspondence. The
dashed lines indicate the proportion of inter-event times less than two minutes. (b) Top: Activity
of the 50 most active individuals over a half-day period, where each dot represents a sent
email. Bottom: Network activity is discretized into two-minute windows. (c) Histogram of
Pearson correlation coefficients ⇢ij between activity time series for all pairs in the 100-person
population. (d) Distribution of the number of emails sent in a given two-minute window (black)
and the distribution after shuffling each person’s activity to eliminate correlations (blue). The
dashed lines show an exponential distribution fit to the observed data (black) and a Poisson
distribution fit to the shuffled data (blue). (e) The rate of each observed activity pattern, plotted
against the approximate pattern rate assuming independent people. The dashed line indicates
equality.

pattern � is simply predicted to be P1(�) =
Q

i
pi(�i). This independent model

severely under-predicts patterns involving three or more active email users (Fig. 7.10e),
and we find a similar discrepancy in a network of private messages (Fig. 1.10c). In fact,
under the independent model, each pattern of email activity involving seven active
users should have only appeared roughly once every 1020 seconds – longer than the
age of the universe. We conclude that the independent approximation fails to explain
the heavy-tailed nature of human behavior, characterized by surges of collective activity
(42, 122, 163, 514). But where do these surges come from?
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1.3 a maximum entropy model of human activity

To improve upon the independent model, we must take into account correlations
between individuals. Intuitively, such correlations could be driven by external influences
such as daily and weekly rhythms (Fig. 1.2a), a hypothesis that has dominated existing
explanations of large-scale human behaviors (42, 122, 163, 514). Alternatively, fine-scale
correlations involving only a few individuals could build upon one another to have a
strong impact on the population as a whole (Fig. 1.2b). Here, we focus on the simplest
possible correlations within a population – those between pairs of individuals – and ask
whether these pairwise correlations can give rise to the large-scale patterns of activity
that we observe in the data. As we will see, focusing on pairwise correlations represents
a natural first step towards understanding emergent collective human activity, opening
the door for straightforward generalizations to more complex higher-order correlations
(Fig. 1.2b) (241, 428).

We require a model that incorporates the observed pairwise correlations in the data,
while including as little information as possible about higher-order correlations between
three, four, or more individuals. While it is not immediately obvious how one would
construct such a model, Jaynes famously showed that an elegant solution lies in the
principle of maximum entropy (339): Among the infinite set of distributions consistent
with a given set of correlations, the unique one that assumes as little information
as possible about additional correlations is precisely the distribution with maximum
entropy. This maximum entropy principle lies at the heart of equilibrium statistical
mechanics (161, 339) and has become increasingly popular as a tool for studying
emergent phenomena in a range of complex systems, including networks of neurons in
the brain (241, 589), flocks of birds (89), protein structures (701), and gene coexpression
patterns (402). Despite this widespread adoption in biophysics, to our knowledge a
similar data-driven approach has not previously been attempted in the social sciences.

Here we consider the pairwise maximum entropy model, defined by the Boltzmann
distribution

P2(�) =
1

Z
exp

 
X

i

hi�i +
1

2

X

i6=j

Jij�i�j

!

, (1.1)

where the external fields hi and pairwise interactions Jij are Lagrange multipliers
that ensure the model matches the observed individual activity rates and pairwise
correlations in the data, respectively, and Z is the normalizing partition function. If we
switch notation to �i = ±1, where +1 stands for activity and -1 for inactivity, P2 is
equivalent to the Ising model, which has long been used to simulate human dynamics
in social networks (126, 237, 239, 240, 416). However, while existing applications of the
Ising model to human populations are based on metaphors about how people interact
(238–240, 415, 416), we emphasize that our use of the Ising model is quantitatively
rigorous in the sense that the external fields hi and interactions Jij are calculated to fit
the observed activity of a given population (see Section 1.8.4).
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External influences:a Internal correlations:b

Example: Weekly rhythms

Non-interacting population

Correlated activity

Pairwise
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Figure 1.2: External influences versus internal correlations. (a) An external mechanism –
here taken to be weekly rhythms – influencing the activity of a population of non-interacting
humans. Intuitively, circadian and weekly rhythms might influence people to send emails more
frequently during the daytime and on weekdays, thereby inducing population-wide correlations.
(b) Alternatively, population-wide correlations could arise from fine-scale interactions between
individuals within a population. The set of all correlations forms a hierarchy, beginning
with simple pairwise correlations between two individuals, followed by more complicated
higher-order correlations involving three (triplet), four (quadruplet), or more individuals.

1.4 the minimal consequences of pairwise correlations

Calculations in the Ising model typically require summing over all 2N activity patterns,
where N is the number of elements in a system, prohibiting applications to large
populations. Thus, it is common to construct a picture of the whole population by
studying many different sub-populations (589), such as the 10 email users in Fig. 9.2a.
To quantify the explanatory power of pairwise correlations, we need meaningful ways
to compare the accuracy of the maximum entropy model P2 to that of the independent
model P1. Toward this end, we use the Jensen-Shannon divergence DJS(Q||P) as a
measure of distance from each of the model distributions (call them Q) to the observed
activity distribution P. Put simply, the Jensen-Shannon divergence represents the inverse
of the number of independent samples needed to distinguish each model Q from the
observed data (406). Across 300 random groups of 10 users, we find that on average
one would require 3.13⇥ 104 independent samples – over 43 days worth of data – to
distinguish the pairwise model P2 from the true distribution P (Fig. 9.2b). By contrast,
one would typically require five times fewer samples to distinguish the independent
model P1 from the observed data. Moreover, we find qualitatively similar results for
individuals engaged in private messaging (Fig. 1.10e), face-to-face interactions (Fig.
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Figure 1.3: The pairwise maximum entropy model accurately describes human behavior. (a)
Learned Ising interactions Jij and external fields hi describing a random 10-person group
in the email network. (b) Jensen-Shannon divergences between the true distribution P and
the independent P1 (blue), maximum entropy P2 (red), and conditionally independent PC
(green) models. Histograms reflect estimates from 300 random groups of 10 individuals. Inset:
DJS(P2||P) versus DJS(PC||P) for the 300 groups. The dashed line indicates equality. (c) Fraction
of the network correlation (quantified by the multi-information I) captured by the maximum
entropy (red) and conditionally independent (green) models, plotted against I for each group
of 10 people. The multi-information is divided by �t to remove dependence on the window
size. (d) Fraction of the total correlation captured by the pairwise (red) and conditionally
independent (green) models in four different modes of human activity: email correspondence,
private messaging, physical interactions, and online music streaming. Error bars represent
standard deviations over 300 random 10-person groups for the email and private message
datasets and over 200 groups for the physical contact and music streaming datasets. (e) Fraction
of the multi-information in the email data captured by the maximum entropy model versus
group size, where each data point is averaged over 300 randomly-selected groups. The dashed
line represents the best log-linear fit, with 95% confidence interval indicated by the shaded
region.

1.11c), and online music streaming (Fig. 1.12c). These observations suggest that the
pairwise model provides a marked improvement in accuracy over the independent
model.
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We also wish to compare against a model representing the hypothesis that patterns of
human activity are driven by external influences. While there are many external factors
influencing human actions on a daily basis, from weather patterns to shifting demands
at work, here we consider the most intuitive and well-studied external influence; namely,
the impact of daily and weekly routines (see Fig. 1.2a) (122, 163, 423, 514). To formalize
the hypothesis that activity patterns are driven by daily and weekly schedules, we
consider the conditionally independent model PC, wherein each individual performs
actions independently from all other individuals, but their activity rates are allowed
to vary based on the time of the week (54, 589) (see Section 1.8.5). Compared to the
conditionally independent model PC, we find that the maximum entropy model P2
is closer to the observed data (i.e., has a smaller Jensen-Shannon divergence from P)
across 291 of the 300 groups (Fig. 9.2c, Inset). This result is particularly notable when
considering that P2 only has 55 parameters for each group of 10 individuals, while
PC requires knowledge of each individual’s email rate at each time during the week,
totaling over 5⇥ 104 parameters.

The pairwise model accurately predicts the rates of particular activity patterns, but
does it explain a majority of the total correlation in the population? To answer this
question, we note that the total amount of correlation in the network, contributed by
correlations between groups of users of all sizes, is quantified by the multi-information
I = S1 - S, where S1 is the entropy of the independent distribution P1 and S is
the entropy of the observed distribution P (161) (see Section 1.8.6). To determine
the amount of multi-information that is contributed by pairwise correlations, it is
useful to review the properties of maximum entropy models. For a population of N
elements, we can define a sequence of maximum entropy models Pk that are consistent
with all correlations up to the kth-order, where k = 1, 2, . . . ,N. These models form a
hierarchy, from P1, in which all elements are independent, up to PN, which is an exact
description of the observed activity. As we climb up this hierarchy, the entropies Sk
of the distributions decrease monotonically toward the true entropy (S1 > S2 > · · · >
SN = S); and the combined contribution of all kth-order correlations is quantified by the
entropy difference Ik = Sk-1 - Sk. We note, for instance, that these entropy differences
sum to the full multi-information: I2 + · · ·+ IN = I. Thus, the problem of determining
how much of the total correlation in the data stems from pairwise correlations formally
reduces to calculating the proportion of the multi-information I that is accounted for
by the reduction in entropy from pairwise correlations (i.e., I2 = S1 - S2).

We observe that pairwise correlations account for a striking I2/I ⇡ 89% of the total
correlation in groups of 10 users (Fig. 9.2c). In turn, this observation implies that
the contributions of all other higher-order correlations, I3 + · · ·+ IN, only combine to
account for the remaining 11% of the multi-information. Meanwhile, the amount of
correlation attributable to daily and weekly rhythms is represented by the entropy
difference IC = S1 - SC, where SC is the entropy of the conditionally independent
model PC. This popular explanation for collective human behavior is consistently less
effective than the maximum entropy model at capturing the correlations in the data
(IC/I ⇡ 67%; Fig. 9.2c). Importantly, we show (i) that these results are robust to both



1.5 modeling an entire population 10

reasonable variation in the time window �t used to discretize the data (Section 1.8.2.1;
Fig. 1.7) as well as differences in the set of individuals selected for analysis (Section
1.8.2.2; Fig. 1.8), and (ii) that the maximum entropy model is relatively consistent over
time (Section 1.8.2.3; Fig. 1.9). Moreover, we verify that similar results hold in separate
datasets of private messages (Section 1.8.3.1; Fig. 1.10), physical contacts between
individuals (Section 1.8.3.2; Fig. 1.11), and music streaming online (Section 1.8.3.3; Fig.
1.12), as summarized in Fig. 9.2d. In the dataset of private messages, for instance, the
pairwise model captures nearly the same amount of correlation as in the population of
email users (I2/I ⇡ 87%), while people’s daily and weekly rhythms explain very little
of the correlation (IC/I ⇡ 5%; Fig. 9.2e). Interestingly, this difference in I/IC between
email activity and private messages (Fig. 9.2c) reflects the commonly-held intuition
that email activity is moderately tied to people’s work and leisure schedules, while
private messages are not.

We are ultimately interested in understanding the role of pairwise correlations in
driving large-scale surges of activity in the entire 100-person population. With this goal
in mind, we calculate the fraction I2/I in groups of email users increasing in size from
N = 2 through 10. For small groups and relatively weak correlations, as the group size
increases, we expect the multi-information I to increase in proportion to the entropy
difference I2 (589). Indeed, we find that the fraction I2/I remains nearly constant as
the groups grow in size (I2/I / N-0.075±0.005). Extrapolating to the entire 100-person
population, we find with 95% confidence that pairwise correlations account for 72-
78% of the total multi-information in the data (Fig. 9.2d). This fraction is especially
large when considering the exponential number of possible higher-order correlations
(⇠ 2N) for populations of increasing size N. We conclude that large-scale patterns of
behavior, across several distinct modes of human activity, can be robustly understood
as emerging from an underlying network of pairwise correlations.

1.5 modeling an entire population

Our analysis of relatively small groups indicates that the pairwise maximum entropy
model can capture a majority of the correlation structure in groups of up to 100
individuals. This result, in turn, suggests that the heavy-tailed nature of collective
human behavior (Fig. 7.10d) – characterized by surges of activity – might emerge
organically from pairwise correlations. To test this prediction directly, we must extend
the pairwise maximum entropy model to include the entire population of 100 email
users. In order to learn the appropriate Ising interactions Jij and external fields hi for all
100 people, we leverage recent advances in stochastic gradient descent from statistical
physics (215) and machine learning (3), avoiding the exponential complexity of standard
Ising calculations (see Section 1.8.4; Fig. 1.13). Fig. 1.4a shows that the pairwise model
successfully captures the heavy-tailed nature of human activity, accurately predicting
the frequencies of activity surges involving up to seven and eight individuals.

To understand how a network of simple pairwise correlations can generate large-
scale spikes in activity, it is useful to study the structure of the Ising parameters in the
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Figure 1.4: Surges of collective activity are captured by pairwise correlations. (a) Distribution
of the observed number of emails in a given two-minute window (black), the prediction of the
independent model (blue), and the prediction of the pairwise maximum entropy model (red).
(b) Scatter plot illustrating the relationship between the observed pairwise correlations in the
data ⇢ij and the learned Ising interactions Jij for all pairs in the 100-person population. Inset:
Histogram of the learned interactions.

maximum entropy model (Eq. (1.1)). We note that each external field hi either biases
individual i toward activity (hi > 0) or toward inactivity (hi < 0). Meanwhile, each
Ising interaction Jij either influences individuals i and j to perform actions at the same
time (Jij > 0) or at different times (Jij < 0). Here, we draw an important distinction
between the learned interactions Jij in the maximum entropy model and the observed
pairwise correlations ⇢ij in the data: while each pairwise correlation quantifies the
frequency with which two individuals perform actions at the same time, each Ising
interaction represents a functional influence between two individuals to synchronize
their activity, thereby inducing a pairwise correlation. Interestingly, while correlations in
the network are weak and almost exclusively positive (Fig. 7.10c), the Ising interactions
maintain a large amount of heterogeneity (Fig. 1.4b, Inset), with almost an equal
number of positive and negative interactions. Indeed, the learned pairwise interactions
depend highly non-trivially on the corresponding pairwise correlations in the data
(Fig. 1.4b). Importantly, the presence of competing positive and negative interactions
generates “frustration,” as in spin glasses (446), wherein triplets of individuals cannot
find a combination of activity and inactivity that simultaneously satisfies all of their
interactions. This frustration gives rise to a complex energy landscape of activity
patterns with many different local minima, some of which correspond to patterns
involving many more active individuals than would be expected under the independent
model, thus giving rise to the heavy-tailed behavior in Fig. 1.4a. Intriguingly, such
frustrated interactions have previously been hypothesized to drive a number of social
phenomena (126), such as the formation of coalitions (236). By calculating the specific
Ising parameters that describe each population, and by identifying the presence of
competing positive and negative interactions (Fig. 1.4b, Inset), our work provides
rigorous evidence for these long-standing hypotheses.
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Figure 1.5: The learned pairwise interactions uncover pathways of ground truth commu-
nication. (a) Histogram of correspondence rates Aij between all pairs of individuals that
exchanged at least one email. (b) Scatter plot of the learned Ising interactions versus email
correspondence rates for pairs that exchanged at least one email. Importantly, Jij and Aij are
significantly correlated with Spearman’s correlation coefficient rs = 0.13 (p = 2⇥ 10-7). (c)
Overlap between the strongest interactions Jij and most frequently corresponding pairs Aij as
a function of the fraction of pairs being considered. The dashed line indicates the overlap with a
random selection of user pairs. (d) Structure of the strongest pairwise interactions (red), highest
correspondence rates (blue), and overlap between the two (green) for all 100 individuals. The
three networks represent the strongest 10% (left), 2% (middle), and 0.4% (right) of user pairs.

1.6 the role of inter-human communication

Thus far, we have focused on understanding correlations in the timing of actions, with-
out knowledge of who each person is interacting with in the population. Fundamentally,
the Ising interactions Jij are merely learned parameters that ensure consistency with
the observed pairwise correlations in the network. However, it is tempting to imbue
them with physical significance, interpreting these functional interactions as compris-
ing a network of real-world influences between individuals. For previous applications
of maximum entropy models in neuroscience (241, 589) and biology (89, 402, 701),
because comparisons with ground truth interactions are often infeasible, any physical
meaning attributed to the learned interactions Jij has remained, at its core, an analogy.
By contrast, in the context of email activity, we automatically know a subset of the
ground truth interactions – namely, the network of email communication between
individuals. Although it is appealing to suspect that the learned Ising interactions are
closely related to the structure of email correspondence in the data, we emphasize that
this need not be the case. There is an array of circumstances that could influence the
activity of two individuals to become correlated, from common functional roles in the
network to shared communication with an external third party. Furthermore, even if
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correlations do arise from direct communication, this communication could take on
many forms that do not appear in the dataset, including face-to-face contact, texts, calls,
or other online avenues.

Keeping in mind these reasons for guarded optimism, here we compare the learned
interactions Jij from our maximum entropy model with the network of email traffic
between individuals. Letting ni!j denote the number of emails sent from person
i to person j, and letting ni =

P
j
ni!j denote the total number of emails sent by

person i, we define the correspondence rate between two people i and j to be Aij =
(ni!j + nj!i)/(ni + nj). In words, Aij represents the fraction of the ni + nj emails
sent by person i and person j that were addressed to each other. We find that most
correspondence only accounts for around 1% of a pair’s total email communication,
while a small number of pairs communicate almost exclusively with one another (Fig.
1.5a). Considering all pairs of people that exchanged at least one email (Aij > 0),
we find that the learned Ising interactions Jij are significantly correlated with the
correspondence rates Aij in the data (Spearman’s correlation coefficient rs = 0.13,
p = 2⇥ 10-7; Fig. 1.5b). This relationship between the learned Ising interactions and
the ground truth communication in the population is particularly interesting after
reflecting on the myriad ways in which these two networks could have remained
unrelated, as described above.

To fully appreciate the strength of the relationship between Jij and Aij, we focus
on the fraction f of the strongest pairwise interactions and correspondence rates in
the population. These two thresholded networks overlap significantly (Fig. 1.5c), with
the strongest 1% of Ising interactions exhibiting a 20% overlap with the top 1% of
frequently communicating pairs – 20 times higher than if Jij and Aij were independent.
This overlap becomes even more pronounced as we increase the threshold (Fig. 1.5d),
such that the single strongest maximum entropy interaction in the entire population
corresponds precisely to the pair of individuals that communicate most frequently. This
relationship between Jij and Aij provides a compelling mechanistic interpretation for
the Ising interactions in our maximum entropy model; namely, frequent communication
between a pair of individuals (quantified by Aij) acts as an influence to synchronize
their activity (quantified by Jij). As demonstrated in previous sections, the resulting
pairwise correlations, in turn, can generate the types of large-scale correlations and
surges in human activity that are ubiquitous in the modern world (42, 122, 163, 185,
514, 620).

1.7 conclusions and future directions

Despite the widespread investigation of fine-scale correlations as the building blocks of
large-scale behavior in complex systems throughout physics (161, 339), neuroscience
(241, 589), and biology (89, 402, 701), a similar quantitative approach to human dynam-
ics has been notably lacking. Here, we provide an important step toward the ultimate
goal of understanding the role of fine-scale correlations in generating large-scale pat-
terns of human activity. Studying four datasets that reflect the diversity of human
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activity, we first show that all populations exhibit surges of collective activity, a phe-
nomenon that has become the subject of intense research focus (42, 122, 163, 185, 514,
620). Importantly, these surges in activity cannot be accounted for by commonly-used
models that assume independence in human behavior (245, 290, 358, 546). To under-
stand where surges in activity come from, we consider the possibility that large-scale
patterns arise naturally from combinations of simple pairwise correlations between
individuals. To formalize this hypothesis, we utilize the principle of maximum entropy
from information theory, deriving a pairwise maximum entropy model of human activ-
ity that is formally equivalent to an Ising model. Interestingly, this maximum entropy
model accounts for 72-78% of the total correlation in a 100-person population of email
users (Fig. 9.2e) and accurately predicts the heavy-tailed distribution of activity surges
(Fig. 1.4a). Additionally, we demonstrate that the Ising interactions in our model closely
resemble the network of inter-human communication within the population. This close
relationship between functional interactions and ground truth communication suggests
an intuitive mechanism driving pairwise correlations.

Just as emergent phenomena have garnered significant attention in the natural sci-
ences (89, 161, 241, 339, 402, 428, 589, 701), we anticipate that similar approaches will
prove fruitful in the development of accurate models of large social systems. Impor-
tantly, while a majority of existing research has focused on the impacts that external
influences have on human populations (42, 514), these explanations are fundamen-
tally limited by their reliance on context-specific mechanisms (122, 163). By contrast,
interactions between humans are present in almost every context, and, as we have
demonstrated, these interactions can build upon one another to have a large-scale
impact on the behavior of an entire population. In this way, thinking carefully about the
role of fine-scale correlations in activity can have quite general implications for resource
allocation in communication (122) and transportation (514) networks, understanding
social organization (490), and preventing viral epidemics (513).

To conclude, we point out a number of limitations of our analysis that highlight
important directions for future work. First, we remark that, given the diversity of
experiences that shape human actions, it would be naïve to conclude that all collective
behaviors only emerge from internal correlations. To the contrary, it has been well
established that external influences play an important role in predicting a number of
collective human behaviors (42, 122, 163, 185, 514, 620). Therefore, future work should
investigate the interplay between external influences and internal interactions in human
populations. Such an investigation would likely benefit from advances in control theory
and influence maximization (365, 458), which have recently been used to predict the
propagation of external influences in Ising networks (415–417). Second, we note that
our investigation has focused primarily on pairwise correlations. While these simplest
correlations represent a logical first step, our results do not rule out the possibility
that higher-order correlations could also have an important impact on large-scale
behavior. Practically speaking, the primary difficulty in studying such higher-order
correlations lies in determining which to include in a maximum entropy model, as
there exist

�
N

k

�
different choices for each kth-order correlation (a number that grows
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nearly exponentially with k). Fortunately, to handle this explosion of parameters, recent
advances in neuroscience have produced tractable techniques for generating sparse
higher-order maximum entropy models (241). Such higher-order models represent
systematic generalizations of the methods presented here, and could prove vital for
understanding the large-scale impacts of triplet and quadruplet correlations (Fig. 1.2b),
which are thought to encode important organizational features in human populations
(198) (see Section 1.8.7 for an extended discussion).
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1.8 supplementary material

1.8.1 Data preprocessing

Here, we discuss the details of how the email data is processed, noting that the
other datasets follow in an analogous fashion. In total, the dataset contains the email
correspondence between 986 members of a European research institution over 526
days (506). We focus on the 100 most active individuals, roughly corresponding to
the members of the population that sent on average at least one email per day (Fig.
1.6). To quantify correlations between different individuals, we must discretize the
data into time bins of width �t. To choose a suitable bin width, we notice that 90%
of consecutive emails from the same individual are sent with at least two minutes in
between (Fig. 7.10a), defining a natural time scale that we use as our �t.Discretizing
the 526-day dataset into 2-minute bins, we produce a set of ⇠ 3.8⇥ 105 binary patterns
{�} that define the behavior of our population.

1.8.2 Robustness of the pairwise model

In Section 1.8.1, we provided first-principles justifications for focusing on the 100 most
active individuals in the email dataset and for discretizing the data into bins of width
�t = 2 minutes. Here, we verify that the success of the pairwise maximum entropy
model is robust to reasonable variations in these choices.

1.8.2.1 Dependence on the bin width

We investigate the dependence of the pairwise maximum entropy model on the bin
width �t used to discretize the email activity. Throughout, we focus on the 100 most
active individuals, and we consider bin widths of �t = 1, 5, 10, and 30 minutes. For
each value of �t, we randomly select 200 different groups of 10 individuals and fit
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Figure 1.6: Cumulative distribution of emails versus the activity rank of the users. The 100
most active individuals account for 56% of the emails in the network (dashed lines).
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Figure 1.7: Dependence of the pairwise maximum entropy model on the bin width. (a-d)
Distributions of pairwise couplings for 200 different 10-person groups selected from the 100
most active individuals in the email dataset. From left to right, the data is discretized into
bins of width �t = 1, 5, 10, and 30 minutes. (e-h) Jensen-Shannon divergences between the
observed distribution over activity patterns P and the independent P1 (blue), maximum entropy
P2 (red), and conditionally independent PC (green) models. The distributions are taken over
the 200 groups from panels (a-d). (i-l) Fraction of the network correlation captured by the
maximum entropy (red) and conditionally independent (green) models, plotted against the
full network correlation, quantified by the multi-information I. The average percentage of the
multi-information captured by each model is displayed in the upper corner. Each dot represents
a different group of 10 people, and I is divided by �t to remove dependence on the window
size.

a pairwise maximum entropy model to describe each group. As �t increases, we
witness more windows involving multiple active individuals, thereby strengthening the
correlations that we observe in the discretized data. In turn, these stronger correlations
give rise to Ising interactions Jij that are more positive and sharply peaked (Fig. 1.7a-d).
In Fig. 1.7e-h, we show that the true distribution of activity is approximately five times
closer to the maximum entropy model P2 than to the independent model P1 across
all values of �t considered, demonstrating the consistency of the pairwise model in
predicting human behavior. On the other hand, the performance of the conditionally
independent model PC increases significantly as �t increases, even outperforming the
pairwise model for �t > 10 minutes. We note, however, that for such large bin widths,
people often send multiple emails within the same window, and treating the data as
binary may not be justified. In Fig. 1.7i-l, we see that the pairwise model captures
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nearly all of the multi-information in the 10-person groups across all choices for �t. By
contrast, the conditionally independent model consistently captures a smaller fraction
of the multi-information in the data. Furthermore, for �t = 1 minute, the conditionally
independent model has lower entropy than the data itself (i.e., IC/I > 1) for 30 of the
200 groups, which is a clear indication that the model is overfitting the data.

1.8.2.2 Dependence on the individuals being analyzed

We investigate the dependence of the maximum entropy model on the set of individuals
chosen for analysis. In particular, we consider 200 different 10-person groups selected
from among the 100 most active email users, the 400 most active users, and all 824 users
that sent at least one email. Throughout this section, the bin width is fixed at �t = 5

minutes. As we focus on more active individuals, the observed correlations become
stronger, which is reflected in the fact that the distribution of learned interactions Jij
among the top 100 individuals is more sharply peaked and positive than the pairwise
interactions between the top 400 and all 824 individuals (Fig. 1.8a-c). In Fig. 1.8d-f,
we again find that the pairwise model is approximately five times closer to the true
distribution than the independent model across all three subpopulations. By contrast,
the conditionally independent model performs nearly as well as the pairwise model
among the 100 most active individuals, but provides only marginal improvements
over the independent model for all 824 individuals. The failure of the conditionally
independent model in describing the entire 824-person population is not surprising
given that most individuals sent less than one email every five days, leaving daily and
weekly rhythms with little to no predictive power.

We now consider the fraction of the multi-information captured by each model. For
all 824 individuals, Fig. 1.8g shows that the conditionally independent model captures
a slightly larger fraction of the multi-information than the maximum entropy model;
however, PC erroneously includes more correlation than the data itself (i.e., IC/I > 1)
for 20 of the 200 groups of 10 people, indicating that the model is overfitting the data.
For both the top 100 and 400 most active individuals, the maximum entropy model
captures a significantly larger fraction of the network correlation than the conditionally
independent model (Fig. 1.8h-i). We conclude that the predictions of the pairwise
maximum entropy model are robust to variations in both the bin width �t as well as
the set of individuals chosen for analysis.

1.8.2.3 Consistency of the pairwise model over time

By employing the pairwise maximum entropy model in Eq. (1.1), we implicitly assume
that the population activity can be modeled as a stationary distribution; that is, that
the local fields hi and interactions Jij do not change over time. Here, we test this
assumption explicitly while noting that the development of time-evolving maximum
entropy models is an important direction for future work (see Section 1.8.7.3 for
an extended discussion). Specifically, we wish to determine if the Ising parameters
describing one portion of the email activity resemble those describing another portion
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Figure 1.8: Dependence of the pairwise model on the set of individuals chosen for analysis
in the email dataset. (a-c) Distributions of pairwise interactions for 200 different groups of 10
individuals, where the data is discretized with bin width �t = 5 minutes. From left to right,
the 200 groups are chosen from among all 824 people that sent at least one email, the 400
most active individuals, and the 100 most active individuals, respectively. (d-f ) Jensen-Shannon
divergences between the observed distribution over activity patterns P and the independent
P1 (blue), maximum entropy P2 (red), and conditionally independent PC (green) models. The
distributions are taken over the 200 groups of users. (g-i) Fraction of the network correlation
captured by the pairwise maximum entropy (red) and conditionally independent (green)
models, plotted against the full network correlation, quantified by the multi-information I. The
average percentage of the multi-information captured by each model is displayed in the upper
corner. The multi-information is divided by �t to remove dependence on the window size.

of the activity. To do so, we divide the dataset into two halves corresponding roughly
to the first and last 263 days of email activity. Fig. 1.9a-c shows that the statistics
describing the population activity remain remarkably consistent over time, with both
the user activity rates and pair correspondence rates Aij being strongly correlated
between the two halves of data (Pearson’s correlations rp = 0.77 for the activity rates
and rp = 0.91 for the correspondence rates).

To study the consistency of the maximum entropy model, we randomly select 200
different 10-person groups from among the 74 users that sent at least one email in both
halves of the dataset, and we then learn pairwise models describing each group for
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Figure 1.9: Consistency of the pairwise maximum entropy model over time. (a) Comparison
of email user activity rates in the first half versus the second half of the dataset; the dashed line
indicates equality. (b) Correspondence rates Aij between pairs of users are strongly correlated
across the two halves of the dataset. (c) Overlap between the most frequently corresponding
pairs of users in the first half and those in the second half as a function of the fraction of
pairs being considered. The dashed line indicates the overlap with a random selection of user
pairs. (d) For 200 random groups of 10 individuals, we compare the local fields hi of pairwise
maximum entropy models fit to either the first or second half of the email data. (e) For the
same 200 random groups, we compare the Ising interactions Jij of the pairwise models fit to
the two halves of the dataset. (f ) For each half of the dataset, we average the interactions Jij
over all 200 groups and plot the overlap between average interaction networks as a function of
the fraction of user pairs being considered. As in panel (c), the dashed line indicates the overlap
with a random selection of pairs.

each half of data. Fig. 1.9d-e shows that the local fields hi and interactions Jij modeling
the population activity are significantly correlated over time (Pearson’s correlations
rp = 0.54 for the local fields and rp = 0.13 for the interactions). The consistency of
the Ising interactions Jij between the two halves of data becomes even more apparent
when we focus on the strongest interactions in the population (Fig. 1.9f). Together, these
results indicate that the patterns of population activity remain relatively consistent
over time, justifying our application of the stationary maximum entropy model as a
first step toward more complex dynamical models.

1.8.3 Other modes of human activity

In the main text, our analysis focused primarily on a dataset of email activity. Here, we
independently verify the ability of the pairwise maximum entropy model to quantita-
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tively describe collective human behavior in three other datasets representing a diverse
range of human activities.

1.8.3.1 Private messages

We first consider a dataset of ⇠ 6⇥ 105 private messages sent between 1899 students at
U.C. Irvine over the span of 193 days (504). As in the context of email activity, we focus
on the individuals that sent on average at least one message per day, corresponding to
the 66 most active students in the population. To choose an appropriate bin width, we
consider the distribution of time gaps between consecutive messages from the same
student (Fig. 1.10a). Comparing against the equivalent distribution in the email dataset
(Fig. 1.6b), we notice that many more private messages than emails are sent with short
gaps (. 1 minute) in between. This bursty behavior indicates that the private messages
serve as a more conversational communication medium than emails, a fact that will
later help in understanding the impact of daily and weekly rhythms. Due to the bursty
nature of private messages, we reduce our bin width to �t = 1 minute, yielding a
dataset of ⇠ 2.8⇥ 105 binary activity patterns.

As in the network of email correspondence, the independent model P1 fails to
explain the collective behavior in the private message population (245, 290, 358, 546);
while the independent model predicts a super-exponential drop off in the number
of active individuals in a given window, we find that the distribution of private
messages is actually heavy-tailed, fitting closely to an exponential distribution (Fig.
1.10b). Additionally, in Fig. 1.10c we see that the independent model dramatically
under-predicts patterns involving two or more active individuals. To improve upon the
independent model, we again consider two competing hypotheses: (i) that large-scale
patterns emerge from an aggregation of simple pairwise correlations (represented
by the pairwise maximum entropy model P2), and (ii) that large-scale patterns are
driven by similarities in people’s weekly routines (represented by the conditionally
independent model PC). Randomly selecting 300 groups of 10 people, Fig. 1.10d shows
that the pattern rates predicted by the pairwise maximum entropy model are tightly
correlated with the observed pattern rates, avoiding the inaccuracies of the independent
and conditionally independent models.

Additionally, calculating the Jensen-Shannon divergences DJS(Q||P) from each model
Q to the observed data P, we find that one would typically need over five times more
samples to distinguish the pairwise model than the independent model (Fig. 1.10e),
reflecting roughly the same performance as in the network of email correspondence.
Interestingly, in contrast to email activity, the conditionally independent model provides
nearly no improvement over the independent model in the dataset of private messages.
Additionally, Fig. 1.10f shows that the pairwise maximum entropy model captures
I2/I ⇡ 87% of the correlation in the data, nearly identical to its performance on
the network of email correspondence, while the conditionally independent model
accounts for a strikingly small fraction of the correlation structure (IC/I ⇡ 5%). This
difference in the performance of PC between the private message and email datasets
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Figure 1.10: Performance of the pairwise maximum entropy model in a dataset of private
messages. (a) Cumulative distribution of inter-event times for the 66 most active individuals.
Approximately 80% of consecutive messages from the same person are sent with at least one
minute in between (dashed lines). (b) Distribution of the messages sent in a given one-minute
window in the dataset (black) and after shuffling individuals’ activities to eliminate correlations
(blue); dashed lines indicate an exponential fit to the observed data (black) and a Poisson
fit to the shuffled data (blue). (c) The rate of each observed activity pattern, plotted against
the approximate rate under the independent model P1; the dashed line indicates equality.
(d) We plot the rate of each observed activity pattern across 300 randomly selected groups
of 10 individuals against the approximate rates under the independent model P1 (blue), the
pairwise maximum entropy model P2 (red), and the conditionally independent model PC
(green); the dashed line indicates equality. (e) Jensen-Shannon divergences between the true
distribution P and the independent P1 (blue), maximum entropy P2 (red), and conditionally
independent PC (green) models; the histograms reflect estimates from the 300 10-person groups.
(f ) Fraction of the network correlation (i.e., multi-information I) captured by the pairwise (red)
and conditionally independent (green) models, plotted against the full multi-information. We
note that I is divided by �t to remove the dependence on window size.

suggests that the conversational nature of private messages makes them less likely
than email traffic to depend on people’s routines. By contrast, the maximum entropy
model accurately describes the activity in both populations, further validating the
conclusion that patterns of collective behavior can be understood as emerging from
simple pairwise correlations.

1.8.3.2 Physical contacts

Thus far, we have only studied human actions mediated by online communication.
Here, we instead consider a dataset of face-to-face interactions between 50 attendees at
the ACM Hypertext 2009 conference, which spanned three days (331). Discretizing the
population activity into bins of width �t = 20 seconds, we arrive at a set of ⇠ 104 binary
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Figure 1.11: Performance of the pairwise model in a dataset of face-to-face contacts between
individuals. (a) Distribution of the number of contacts in a given 20-second window observed
in the dataset (black) and after shuffling individuals’ activities to eliminate correlations (blue);
dashed lines indicate an exponential fit to the observed data (black) and a Poisson fit to the
shuffled data (blue). (b) The rate of each observed activity pattern across 200 randomly selected
groups of 10 individuals is plotted against the approximate rates under the independent model
P1 (blue), the pairwise maximum entropy model P2 (red), and the conditionally indepen-
dent model PC (green); the dashed line indicates equality. (c) Jensen-Shannon divergences
between the true distribution P and the independent P1 (blue), maximum entropy P2 (red), and
conditionally independent PC (green) models; the histograms reflect estimates from the 200
10-person groups. (d) Fraction of the network correlation (i.e., multi-information I) captured
by the pairwise (red) and conditionally independent (green) models, plotted against the full
multi-information; I is divided by �t = 20 seconds to remove the dependence on window size.

activity vectors. As in both the networks of email and private message correspondence,
we observe that the number of human contacts within a given 20-second window
roughly obeys an exponential distribution, while the independent model instead
predicts a Poisson distribution that severely under-predicts the likelihood of surges
in human activity (Fig. 1.11a). To study the pairwise maximum entropy model, we
generate 200 random groups of 10 individuals. Fig. 1.11b shows that the rates of activity
patterns predicted by the pairwise model are tightly correlated with the rates at which
they were observed at the conference, providing consistently more accurate predictions
than both the independent and conditionally independent models.

Quantitatively, one would require three to four times as many samples to distinguish
the independent model from the observed data than the maximum entropy model,
and the maximum entropy model achieves a lower Jensen-Shannon divergence from
the observed data than the conditionally independent model across all 200 groups of
attendees (Fig. 1.11c). Additionally, Fig. 1.11d shows that the pairwise model captures
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I2/I ⇡ 74% of the correlation in the face-to-face contacts. While this is slightly lower
than that observed for emails and private messages, we remark that the conditionally
independent model only accounts for IC/I ⇡ 29% of the correlation in the data.
Interestingly, despite physical interactions representing a quite different mode of
human activity from online communication, we still find that patterns of population
behavior are well-described as arising from pairwise correlations.

1.8.3.3 Music streams

To this point, all of our analysis has focused on modes of human activity that are
themselves types of interactions between individuals. It is natural to suspect, therefore,
that these activities might be particularly conducive to being described by a pairwise
model. To test the ability of the pairwise maximum entropy model to describe other
modes of human activity, here we consider a dataset of 610 individuals streaming music
on the website last.fm over the span of one year (131). Discretizing the streaming
activity into bins of width �t = 150 seconds (roughly corresponding to the length
of an average song), we arrive at a set of ⇠ 2⇥ 105 activity vectors. Considering the
number of music streams in a given 150-second window, we notice that the observed
distribution is notably not described by an exponential distribution (Fig. 1.12a), which
is attributable to the fact that the streaming data is much less sparse than any of
the three activities studied previously. Nevertheless, we still find that the observed
distribution is heavy-tailed relative to the independent Poisson distribution, and is
characterized by surges of activity where upwards of 50 users are streaming music at a
given time.

Randomly selecting 200 groups of 10 users, we show in Fig. 1.12b that the pairwise
maximum entropy model provides a much tighter fit of the observed activity pattern
rates than either the independent or conditionally independent models. Moreover,
by studying the Jensen-Shannon divergences between the different models and the
observed distribution of activity patterns, we find that we would need over six times
as many data samples to distinguish P2 from P than to distinguish P1 from P and
over four times more samples to distinguish PC (Fig. 1.12c). These results are further
supported by Fig. 1.12d, which shows that the pairwise model captures I2/I ⇡ 74%
of the correlation in groups of 10 users, nearly identical to the case of face-to-face
contacts. Meanwhile, the daily and weekly rhythms only account for IC/IN ⇡ 35% of
the correlation in the data.

All together, our analysis of private messages, face-to-face contacts, and online
music streams serve to strengthen the conclusions made in the main text; namely, that
pairwise correlations can build upon one another to generate predictable patterns of
population-wide activity.

last.fm
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Figure 1.12: Performance of the maximum entropy model in a dataset of music streams. (a)
Distribution of the number of streams in a given 150-second window in the dataset (black)
and after shuffling individuals’ activities to eliminate correlations (blue); dashed line indicates
a Poisson fit to the shuffled data (blue). (b) The rate of each observed activity pattern across
200 randomly selected groups of 10 individuals is plotted against the approximate rates under
the independent model P1 (blue), the pairwise maximum entropy model P2 (red), and the
conditionally independent model PC (green); the dashed line indicates equality. (c) Jensen-
Shannon divergences between the true distribution P and the independent P1 (blue), maximum
entropy P2 (red), and conditionally independent PC (green) models; the histograms reflect
estimates from the 200 10-person groups. (d) Fraction of the network correlation (i.e., multi-
information I) captured by the pairwise (red) and conditionally independent (green) models,
plotted against the full multi-information; I is divided by �t = 150 seconds to remove the
dependence on window size.

1.8.4 Learning a pairwise maximum entropy model: The inverse Ising problem

Here we present the theory and methodology behind learning a pairwise maximum
entropy model of collective human activity. Specifically, we describe how to calculate
the Ising parameters hi and Jij from a dataset of collective activity patterns. This
inference task has a rich history in machine learning under the title Boltzmann machine
learning (3) and is commonly referred to in physics as the inverse Ising problem (33).

1.8.4.1 Exact models for small populations

Given the observed distribution P of activity patterns, there is a unique pairwise model
P2 that is consistent with the observed activity rates h�ii and pairwise correlations⌦
�i�j

↵
, where h·i represents an average over P. To learn this pairwise model, one
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typically begins with an initial pairwise distribution Q with parameters h̃i and J̃ij and
then performs gradient descent in the model parameters, with gradients defined by

�h̃i / h�ii- h�iiQ , (1.2)

�J̃ij /
⌦
�i�j

↵
-
⌦
�i�j

↵
Q

, (1.3)

where h·i
Q

represents an average over Q. For groups of size N = 10, these gradient
calculations are tractable and standard gradient descent converges to the correct
pairwise maximum entropy model P2.

1.8.4.2 Approximate models for large populations

The primary difficulty in learning a maximum entropy model for a large population,
such as the group of 100 email users, lies in calculating the one- and two-point
correlations under Q at each gradient step in Eqs. (1.2) and (1.3). For large populations,
exact calculations using the Boltzmann distribution are infeasible, and one must
resort to approximate methods. The standard strategy is to simulate the system using
Monte Carlo techniques (241, 249, 665). Naïvely, one would run a new Monte Carlo
simulation to estimate the gradients at each step of the learning algorithm. However,
this straightforward approach is extremely inefficient. Instead, one can adjust the
estimates of the one- and two-point correlations at each gradient step using importance
sampling (347) or histogram Monte Carlo (215). In addition to limiting the number
of Monte Carlo simulations, because each sample � of Q is dominated by inactive
individuals, one can leverage sparse matrix operations to significantly speed up the
simulations themselves.

We terminate the learning algorithm when the model correlations, h�iiQ and⌦
�i�j

↵
Q

, are sufficiently close to the observed correlations. The relevant scale for
errors in the observed correlations is defined by the standard deviations � h�ii and
�
⌦
�i�j

↵
, which are estimated by bootstrap sampling from the original dataset. Thus,

the learning algorithm is terminated when

| h�ii- h�iiQ | < � h�ii ⇡ 2.2⇥ 10-4 (1.4)

|
⌦
�i�j

↵
-
⌦
�i�j

↵
Q
| < �

⌦
�i�j

↵
⇡ 1.7⇥ 10-4. (1.5)

We confirm that the individual email rates and pairwise correlations under the maxi-
mum entropy model P2 match the observed correlations within the experimental errors
in the data (Fig. 1.13a-c).

For a population of 100 individuals, defining a pairwise maximum entropy model
requires learning N(N+ 1)/2 = 5050 different parameters. Given such a large number,
it is possible that the model is being finely tuned to match statistical errors in the
data. To test for overfitting, we randomly select 476 of the 526 days to learn the model,
and then we test the accuracy of the model on the remaining 50 days. We confirm
that the pairwise model assigns the same amount of probability to the test data as
to the training data, within errors, demonstrating that the learned model generalizes
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Figure 1.13: Learning a pairwise maximum entropy model for a 100-person population. (a)
Reconstructed activity rates for all 100 individuals under the maximum entropy model, plotted
against their true activity rates. The dashed line indicates equality. (b) Reconstructed pairwise
correlations under the maximum entropy model versus the observed correlations. (c) Distri-
bution of the differences between the true and model pairwise correlations, normalized by
the error in the data �

⌦
�i�j

↵
. For reference, the red line is a Gaussian distribution with unit

variance. The empirically measured distribution has nearly Gaussian shape with standard
deviation ⇡ 1.05, demonstrating that the learning algorithm reconstructs the pairwise corre-
lations within experimental precision. (d) The per-person average log-likelihood of the data
hlogP2(�)i /N, where the average is taken over all patterns within a given day, computed for
the training days (blue) and test days (red). The data has been sorted so that the test days
follow the training days, but the true choice of test days was random.

to describe data outside of the training set (Fig. 1.13d). We conclude that the learned
pairwise model (i) fits the activity data within experimental precision and (ii) does not
overfit statistical noise in the data. For access to the calculated external fields hi and
pairwise interactions Jij, please contact the corresponding author.

1.8.5 The conditionally independent model

To test the prediction that collective behavior is driven by similarities in people’s daily
and weekly routines, we study the conditionally independent model PC. Letting pt

i
(�i)

denote the probability of person i performing an action within a window of width �t

at time t during the week, the conditionally independent model is defined by

PC(�) =
�t

!

X

t

Y

i

pt

i
(�i), (1.6)
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where ! denotes the length of a day or week. Under this conditionally independent
model, correlations between individuals are driven by fluctuations in their inherent
activity rates.

1.8.6 Estimating entropy from finite data

To calculate the multi-information I = S1 - S of the network activity, we must compute
the entropies of the independent model S1 and the observed data S. While calculating
S1 is straightforward, we must estimate the true entropy S from a finite number of
samples, possibly leading to finite-size errors. Suppose that the dataset consists of the
patterns {�↵} with corresponding probabilities {p↵}. One could naïvely estimate the
entropy using the standard formula

S̃ = -
X

↵

p↵ logp↵. (1.7)

However, since some of the patterns are likely missing and the probabilities p↵ are not
exact, this estimate should fundamentally be viewed as an approximation to S that
improves as the number of samples increases. To correct for the sample size dependence
of S̃ , we sub-sample the data and fit the resulting estimates using a form proposed by
Strong et al. (640),

S̃(size) = S+
a

size
+

b

size2
, (1.8)

where a and b are finite-size corrections. Using this fit, we can extract an accurate esti-
mate of the true entropy S. We remark that for large datasets such as those considered
here, and for relatively small networks like the 10-person groups studied in the main
text, finite-size errors are small.

1.8.7 Extended discussion

Our investigation of collective human behavior yields three distinct conclusions:

1. Large-scale behavior, characterized by surges in collective activity, cannot be
understood using models that assume humans behave independently.

2. While collective behavior is far from independent, the minimal extension of the
independent model consistent with the observed pairwise correlations captures
most of the correlation in all populations considered, accurately predicting surges
of collective activity.

3. In the network of email correspondence, the learned pairwise interactions are
closely related to the underlying topology of inter-human communication, imbu-
ing the maximum entropy model with real-world interpretability.

Here we discuss the implications and limitations of these results, while keeping in mind
that modern life involves a diverse range of activities, some of which may require a
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fundamentally different approach. Throughout, we emphasize important opportunities
for future research.

1.8.7.1 Internal correlations versus external influences

In the study of human dynamics, as in the study of physical and biological systems,
any macroscopic behavior that evades explanation by a model of independent elements
fundamentally derives from two possible sources of correlation: (i) interactions between
elements or groups of elements, and (ii) external influences on the system. In all
human activities considered here, we witness surges of collective activity that cannot
be explained under assumptions of human independence. Instead, we find that the
populations are described quantitatively by models that include the simplest possible
correlations – those between pairs of individuals. However, given that large-scale
patterns could derive from higher-order correlations or from shared external inputs
to the population, and given the myriad experiences that shape human actions, it
would be naïve to universally conclude that all collective human activity emerges
from pairwise correlations. Instead, we hypothesize that particular activities fall along
a spectrum, with internal correlations and external influences each playing roles of
variable importance.

We remark that we have already witnessed evidence for such a spectrum in the
different human activities studied above. For example, while patterns of email com-
munication were reasonably well-described by taking into account people’s weekly
rhythms, capturing ⇠ 67% of the correlation structure in 10-person groups, private
message correspondence had a markedly weak dependence on people’s schedules, with
daily routines accounting for only ⇠ 5% of the correlation in 10-person groups. These
results agree with intuition, indicating that email activity is moderately tied to people’s
work and leisure schedules, while daily routines have nearly no predictive power in a
network of private messages. Interestingly, correlations in both face-to-face contacts
and online music streaming are moderately driven by daily and weekly routines, falling
in between email and private message correspondence. With these results in mind, the
clearest direction for future investigation is to continue probing different ends of the
spectrum by quantifying the relative importance of internal correlations versus external
influences in different modes of human behavior.

1.8.7.2 The energy landscape of collective human behavior

Every maximum entropy model Q is defined by a Boltzmann distribution Q(�) =
exp(-E(�))/Z, where E(�) is the energy function, or Hamiltonian, that describes
the system, and Z is the normalization constant. In the case of the pairwise maxi-
mum entropy model, the relevant energy function is that of the Ising model, E(�) =
-1

2

P
i6=j

Jij�i�j -
P

i
hi�i. In statistical mechanics, there is a wealth of literature

exploring the diversity of large-scale behaviors that can emerge from systems with
different energy landscapes (135, 339). Thus, future research should leverage this con-
nection to answer a number of important questions: What can the energy landscape of a
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given population tell us about its functional properties? Does collective human behavior
favor dramatic shifts in activity, or are social populations organized to incentivize local
fluctuations, guarding against the effects of large external shocks?

1.8.7.3 Beyond equal-time correlations

Throughout our analysis, we have focused on modeling equal-time correlations, which
quantify the tendencies of individuals to engage in synchronous actions. In doing so, we
have implicitly assumed that each observed activity pattern � is drawn independently
from an underlying stationary distribution P(�), leaving models of the population’s
activity without notions of time or causality. While studying equal-time correlations
has allowed us to reach a number of important conclusions, the idea that patterns of
human activity are sampled from a stationary distribution is not consistent with the
common intuition that conscious human actions are often responses to prior social
and environmental influences. For example, the fact that individuals perform bursts
of actions in quick succession is thought to be the result of a decision-based queuing
process (49), and it is known that the temporal scales of human activity can change
over time (97, 448, 469).

In the context of human communication, a significant fraction of emails and private
messages are direct responses to previous correspondence. Therefore, it would be
interesting to study the correlations between people’s activities with a time delay ⌧

in between, where ⌧ represents the characteristic response time of communication
in the population. Such spatiotemporal correlations have recently received a large
amount of interest in neuroscience and biology, where it has been found that the
spatiotemporal patterns of spiking neurons in the brain and flocks of birds in flight
are only partially captured by stationary maximum entropy models (130, 428, 651).
Similarly, studying the spatiotemporal patterns that define collective human activity has
significant implications for understanding the causal flow of influences and information
between individuals in a population (469). Furthermore, developing accurate dynamical
models of large-scale behavior has important ramifications for predicting the effects of
interventions and time-varying perturbations in networks of interacting humans (120,
122, 163, 271, 490, 513, 514).
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This chapter contains work from Lynn, Christopher, and Daniel D. Lee. “Maximizing influence
in an Ising network: A mean-field optimal solution." Advances in Neural Information Process-
ing Systems. 2016.

Abstract

Influence maximization in social networks has typically been studied in the context of
contagion models and irreversible processes. In this paper, we consider an alternate
model that treats individual opinions as spins in an Ising system at dynamic equi-
librium. We formalize the Ising influence maximization problem, which has a natural
physical interpretation as maximizing the magnetization given a budget of external
magnetic field. Under the mean-field (MF) approximation, we present a gradient
ascent algorithm that uses the susceptibility to efficiently calculate local maxima of
the magnetization, and we develop a number of sufficient conditions for when the
MF magnetization is concave and our algorithm converges to a global optimum. We
apply our algorithm on random and real-world networks, demonstrating, remarkably,
that the MF optimal external fields (i.e., the external fields which maximize the MF
magnetization) shift from focusing on high-degree individuals at high temperatures to
focusing on low-degree individuals at low temperatures. We also establish a number of
novel results about the structure of steady-states in the ferromagnetic MF Ising model
on general graph topologies, which are of independent interest.

2.1 introduction

With the proliferation of online social networks, the problem of optimally influencing
the opinions of individuals in a population has garnered tremendous attention (190,
365, 556). The prevailing paradigm treats marketing as a viral process, whereby the
advertiser is given a budget of seed infections and chooses the subset of individuals to
infect such that the spread of the ensuing contagion is maximized. The development of
algorithmic methods for influence maximization under the viral paradigm has been the
subject of vigorous study, resulting in a number of efficient techniques for identifying
meaningful marketing strategies in real-world settings (265, 275, 459). While the viral
paradigm accurately describes out-of-equilibrium phenomena, such as the introduction
of new ideas or products to a system, these models fail to capture reverberant opinion

31
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dynamics wherein repeated interactions between individuals in the network give rise
to complex macroscopic opinion patterns, as, for example, is the case in the formation
of political opinions (238, 332, 430, 462). In this context, rather than maximizing the
spread of a viral advertisement, the marketer is interested in optimally shifting the
equilibrium opinions of individuals in the network.

To describe complex macroscopic opinion patterns resulting from repeated micro-
scopic interactions, we naturally employ the language of statistical mechanics, treating
individual opinions as spins in an Ising system at dynamic equilibrium and model-
ing marketing as the addition of an external magnetic field. The resulting problem,
which we call Ising influence maximization (IIM), has a natural physical interpretation
as maximizing the magnetization of an Ising system given a budget of external field.
While a number of models have been proposed for describing reverberant opinion
dynamics (173), our use of the Ising model follows a vibrant interdisciplinary literature
(126, 454), and is closely related to models in game theory (92, 437) and sociophysics
(237, 648). Furthermore, complex Ising models have found widespread use in machine
learning, and our model is formally equivalent to a pair-wise Markov random field or
a Boltzmann machine (368, 484, 650).

Our main contributions are as follows:

1. We formalize the influence maximization problem in the context of the Ising
model, which we call the Ising influence maximization (IIM) problem. We also
propose the mean-field Ising influence maximization (MF-IIM) problem as an approx-
imation to IIM (Section 2).

2. We find sufficient conditions under which the MF-IIM objective is smooth
and concave, and we present a gradient ascent algorithm that guarantees an
✏-approximation to MF-IIM (Section 4).

3. We present numerical simulations that probe the structure and performance of
MF optimal marketing strategies. We find that at high temperatures, it is optimal
to focus influence on high-degree individuals, while at low temperatures, it is
optimal to spread influence among low-degree individuals (Sections 5 and 6).

4. Throughout the paper we present a number of novel results concerning the struc-
ture of steady-states in the ferromagnetic MF Ising model on general (weighted,
directed) strongly-connected graphs, which are of independent interest. We name
two highlights:

• The well-known pitchfork bifurcation structure for the ferromagnetic MF
Ising model on a lattice extends exactly to general strongly-connected graphs,
and the critical temperature is equal to the spectral radius of the adjacency
matrix (Theorem 3).

• There can exist at most one stable steady-state with non-negative (non-
positive) components, and it is smooth and concave (convex) in the external
field (Theorem 4).
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2.2 the ising influence maximization problem

We consider a weighted, directed social network consisting of a set of individuals
N = {1, . . . ,n}, each of which is assigned an opinion �i 2 {±1} that captures its current
state. By analogy with the Ising model, we refer to � = (�i) as a spin configuration of
the system. Individuals in the network interact via a non-negative weighted coupling
matrix J 2 Rn⇥n

>0
, where Jij > 0 represents the amount of influence that individual

j holds over the opinion of individual i, and the non-negativity of J represents the
assumption that opinions of neighboring individuals tend to align, known in physics
as a ferromagnetic interaction. Each individual also interacts with forces external to the
network via an external field h 2 Rn. For example, if the spins represent the political
opinions of individuals in a social network, then Jij represents the influence that j

holds over i’s opinion and hi represents the political bias of node i due to external
forces such as campaign advertisements and news articles.

The opinions of individuals in the network evolve according to asynchronous Glauber
dynamics. At each time t, an individual i is selected uniformly at random and her
opinion is updated in response to the external field h and the opinions of others in the
network �(t) by sampling from

P (�i(t+ 1) = 1|�(t)) =
e�(

P
j
Jij�j(t)+hi)

P
� 0
i
=±1

e�� 0
i(
P

j
Jij�j(t)+hi)

, (2.1)

where � is the inverse temperature, which we refer to as the interaction strength,
and unless otherwise specified, sums are assumed over N. Together, the quadruple
(N, J,h,�) defines our system. We refer to the total expected opinion, M =

P
i
h�ii,

as the magnetization, where h·i denotes an average over the dynamics in Eq. (9.5), and
we often consider the magnetization as a function of the external field, denoted M(h).
Another important concept is the susceptibility matrix, �ij =

@h�ii
@hj

, which quantifies the
response of individual i to a change in the external field on node j.

We study the problem of maximizing the magnetization of an Ising system with re-
spect to the external field. We assume that an external field h can be added to the system,
subject to the constraints h > 0 and

P
i
hi 6 H, where H > 0 is the external field budget,

and we denote the set of feasible external fields by FH = {h 2 Rn : h > 0,
P

i
hi = H}.

In general, we also assume that the system experiences an initial external field b 2 Rn,
which cannot be controlled.

Definition 1. (Ising influence maximization (IIM)) Given a system (N, J,b,�) and a budget
H, find a feasible external field h 2 FH that maximizes the magnetization; that is, find
an optimal external field h⇤ such that

h⇤ = arg max
h2FH

M(b+h). (2.2)
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notation. Unless otherwise specified, bold symbols represent column vectors
with the appropriate number of components, while non-bold symbols with subscripts
represent individual components. We often abuse notation and write relations such as
m > 0 to mean mi > 0 for all components i.

The mean-field approximation

In general, calculating expectations over the dynamics in Eq. (9.5) requires Monte-Carlo
simulations or other numerical approximation techniques. To make analytic progress,
we employ the variational mean-field approximation, which has roots in statistical
physics and has long been used to tackle inference problems in Boltzmann machines
and Markov random fields (346, 492, 580, 717). The mean-field approximation replaces
the intractable task of calculating exact averages over Eq. (9.5) with the problem of
solving the following set of self-consistency equations:

mi = tanh

2

4�

0

@
X

j

Jijmj + hi

1

A

3

5 , (2.3)

for all i 2 N, where mi approximates h�ii. We refer to the right-hand side of Eq. (2.3)
as the mean-field map, f(m) = tanh [�(Jm+h)], where tanh(·) is applied component-
wise. In this way, a fixed point of the mean-field map is a solution to Eq. (2.3), which
we call a steady-state.

In general, there may be many solutions to Eq. (2.3), and we denote by Mh the
set of steady-states for a system (N, J,h,�). We say that a steady-state m is stable if
⇢(f 0(m)) < 1, where ⇢(·) denotes the spectral radius and

f 0(m)ij =
@fi
@mj

����
m

= �
�
1-m2

i

�
Jij ) f 0(m) = �D(m)J, (2.4)

where D(m)ij = (1-m2

i
)�ij. Furthermore, under the mean-field approximation, given

a stable steady-state m, the susceptibility has a particularly nice form:

�MF

ij
= �

�
1-m2

i

�
 
X

k

Jik�kj + �ij

!

) �MF = � (I-�D(m)J)-1D(m), (2.5)

where I is the n⇥n identity matrix.
For the purpose of uniquely defining our objective, we optimistically choose to

maximize the maximum magnetization among the set of steady-states, defined by

MMF(h) = max
m2Mh

X

i

mi(h). (2.6)

We note that the pessimistic framework of maximizing the minimum magnetization
yields an equally valid objective. We also note that simply choosing a steady-state to
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optimize does not yield a well-defined objective since, as h increases, steady-states can
pop in and out of existence.

Definition 2. (Mean-field Ising influence maximization (MF-IIM)) Given a system (N, J,b,�)
and a budget H, find an optimal external field h⇤ such that

h⇤ = arg max
h2FH

MMF(b+h). (2.7)

2.3 the structure of steady-states in the mf ising model

Before proceeding further, we must prove an important result concerning the existence
and structure of solutions to Eq. (2.3), for if there exists a system that does not admit
a steady-state, then our objective is ill-defined. Furthermore, if there exists a unique
steady-state m, then MMF =

P
i
mi, and there is no ambiguity in our choice of

objective.
Theorem 3 establishes that every system admits a steady-state and that the well-

known pitchfork bifurcation structure for steady-states of the ferromagnetic MF Ising
model on a lattice extends exactly to general (weighted, directed) strongly-connected
graphs. In particular, for any strongly-connected graph described by J, there is a critical
interaction strength �c below which there exists a unique and stable steady-state. For
h = 0, as � crosses �c from below, two new stable steady-states appear, one with
all-positive components and one with all-negative components. Interestingly, the crit-
ical interaction strength is equal to the inverse of the spectral radius of J, denoted
�c = 1/⇢(J).

Theorem 3. Any system (N, J,h,�) exhibits a steady-state. Furthermore, if its network is
strongly-connected, then, for � < �c, there exists a unique and stable steady-state. For h = 0,
as � crosses �c from below, the unique steady-state gives rise to two stable steady-states, one
with all-positive components and one with all-negative components.

Proof sketch. The existence of a steady-state follows directly by applying Brouwer’s
fixed-point theorem to f. For � < �c, it can be shown that f is a contraction mapping,
and hence admits a unique and stable steady-state by Banach’s fixed point theorem.
For h = 0 and � < �c, m = 0 is the unique steady-state and f 0(m) = �J. Because J

is strongly-connected, the Perron-Frobenius theorem guarantees a simple eigenvalue
equal to ⇢(J) and a corresponding all-positive eigenvector. Thus, when � crosses 1/⇢(J)
from below, the Perron-Frobenius eigenvalue of f 0(m) crosses 1 from below, giving rise
to a supercritical pitchfork bifurcation with two new stable steady-states corresponding
to the Perron-Frobenius eigenvector.

Remark. Some of our results assume J is strongly-connected in order to use the Perron-
Frobenius theorem. We note that this assumption is not restrictive, since any graph can
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be efficiently decomposed into strongly-connected components on which our results
apply independently.

Theorem 3 shows that the objective MMF(b+h) is well-defined. Furthermore, for
� < �c, Theorem 3 guarantees a unique and stable steady-state m for all b+ h. In
this case, MF-IIM reduces to maximizing MMF =

P
i
mi, and because m is stable,

MMF(b + h) is smooth for all h by the implicit function theorem. Thus, for � <

�c, we can use standard gradient ascent techniques to efficiently calculate locally-
optimal solutions to MF-IIM. In general, MMF is not necessarily smooth in h since the
topological structure of steady-states may change as h varies. However, in the next
section we show that if there exists a stable and entry-wise non-negative steady-state,
and if J is strongly-connected, then MMF(b+ h) is both smooth and concave in h,
regardless of the interaction strength.

2.4 sufficient conditions for when mf-iim is concave

We consider conditions for which MF-IIM is smooth and concave, and hence exactly
solvable by efficient techniques. The case under consideration is when J is strongly-
connected and there exists a stable non-negative steady-state.

Theorem 4. Let (N, J,b,�) describe a system with a strongly-connected graph for which
there exists a stable non-negative steady-state m(b). Then, for any H, MMF(b + h) =P

i
mi(b + h), MMF(b + h) is smooth in h, and MMF(b + h) is concave in h for all

h 2 FH.

Proof sketch. Our argument follows in three steps. We first show that m(b) is the unique
stable non-negative steady-state and that it attains the maximum total opinion among
steady-states. This guarantees that MMF(b) =

P
i
mi(b). Furthermore, m(b) gives

rise to a unique and smooth branch of stable non-negative steady-states for additional
h, and hence MMF(b+h) =

P
i
mi(b+h) for all h > 0. Finally, one can directly show

that MMF(b+h) is concave in h.

Remark. By arguments similar to those in Theorem 4, it can be shown that any stable
non-positive steady-state is unique, attains the minimum total opinion among steady-
states, and is smooth and convex for decreasing h.

The above result paints a significantly simplified picture of the MF-IIM problem when
J is strongly-connected and there exists a stable non-negative steady-state m(b). Given
a budget H, for any feasible marketing strategy h 2 FH, m(b+h) is the unique stable
non-negative steady-state, attains the maximum total opinion among steady-states, and
is smooth in h. Thus, the objective MMF(b+h) =

P
i
mi(b+h) is smooth, allowing

us to write down a gradient ascent algorithm that approximates a local maximum.
Furthermore, since MMF(b+h) is concave in h, any local maximum of MMF on FH
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Algorithm 1: An ✏-approximation to MF-IIM
Input: System (N, J,b,�) for which there exists a stable non-negative

steady-state, budget H, accuracy parameter ✏ > 0
Output: External field h that approximates a MF optimal external field h⇤

t = 0; h(0) 2 FH; ↵ 2 (0, 1

L
) ;

repeat
@M

MF(b+h(t))
@hj

=
P

i
�MF

ij
(b+h(t));

h(t+ 1) = PFH

⇥
h(t) +↵OhM

MF(b+h(t))
⇤
;

t++;
until MMF(b+h⇤)-MMF(b+h(t)) 6 ✏;
h = h(t);

is a global maximum, and we can apply efficient gradient ascent techniques to solve
MF-IIM.

Our algorithm, summarized in Algorithm 1, is initialized at a feasible external field.
At each iteration, we calculate the susceptibility of the system, namely @M

MF

@hj
=

P
i
�MF

ij
,

and project this gradient onto FH (the projection operator PFH
is well-defined since

FH is convex). Stepping along the direction of the projected gradient with step size
↵ 2 (0, 1

L
), where L is a Lipschitz constant of MMF, Algorithm 1 converges to an

✏-approximation to MF-IIM in O(1/✏) iterations (657).

Sufficient conditions for the existence of a stable non-negative steady-state

In the previous section we found that MF-IIM is efficiently solvable if there exists a
stable non-negative steady-state. While this assumption may seem restrictive, we show,
to the contrary, that the appearance of a stable non-negative steady-state is a fairly
general phenomenon. We first show, for J strongly-connected, that the existence of a
stable non-negative steady-state is robust to increases in h and that the existence of a
stable positive steady-state is robust to increases in �.

Theorem 5. Let (N, J,h,�) describe a system with a strongly-connected graph for which there
exists a stable non-negative steady-state m. If m > 0, then as h increases, m gives rise to a
unique and smooth branch of stable non-negative steady-states. If m > 0, then as � increases,
m gives rise to a unique and smooth branch of stable positive steady-states.

Proof sketch. By the implicit function theorem, any stable steady-state can be locally de-
fined as a function of both h and �. Using the susceptibility, one can directly show that
any stable non-negative steady-state remains stable and non-negative as h increases
and that any stable positive steady-state remains stable and positive as � increases.

The intuition behind Theorem 5 is that increasing the external field will never destroy
a steady-state in which all of the opinions are already non-positive. Furthermore, as
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the interaction strength increases, each individual reacts more strongly to the positive
influence of her neighbors, creating a positive feedback loop that results in an even
more positive magnetization. We conclude by showing for J strongly-connected that if
h > 0, then there exists a stable non-negative steady-state.

Theorem 6. Let (N, J,h,�) describe any system with a strongly-connected network. If h > 0,
then there exists a stable non-negative steady-state.

Proof sketch. For h > 0 and � < �c, it can be shown that the unique steady-state is
positive, and hence Theorem 5 guarantees the result for all � 0 > �. For h = 0, Theorem
3 provides the result.

All together, the results of this section provide a number of sufficient conditions
under which MF-IIM is exactly and efficiently solvable by Algorithm 1.

2.5 a shift in the structure of solutions to mf-iim

The structure of solutions to MF-IIM is of fundamental theoretical and practical interest.
We demonstrate, remarkably, that solutions to MF-IIM shift from focusing on nodes of
high degree at low interaction strengths to focusing on nodes of low degree at high
interaction strengths.

Consider an Ising system described by (N, J,h,�) in the limit �⌧ �c. To first-order
in �, the self-consistency equations (2.3) take the form:

m = � (Jm+h) ) m = �(I-�J)-1h. (2.8)

Since � < �c, we have ⇢(�J) < 1, allowing us to expand (I- �J)-1 in a geometric
series:

m = �h+�2Jh+O(�3) ) MMF(h) = �
X

i

hi +�2
X

i

dout

i
hi +O(�3), (2.9)

where dout

i
=

P
j
Jji is the out-degree of node i. Thus, for low interaction strengths,

the MF magnetization is maximized by focusing the external field on the nodes of
highest out-degree in the network, independent of b and H.

To study the structure of solutions to MF-IIM at high interaction strengths, we make
the simplifying assumptions that J is strongly-connected and b > 0 so that Theorem 6
guarantees a stable non-negative steady state m. For large � and an additional external
field h 2 FH, m takes the form

mi ⇡ tanh

2

4�

0

@
X

j

Jij + bi + hi

1

A

3

5 ⇡ 1- 2e-2�(din

i
+bi+hi), (2.10)
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where din

i
=

P
j
Jij is the in-degree of node i. Thus, in the high-� limit, we have:

MMF(b+h) ⇡
X

i

⇣
1- 2e-2�(din

i
+bi+hi)

⌘
⇡ n- 2e-2�(din

i⇤ +h
(0)
i⇤ +hi⇤), (2.11)

where i⇤ = arg min
i
(din

i
+ bi + hi). Thus, for high interaction strengths, the solutions

to MF-IIM for an external field budget H are given by:

h⇤ = arg max
h2FH

⇣
n- 2e-2�(din

i⇤ +h
(0)
i⇤ +hi⇤)

⌘
⌘ arg max

h2FH

min
i

�
din

i
+ bi + hi

�
. (2.12)

Eq. (2.12) reveals that the high-� solutions to MF-IIM focus on the nodes for which
din

i
+ bi + hi is smallest. Thus, if b is uniform, the MF magnetization is maximized by

focusing the external field on the nodes of smallest in-degree in the network.
We emphasize the strength and novelty of the above results. In the context of

reverberant opinion dynamics, the optimal control strategy has a highly non-trivial
dependence on the strength of interactions in the system, a feature not captured by viral
models. Thus, when controlling a social system, accurately determining the strength of
interactions is of critical importance.

2.6 numerical simulations

We present numerical experiments to probe the structure and performance of MF
optimal external fields. We verify that the solutions to MF-IIM undergo a shift from
focusing on high-degree nodes at low interaction strengths to focusing on low-degree
nodes at high interaction strengths. We also find that for sufficiently high and low
interaction strengths, the MF optimal external field achieves the maximum exact
magnetization, while admitting performance losses near �c. However, even at �c, we
demonstrate that solutions to MF-IIM significantly outperform common node-selection
heuristics based on node degree and centrality.

We first consider an undirected hub-and-spoke network, shown in Fig. 2.1a, where
Jij 2 {0, 1} and we set b = 0 for simplicity. Since b > 0, Algorithm 1 is guaranteed
to achieve a globally optimal MF magnetization. Furthermore, because the network
is small, we can calculate exact solutions to IIM by brute force search. In Fig. 2.1a,
we compare the average degree of the MF and exact optimal external fields over a
range of temperatures for an external field budget H = 1, verifying that the solution
to MF-IIM shifts from focusing on high-degree nodes at low interaction strengths to
low-degree nodes at high interaction strengths. Furthermore, we find that the shift in
the MF optimal external field occurs near the critical interaction strength �c = .5. The
performance of the MF optimal strategy (measured as the ratio of the magnetization
achieved by the MF solution to that achieved by the exact solution) is shown in Fig.
2.1b. For low and high interaction strengths, the MF optimal external field achieves
the maximum magnetization, while near �c, it incurs significant performance losses, a
phenomenon well-studied in the literature (717).
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Figure 2.1: Optimal and MF optimal external fields for a hub-and-spoke network. (a) A
comparison of the structure of the MF and exact optimal external fields, denoted h⇤

MF
and

h⇤, in a hub-and-spoke network. (b) The relative performance of h⇤
MF

compared to h⇤; i.e.,
M(h⇤

MF
)/M(h⇤

MF
), where M denotes the exact magnetization.

We now consider a stochastic block network consisting of 100 nodes split into
two blocks of 50 nodes each, shown in Fig. 2.2a. An undirected edge of weight 1
is placed between each pair of nodes in Block 1 with probability .2, between each
pair in Block 2 with probability .05, and between nodes in different blocks with
probability .05, resulting in a highly-connected community (Block 1) surrounded by a
sparsely-connected community (Block 2). For b = 0 and H = 20, Fig. 2.2b demonstrates
that the solution to MF-IIM shifts from focusing on Block 1 at low � to focusing on
Block 2 at high � and that the shift occurs near �c. The stochastic block network
is sufficiently large that exact calculation of the optimal external fields is infeasible.
Thus, we resort to comparing the MF solutions with three node-selection heuristics:
one that distributes the budget in amounts proportional to nodes’ degrees, one that
distributes the budget proportional to nodes’ centralities (the inverse of a node’s
average shortest path length to all other nodes), and one that distributes the budget
randomly. The magnetizations are approximated via Monte Carlo simulations of the
Glauber dynamics, and we consider the system at � = �c to represent the worst-case
scenario for the MF optimal external fields. In Fig. 2.2c, we show that, even at �c, the
solutions to MF-IIM outperform common node-selection heuristics.

We consider a real-world collaboration network (Fig. 2.3a) composed of 904 individu-
als, where each edge is unweighted and represents the co-authorship of a paper on the
arXiv (395). We note that co-authorship networks are known to capture many of the key
structural features of social networks (477). For b = 0 and H = 40, Fig. 2.3b illustrates
the sharp shift in the solution to MF-IIM at �c = 0.05 from high- to low-degree nodes.
Furthermore, in Fig. 2.3c we compare the performance of the MF optimal external
field with the node-selection heuristics described above, where we again consider the
system at �c as a worst-case scenario, demonstrating that Algorithm 1 is scalable and
performs well on real-world networks.



2.7 conclusions 41

Interaction strength (� )�
0.05 0.15 0.2 0.25c�
0

5

10

15

20
Block 1
Block 2

Ap
pl

ic
at

io
n 

of
 in

flu
en

ce

a cb

0 10 20 30 40
Budget (H)

0

5

10

15

20

25

To
ta

l o
pi

ni
on

 (M
) MF optimal

High degree
Central
Random

Figure 2.2: Structure of MF optimal external field for a stochastic block network. (a) A
stochastic block network consisting of a highly-connected community (Block 1) and a sparsely-
connected community (Block 2). (b) The solution to MF-IIM shifts from focusing on Block 1 to
Block 2 as � increases. (c) Even at �c, the MF solution outperforms common node-selection
heuristics.
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Figure 2.3: Structure of MF optimal external field for real-world social network. (a) A col-
laboration network of 904 physicists where each edge represents the co-authorship of a paper
on the arXiv. (b) The solution to MF-IIM shifts from high- to low-degree nodes as � increases.
(c) The MF solution out-performs common node-selection heuristics, even at �c.

2.7 conclusions

We study influence maximization, one of the fundamental problems in network science,
in the context of the Ising model, wherein repeated interactions between individuals
give rise to complex macroscopic patterns. The resulting problem, which we call
Ising influence maximization, has a natural physical interpretation as maximizing the
magnetization of an Ising system given a budget of external magnetic field. Under
the mean-field approximation, we develop a number of sufficient conditions for when
the problem is concave, and we provide a gradient ascent algorithm that uses the
susceptibility to efficiently calculate locally-optimal external fields. Furthermore, we
demonstrate that the MF optimal external fields shift from focusing on high-degree
individuals at low interaction strengths to focusing on low-degree individuals at high
interaction strengths, a phenomenon not observed in viral models. We apply our
algorithm on random and real-world networks, numerically demonstrating shifts in
the solution structure and showing that our algorithm out-performs common node-
selection heuristics.
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It would be interesting to study the exact Ising model on an undirected network,
in which case the spin statistics are governed by the Boltzmann distribution. Using
this elegant steady-state description, one might be able to derive analytic results for
the exact IIM problem. Our work establishes a fruitful connection between influence
maximization and statistical physics, paving the way for exciting cross-disciplinary
research. For example, one could apply advanced mean-field techniques, such as those
in (717), to generate efficient algorithms of increasing accuracy. Furthermore, because
our model is equivalent to a Boltzmann machine, one could propose a framework for
data-based influence maximization based on well-known Boltzmann machine learning
techniques.



2.8 supplementary material 43

2.8 supplementary material

2.8.1 Preliminaries

We establish a number of preliminary results that aid the proofs of the theorems in the
main text.

2.8.1.1 Perron-Frobenius

Many of the results in the paper rely on the Perron-Frobenius theorem, which we state
here.

Theorem 7. (Perron-Frobenius) Let J be an irreducible non-negative matrix with spectral
radius ⇢(J) = r. Then the following statements hold:

1. J has a real, positive, and simple eigenvalue equal to r.

2. The corresponding eigenvector of J has all-positive components.

3. If 0 6 J 6 A, for some matrix A, then rJ 6 rA.

It is known that the adjacency matrix of a strongly-connected graph is irreducible,
and hence, all of the results of the Perron-Frobenius theorem carry over.

2.8.1.2 The existence of a unique and stable steady-state for � < �c

We first show that if our network is strongly-connected, then for � < 1/⇢(J), the system
exhibits a unique steady-state that is stable under f. This result will aid in the proof of
Theorem 3 and similar arguments are used in the proof of Theorem 4. The proof in this
section is based on Banach’s fixed point theorem, but instead of directly showing that
f is a contraction mapping on X = [-1, 1]n, we use the spectral properties of f 0. The
following two lemmas relate the contraction mapping property to the spectral radius of
f 0. We note that throughout the proofs, we use the variable x instead of m to indicate a
point in X that is not necessarily a steady-state of f.

Lemma 8. Let X be a convex subset of Euclidean space and let the function f : X ! X have
continuous partial derivatives on X. If the Jacobian satisfies

|f 0(x)| < 1, (2.13)

for all x 2 X and some matrix norm | · |, then f satisfies the contraction mapping property on X.

Lemma 9. Given a square matrix A and ✏ > 0, there exists a matrix norm | · | such that

|A| 6 ⇢(A) + ✏. (2.14)



2.8 supplementary material 44

We are now prepared to show that if J is strongly-connected, then for � < 1/⇢(J), f
is a contraction mapping on X, and hence f admits a unique and stable fixed point on X.

Lemma 10. Let (N, J,h,�) describe a system with a strongly-connected graph. For � < �c,
there exists a unique and stable steady-state that can be found by iteratively applying f to any
point x 2 X.

Proof. Consider the Jacobian,

f 0(m)ij =
@

@mj

tanh [�(Jm+h)]
i
= �sech2 [�(Jm+h)]

i
Jij. (2.15)

Since |sech(·)| 6 1, |f 0(m)ij| 6 �Jij for all i, j 2 N. For � < 1/⇢(J) and for all m 2 X, we
have

⇢(f 0(m)) 6 ⇢(�J) = �⇢(J) < 1, (2.16)

where the first inequality follows from the Perron-Frobenius theorem and the equality
follows from the linearity of ⇢(·).

Because the above inequality is strict, there exists an ✏ > 0 such that ⇢(f 0(x)) + ✏ < 1

for all x 2 X. By Lemma 9 we can choose a matrix norm | · | such that

|f 0(m)| 6 ⇢(f 0(m)) + ✏ < 1. (2.17)

Since X is a convex subset of Euclidean space, Lemma 8 implies that f satisfies the
contraction mapping property on X. Since X is a closed and bounded it is also a
compact metric space and we can apply Banach’s theorem on compact metric spaces to
attain the desired result. ⇤

2.8.1.3 The smoothness of stable non-negative steady-states for increasing h

We show that any stable non-negative steady-state m gives rise to a unique and stable
branch of steady-states that is smooth and non-decreasing as h increases. We note that
this result represents half of the progress toward proving Theorem 5.

Lemma 11. Let (N, J,h,�) describe a system with a strongly-connected graph for which there
exists a stable steady-state m. If m > 0, then as h increases, m gives rise to a unique and
smooth branch of stable non-negative steady-states.

Proof. We first show that any stable steady-state is locally non-decreasing in h. Consider
the susceptibility from Sec. 2:

�MF = �(I-�D(m)J)-1D(m) = �(I- f 0(m))-1D(m). (2.18)

Since ⇢ (f 0(m)) < 1, Theorem 4.3 of (216) guarantees that the matrix (I- f 0(m))-1

is non-negative. Furthermore, since D(m) is non-negative, we find that �MF is non-
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negative, and hence @mi

@hj
> 0 for all i, j 2 N.

We now argue that m remains stable as h increases which, by the implicit function
theorem, guarantees that m branches uniquely and smoothly. It is sufficient to show
that ⇢(f 0(m)) = ⇢(�D(m)J) is non-increasing in h. Since m is non-decreasing in h,
we find that f 0(m) is entry-wise non-increasing in h, and hence Perron-Frobenius
guarantees that ⇢(f 0(m)) is non-increasing. ⇤

2.8.2 Proofs

We now present proofs of the theorems in the main text, noting that we do not present
the results in the order that they appear in the text since some earlier results depend
on later ones.

2.8.2.1 Theorem 4

We split Theorem 4 into three separate results. We first show that any stable non-
negative steady-state is the unique stable non-negative steady state and that it attains
the maximum total opinion among all steady-states. Secondly, we note that Lemma 11
guarantees that any stable non-negative steady-state is smooth and remains stable and
non-negative for increasing h. Finally, we show that any stable non-negative steady-
state is concave in h. Together, these results prove Theorem 4.

Uniqueness of stable non-negative steady-states

We show that any stable non-negative steady-state is the unique stable non-negative
steady-state and achieves the largest total opinion among steady-states. First consider
the following lemma.

Lemma 12. Let (N, J,h,�) describe an arbitrary system and consider any point x 2 X. Then

f`(1) > f`(x), (2.19)

for any positive integer `, where f`(·) denotes the `th iterative application of f and 1 is the
vector of ones of length n.

Proof. We proceed by induction. The base case is trivially satisfied. For the inductive
step, assume f`(1)i > f`(x)i for some ` and all i 2 N. Since J > 0, � > 0 and tanh(·) is
increasing, we have

f`+1(1)i = tanh
⇥
�
�
Jf`(1) +h

�⇤
i
> tanh

⇥
�
�
Jf`(x) +h

�⇤
i
= f`+1(x)i, (2.20)

for all x 2 X and all i 2 N. ⇤
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We now establish the uniqueness of stable non-negative steady-states.

Lemma 13. Let (N, J,h,�) describe a system with a strongly-connected network for which
there exists a stable non-negative steady-state m. Then m is the unique stable steady-state and
can be found by iteratively applying f to 1.

Proof. Assume there exists a stable non-negative steady-state m. By Lemma 12,

f`(1) > f`(m) = m, (2.21)

for any `. This indicates that the sequence {f`(1)} is contained in the closed region
Xm = {x 2 X : x > m}. By an argument similar to that in the proof of Lemma 11, we
have ⇢(f 0(x)) 6 ⇢(f 0(m)) < 1 for all x 2 Xm. By an argument similar to that in the
proof of Lemma 10, this indicates that f is a contraction mapping on Xm.

Following the proof in (498), we show that the sequence {f`(1)} is Cauchy. Since
|f(x 0)- f(x)| < |x 0 - x| for all x, x 0 2 Xm, there exists a number q 2 (0, 1) such that
|f(x 0)- f(x)| 6 q|x 0 - x|. By the triangle inequality,

|x 0 - x| 6 |x 0 - f(x 0)|+ q|x 0 - x|+ |f(x)- x|, (2.22)

which yields

|x 0 - x| 6
|f(x 0)- x 0|+ |f(x)- x|

1- q
. (2.23)

Replacing x and x 0 with f`(1) and fk(1), respectively, we find

|fk(1)- f`(1)| 6
|fk+1(1)- fk(1)|+ |f`+1(1)- f`(1)|

1- q
(2.24)

6
qk + q`

1- q
|f(1)- 1|.

Since q < 1, the last expression goes to zero as `,k!1, proving that {f`(1)} is Cauchy
and hence converges to a limit m⇤ 2 Xm. Furthermore, the limit m⇤ is a fixed point of
f, and hence a steady-state of the system, since

m⇤ = lim
`!1

f`(1) = lim
`!1

f(f`-1(1)) = f

✓
lim
`!1

f`-1(1)

◆
= f(m⇤). (2.25)
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Suppose for contradiction that m⇤ 6= m, and consider the line (1 - t)m + tm⇤

between m and m⇤ for t 2 [0, 1]. All points along this line lie in Xm and hence f is
contractive along the line. We have,

|f(m⇤)- f(m)| =

�����

Zm⇤

m
f 0(x) · dx

����� (2.26)

6

Z
1

0

��f 0 ((1- t)m+ tm⇤)
�� |m⇤ -m|dt,

where |f 0(·)| represents any matrix norm. Because f is contractive along the line, we
can choose a matrix norm that is strictly less than 1. Thus,

|f(m⇤)- f(m)| <

Z
1

0

|m⇤ -m|dt = |m⇤ -m| , (2.27)

which is a contradiction. Thus m⇤ = m and the stable non-negative steady-state is
unique. Furthermore, this shows that {f`(1)} converges to m. ⇤

As a corollary, we find that any stable non-negative steady-state attains the maximum
total opinion among all steady-states.

Corollary 14. Let (N, J,h,�) describe a system for which there exists a stable non-negative
steady-state m, and let m 0 be another steady-state. Then m > m 0.

Proof. By Lemmas 12 and 13 we have

m = lim
`!1

f`(1) > lim
`!1

f`(m 0) = m 0, (2.28)

for any steady-state m 0. ⇤

The concavity of stable non-negative steady-states in h

We show for J strongly-connected that any stable non-negative steady-state is concave
in h.

Lemma 15. Let (N, J,h,�) describe a system with a strongly-connected graph for which there
exists a stable non-negative steady-state m. Then m is concave in h.

Proof. We want to show that the Hessian of mi with respect to h is negative semidefinite
for all i 2 N. The Hessian of mi with respect to h is given by

C
(i)
jk
⌘ @2mi

@hj@hk

=
@

@hk

�MF

ij
. (2.29)
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After taking partials and rearranging we are left with

C
(i)
jk

= -2
X

`2N

�MF

j`

T

✓
m`

(1-m2

`
)2

�MF

i`

◆
�MF

`k
= -

X

`2N

Z
(i)T
j`

Z
(i)
`k

, (2.30)

where Z
(i)
kj

= �MF

jk

r
2mj

(1-m2

j
)2
�MF

ij
. Since mj,�MF

ij
> 0 for all i, j 2 N, Z(i) is a real

matrix. Thus C(i) is negative semidefinite for all i 2 N. ⇤

2.8.2.2 Theorem 5

We show that any stable non-negative steady-state m gives rise to a unique and stable
branch of steady-states that is smooth and non-decreasing as h increases. We also show
that if m > 0, then m gives rise to a unique and stable branch of steady-states that
is smooth and non-decreasing as � increases. We note that the first result is given by
Lemma 11. To prove the second result, we first show that any stable positive steady-
state is locally non-decreasing in �.

Lemma 16. Let (N, J,h,�) describe any system for which there exists a stable positive steady-
state m. Then m is locally non-decreasing in �.

Proof. We want to show dmi

d�
is non-negative for all i 2 N. By assumption, ⇢ (f 0(m)) < 1,

allowing us to apply the implicit function theorem, giving

dmi

d�
=

X

j2N

�
�ji - f 0(m)ji

�-1 @fj
@�

(2.31)

=
X

j2N

�
�ji - f 0(m)ji

�-1 sech2 [�(Jm+h)]
j
(Jm+h)

j
.

In vector form,
dm

d�
= (I- f 0(m))-1D(m)(Jm+h). (2.32)

Theorem 4.3 of (216) guarantees that the matrix (I- f 0(m))-1 is non-negative and
D(m) is also non-negative. Because m = tanh [�(Jm+h)] > 0, we have Jm+ h > 0,
and hence Eq. (2.32) is non-negative. ⇤

We now complete the proof of Theorem 5, showing that any stable positive steady-
state gives rise to a unique and stable branch of steady-states as � increases.

Proof (Theorem 5). For contradiction, assume that increasing � causes m to lose stability.
Because the network is strongly-connected, f 0(m) = �D(m)J is also strongly-connected.
Thus, Perron-Frobenius guarantees that f 0(m) has a simple largest eigenvalue equal
to its spectral radius. When m loses stability, this simple eigenvalue crosses one from
below. By the Crandall-Rabinowitz theorem (162) and the principle of exchange of
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stability, the crossing of the simple eigenvalue gives rise to two new sable steady-
states. However, Lemma 16 guarantees that m remains positive as we increase �,
which necessitates that both of the new stable steady-states are also initially positive,
contradicting Theorem 4. Thus, m cannot lose stability as � increases, and hence m

gives rise to a unique and smooth branch of stable and positive steady-states. ⇤

2.8.2.3 Theorem 3

We show that every system exhibits a steady-state and that the well-known pitchfork
bifurcation structure for steady-states of the ferromagnetic MF Ising model on a lattice
extends exactly to general (weighted, directed) strongly-connected graphs. In particular,
for any strongly-connected graph J, there is a critical interaction strength �c = 1/⇢(J)
below which there exists a unique and stable steady-state. For h = 0, as � crosses �c

from below, two new stable steady-states appear, one with all-positive components and
one with all-negative components.

Proof (Theorem 3). We first note that the existence of a steady-state is guaranteed for
any system by applying Brouwer’s fixed point theorem to f. Furthermore, Lemma 10
establishes that for � < 1/⇢(J), there is a unique and stable steady-state.

In the case h = 0, any system has a steady-state at m⇤ = 0, which we refer to
as the trivial steady-state. Lemma 10 guarantees that m⇤ is stable and unique for
� < �c. The implicit function theorem guarantees that we can continue to write m⇤

uniquely as a function of � so long as ⇢(f 0(m⇤)) = �⇢(J) < 1. If our network is
strongly-connected, then the Perron-Frobenius theorem guarantees that as we increase
�, an eigenvalue of f 0 will first cross 1 when � = 1/⇢(J). Furthermore, the largest
eigenvalue is simple, which, by the Crandall-Rabinowitz theorem (162), guarantees
the appearance of two new steady-states. Furthermore, the new solutions locally lie
in the subspace spanned by the eigenvector corresponding to the largest eigenvalue
of f 0, which by the Perron-Frobenius theorem has all positive components. Thus, at
� = �c, a branch of steady-states appears, giving rise to an all-positive steady-state
and an all-negative steady-state. By the principle of exchange of stability, the new
steady-states adopt the stability of the trivial steady-state, while the trivial steady-state
becomes unstable. As we continue to increase �, Theorem 5 guarantees that the positive
(negative) steady-state remains positive (negative) and stable. ⇤

2.8.2.4 Theorem 6

We conclude by showing for J strongly-connected that if h > 0, then there exists a
stable non-negative steady-state.
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Proof (Theorem 6). We first consider h > 0. Lemma 10 guarantees that for any � < �c

there exists a unique and stable steady-state m and that iterative application of f to
any x 2 X converges to m. For induction, choose x = 1 and assume f`(1) > 0. Then

f`+1(1) = tanh
⇥
�(Jf`(1) +h)

⇤
> 0. (2.33)

Thus, m = lim`!1 f`(1) > 0 at �. By Theorem 5, the unique branch m(�) remains
stable and positive for all � 0 > �. To complete the proof, we note that Theorem 3 covers
the case h = 0. ⇤
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I N F L U E N C E M A X I M I Z AT I O N W I T H T H E R M A L N O I S E

This chapter contains work from Lynn, Christopher W., and Daniel D. Lee. “Statistical mechan-
ics of influence maximization with thermal noise." EPL (Europhysics Letters) 117.6 (2017):
66001.

Abstract

The problem of optimally distributing a budget of influence among individuals in a
social network, known as influence maximization, has typically been studied in the con-
text of contagion models and deterministic processes, which fail to capture stochastic
interactions inherent in real-world settings. Here, we show that by introducing thermal
noise into influence models, the dynamics exactly resemble spins in a heterogeneous
Ising system. In this way, influence maximization in the presence of thermal noise has
a natural physical interpretation as maximizing the magnetization of an Ising system
given a budget of external magnetic field. Using this statistical mechanical formulation,
we demonstrate analytically that for small external field budgets, the optimal influence
solutions exhibit a highly non-trivial temperature dependence, focusing on high-degree
hub nodes at high temperatures and on easily-influenced peripheral nodes at low
temperatures. For the general problem, we present a projected gradient ascent algo-
rithm that uses the magnetic susceptibility to calculate locally-optimal external field
distributions. We apply our algorithm to synthetic and real-world networks, demon-
strating that our analytic results generalize qualitatively. Our work establishes a fruitful
connection with statistical mechanics and demonstrates that influence maximization
depends crucially on the temperature of the system, a fact that has not been appreciated
by existing research.

3.1 introduction

With the proliferation of online social networks, influence maximization has garnered
tremendous attention as one of the paradigmatic problems towards the control of
large complex networks (190, 475, 556), with applications ranging from marketing in
social networks to immunization against infectious diseases. Given a network of social
interactions and a budget of external influence, the goal of influence maximization
is to distribute the budget among the nodes so as to maximize the total effect on the
network. The problem was originally proposed in the context of viral marketing, and
has since been studied primarily in the context of deterministic viral models (265, 275,

51
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365, 458). However, these deterministic models neglect the important role of noise that
is ubiquitous in real-world settings, such as the formation of opinions (332, 430, 462,
585), the proliferation of technology (454), and the behavior of bounded-rational agents
in games (92, 437).

In this letter, we investigate the role of thermal noise in influence maximization.
By injecting noise into the commonly used linear threshold model from sociology,
we show that the ensuing dynamics are formally equivalent to Glauber Monte Carlo
dynamics, simulating spins in an Ising system. In this way, we show that influence
maximization with thermal noise has a natural physical interpretation as maximizing
the magnetization of a heterogeneous Ising system given a budget of external magnetic
field (415).

We find that the structure of solutions has a highly non-trivial dependence on the
temperature of the system. For small budgets, we demonstrate analytically that at high
temperatures, the optimal external field distribution focuses on hub nodes with large
degrees. On the other hand, at low temperatures, because hub nodes are strongly bound
in the ground state, we show that it is optimal to focus the external field on peripheral
nodes that are easily influenced. In addition to our analysis, we also present a projected
gradient ascent algorithm that uses the magnetic susceptibility to efficiently calculate
locally optimal solutions for general influence maximization problems. Using Monte
Carlo simulations to estimate the susceptibility at each step, we apply our algorithm
on large real-world networks, showing that the structure of influence maximization
solutions is qualitatively similar to our analytic description. Together, our results show
that influence maximization depends crucially on the temperature of the system, a
finding that can lead to numerous practical consequences.

3.2 glauber dynamics

We introduce noise into a commonly-used influence model from sociology known as
the linear threshold model, and show that the resulting dynamics exactly resemble
spins in an Ising system. The Ising model has previously been proposed to describe
social interactions, most notably in (238, 239). The novel contribution of this section
is to draw a formal equivalence between the linear threshold model with noise and
the Ising model, allowing us to leverage statistical mechanical tools to study influence
maximization with thermal noise.

The linear threshold model has found wide use in the influence maximization
literature (364, 459), and is closely related to the independent cascade model (365),
best-response dynamics in game theory (234), and percolation in complex networks
(458). We consider a social network consisting of a set of n nodes {�i, i = 1, . . . ,n},
each of which is either active (�i = +1) or inactive (�i = -1). The connections in the
social network are described by a coupling matrix J 2 Rn⇥n, where Jij represents the
influence that node j holds over node i. Each node i has an associated threshold ✓i 2 R,
which represents the total weight of its neighbors needed for the node to become active.
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At each time step t, a node i is chosen at random and its activity is updated according
to the following rule:

�
(t+1)
i

= sign

2

4
X

j 6=i

Jij�
(t)
j

- ✓i

3

5 . (3.1)

The dynamics in (4.12) are deterministic; in order to model stochastic interactions
inherent to real-world settings, we assume that the individual being updated at time
t experiences an additional random influence ✏(t), such that the linear threshold
dynamics become

�
(t+1)
i

= sign

2

4
X

j

Jij�
(t)
j

- ✓i + ✏(t)

3

5 . (3.2)

If ✏(t) are drawn i.i.d. from a logistic distribution p(✏) with mean zero and variance
T2⇡2/12, then the dynamics in (3.2) are equivalent to the following probabilistic update
rule:

P
⇣
�
(t+1)
i

= 1|�(t)
⌘
=

Z1

-
⇣P

j
Jij�

(t)
j

-✓i

⌘ p(✏)d✏ (3.3)

=
1

1+ exp
h
- 2

T

⇣P
j
Jij�

(t)
j

- ✓i
⌘i .

This stochastic process is formally equivalent to Glauber dynamics describing Ising
systems (399). Thus, the linear threshold model with logistically-distributed noise can
be understood as an Ising model with temperature T , exchange couplings J, and a
heterogeneous external field bi ⌘ -✓i.

In this letter, we assume J is symmetric so that the Glauber dynamics settle to thermal
equilibrium described by the Boltzmann distribution:

P(�) =
1

Z
e-

1

T
H(�), (3.4)

with Hamiltonian
H(�) = -

1

2

X

ij

Jij�i�j -
X

i

bi�i, (3.5)

and partition function
Z =

X

{�}

e-
1

T
H(�). (3.6)

While assuming J = JT is reasonable in some networks (e.g., friendships on Facebook),
we note that there are settings where the network may be far from symmetric (e.g.,
followers on Twitter), in which case the Glauber dynamics do not admit a steady-
state description. Thus, we use the Boltzmann distribution as an important first step
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toward understanding the equilibrium properties of influence maximization, noting
that further research should investigate cases where J is not symmetric.

Using this statistical mechanical formulation, we can represent important equilibrium
quantities as expectations over the Boltzmann distribution, denoted by h·i. For example,
the total number of expected activations has a physical interpretation as the total
magnetization under applied field b:

M(b) =
X

i

h�ii , (3.7)

Because we are interested in tuning the magnetization with respect to external influence,
another important quantity is the susceptibility vector, defined by

�i =
@M(b)

@bi

=
1

T

X

j

�⌦
�i�j

↵
- h�ii

⌦
�j

↵�
. (3.8)

Besides the symmetry of J, we note that our main analysis does not rely on additional
assumptions about the signs of the couplings or external fields. Thus, while previous
work has only considered positive couplings (415), in principle both ferromagnetic
(Jij > 0) and antiferromagnetic (Jij < 0) bonds can be allowed. In the presence of
significant frustration, our model becomes similar to a spin-glass, which is known
to exhibit much more complex behavior than a standard Ising ferromagnet (483). In
our numerical examples, however, we will show influence maximization results on
ferromagnetic systems in order to ease the discussion.

3.3 ising influence maximization

Influence maximization, as originally defined in (365), is the problem of choosing
a subset of nodes to initially activate such that the ensuing spread of activations is
maximized. This problem has been shown to be computationally hard for a generic
class of linear threshold models, including Eq. (4.12) (365, 459). Indeed, identifying
the optimal set of seed activations is a combinatorial optimization problem involving
many-body interactions, where the topology of the social network plays a crucial role.

Here we consider how the total magnetization increases after the addition of an
external field h, which is bounded by a budget H. If b0 is the initial external field,
then the total applied field is b = b0 + h. Incrementing the field hi at node i will
increase the expected local activation h�ii, but it is the indirect effects of the external
field mediated by the network connections that give influence maximization solutions
a rich structure.

Specifically, we study the problem of maximizing the magnetization of an Ising
system with respect to an additional external field h, subject to the budget constraint
|h|p = (

P
i
|hi|

p)1/p 6 H, where H > 0 is the external field budget, and we denote
the set of feasible external fields by FH = {h 2 Rn : |h|p 6 H}. Thus, given an initial
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Ising system described by J = JT , b0, and T , and an external field budget H, the Ising
influence maximization problem is to find an optimal external field satisfying

h⇤ = arg max
h2FH

M(b0 +h). (3.9)

We remark that when p = 0, the `0-norm budget constraint is equivalent to the original
discrete constraint in (365). Hence, this formulation can be viewed as an equilibrium
version of the traditional influence maximization problem with non-zero temperature.

3.4 small H budget

The Ising influence maximization (IIM) problem in Eq. (4.2) was first studied using
the naïve mean-field approximation on ferromagnetic systems in (415). In this section,
we consider a general class of Ising systems and their solutions in the limit of small
budget H. In this limit, any feasible external field h 2 FH will induce a small change in
the magnetization that can be approximated by the linear response relation

�M = M(b0 +h)-M(b0) ⇡ �(b0)Th. (3.10)

Thus, in the small-H limit, the optimal external field is a function only of the magnetic
susceptibility, focusing on nodes that correspond to larger entries in �. For instance,
under an `2 budget constraint, the optimal external field points in the direction of the
susceptibility vector:

h⇤ = H�̂, (3.11)

where �̂ = �/|�|2. On the other hand, under an `1 budget constraint, assuming � has a
unique largest entry, the optimal external field focuses on the node with the largest
susceptibility:

h⇤
i
=

�
H, if i = arg max

j
�j

0, otherwise
. (3.12)

Since, in the small-H limit, the optimal external field focuses on the nodes with large
susceptibilities, we can gain an intuition for the temperature dependence of influence
maximization by considering how the structure of � depends on T . In Fig. 3.1, we
consider a small ferromagnetic network in a uniform positive external field, and we
note that the spectral radius ⇢(J) sets the temperature scale. At high temperatures,
we find that the largest component of the susceptibility intuitively corresponds to the
hub node of largest degree. As the temperature decreases, the susceptibility exhibits
an abrupt shift such that, at low temperatures, the largest components of � counter-
intuitively correspond to peripheral nodes of low degree. As evidenced by this example,
introducing thermal noise into influence maximization can induce a highly non-trivial
dependence in the solution structure that is not observed under traditional deterministic
models.
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Figure 3.1: Shift in the structure of the susceptibility. We consider a small ferromagnetic
network with Jij = Jji 2 {0, 1} and a uniform positive external field b0 = 0.3. At high
temperatures, the node corresponding to the largest entry in � is the hub node of degree 10,
while, at low temperatures, the nodes with the largest susceptibilities are the peripheral nodes
of degree 2. Thus, for small H, the optimal external field shifts from focusing on the hub node
at high temperatures to the low-degree nodes at low temperatures. The magnitudes of the
entries in � are represented by the sizes of the nodes in the network snapshots.

To understand the significance of thermal noise in influence maximization, we begin
by developing an analytic description of small-budget optimal external fields in the
high- and low-temperature limits. In the high-T limit, we demonstrate that the optimal
external fields focus on hub nodes of high degree because the effects of the external field
are localized. On the contrary, in the low-temperature limit, we show that the optimal
external field focuses on easily-influenced nodes which are minimally energetically
bound to the ground state. Because flipping a hub node from the ground state often
incurs a large energetic cost, these easily-influenced nodes tend to have low degree.

3.4.1 High-temperature solution

In the high-temperature limit, we can expand � in powers of � ⌘ 1

T
:

�i = �i|�=0
+ �

@

@�
�i

����
�=0

+
�2

2

@2

@�2
�i

����
�=0

+ . . . . (3.13)

For a general Ising system defined by J, b, and T , we calculate the terms in (3.21) up to
third-order in � (see Sec. ??), yielding

�i = �+�2di +�3

0

@
X

j 6=i

(J2)ij - b2

i

1

A+ . . . , (3.14)

where we define di =
P

j
Jij as the degree of node i and

P
j 6=i

(J2)ij =
P

jk
JikJkj -P

j
J2
ij

as the second-degree of node i, representing the combined weight of paths of
length 2 originating from node i (excluding self-interactions).

Inspecting Eq. (3.14), we find to first-order in � that �i > 0. This indicates that the
high-T optimal external fields h⇤ are positive. This may seem obvious, but we note
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that at intermediate and low temperatures, applying a negative external field to nodes
that are anti-correlated with the total magnetization can be optimal. Furthermore, since
the second-order term in Eq. (3.14) is proportional to di, the high-temperature optimal
external fields focus H on the nodes of high degree, independently of the initial external
field b0. Since the external field only appears in Eq. (3.14) to third-order in �, this
high-temperature argument generalizes to non-trivial budgets, so long as �3H2 ⌧ 1.
Finally, we remark that focusing one’s budget on the nodes of high degree is intuitive
and has often been used as a heuristic for influence maximization problems.

3.4.2 Low-temperature solution

In the low-temperature limit, the susceptibility is dominated by the structure of low-
energy states, and we find that the nodes with the largest susceptibilities are those with
opposite parity between the ground and first-excited states. In ferromagnetic systems,
we find that these nodes tend to have low degree in the network, in stark contrast to
the high-temperature susceptibility.

Here we assume that the system admits a unique ground state �0 and a unique
first-excited state �1, and we consider more general cases in the SM. Letting �E =
H(�1)-H(�0) > 0 denote the energy gap between the ground and first-excited states,
at low temperatures, the node magnetizations can be approximated by:

h�ii ⇡
�0

i
+ �1

i
e-

�E

T

1+ e-
�E

T

⇡ �0

i
+
�
�1

i
- �0

i

�
e-

�E

T . (3.15)

Similarly, the two-point correlations can be approximated by:

⌦
�i�j

↵
⇡ �0

i
�0

j
+
�
�1

i
�1

j
- �0

i
�0

j

�
e-

�E

T . (3.16)

Using Eq. (3.8), we can write the low-temperature susceptibility in terms of the approx-
imate one- and two-point correlations, yielding

�i =
1

T

X

j

�⌦
�i�j

↵
- h�ii

⌦
�j

↵�

⇡ 1

T

X

j

h⇣
�0

i
�0

j
+
�
�1

i
�1

j
- �0

i
�0

j

�
e-

�E

T

⌘
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�0
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+
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�1

i
- �0

i

�
e-

�E

T

⌘⇣
�0

j
+
�
�1

j
- �0

j

�
e-

�E

T

⌘i

⇡ e-
�E

T

T

�
�1

i
- �0

i

�X

j

�
�1

j
- �0

j

�
, (3.17)

where the final approximation follows by keeping only those terms of order e-
�E

T /T ,
since all other terms are exponentially suppressed for small T . Eq. (3.17) reveals
insight into the structure of low-temperature optimal external fields for systems with



3.5 exact solutions for small H budget 58

unique ground and first-excited states. Since �i is proportional to (�1

i
- �0

i
), the low-T

susceptibility is only non-zero for nodes with opposite parity between the ground and
first-excited states, i.e., nodes i for which �1

i
6= �0

i
.

If only one node flips between the ground and first-excited state, then this node can
be thought of as “easily-influenced" in the sense that it induces a minimal increase in
energy when flipped from the ground state. If, in addition, the system is ferromagnetic
(J > 0) in a uniform external field, then this node must have the lowest degree in the
network. We remark that much of the intuition developed here extends to general
systems and budgets H of arbitrary size (see SM). Finally, we emphasize the stark
dissimilarity between the high- and low-T susceptibilities, highlighting the important
role that thermal noise plays in determining the structure of optimal external fields.

3.5 exact solutions for small H budget

Thus far, we have established that the structure of optimal external fields has a highly
non-trivial dependence on the temperature of the system. To make this point concrete,
we consider a family of heterogeneous one-dimensional systems for which the sus-
ceptibility can be efficiently calculated using transfer matrices (Chs24-Kramers-01).
Specifically, we study a 1-D ring of nodes i 2 {1, . . . ,n}, where node i is coupled to
node i+ 1 with weight

Ji,i+1 =
1

2


cos
✓
✓i + ✓i+1

2

◆
+ 1

�
, (3.18)

where ✓i = 2⇡(i- 1)/n is the angle of the node i around the ring (Fig. 3.2a). Node
1 (✓ = 0) has the largest degree in the network and node n/2+ 1 (✓ = ⇡) has the
smallest degree. The system is placed in a uniform external field b = 0.1 such that
the ground-state configuration is “all-up" and the first-excited state corresponds to the
node at ✓ = ⇡ flipping down. Thus, at high temperatures, we expect �(✓) to have a
maximum at ✓ = 0, and as the temperature decreases, the maximum should shift to
✓ = ⇡.

Fig. 3.2b shows the temperature-dependence of the susceptibility for a ring of 100
nodes. At high temperatures, the susceptibility is nearly uniform with the node at ✓ = 0

having the largest entry, while at low temperatures, the susceptibility becomes localized
around ✓ = ⇡. Thus, in addition to shifting from low- to high-degree nodes, the
susceptibility also changes from being nearly uniform to localized as the temperature
decreases. Furthermore, at intermediate temperatures, nodes other than those of the
highest or lowest degrees (e.g., ✓ = ⇡/2) can have the largest susceptibility.

Fig. 3.2c shows the full structure of the susceptibility as a function of ✓ at three
different temperatures and for a number of system sizes. The right and left panels
clearly demonstrate the shift from uniformity to localization of the susceptibility,
respectively. Furthermore, as the systems become larger, n ! 1, the susceptibility
converges to a well-defined structure that maintains a non-trivial dependence on
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Figure 3.2: Temperature-dependence of the susceptibility in a heterogeneous ring. (a) The
ring has nearest-neighbor couplings Ji,i+1 defined in Eq. (3.18) and a positive uniform external
field. (b) At high temperatures, � is nearly uniform and the largest entry corresponds to the
node of highest degree (✓ = 0). At low temperatures, the susceptibility is localized near the
node of lowest degree (✓ = ⇡). (c) The susceptibility density is normalized such that the integral
over all angles is unity, and is shown as a function of the angle for various temperatures T and
system sizes n.

T . We also studied networks with community structure, such as those in (105), and
found that the structure of the susceptibility differed greatly between the high- and
low-temperature limits.

3.6 numerical techniques for general ising systems

In the small budget limit, the optimal external field is determined by the susceptibility
of the initial system. For larger external field budgets H, however, one must take into
account how the magnetization varies as h increases. Directly trying to search for the
maximum of M with respect to h 2 FH, which has n components, is computationally
intractable for larger systems. To overcome this problem, we present a gradient ascent
algorithm that iteratively calculates the susceptibility and efficiently converges to a
local maximum of the magnetization. While previous work has focused on maximizing
the mean-field magnetization (415), our algorithm maximizes the exact magnetization
for general Ising systems and general external field budgets.
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The algorithm is first initialized at a feasible external field h(0) 2 FH and steps
along the direction of the gradient of the objective, given by the magnetic susceptibility
�(b) = OM(b). Projecting back onto the space of feasible external fields completes
each iteration:

h(k+1)  PFH

h
h(k) +↵�(b0 +h(k))

i
, (3.19)

where PFH
denotes the projection onto FH, which is convex for norms p > 1, and ↵ > 0

is the step size. If � is computed exactly at each step, then this algorithm converges
to an ✏-approximate local maximum of M in O(1/✏) iterations (see (471)). Detailed
pseudocode for our algorithm is presented in the SM.

We apply our algorithm on random and real-world networks to test its performance
and to probe the structure of optimal external fields for larger budgets H. Although
our algorithm is efficient and converges in relatively few iterations, the total run-time is
limited by the calculation of � at each step. Exact calculations for generic Ising systems
are limited to relatively small networks. Thus, to scale our algorithm to larger systems,
we can approximate � using Monte Carlo (MC) techniques at each iteration.

In Fig. 3.3, we show the results of exact and MC implementations of our algorithm,
with solutions denoted by h⇤ and h⇤

MC
, along the mean-field solution in (415), denoted

h⇤
MF

, for a small ferromagnetic random network. With an `1 budget constraint, Fig.
3.3a shows that all three algorithms shift from focusing on the node of highest degree at
high temperatures to the nodes of low degree at low temperatures. Fig. 3.3b compares
the magnetizations achieved by the three algorithms, along with the magnetization
achieved by a uniform external field huniform = H

n
(1, . . . , 1)T as a baseline. As T ! 0,

thermal noise dominates the external fields and all strategies yield M = 0. As T ! 0,
any choice of positive external field yields M = n as the system approaches the all-
up ground state. At intermediate temperatures, however, Fig. 3.3b verifies that the
exact implementation of our algorithm achieves the largest magnetization among the
algorithms considered.

In Fig. 3.4, we apply the MC implementation of our algorithm on a real-world
network of co-authorships on arXiv (395, 477). The co-authorship network consists of
n = 904 nodes, where each node represents a physicist, and each edge represents the
co-authorship of a paper on arXiv. For an `1 budget constraint, Fig. 3.4a illustrates the
shifts in h⇤

MC
and h⇤

MF
from focusing on high- to low-degree nodes as the temperature

decreases. Thus, in the networks presented here, the optimal external fields for non-
trivial budgets closely resemble our small-budget descriptions. We have found the
same structure in other large random networks as well, which have been omitted to
save space. Fig. 3.4b compares the performances of h⇤

MC
and h⇤

MF
, where each data

point represents the average magnetization from 20 Monte Carlo simulations. This
demonstrates that our algorithm scales to large systems and performs favorably in
comparison to the mean-field algorithm.

We emphasize the implications of our analysis and numerical results. By including
thermal noise in influence maximization, the structure of solutions acquires a highly
non-trivial dependence on the temperature of the system. Thus, in the control of noisy
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systems, accurately accounting for the strength of random fluctuations is critically
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important. Because random fluctuations are ubiquitous in nature, the important role of
thermal noise in real-world applications should not be underestimated.

3.7 conclusions

We study influence maximization in the presence of thermal fluctuations. By introduc-
ing thermal noise into the commonly-used linear threshold model, we show that the
dynamics are equivalent to Glauber dynamics for an Ising system. In this way, influence
maximization with thermal noise has a natural physical interpretation as maximizing
the magnetization given a budget of external magnetic field. In the limit of small bud-
get, we demonstrate that the structure of solutions given by the magnetic susceptibility
exhibits a highly non-trivial temperature dependence, focusing on high-degree hub
nodes at high temperatures, while focusing on easily-influenced peripheral nodes at
low temperatures. For general systems and budgets, we present a projected gradient
ascent algorithm that iteratively calculates the susceptibility and efficiently converges
to local maxima of the magnetization. In a number of random and real-world networks,
we demonstrate that our numerical results can be qualitatively understood using our
analysis. Our work establishes fruitful connections between statistical physics, machine
learning, and network science, paving the way for future cross-disciplinary research.
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3.8 supplementary material

3.8.1 High-temperature susceptibility

For a general Ising system described by the coupling matrix J = JT 2 Rn⇥n (where we
assume Jii = 0 for all i 2 N), heterogeneous external field b 2 Rn, and temperature
T > 0, we consider the susceptibility vector defined by:

�i =
X

j

@
⌦
�j

↵

@bi

=
1

T

X

j

�⌦
�i�j

↵
- h�ii

⌦
�j

↵�
, (3.20)

where the sums run over all nodes i 2 {1, . . . ,n} and h·i denotes an expectation over
the Boltzmann distribution. The component �i quantifies the response of the total
magnetization M =

P
j

⌦
�j

↵
to a change in the external field on node i. For high

temperatures, we can expand the susceptibility in powers of � ⌘ 1

T
,

1
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�i =
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✓
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�
�i

◆

�=0

+ . . . . (3.21)

In what follows, we derive the susceptibility up to order �3.
First, we must establish some preliminary results. Since the Boltzmann distribution

is uniform at � = 0, for any function of the spins f(�) we have

hf(�)i
�=0

=
1

2n

X

{�}

f(�), (3.22)
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where the sum runs over the set of spin configurations {±1}n. Thus, when evaluated at
� = 0, any terms in f(�) that involve an odd number of spins will vanish in expectation.
For terms involving even numbers of spins, we have

1

2n

X

{�}

�i�j =�ij, (3.23)

1

2n

X

{�}

�i�j�k�` =�ij�k` + �ik�j` + �i`�jk - 2�ijk` , Cijk`, (3.24)
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X
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+ 16�ijk`mp

, Cijk`mp, (3.25)

where �ij denotes the Kronecker delta. Furthermore, we note that the derivative of the
expectation of any function f(�) with respect to � takes the form

@

@�
hf(�)i = - hf(�)H(�)i+ hf(�)i hH(�)i , (3.26)

where H(�) = -1

2

P
ij
Jij�i�j -

P
i
bi�i is the Hamiltonian of the system.

We proceed with the zeroth-order term in Eq. (3.21), which takes the form
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Before calculating the first-order term in Eq. (3.21), we note that
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since Jii = 0 for all i 2 N. Thus, we have
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where the penultimate equality follows from J being zero on the diagonal and the final
equality follows since J is symmetric. We identify

P
j
Jij ⌘ di as the degree of node i.

We now derive the second-order term in Eq. (3.21). Including only the non-vanishing
terms, we have
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Evaluating the second term in the sum in Eq. (3.30), we have

⌦
H2(�)

↵
�=0

=
1

2n

X

{�}

 
1

2

X

k`

Jk`�k�` +
X

k

bk�k

! 
1

2

X

mp

Jmp�m�p +
X

m

bm�m

!

=
1

4

X

k`mp

Jk`JmpCk`mp +
X

km

bkbm�km =
1

2

X

k`

J2
k`

+
X

k

b2

k
. (3.31)

Furthermore, the third term in the sum in Eq. (3.30) is given by
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Finally, we evaluate the first term in the sum in Eq. (3.30):
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Combining all of the terms in Eq. (3.30) and canceling appropriately, we are left with
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where we identify
P

j 6=i
(J2)ij as the second degree of node i, i.e., the weight of paths

of length two originating from i (not counting self-interactions).
All together, eqs. (3.27), (3.29), and (3.34) represent the zeroth-, first-, and second-

order terms in the expansion of 1

�
�i in Eq. (3.21), respectively. Multiplying by � yields

the desired high-temperature expansion of �i:

�i = �+�2di +�3

0

@
X

j 6=i

(J2)ij - b2

i

1

A+ . . . . (3.35)

3.8.2 Low-temperature solution for general systems and general budgets

We generalize the description of low-temperature optimal external fields provided in
the main text to include general Ising systems (with degenerate low-energy states) and
general external field budgets. We consider an Ising system described by the coupling
matrix J = JT 2 Rn⇥n, an initial external field b0 2 Rn, and temperature T > 0; and
we consider a general external field budget H > 0. To avoid confusion between the
budget H and the Hamiltonian, and to make the dependence on the additional external
field explicit, in this section, for any feasible external field h 2 FH, we denote the
Hamiltonian by

Eh(�) = -
1

2

X

ij

Jij�i�j -
X

i

(b0

i
+ hi)�i. (3.36)



3.8 supplementary material 67

For every feasible external field h 2 FH, let ⌦0

h = arg min{�} Eh(�) denote the set of
ground state configurations under the external field b0 +h, and let ⌦0 = [h2FH

⌦0

h

denote the set of all possible ground states that can be induced by some h 2 FH.
For sufficiently low temperatures, the ground state of the system dominates the

magnetization. Thus, any optimal external field will necessarily induce a ground state
that has the largest magnetization among the configurations in ⌦0. So, let ⌦0⇤ ⇢ ⌦0

denote the subset of possible ground states with the maximum magnetization and
let F⇤

H
=

⌦
h 2 FH : ⌦0

h ⇢ ⌦0⇤
↵

denote the set of feasible external fields that induce
ground states of maximum magnetization.

For sufficiently low temperatures, any optimal external field h⇤ is located in F⇤
H

. To
differentiate between the external fields in F⇤

H
, we consider the possible first-excited

states. Let ⌦1

h denote the set of first excited states of the system under the external
field b0 +h, and let ⌦1 = [h2F⇤

H
⌦1

h denote the set of possible first-excited states that
can be induced by some h 2 F⇤

H
. For every h 2 F⇤

H
, we denote the energy gap between

the ground and first-excited states under the external field b0 +h by:

�E(h) = min
�2⌦1

max
�02⌦0⇤

�
Eh(�)- Eh(�

0)
�

(3.37)

Letting M0 =
P

i
�0

i
, for any �0 2 ⌦0⇤, denote the magnetization of the optimal

ground states, for any external field h 2 F⇤
H

, the low-temperature magnetization takes
the form:

M(b0 +h) ⇡

��⌦0

h

��M0 +
⇣P

�2⌦1

h

P
i
�i

⌘
e-��E(h)

��⌦0

h

��+
��⌦1

h

�� e-��E(h)
⇡M0 + c(h)e-��E(h), (3.38)

where c(h) = 1

|⌦0

h|

h⇣P
�2⌦1

h

P
i
�i

⌘
-
��⌦1

h

��M0

i
is a scalar that depends on h. Thus,

the low-temperature optimal external fields, i.e., the external fields which maximize
the low-temperature magnetization, take the form:

h⇤ = arg max
h2F⇤

H

c(h)e-
1

T
�E(h)

⌘ arg max
h2F⇤

H

- sign [c(h)]�E(h)

⌘ arg max
h2F⇤

H

min
�2⌦1

max
�02⌦0⇤

- sign [c(h)]
�
Eh(�)- Eh(�

0)
�

(3.39)

Despite the complicated nature of Eq. (3.39), it reveals insight into the structure
of low-T optimal external fields in general Ising systems with general external field
budgets. Depending on the sign of c(h), the optimal external field h⇤ will either
maximize or minimize the energy gap. Since the first excited states in ⌦1

h are likely
ground states under other external fields (i.e., it is likely that ⌦1

h ⇢ ⌦0 for h 2 F⇤
H

),
and since M0 is the largest magnetization among the states in ⌦0, we should expect
in most cases that c(h) < 0 for all h 2 F⇤

H
. In this case, the low-T optimal external
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Algorithm 2: Projected gradient ascent
Input: An Ising system described by J, b0, and T ; an external field budget H;

and an accuracy parameter ✏ > 0
Output: An external field h that approximates a local maximum of M(b0 +h) in

FH

k = 0; h(0) 2 FH; ↵ 2 (0, 1

L
) ;

repeat
h(k+1) = PFH

⇥
h(k) +↵�(b0 +h(k))

⇤
;

k++;
until

��M(b0 +h(k+1))-M(b0 +h(k))
�� 6 ✏;

h = h(k+1);

field h⇤ maximizes the energy gap �E(h), focusing H on nodes with opposite parity
between the ground and first-excited states. Thus, once we restrict our attention to
external fields that induce ground states with the maximum magnetization (i.e., once
we restrict to h 2 F⇤

H
), much of the intuition developed in the main text generalizes

naturally to general Ising systems with general budgets.

3.8.3 A projected gradient ascent algorithm

We present a projected gradient ascent algorithm that uses the magnetic susceptibility
to efficiently calculate local maxima of the magnetization for general Ising systems.
The algorithm is initialized at a feasible external field h(0) 2 FH and steps along
the direction of the gradient of the magnetization, which has a natural physical
interpretation as the susceptibility �(b) = OM(b). Projecting back onto FH completes
one iteration:

h(k+1)  PFH

h
h(k) +↵�(b0 +h(k))

i
, (3.40)

where PFH
denotes the projection onto FH, which is well defined for norms p > 1,

and ↵ > 0 is the step size. If the step size is chosen such that ↵ 2 (0, 1

L
), where L

is a Lipschitz constant of M(b0 + h) (which is well-defined since M is smooth for
finite systems), Algorithm 1 converges to an ✏-approximation to a local maximum of
M(b0 + h) in O(1/✏) iterations (see (657)). Pseudocode for the algorithm is given in
Algorithm 1.

We remark that, while Algorithm 1 is efficient in that it converges to a ✏-approximate
local maximum in O(1/✏) iterations, the total run-time is limited by the calculation
of � at each step. Since exact Ising calculations involve sums over {±1}n, which is
exponential in the size of the system, an exact implementation of Algorithm 1 is limited
to relatively small networks. To overcome this exponential dependence on system size,
in the main text we use Monte Carlo simulations to approximate � at each iteration.

Finally, we mention a special case in which the algorithm often converges to a global
maximum of the magnetization; namely, when the couplings are ferromagnetic (J > 0)
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and the initial external field is nonnegative (b0
> 0). We first note that the Fortuin-

Kasteleyn-Ginibre inequality (222) states that, for any ferromagnetic system, regardless
of external field, @h�ii

@bj
> 0 for all i, j 2 N, and hence M(b0 + h) is non-decreasing

in h. This implies two important facts: (i) there exists a global maximum in FH for
which h > 0, and (ii) if Algorithm 1 is initialized such that h(0)

> 0, then we will have
h(k)

> 0 for all subsequent k. Secondly, the Griffiths-Hurst-Sherman inequality (279)
states that, for any ferromagnetic system in a nonnegative external field, @

2h�ii
@bj@bk

6 0 for
all i, j,k 2 N, and hence M(b0 +h) is entry-wise concave in h for h > 0. One would like
to use this result to state that any local maximum of M(b0 +h) for h > 0 is a global
maximum and, hence, our algorithm converges to a global maximum. However, such a
statement requires that the Hessian @

2
M

@bi@bj
be negative semidefinite; i.e., all eigenvalues

must be non-positive. While the theory doesn’t quite guarantee convergence to a global
maximum, in practice we find that the algorithm does often converge to a global
maximum for ferromagnetic systems in non-negative external fields.
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M A X I M I Z I N G A C T I V I T Y I N I S I N G S Y S T E M S V I A T H E TA P
A P P R O X I M AT I O N

This chapter contains work from Lynn, Christopher W., and Daniel D. Lee. “Maximizing
activity in Ising networks via the TAP approximation." Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

Abstract

A wide array of complex biological, social, and physical systems have recently been
shown to be quantitatively described by Ising models, which lie at the intersection of
statistical physics and machine learning. Here, we study the fundamental question
of how to optimize the state of a networked Ising system given a budget of external
influence. In the continuous setting where one can tune the influence applied to each
node, we propose a series of approximate gradient ascent algorithms based on the
Plefka expansion, which generalizes the naïve mean field and TAP approximations. In
the discrete setting where one chooses a small set of influential nodes, the problem
is equivalent to the famous influence maximization problem in social networks with
an additional stochastic noise term. In this case, we provide sufficient conditions for
when the objective is submodular, allowing a greedy algorithm to achieve an approx-
imation ratio of 1- 1/e. Additionally, we compare the Ising-based algorithms with
traditional influence maximization algorithms, demonstrating the practical importance
of accurately modeling stochastic fluctuations in the system.

4.1 introduction

The last 10 years have witnessed a dramatic increase in the use of maximum entropy
models to describe a diverse range of real-world systems, including networks of
neurons in the brain (241, 589), flocks of birds in flight (89), and humans interacting in
social networks (237, 418), among an array of other social and biological applications
(357, 402, 457, 523). Broadly speaking, the maximum entropy principle allows scientists
to formalize the hypothesis that large-scale patterns in complex systems emerge
organically from an aggregation of simple fine-scale interactions between individual
elements (339). Indeed, intelligence itself, either naturally-occurring in the human
brain and groups of animals (312) or artificially constructed in learning algorithms and
autonomous systems (433, 467), is increasingly viewed as an emergent phenomenon

70
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(400), the result of repeated underlying interactions between populations of smaller
elements.

Given the wealth of real-world systems that are quantitatively described by maximum
entropy models, it is of fundamental practical and scientific interest to understand how
external influence affects the dynamics of these systems. Fortunately, all maximum
entropy models are similar, if not formally equivalent, to the Ising model, which has
roots in statistical physics (113) and has a rich history in machine learning as a model
of neural networks (160). The state of an Ising system is described by the average
activity of its nodes. For populations of neurons in the brain, an active node represents
a spiking neuron while inactivity represents silence. In the context of humans in social
networks, node activity could represent the sending of an email or the consumption
of online entertainment, while inactivity represents moments in which an individual
does not perform an action. By applying external influence to a particular node, one
can shift the average activity of that node. Furthermore, this targeted influence also
has indirect effects on the rest of the system, mediated by the underlying network of
interactions. For example, if an individual is incentivized to send more emails, this
shift in behavior induces responses from her neighbors in the social network, resulting
in increased activity in the population as a whole.

As a first step toward understanding how to control such complex systems, we
study the problem of maximizing the total activity of an Ising network given a budget
of external influence. This so-called Ising influence maximization problem was origi-
nally proposed in the context of social networks (415), where it has a clear practical
interpretation: If a telephone company or an online service wants to maximize user
activity, how should it distribute its limited marketing resources among its customers?
However, we emphasize that the broader goal—to develop a unifying control theory
for understanding the effects of external influence in complex systems—could prove to
have other important applications, from guiding healthy brain development (257) and
intervening to alleviate diseased brain states (256) to anticipating trends in financial
markets (424) and preventing viral epidemics (513).

We divide our investigation into two settings: (i) the continuous setting where one
can tune the influence applied to each node, and (ii) the discrete setting in which one
forces activation upon a small set of influential nodes. In the continuous setting, we
propose a gradient ascent algorithm and give novel conditions for when the objective
is concave. We then present a series of increasingly-accurate approximation algorithms
based on an advanced approximation technique known as the Plefka expansion (529).
The Plefka expansion generalizes the naïve mean field and TAP approximations, and,
in theory, can be extended to arbitrary order (717).

In the discrete setting, it was recently shown that Ising influence maximization is
closely related to the famous influence maximization problem in social networks (365)
with the addition of a natural stochastic noise term (416). Here, we provide novel
conditions for when the total activity of the system is submodular with respect to
activated nodes. This result guarantees that a greedy algorithm achieves a 1- 1/e

approximation to the optimal choice of nodes. We compare our greedy algorithm
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with traditional influence maximization techniques, demonstrating the importance of
accurately accounting for stochastic noise.

Related work

Ising influence maximization was originally proposed in the context of human activity
in social networks (415). However, a recent surge in the use of Ising models to describe
other biological and physical systems significantly expands the problem’s applicability
(631).

Ising influence maximization was originally studied in the continuous setting under
the naïve mean field approximation. Since the Plefka expansion generalizes the mean
field approximation to increasing levels of accuracy, our work represents a principled
improvement over existing techniques.

In the discrete setting, it was recently shown that Ising influence maximization is
closely related to standard influence maximization (416), which was first studied in the
context of viral marketing (190). Kempe et al. (365) proposed influence maximization as
a discrete optimization problem and presented a greedy algorithm with approximation
guarantees. Significant subsequent research has focused on developing efficient greedy
and heuristic techniques (139, 140, 396). Here, we do not claim to provide improvements
over these algorithms in the context of standard influence maximization. Instead, we
focus on developing analogous techniques that are suitable for the Ising model.

4.2 ising influence maximization

In the study of complex systems, if we look through a sufficiently small window in
time, the actions of individual elements appear binary—either human i sent an email
(�i = 1) or she did not (�i = -1). The binary vector � = {�i} 2 {±1}n represents the
activity of the entire system at a given moment in time, where n is the size of the
system.

Many complex systems in the biological and social sciences have recently been shown
to be quantitatively described by the Ising model from statistical physics. The Ising
model is defined by the Boltzmann distribution over activity vectors:

P(�) =
1

Z
exp

 
1

2

X

i6=j

Jij�i�j +
X

i

bi�i

!

, (4.1)

where Z is a normalization constant. The parameters J = {Jij} define the network of
interactions between elements and the parameters b = {bi} represent individual biases,
which can be altered by application of targeted external influence. For example, if J
defines the network of interactions in a population of email users, then b represents
the intrinsic tendencies of users to send emails, which can be shifted by incentivizing
or disincentivizing email use.
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Problem statement

The total average activity of a network with bias b is denoted M(b) =
P

i
h�ii, where

h·i denotes an average over the Boltzmann distribution (6.5). In what follows, we assume
that the interactions J and initial bias b0 are known. We note that this assumption is
not restrictive since there exist an array of advanced techniques in machine learning (3)
and statistical mechanics (33) for learning Ising parameters directly from observations
of a system.

We study the problem of maximizing the total activity M with respect to an addi-
tional external influence h, subject to the budget constraint |h|p = (

P
i
|hi|

p)1/p 6 H,
where H is the budget of external influence.

Problem 1 (Ising influence maximization). Given an Ising system defined by J and
b0, and a budget H, find an optimal external influence h⇤ satisfying

h⇤ = arg max
|h|p6H

M(b0 +h). (4.2)

We point out that the norm p plays an important role. If p = 1, 2, 3, . . ., then one is
allowed to tune the influence on each node continuously. On the other hand, if p = 0,
then |h|0 counts the number of non-zero elements in h. In this case, one chooses a
subset of bHc nodes {i} to activate with probability one by sending {hi}!1.

4.3 the plefka expansion

Since the Ising model has remained unsolved for all but a select number of special cases,
tremendous interdisciplinary effort has focused on developing tractable approximation
techniques. Here, we present an advanced approximation method known as the Plefka
expansion (717). The Plefka expansion is not an approximation itself, but is rather a
principled method for deriving a series of increasingly accurate approximations, the
first two orders of which are the naïve mean-field (MF) and Thouless-Anderson-Palmer
(TAP) approximations. In subsequent sections, we will use the Plefka expansion to
approximately solve the Ising influence maximization problem in (4.2).

Calculations in the Ising model, such as the average activity h�ii, generally require
summing over all 2n binary activity vectors. To get around this exponential dependence
on system size, the Plefka expansion provides a series of approximations based on
the limit of weak interactions |Jij| ⌧ 1. Each order ↵ of the expansion generates a
set of self-consistency equations mi = f

(↵)
i

(m), where mi approximates the average
activity h�ii. Thus, for any order ↵ of the Plefka expansion, the intractable problem of
computing the averages h�ii is replaced by the manageable task of computing solutions
to the corresponding self-consistency equations m = f(↵)(m). We point the interested
reader to Sec. 4.7.1 for a detailed derivation of the Plefka expansion.
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For a system with interactions J and bias b, the first order in the expansion yields
the naïve mean field approximation, summarized by the self-consistency equations

mi = tanh
h
bi +

X

j

Jijmj

i
, fMF

i
(m). (4.3)

The second order in the Plefka expansion yields the TAP approximation,

mi = tanh
h
bi +

X

j

Jijmj -mi

X

j

J2
ij
(1-m2

j
)
i
, fTAP

i
(m). (4.4)

Higher-order approximations can be achieved by systematically including higher orders
of J in the argument of tanh[·]. In Sec. 4.7.2, we present a derivation of the third-order
approximation, denoted TAP3.

The standard approach for computing solutions to the self-consistency equations
m = f(↵)(m) is to iteratively apply f(↵) until convergence is reached:

m (1- �)m+ �f(↵)(m), (4.5)

where � 2 [0, 1] is the step size. The convergence of this procedure was rigorously
examined in (95). In practice, we find that � ⇠ 0.01 yields rapid convergence for most
systems up to the third-order approximation.

4.4 the continuous setting

In this section, we study Ising influence maximization under a budget constraint
|h|p 6 H, where p = 1, 2, 3, . . ., yielding a continuous optimization problem where
one can tune the external influence on each element in the system. We first present
an exact gradient ascent algorithm and comment on its theoretical guarantees. We
then demonstrate how the Plefka expansion can be used to approximate the gradient,
yielding a series of increasingly accurate approximation algorithms.

4.4.1 Projected gradient ascent

We aim to maximize the total activity M(b0 +h) =
P

i
h�ii with respect to the external

influence h. Thus, a crucially important concept is the response function

�ij =
@ h�ii
@hj

=
⌦
�i�j

↵
- h�ii

⌦
�j

↵
, (4.6)

which quantifies the change in the activity of node i due to a shift in the influence on
node j. The gradient of M with respect to h can be succinctly written rhM = �T1,
where 1 is the n-vector of ones.
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Algorithm 3: Projected Gradient Ascent (PGA)
Input: Ising system defined by J and b0, budget H, norm p, and error ✏;
Output: External influence h;
Initialize: Choose |h(0)|p 6 H, k 0;
while

��M(b0 +h(k))-M(b0 +h(k-1))
�� > ✏ do

Choose step size ⌘k; h(k+1)  ⇡|h|p6H

⇥
h(k) + ⌘k�(b0 +h(k))T1

⇤
;

k++;
end
h h(k);

In Algorithm 1 we present a projected gradient ascent algorithm PGA. Starting at
a feasible choice for the external influence h(0), PGA steps along the gradient �T1

and then projects back down to the space of feasible solutions |h|p 6 H. We note that
for p = 1, 2, 3, . . ., the space of feasible solutions is convex, and hence the projection
⇡|h|p6H is well-defined and can be performed efficiently (196).

4.4.2 Conditions for optimality

The algorithm PGA efficiently converges to an ✏-approximation of a local maximum
of M in O(1/✏) iterations (471). However, this local maximum could be arbitrarily far
from the globally optimal solution. Here, we present a novel sufficient condition for
when PGA is guaranteed to converge to a global maximum of M, subject to the proof
of a long-standing conjecture.

Conjecture 2 (647). Given an Ising system with non-negative interactions J > 0 and
non-negative biases b > 0, the average activity of each node h�ii is a concave function
of the biases b.

Theorem 3. If Conjecture 2 holds, then for any Ising system with non-negative interac-
tions J > 0 and non-negative initial biases b0

> 0, PGA converges to a global maximum
of the total activity M.

Proof. For Ising systems with positive couplings J > 0, the response function is non-
negative {�ij} > 0 (280). This implies two things: (i) at least one global maximum of
M(b) occurs in the non-negative orthant of b, and (ii) if b0

> 0, then b0 + h(k) will
be non-negative at every iteration k of PGA. If Conjecture 2 holds, then every local
maximum in the non-negative orthant is a global maximum. Thus, PGA converges to a
global maximum. ⇤

We remark that Sylvester (647) provides extensive experimental justification for
Conjecture 2, and even proves Conjecture 2 in a number of limited cases. Additionally,
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we manually verified the veracity of Conjecture 2 in each of the experiments presented
below. We also note that the sufficient conditions are plausible for many real-world
scenarios. Positive interactions J > 0 imply that an action from one node will tend
to induce an action from another node, a phenomenon that has been experimentally
verified in small neuronal (589) and social (418) networks. The more stringent condition
is that b0

>, implying that each element in the network prefers activity over inactivity.

4.4.3 Approximating the gradient via the Plefka expansion

Since PGA requires calculating the response function � at each iteration, an exact
implementation scales exponentially with the size of the system. Here we show that
the Plefka expansion can be used to approximate �, yielding a series of efficient and
increasingly-accurate gradient ascent algorithms.

Given a self-consistent approximation of the form m = f(↵)(m), where ↵ denotes
the order of the Plefka approximation, the response function is approximated by

�̃
(↵)
ij

=
@f

(↵)
i

@hj

+
X

k

@f
(↵)
i

@mk

�̃
(↵)
kj

. (4.7)

For all orders ↵ of the Plefka expansion, we point out that @f(↵)
i

/@hj = (1-m2

i
)�ij.

Thus, defining Aij , (1 -m2

i
)�ij, and denoting the Jacobian of f(↵) by Df

(↵)
ij

,

@f
(↵)
i

/@mj, the response function takes the particularly simple form

�̃(↵) = (I-Df(↵))-1A, (4.8)

where I is the identity matrix.
Thus, to approximate the gradient rhM ⇡ �̃T1, one simply needs to calculate the

Jacobian of f(↵). Under the mean field approximation, the Jacobian takes the form
DfMF = AJ; and under the TAP approximation, we have

DfTAP
ij

= (1-m2

i
)
h
Jij + 2Jijmimj - �ij

X

k

Jik(1-m2

k
)
i
. (4.9)

We point the reader to Sec. 4.7.2 for a derivation of the third-order Jacobian.

4.4.4 Experimental evaluation

In Fig. 4.1, we compare various orders of the Plefka approximation across a range of
networks for the norm p = 1. We also compare with the uniform influence h = H/n1

as a baseline. In Fig. 4.1a, the network is small enough that we can calculate the exact
optimal solution h⇤, while for Fig. 4.1b-d, we approximate h⇤ by running costly Monte
Carlo simulations to estimate the gradient at each iteration of PGA. Similarly, we
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Figure 4.1: Performance of PGA for various orders of the Plefka expansion. (a) An Erdös-
Rényi network with n = 15 nodes and budget H = 1. The total activity is calculated exactly
using the Boltzmann distribution. (b) An Erdös-Rényi network with n = 200 nodes and budget
H = 10. (c) A preferential attachment network with n = 200 nodes and budget H = 10. (d) A
collaboration network of n = 904 physicists on the arXiv and budget H = 20. The total activities
in (b-d) are estimated using Monte Carlo simulations. The benchmarks are PGA with the exact
gradient for (a) and the gradient estimated using Monte Carlo simulations in (b-d).

calculate the total activity M exactly using the Boltzmann distribution in Fig. 4.1a,
while in Fig. 4.1b-d, we estimate M using Monte Carlo simulations.

For each network, we assume that the interactions are symmetric J = JT with uniform
weights and that the initial bias is zero b0 = 0. We then study the performance of the
various algorithms across a range of interaction strengths, summarized by the spectral
radius ⇢(J). For ⇢(J)⌧ 1, the network is dominated by randomness and all influence
strategies have little affect on the total activity. On the other hand, for ⇢(J) � 1, the
elements interact strongly and any positive influence induces the entire network to
become active. Thus, the interesting regime is the “critical" region near ⇢(J) ⇡ 1.

The striking success of the Plefka expansion is summarized by the fact that TAP and
TAP3 consistently provide dramatic improvements over the naïve mean field algorithm
studied in (415). Indeed, TAP and TAP3 consistently perform within 20% of optimal
(except for the arXiv network) and sometimes even outperform the Monte Carlo
algorithm benchmark in Fig. 4.1b-d. Furthermore, while the Monte Carlo algorithm
takes ⇠ 10 minutes to complete in a network of size 200, PGA with the TAP and TAP3
approximations converges within ⇠ 5 seconds.

4.5 discrete setting

We now consider the discrete setting corresponding to a budget constraint of the form
|h|0 6 H. In this setting, one is allowed to apply infinite external influence to a set of
bHc nodes in the system, activating them with probability one; that is, one chooses
a set of nodes V = {i} for which we impose h�ii = 1 by taking hi ! +1. We begin
by presenting a greedy algorithm that selects the single node at each iteration that
yields the largest increase in the total activity M. We then provide novel conditions
for when M is submodular in the selected nodes, which guarantees that our greedy
algorithm is within 1- 1/e of optimal. Finally, we comment on the relationship between
(discrete) Ising influence maximization and traditional influence maximization in
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Algorithm 4: Greedy algorithm for choosing top H influential nodes in an Ising
network (GI)
Input: Ising system defined by J and b0, budget H;
Output: Set of H influential nodes V ;
Initialize: V(1)  {};
for k = 1, . . . ,H do

for all nodes i 2 {1, . . . ,n}/V(k) do
Calculate total activity M(V(k) [ {i});

end
Choose node i⇤ = arg max

i
M(V(k) [ {i});

Add i⇤ to influential set V(k+1)  V(k) [ {i⇤};
end
V  V(k+1);

viral marketing, and we present experiments comparing our greedy algorithm with
traditional techniques.

4.5.1 A greedy algorithm

We aim to maximize the total activity M with respect to a set V of activated nodes of
size |V | = H (assuming H is integer). To eliminate confusion, we denote by M(V) the
total activity of the system after activating the nodes in V , assuming that the couplings
J and initial bias b0 are already known.

Since there are
�
n

H

�
⇠ nH possible choices for V , an exhaustive search for the optimal

set is generally infeasible. On the other hand, we can simplify our search by looking at
one node at a time and iteratively adding to V the single node that increases M the
most. This approximate greedy approach was made famous in traditional influence
maximization in the context of viral marketing by Kempe et al. (365). In Algorithm 4
we propose an analogous algorithm for computing the top H influential nodes in an
Ising system.

4.5.2 Theoretical guarantee

The greedy algorithm GI efficiently chooses an approximate set V of influential nodes
in O(nH) iterations. However, V could be arbitrarily far from the globally optimal set
of nodes. Here, we present novel conditions for when M is monotonic and submodular
in V , and, hence, GI is guaranteed to compute a 1- 1/e approximation of the optimal
set of nodes. The proof is based on the famous GHS inequality from statistical physics.
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Theorem 4 (279). Given an Ising system with non-negative interactions J > 0 and
non-negative biases b > 0, we have @

2h�ii
@bj@bk

6 0 for all elements i, j,k.

We note that the GHS inequality guarantees a limited type of concavity of h�ii in the
direction of positive bias b. While this was not enough to prove that PGA is optimal in
the continuous setting, it is strong enough to guarantee that M is submodular in the
discrete setting.

Theorem 5. For an Ising system with non-negative interactions J > 0 and non-negative
initial biases b0

> 0, the total activity M is monotonic and submodular in the activated
nodes V .

Proof. Monotonicity is guaranteed for any system with non-negative interactions in
(280). To prove submodularity, we first introduce the notation hV

i
2 {0, 1} if i is or is

not in V . Then we note that M(V) ⌘ limc!1M(b0 + chV). Since M is non-negative
and concave in the direction of positive bias for J > 0 and b0

> 0, M it is subadditive.
Thus, for any set V of nodes and any two nodes i, j /2 V , we have

M(b0 + c(hV +h{i})) +M(b0 + c(hV +h{j}))

> M(b0 + c(hV +h{i} +h{j})) +M(b0 + chV). (4.10)

Taking c!1, we find that

M(V [ {i}) +M(V [ {j}) > M(V [ {i, j}) +M(V), (4.11)

which is the formal definition for submodularity. ⇤

4.5.3 Relationship between the linear threshold and Ising models

It was recently established that the discrete version of the Ising influence maximization
problem is closely related to traditional influence maximization in social networks (416).
In traditional influence maximization, one aims to maximize the spread of activations
under a viral model, such as linear threshold (LT) or independent cascade. For example,
the LT model is defined by the deterministic dynamics

�
(t+1)
i

 sign
hX

j

Jij�
(t)
j

+ bi

i
. (4.12)

Typically, one considers activation variables � 0
i
2 {0, 1} instead of �i = ±1, which can

be accomplished by a simple change of parameters J 0
ij
 2Jij and b 0

i
 bi -

P
j
Jij.

The negative bias ✓i = -b 0
i

is referred to as the threshold of i, representing the amount
of influence i must receive from her neighbors to become active.
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We include a stochastic influence ✏ for each node at every iteration t of the LT
dynamics, representing natural fluctuations in the influence on each node over time. If
✏ is drawn from a logistic distribution, then these stochastic dynamics are equivalent
to Glauber Monte Carlo dynamics (476)

P
�
�
(t+1)
i

���(t)
�
=
⇣
1+ e-

2

T
(
P

j
Jij�

(t)
j

+bi)
⌘-1

, (4.13)

where T parameterizes the variance of ✏. Allowing the system time to equilibrate, the
statistics of the Glauber dynamics follow the Boltzmann distribution (noting that we
have taken T = 1 in Eq. (6.5)), simulating an Ising model. Furthermore, it is clear to see
that we recover the deterministic LT dynamics in the limit of zero fluctuations T ! 0.
Thus, the Ising model represents a natural generalization of the LT model to settings
with stochastic fluctuations in the influence. We emphasize that, because maximum
entropy models have demonstrated tremendous ability in quantitatively describing a
wide range of real-world systems (89, 241, 357, 523, 589, 631), understanding how these
systems react to external influence is a significant endeavor in and of itself, and this
goal should fundamentally be viewed as running adjacent to, as opposed to in conflict
with, the existing viral influence maximization literature.

Finally, we note that most applications of the LT model to influence maximization
impose the constraint

P
j
J 0
ij

6 1 (
P

j
Jij 6 1/2 in Ising notation) and assume that

the bias b 0
i

is drawn uniformly from [0, 1] (bi ⇠ U[-1/2, 1/2]) at the beginning of
each simulation. Randomly selecting bi at the beginning of each simulation is meant
to represent uncertainty in the nodes’ biases, which is fundamentally distinct from
randomizing bi at each iteration to represent natural xs in the biases over time. Indeed,
in the following experiments we include both sources of randomness, making our
model equivalent to the so-called random-field Ising model, which shows similar
behavior to a spin glass (468).

4.5.4 Experimental evaluation

We experimentally evaluate the performance of our greedy algorithm under various
orders of the Plefka expansion. We also provide the first comparison between Ising
influence algorithms and the traditional greedy influence maximization algorithm
in (365). As is usually assumed in traditional influence maximization, we scale the
interactions such that

P
j
Jij 6 1/2. Furthermore, we draw the initial bias on each node

from a uniform distribution bi ⇠ U[-1/2, 1/2] and average over many such draws.
To fairly compare the Ising and linear threshold algorithms, we divide the experi-

ments into two classes: the first is evaluated with respect to the total activity M under
the Ising model, while the second class of experiments evaluates the spread S resulting
from each choice of nodes under the linear threshold model. We denote the greedy
algorithm in (365) by IM. We also compare with the heuristic strategy of choosing the
top H nodes with the highest degrees in the network.



4.5 discrete setting 81

0 1 2 3 4 5
H

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

M
(V

)−
M

(V
T
A
P
3
)

M
(V

T
A
P
3
)

MF
TAP
IM
Degree

0 1 2 3 4 5

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

H

(M
(V

) -
 M

(V
TA

P3
)) 

/ M
(V

TA
P3

)

MF
TAP
IM
Degree

Erdös-Rényi (n = 15)

0 10 20 30 40 50
H

-0.15

-0.1

-0.05

0

M
(V

)−
M

(V
T
A
P
3
)

M
(V

T
A
P
3
)

0 10 20 30 40 50

0

-0.05

-0.1

-0.15

H

(M
(V

) -
 M

(V
TA

P3
)) 

/ M
(V

TA
P3

) Erdös-Rényi (n = 200)

0 10 20 30 40 50
H

-0.15

-0.1

-0.05

0

M
(V

)−
M

(V
M

F
)

M
(V

M
F
)

IM
Degree

0 10 20 30 40

0

-0.05

-0.1

-0.15

H

(M
(V

) -
 M

(V
M

F))
 / 

M
(V

M
F)

IM
Degree

arXiv (n = 904)a cb

50

Figure 4.2: Comparison of the total Ising activity for greedy algorithms using various orders
of the Plefka expansion. For each network, we ensure

P
j
Jij 6 1/2 and we average over many

draws of the initial bias {b0
i
} ⇠ U[-1/2, 1/2]. (a) An Erdös-Rényi network with n = 15 nodes.

The total activity is calculated exactly using the Boltzmann distribution. (b) An Erdös-Rényi
network with n = 200 nodes. (c) A collaboration network of n = 904 physicists on the arXiv.
The total activities in (b-c) are estimated using Monte Carlo simulations. In (a-b) the benchmark
is TAP3, while for (c) the benchmark is MF.

4.5.4.1 Comparison under the Ising model

We first compare the different greedy algorithms under the Ising model. In Fig. 4.2a,b,
we use the Ising greedy algorithm GI with the third-order approximation TAP3 as
the benchmark. In both Erdös-Rényi networks, we find that GI with TAP3 slightly
outperforms TAP and MF, while all three Ising-based algorithms significantly out-
perform the linear-threshold-based algorithm IM and the degree heuristic. Since TAP3,
TAP, and MF all perform within 5% of one another, in Fig. 4.2c we use GI with the
MF approximation as the benchmark. In the arXiv network, we find that GI with MF
significantly outperforms both LT and the degree heuristic. These results demonstrate
the practical importance of accurately modeling the stochastic noise in the system. We
point out that the total activity M is calculated exactly in Fig. 4.2a using the Boltzmann
distribution and estimated in Fig. 4.2b,c using Monte Carlo simulations.

4.5.4.2 Comparison under the linear threshold model

We now compare the algorithms under the linear threshold model. In all of Fig. 4.3a-c,
we use the LT greedy algorithm IM as the benchmark and exactly compute the spread
of influence under the LT model. Surprisingly, in both of the Erdös-Rényi networks in
Fig. 4.3a,b, all of the Ising-based algorithms and the degree heuristic out-perform IM.
In particular, the third-order approximation TAP3 achieves close to the largest spread
in both networks. In the arXiv network in Fig. 4.3c, the Ising-based algorithm continues
to slightly out-perform IM, while IM out-performs the degree heuristic.

The success of the Ising-based algorithms is surprising, since they are all attempting
to maximize a fundamentally different objective from influence spread under LT. We
suspect that the strong performance might be the result of the Ising model performing
a type of simulated annealing, similar to recent techniques proposed in (342); however,
an investigation of this hypothesis is beyond the scope of the current paper.
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Figure 4.3: Comparison of the spread of influence under the linear threshold model for
different greedy algorithms. For each network, we ensure

P
j
Jij 6 1/2 and we average over

many draws of the initial bias {b0
i
} ⇠ U[-1/2, 1/2]. (a) An Erdös-Rényi network with n = 15

nodes. (b) An Erdös-Rényi network with n = 200 nodes. (c) A collaboration network of n = 904
physicists on the arXiv. The benchmark in all panels is IM.

4.6 conclusions

Maximum entropy models such as the Ising model have recently been used to quantita-
tively describe a plethora of biological, physical, and social systems. Given the success
of the Ising model in capturing real-world systems, including populations of neurons
in the brain and networks of interacting humans, understanding how to control and
optimize the large-scale behavior of complex systems is of fundamental practical and
scientific interest, with applications from guiding healthy brain development (257) and
intervening to alleviate diseased brain states (256) to anticipating trends in financial
markets (424) and preventing viral epidemics (513).

Here, we study the problem of maximizing the total activity of an Ising network
given a budget of external influence. In the continuous setting where one can tune the
influence on each node, we present a series of increasingly-accurate gradient ascent
algorithms based on an approximation technique known as the Plefka expansion. In
the discrete setting where one chooses a set of influential nodes, we propose a greedy
algorithm and present novel conditions for when the objective is submodular.

Future work

Given the novelty of this problem and the recent surge in the use of the Ising model,
there are many promising directions to pursue. One direction is to consider a more
general control problem in which the controller aims to shift the Ising network into a
desired state instead of simply maximizing the activity of all nodes.

Another direction is to consider data-based optimization, wherein the optimizer is
only aware of the past activity of the system (274). Since the Ising model is mathe-
matically equivalent to a Boltzmann machine (160), one could adapt state-of-the-art
methods from machine learning to approach this problem.

Finally, given the experimental success of the Ising-based greedy algorithms under
the linear threshold model, an obvious extension of the current work should look into
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possible explanations. We suspect that a closer comparison with simulated annealing
techniques in (342) might provide the answer.
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4.7 supplementary material

4.7.1 The Plefka expansion

Many complex systems in the biological and social sciences have recently been shown
to be quantitatively described by the Ising model from statistical physics (237, 241, 418,
589). The Ising model is defined by the Boltzmann distribution:

P(�) =
1

Z
exp (-H(�)) , (4.14)

H(�) = -
1

2

X

ij

Jij�i�j -
X

i

bi�i, and (4.15)

Z =
X

�2{±1}n

e-�H(�), (4.16)

where H(�) is the energy function, or Hamiltonian, that defines the system, and Z is
a normalization constant. The parameters J = {Jij} define the network of interactions
between elements and the parameters b = {bi} represent individual biases, which can
be altered by application of targeted external influence.

Since the Ising model has remained unsolved for all but a select number of special
cases, tremendous interdisciplinary effort has focused on developing tractable approxi-
mation techniques. Here, we present an advanced approximation method known as the
Plefka expansion (717). The Plefka expansion is not an approximation itself, but is rather
a principled method for deriving a series of increasingly accurate approximations, the
first two orders of which are the naïve mean-field (MF) and Thouless-Anderson-Palmer
(TAP) approximations.

The Plefka expansion is a small-interaction expansion derived by Georges and
Yedidia in (244), extending the work of Thouless, Anderson, Palmer, and Plefka (529,
664). Throughout this section, we assume that the interactions are symmetric (i.e.,
J = JT ) to ease the presentation; however, we note that the Plefka expansion easily
generalizes to include asymmetric interactions as well (415, 726). Furthermore, because
we are expanding in the limit J⌧ 1, it is useful to take J! �J, where � parameterizes
the strength of interactions in the system.

Given an Ising system defined by J, b, and �, we consider the free energy G =
- ln(Z)/�, which can be thought of as a mathematical tool whose derivative with
respect to the external field bi defines the average activity of node i; i.e., h�ii =
-@G/@bi. To derive the Plefka expansion, we consider the approximate free energy:

�G̃ = - ln
X

{�}

exp
⇣
-�H(�) +

X

i

�i(�i -mi)
⌘

, (4.17)

where �i are auxiliary fields that impose the constraints mi = h�ii and are eventually
set to zero to recover the true free energy. Using (4.17), we can expand the free energy
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around the small-interaction limit � = 0. Carrying out this expansion to third-order in
�, we obtain (717):
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) + . . . . (4.18)

The zeroth-order term in the expansion corresponds to the mean-field entropy and the
first-order term is the mean-field energy. Thus, up to first-order in �, we recover the
MF approximation. The second-order term is known as the Onsager reaction term, and
its inclusion yields the TAP approximation (664). Higher-order terms are systematic
corrections first presented in (244) and, in principle, can be carried out to arbitrary
order.

The quantities mi approximate the average activities h�ii and are defined by the
stationary conditions @G̃/@mi = 0. Thus, differentiating (4.18) with respect to mi,
and only keeping terms to second-order in �, we arrive at the TAP self-consistency
equations for the magnetizations m:

mi = tanh
h
bi +

X

j

Jijmj -mi

X

j

J2
ij
(1-m2

j
)
i
, fTAP

i
(m). (4.19)

Thus, for any order ↵ of the Plefka expansion, the intractable problem of computing
exact averages over the Glauber dynamics is replaced by the manageable task of
computing a fixed point of the corresponding self-consistency map m = f(↵)(m).
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4.7.2 The third-order TAP approximation

We now derive the self-consistency equations and response function for the third-
order approximation in the Plefka expansion. To third-order in �, we arrive at the
self-consistency equations:

mi = tanh

2

4bi +
X

j

Jijmj -mi

X

j
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2

3
(1- 3m2
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3

5 , fTAP3
i

(m). (4.20)

For algorithmic purposes, we are also interested in the response function �̃
(↵)
ij

= @mi

@bj
,

which, for any order ↵ of the Plefka expansion, takes the form:

�̃(↵) = (I-Df(↵))-1A, (4.21)

where I is the identity matrix, Df
(↵)
ij

=
@f

(↵)
i

@mj
is the Jacobian of the mean-field map, and

Aij = (1-m2

i
)�ij is a diagonal matrix. Thus, the response function for each extended

mean-field approximation is defined by the Jacobian of the corresponding mean-field
map. Up to third-order in �, DfTAP3 takes the form:
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Part II

H U M A N L E A R N I N G A N D I N F O R M AT I O N P R O C E S S I N G
W I T H C O M P L E X N E T W O R K S

While humans connect and interact to form complex social networks, at the
individual level humans also communicate and process information using
complex networks of interconnected stimuli and concepts. The organization
of these systems – from language and music to literature and science –
encode the types of information that a person can send and receive. But
how do humans uncover the large-scale structures of networks in the world
around them? Moreover, how can we quantify the amount of information
that a system communicates to a human observer? Here, we answer these
questions by combining experimental tools from cognitive science with
theoretical concepts from information theory and network science. In Chap-
ter 5, we introduce the emerging field of graph learning, reviewing what
is known about how humans infer and internally represent networks. In
Chapter 6, we develop a model for how humans uncover the structure of
connections between items in a sequence – such as words in a sentence
or concepts in a classroom lecture – and we test our model in a series of
behavioral experiments. Using the free entropy principle, we demonstrate
that mental errors play a crucial role in forming human representations of
networks. In Chapter 7, we present a framework for quantifying the amount
of information that a network communicates to a human observer. Applying
our method to an array of real-world communication networks, we find that
they are organized to support the rapid and efficient transmission of infor-
mation. In combination, these results suggest that mental errors impact how
humans learn and perceive networks, and that real-world communication
networks are shaped by the pressures of information transmission.
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5
H O W H U M A N S L E A R N A N D R E P R E S E N T N E T W O R K S

This chapter contains work from Lynn, Christopher W., and Danielle S. Bassett. “How humans
learn and represent networks." Proceedings of the National Academy of Sciences, in press.

Abstract

Humans receive information from the world around them in sequences of discrete
items – from words in language or notes in music to abstract concepts in books and
websites on the Internet. In order to model their environment, from a young age people
are tasked with learning the network structures formed by these items (nodes) and
the connections between them (edges). But how do humans uncover the large-scale
structures of networks when they only experience sequences of individual items?
Moreover, what do people’s internal maps and models of these networks look like?
Here, we introduce graph learning, a growing and interdisciplinary field studying how
humans learn and represent networks in the world around them. Specifically, we review
progress toward understanding how people uncover the complex webs of relationships
underlying sequences of items. We begin by describing established results showing that
humans can detect fine-scale network structure, such as variations in the probabilities
of transitions between items. We next present recent experiments that directly control
for differences in transition probabilities, demonstrating that human behavior depends
critically on the mesoscale and macroscale properties of networks. Finally, we introduce
computational models of human graph learning that make testable predictions about
the impact of network structure on people’s behavior and cognition. Throughout, we
highlight open questions in the study of graph learning that will require creative
insights from cognitive scientists and network scientists alike.

5.1 introduction

Our experience of the world is punctuated by discrete items and events, all connected
by a hidden network of forces, causes, and associations. Just as navigation requires
a mental map of one’s physical surroundings (262, 666), anticipation, planning, per-
ception, and communication all depend on a person’s ability to learn the network
structure connecting items and events in their environment (55, 381, 537). For example,
in order to identify the boundaries between words, children as young as eight months
old identify subtle variations in the network of transitions between syllables in spoken
language (576). Within their first 30 months, toddlers already learn enough words to
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form complex language networks that exhibit robust structural features (202, 313, 617).
By the time we reach adulthood, graph learning enables us to understand and produce
language (227, 576), flexibly and adaptively learn words (349, 350), parse continuous
streams of stimuli (576), build social intuitions (667), perform abstract reasoning (99),
and categorize visual patterns (217). In this way, our ability to learn the structures of
networks supports a wide range of cognitive functions.

Our capacity to infer and represent complex relationships has also enabled humans
to construct an impressive array of networked systems, from language (121, 192,
636) and music (407) to social networks (51, 250), the Internet (12, 207), and the
web of concepts that constitute the arts and sciences (429, 477). Moreover, individual
differences in cognition, such as those driven by learning disabilities and age, give
rise to variations in the types of network structures that people are able to construct
(71, 195). Therefore, studying how humans learn and represent networks will not only
inform our understanding of how we perform many of our basic cognitive functions,
but will also shed light on the structure and function of networks in the world around
us.

Here, we provide a brief introduction to the field of graph learning, spanning the
experimental techniques and network-based models, theories, and intuitions recently
developed to study the effects of network structure on human cognition and behavior.
Given the highly interdisciplinary nature of the field – which draws upon experimental
methods from cognitive science and linguistics and builds upon computational tech-
niques from network science, information theory, and statistical learning – we aim to
present an accessible overview with simple motivating examples.

We focus particular attention on understanding how people uncover the structure
of connections between items in a sequence, such as syllables and words in spoken
and written language, concepts in books and classroom lectures, or notes in musical
progressions. We begin by discussing experimental results demonstrating that humans
are adept at detecting differences in the probabilities of transitions between items, and
how such transitions connect and combine to form networks that encode the large-scale
structure of entire sequences. We then present recent experiments that measure the
effects of network structure on human behavior by directly controlling for differences
in transition probabilities, followed by a description of the computational models that
have been proposed to account for these network effects. We conclude by highlighting
some of the open research directions stemming from recent advances in graph learning,
including important generalizations of existing graph learning paradigms and direct
implications for understanding the structure and function of real-world networks.

5.2 learning transition probabilities

As humans navigate their environment and accumulate experience, one of the brain’s
primary functions is to infer the statistical relationships governing causes and effects
(379, 709). Given a sequence of items, perhaps the simplest statistics available to a
learner are the frequencies of transitions from one item to another. Naturally, the
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field of statistical learning, which is devoted to understanding how humans extract
statistical regularities from their environment, has predominantly focused on these
simple statistics. For example, consider spoken language, wherein distinct syllables
transition from one to another in a continuous stream without pauses or demarcations
between words (107). How do people segment such continuous streams of data,
identifying where one word starts and another begins? The answer, as research has
robustly established (29, 30, 564, 583), lies in the statistical properties of the transitions
between syllables.

The ability to detect words within continuous speech was initially demonstrated by
Saffran et al. (576), who exposed infants to sequences of four pseudowords, each con-
sisting of three syllables (Fig. 5.1a). The order of syllables within each word remained
consistent, yielding a within-word transition probability of 1. However, the order of
the words was random, yielding a between-word transition probability of 1/3. Infants
were able to reliably detect this difference in syllable transition probabilities, thereby
providing a compelling mechanism for word identification during language acquisition.
This experimental paradigm has since been generalized to study statistical learning
in other domains, with stimuli ranging from colors (673) and shapes (217) to visual
scenes (101) and physical actions (44). Indeed, the capacity to uncover variations in
transition probabilities is now recognized as a central and general feature of human
learning (29, 30, 564, 583).

5.3 learning network structure

Although individual connections between items provide important information about
the structure of a system, they do not tell the whole story. Connections also combine
and overlap to form complex webs that characterize the higher-order structure of
our environment. To study these structures, scientists have increasingly turned to
the language of network science (478), conceptualizing items as nodes in a network
with edges defining possible connections between them (see Fig. 5.6 for a primer on
networks). One can then represent a sequence of items, such as the stream of syllables
in spoken language, as a walk through this underlying network (242, 351, 407, 419, 584).
This perspective has been particularly useful in the study of artificial grammar learning
(147, 267, 550), wherein human subjects are tasked with inferring the grammar rules
(i.e., the network of transitions between letters and words) underlying a fabricated
language.

By translating items and connections into the language of network science, one inher-
its a powerful set of descriptive tools and visualization techniques for characterizing
different types of structures. For example, consider once again the statistical learning
experiment of Saffran et al. ((576); Fig. 5.1a). Simply by visualizing the transition struc-
ture as a network (Fig. 5.1b), it becomes clear that the syllables split naturally into four
distinct clusters corresponding to the four different words in the artificial language.
This observation raises an important question: When parsing words (or performing any
other learning task), are people only sensitive to differences in individual connections,
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Figure 5.1: Transitions between syllables in the fabricated language of Saffran et al. (576).
(a) A sequence containing four different pseudowords: tudaro (blue), bikuti (green), budopa (red),
and pigola (yellow). When spoken, the sequence forms a continuous stream of syllables, without
clear boundaries between words. The transition probability from one syllable to another is 1
if the transition occurs within a word and 1/3 if the transition occurs between words. This
difference in transition probabilities allows infants to segment spoken language into distinct
words (360, 564, 576). (b) Transitions between syllables form a network, with edge weights
representing syllable transition probabilities. A random walk in the transition network defines a
sequence of syllables in the pseudolanguage. The four pseudowords form distinct communities
(highlighted) that are easily identifiable by eye. Reprinted from (360) with permission from
Elsevier.

or do they also uncover large-scale features of the underlying network? In what follows,
we describe recent advances in graph learning that shed light on precisely this question.

5.3.1 Learning local structure

The simplest properties of a network are those corresponding to individual nodes
and edges, such as the weight of an edge, which determines the strength of the
connection between two nodes, and the degree of a node, or its number of connections.
For example, edge weights can represent transition probabilities between syllables or
words (29, 30, 564, 583), similarities between different semantic concepts (55, 636), or
strengths of social interactions (51, 250). Meanwhile, significant effort has focused on
understanding how humans learn the network structure surrounding individual nodes
(8, 45, 123, 133, 202, 260, 716). For example, the degree defines the connectedness of a
node, such as the number of links pointing to a website (12, 207, 432), the number of
friends that a person has (51), or the number of citations accumulated by a scientific
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paper (429). Notably, many of the networks that people encounter on a daily basis
– including language, social, and hyperlink networks – exhibit heavy-tailed degree
distributions, with many nodes of low degree and a select number of high-degree hubs
(50, 55, 96, 121, 192, 207, 432, 477, 636).

Significant research has now demonstrated that people are able to learn the local
network properties of individual nodes and edges, such as the transition probabilities
between syllables in the previous section (29, 30, 564, 583). To illustrate the impact of
network structure on human behavior, we consider a recently-developed experimental
paradigm (351, 419), while noting that similar results have also been achieved using
variations on this approach (242, 360–362, 584, 667). Specifically, each subject is shown
a sequence of stimuli, with the order of stimuli defined by a random walk on an
underlying transition network (Fig. 5.2a). Subjects are asked to respond to each stimulus
by performing an action (and to avoid confounds the assignment of stimuli to nodes
in the network is randomized across subjects). By measuring the speed with which
subjects respond to stimuli, one can infer their expectations about the network structure:
A fast reaction reflects a strongly-anticipated transition, while a slow reaction reflects a
weakly-anticipated (or surprising) transition (330, 351, 419, 434).

Intuitively, one should expect a subject’s anticipation to increase (and thus their
reaction time to decrease) for edges representing more probable transitions. In order to
test this prediction, we note that for a random walk in an unweighted and undirected
network, the transition probability from one node i to a neighboring node j is given
by Pij = 1/ki, where ki is the degree of node i. Aligning with intuition, researchers
have shown that people’s reaction times are positively correlated with the degree of the
previous stimulus (Fig. 5.2b), and therefore, people are better able to anticipate more
probable transitions (351, 419). Interestingly, significant research has also established
similar results in language networks, with people reading words more quickly if they
occur more frequently or appear in more contexts (8, 45, 221). Conversely, humans
tend to slow down and produce more errors when attempting to recall words with
a large number of semantic associations, a phenomenon known as the fan effect (21,
22). Together, these results demonstrate that humans are sensitive to variations in the
local properties of individual nodes and edges, but what about the mesoscale and
macroscale properties of a network?

5.3.2 Learning mesoscale structure

The mesoscale structure of a network reflects the organizational properties of groups of
nodes and edges. One such property is clustering, or the tendency for a pair of nodes
with a common neighbor to form a connection themselves. This tendency is clearly
observed in social networks, where people with a common friend are themselves more
likely to become friends. Similar principles govern the mesoscale structure of many
other real-world networks, with items such as words, scientific papers, and webpages
all exhibiting high clustering (429, 461, 613, 699). As nodes cluster together, they often
give rise to a second mesoscale property – modular structure – which is characterized
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Figure 5.2: Human behavior depends on network topology. (a) We consider a serial reaction
time experiment in which subjects are shown sequences of stimuli and are asked to respond
by performing an action. Here, each stimulus consists of five squares, one or two of which
are highlighted in red (left); the order of stimuli is determined by a random walk on an
underlying network (center); and for each stimulus, the subject presses the keys on the keyboard
corresponding to the highlighted squares (right). (b) Considering Erdös-Rényi random transition
networks with 15 nodes and 30 edges (left), subjects’ average reaction times to a transition
i! j increase as the degree ki of the preceding node increases (right). Equivalently, subjects’
reaction times increase as the transition probability Pij = 1/ki decreases (419). (c) To control
for variations in transition probabilities, we consider two networks with constant degree k = 4:
a modular network consisting of three communities of five nodes each (left) and a lattice network
representing a 3⇥5 grid with periodic boundary conditions (right). (d) Experiments indicate
two consistent effects of network structure. First, in the modular network, reaction times for
between-cluster transitions are longer than for within-cluster transitions (351, 361, 362, 419).
Second, reaction times are longer on average for the lattice network than for the modular
network (351, 419).
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by tightly-connected modules or communities of nodes. Such modular structure is now
recognized as a ubiquitous feature of networks in our environment (479), with language
splitting into groups of semantically or phonetically similar words (99, 121), people
forming social cliques (51, 250, 455), and websites clustering into online communities
(207).

Over the past ten years, researchers have made signifiant strides toward understand-
ing how the mesoscale properties of a network impact human learning and behavior.
Words with higher clustering are more likely to be acquired during language learning
(260), while words with lower clustering are easier to recognize in long-term memory
(688) and convey processing (133, 716) and production (134) benefits. Additionally, in
a series of cognitive and neuroimaging experiments, researchers have found that a
network’s modular structure has a significant impact on human behavior and neural
activity. For example, people are able to detect the boundaries between communities
in a network just by observing sequences of nodes (351, 361, 362, 419, 584). Moreover,
strong modular structure helps people build more accurate mental representations of a
network, thereby allowing humans to better anticipate future items and events (351,
361, 362, 419, 584).

5.3.3 Learning global structure

In addition to their local and mesoscale features, networks also have global properties
that depend on the entire architecture of nodes and edges. Perhaps the most well-
studied global property is small-world structure, wherein each node connects to every
other node in only a small number of steps (699). Small-world topology has been
observed in an array of networks that humans are tasked with learning, including
social relationships (375), web hyperlinks (12), scientific citations (429), and semantic
associations in language (96, 121). Moreover, in a particularly compelling example of the
relationship between global network structure and human cognition, the small-world
structure of people’s learned language networks has been shown to vary from person
to person, decreasing with age (195) and in people with learning disabilities (71).

While small-worldness describes the structure of an entire network, there are also
measures that relate individual nodes to a network’s global topology, including central-
ity (a measure of a node’s role in mediating long-distance connections), communica-
bility (a measure of the number of paths connecting a pair of nodes), and coreness (a
measure of how deeply embedded a node is in a network). Global measures such as
these have recently been shown to impact human learning and cognition, indicating
that humans are sensitive to the global structure of networks in their environment. For
example, in the reaction time experiments described above (Fig. 5.2a), people responded
more quickly, and therefore were better able to anticipate, nodes with low centrality
(351). In a related experiment, neural activity was shown to reflect the communicability
between pairs of stimuli in an underlying transition network (242). Finally, as children
learn language, they more readily acquire and produce words with low coreness (123).
Together, these results point to a robust and general relationship between large-scale
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network structure and human cognition. However, might these large-scale network
effects simply be driven by confounding variations in the local network structure?

5.3.4 Controlling for differences in local structure

To disentangle the effects of large-scale network structure from those of local structure,
recent research has directly controlled for differences in transition probabilities by
focusing on specific families of networks (351, 361, 419, 584). Recall that for random
walks on unweighted, undirected networks, the transition probabilities are determined
by node degrees. Therefore, to ensure that all transitions have equal probability, one
can simply focus on graphs with constant degree but varying topology. For example,
consider the modular and lattice graphs shown in Fig. 5.2c. Since both networks have
constant degree 4 (and therefore constant transition probability 1/4 across all edges),
any variation in behavior or cognition between different parts of a network, or between
the two networks themselves, must stem from the networks’ global topologies.

This approach was first developed by Schapiro et al. (584), who demonstrated that
people are able to detect the transitions between clusters in the modular graph (Fig.
5.2c), and that these between-cluster transitions yield distinct patterns of neural activity
relative to within-cluster transitions. Returning to the reaction time experiment (Fig.
5.2a), it was shown that subjects react more quickly to (and therefore are able to better
anticipate) within-cluster transitions than between-cluster transitions ((351, 419); Fig
5.2d). Moreover, people exhibit an overall decrease in reaction times for the modular
graph relative to the lattice graph ((351, 419); Fig. 5.2d).

These results, combined with findings in similar experiments (361, 362), demonstrate
that humans are sensitive to features of mesoscale and global network topology, even
after controlling for differences in local structure. Thus, not only are humans able
to learn individual transition probabilities, as originally demonstrated in seminal
statistical learning experiments (Fig. 5.1), they are also capable of uncovering some
of the complex structures found in our environment. But how do people learn the
large-scale features of networks from past observations?

5.4 modeling human graph learning

Experiments spanning cognitive science, neuroscience, linguistics, and statistical learn-
ing have established that human behavior and cognition depend on the mesoscale and
global topologies of networks in their environment. To understand how people detect
these global features, and to make quantitative predictions about human behavior, one
requires computational models of how humans construct internal representations of
networks from past experiences. Here, we again focus on understanding how people
learn the networks of transitions underlying observed sequences of items, such as
words in a sentence, concepts in a book or classroom lecture, or notes in a musical
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progression. Interestingly, humans systematically deviate from the most accurate, and
perhaps the simplest, learning rule.

To make these ideas concrete, consider a sequence of items described by the transition
probability matrix P, where Pij represents the conditional probability of one item i

transitioning to another item j. Given an observed sequence of items, one can imagine
estimating Pij by simply dividing the number of times i has transitioned to j (denoted
by nij) by the number of times i has appeared (which equals

P
k
nik):

P̂ij =
nijP
k
nik

. (5.1)

In fact, not only is this perhaps the simplest estimate one could perform, it is also
the most accurate (or maximum likelihood) estimate of the transition probabilities
from past observations (93). An important feature of maximum likelihood estimation
is that it gives an unbiased approximation of the true transition probabilities; that is,
the estimated transition probabilities P̂ij are evenly distributed about their true values
Pij, independent of the large-scale structure of the network (93). However, we have
seen that people’s behavior and cognition depend systematically on mesoscale and
global network properties, even when transition probabilities are held constant (242,
351, 361, 419, 584). Thus, when constructing internal representations, humans allow
higher-order network structure to influence their estimates of individual transition
probabilities, thereby deviating from maximum likelihood estimation (419).

To understand the impact of network topology on human cognition, researchers have
recently proposed a number of models describing how humans learn and represent
transition networks (23, 180, 242, 324, 419, 444, 445, 451). Notably, many of these models
share a common underlying mechanism: that instead of just counting transitions of
length one (as in maximum likelihood estimation), humans also include transitions
of lengths two, three, or more in their representations (23, 242, 419, 445, 451, 480).
Mathematically, by combining transitions of different distances, the estimated transition
probabilities take the form

P̂ij = C
X

t>1

f(t)n(t)
ij

, (5.2)

where n
(t)
ij

represents the number of times that i has transitioned to j in t steps, f(t)
defines the weight placed on transitions of a given distance, and C is a normalization
constant. Interestingly, this simple prediction can be derived from a number of different
cognitive theories – including the temporal context model of episodic memory (324),
temporal difference learning and the successor representation in reinforcement learning
(170, 247, 646), and the free energy principle from information theory (419). But how
does combining transitions over different distances allow people to learn the structure
of a network?

To answer this question, it helps to consider different choices for the function f(t).
Typically, f(t) is assumed to be decreasing such that longer-distance associations
contribute more weakly to a person’s network representation (247, 419, 646). If f(t) is
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Figure 5.3: Mesoscale and global network features emerge from long-distance associations.
(a) Illustration of the weight function f(t) (left) and the learned network representation P̂
for learners that only consider transitions of length one. The estimated structure resembles
the true modular network. (b) For learners that down-weight transitions of longer distances,
higher-order features of the transition network, such as community structure, organically
come into focus, yielding higher expected probabilities for within-cluster transitions than for
between-cluster transitions. (c) For learners that equally weigh transitions of all distances, the
internal representation becomes all-to-all, losing any resemblance to the true transition network.
Panels a-c correspond to learners that include progressively longer transitions in their network
estimates. Adapted from (419).

a delta function centered at t = 1 (Fig. 5.3a), then the learner focuses on transitions
of length one. In this case, people simply perform maximum likelihood estimation,
resulting in an unbiased estimate of the true transition structure P. Conversely, if
f(t) is uniform over all time scales t > 1, then the learner equally weighs transitions
of all distances (Fig. 5.3c), and the estimate P̂ loses any resemblance to the true
transition structure P. Importantly, however, for learners who combine transitions over
intermediate distances (Fig. 5.3b), we find that large-scale features of the network
organically come into focus. Consider, for example, the modular network from Fig. 5.2c.
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By combining transitions of lengths two, three, or more, humans tend to over-weigh the
associations within communities and under-weigh the transitions between communities
(Fig. 5.3b). This simple observation explains why people are surprised by cross-cluster
transitions ((351, 419); Fig. 5.2d), why sequences in lattice and random networks are
more difficult to anticipate ((351, 419); Fig. 5.2d), and how people detect the boundaries
between clusters (361, 362, 584).

More generally, the capacity to learn the large-scale structure of a network enables
people to perform many basic cognitive functions, from anticipating non-adjacent
dependencies between syllables and words (15, 480) to planning for future events
(7, 31) and estimating future rewards (247, 646). Using models similar to that above,
researchers have been able to predict the impacts of network structure on human
behavior in reinforcement learning tasks (451), pattern detection in random sequences
(23, 445), and variations in neural activity (242, 445, 584). Notably, the explained effects
span various types of behavioral and neural observations, including reaction times
(329, 351, 419), data segmentation (361, 362, 584), task errors (351, 419), randomness
detection (213), EEG signals (628), and fMRI recordings (329, 584). Together, these
results indicate that people’s ability to detect the mesoscale and global structure of a
network emerges not just from their capacity to learn individual edges, but also from
their capacity to associate items across spatial, temporal, and topological scales.

5.5 the future of graph learning

Past and current advances in graph learning inspire new research questions at the
intersection of cognitive science, neuroscience, and network science. Here, we highlight
a number of important directions, beginning with possible generalizations of the
existing graph learning paradigm before discussing the implications of graph learning
for our understanding of the structures and functions of real-world transition networks.

5.5.1 Extending the graph learning paradigm

Most graph learning experiments, including those discussed in Figs. 5.1 and 5.2,
present each subject with a sequence of stimuli defined by a random walk on a
(possibly weighted and directed) transition network (147, 242, 267, 351, 360–362, 419,
480, 550, 576, 584, 667). Equivalently, in the language of stochastic processes, each
sequence represents a stationary Markov process (567). Although random walks offer a
natural starting point in the study of graph learning, they are also constrained by three
main assumptions: (i) that the underlying transition structure remains static over time
(stationarity), (ii) that future stimuli only depend on the current stimulus (the Markov
property), and (iii) that the sequence is predetermined without input from the observer.
Future graph learning experiments can test the boundaries of these constraints by
systematically generalizing the existing graph learning paradigm.
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5.5.1.1 Stationarity

While most graph learning experiments focus on static transition networks, many of the
networks that humans encounter in the real world either evolve in time or overlap with
other networks in the environment (51, 71, 192, 617, 636). Therefore, rather than simply
investigating people’s ability to learn a single network, future experiments should study
the capacity for humans to detect the dynamical features of an evolving network (Fig.
5.4a) or differentiate the distinct features of multiple networks. Early results indicate
that, when observing a sequence of stimuli that shifts from one transition structure to
another, people’s learned representation of the first network influences their behavior
in response to the second network, but that these effects diminish with time (351).
This gradual “unlearning" of network structure raises an important question for future
research: Rather than investigating how network properties facilitate learning – as has
been the focus of most graph learning studies – can we determine which properties
make a network difficult to forget?

5.5.1.2 The Markov property

Thus far, in keeping with the majority of existing graph learning research, we have
focused exclusively on sequences in which the next stimulus depends only on the
current stimulus; that is, we have focused on sequences that obey the Markov property
(567). However, almost all sequences of stimuli or items in the real world involve long-
range correlations and dependencies (Fig. 5.4b). For example, the probability of a word
in spoken language depends not just on the previous word, but also the earlier words
in the sentence and the broader context in which the sentence exists (18). Similarly,
musical systems often enforce constraints on the length and structure of sequences,
thereby inducing long-range dependencies between notes (337). Interestingly, given
mounting evidence that people construct long-distance associations (23, 242, 419, 445,
451, 480), the resulting internal estimates of transition structures resemble non-Markov
processes (419). Therefore, future research could investigate whether the learning long-
distance associations enables people to infer the non-Markov features of sequences in
daily life.

5.5.1.3 Information seeking

Finally, although many of the sequences that humans observe are prescribed without
input from the observer, there are also settings in which people have agency in deter-
mining the structure of a sequence. For example, when surfing the Internet (6, 189, 487,
702) or following a trail of scientific citations (429), people choose their paths through
the underlying hyperlink and citation networks. In this way, people are able to seek
out information about networks structures rather than simply having the information
presented to them (Fig. 5.4c). Such information seeking has been shown to vary by
person (487) and to depend crucially on the topology of the underlying network (6, 189,
702). Moreover, when retrieving information from memory, humans search through
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Figure 5.4: Generalizations of the graph learning paradigm. (a) Transition networks often
shift and change over time. Such non-stationary transition probabilities can be described using
dynamical transition networks, which evolve from one network (for example, the modular
network on the left) to another (for example, the ring network on the right) by iteratively
rewiring edges. (b) Many real-world sequences have long-range dependencies, such that the
next state depends not just on the current state, but also on a number of previous states (18,
337). For example, path 1 in the displayed network yields two possibilities for the next state
(left), while path 2 yields a different set of three possible states (right). (c) Humans often actively
seek out information by choosing their path through a transition network, rather than simply
being presented with a prescribed sequence. Such information seeking yields a subnetwork
containing the nodes and edges traversed by the walker.

their stored networks of associations (542), often performing search strategies that
resemble optimal foraging in physical space (37, 314, 345). In the context of graph
learning, allowing subjects to actively seek information raises a number of compelling
questions: Does choosing their path through a transition network enable subjects to
more efficiently learn its topology? Or does the ability to seek information lead peo-
ple to form biased representations of the true transition structure (344, 595)? These
questions, combined with the directions described above, highlight some of the excit-
ing extensions of graph learning that will require creative insights and collaborative
contributions from cognitive scientists and network scientists alike.
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Figure 5.5: Real transition networks exhibit hierarchical structure. (a) A language network
constructed from the words (nodes) and transitions between them (edges) in the complete
works of Shakespeare. (b) A knowledge network of hyperlinks between pages on Wikipedia.
(c, d) Many real-world transition networks exhibit hierarchical organization (547), which is
characterized by two topological features: (c) Heterogeneous structure, which is often associated
with scale-free networks, is typically characterized by a power-law degree distribution and the
presence of high-degree hub nodes (50). (d) Modular structure is defined by the presence of
clusters of nodes with dense within-cluster connectivity and sparse between-cluster connectivity
(250).

5.5.2 Studying the structure of real-world networks

In addition to shedding light on human behavior and cognition, the study of graph
learning also has the promise to offer insights into the structure and function of real-
world networks. Indeed, there exists an intimate connection between human cognition
and networks: While people rely on networked systems to perform a wide range
of tasks, from communicating using language (Fig. 5.5a) and music to storing and
retrieving information through science and the Internet (Fig. 5.5b), many of these
networks have evolved with or were explicitly designed by humans. Therefore, just as
humans are adept at learning the structure of networks, one might suspect that some
networks are structured to support human learning and cognition.

The perspective that cognition may constrain network structure has recently shed
light on the organizational properties of some real-world networks (55, 96), including
the small-world structure and power-law degree distributions exhibited by semantic
and word co-occurrence networks (121, 192, 636), and the scale-free structure of the
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connections between concepts on Wikipedia (432). Interestingly, many of the networks
with which humans interact share two distinct structural features: (i) They are hetero-
geneous (Fig. 5.5c), characterized by the presence of hub nodes with unusually high
degree (50, 96, 121, 477, 636), and (ii) they are modular (Fig. 5.5d), characterized by the
existence of tightly-connected clusters (96, 207, 250, 461, 636). Together, heterogeneity
and modularity represent the two defining features of hierarchical organization, which
has now been observed in a wide array of man-made networks (26, 547). Could it
be that the shared structural properties of these networks arise from their common
functional purpose: to facilitate human learning and communication?

Graph learning provides quantitative models and experimental tools to begin an-
swering questions such as these (420). For example, experimental results, such as
those discussed in Fig. 5.2, indicate that modular structure improves people’s ability
to anticipate transitions (351, 419), and this result has been confirmed numerically
using models of the form in Fig. 5.3 (419). Moreover, the high-degree hubs found
in heterogeneous networks have been shown to help people search for information
(6, 702). Together, these results demonstrate that graph learning offers a unique and
constructive lens through which to study networks in the world around us.

5.6 conclusions and outlook

Understanding how people learn and represent the complex relationships governing
their environment remains one of the greatest open problems in the study of human
cognition. On the heels of decades of research in cognitive science and statistical
learning investigating how humans detect the local properties of individual items
and the connections between them (29, 30, 44, 101, 217, 564, 576, 583, 673), conclusive
evidence now demonstrates that human behavior, cognition, and neural activity depend
critically on the large-scale structure of items and connections (242, 351, 360–362, 419,
584, 667). By casting the items and connections in our environment as nodes and edges
in a network, scientists can now explore the impact of network structure on human
cognition in a unified and principled framework.

Although the experimental and numerical foundation of the field has been laid,
graph learning remains a budding area of research offering a wealth of interdisciplinary
opportunities. From new cognitive modeling techniques (Fig. 5.3) and extensions of
existing experimental paradigms (Fig. 5.4) to novel applications in the study of real-
world networks (Fig. 5.5), graph learning is primed to alter the way we think about
human cognition, complex networks, and the myriad ways in which they intersect.
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Figure 5.6: A primer on network properties. (Center) Nodes, illustrated by circles, represent
stimuli, items, or states in a sequence. Edges, illustrated by lines, connect pairs of nodes if it is
possible to transition from one node to the other. The organization of edges among nodes is
referred to as the network’s topology or structure. (Circumjacent) A network’s topology can be
described using properties that characterize its local, mesoscale, or global organization. For
example, the simplest local property is the degree of a node (green), or the number of edges
emanating from a node. Two notions of mesoscale structure include (i) the clustering coefficient
(blue), or the ratio of connected triangles to connected triples of nodes, and (ii) modularity
(turquoise), where there exist communities of nodes with internally dense and externally sparse
connections. Finally, global measures include (i) coreness (red), or the ability of a node to
withstand the removal of nodes with low degree, (ii) notions of centrality (purple) such as
betweenness centrality, which quantifies the importance of a node for facilitating long-distance
connections, and (iii) communicability (magenta), which captures the number of paths of
various lengths connecting two nodes. Collectively, the network representation and associated
properties can provide critical insights into the structure of the system under study.
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This chapter contains work from Lynn, Christopher W., Ari E. Kahn, Nathaniel Nyema, and
Danielle S. Bassett. “Abstract representations of events arise from mental errors in learning
and memory." Nature Communications, in press.

Abstract

Humans are adept at uncovering abstract associations in the world around them, yet
the underlying mechanisms remain poorly understood. Intuitively, learning the higher-
order structure of statistical relationships should involve complex mental processes.
Here we propose an alternative perspective: that higher-order associations instead
arise from natural errors in learning and memory. Using the free energy principle,
which bridges information theory and Bayesian inference, we derive a maximum
entropy model of people’s internal representations of the transitions between stimuli.
Importantly, our model (i) affords a concise analytic form, (ii) qualitatively explains the
effects of transition network structure on human expectations, and (iii) quantitatively
predicts human reaction times in probabilistic sequential motor tasks. Together, these
results suggest that mental errors influence our abstract representations of the world in
significant and predictable ways, with direct implications for the study and design of
optimally learnable information sources.

6.1 introduction

Our experience of the world is punctuated in time by discrete events, all connected by
an architecture of hidden forces and causes. In order to form expectations about the
future, one of the brain’s primary functions is to infer the statistical structure underlying
past experiences (330, 343, 635). In fact, even within the first year of life, infants reliably
detect the frequency with which one phoneme follows another in spoken language (576).
By the time we reach adulthood, uncovering statistical relationships between items
and events enables us to perform abstract reasoning (99), identify visual patterns (217),
produce language (227), develop social intuition (667), and segment continuous streams
of data into self-similar parcels (554). Notably, each of these functions requires the
brain to identify statistical regularities across a range of scales. It has long been known
that people are sensitive to differences in individual transition probabilities such as
those between words or concepts (217, 576). Additionally, mounting evidence suggests

104
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that humans can also infer abstract (or higher-order) statistical structures, including
hierarchical patterns within sequences of stimuli (444), temporal regularities on both
global and local scales (180), abstract concepts within webs of semantic relationships
(524), and general features of sparse data (658).

To study this wide range of statistical structures in a unified framework, scientists
have increasingly employed the language of network science (478), wherein stimuli or
states are conceptualized as nodes in a graph with edges or connections representing
possible transitions between them. In this way, a sequence of stimuli often reflects a
random walk along an underlying transition network (242, 266, 480), and we can begin
to ask which network features give rise to variations in human learning and behavior.
This perspective has been particularly useful, for example, in the study of artificial
grammars (147), wherein human subjects are tasked with inferring the grammar rules
(i.e., the network of transitions between letters and words) underlying a fabricated
language (267). Complementary research in statistical learning has demonstrated that
modules (i.e., communities of densely-connected nodes) within transition networks
are reflected in brain imaging data (584) and give rise to stark shifts in human reac-
tion times (360). Together, these efforts have culminated in a general realization that
people’s internal representations of a transition structure are strongly influenced by
its higher-order organization (351, 362). But how does the brain learn these abstract
network features? Does the inference of higher-order relationships require sophisticated
hierarchical learning algorithms? Or instead, do natural errors in cognition yield a
“blurry" representation, making the coarse-grained architecture readily apparent?

To answer these questions, here we propose a single driving hypothesis: that when
building models of the world, the brain is finely-tuned to maximize accuracy while si-
multaneously minimizing computational complexity. Generally, this assumption stems
from a rich history exploring the trade-off between brain function and computational
cost (174, 674), from sparse coding principles at the neuronal level (686) to the competi-
tion between information integration and segregation at the whole-brain level (669) to
the notion of exploration versus exploitation (150) and the speed-accuracy trade-off
(708) at the behavioral level. To formalize our hypothesis, we employ the free energy
principle (339), which has become increasingly utilized to investigate constraints on
cognitive functioning (493) and explain how biological systems maintain efficient rep-
resentations of the world around them (232). Despite this thorough treatment of the
accuracy-complexity trade-off in neuroscience and psychology, the prevailing intuition
in statistical learning maintains that the brain is either optimized to perform Bayesian
inference (524, 658), which is inherently error free, or hierarchical learning (147, 180, 444,
480), which typically entails increased rather than decreased computational complexity.

Here, we show that the competition between accuracy and computational complexity
leads to a maximum entropy (or minimum complexity) model of people’s internal
representations of events (339, 603). As we decrease the complexity of our model,
allowing mental errors to take effect, higher-order features of the transition network
organically come into focus while the fine-scale structure fades away, thus providing a
concise mechanism explaining how people infer abstract statistical relationships. To a
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Figure 6.1: Subjects respond to sequences of stimuli drawn as a random walk on an under-
lying transition graph. (a) Example sequence of visual stimuli (left) representing a random
walk on an underlying transition network (right). (b) For each stimulus, subjects are asked
to respond by pressing a combination of one or two buttons on a keyboard. (c) Each of the
15 possible button combinations corresponds to a node in the transition network. We only
consider networks with nodes of uniform degree k = 4 and edges with uniform transition
probability 0.25. (d) Subjects were asked to respond to sequences of 1500 such nodes drawn
from two different transition architectures: a modular graph (left) and a lattice graph (right).
(e) Average reaction times for the different button combinations, where the diagonal elements
represent single-button presses and the off-diagonal elements represent two-button presses. (f )
Average reaction times as a function of trial number, characterized by a steep drop-off in the
first 500 trials followed by a gradual decline in the remaining 1000 trials. In (e) and (f ), averages
are taken over responses during random walks on the modular and lattice graphs. Source data
are provided as a Source Data file.

broad audience, our model provides an accessible mapping from transition networks
to human behaviors, with particular relevance for the study and design of optimally
learnable transition structures – either between words in spoken and written language
(147, 267, 603), notes in music (111), or even concepts in classroom lectures (386).

6.2 results

6.2.1 Network effects on human expectations

In the cognitive sciences, mounting evidence suggests that human expectations depend
critically on the higher-order features of transition networks (266, 480). Here, we make
this notion concrete with empirical evidence for higher-order network effects in a
probabilistic sequential response task (351). Specifically, we presented human subjects
with sequences of stimuli on a computer screen, each stimulus depicting a row of five
grey squares with one or two of the squares highlighted in red (Fig. 7.1a). In response
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to each stimulus, subjects were asked to press one or two computer keys mirroring the
highlighted squares (Fig. 7.1b). Each of the 15 different stimuli represented a node in
an underlying transition network, upon which a random walk stipulated the sequential
order of stimuli (Fig. 7.1a). By measuring the speed with which a subject responded to
each stimulus, we were able to infer their expectations about the transition structure: a
fast reaction reflected a strongly-anticipated transition, while a slow reaction reflected
a weakly-anticipated (or surprising) transition (330, 351, 434, 635).

While it has long been known that humans can detect differences in transition
probabilities – for instance, rare transitions lead to sharp increases in reaction times
(217, 576) – more recently it has become clear that people’s expectations also reflect the
higher-order architecture of transition networks (351, 360, 361, 584). To clearly study
these higher-order effects without the confounding influence of variations in transition
probabilities, here we only consider transition graphs with a uniform transition proba-
bility of 0.25 on each edge, thereby requiring nodes to have uniform degree k = 4 (Fig.
7.1c). Specifically, we consider two different graph topologies: a modular graph with
three communities of five densely-connected nodes and a lattice graph representing a
3⇥ 5 grid with periodic boundary conditions (Fig. 7.1d). Since all transitions across
both graphs have uniform probability, any systematic variations in behavior between
different parts of a graph, or between the two graphs themselves, must stem from
differences in the graphs’ higher-order modular or lattice structures.

Regressing out the dependence of reaction times on the different button combinations
(Fig. 7.1e), the natural quickening of reactions with time (39) (Fig. 7.1f), and the
impact of stimulus recency (see Methods), we identify two effects of higher-order
network structure on subjects’ reactions. First, in the modular graph we find that
reactions corresponding to within-cluster transitions are 35 ms faster than reactions
to between-cluster transitions (p < 0.001, F-test; Tab. 7.1), an effect known as the cross-
cluster surprisal (351, 361) (Fig. 6.2a). Similarly, we find that people are more likely to
respond correctly for within-cluster transitions than between-cluster transitions (Tab.
7.8). Second, across all transitions within each network, we find that reactions in the
modular graph are 23 ms faster than those in the lattice graph (p < 0.001, F-test; Tab.
7.2), a phenomenon that we coin the modular-lattice effect (Fig. 6.2b).

Thus far, we have assumed that variations in human behavior stem from people’s
internal expectations about the network structure. However, it is important to consider
the possible confound of stimulus recency: the tendency for people to respond more
quickly to stimuli that have appeared more recently (41, 465). To ensure that the
observed network effects are not simply driven by recency, we performed a separate
experiment that controlled for recency in the modular graph by presenting subjects
with sequences of stimuli drawn according to Hamiltonian walks, which visit each node
exactly once (584). Within the Hamiltonian walks, we still detect a significant cross-
cluster surprisal effect (Fig. 6.2a; Tabs. 7.3, 7.4, and 7.5). Additionally, we controlled for
recency in our initial random walk experiments by focusing on stimuli that previously
appeared a specific number of trials in the past. Within these recency-controlled data, we
find that both the cross-cluster surprisal and modular-lattice effects remain significant
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Figure 6.2: The effects of higher-order network structure on human reaction times. (a) Cross-
cluster surprisal effect in the modular graph, defined by an average increase in reaction times
for between-cluster transitions (right) relative to within-cluster transitions (left). We detect
significant differences in reaction times for random walks (p < 0.001, t = 5.77, df = 1.61⇥ 105)
and Hamiltonian walks (p = 0.010, t = 2.59, df = 1.31⇥ 104). For the mixed effects models
used to estimate these effects, see Tabs. 7.1 and 7.3. (b) Modular-lattice effect, characterized by
an overall increase in reaction times in the lattice graph (right) relative to the modular graph
(left). We detect a significant difference in reaction times for random walks (p < 0.001, t = 3.95,
df = 3.33⇥ 105); see Tab. 7.2 for the mixed effects model. Measurements were on independent
subjects, statistical significance was computed using two-sided F-tests, and confidence intervals
represent standard deviations. Source data are provided as a Source Data file.

(Figs. 6.8 and 6.9). Finally, for all of our analyses throughout the paper we regress out
the dependence of reaction times on stimulus recency (see Methods). Together, these
results demonstrate that higher-order network effects on human behavior cannot be
explained by recency alone.

In combination, our experimental observations indicate that people are sensitive to
the higher-order architecture of transition networks. But how do people infer abstract
features like community structure from sequences of stimuli? In what follows, we turn
to the free energy principle to show that a possible answer lies in understanding the
subtle role of mental errors.
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6.2.2 Network effects reveal errors in graph learning

As humans observe a sequence of stimuli or events, they construct an internal repre-
sentation Â of the transition structure, where Âij represents the expected probability
of transitioning from node i to node j. Given a running tally nij of the number of
times each transition has occurred, one might naïvely expect that the human brain is
optimized to learn the true transition structure as accurately as possible (451, 629). This
common hypothesis is represented by the maximum likelihood estimate (93), taking
the simple form

ÂMLE
ij

=
nijP
k
nik

. (6.1)

To see that human behavior does not reflect maximum likelihood estimation, we note
that Eq. (6.1) provides an unbiased estimate of the transition structure (93); that is, the
estimated transition probabilities in ÂMLE are evenly distributed about their true value
0.25, independent of the higher-order transition structure. Thus, the fact that people’s
reaction times depend systematically on abstract features of the network marks a
clear deviation from maximum likelihood estimation. To understand how higher-order
network structure impacts people’s internal representations, we must delve deeper into
the learning process itself.

Consider a sequence of nodes (x1, x2, . . .), where xt 2 {1, . . . ,N} represents the node
observed at time t and N is the size of the network (here N = 15 for all graphs). To
update the maximum likelihood estimate of the transition structure at time t+ 1, one
increments the counts nij using the following recursive rule,

nij(t+ 1) = nij(t) + [i = xt] [j = xt+1] , (6.2)

where the Iverson bracket [·] = 1 if its argument is true and 0 otherwise. Importantly,
we note that at each time t+ 1, a person must recall the previous node that occurred
at time t; in other words, they must associate a cause xt to each effect xt+1 that they
observe. While maximum likelihood estimation requires perfect recollection of the
previous node at each step, human errors in perception and recall are inevitable (277,
323, 324). A more plausible scenario is that, when attempting to recall the node at time
t, a person instead remembers the node at time t-�t with some decreasing probability
P(�t), where �t > 0. This memory distribution, in turn, generates an internal belief
about which node occurred at time t,

Bt(i) =
t-1X

�t=0

P(�t) [i = xt-�t] . (6.3)

Updating Eq. (6.2) accordingly, we arrive at a learning rule that accounts for natural
errors in perception and recall,

ñij(t+ 1) = ñij(t) +Bt(i) [j = xt+1] . (6.4)
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Using this revised counting rule, we can begin to form more realistic predictions about
people’s internal estimates of the transition structure, Âij = ñij/

P
k
ñik.

We remark that P(�t) does not represent the forgetting of past stimuli altogether;
instead, it reflects the local shuffling of stimuli in time. If one were to forget past
stimuli at some fixed rate – a process that is important for some cognitive functions
(555) – this would merely introduce white noise into the maximum likelihood estimate
ÂMLE (see Sec. 6.5.9). By contrast, we will see that, by shuffling the order of stimuli
in time, people are able to gather information about the higher-order structure of the
underlying transitions.

6.2.3 Choosing a memory distribution: The free energy principle

In order to make predictions about people’s expectations, we must choose a particular
mathematical form for the memory distribution P(�t). To do so, we begin with a
single driving hypothesis: that the brain is finely-tuned to (i) minimize errors and
(ii) minimize computational complexity. Formally, we define the error of a recalled
stimulus to be its distance in time from the desired stimulus (i.e., �t), such that the
average error of a candidate distribution Q(�t) is given by E(Q) =

P
�t

Q(�t)�t. By
contrast, it might seem difficult to formalize the computational complexity associated
with a distribution Q. Intuitively, we would like the complexity of Q to increase with
increasing certainty. Moreover, as a first approximation we expect the complexity to be
approximately additive such that the cost of storing two independent memories equals
the costs of the two memories themselves. As famously shown by Shannon, these two
criteria of monotonicity and additivity are sufficient to derive a quantitative definition
of complexity (603) – namely, the negative entropy -S(Q) =

P
�t

Q(�t) logQ(�t).
Together, the total cost of a distribution Q is its free energy F(Q) = �E(Q)- S(Q),

where � is the inverse temperature parameter, which quantifies the relative value that
the brain places on accuracy versus efficiency (493). In this way, our assumption about
resource constraints in the brain leads to a particular form for P: it should be the
distribution that minimizes F(Q), namely the Boltzmann distribution (339)

P(�t) =
1

Z
e-��t, (6.5)

where Z is the normalizing constant (see Methods). Free energy arguments similar
to the one presented here have been used increasingly to formalize constraints on
cognitive functions (232, 493), with applications from active inference (233) and Bayesian
learning under uncertainty (232) to human action and perception with temporal or
computational limitations (248, 493, 494). Taken together, Eqs. (6.3-6.5) define our
maximum entropy model of people’s internal transition estimates Â.

To gain an intuition for the model, we consider the infinite-time limit, such that
the transition estimates become independent of the particular random walk cho-
sen for analysis. Given a transition matrix A, one can show that the asymptotic
estimates in our model are equivalent to an average over walks of various lengths,
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Â =
P

�t
P(�t)A�t+1, which, in turn, can be fashioned into the following analytic

expression,
Â = (1- e-�)A(I- e-�A)-1, (6.6)

where I is the identity matrix (see Methods). The model contains a single free parameter
�, which represents the precision of a person’s mental representation. In the limit
� ! 1 (no mental errors), our model becomes equivalent to maximum likelihood
estimation (Fig. 7.2a), and the asymptotic estimates Â converge to the true transition
structure A (Fig 7.2b), as expected (281). Conversely, in the limit �! 0 (overwhelming
mental errors), the memory distribution P(�t) becomes uniform across all past nodes
(Fig. 7.2a), and the mental representation Â loses all resemblance to the true structure
A (Fig. 7.2b).

Remarkably, for intermediate values of �, higher-order features of the transition
network, such as communities of densely-connected nodes, come into focus, while some
of the fine-scale features, like the edges between communities, fade away (Fig. 7.2b).
Applying Eq. (6.6) to the modular graph, we find that the average expected probability
of within-community transitions reaches over 1.6 times the estimated probability of
between-community transitions (Fig. 7.2c), thus explaining the cross-cluster surprisal
effect (351, 361). Furthermore, we find that the average estimated transition probabilities
in the modular graph reach over 1.4 times the estimated probabilities in the lattice
graph (Fig. 7.2d), thereby predicting the modular-lattice effect. In addition to these
higher-order effects, we find that the model also explains previously reported variations
in human expectations at the level of individual nodes (217, 351, 576) (Fig. 6.7). Together,
these results demonstrate that the maximum entropy model predicts the qualitative
effects of network structure on human reaction times. But can we use the same ideas to
quantitatively predict the behavior of particular individuals?

6.2.4 Predicting the behavior of individual humans

To model the behavior of individual subjects, we relate the transition estimates in
Eqs. (6.3-6.5) to predictions about people’s reaction times. Given a sequence of nodes
x1, . . . , xt-1, we note that the reaction to the next node xt is determined by the expected
probability of transitioning from xt-1 to xt calculated at time t- 1, which we denote
by a(t) = Âxt-1,xt

(t- 1). From this internal anticipation a(t), the simplest possible
prediction r̂(t) for a person’s reaction time is given by the linear relationship (472)
r̂(t) = r0 + r1a(t), where the intercept r0 represents a person’s reaction time with
zero anticipation and the slope r1 quantifies the strength of the relationship between a
person’s reactions and their anticipation in our model (597).

To estimate the parameters �, r0, and r1 that best describe a given individual, we
minimize the root mean squared error (RMSE) between their predicted and observed
reaction times after regressing out the dependencies on button combination, trial
number, and recency (Figs. 7.1e and 7.1f; see Methods). The distributions of the
estimated parameters are shown in Fig. 6.4a-b for random walks and in Fig. 6.4g-h
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Figure 6.3: A maximum entropy model of transition probability estimates in humans. (a)
Illustration of the maximum entropy distribution P(�t) representing the probability of recalling
a stimulus �t time steps from the target stimulus (dashed line). In the limit � ! 0, the
distribution becomes uniform over all past stimuli (left). In the opposite limit � ! 1, the
distribution becomes a delta function on the desired stimulus (right). For intermediate amounts
of noise, the distribution drops off monotonically (center). (b) Resulting internal estimates Â
of the transition structure. For �! 0, the estimates become all-to-all, losing any resemblance
to the true structure (left), while for �!1, the transition estimates become exact (right). At
intermediate precision, the higher-order community structure organically comes into focus
(center). (c-d) Predictions of the cross-cluster surprisal effect (c) and the modular-lattice effect
(d) as functions of the inverse temperature �.

for Hamiltonian walks. Among the 358 random walk sequences in the modular and
lattice graphs (across 286 subjects; see Methods), 40 were best described as performing
maximum likelihood estimation (� ! 1) and 73 seemed to lack any notion of the
transition structure whatsoever (� ! 0), while among the remaining 245 sequences,
the average inverse temperature was � = 0.30. Meanwhile, among the 120 subjects
that responded to Hamiltonian walk sequences, 81 appeared to have a non-trivial
value of �, with an average of � = 0.61. Interestingly, these estimates of � roughly
correspond to the values for which our model predicts the strongest network effects
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Figure 6.4: Predicting reaction times for individual subjects. (a-f ) Estimated parameters and
accuracy analysis for our maximum entropy model across 358 random walk sequences (across
286 subjects; see Methods). (a) For the inverse temperature �, 40 sequences corresponded to the
limit � ! 1, 73 corresponded to the limit � ! 0. Among the remaining 245 sequences, the
average value of � was 0.30. (b) Distributions of the intercept r0 (left) and slope r1 (right). (c)
Predicted reaction time as a function of a subject’s internal anticipation. Grey lines indicate 20
randomly-selected sequences, and the red line shows the average prediction over all sequences.
(d) Linear parameters for the third-order competing model; data points represent individual
sequences and bars represent averages. (e-f ) Comparing the performance of our maximum
entropy model with the hierarchy of competing models up to third-order. Root mean squared
error (RMSE; e) and Bayesian information criterion (BIC; f ) of our model averaged over all
sequences (dashed lines) compared to the competing models (solid lines); our model provides
the best description of the data across all models considered. (g-j) Estimated parameters and
accuracy analysis for our maximum entropy model across all Hamiltonian walk sequences
(120 subjects). (g) For the inverse temperature �, 20 subjects were best described as performing
maximum likelihood estimation (� ! 1), 19 lacked any notion of the transition structure
(� ! 0), and the remaining 81 subjects had an average value of � = 0.61. (h) Distributions
of the intercept r0 (left) and slope r1 (right). (i) Average RMSE of our model (dashed line)
compared to that of the competing models (solid line); our model maintains higher accuracy
than the competing hierarchy up to the second-order model. (j) Average BIC of the maximum
entropy model (dashed line) compared to that of the competing models (solid line); our model
provides a better description of the data than the second- or third-order models. Source data
are provided as a Source Data file.

(Figs. 7.2c and 7.2d). In the following section, we will compare these values of �, which
are estimated indirectly from people’s reaction times, with direct measurements of �
in an independent memory experiment.
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In addition to estimating �, we also wish to determine whether our model accurately
describes individual behavior. Toward this end, we first note that the average slope r1
is large (-735 ms for random walks and -767 ms for Hamiltonian walks), suggesting
that the transition estimates in our model a(t) are strongly predictive of human
reaction times, and negative, confirming the intuition that increased anticipation yields
decreased reaction times (Figs. 6.4b and 6.4h). To examine the accuracy of our model
r̂, we consider a hierarchy of competing models r̂(`), which represent the hypothesis
that humans learn explicit representations of the higher-order transition structure. In
particular, we denote the `th-order transition matrix by Â

(`)
ij

= n
(`)
ij

/
P

k
n
(`)
ik

, where

n
(`)
ij

counts the number of observed transitions from node i to node j in ` steps. The
model hierarchy takes into account increasingly higher-order transitions, such that the
`th-order model contains perfect information about transitions up to length `:

r̂(0)(t) = c
(0)
0

,

r̂(1)(t) = c
(1)
0

+ c
(1)
1

a(1)(t),
...

r̂(`)(t) = c
(`)
0

+
`X

k=1

c
(`)
k

a(k)(t), (6.7)

where a(k)(t) = Â
(k)
xt-1,xt

(t- 1). Each model r̂(`) contains `+ 1 parameters c(`)
0

, . . . , c(`)
`

,
where c

(`)
k

quantifies the predictive power of the kth-order transition structure.
Intuitively, for each model r̂(`), we expect c(`)

1
, c(`)

2
, . . . to be negative, reflecting a

decrease in reaction times due to increased anticipation, and decreasing in magnitude,
such that higher-order transitions are progressively less predictive of people’s reaction
times. Indeed, considering the third-order model r̂(3) as an example, we find that
progressively higher-order transitions are less predictive of human reactions (Fig. 6.4d).
However, even the largest coefficient (c(3)

1
= -135 ms) is much smaller than the slope

in our maximum entropy model (r1 = -735 ms), indicating that the representation
Â is more strongly predictive of people’s reaction times than any of the explicit
representations Â(1), Â(2), . . .. Indeed, averaging over the random walk sequences, the
maximum entropy model achieves higher accuracy than the first three orders of the
competing model hierarchy (Fig. 6.4e) – this is despite the fact that the third-order
model even contains one more parameter. To account for differences in the number of
parameters, we additionally compare the average Bayesian information criterion (BIC)
of our model with that of the competing models, finding that the maximum entropy
model provides the best description of the data (Fig. 6.4f).

Similarly, averaging over the Hamiltonian walk sequences, the maximum entropy
model provides more accurate predictions than the first two competing models (Fig.
6.4i) and provides a lower BIC than the second and third competing models (Fig. 6.4j).
Notably, even in Hamiltonian walks, the maximum entropy model provides a better
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description of human reaction times than the second-order competing model, which
has the same number of parameters. However, we remark that the first-order competing
model has a lower BIC than the maximum entropy model (Fig. 6.4j), suggesting that
humans may focus on first-order rather than higher-order statistics during Hamilto-
nian walks – an interesting direction for future research. On the whole, these results
indicate that the free energy principle, and the resulting maximum entropy model,
are consistently more effective at describing human reactions than the hypothesis that
people learn explicit representations of the higher-order transition structure.

6.2.5 Directly probing the memory distribution

Throughout our discussion, we have argued that errors in memory shape human
representations in predictable ways, a perspective that has received increasing attention
in recent years (153, 154, 555). While our framework explains specific aspects of human
behavior, there exist alternative perspectives that might yield similar predictions. For
example, one could imagine a Bayesian learner with a non-Markov prior that “inte-
grates" the transition structure over time, even without sustaining errors in memory or
learning. Additionally, Eq. (6.6) resembles the successor representation in reinforcement
learning (170, 247), which assumes that, rather than shuffling the order of past stimuli,
humans are instead planning their responses multiple steps in advance (see Sec. 6.5.11).
In order to distinguish our framework from these alternatives, here we provide direct
evidence for precisely the types of mental errors predicted by our model.

In the construction and testing of our model, we have developed a series of pre-
dictions concerning the shape of the memory distribution P(�t), which, to recall,
represents the probability of remembering the stimulus at time t-�t instead of the
target stimulus at time t. We first assumed that P(�t) decreases monotonically. Second,
to make quantitative predictions, we employed the free energy principle, leading to
the prediction that P drops off exponentially quickly with �t (Eq. (6.5)). Finally, when
fitting the model to individual subjects, we estimated an average inverse temperature
� between 0.30 for random walks and 0.61 for Hamiltonian walks.

To test these three predictions directly, we conducted a standard n-back memory
experiment. Specifically, we presented subjects with sequences of letters on a screen,
and they were asked to respond to each letter indicating whether or not it was the
same as the letter that occurred n steps previously; for each subject, this process was
repeated for the three conditions n = 1, 2, and 3. To measure the memory distribution
P(�t), we considered all trials on which a subject responded positively that the current
stimulus matched the target. For each such trial, we looked back to the last time that
the subject did in fact observe the current stimulus and we recorded the distance (in
trials) between this observation and the target (Fig. 6.5a). In this way, we were able to
treat each positive response as a sample from the memory distribution P(�t).

The measurements of P for the 1-, 2-, and 3-back tasks are shown in Figure 6.5b, and
the combined measurement of P across all conditions is shown in Figure 6.5c. Notably,
the distributions decrease monotonically and maintain consistent exponential forms,
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Figure 6.5: Measuring the memory distribution in an n-back experiment. (a) Example of
the 2-back memory task. Subjects view a sequence of stimuli (letters) and respond to each
stimulus indicating whether it matches the target stimulus from two trials before. For each
positive response that the current stimulus matches the target, we measure �t by calculating the
number of trials between the last instance of the current stimulus and the target. (b) Histograms
of �t (i.e., measurements of the memory distribution P(�t)) across all subjects in the 1-, 2-,
and 3-back tasks. Dashed lines indicate exponential fits to the observed distributions. The
inverse temperature � is estimated for each task to be the negative slope of the exponential
fit. (c) Memory distribution aggregated across the three n-back tasks. Dashed line indicates
an exponential fit. We report a combined estimate of the inverse temperature � = 0.32± 0.01,
where the standard deviation is estimated from 1,000 bootstrap samples of the combined data.
Measurements were on independent subjects. Source data are provided as a Source Data file.

even out to �t = 10 trials from the target stimulus, thereby providing direct evidence
for the Boltzmann distribution (Eq. (6.5)). Moreover, fitting an exponential curve to
each distribution, we can directly estimate the inverse temperature �. Remarkably, the
value � = 0.32± 0.1 estimated from the combined distribution (Fig. 6.5c) falls within
the range of values estimated from our reaction time experiments (Figs. 6.4a and 6.4g),
nearly matching the average value � = 0.30 for random walk sequences (Fig. 6.4a).

To further strengthen the link between mental errors and people’s internal repre-
sentations, we then asked subjects to perform the original serial response task (Fig.
7.1), and for each subject, we estimated � using the two methods described above:
(i) directly measuring � in the n-back experiment, and (ii) indirectly estimating � in
the serial response experiment. Comparing these two estimates across subjects, we
find that they are significantly related with Spearman correlation rs = 0.28 (p = 0.047,
permutation test), while noting that we do not use the Pearson correlation because � is
not normally distributed (Anderson-Darling test (634), p < 0.001 for the serial response
task and p = 0.013 for the n-back task). Together, these results demonstrate not only
the existence of the particular form of mental errors predicted by our model – down
to the specific value of � – but also the relationship between these mental errors and
people’s internal estimates of the transition structure.
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6.2.6 Network structure guides reactions to novel transitions

Given a model of human behavior, it is ultimately interesting to make testable predic-
tions. Thus far, in keeping with the majority of existing research (217, 351, 360, 361,
576, 584), we have focused on static transition graphs, wherein the probability Aij of
transitioning from state i to state j remains constant over time. However, the statistical
structures governing human life are continually shifting (696, 706), and people are
often forced to respond to rare or novel transitions (672, 712). Here we show that, when
confronted with a novel transition – or a violation of the preexisting transition network –
not only are people surprised, but the magnitude of their surprise depends critically
on the topology of the underlying network.

We consider a ring graph where each node is connected to its nearest and next-
nearest neighbors (Fig. 6.5.7a). We asked subjects to respond to sequences of 1500
nodes drawn as random walks on the ring graph, but with 50 violations randomly
interspersed. These violations were divided into two categories: short violations of
topological distance two and long violations of topological distances three and four
(Fig. 6.5.7a). Using maximum likelihood estimation (Eq. (6.1)) as a guide, one would
naïvely expect people to be equally surprised by all violations – indeed, each violation
has never been seen before. In contrast, our model predicts that that surprise should
depend crucially on the topological distance of a violation in the underlying graph,
with topologically longer violations inducing increased surprise over short violations
(Fig. 6.5.7b).

In the data, we find that all violations give rise to sharp increases in reaction times
relative to standard transitions (Fig. 6.5.7c; Tab. 7.10), indicating that people are in fact
learning the underlying transition structure. Moreover, we find that reaction times for
long violations are 28 ms longer than those for short violations (p = 0.011, F-test; Fig.
6.5.7c; Tab. 7.11). Additionally, we confirm that the effects of network violations are not
simply driven by stimulus recency (Figs. 6.10 and 6.11). These observations suggest
that people learn the topological distances between all nodes in the transition graph,
not just those pairs for which a transition has already been observed (672, 696, 706,
712).

6.3 discussion

Daily life is filled with sequences of items that obey an underlying network architecture,
from networks of word and note transitions in natural language and music to networks
of abstract relationships in classroom lectures and literature (99, 217, 227, 554, 667).
How humans infer and internally represent these complex structures are questions
of fundamental interest (180, 444, 524, 658). Recent experiments in statistical learning
have established that human representations depend critically on the higher-order
organization of probabilistic transitions, yet the underlying mechanisms remain poorly
understood (351, 360, 362, 584).
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Figure 6.6: Network violations yield surprise that grows with topological distance. (a) Ring
graph consisting of 15 nodes, where each node is connected to its nearest neighbors and
next-nearest neighbors on the ring. Starting from the boxed node, a sequence can undergo a
standard transition (green), a short violation of the transition structure (blue), or a long violation
(red). (b) Our model predicts that subjects’ anticipations of both short (blue) and long (red)
violations should be weaker than their anticipations of standard transitions (left). Furthermore,
we predict that subjects’ anticipations of violations should decrease with increasing topological
distance (right). (c) Average effects of network violations across 78 subjects, estimated using a
mixed effects model (see Tabs. 7.10 and 7.11), with error bars indicating one standard deviation
from the mean. We find that standard transitions yield quicker reactions than both short
violations (p < 0.001, t = 4.50, df = 7.15⇥ 104) and long violations (p < 0.001, t = 8.07,
df = 7.15⇥ 104). Moreover, topologically shorter violations induce faster reactions than long
violations (p = 0.011, t = 2.54, df = 3.44⇥ 103), thus confirming the predictions of our model.
Measurements were on independent subjects, and statistical significance was computed using
two-sided F-tests. Source data are provided as a Source Data file.

Here we show that network effects on human behavior can be understood as stem-
ming from mental errors in people’s estimates of the transition structure, while noting
that future work should focus on disambiguating the role of recency (41, 465). We use
the free energy principle to develop a model of human expectations that explicitly
accounts for the brain’s natural tendency to minimize computational complexity – that
is, to maximize entropy (232, 493, 494). Indeed, the brain must balance the benefits
of making accurate predictions against the computational costs associated with such
predictions (150, 174, 248, 669, 674, 686, 708). This competition between accuracy and
efficiency induces errors in people’s internal representations, which, in turn, explains
with notable accuracy an array of higher-order network phenomena observed in human
experiments (351, 360, 362, 584). Importantly, our model admits a concise analytic form
(Eq. (6.6)) and can be used to predict human behavior on a person-by-person basis (Fig.
6.4).

This work inspires directions for future research, particularly with regard to the study
and design of optimally learnable network structures. Given the notion that densely
connected communities help to mitigate the effects of mental errors on people’s internal
representations, we anticipate that networks with high “learnability" will possess a
hierarchical community structure (25). Interestingly, such hierarchical organization has
already been observed in a diverse range of real world networks, from knowledge
and language graphs (286) to social networks and the World Wide Web (547). Could it
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be that these networks have evolved so as to facilitate accurate representations in the
minds of the humans using and observing them? Questions such as this demonstrate
the importance of having simple principled models of human representations and
point to the promising future of this research endeavor.

6.4 methods

6.4.1 Maximum entropy model and the infinite-sequence limit

Here we provide a more thorough derivation of our maximum entropy model of human
expectations, with the goal of fostering intuition. Given a matrix of erroneous transition
counts ñij, our estimate of the transition structure is given by Âij = ñij/

P
k
ñik. When

observing a sequence of nodes x1, x2, . . ., in order to construct the counts ñij, we assume
that humans use the following recursive rule: ñij(t+ 1) = ñij(t) + Bt(i) [j = xt+1],
where Bt(i) denotes the belief, or perceived probability, that node i occurred at the
previous time t. This belief, in turn, can be written in terms of the probability P(�t) of
accidentally recalling the node that occurred �t time steps from the desired node at
time t: Bt(i) =

P
t-1

�t=0
P(�t) [i = xt-�t].

In order to make quantitative predictions about people’s estimates of a transition
structure, we must choose a mathematical form for P(�t). To do so, we leverage the free
energy principle (493): When building mental models, the brain is finely-tuned to simul-
taneously minimize errors and computational complexity. The average error associated
with a candidate distribution Q(�t) is assumed to be the average distance in time of the
recalled node from the target node, denoted E(Q) =

P
�t

Q(�t)�t. Furthermore, Shan-
non famously proved that the only suitable choice for the computational cost of a candi-
date distribution is its negative entropy (603), denoted -S(Q) =

P
�t

Q(�t) logQ(�t).
Taken together, the total cost associated with a distribution Q(�t) is given by the
free energy F(Q) = �E(Q)- S(Q), where �, referred to as the inverse temperature,
parameterizes the relative importance of minimizing errors versus computational
costs. By minimizing F with respect to Q, we arrive at the Boltzmann distribution
P(�t) = e-��t/Z, where Z is the normalizing partition function (339). We empha-
size that this mathematical form for P(�t) followed directly from our free energy
assumption about resource constraints in the brain.

To gain an analytic intuition for the model without referring to a particular random
walk, we consider the limit of an infinitely long sequence of nodes. To begin, we
consider a sequence x1, . . . , xT of length T . At the end of this sequence, the counting
matrix takes the form

ñij(T) =
T-1X

t=1

Bt(i) [j = xt+1]

=
T-1X

t=1

 
t-1X

�t=0

P(�t) [i = xt-�t]

!
[j = xt+1] . (6.8)
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Dividing both sides by T , the right-hand side becomes a time average, which by the
ergodic theorem converges to an expectation over the transition structure in the limit
T !1,

lim
T!1

ñij(T)

T
=

1X

�t=0

P(�t) h[i = xt-�t] [j = xt+1]iA , (6.9)

where h·i
A

denotes an expectation over random walks in A. We note that the expectation
of an identity function is simply a probability, such that h[i = xt-�t] [j = xt+1]iA =
pi

�
A�t+1

�
ij

, where pi is the long-run probability of node i appearing in the sequence
and

�
A�t+1

�
ij

is the probability of randomly walking from node i to node j in �t+ 1

steps. Putting these pieces together, we find that the expectation Â converges to a
concise mathematical form,

lim
T!1

Âij(T) = lim
T!1

ñij(T)P
k
ñik(T)

=
pi

P1
�t=0

P(�t)
�
A�t+1

�
ij

pi

=
1X

�t=0

P(�t)
�
A�t+1

�
ij

. (6.10)

Thus far, we have not appealed to our maximum entropy form for P(�t). It turns out
that doing so allows us to write down an analytic expression for the long-time expecta-
tions Â simply in terms of the transition structure A and the inverse temperature �.
Noting that Z =

P1
�t=0

e-��t = 1/(1- e-�) and
P1

�t=0

�
e-�A

��t
=
�
I- e-�A

�-1,
we have

Â =
1X

�t=0

P(�t)A�t+1

=
1

Z
A

1X

�t=0

�
e-�A

��t

=
�
1- e-�

�
A
�
I- e-�A

�-1 . (6.11)

This simple formula for the representation Â is the basis for all of our analytic predic-
tions (Figs. 7.2c, 7.2d, and 6.5.7b) and is closely related to notions of communicability
in complex network theory (209, 210).

6.4.2 Experimental setup for serial response tasks

Subjects performed a self-paced serial reaction time task using a computer screen and
keyboard. Each stimulus was presented as a horizontal row of five grey squares; all
five squares were shown at all times. The squares corresponded spatially with the
keys ‘Space’, ‘H’, ‘J’, ‘K’, and ‘L’, with the left square representing ‘Space’ and the
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right square representing ‘L’ (Fig. 7.1b). To indicate a target key or pair of keys for the
subject to press, the corresponding squares would become outlined in red (Fig. 7.1a).
When subjects pressed the correct key combination, the squares on the screen would
immediately display the next target. If an incorrect key or pair of keys was pressed, the
message ‘Error!’ was displayed on the screen below the stimuli and remained until the
subject pressed the correct key(s). The order in which stimuli were presented to each
subject was prescribed by either a random walk or a Hamiltonian walk on a graph
of N = 15 nodes, and each sequence consisted of 1500 stimuli. For each subject, one
of the 15 key combinations was randomly assigned to each node in the graph (Fig.
7.1a). Across all graphs, each node was connected to its four neighboring nodes with a
uniform 0.25 transition probability. Importantly, given the uniform edge weights and
homogeneous node degrees (k = 4), the only differences between the transition graphs
lay in their higher-order structure.

In the first experiment, we presented subjects with random walk sequences drawn
from two different graph topologies: a modular graph with three communities of five
densely-connected nodes and a lattice graph representing a 3⇥ 5 grid with periodic
boundary conditions (Fig. 7.1c). The purpose of this experiment was to demonstrate the
systematic dependencies of human reaction times on higher-order network structure,
following similar results reported in recent literature (351, 361). In particular, we
demonstrate two higher-order network effects: In the cross-cluster surprisal effect, average
reaction times for within-cluster transitions in the modular graph are significantly faster
than reaction times for between-cluster transitions (Fig. 6.2a); and in the modular-lattice
effect, average reaction times in the modular graph are significantly faster than reaction
times in the lattice graph (Fig. 6.2b).

In the second experiment, we presented subjects with Hamiltonian walk sequences
drawn from the modular graph. Specifically, each sequence consisted of 700 random
walk trials (intended to allow each subject to learn the graph structure), followed by
eight repeats of 85 random walk trials and 15 Hamiltonian walk trials (584). Importantly,
we find that the cross-cluster surprisal effect remains significant within the Hamiltonian
walk trials (Fig. 6.2a).

In the third experiment, we considered a ring graph where each node was connected
to its nearest and next-nearest neighbors in the ring (Fig. 6.5.7a). In order to study the
dependence of human expectations on violations to the network structure, the first
500 trials for each subject constituted a standard random walk, allowing each subject
time to develop expectations about the underlying transition structure. Across the
final 1000 trials, we randomly distributed 50 network violations: 20 short violations of
topological distance two and 30 long violations, 20 of topological distance three and 10
of topological distance four (Fig. 6.5.7a). As predicted by our model, we found a novel
violations effect, wherein violations of longer topological distance give rise to larger
increases in reaction times than short, local violations (Figs. 6.5.7b and 6.5.7c).
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6.4.3 Data analysis for serial response tasks

To make inferences about subjects’ internal expectations based on their reaction times,
we used more stringent filtering techniques than previous experiments when pre-
processing the data (351). Across all experiments, we first excluded from analysis the
first 500 trials, in which subjects’ reaction times varied wildly (Fig. 7.1e), focusing
instead on the final 1000 trials (or simply on the Hamiltonian trials in the second
experiment), at which point subjects had already developed internal expectations about
the transition structures. We then excluded all trials in which subjects responded
incorrectly. Finally, we excluded reaction times that were implausible, either three
standard deviations from a subject’s mean reaction time or below 100 ms. Furthermore,
when measuring the network effects in all three experiments (Figs. 6.2 and 6.5.7),
we also excluded reaction times over 3500 ms for implausibility. When estimating
the parameters of our model and measuring model performance in the first two
experiments (Fig. 6.4), to avoid large fluctuations in the results based on outlier
reactions, we were even more stringent, excluding all reaction times over 2000 ms.
Taken together, when measuring the cross-cluster surprisal and modular-lattice effects
(Fig. 6.2), we used an average of 931 trials per subject; when estimating and evaluating
our model (Fig. 6.4), we used an average of 911 trials per subject; and when measuring
the violation effects (Fig. 6.5.7), we used an average of 917 trials per subject. To ensure
that our results are robust to particular choices in the data processing, we additionally
studied all 1500 trials for each subject rather than just the final 1000, confirming that
both the cross-cluster surprisal and modular-lattice effects remain significant across all
trials (Tabs. 7.6 and 7.7).

6.4.4 Measurement of network effects using mixed effects models

In order to extract the effects of higher-order network structure on subjects’ reaction
times, we used linear mixed effects models, which have become prominent in human
research where many measurements are made for each subject (39, 582). Put simply,
mixed effects models generalize standard linear regression techniques to include both
fixed effects, which are constant across subjects, and random effects, which vary between
subjects. Compared with standard linear models, mixed effects models allow for
differentiation between effects that are subject-specific and those that persist across
an entire population. Here, all models were fit using the fitlme function in MATLAB
(R2018a), and random effects were chosen as the maximal structure that (i) allowed
model convergence and (ii) did not include effects whose 95% confidence intervals
overlapped with zero (326). In what follows, when defining mixed effects models, we
employ the standard R notation (65).

First, we considered the cross-cluster surprisal effect (Fig. 6.2a). Since we were
only interested in measuring higher-order effects of the network topology on human
reaction times, it was important to regress out simple biomechanical dependencies on
the target button combinations (Fig. 7.1d), the natural quickening of reactions with
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time (Fig. 7.1e), and the effects of recency on reaction times (41, 465). Also, for the first
experiment, since some subjects responded to both the modular and lattice graphs (see
Experimental Procedures), it was important to account for changes in reaction times
due to which stage of the experiment a subject was in. To measure the cross-cluster
surprisal effect, we fit a mixed effects model with the formula ‘RT ⇠ log(Trial) ⇤ Stage+
Target + Recency + Trans_Type + (1+ log(Trial) ⇤ Stage + Recency + Trans_Type | ID)’,
where RT is the reaction time, Trial is the trial number (we found that log(Trial) was far
more predictive of subjects’ reaction times than the trial number itself), Stage is the stage
of the experiment (either one or two), Target is the target button combination, Recency
is the number of trials since the last instance of the current stimulus, Trans_Type is the
type of transition (either within-cluster or between-cluster), and ID is each subject’s
unique ID. Fitting this mixed effects model to the random walk data in the first
experiment (Tab. 7.1), we found a 35 ms increase in reaction times (p < 0.001, F-test)
for between-cluster transitions relative to within-cluster transitions (Fig. 6.2a). Similarly,
fitting the same mixed effects model but without the variable Stage to the Hamiltonian
walk data in the second experiment (Tab. 7.4), we found a 36 ms increase in reaction
times (p < 0.001, F-test) for between- versus within-cluster transitions (Fig. 6.2a). We
note that because reaction times are not Gaussian distributed, it is fairly standard to
perform a log transformation. However, for the above result as well as those that follow,
we find the same qualitative effects with or without a log transformation.

Second, we studied the modular-lattice effect (Fig. 6.2b). To do so, we fit a mixed
effects model with the formula ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + Graph +
(1+ log(Trial) ⇤ Stage + Recency + Graph | ID)’, where Graph represents the type of
transition network, either modular or lattice. Fitting this mixed effects model to the
data in the first experiment (Tab. 7.2), we found a fixed 23 ms increase in reaction times
(p < 0.001, F-test) in the lattice graph relative to the modular graph (Fig. 6.2b).

Finally, we considered the effects of violations of varying topological distance in
the ring lattice (Fig. 6.5.7c). We fit a mixed effects model with the formula ‘RT ⇠

log(Trial) + Target + Recency + Top_Dist + (1+ log(Trial) + Recency + Top_Dist | ID)’,
where Top_Dist represents the topological distance of a transition, either one for a
standard transition, two for a short violation, or three for a long violation. Fitting the
model to the data in the third experiment (Tabs. 7.10 and 7.11), we found a 38 ms
increase in reaction times for short violations relative to standard transitions (p < 0.001,
F-test), a 63 ms increase in reaction times for long violations relative to standard
transitions (p < 0.001, F-test), and a 28 ms increase in reaction times for long violations
relative to short violations (p = 0.011, F-test). Put simply, people are more surprised by
violations to the network structure that take them further from their current position in
the network, suggesting that people have an implicit understanding of the topological
distances between nodes in the network.
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6.4.5 Estimating parameters and making quantitative predictions

Given an observed sequence of nodes x1, . . . , xt-1, and given an inverse temperature
�, our model predicts the anticipation, or expectation, of the subsequent node xt to be
a(t) = Âxt-1,xt

(t- 1). In order to quantitatively describe the reactions of an individual
subject, we must relate the expectations a(t) to predictions about a person’s reaction
times r̂(t) and then calculate the model parameters that best fit the reactions of an
individual subject. The simplest possible prediction is given by the linear relation
r̂(t) = r0 + r1a(t), where the intercept r0 represents a person’s reaction time with zero
anticipation and the slope r1 quantifies the strength with which a person’s reaction
times depend on their internal expectations.

In total, our predictions r̂(t) contain three parameters (�, r0, and r1), which must
be estimated from the reaction time data for each subject. Before estimating these
parameters, however, we first regress out the dependencies of each subject’s reac-
tion times on the button combinations, trial number, and recency using a mixed
effects model of the form ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + (1+ log(Trial) ⇤
Stage + Recency | ID)’, where all variables were defined in the previous section. Then,
to estimate the model parameters that best describe an individual’s reactions, we
minimize the RMS prediction error with respect to each subject’s observed reaction

times, RMSE =
q

1

T

P
t
(r(t)- r̂(t))2, where T is the number of trials. We note that,

given a choice for the inverse temperature �, the linear parameters r0 and r1 can be
calculated analytically using standard linear regression techniques. Thus, the problem
of estimating the model parameters can be restated as a one-dimensional minimization
problem; that is, minimizing RMSE with respect to the inverse temperature �. To find
the global minimum, we began by calculating RMSE along 100 logarithmically-spaced
values for � between 10-4 and 10. Then, starting at the minimum value of this search,
we performed gradient descent until the gradient fell below an absolute value of 10-6.
For a derivation of the gradient of the RMSE with respect to the inverse temperature �,
we point the reader to Sec. 6.5.10. Finally, in addition to the gradient descent procedure
described above, for each subject we also manually checked the RMSE associated with
the two limits �! 0 and �!1. The resulting model parameters are shown in Figs.
6.4a and 6.4b for random walk sequences and Figs. 6.4g and 6.4h for Hamiltonian walk
sequences.

6.4.6 Experimental setup for n-back memory task

Subjects performed a series of n-back memory tasks using a computer screen and
keyboard. Each subject observed a random sequence of the letters ‘B’, ’D’, ’G’, ’T’, and
’V’, wherein each letter was randomly displayed in either upper or lower case. The
subjects responded on each trial using the keyboard to indicate whether or not the
current letter was the same as the letter that occurred n trials previously. For each
subject, this task was repeated for the conditions n = 1, 2, and 3, and each condition
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consisted of a sequence of 100 letters. The three conditions were presented in a random
order to each subject. After the n-back task, each subject then performed a serial
response task (equivalent to the first experiment described above) consisting of 1500
random walk trials drawn from the modular graph.

6.4.7 Data analysis for n-back memory task

In order to estimate the inverse temperature � for each subject from their n-back data,
we directly measured their memory distribution P(�t). As described in the main text,
we treated each positive response indicating that the current stimulus matched the
target stimulus as a sample of P(�t) by measuring the distance in trials �t between
the last instance of the current stimulus and the target (Fig. 6.5a). For each subject, we
combined all such samples across the three conditions n = 1, 2, and 3 to arrive at a
histogram for �t. In order to generate robust estimates for the inverse temperature �,
we generated 1000 bootstrap samples of the �t histogram for each subject. For each
sample, we calculated a linear fit to the distribution P(�t) on log-linear axes within the
domain 0 6 �t 6 4 (note that we could not carry the fit out to �t = 10 because the data
is much sparser for individual subjects). To ensure that the logarithm of P(�t) was well
defined for each sample – that is, to ensure that P(�t) > 0 for all �t – we added one
count to each value of �t. We then estimated the inverse temperature � for each sample
by calculating the negative slope of the linear fit of logP(�t) versus �t. To arrive at an
average estimate of � for each subject, we averaged � across the 1000 bootstrap samples.
Finally, we compared these estimates of � from the n-back experiment with estimates
of � from subjects’ reaction times in the subsequent serial response task, as described
above. We found that these two independent estimates of people’s inverse temperatures
are significantly correlated (excluding subjects for which � = 0 or � ! 1), with a
Spearman coefficient rs = 0.28 (p = 0.047, permutation test). We note that we do not
use the Pearson correlation coefficient because the estimates for � are not normally
distributed for either the reaction time task (p < 0.001) nor the n-back task (p = 0.013)
according to the Anderson-Darling test (634). This non-normality can be clearly seen in
the distributions of � in Figs. 6.4a and 6.4g.

6.4.8 Experimental procedures

All participants provided informed consent in writing and experimental methods were
approved by the Institutional Review Board of the University of Pennsylvania. In total,
we recruited 634 unique participants to complete our studies on Amazon’s Mechanical
Turk. For the first serial response experiment, 101 participants only responded to se-
quences drawn from the modular graph, 113 participants only responded to sequences
drawn from the lattice graph, and 72 participants responded to sequences drawn from
both the modular and lattice graphs in back-to-back (counter-balanced) sessions for
a total of 173 exposures to the modular graph and 185 exposures to the lattice graph.
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For the second experiment, we recruited 120 subjects to respond to random walk
sequences with Hamiltonian walks interspersed. For the third experiment, we recruited
78 participants to respond to sequences drawn from the ring graph with violations
randomly interspersed. For the n-back experiment, 150 subjects performed the n-back
task and, of those, 88 completed the subsequent serial response task. Worker IDs were
used to exclude duplicate participants between experiments, and all participants were
financially remunerated for their time. In the first experiment, subjects were paid up to
$11 for up to an estimated 60 minutes: $3 per network for up to two networks, $2 per
network for correctly responding on at least 90% of the trials, and $1 for completing
the entire task. In the second and third experiments, subjects were paid up to $7.50
for an estimated 30 minutes: $5.50 for completing the experiment and $2 for correctly
responding on at least 90% of the trials. In the n-back experiment, subjects were paid
up to $8.50 for an estimated 45 minutes: $7 for completing the entire experiment and
$1.50 for correctly responding on at least 90% of the serial response trials.

At the beginning of each experiment, subjects were provided with the following
instructions: “In a few minutes, you will see five squares shown on the screen, which
will light up as the experiment progresses. These squares correspond with keys on
your keyboard, and your job is to watch the squares and press the corresponding key
when that square lights up." For the 72 subjects that responded to both the modular
and lattice graphs in the first experiment, an additional piece of information was also
provided: “This part will take around 30 minutes, followed by a similar task which will
take another 30 minutes.” Before each experiment began, subjects were given a short
quiz to verify that they had read and understood the instructions. If any questions
were answered incorrectly, subjects were shown the instructions again and asked to
repeat the quiz until they answered all questions correctly. Next, all subjects were
shown a 10-trial segment that did not count towards their performance; this segment
also displayed text on the screen explicitly telling the subject which keys to press on
their keyboard. Subjects then began their 1500-trial experiment. For the subjects that
responded to both the modular and lattice graphs, a brief reminder was presented
before the second graph, but no new instructions were given. After completing each
experiment, subjects were presented with performance information and their bonus
earned, as well as the option to provide feedback.

6.5 supplementary material

In this Supplementary material, we provide extended discussion and data to support
the results presented in the main text. The content is organized to roughly mirror
the organization of the paper. In Sec. 6.5.1, we present experimental evidence that
human reaction times – in addition to depending on higher-order network features
– also reflect differences in fine-scale structure at the level of individual nodes. Just
as for the higher-order effects presented in the main text, we demonstrate that these
fine-scale phenomena are accurately predicted by our maximum entropy model. In Sec.
6.5.2, we present the mixed effects models that were used to estimate the cross-cluster
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surprisal and modular-lattice effects. In Sec. 6.5.4, we demonstrate that the cross-cluster
surprisal and modular-lattice effects cannot simply be explained by recency by directly
controlling for the recency of stimuli. In Sec. 6.5.3, we use Hamiltonian walks to
experimentally control for recency. In Sec. 6.5.5, we show that the cross-cluster surprisal
and modular-lattice effects persist even when considering all 1500 trials for each subject.
In Sec. 7.8, we show that the probability of an error on the serial response tasks increases
for between- versus within-cluster transitions in the modular graph, indicating that
the free energy framework can be used to predict human behaviors beyond reaction
times. In Sec. 6.5.7, we present the mixed effects models that were used to estimate
the effects of violations in the ring graph. In Sec. 6.5.8, we show that the effects of
network violations cannot be explained by recency alone. In Sec. 6.5.9, we discuss why
the forgetting of past stimuli altogether cannot explain the higher-order network effects
that we examine in the main text. In Sec. 6.5.10, to aid in the reconstruction of our
gradient descent algorithm for estimating the inverse temperature � from subjects’
reaction times, we derive an analytic form for the gradient of the RMS prediction error
of our model with respect to �. In Sec. 6.5.11, we discuss the relationship between our
model and the successor representation in reinforcement learning.

6.5.1 The effects of node heterogeneity on human expectations

In the main text, we demonstrated that human expectations depend critically on
the higher-order network structure of transitions. In addition to these higher-order
phenomena, it has long been known that human expectations also reflect differences
in the fine-scale structure of transition networks (217, 351). For instance, humans are
surprised by rare transitions, represented in a transition network by edges with low
probability weight (576). Here, we provide empirical evidence showing that people’s
expectations also depend on the local topologies of the nodes that bookend a transition,
and that these fine-scale effects are consistently predicted by our maximum entropy
model.

In order to clearly study the effects of higher-order network structure, in the main
text we focused on networks with uniform edge weights and node degrees. Here,
to study the effects of node heterogeneity, we instead consider a set of Erdös-Rényi
random graphs with the same number of nodes (N = 15) and edges (30) as in our
previous modular and lattice graphs. To ensure that the random walks are properly
defined, we set the transition probability Aij of each edge in the graph to 1/ki, where
ki is the degree of node i. Since the probabilities Aij decrease as the degree ki increases,
one should suspect that high-degree (or hub) nodes yield decreased anticipations –
and therefore increased reaction times – at the next step of a random sequence. Indeed,
using Eq. (6.6)), we find that our model analytically predicts decreased expectations
following a high-degree node (Fig. 6.7a). Furthermore, across 177 human subjects, we
find a strong positive correlation between people’s reaction times and the degree of the
preceding node in the sequence (Fig. 6.7b).
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Figure 6.7: The effects of node degree on reaction times. (a) The average expectation Âij

plotted with respect to the degree of the preceding node i across a range of inverse temperatures
�. As expected, expectations decrease as the degree of the preceding node increases; and for
� = 10, we have Âij ⇡ Aij = 1/ki. The lines and shaded regions represent averages and 95%
confidence intervals over 1000 randomly-generated Erdös-Rényi networks. (b) People exhibit
sharp increases in reaction time following nodes of higher degree, with Spearman’s correlation
rS = 0.23. The data is combined across 177 subjects, each of whom was asked to respond
to a sequence of 1500 stimuli drawn from a random Erdös-Rényi network. Each data point
represents the average reaction time for one node of a graph, and so each subject contributes
15 points. The line and shaded region represent the best fit and 95% confidence interval,
respectively. (c) The average expectation Âij plotted with respect to the degree of the current
node j across the same range of inverse temperatures as in (a). (d) People exhibit a steady
decline in reaction times as the current node degree increases, with Spearman’s correlation
rS = -0.10. Source data are provided as a Source Data file.

Interestingly, while people’s anticipations exhibit a sharp decline if the preceding
node has high-degree, our model predicts that these hub nodes instead yield increased
anticipations on the current step (Fig. 6.7c). Thus, while hub nodes give rise to marked
increases in reaction times on the subsequent step, these high-degree nodes actually
yield faster reactions on the current step (351) (Fig. 6.7d). This juxtaposition of effects
from one time step to the next highlights the complex ways in which the network
structure of transitions can affect people’s mental representations. Additionally, the
success of our model in predicting these competing phenomena further strengthens
our conclusion that mental errors play a crucial role in shaping people’s internal
expectations.
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1418.9± 73.1 19.42 < 0.001 ⇤ ⇤ ⇤
log(Trial) -92.1± 9.2 -9.96 < 0.001 ⇤ ⇤ ⇤

Stage -551.5± 85.0 -6.48 < 0.001 ⇤ ⇤ ⇤
Recency 1.4± 0.1 23.57 < 0.001 ⇤ ⇤ ⇤

Trans_Type 34.9± 6.0 5.77 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 67.0± 11.4 5.89 < 0.001 ⇤ ⇤ ⇤

Table 6.1: Mixed effects model measuring the cross-cluster surprisal effect. A mixed effects
model fit to the reaction time data for the modular graph with the goal of measuring the
cross-cluster surprisal effect. We find a significant 35 ms increase in reaction times (173 subjects)
for between-cluster transitions versus within-cluster transitions (grey). The significance column
represents p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data
are provided as a Source Data file.

6.5.2 Measuring higher-order network effects

In order to extract the effects of higher-order network structure on subjects’ reaction
times, we use linear mixed effects models, which have become prominent in human
research where many measurements are made for each subject (39, 582). To fit our
mixed effects models and to estimate the statistical significance of each effect we use the
fitlme function in MATLAB (R2018a). In what follows, when referring to our mixed
effects models, we adopt the standard R notation (65).

6.5.2.1 Cross-cluster surprisal effect

We first measure the cross-cluster surprisal effect (Fig. 6.2a) using a mixed effects
model with the formula ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + Trans_Type +
(1 + log(Trial) ⇤ Stage + Recency + Trans_Type | ID)’, where RT is the reaction time,
Trial is the trial number between 501 and 1500, Stage is the stage of the experiment
(either one or two), Target is the target button combination, Recency is the number
of trials since last observing a node (41), Trans_Type is the type of transition (either
within-cluster or between-cluster), and ID is each subject’s unique ID. We remark that
our inclusion of Recency in the model is intended to distinguish the graph effects that
we are interested in studying from the possible confound of recency, an effect that we
directly control for in Sec. 6.5.4. The mixed effects model is summarized in Tab. 7.1,
reporting a 35 ms increase in reaction times for between-cluster transitions relative to
within-cluster transitions (Fig. 6.2a). This result is measured from the reaction time
data for all 173 subjects that observed random walks in the modular graph.
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1436.5± 48.4 29.67 < 0.001 ⇤ ⇤ ⇤
log(Trial) -97.2± 6.1 -15.89 < 0.001 ⇤ ⇤ ⇤

Stage -555.2± 59.3 -9.36 < 0.001 ⇤ ⇤ ⇤
Recency 1.7± 0.1 29.94 < 0.001 ⇤ ⇤ ⇤
Graph 22.8± 5.8 3.95 < 0.001 ⇤ ⇤ ⇤

log(Trial):Stage 71.4± 8.4 8.48 < 0.001 ⇤ ⇤ ⇤

Table 6.2: Mixed effects model measuring the modular-lattice effect. A mixed effects model
fit to the reaction time data for the modular and lattice graphs with the goal of measuring
the modular-lattice effect. We find a significant 23 ms increase in reaction times overall (72
subjects) in the lattice graph relative to the modular graph (grey). The significance column
represents p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data
are provided as a Source Data file.

Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1420.8± 162.3 8.75 < 0.001 ⇤ ⇤ ⇤
log(Trial) -101.4± 22.7 -4.48 < 0.001 ⇤ ⇤ ⇤
Recency 0.6± 0.1 5.00 < 0.001 ⇤ ⇤ ⇤

Trans_Type 35.6± 13.7 2.59 0.010 ⇤⇤

Table 6.3: Mixed effects model measuring the cross-cluster surprisal effect in Hamiltonian
walks. A mixed effects model fit to subjects’ reaction times in Hamiltonian walks on the modular
graph with the goal of measuring the cross-cluster surprisal effect. We find a significant 36 ms
increase in reaction times (120 subjects) for between-cluster transitions versus within-cluster
transitions (grey). The significance column represents p-values less than 0.001 (⇤ ⇤ ⇤), less than
0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a Source Data file.

6.5.2.2 Modular-lattice effect

We next measure the modular-lattice effect (Fig. 6.2b) using a mixed effects model of
the form ‘RT ⇠ log(Trial) ⇤ Stage+Target+Recency+Graph+ (1+ log(Trial) ⇤ Stage+
Recency | ID)’, where Graph represents the type of transition network, either modular
or lattice. Note that we only include Graph as a fixed effect because the corresponding
mixed effect is not statistically significant. The mixed effects model is summarized in
Tab. 7.2, reporting a 23 ms increase in reaction times in the lattice graph relative to the
modular graph (Fig. 6.2b). This result is measured from the reaction time data for the
72 subjects that observed random walks in both the modular and lattice graphs.

6.5.3 Cross-cluster surprisal with Hamiltonian walks

Throughout the main text, we assume that people’s reaction times reflect their internal
representations of the transition structure. To justify this assumption, we must show
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that the higher-order network effects cannot simply be explained by recency. Here, we
measure the cross-cluster surprisal effect while experimentally controlling for recency
using Hamiltonian walks. In contrast to random walks, Hamiltonian walks visit each
node in the transition graph exactly once, thereby guaranteeing that each node is
visited once every 15 trials. We run a new experiment in which each subject (out of 120
subjects) is presented with a sequence of 1500 stimuli drawn from the modular graph:
The first 700 nodes reflect a standard random walk, while the remaining 800 trials
consist of 8 repeated segments of 85 stimuli specified by a random walk followed by 15
stimuli specified by a Hamiltonian walk. The initial 700 random walk trials are meant
to constitute a learning phase in which the subject builds an internal representation
of the modular graph. Since, in the modular graph, Hamiltonian walks do not obey
the same transition probabilities as random walks, the sequences of 85 random walk
trials between each Hamiltonian sequence are meant to help the subject maintain their
learned representation. Within the set of Hamiltonian walks through the modular
graph, the probability of transitioning from one cluster boundary node to the adjacent
one (if not already visited) is 1, whereas the probability of transitioning from the latter
boundary node to each of the adjacent non-boundary nodes is 1/3. To eliminate this
difference, we randomly selected one fixed Hamiltonian walk for each subject. This
fixed walk was entered at a different node depending on where the preceding walk
terminated, and we randomly switched between forward and backward traversals for
each walk (584).

We measure the cross-cluster surprisal within the Hamiltonian trials using a mixed
effects model with the formula ‘RT ⇠ log(Trial) + Target + Recency + Trans_Type +
(1 + log(Trial) + Recency + Trans_Type | ID)’, where each of the variables has been
defined previously. The model is summarized in Tab. 7.3, reporting a 36 ms increase
in reaction times for between-cluster transitions relative to within-cluster transitions
within Hamiltonian trials (p = 0.010), matching (within errors) the effect size reported
in the original experiment that only included random walks (see Tab. 7.1). This result
is measured from the reaction time data for all 120 subjects that observed random
walks with Hamiltonian walks interspersed in the modular graph. This result indicates
that the cross-cluster surprisal effect cannot be explained by recency alone, and must
therefore must be at least partially driven by people’s internal representations of the
transition structure.

6.5.3.1 Removing Hamiltonian trials before the first cross-cluster transition

The purpose of the Hamiltonian walk experiment described above is to experimentally
control for the effects of recency on people’s reaction times. However, when thinking
carefully about the transition from a random walk to a Hamiltonian walk, it becomes
clear that recency might still have a noticeable impact. Consider, for example the
last few trials of a random walk preceding a transition to a Hamiltonian walk – the
corresponding stimuli are likely to belong to the same module in the modular graph.
When the sequence converts to a Hamiltonian walk, the first few stimuli are also
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1536.6± 178.0 8.63 < 0.001 ⇤ ⇤ ⇤
log(Trial) -116.3± 24.8 -4.68 < 0.001 ⇤ ⇤ ⇤
Recency 0.4± 0.1 3.00 0.003 ⇤⇤

Trans_Type 28.2± 13.9 2.03 0.043 ⇤

Table 6.4: Mixed effects model measuring the cross-cluster surprisal effect in restricted
Hamiltonian walks. A mixed effects model fit to subjects’ reaction times after the first cross-
cluster transition within each Hamiltonian walk. We find a significant 28 ms increase in reaction
times (120 subjects) for between-cluster transitions versus within-cluster transitions (grey). The
significance column represents p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than
0.05 (⇤). Source data are provided as a Source Data file.

likely to belong to the same module, thereby inducing a decrease in reaction times
due to recency. Therefore, in order to more thoroughly control for recency effects, we
considered only trials after the first cross-cluster transition within each Hamiltonian
walk. We carry out this restricted analysis using the same form for the mixed effects
model as that described above: ‘RT ⇠ log(Trial) + Target + Recency + Trans_Type +
(1+ log(Trial) + Recency + Trans_Type | ID)’. The model, which is summarized in Tab.
7.4, estimates a significant cross-cluster surprisal effect of 28 ms (p = 0.043), again
matching within errors the effect size found in the original random walk data.

6.5.3.2 Decreasing cross-cluster surprisal with increasing Hamiltonian trials

As discussed above, the first 700 trials of each sequence were drawn from a random
walk to allow subjects to build an internal representation of the random walk transition
structure. Since the transition probabilities reflected in the Hamiltonian walks differ
from those in the random walks, we expect subjects’ representations of the transition
structure to shift as they observe increasing numbers of Hamiltonian trials. Therefore,
to further establish the notion that people’s reactions are primarily driven by their
internal representations, here we show that the strength of the cross-cluster surprisal
decreases as subjects observe increasing numbers of Hamiltonian trials. To do so, we
use a mixed effects model with the formula ‘RT ⇠ log(Trial) ⇤ Trans_Type + Target +
Recency+ (1+ log(Trial) +Recency+Trans_Type | ID)’, where the only difference with
the formula above is that here we include an interaction term between log(Trial) and
Trans_Type. The results of the fitted model are summarized in Tab. 7.5, reporting
a significant decrease in the strength of the cross-cluster surprisal with increasing
Hamiltonian trials (p = 0.024).

6.5.3.3 Experimental setup and procedures

Subjects performed a self-paced serial reaction time task, as described in the Methods
section of the main text. The only difference between this experiment and the original
random walk experiments is that the 1500 trials were split into 700 trials drawn as a
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1394.1± 188.8 7.39 < 0.001 ⇤ ⇤ ⇤
log(Trial) -96.1± 26.4 -3.64 < 0.001 ⇤ ⇤ ⇤
Recency 0.4± 0.1 3.02 0.003 ⇤⇤

Trans_Type 640.3± 271.9 2.35 0.019 ⇤
log(Trial):Trans_Type -87.2± 38.7 -2.25 0.024 ⇤

Table 6.5: Mixed effects model measuring the decrease in cross-cluster surprisal with in-
creasing Hamiltonian trials. A mixed effects model fit to subjects’ reaction times in Hamilto-
nian walks on the modular graph with the goal of measuring the dependence of the cross-cluster
surprisal on increasing trial number. We find a significant decrease in the strength of the cross-
cluster surprisal with increasing trials (grey), indicating that the introduction of Hamiltonian
walks weakens people’s internal representations of the random walk structure (120 subjects).
The significance column represents p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less
than 0.05 (⇤). Source data are provided as a Source Data file.

random walk and a subsequent 800 trials divided into 8 segments of 85 random walk
trials followed by 15 Hamiltonian walk trials, all drawn from the modular graph. In
total, we recruited 120 subjects to perform this Hamiltonian walk experiment, and they
were paid up to $5 each for an estimated 30 minutes: $3.50 for completing the task and
$1.50 for correctly responding on at least 90% of the trials.

6.5.4 Controlling for recency in random walks

In the previous section, we showed that cross-cluster surprisal remains significant
during Hamiltonian walks, which experimentally control for the recency of stimuli.
Building upon this result, in this section we measure the cross-cluster surprisal and
modular-lattice effects in our initial random walk data while filtering our data based
on stimulus recency.

6.5.4.1 Cross-cluster surprisal effect while controlling for recency

In order to control for recency, we filter our data to only include trials in which the
current stimulus was last seen a specific number of trials in the past. For example,
when studying trials with a recency of four, we only consider reaction times from
our experiments for which the current stimulus was last seen four trials previously.
After filtering the data, we then estimate the cross-cluster surprisal effect using a
mixed effects model of the form ‘RT ⇠ log(Trial) ⇤ Stage + Target + Trans_Type + (1+
log(Trial) ⇤ Stage + Trans_Type | ID)’. Fig. 6.8a shows the estimated increase in reaction
times for within-cluster versus between-cluster transitions after controlling for recency.
Specifically, we consider recency values of two (the minimum) through nine, and we
also consider trials with recency greater than or equal to 10, for which the effects of
recency should be small. We remark that we do not include trials of recency three in
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Figure 6.8: Cross-cluster surprisal while controlling for recency. (a) Increase in reaction times
for between-cluster versus within-cluster transitions in the modular graph after controlling for
the recency of stimuli. We note that, due to the topology of the modular graph, there do not
exist between-cluster transitions with recency three. We find significant cross-cluster surprisal
effects for all recency values besides eight. (b) Increase in reaction times for between- versus
within-cluster transitions after controlling for the number of times that the current stimulus has
appeared in the previous 10 trials. We observe significant cross-cluster surprisal for all numbers
of recent stimulus appearances besides two. Effect sizes (represented by bar plots), standard
deviations (represented by error bars), and p-values are estimated using mixed effects models.
The results are measured for all 173 subjects that observed random walks in the modular graph.
Source data are provided as a Source Data file.

our analysis because, due to the topology of the modular graph, there do not exist
between-cluster transitions with recency three. We find significant effects for all recency
values besides eight.

In addition to controlling for the recency of stimuli, we also study the cross-cluster
surprisal while controlling for the number of appearances of the current stimulus in
the last 10 trials. In particular, we filter our data to only include trials for which the
current stimulus was seen a specified number of times in the previous 10 trials, and for
each set of filtered data we estimate the cross-cluster surprisal using a mixed effects
model of the same form as above. We observe a significant increase in reaction times
for between- versus within-cluster transitions for all trials except for those for which
the stimulus appeared twice in the last 10 trials (Fig. 6.8b). Together, these results
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demonstrate that the cross-cluster surprisal effect cannot be explained by recency alone,
and therefore must stem, at least in part, from people’s internal representations of the
transition structure.

6.5.4.2 Modular-lattice effect while controlling for recency

We next consider the modular-lattice effect after controlling for recency. Filtering the
data from the modular and lattice graphs to only include trials of a given recency,
we estimate the difference in reaction times between the two graphs using a mixed
effects model of the form ‘RT ⇠ log(Trial) ⇤ Stage + Target + Graph + (1+ log(Trial) ⇤
Stage | ID)’. Fig. 6.9a shows that we find a significant increase in reaction times for
the lattice graph relative to the modular graph for all recency values considered
besides three, nine, and > 10. Additionally, in Fig. 6.9b, we control for the number of
appearances of the current stimulus in the previous 10 trials. Using a mixed effects
model of the same form as that above, we find a significant modular-lattice effect in
two of the four conditions. Together, these results demonstrate that the difference in
reaction times between the modular and lattice graphs persists after controlling for the
recency of stimuli, indicating that people are better able to anticipate transitions in the
modular graph than in the lattice graph.

6.5.5 Measuring network effects including early trials

Throughout the above analysis of the serial response tasks, we purposefully omitted
the first 500 trials for each subject, choosing instead to focus on the final 1000 trials.
We did this in order to allow the subjects to build an internal representation of each
network structure before probing their anticipations of transitions. Here, we show that
this data processing step is not necessary to observe higher-order network effects; that
is, we show that there exist significant network effects even if we include the first 500
trials in our analysis.

6.5.5.1 Cross-cluster surprisal effect with early trials

We first consider the cross-cluster surprisal effect defined by an increase in reaction
times for transitions between clusters relative to transitions within clusters in the mod-
ular graph. Using a mixed effects model of the same form as that used in the previous
analysis in Sec. 6.5.2 (i.e., ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + Trans_Type +
(1+ log(Trial) ⇤ Stage + Recency + Trans_Type | ID)’), and including all 1500 trials for
each subject, we find a significant 35 ms increase in reaction times for between- versus
within-cluster transitions (Tab. 7.6). We note that this effect is even larger than that
observed in our previous analysis (Tab. 7.1).
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Figure 6.9: Modular-lattice effect while controlling for recency. (a) Difference in reaction
times between the lattice and modular graphs after controlling for the recency of stimuli. We
observe a significant increase in reaction times for the lattice graph relative to the modular
graph for all recency values besides three, nine, and > 10. (b) Difference in reaction times
between the lattice and modular graphs after controlling for the number of times the current
stimulus has appeared in the previous 10 trials. We find a significant modular-lattice effect for
one and two stimulus appearances in the last 10 trials. Effect sizes (represented by bar plots),
standard deviations (represented by error bars), and p-values are estimated using mixed effects
models. The results are measured for all 72 subjects that observed random walks in both the
modular and lattice graphs. Source data are provided as a Source Data file.

6.5.5.2 Modular-lattice effect with early trials

We next consider the modular-lattice effect defined by an increase in reaction times in
the lattice graph relative to the modular graph. Using a mixed effects model of the same
form as that used in the previous analysis in Sec. 6.5.2 (i.e., ‘RT ⇠ log(Trial) ⇤ Stage +
Target + Recency + Graph + (1+ log(Trial) ⇤ Stage + Recency | ID)’), and including all
1500 trials for each subject, we find a significant 16 ms increase in reaction times in the
lattice versus the modular graph (Tab. 7.7). These results demonstrate that higher-order
network effects studied in the main text exist throughout the entire serial response
task.
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1340.0± 44.4 30.19 < 0.001 ⇤ ⇤ ⇤
log(Trial) -88.7± 5.0 -17.04 < 0.001 ⇤ ⇤ ⇤

Stage -473.1± 47.6 -9.93 < 0.001 ⇤ ⇤ ⇤
Recency 1.5± 0.1 24.65 < 0.001 ⇤ ⇤ ⇤

Trans_Type 35.4± 6.0 5.94 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 60.4± 5.5 11.06 < 0.001 ⇤ ⇤ ⇤

Table 6.6: Mixed effects model measuring the cross-cluster surprisal effect including the
first 500 trials. A mixed effects model fit to all of the reaction time data, including the first
500 trials for each subject, for the modular graph with the goal of measuring the cross-cluster
surprisal effect. We find a significant 35 ms increase in reaction times (173 subjects) for between-
cluster transitions versus within-cluster transitions. The significance column represents p-values
less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a
Source Data file.

Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1357.0± 30.3 44.79 < 0.001 ⇤ ⇤ ⇤
log(Trial) -87.8± 3.4 -26.06 < 0.001 ⇤ ⇤ ⇤

Stage -490.7± 25.3 -19.38 < 0.001 ⇤ ⇤ ⇤
Recency 2.0± 0.1 32.35 < 0.001 ⇤ ⇤ ⇤
Graph 16.3± 5.4 3.00 0.003 ⇤⇤

log(Trial):Stage 62.7± 3.5 17.76 < 0.001 ⇤ ⇤ ⇤

Table 6.7: Mixed effects model measuring the modular-lattice effect including the first 500
trials. A mixed effects model fit to all of the reaction time data, including the first 500 trials for
each subject, for the modular and lattice graphs with the goal of measuring the modular-lattice
effect. We find a significant 16 ms increase in reaction times overall (72 subjects) in the lattice
graph relative to the modular graph. The significance column represents p-values less than
0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a Source
Data file.

6.5.6 Network effects on error trials

Thus far we have focused on predicting human reaction times as a proxy for people’s
anticipations of transitions. Another way to probe anticipation is by studying the trials
on which subjects respond incorrectly; one might expect that the probability of an
erroneous response should increase with decreasing anticipation. Here, we test this
hypothesis for between- versus within-cluster transitions in the modular graph and for
all transitions in the modular graph versus the lattice graph.
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.005± 0.012 0.39 0.697
log(Trial) 0.004± 0.002 2.14 0.032 ⇤

Stage 0.015± 0.007 2.14 0.032 ⇤
Recency < 0.001 16.52 < 0.001 ⇤ ⇤ ⇤

Trans_Type 0.004± 0.002 2.83 0.005 ⇤⇤

Table 6.8: Mixed effects model measuring the cross-cluster effect on task errors. A mixed
effects model fit to predict error trials for the modular graph with the goal of measuring the
cross-cluster effect on task errors. We find a significant increase in task errors (173 subjects) for
between-cluster transitions relative to within-cluster transitions (grey). The significance column
represents p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data
are provided as a Source Data file.

6.5.6.1 Cross-cluster surprisal effect on errors

First, we consider the cross-cluster surprisal effect on errors defined by an increase in
task errors for transitions between clusters relative to transitions within clusters in the
modular graph. We employ a mixed effects model with formula ‘Error ⇠ log(Trial) +
Stage + Target + Recency + Trans_Type + (1 + log(Trial) | ID)’, where Error indicates
whether the subject provided an incorrect (‘1’) or correct (‘0’) response. Note that,
relative to our measurement of the cross-cluster surprisal for reaction times in Sec.
6.5.2, we have removed the fixed effect interaction between log(Trial) and Stage as well
as the mixed effects for the variables Stage, Recency, and Trans_Type because they are
not statistically significant in this setting. We find a significant increase in errors for
between- versus within-cluster transitions (Tab. 7.8), suggesting yet again that subjects
have weaker anticipation for cross-cluster transitions than for within-cluster transitions.

6.5.6.2 Modular-lattice effect on errors

Second, we consider the modular-lattice effect on errors defined by an increase in
task errors for the lattice graph relative to the modular graph. We employ a mixed
effects model with formula ‘Error ⇠ log(Trial) + Stage + Target + Recency + Graph +
(1+ log(Trial) + Recency + Graph | ID)’, where each of the variables has been defined
previously. We again note that we have removed the interaction between log(Trial)
and Stage because it was not statistically significant in our prediction of task errors.
Inspecting the mixed effects model described in Tab. 7.9, we do not find a significant
difference in the number of task errors between the modular and lattice graphs. One
possible explanation for this lack of an effect is that people’s task accuracy is predomi-
nantly impacted by very poorly anticipated transitions. Thus, while anticipation in the
lattice graph is lower than that in the modular graph on average, it could be the case
that the significant decrease in anticipation for cross-cluster transitions in the modular
graph yields a similar number of task errors overall.
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.026± 0.009 3.05 0.002 ⇤⇤
log(Trial) 0.002± 0.001 1.47 0.142

Stage 0.003± 0.003 0.98 0.325
Recency < 0.001 14.62 < 0.001 ⇤ ⇤ ⇤
Graph -0.004± 0.003 -1.34 0.180

Table 6.9: Mixed effects model measuring the modular-lattice effect on task errors. A mixed
effects model fit to predict error trials for the modular and lattice graphs with the goal of
measuring the modular-lattice effect on task errors. We do not find a significant change in
errors based on the graph (grey; 72 subjects). The significance column represents p-values less
than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a Source
Data file.

Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1352.7± 79.2 17.07 < 0.001 ⇤ ⇤ ⇤
log(Trial) -101.1± 10.2 -9.96 < 0.001 ⇤ ⇤ ⇤
Recency 2.1± 0.1 16.20 < 0.001 ⇤ ⇤ ⇤

Top_Dist (short vs. no violation) 37.9± 8.4 4.50 < 0.001 ⇤ ⇤ ⇤
Top_Dist (long vs. no violation) 63.3± 7.8 8.07 < 0.001 ⇤ ⇤ ⇤

Table 6.10: Mixed effects model measuring the effects of violations relative to standard
transitions. A mixed effects model fit to the reaction time data for the ring graph with the
goal of measuring the effects of violations relative to standard transitions. We find a significant
increase in reaction times of 38 ms (78 subjects) for short violations and 63 ms for long violations
(grey), even after accounting for recency effects. The significance column represents p-values
less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a
Source Data file.

6.5.7 Measuring the effects of network violations

We study the effects of violations of varying topological distance in the ring graph
using a mixed effects model with the formula ‘RT ⇠ log(Trial) + Target + Recency +
Top_Dist + (1+ log(Trial) + Recency + Top_Dist | ID)’, where Top_Dist represents the
topological distance of a transition, either one for a standard transition, two for a short
violation, or three for a long violation. The results of fitting this mixed effects model are
summarized in Tab. 7.10, reporting increases in reaction times over standard transitions
of 38 ms for short violations and 63 ms for long violations. Second, to measure the
difference in reaction times between long and short violations, we implemented a
model of the same form, but restricted Top_Dist to only include short violations of
topological distance two and long violations of topological distances three and four.
This model is summarized in Tab. 7.11, reporting a 28 ms increase in reaction times for
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1380.9± 156.1 8.84 < 0.001 ⇤ ⇤ ⇤
log(Trial) -97.1± 21.3 -4.57 < 0.001 ⇤ ⇤ ⇤
Recency 0.7± 0.3 2.67 0.008 ⇤⇤

Top_Dist (long vs. short violation) 28.4± 11.2 2.54 0.011 ⇤

Table 6.11: Mixed effects model measuring the effects of long versus short violations. A
mixed effects model fit to the reaction time data for the ring graph with the goal of measuring
the effects of long versus short violations. We find a significant 28 ms increase in reaction times
(78 subjects) for long violations relative to short violations (grey), even after accounting for
recency effects. The significance column represents p-values less than 0.001 (⇤ ⇤ ⇤), less than
0.01 (⇤⇤), and less than 0.05 (⇤). Source data are provided as a Source Data file.

long violations relative to short violations. This result is measured from all 78 subjects
that observed random walks with violations in the ring graph.

6.5.8 Controlling for recency: Network violations

In the main text, we attribute the observed increase in reaction times for network
violations to subjects’ internal representations of the transition structure. Alternatively,
these effects could be due to the fact that standard transitions are more likely than
network violations to yield a stimulus that has been seen recently. To show that the
effects of network violations are not simply driven by recency, we directly control
for the recency of stimuli in our data. Because the violations data is more sparse
than the standard random walk data (we only observe 50 violations per subject,
split between 20 short violations and 30 long violations), and because the network
violations often yield stimuli with large recency values (for example, 69% of violations
yield stimuli with recency greater than 10), we separate our data based on ranges
of recency values that provide an approximately even distribution of violations (see
Fig. 6.10a). After separating the data by recency, we estimate the effects of short and
long violations using a mixed effects model of the form ‘RT ⇠ log(Trial) + Target +
Top_Dist + (1+ log(Trial) | ID)’. We note that, in comparison to the model used in Sec.
6.5.7, we have removed the mixed effect of Top_Dist because the filtered datasets are
not large enough to provide a significant estimate. In Fig. 6.10a, we see that, within
each recency range other than recency greater than 40, at least one of either the short
or long violations generates a significant increase in reaction times relative to standard
transitions. Additionally, in Fig. 6.10b, we filter the violations data by the number of
appearances of the current stimulus in the previous 10 trials. Network violations yield
significant increases in reaction times across all conditions other than short violations
with zero appearances in the last 10 trials. Together, these results demonstrate that
the effects of network violations cannot simply be explained by recency, therefore
suggesting that subjects maintain an internal representation of the transition structure.
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Figure 6.10: Comparing standard transitions to network violations while controlling for
recency. (a) Difference in reaction times between standard transitions and short violations
(blue) or long violations (red) in the ring graph after controlling for the recency of stimuli. We
observe at least one significant effect of network violations for all recency ranges less than 40.
(b) Increase in reaction times for short (blue) and long (red) network violations after controlling
for the number of times the current stimulus has appeared in the previous 10 trials. For long
violations, we find a significant increase in reaction times across all numbers of recent stimulus
appearances. For short violations, we find a significant increase in reaction times across all
numbers of recent stimulus appearances besides zero. Effect sizes (represented by bar plots),
standard deviations (represented by error bars), and p-values are estimated using mixed effects
models. The results are measured for all 78 subjects that observed random walks with violations
in the ring graph. Source data are provided as a Source Data file.

We repeat the above analysis to measure the difference in reaction times between
short and long violations while controlling for recency. We observe a significant
increase in reaction times for long violations relative to short violations in two of the
seven recency ranges (Fig. 6.11a). However, we do not report a significant difference
in reaction times after controlling for the number of appearances of stimuli in the
previous 10 trials (Fig. 6.11b). We remark that, given the noisy nature of reaction times
and the small number of measurements per subject, the large standard deviations in
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Figure 6.11: Comparing short versus long network violations while controlling for recency.
(a) Difference in reaction times between short and long network violations after controlling for
the recency of stimuli. We find significant increases in reaction times for long violations in the
recency ranges 21-30 and 31-40. (b) Difference in reaction times between short and long network
violations after controlling for the number of times the current stimulus has appeared in the
previous 10 trials. Effect sizes (represented by bar plots), standard deviations (represented by
error bars), and p-values are estimated using mixed effects models. The results are measured
for all 78 subjects that observed random walks with violations in the ring graph. Source data
are provided as a Source Data file.

our estimates are not surprising. Nevertheless, these results provide tentative evidence
that recency alone cannot explain the difference in reaction times between long and
short network violations.

6.5.9 The forgetting of stimuli cannot explain network effects

In the derivation of our model, the central mathematical object is the memory distri-
bution P(�t), which represents the probability that a person recalls the stimulus that
occurred at time t-�t instead of the stimulus that they were trying to recall at time t.
Generally, this memory distribution is intended to reflect the erroneous shuffling of
past stimuli in a person’s memory. Alternatively, one could imagine errors in memory
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that reflect the forgetting of past stimuli altogether, a process that has recently been
shown to impact human reinforcement learning (153, 154) and to facilitate flexible and
generalizable decision making (555). Here we argue that this second form of cognitive
errors – that is, the simple forgetting of stimuli – cannot explain the higher-order
network effects described in the main text.

Consider a sequence of stimuli reflecting a random walk of length T on a network
defined by the transition matrix A, where Aij represents the probability of transitioning
from stimulus i to stimulus j. Given a running tally nij(T) of the number of times each
transition has occurred, we recall that the most accurate prediction for the transition
structure is given by the maximum likelihood estimate ÂMLE

ij
(T) = nij(T)/

P
k
nik(T).

Now suppose that a human learner forgets each observed transition at some fixed rate.
On average, this process of estimating A after forgetting some number of transitions
uniformly at random is equivalent to estimating A at some prior time Teff. In other
words, forgetting observed transitions at random simply introduces additional white
noise into the transitions estimates ÂMLE

ij
(T). As discussed in the main text, maximum

likelihood estimation provides an unbiased estimate of the transition structure, and
therefore cannot explain the fact that people’s representations depend systematically on
higher-order network organization. Similarly, the addition of white noise to ÂMLE(T)
will also yield an unbiased (although less accurate) estimate of the transition structure.
Therefore, while the forgetting of past stimuli plays an important role in a number
of cognitive processes (153, 154, 555), this mechanism cannot be used to explain the
higher-order network effects observed in human experiments and predicted by our
model.

6.5.10 Gradient of RMS error with respect to inverse temperature �

Given a sequence of nodes xt, we recall that our prediction for the reaction time at
time t is given by r̂(t) = r0 + r1a(t), where a(t) = Âxt-1,xt

(t- 1) is the predicted

anticipation of node xt. The gradient of the RMS error RMSE =
q

1

T

P
t
(r(t)- r̂(t))2

with respect to the inverse temperature � is given by

@RMSE
@�

=
-r1
T

1

RMSE

X

t

(r(t)- r̂(t))
@a(t)

@�
, (6.12)

where the derivative of the anticipation is given by

@Âij(t)

@�
=

1P
k
ñik(t)

 
@ñij(t)

@�
- Âij(t)

X

`

@ñi`(t)

@�

!

. (6.13)

Recalling Eq. (6.8), the derivative of the transition counts can be written

@ñij(t)

@�
=

t-1X

t 0=1

t
0-1X

�t=0

@Pt 0(�t)

@�
[i = xt 0-�t] [j = xt 0+1] , (6.14)
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where Pt 0(�t) represents the probability of accidentally remembering the node xt 0-�t

instead of the target node xt 0 . Taking one more derivative, we have

@Pt 0(�t)

@�
= Pt 0(�t)

 

-�t+
t
0-1X

�t 0=0

Pt 0(�t 0)�t 0
!

. (6.15)

Taken together, Eqs. (6.12-6.15) define the derivative of the RMS error with respect to
the inverse temperature �, thus completing the description of our gradient descent
algorithm.

6.5.11 Connection to the successor representation

In the limit of an infinitely-long sequence of nodes, we showed in the main text that
the transition estimates in our model take the following concise analytic form,

Â = (1- e-�)A(I- e-�A)-1, (6.16)

where A is the true transition structure, � is the inverse temperature in our memory
distribution, and I is the identity matrix. Interestingly, this equation takes a similar
form to the successor representation from reinforcement learning,

M = A(I- �A)-1, (6.17)

where � is the future discount factor, which tunes the desired time-scale over which
a person wishes to make predictions (247, 645). Put simply, starting at some node i,
the successor representation Mij counts the future discounted occupancy of node j.
Identifying � = e-�, we notice that the successor representation is equivalent to an
unnormalized version of our transition estimates. Moreover, the same mathematical
form crops up in complex network theory, where it is known as the communicability
between nodes in a graph (209, 210, 242).

The relationship between the transition estimates in our model and the successor
representation is fascinating, especially given the marked differences in the concepts
that the two models are based upon. In our model, people attempting to learn the
one-step transition structure A instead arrive at the erroneous estimate Â due to
natural errors in perception and recall. By contrast, given a desired time-scale �, the
successor representation defines the optimal prediction of node occupancies into the
future (247, 645). Interestingly, the successor representation has been linked to grid
cells and abstract representations in the hippocampus (242, 629), decision making
in reward-based tasks (451, 573), and the temporal difference and temporal context
models of learning and memory (247, 324, 645). The successor representation assumes
that humans are making predictions multiple steps into the future; however, our results
show that a similar mathematical form can instead represent a person who simply
attempts to predict one step into the future, but misses the mark due to natural errors
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in cognition. This biologically-plausible hypothesis of erroneous predictions highlights
the importance of thinking carefully about the impact of mental errors on human
learning (153, 154, 555).
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H U M A N I N F O R M AT I O N P R O C E S S I N G I N C O M P L E X N E T W O R K S

This chapter contains work from Lynn, Christopher W., Lia Papadopoulos, Ari E. Kahn, and
Danielle S. Bassett. “Human information processing in complex networks." Nature Physics, in
press.

Abstract

Humans communicate using systems of interconnected stimuli or concepts – from
language and music to literature and science – yet it remains unclear how, if at all,
the structure of these networks supports the communication of information. Although
information theory provides tools to quantify the information produced by a system,
traditional metrics do not account for the inefficient ways that humans process this
information. Here we develop an analytical framework to study the information gener-
ated by a system as perceived by a human observer. We demonstrate experimentally
that this perceived information depends critically on a system’s network topology.
Applying our framework to several real networks, we find that they communicate a
large amount of information (having high entropy) and do so efficiently (maintaining
low divergence from human expectations). Moreover, we show that such efficient com-
munication arises in networks that are simultaneously heterogeneous, with high-degree
hubs, and clustered, with tightly-connected modules – the two defining features of
hierarchical organization. Together, these results suggest that many communication
networks are constrained by the pressures of information transmission, and that these
pressures select for specific structural features.

7.1 introduction

Humans receive information in discrete chunks, which transition from one to another –
as words in a sentence or notes in a musical progression – to create coherent messages.
The networks formed by these chunks (nodes) and transitions (edges) encode the
structure of allowed messages, fundamentally governing the ways that we communi-
cate with one another. Although attempts to study the information properties of such
transition networks date to the foundation of information theory itself (603), with appli-
cations to linguistics (48, 193), music theory (149), social and information networks (263,
570), the Internet (405), and transportation (571), fundamental questions concerning the
impact of network structure on how humans process information remain unanswered.

146
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The primary difficulty in quantifying the information content of a message is ac-
counting for the human perspective: formally, a message’s information content is not
inherent, but rather depends crucially on the receiver’s expectations (or estimated
probabilities) of different symbols and stimuli (161, 193, 603). Whereas for computers
the probabilities of different symbols are often prescribed, human expectations are
biased (309) and differ from person to person (193), with measurable consequences for
behavior (387) and cognition (379). However, recent advances in psychology and neu-
roscience have shed light on how humans learn and internally estimate the structure
of complex probabilistic systems (180, 351, 414, 419, 576, 584). Given this progress, it
is now possible and compelling to build a framework to quantify human information
processing and to consider what types of networks support efficient communication.

7.2 humans perceive information beyond entropy

We set out to study the amount of information a human perceives when observing a
sequence of stimuli. Naturally, one might naively expect a human to perceive roughly
the same amount of information as is being produced by a sequence, or its Shannon
entropy (161, 603). Here, to motivate our analytic results, we carry out a set of exper-
iments showing that these two quantities – the information perceived by a human
and the information produced by a sequence – differ systematically. To experimentally
measure perceived information, we employ a paradigm recently developed in statistical
learning (351, 414, 419, 584), presenting subjects with sequences of stimuli on a screen
(Fig. 7.1a) and asking them to respond to each stimulus by pressing the indicated
keys on a keyboard (Fig. 7.1b). Although many real communication systems have
long-range correlations, the production of information is traditionally modeled as a
Markov process (161, 603), or equivalently, a random walk on a (possibly weighted,
directed) network (570). Therefore, we assign each stimulus to a node in an underlying
network, and we stipulate the order of stimuli within a sequence using random walks
(Fig. 7.1b; Methods). By measuring subjects’ reaction times and error rates, we can infer
how much information they perceive: slow reactions or many errors reflect surprising
transitions (with high perceived information), while fast reactions or few errors indicate
expected transitions (with low perceived information) (351, 387, 419).

In a random walk, the probability of transitioning from node (or stimulus) i to a
neighboring node j is Pij = 1/ki, where ki is the degree of node i. Thus, the amount of
information produced by a single transition i! j (often referred to as surprisal (603))
is given by - logPij = logki (Fig. 7.1d) (161). Indeed, subjects’ behavior is remarkably
well-predicted by the information surprisal, with each additional bit of produced
information inducing a linear 32 ms increase in reaction times (Fig. 7.1e) and a 0.3%
increase in the number of errors (see Sec. 7.8). However, even if we present subjects
with networks of constant degree – forcing each transition to produce an identical
amount of information – we still discover consistent variations in behavior that are
driven by network topology.
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Figure 7.1: Human behavioral experiments reveal the dependence of perceived information
on network topology. (a-c) Experimental setup for our serial reaction time tasks. (a) Subjects
are shown sequences of 1500 stimuli, with each stimulus consisting of five squares with one or
two highlighted in red. (b) The sequential order of stimuli is determined by a random walk
on an underlying network. (c) In response to each stimulus, subjects press keys on a keyboard
corresponding to the highlighted squares. We use both one- and two-button responses because
they allow for networks of size up to N = 15. To control for the behavioral effects of the
different one- and two-button responses, we (i) randomize the assignment of stimuli to nodes
for each subject and (ii) regress out behavioral dependencies on individual stimuli (351). (d-e)
Effect of produced information on reaction times, referred to as the entropic effect. (d) For
each subject, we draw an Erdös-Rényi random network with N = 15 nodes and E = 30 edges;
the information produced by a transition i ! j (or its surprisal) is logki, where ki is the
degree of node i. (e) Reaction times, averaged over all transitions that begin at nodes of a given
degree k, are significantly correlated with the produced information logk (Pearson correlation
coefficient rp = 0.99, p < 0.001, n = 177 subjects). (f -h) Effects of network topology on reaction
times after controlling for produced information. (f ) We control for variations in produced
information by focusing on networks of constant degree k = 4, such as the modular network,
which contains three distinct types of transitions: those deep within clusters (dark blue), those
at the boundaries of clusters (purple), and those between clusters (light blue). (g) Each type of
transition produces reaction times that are distinct from the other two; differences in reaction
times and p-values are estimated using mixed effects models (n = 173 subjects; see Sec. 7.8.4).
(h) The difference in reaction times �RT between random degree-4 networks and the modular
network; the modular network yields consistently faster reactions (n = 84 subjects). In addition
to the population-level results in panels e, g, and h, we also find significant individual variation
in subjects’ sensitivity to network topology (see Sec. 7.8.7).
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For example, consider the modular network in Fig. 7.1f, which by symmetry only
contains three types of transitions. Each transition produces reaction times and error
rates that are distinct from the other two (Fig. 7.1g), with transitions between or at
the boundaries of clusters generating longer reaction times and more errors (see Sec.
7.8) than those deep within a cluster. In addition to differences in behavior at the level
of individual transitions, we also find overall variations between different networks.
Specifically, when compared to random networks of constant degree (Fig. 7.1g), the
modular network yields significantly faster reactions (and swifter learning rates; see
Sec. 7.8.6), indicating a decrease in the average perceived information. Moreover,
similar effects have recently been demonstrated across a range of experimental settings
(414), including networks of varying size and topology (351, 362, 419); networks with
weighted edges (180, 445, 576); time-varying networks (419, 445); different types of
stimuli (180, 362, 445, 576, 584, 667); and various behavioral and cognitive measures
(180, 576, 584). Together, these results reveal that humans perceive information – beyond
the information produced by a sequence – in a manner that depends systematically on
network topology.

7.3 quantifying perceived information : cross entropy

The differences between perceived information and produced information can be
understood as stemming from the inaccuracy of human expectations. As discussed
above, given a transition probability matrix P, a transition i! j produces - logPij bits
of information. By contrast, to a person with estimated transition probabilities P̂, the
same transition will convey - log P̂ij bits of information.

Although several models have been proposed for how humans estimate transition
probabilities (180, 414, 445, 584), converging evidence indicates that humans integrate
transitions over time (170, 242, 247, 324, 419). Such temporal integration yields expecta-
tions that include higher powers of the transition matrix: P̂ = C

P1
t=0

f(t)Pt+1, where
f(t) > 0 is a decreasing function and C = (

P
t
f(t))-1 is a normalization constant (we

note that P̂ is guaranteed to converge if
P

t
f(t) converges). For example, if f(t) = 1/t!,

then the transition probability estimates P̂ are nearly identical to the network communi-
cability (209, 242) (see Sec. 7.8.3). Here, we focus on the specific choice f(t) = ⌘t, where
⌘ 2 (0, 1) represents the inaccuracy of a person’s expectations (Fig. 7.2a). This model
can be derived from a number of different cognitive theories – including the temporal
context model of episodic memory (324), temporal difference learning and the successor
representation in reinforcement learning (170, 247), and the free energy principle from
information theory (419). Inferring ⌘ from each subject’s reaction times (Fig. 7.2b; see
Methods), we find that 10% of subjects hold exact estimates of the transition structure
(⌘ ! 0; Fig. 7.2a, left), while 21% have expectations that are completely disordered
(⌘! 1; Fig. 7.2a, right). Importantly, most subjects have expectations that lie between
these two extremes (Fig. 7.2a, center), yielding a decrease in the expected probability
of between- versus within-cluster transitions in the modular network. This decrease
in expected probability, in turn, gives rise to an increase in perceived information,



7.3 quantifying perceived information : cross entropy 150

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

C
ro

ss
 e

nt
ro

py
 (b

its
)

KL
 d

iv
er

ge
nc

e
En

tro
py

Chris Lynn April 17, 2019

�

2

Chris Lynn April 17, 2019

�

2

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

1

Modular network

All k=4 networks
Average

0 0.25 0.5 0.75 1
0

1

2

3

4

5

Pr
ob

ab
ilit

y 
de

ns
ity

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

1

mean = 0.80
cb

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

0 1

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

1

10% 69% 21%

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

�

P̂ij

1

0

1/42

-log

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

�

P̂ij

1

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

�

P̂ij

1

a

Figure 7.2: Modeling human estimates of transition probabilities. (a) Illustration of the in-
ternal estimates of the transition probabilities P̂ in the modular network. For ⌘ ! 0 (left),
the estimates become exact, while for ⌘ ! 1 (right), the estimates become all-to-all, losing
any resemblance to the true network. For intermediate ⌘ (center), transitions within clusters
maintain higher probabilities (and therefore lower surprisal) than transitions between clusters,
thereby explaining the differences in reaction times in Fig. 7.1g. Percentages indicate the pro-
portion of subjects, across all tasks, belonging to each category. (b) Distribution of the accuracy
parameter ⌘ estimated from subjects’ reaction times (see Sec. 7.8.3); the distribution is over all
518 completed tasks (n = 434 subjects). (c) Cross entropy S(P, P̂) as a function of ⌘ for all k-4
networks of size N = 15 (shaded region). The modular network (solid line) maintains a lower
cross entropy than the average across all k-4 networks (dashed line), thereby explaining the
difference in reaction times in Fig. 7.1h.

thereby explaining the observed variations in subjects’ reaction times and error rates
for different parts of the modular network (Fig. 7.1g).

We are now prepared to study the average perceived information of an entire
communication network. Averaging the perceived information of individual transitions
over the random walk process, we have h- log P̂ijiP = -

P
ij
⇡iPij log P̂ij, where ⇡

is the stationary distribution of P. Interestingly, this quantity – known as the cross
entropy S(P, P̂) between P and P̂ – splits naturally into the entropy S(P), or the average
produced information, and the KL divergence DKL(P||P̂), or the inefficiency of the
observer’s expectations:

h- log P̂ijiP
| {z }

S(P, P̂)

= h- logPijiP
| {z }

S(P)

+ h- log
P̂ij
Pij
iP

| {z }
DKL(P||P̂)

. (7.1)
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This relationship has a number of immediate consequences, including the fact that
the information a human perceives S(P, P̂) is lower-bounded by the information that a
system produces S(P) (since DKL(P||P̂) > 0). Moreover, inefficiency is minimized when
a person’s expectations are exact (since DKL(P||P̂) = 0 only when P̂ = P) (161). For
example, consider the set of degree-4 networks from our human experiments (Fig. 7.1h).
While all such networks have identical entropy, their differing topologies induce a
range of cross entropies, which vary as a function of ⌘ (Fig. 7.2c). Notably, the modular
graph displays lower cross entropy than most other degree-4 networks (Fig. 7.2c), thus
explaining the observed difference in subjects’ behaviors (Fig. 7.1h).

7.4 information properties of real communication networks

Using the framework developed above, we are ultimately interested in characterizing
the perceived information generated by real communication systems. The networks
chosen (Tab. 7.1) have all either evolved or been designed to communicate information
through sequences of stimuli (such as words or musical notes) or concepts (such as
scientific papers, websites, or social interactions). Strikingly, we find that the networks
share two consistent properties: they produce large amounts of information (high
entropy; Fig. 7.3a), while at the same time maintaining low inefficiency (low KL diver-
gence; Fig. 7.3b). Specifically, these properties hold relative to completely randomized
versions of the networks (Tab. 7.1) , with ⌘ set to the average value 0.8 from our human
experiments (Fig. 7.2b). Interestingly, different network types exhibit these information
properties to varying degrees (Fig. 7.3c). For example, language networks have the
highest entropy but also the highest KL divergence, perhaps reflecting the pressure on
language to maximize information rate. Meanwhile, music networks are low in both
entropy and KL divergence, possibly mirroring their role as a means for entertainment
rather than rapid communication.

If we instead compare the communication networks against randomized versions
that preserve node degrees (431), we find that the entropy is unchanged (Fig. 7.3d),
indicating that produced information depends only on the degree distribution. By
contrast, even compared to these entropy-preserving networks, the KL divergence of
real networks remains low (Fig. 7.3e). We verify that these results largely hold for (i)
all values of ⌘, (ii) different models of human expectations P̂, and (iii) directed versions
of the above networks (Sec. 7.8.8). Moreover, we find that the information properties of
communication networks can vary dramatically in time (184, 452), with most networks
dynamically evolving (for example, over the course of a musical piece or the growth of
a social network) to optimize efficient communication – that is, to maximize entropy
and minimize divergence from human expectations (Sec. 7.8.9).

Finally, to demonstrate that efficient communication is not required by all real
communication networks, it is important to consider examples where the results
in Fig. 7.3 break down. We give two such examples in Sec. 7.8.10, showing that (i)
directed citation networks have markedly low entropy and (ii) transitions between
words of all parts of speech have relatively high KL divergence. However, if we



7.4 information properties of real communication networks 152

Type / Name N E Sreal (bits) Srand (bits) Dreal
KL (bits) Drand

KL (bits)

Language (noun transitions)
Shakespeare 11,234 97,892 6.15 4.16 1.74 2.17
Homer 3,556 23,608 5.25 3.79 1.75 2.12
Plato 2,271 9,796 4.41 3.19 1.74 2.04
Jane Austen 1,994 12,120 4.92 3.66 1.71 2.10
William Blake 370 781 2.59 2.24 1.64 1.77
Miguel de Cervantes 6,090 43,682 5.55 3.89 1.76 2.14
Walt Whitman 4,791 16,526 4.24 2.89 1.76 2.00
Semantic relationships
Bible 1,707 9,059 4.31 3.48 1.45 2.07
Les Miserables 77 254 3.25 2.82 0.84 1.65
Edinburgh Thesaurus 7,754 226,518 6.26 5.88 2.07 2.21
Roget Thesaurus 904 3,447 3.19 3.02 1.76 1.99
Glossary terms 60 114 2.32 2.09 1.29 1.55
FOLDOC 13,274 90,736 4.11 3.83 1.72 2.14
ODLIS 1,802 12,378 4.59 3.83 1.70 2.11
World Wide Web
Google internal 12,354 142,296 6.15 4.56 1.35 2.19
Education 2,622 6,065 3.01 2.36 0.92 1.85
EPA 2,232 6,876 3.34 2.74 1.75 1.95
Indochina 9,638 45,886 3.88 3.33 0.58 2.08
2004 Election blogs 793 13,484 5.78 5.11 1.36 2.01
Spam 3,796 36,404 5.30 4.30 1.66 2.16
WebBase 6,843 16,374 3.48 2.41 1.09 1.87
Citations
arXiv Hep-Ph 12,711 139,500 5.02 4.49 1.68 2.19
arXiv Hep-Th 7,464 115,932 5.56 4.98 1.64 2.20
Cora 3,991 16,621 3.50 3.14 1.48 2.04
DBLP 240 858 3.30 2.93 1.37 1.88
Social relationships
Facebook 13,130 75,562 4.22 3.59 1.78 2.11
arXiv Astr-Ph 17,903 196,972 5.39 4.49 1.41 2.19
Adolescent health 2,155 8,970 3.22 3.14 1.78 2.03
Highschool 67 267 3.11 3.07 1.15 1.57
Jazz 198 2,742 5.09 4.81 0.94 1.61
Karate club 34 78 2.58 2.32 1.05 1.40
Music (note transitions)
Thriller – Michael Jackson 67 446 4.03 3.78 0.76 1.38
Hard Day’s Night – Beatles 41 212 3.62 3.42 0.49 1.21
Bohemian Rhapsody – Queen 71 961 5.01 4.77 0.55 0.95
Africa – Toto 39 163 3.41 3.13 0.84 1.29
Sonata No 11 – Mozart 55 354 3.91 3.73 0.83 1.28
Sonata No 23 – Beethoven 69 900 4.86 4.72 0.65 0.96
Nocturne Op 9-2 – Chopin 59 303 3.62 3.42 0.95 1.43
Clavier Fugue 13 – Bach 40 143 3.06 2.92 0.89 1.37
Ballade Op 10-1 – Brahms 69 670 4.42 4.31 0.80 1.18

Table 7.1: Properties of the real communication networks examined in this paper. For each
network we list its type and name, number of nodes N and edges E, entropy of the real network
Sreal and after randomizing the edges Srand, and KL divergence of the real network Dreal

KL and
after randomization Drand

KL with ⌘ set to the average value 0.80 from our experiments. Srand

and Drand
KL are averaged over 100 randomizations. For descriptions of and references for these

networks, see Sec. 7.8.14.
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Figure 7.3: The entropy and KL divergence of real communication networks. (a) Entropy of
fully randomized versions of the networks listed in Tab. 7.1 (Srand) compared with the true
values (Sreal). (b) KL divergence of fully randomized versions of the real networks (Drand

KL )
compared with the true values (Dreal

KL ). Human expectations P̂ are calculated with ⌘ set to the
average value 0.80 from our experiments; however, the results remain qualitatively the same
across all values of ⌘ (Sec. 7.8.8). (c) Difference between Sreal and Srand (top) and difference
between Dreal

KL and Drand
KL (bottom) for different network types, with error bars indicating

standard deviation over networks of each type. (d) Entropy of degree-preserving randomized
networks (Sdeg) compared with Sreal. (e) KL divergence of degree-preserving randomized
networks (Ddeg

KL ) compared with Dreal
KL with fixed ⌘ = 0.80. In panels a, b, d, and e, data points

and error bars (standard deviations) are estimated from 100 realizations of the randomized
networks. All networks are undirected; for examination of directed versions see Sec. 7.8.8.

allow transitions to move both forward and backward along citations (as is typical
when traversing scientific literature), then citation networks regain their high entropy
(Fig. 7.3a). Similarly, if we focus on “content" words that carry meaning (such as the
nouns in Fig. 7.3) rather than “grammatical" words (such as articles, prepositions, and
conjunctions) – a common distinction in the study of language networks (225, 447) –
then word transitions regain their low KL divergence from human expectations (Figs.
7.3b,e). Thus, even for networks that appear to have high entropy or low KL divergence,
studying the context-specific ways that they transmit information to humans often
reveals that efficient communication is maintained.
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7.5 hierarchically modular structure

Given the high entropy and low KL divergence displayed by real networks, it is
natural to wonder what structural features give rise to these properties. To begin,
for undirected networks one can show that S =

P
i
ki logki, demonstrating that the

entropy of a network is determined by its degree sequence (Fig. 7.3d) (117). It is clear
that the entropy grows with increasing node degrees, supporting the intuition that
denser networks yield more complex random walks. Moreover, since S is convex in
k, the entropy is larger for networks with a small number of high-degree nodes and
many low-degree nodes. Interestingly, such heterogeneous structure is observed in
human language (121), the Internet (50), social networks (477), and scale-free networks
(50) (although not all networks with heterogeneous degrees are scale-free (642)). To
investigate the relationship between a network’s entropy and its degree distribution,
we derive a number of analytic results in the thermodynamic limit N!1 (Sec. 7.8.11).
For example, the entropy of an Erdös-Rényi network is given by S ⇡ loghki for large
average degree hki. For scale-free networks with degree exponent � (Fig. 8.2a), we
find that S = loghki+ 1

�-2
- log �-1

�-2
, indicating that � = 2 is a critical exponent since

the entropy diverges as � ! 2. Generating ensembles of Erdös-Rényi and scale-free
networks, we numerically verify the logarithmic dependence of S on hki (Fig. 8.2b).
Moreover, we find that S increases for decreasing � (Fig. 8.2c), suggesting that the
entropy grows with increasing degree heterogeneity, which we also confirm numerically
(Fig. 8.2d). This final result reveals that, after controlling for edge density, the entropy
is largest for networks with heavy-tailed degree distributions.

In contrast to the entropy, the KL divergence depends on the expectations of an
observer. As these expectations become more accurate (that is, as ⌘ decreases), we
expect DKL(P||P̂) to decrease (as in Fig. 7.2c). But how does the KL divergence depend
on network structure? For an undirected network with adjacency matrix G, we can
expand in the limit of small ⌘ to find that DKL ⇡ - log(1- ⌘)- ⌘

E ln2

P
i

1

ki
4i, where

4i = (G3)ii/2 is the number of (possibly weighted) triangles involving node i (Sec.
7.8.12). Therefore, we see that DKL is smaller for networks with a large number of
triangles, explaining, for instance, the low KL divergence of the modular network (Figs.
7.1h and 7.2c). Indeed, an abundance of triangles is typically associated with modular
structure, a ubiquitous feature of real communication networks, from social and
scientific interactions (250, 570) to language (461) and the Internet (207). To investigate
the impact of modularity on the KL divergence, we derive analytic expressions for
DKL that hold for all values of ⌘ in the thermodynamic limit (Sec. 7.8.12). The KL
divergence of an Erdös-Rényi network is given by DKL = - log(1- ⌘). For stochastic
block networks with communities of size Nc and a fraction of within-community edges
f (Fig. 8.2e), we find that DKL = - log

h
1- ⌘

⇣
1- hki

Nc

(1-⌘)f3

1-⌘f

⌘i
. Generating sets of

Erdös-Rényi and stochastic block networks, we confirm the analytic predictions that
DKL grows with increasing ⌘ (Fig. 8.2f) and decreases for increasing modularity (Fig.
8.2g) and clustering (Fig. 8.2h). Therefore, even after controlling for the inaccuracy
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Figure 7.4: The impact of network topology on entropy and KL divergence. (a) Scale-free (SF)
network, characterized by a power-law degree distribution and the presence of high-degree hub
nodes. (b) Entropy as a function of the average degree hki for Erdös-Rényi (ER) and SF networks
with different scale-free exponents �. Data points are exact calculations for ER and SF networks
generated using the static model (258) with size N = 104. Lines are derived from the expected
degree distributions: dashed lines are numerical results for N = 104 and solid lines are analytic
results for N ! 1 (see Sec. 7.8.11 for derivations). Note that the thermodynamic limit for
� = 2.1 does not appear in the displayed range. (c) Entropy as a function of � for SF networks
with fixed hki. In the thermodynamic limit (solid lines), the entropy diverges as �! 2, and the
analytic results are nearly exact for � > 3. (d) Entropy as a function of degree heterogeneity
H = h|ki - kj|i/hki, where h|ki - kj|i is the absolute difference in degrees averaged over all
pairs of nodes (410), for SF networks with fixed hki and variable �. (e) Stochastic block (SB)
network, characterized by dense connectivity within communities and sparse connectivity
between communities. (f ) KL divergence as a function of the accuracy parameter ⌘ for ER and
SB networks with communities of size Nc = 100 and different fractions f of within-community
edges. Data points are exact calculations for networks with N = 104 and hki = 100, and lines
are analytic calculations for N = 104 (dashed) and N!1 (solid; see Sec. 7.8.12 for derivations).
(g) KL divergence as a function of f for SB networks with fixed ⌘. The analytic results are nearly
exact for ⌘ < 0.8. (h) KL divergence as a function of the average clustering coefficient for SB
networks with fixed ⌘ and variable f.
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⌘ of human expectations, we find that modular organization serves to decrease the
inefficiency of information transmission.

To attain both the high entropy and low KL divergence observed in real commu-
nication systems, it appears that networks must be simultaneously heterogeneous
and modular, the two defining features of hierarchical organization (547). In order
to test this hypothesis, we employ a model that combines the heterogeneous degrees
of scale-free networks with the modular structure of stochastic block networks (Fig.
7.5a; see Sec. 7.8.13 for an extended description). By adjusting � and f, we show that
these hierarchically modular networks display both a range of entropies (Fig. 7.5b)
and KL divergences (Fig. 7.5c). In fact, while scale-free networks do not exhibit the
low KL divergence of real communication networks nor do stochastic block networks
display their high entropy, we find that hierarchically modular networks can attain
both properties (Fig. 7.5d). Taken together, these results indicate that heterogeneity and
modularity – precisely the features commonly observed in real communication systems
(50, 121, 207, 250, 461, 477, 547, 570) – are both required to achieve high information
production and low inefficiency.

7.6 conclusions and outlook

In this study, we develop tools to quantify the information humans receive from com-
plex networks. We demonstrate experimentally that humans perceive information,
beyond the information produced by a sequence, in a way that depends critically on
network topology. Moreover, we find that real communication networks support the
rapid and efficient transmission of information, and that this efficient communication
arises from hierarchical organization. These results raise a number of questions con-
cerning the relationship between human cognition and the structure of communication
systems. For example, how have communication networks evolved over time – or
perhaps even co-evolved with the brain (176) – to facilitate information transmission?
Furthermore, how can we design communication systems, from human-technology
interfaces (188) to classroom lectures (297), to optimize efficient communication? The
framework presented here provides the mathematical tools to begin answering these
questions.

To conclude, we highlight a number of ways that our work can be systematically
generalized to analyze more realistic communication systems. First, while we model
the production of information as a Markov process (equivalently, a random walk),
future work should incorporate the long-range dependencies present in many real com-
munication systems (112, 496). The primary difficulty, however, lies in understanding
how humans estimate non-Markov transition structures, with most existing work in
statistical learning and artificial grammars focusing on Markov processes (180, 250, 351,
362, 414, 419, 444, 576, 584, 667). Second, while we have used tools from information
theory to quantify the perceived information of a network (161, 603), these methods
do not incorporate the semantic information carried by individual nodes (e.g., words,
notes, concepts) (48, 193). Thus, in order to improve our understanding of real-world
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Figure 7.5: Hierarchically modular networks support the efficient communication of infor-
mation. (a) Hierarchically modular (HM) network, characterized by a power-law degree distri-
bution and modular structure (Sec. 7.8.13). (b) Entropy as a function of the scale-free exponent
� and the fraction of within-community edges f for HM networks with size N = 104, average
degree hki = 100, and community size Nc = 100. Solid lines denote networks of equal entropy.
(c) KL divergence as a function of � and f for HM networks with the same size and density
as panel b and ⌘ set to the average value 0.80 from our experiments (Fig. 7.2b). Solid lines
denote networks of equal KL divergence. (d) Average entropies and KL divergences of real
and model networks compared to fully randomized versions. Data points are averages over
the set of networks in Tab. 7.1, where for each real network we generate SF networks with
variable � (red), SB networks with communities of size n ⇡

p
N and variable f (blue), and

HM networks with n ⇡
p
N and variable � (fixed f = 0.72; light green) or variable f (fixed

� = 2.2; dark green), all with N and E equal to the real network. HM networks with � = 2.2 and
f = 0.72 yield the same average entropy and KL divergence as real communication networks.
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communication systems, future progress will require important interdisciplinary efforts
from both cognitive scientists (to study how humans estimate non-Markov structures)
and information theorists (to quantify semantic information in human contexts).

7.7 methods

7.7.1 Experimental setup

Subjects performed a self-paced serial reaction time task using a computer screen and
keyboard. Each stimulus was presented as a horizontal row of five grey squares; all
five squares were shown at all times. The squares corresponded spatially with the keys
‘Space’, ‘H’, ‘J’, ‘K’, and ‘L’ (Fig. 7.1c). To indicate a target key or pair of keys for the
subject to press, the corresponding squares would become outlined in red (Fig. 7.1a).
When subjects pressed the correct key combination, the squares on the screen would
immediately display the next stimulus. If an incorrect key or pair of keys was pressed,
the message ‘Error!’ was displayed on the screen below the stimulus and remained
until the subject pressed the correct key(s). The order in which stimuli were presented
to each subject was determined by a random walk on a network of N = 15 nodes. For
each subject, one of the 15 key combinations was randomly assigned to each node in
the network.

In the first experiment, each subject was assigned an Erdös-Rényi network with
E = 30 edges. In the second experiment, all subjects responded to sequences of stimuli
drawn from the modular network (Fig. 7.1f), which has the same number of nodes
and edges. We remark that each node in the modular network is connected to four
other nodes, so the entropy of each transition was a constant - log 1

4
= 2 bits. Some

subjects performed both of the first two experiments in back to back stages, with the
order of the experiments counterbalanced across subjects. In the third experiment,
subjects underwent two stages. In one stage subjects responded to stimuli drawn from
the modular network, while in the other stage each subject was assigned a random
k-4 network. The order of the two stages was counterbalanced. For each stage of each
experiment, subjects responded to sequences of 1500 stimuli.

7.7.2 Experimental procedures

All participants provided informed consent in writing and experimental methods
were approved by the Institutional Review Board of the University of Pennsylvania.
In total, we recruited 363 unique participants to complete our studies on Amazon’s
Mechanical Turk: 106 completed just the first experiment, 102 completed just the second
experiment, 71 completed both the first and second experiments in back-to-back stages,
and 84 completed the third experiment. Worker IDs were used to exclude duplicate
participants between experiments, and all participants were financially remunerated
for their time. In the first two experiments, subjects were paid $3-$11 for up to an
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estimated 30-60 minutes: $3 per network for up to two networks, $2 per network for
correctly responding on at least 90% of the trials, and $1 for completing two stages. In
the third experiment, subjects were paid up to $9 for an estimated 60 minutes: $5 for
completing the experiment and $2 for correctly responding on at least 90% of the trials
on each stage.

7.7.3 Data analysis

To make inferences about subjects’ internal expectations based upon their reaction
times, we excluded all trials in which subjects responded incorrectly. We also excluded
reaction times that were implausible, either three standard deviations from a subject’s
mean reaction time, below 100 ms, or over 3500 ms.

7.7.4 Measuring the effects of topology on reaction times

In order to estimate the effects of network topology on subjects’ reaction times, one
must overcome large inter-subject variability. To do so, we used linear mixed effects
models, which have become prominent in human research where many measurements
are made for each subject (582). Compared with standard linear models, mixed effects
models allow for differentiation between effects that are subject-specific and those that
are representative of the prototypical individual in our experiments. Here, all models
were fit using the fitlme function in MATLAB (R2018a), and random effects were
chosen as the maximal structure that (i) allowed the model to converge and (ii) did not
include effects whose 95% confidence intervals overlapped with zero. In what follows,
when referring to our mixed effects models, we employ the standard R notation.

For the first experiment, in order to measure the impact of entropy on reaction times
(Fig. 7.1e), we regressed out a number of biomechanical dependencies: (i) variability
due to the different button combinations, (ii) the natural quickening of reactions with
trial number, and (iii) the change in reaction times between stages. We also regressed
out the effects of recency on subjects’ reaction times. Specifically, we fit a mixed effects
model with the formula ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + (1+ log(Trial) ⇤
Stage + Recency | ID)’, where RT is the reaction time, Trial is the trial number (it is
common to consider log(Trial) rather than the trial number itself (351, 419)), Stage is
the stage of the experiment, Target is the target button combination, Recency is the
number of trials since the last instance of the current stimulus, and ID is each subject’s
unique ID.

For the second experiment, to measure differences in reaction times between tran-
sitions in the modular network (Fig. 7.1g), we fit a mixed effects model of the form
‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + Trans_Type + (1 + log(Trial) ⇤ Stage +
Recency | ID)’, where Trans_Type is a dummy variable representing the type of tran-
sition (Fig. 7.1g) and the other variables are defined above. The three models for the
three different comparisons are summarized in Tabs. 7.3-7.5.
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For the third experiment, to measure the difference in reaction times between the
modular network and random k-4 networks (Fig. 7.1h), we fit a mixed effects model of
the form ‘RT ⇠ log(Trial) ⇤ Stage+Target+Recency+Graph+ (1+ log(Trial) ⇤ Stage+
Recency | ID)’, where Graph is a dummy variable representing the type of network
(either modular or random k-4). This model is summarized in Tab. 7.6.

7.7.5 Estimating ⌘ values

Given a choice for the parameter ⌘, and given a sequence of past nodes x1, . . . , xt-1, the
internal expectation of the next node xt is predicted to be P̂xt-1,xt

. We predict subjects’
reaction times r(t) using the linear model r̂(t) = r0- r1 log P̂xt-1,xt

, where - log P̂xt-1,xt

is the predicted perceived information at time t. Before estimating ⌘, r0, and r1, we
regress out subjects’ biomechanical dependencies using the mixed effects model ‘RT ⇠

log(Trial) ⇤ Stage+Target+Recency+(1+ log(Trial) ⇤ Stage+Recency | ID)’, where all
variables are defined above. Then, to estimate the model parameters that best describe
a subject’s reactions, we minimize the root-mean-square error (RMSE) with respect to
each subject’s reaction times. We note that, given a choice for ⌘, the linear parameters
r0 and r1 can be calculated analytically. Thus, the estimation problem can be restated
as a one-dimensional minimization problem; that is, minimizing RMSE with respect to
⌘. To find the global minimum, we began by calculating RMSE along 101 values for ⌘
between 0 and 1. Then, starting at the minimum value of this search, we performed
gradient descent until the gradient @RMSE

@⌘
fell below an absolute value of 10-6. The

resulting distribution for ⌘ over subjects are shown in Fig. 7.2b. For more details, see
Sec. 7.8.3.
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7.8 supplementary material

In this Supplementary material, we provide extended analysis and discussion to
support the results presented in the main text. In Sec. 7.8.1, we clarify the fundamental
differences between our work and previous research on human information processing
and complex networks. In Sec. 7.8.2, we give a brief introduction to information theory
and provide explicit definitions for the quantities discussed in the main text. In Sec.
7.8.3, we introduce existing research studying how humans form expectations about
complex transition networks. In Sec. 7.8.4, we present the effects of graph topology
on human reaction times measured in our serial response experiments. We begin in
Sec. 7.8.4.1 by demonstrating the impact of entropy on reaction times and then proceed
to describe effects beyond entropy (Sec. 7.8.4.2, 7.8.4.3). In Sec. 7.8.8, we verify that
our conclusions concerning the information properties of real networks hold for (i)
various values of ⌘ (Sec. 7.8.8.1), (ii) different models of internal representations (Sec.
7.8.8.2), and (iii) directed versions of the real networks (Sec. 7.8.8.3). In Sec. 7.8.11, we
derive analytic results for the entropies of various canonical network families. In Sec.
7.8.12, we derive a number of analytic results concerning the KL divergence between
random walks and human expectations. In Sec. 7.8.13, we develop a generative model of
hierarchically modular networks that combines the heterogeneity of scale-free networks
with the community structure of stochastic block networks. Finally, in Sec. 7.8.14, the
real networks analyzed in this work are listed and briefly described.

7.8.1 Previous work

Our work builds on a long record of research in information theory (161, 603), network
science (11, 639), and cognitive science (147, 217, 576). Here, we clarify the relationships
and differences between our work and earlier research in these areas. In particular, we
emphasize two main points:

1. In the study of complex networks, traditional definitions of network complexity
focus on the structure of a network itself (11, 263, 405, 570, 571, 639). While
characterizing the inherent complexity of a network is a fascinating problem
with numerous applications, many complex systems – from language and music
to social networks and literature – exist for the sole purpose of communicating
information with and between humans. Therefore, to fully understand the struc-
ture of these communication networks, one must consider the perspective of a
human observer. In this work, we show that this shift in perspective from inherent
complexity to perceived complexity can be formally defined using information
theory and provides critical insights into the structure of real communication
networks.

2. Significant research in cognitive science and statistical learning has studied how
humans build internal expectations about the world around them(147, 180, 217,
351, 419, 445, 480, 576, 584), generating deep insights about human learning
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and behavior. Building upon this work, we consider a complimentary problem
that has received far less attention: Given a model of human expectations, what
types of structures support efficient human communication? The answer to this
question may shed light on the organization of real communication systems and
help us to design new systems with desirable properties.

7.8.1.1 Definitions of network entropy

Information theory has been linked with network science since its inception, when
Shannon estimated the entropy rate of the English language by studying a random walk
on the network of word transitions in a book(603). Since then, information theory has
been used extensively to characterize the structure and function of complex networks
(11, 263, 405, 478, 569–571, 615, 639). Of particular interest are ongoing efforts studying
the entropies of random walks on complex networks. For example, the entropies of a
number of canonical network families have been derived, including constant-degree
networks (161) and power-law distributed networks (263). Meanwhile, researchers have
developed strategies for maximizing the entropy of random walks by tuning the edge
weights in a network (117, 148, 183, 615), and it is now known that temporal regularities
in random walks reveal key aspects of modularity and community structure (569, 570).

Our work extends these efforts by taking into account human expectations. Specif-
ically, we consider the cross entropy (or perceived information) of random walks
relative to human expectations, which can be broken down into network entropy (or
produced information) and KL divergence (or the inefficiency of human expectations).
Importantly, we discover that the entropy and KL divergence characterize distinct
aspects of network structure: while entropy is driven by degree heterogeneity, the
KL divergence is determined by a network’s modular organization. Additionally, we
provide a number of novel results concerning network entropy and KL divergence
that may be of independent interest. These include analytic approximations for the
entropies of networks with Poisson and exponential degree distributions as well as
static model networks (see Sec. 7.8.11) and the KL divergences of Erdös-Rényi and
stochastic block networks (see Sec. 7.8.12).

7.8.1.2 Human information processing

Efforts to relate human cognition to information theory have a rich history, spanning
the fields of cognitive science, psychology, and neuroscience. For example, information
theory has been used to study linguistics (48, 193), decision-making (309, 708), Bayesian
learning (493), neural coding (559), and vision (182). In fact, the relativity of information
– the notion that the amount of information conveyed by a message depends not just
on the inherent complexity of the message, but also on the expectations of a receiver
– was previously studied in linguistics to understand the dependence of meaning in
language on context (193). To quantify perceived information, however, one requires a
mathematical model of human expectations.
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Here, we employ recent models from cognitive science and statistical learning to
quantitatively study perceived information. In particular, our experimental results
build upon a long line of research in cognitive science linking human reaction times to
information processing (330, 387) as well as efforts in statistical learning investigating
the relationship between human expectations and the network structure of probabilistic
transitions (147, 180, 217, 351, 360, 362, 419, 445, 480, 576, 584). Additionally, our
analytical results leverage mathematical models of human expectations that have roots
in temporal context and temporal difference learning (247, 324) and also appear in
reinforcement learning (170, 451) and statistical learning (419, 445, 584). Using these
models of human expectations P̂, we are able to quantify the amount of information
h- log P̂i that a human perceives when observing a sequence of stimuli.

7.8.2 Perceived information

We introduce a specific definition for the information of a sequence of stimuli as
perceived by a human observer. We assume that the sequence is generated according
to a Markov process with transition probability matrix P. The amount of information
produced by a transition from one stimulus i to another stimulus j is - logPij (603). To
quantify the amount of information produced by the entire sequence (per stimulus),
one averages this quantity over the Markov process (161),

h- logPijiP = -
X

i

⇡i

X

j

Pij logPij, (7.2)

where ⇡ is the stationary distribution defined by the stationary condition ⇡| = ⇡|P.
The average quantity in Eq. (9.1) is known as the entropy rate of the sequence, although
it is often referred to simply as the entropy, and it is denoted by S(P).

While the entropy rate quantifies the amount of information produced by a sequence,
we are interested in studying the amount of information that a human perceives when
observing such a sequence. Consider a human observer with expectations based on an
internal estimate of the transition probabilities P̂. When observing a transition from one
stimulus i to another stimulus j, the observer perceives - log P̂ij bits of information,
which, when averaged over the Markov process, takes the form

h- log P̂ijiP = -
X

i

⇡i

X

j

Pij log P̂ij. (7.3)

This quantity is the cross entropy rate (or simply the cross entropy) S(P, P̂) between the
Markov process P and the observer’s expectations P̂.

7.8.2.1 Cross entropy

If the observer’s expectations are exact (that is, if P̂ = P), then the cross entropy
(Eq. (7.3)) reduces to the entropy (Eq. (9.1)); in other words, if the observer correctly
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anticipates the frequency of stimuli, then the amount of information they perceive
equals the amount of information produced by the sequence itself. However, if the
observer’s expectations differ from reality (that is, if P̂ 6= P), then the observer perceives
additional information. To see this relationship, we consider the simple identity,

S(P, P̂) = S(P) +DKL(P||P̂), (7.4)

where DKL(P||P̂) is the Kullback-Leibler (KL) divergence between P and P̂, defined by

DKL(P||P̂) = h- log
P̂ij

P̂ij
iP = -

X

i

⇡i

X

j

Pij log
P̂ij
Pij

. (7.5)

Gibbs’ inequality (161) states that DKL(P||P̂) > 0 for all P and P̂, and that DKL(P||P̂) = 0

only if P̂ = P. Therefore, we see that the perceived information (or cross entropy) is
lower-bounded by the produced information (or entropy).

7.8.2.2 Random walks on a network

Every stationary Markov process is equivalent to a random walk on an underlying
(possibly weighted, directed) network, where each state is encoded as a node in
the network. Specifically, given a transition probability matrix P, one can choose an
adjacency matrix G such that

Pij =
1

kout
i

Gij, (7.6)

where kout
i

=
P

j
Gij is the out-degree of node i. To develop a number of analytic

results, we briefly consider the special case of an undirected network. In this case, the
out-degree of a node i is referred to simply as its degree ki. If G is connected, then
there exists a unique stationary distribution over nodes, and it is proportional to the
degree vector, such that ⇡ = 1

2E
k, where E = 1

2

P
ij
Gij is the number of edges in the

network. Therefore, for random walks on a connected, undirected network, we find
that the cross entropy can be written as

S(P, P̂) = -
1

2E

X

ij

Gij log P̂ij, (7.7)

reflecting a weighted average of - log P̂ij over the edges in the network. Moreover, if we
further restrict our focus to unweighted networks, then the entropy takes a particularly
simple form (263):

S(P) =
1

2E

X

i

ki logki. (7.8)

In this case, it is clear that the entropy of a random walk is uniquely defined by the
degree sequence of the network (161), a result that is verified numerically for real
networks in Fig. 7.2d.
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7.8.3 Human expectations

When observing sequences of stimuli, humans constantly rely on their internal estimate
of the transition structure to anticipate what is coming next (330, 343, 485, 635, 711).
Indeed, building expectations about probabilistic relationships allows humans to
perform abstract reasoning (99), produce language (227), develop social intuition (272,
667), and segment streams of stimuli into self-similar parcels (554). Moreover, as
discussed above, a person’s internal expectations, defined by the estimated transition
probability matrix P̂, determine the amount of information S(P, P̂) that they receive
from a transition structure defined by P. To study the cross entropy S(P, P̂), we require
a model P̂ = F(P) of how humans internally estimate transition structures in the world
around them.

7.8.3.1 Temporal integration of stimuli

Models describing how humans learn and estimate transition structures typically stem
from Bayesian inference (272, 445, 524, 658) or notions of hierarchical learning (147, 180,
444, 480). A common thread across many models is that humans relate stimuli that
are not directly adjacent in time (485, 584). These non-adjacent relationships have been
hypothesized to reflect planning for the future (170, 247), context-dependent memory
effects (324, 340), and even errors in optimal Bayesian learning (419, 445). Independent
of the underlying mechanisms, the fact that humans relate non-adjacent stimuli results
in a common functional form for the expectations P̂ where the true transition structure
P is integrated over time. Mathematically, this means that P̂ includes higher powers of
P:

P̂ = C(f(0)P+ f(1)P2 + . . .) = C
1X

t=0

f(t)Pt+1, (7.9)

with progressively higher powers down-weighted by a decreasing function f(t) > 0,
where C = (

P1
t=0

f(t))-1 is a normalization constant. We remark that P̂ in Eq. 7.9 is
guaranteed to converge as long as the sum

P1
t=0

f(t) converges.
There exist a number of simple choices for the function f(t). For example, if people’s

integration of the transition structure drops off as a power law, then we have f(t) =
(t+ 1)-↵ with power-law exponent ↵ > 1. Instead, if the integration drops off with the
factorial of t (that is, if f(t) = 1/t!), then P̂ = e-1PeP, where eP is the matrix exponential.
We remark that this model for P̂ is nearly equivalent to the communicability of P from
graph theory (209), which has recently been used to model human expectations (250).
In Sec. 7.8.8.2 we study the information properties of real networks under these
alternative models of human expectations, finding qualitatively equivalent results to
those described in the main text.
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7.8.3.2 Exponential model

Throughout the main text, we focus on a specific model for P̂ in which the integration
of the transition structure drops off exponentially, such that f(t) = ⌘t, where ⌘ 2 (0, 1)
is the integration constant. This model is closely related to the successor representation
from reinforcement learning (170, 451), which can be derived from temporal context
and temporal difference learning (247), and can independently be shown to arise from
errors in human cognition (419). The model takes the following concise analytic form,

P̂ =

 1X

t=0

⌘t

!-1 1X

t=0

⌘tPt+1

= (1- ⌘)P
1X

t=0

(⌘P)t (7.10)

= (1- ⌘)P(I- ⌘P)-1,

where the second equality follows by noticing that
P1

t=0
⌘t = 1/(1- ⌘) and the third

equality follows from the fact that
P1

t=0
(⌘P)t converges to (I-⌘P)-1 since the spectral

radius ⇢(⌘P) = ⌘ is less than one. In the limit ⌘! 0, we see that P̂ ! P, and hence the
estimate becomes equivalent to the true transition structure P (Fig. 7.6a). By contrast,
in the limit ⌘ ! 1, we find that P̂ ! 1⇡|, where 1 is the vector of all ones and ⇡ is
the stationary distribution, such that the expectations lose all resemblance to the true
structure (Fig. 7.6a). For intermediate values of ⌘, higher-order features of the network,
such as communities of densely-connected nodes, maintain much of their probability
weight, while some of the fine-scale features, like the edges between communities, fade
away (Fig. 7.6a). This strengthening of expectations for transitions within communities
relative to transitions between communities is precisely the effect we observe in human
reaction times (Fig. 7.1e).

In order to make quantitative predictions for the KL divergence DKL(P||P̂), it is useful
to have an estimate for the integration parameter ⌘ based on real human data. We
estimate ⌘ by making predictions for subjects’ reaction times and then minimizing the
prediction error with respect to ⌘. Given a sequence of nodes x1, . . . , xt-1, we note
that the reaction to the next node xt is determined by the perceived information of
the transition from xt-1 to xt, with expectations calculated at time t- 1. Formally,
this perceived information is given by - log P̂xt-1,xt

, and we make the following linear
prediction for the reaction time,

r̂(t) = r0 - r1 log P̂xt-1,xt
, (7.11)

where the intercept r0 represents a person’s minimum average reaction time (with
perfect anticipation of the next stimulus, P̂xt-1,xt

= 1) and the slope r1 quantifies
the strength of the relationship between a person’s reactions and their perceived
information, measured in units of time per bit. Before estimating the model parameters,
we first regress out the dependencies of each subject’s reaction times on the button
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Figure 7.6: Estimated model parameters relating human expectations to reaction times. (a)
Human expectations P̂ for the modular network. For ⌘! 0, expectations become exact (left;
10% of subjects), while for ⌘ ! 1, expectations become all-to-all, losing any resemblance
to the true structure (right; 21% of subjects). At intermediate values of ⌘, the communities
maintain probability weight, while expectations for cross-cluster transitions weaken (center;
69% of subjects). (b-d) Distributions of model parameters estimated from subjects’ reaction
times. Distributions are over all 518 completed sequences. For the integration parameter ⌘
(b), 53 subjects were best described as having exact representations (⌘ ! 0) and 107 lacked
any notion of the transition structure (⌘! 1), while across all subjects the average value was
⌘ = 0.80. The intercept r0 is mostly positive (b), with an average value of 743 ms. The slope r1
is also mostly positive (d), with an average value of 50 ms/bit.

combinations, trial number, experimental stage, and recency using a mixed effects
model of the form ‘RT ⇠ log(Trial) ⇤ Stage + Target + Recency + (1 + log(Trial) ⇤
Stage+Recency | ID)’, where RT is the reaction time, Trial is the trial number between
1 and 1500 (we found that log(Trial) was far more predictive of subjects’ reaction times
than the trial number itself), Stage is the stage of the experiment (either one or two),
Target is the target button combination, Recency is the number of trials since the last
instance of the current stimulus, and ID is each subject’s unique ID. Then, to estimate
the parameters ⌘, r0, and r1 that best describe a subjects’ reaction times, we minimize

the RMS error
q

1

T

P
t
(r(t)- r̂(t))2, where r(t) is the reaction time on trial t after

regressing out the above dependencies and T is the number of trials in the experiment.
The distributions of the estimated parameters are shown in Fig. 7.6b-d. Among the 518
completed sequences (across 363 unique subjects), 53 were best described as having
expectations that exactly matched the transition structure (⌘! 0) and 107 seemed to



7.8 supplementary material 168

a Modular network

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

1

C
h
ri

s
L
yn

n
M

ay
24

,
20

19

-l
og

hk
i

�

-lo
g

P̂
ij

⌦ -lo
g

P̂
ij↵ P

5

C
h
ri

s
L
yn

n
M

ay
24

,
20

19

-l
og

hk
i

�

-lo
g

P̂
ij

⌦ -lo
g

P̂
ij↵ P

5

C
ro

ss
 e

nt
ro

py

Chris Lynn April 17, 2019

hello

Pij = Prob( j | i ) =
1
ki

Gij

�

1

Modular network

All k=4 networks
Average

Internal
Boundary
Cross-cluster

b c

Figure 7.7: Network effects on human reaction times beyond entropy. (a) Modular network
with three modules of five nodes each. By symmetry the network contains three distinct types of
edges: those deep within communities (blue), those at the boundaries of communities (purple),
and those between communities (red). (b) Perceived information - log P̂ij for the three edge
types as a function of ⌘. Across all values of ⌘, the perceived information is highest for cross-
cluster edges, followed by boundary edges, and lowest for internal edges, thus explaining the
observed differences in human reaction times (Fig. 7.1e). (c) Cross entropy (or network-averaged
perceived information) h- log P̂ijiP as a function of ⌘ for the modular network (green) and all
k-4 networks (the grey region denotes the range and the dashed line denotes the mean). The
modular network maintains nearly the lowest cross entropy among k-4 networks across all
values of ⌘, thereby explaining the overall decrease in reaction times in the modular network
relative to random k-4 networks (Fig. 7.1f).

lack any notion of the transition structure whatsoever (⌘! 1), with an overall average
value of ⌘ = 0.80.

Equipped with the model of human expectations in Eq. (7.10), we can make quanti-
tative predictions for the perceived information of different transition structures. For
example, considering the three types of transitions in the modular network (Fig. 7.7a),
we find across all values of ⌘ that the perceived information - log P̂ij is highest for
transitions between communities, followed by transitions at the boundaries of commu-
nities, and lowest for transitions deep within communities (Fig. 7.7b). This prediction
precisely matches the variations in reaction times for the different transitions observed
in our human experiments (Fig. 7.1e). Furthermore, we find that the average perceived
information (or cross entropy) h- log P̂ijiP is lower in the modular network than almost
any other network of the same entropy across all values of ⌘ (Fig. 7.7c). This final
prediction explains the observed decrease in reaction times in the modular network
relative to random entropy-preserving networks (Fig. 7.1f).

7.8.4 Network effects on reaction times

In order to directly probe the information that humans perceive, we employ an experi-
mental framework recently developed in statistical learning (351, 360, 362, 419, 584).
Specifically, we present human subjects with sequences of stimuli on a computer screen,
each stimulus depicting a row of five grey squares with one or two of the squares
highlighted in red (Fig. 7.1a, left). In response to each stimulus, subjects are asked to
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press one or two computer keys mirroring the highlighted squares (Fig. 7.1a, right).
Each of the 15 different stimuli represents a node in an underlying transition network,
upon which a random walk stipulates the sequential order of stimuli (Fig. 7.1b). By
measuring the speed with which a subject responds to each stimulus, we can infer how
much information they are processing – a fast reaction reflects an unsurprising (or
uninformative) transition, while a slow reaction reflects a surprising (or informative)
transition (330, 351, 387, 419, 434, 635).

In order to extract the effects of network structure on subjects’ reaction times, we
use linear mixed effects models, which have become prominent in human research
where many measurements are made for each subject (39, 582). To fit our mixed effects
models and to estimate the statistical significance of each effect we use the fitlme

function in MATLAB (R2018a). In what follows, when referring to our mixed effects
models, we adopt the standard R notation (65).

7.8.4.1 Entropic effect

We first investigate the effect of produced information on subjects’ reaction times.
For undirected and unweighted networks, the produced information (or surprisal)
for a single transition from a node i to one of i’s neighbors is logki, where ki is
the degree of node i. To study a range of surprisal values, we consider completely
random networks in which the node degrees are allowed to vary (specifically, we
consider random networks with N = 15 nodes and E = 30 edges). We regress out
the dependencies of each subject’s reaction times on the button combinations, trial
number, experimental stage, and recency using a mixed effects model with the formula
‘RT ⇠ log(Trial) ⇤Stage+ Target+Recency+(1+ log(Trial) ⇤Stage+Recency | ID)’,
where RT is the reaction time, Trial is the trial number between 1 and 1500, Stage is
the stage of the experiment (either one or two), Target is the target button combination,
Recency is the number of trials since last observing a node (41), and ID is each subject’s
unique ID. After regressing out these biomechanical dependencies, we find that subjects’
average reaction times following nodes of a given degree are accurately predicted by
the produced information (Fig. 7.1c), with a Pearson correlation of rp = 0.99 (p < 0.001)
and a slope of 32 ms/bit.

Additionally, to take into account variations in subjects’ reaction times rather than
simply studying average reaction times, we employ a mixed effects model of the form
‘RT ⇠ log(Trial) ⇤ Stage+ Target+ Recency+ Surprisal+ (1+ log(Trial) ⇤ Stage+
Recency + Surprisal | ID)’, where Surprisal is the logarithm of the degree of the
preceding node. The mixed effects model is summarized in Tab. 7.2, reporting a 26 ms
increase in reaction times for each additional bit of produced information. We remark
that this bit rate is close to that estimated from subjects’ average reaction times in
random graphs (32 ms/bit; Fig. 7.1c) and is also comparable to the bit rate estimated
from our linear prediction of subjects’ reaction times in constant-degree graphs (50
ms/bit; Fig. 7.6d).
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1324.8± 49.6 26.73 < 0.001 ⇤ ⇤ ⇤
log(Trial) -89.6± 5.8 -15.41 < 0.001 ⇤ ⇤ ⇤

Stage -538.9± 54.1 -9.96 < 0.001 ⇤ ⇤ ⇤
Recency 1.9± 0.1 21.63 < 0.001 ⇤ ⇤ ⇤
Surprisal 26.1± 4.1 6.39 < 0.001 ⇤ ⇤ ⇤

log(Trial):Stage 78.2± 6.6 11.91 < 0.001 ⇤ ⇤ ⇤

Table 7.2: Mixed effects model measuring the effect of produced information on human
reaction times. We find a significant 26 ms increase in reaction times (n = 177) for each
additional bit of produced information, or surprisal (grey). All effects are significant with
p-values less than 0.001 (⇤ ⇤ ⇤).

7.8.4.2 Extended cross-cluster effect

We next investigate reaction time patterns that are driven by perceived information
beyond the information produced by a sequence. To experimentally control for the
information produced by transitions, we focus on networks of constant degree 4
(N = 15 and E = 30). Specifically, we consider the modular network shown in Fig.
7.7a, consisting of three communities or clusters comprised of five nodes each. Recent
research has shown that people can detect transitions between the clusters (584) and
that cross-cluster transitions yield increases in reaction times relative to within-cluster
transitions (351, 419). These behaviors are surprising in light of the fact that all edges
in the network have identical transition probabilities and therefore produce identical
amounts of information. Here, we extend these results to include all three of the distinct
types of transitions in the modular network (Fig. 7.7a): those deep within communities
(internal transitions), those at the boundaries of communities (boundary transitions),
and those between communities (cross-cluster transitions).

We use a mixed effects model with the formula ‘RT ⇠ log(Trial) ⇤ Stage+ Target+
Recency+ Trans_Type+ (1+ log(Trial) ⇤ Stage+Recency | ID)’, where Trans_Type
represents the type of transition (either internal, boundary, or cross-cluster). We find
a 39 ms increase in reaction times for cross-cluster transitions relative to internal
transitions within clusters (Tab. 7.3), a 31 ms increase in reaction times for cross-cluster
transitions relative to boundary transitions within clusters (Tab. 7.4), and a 7 ms
increase in reaction times for boundary transitions relative to internal transitions within
clusters (Tab. 7.5). Notably, this hierarchy of reaction times (Fig. 7.1g) is the same as
that predicted by our cross entropy framework (Fig. 7.7b).

7.8.4.3 Modular effect

We finally investigate the effects of perceived information averaged over all transitions
in a network, defined by the cross entropy in Eq. (7.3). To do so, we compare reaction
times in the modular network with reaction times in random k-4 networks. We remark
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1365.6± 46.8 29.15 < 0.001 ⇤ ⇤ ⇤
log(Trial) -86.9± 5.2 -16.75 < 0.001 ⇤ ⇤ ⇤

Stage -549.2± 52.9 -10.38 < 0.001 ⇤ ⇤ ⇤
Recency 1.5± 0.1 18.40 < 0.001 ⇤ ⇤ ⇤

Trans_Type 38.7± 2.3 16.99 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 63.5± 5.8 11.01 < 0.001 ⇤ ⇤ ⇤

Table 7.3: Mixed effects model measuring the difference in reaction times between internal
and cross-cluster transitions. We find a significant 39 ms increase in reaction times (n = 173)
for cross-cluster transitions relative to internal transitions within communities (grey). All effects
are significant with p-values less than 0.001 (⇤ ⇤ ⇤).

Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1349.3± 45.8 29.48 < 0.001 ⇤ ⇤ ⇤
log(Trial) -86.0± 5.2 -16.39 < 0.001 ⇤ ⇤ ⇤

Stage -495.41± 49.6 -9.98 < 0.001 ⇤ ⇤ ⇤
Recency 1.6± 0.1 23.28 < 0.001 ⇤ ⇤ ⇤

Trans_Type 30.8± 2.1 14.50 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 62.1± 5.8 10.76 < 0.001 ⇤ ⇤ ⇤

Table 7.4: Mixed effects model measuring the difference in reaction times between bound-
ary and cross-cluster transitions. We find a significant 31 ms increase in reaction times
(n = 173) for cross-cluster transitions relative to boundary transitions within communities
(grey). All effects are significant with p-values less than 0.001 (⇤ ⇤ ⇤).

Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1333.3± 44.3 30.13 < 0.001 ⇤ ⇤ ⇤
log(Trial) -84.0± 4.9 -17.11 < 0.001 ⇤ ⇤ ⇤

Stage -464.8± 47.2 -9.84 < 0.001 ⇤ ⇤ ⇤
Recency 1.5± 0.1 24.55 < 0.001 ⇤ ⇤ ⇤

Trans_Type 6.6± 1.3 4.96 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 60.0± 5.4 11.12 < 0.001 ⇤ ⇤ ⇤

Table 7.5: Mixed effects model measuring the difference in reaction times between internal
and boundary transitions within clusters. We find a significant 7 ms increase in reaction times
(n = 173) for boundary transitions relative to internal transitions within communities (grey).
All effects are significant with p-values less than 0.001 (⇤ ⇤ ⇤).

that the entropy (defined in Eq. (9.1)) is identical across all graphs considered. We
use a mixed effects model of the form ‘RT ⇠ log(Trial) ⇤ Stage+ Target+ Recency+
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1195.0± 48.8 24.49 < 0.001 ⇤ ⇤ ⇤
log(Trial) -71.9± 4.9 -14.61 < 0.001 ⇤ ⇤ ⇤

Stage -405.3± 36.9 -10.98 < 0.001 ⇤ ⇤ ⇤
Recency 1.7± 0.1 19.65 < 0.001 ⇤ ⇤ ⇤

Network_Type 23.5± 6.9 3.39 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 49.0± 5.1 9.61 < 0.001 ⇤ ⇤ ⇤

Table 7.6: Mixed effects model measuring the difference in reaction times between the
modular network and random k-4 networks. We find a significant 24 ms increase in reaction
times (n = 84) for random k-4 networks (that is, networks of equal entropy) relative to the
modular network (grey). All effects are significant with p-values less than 0.001 (⇤ ⇤ ⇤).

Network_Type+ (1+ log(Trial) ⇤ Stage+ Recency | ID)’, where Network_Type rep-
resents the type of network (either modular of random k-4). The estimated mixed
effects model is summarized in Tab. 7.6, reporting a 24 ms increase in reaction times
for random degree-preserving networks relative to the modular network. Notably, this
effect is predicted by our cross entropy framework (Fig. 7.7c). Moreover, this result
provides direct evidence that, even after controlling for the entropy of a network,
modular structure reduces the total amount of information that humans perceive when
observing a sequence of stimuli.

7.8.5 Network effects on errors

In addition to measuring the effects of network structure on subjects’ reaction times,
we can also investigate variations in subjects’ error rates. Here, we study the same
entropic, extended cross-cluster, and modular effects as in Sec. 7.8.4 above, but on error
rates instead of reaction times.

7.8.5.1 Entropic effect

We first investigate the effect of produced information (or surprisal) logki on subjects’
error rates. Specifically, we consider the same random networks as in Sec. 7.8.4.1. To
measure the effect of produced information on error rates, we estimate a mixed effects
model of the form ‘Error ⇠ log(Trial) ⇤ Stage+ Target+ Recency+ Surprisal+ (1+
log(Trial) ⇤Stage+Recency+Surprisal | ID)’, where Error equals one for error trials
and zero for correct trials, and the other variables have been defined previously. The
estimated model is summarized in Tab. 7.7, with a significant 0.3% increase in errors
for each additional bit of produced information.
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.078± 0.009 8.73 < 0.001 ⇤ ⇤ ⇤
log(Trial) -0.007± 0.001 -5.57 < 0.001 ⇤ ⇤ ⇤

Stage -0.037± 0.011 -3.30 < 0.001 ⇤ ⇤ ⇤
Recency 0.001± 0.000 14.01 < 0.001 ⇤ ⇤ ⇤
Surprisal 0.003± 0.001 2.74 0.006 ⇤⇤

log(Trial):Stage 0.005± 0.002 3.34 < 0.001 ⇤ ⇤ ⇤

Table 7.7: Mixed effects model measuring the effect of produced information on error rates.
We find a significant 0.3% increase in errors (n = 177) for each additional bit of produced
information, or surprisal (grey). The significance column indicates p-values less than 0.001
(⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤).

Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.068± 0.010 7.04 < 0.001 ⇤ ⇤ ⇤
log(Trial) -0.005± 0.002 -3.30 < 0.001 ⇤ ⇤ ⇤

Stage -0.035± 0.013 -2.62 0.009 ⇤⇤
Recency 0.000± 0.000 9.73 < 0.001 ⇤ ⇤ ⇤

Trans_Type 0.009± 0.002 5.69 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 0.006± 0.002 3.03 0.002 ⇤⇤

Table 7.8: Mixed effects model measuring the difference in error rates between internal and
cross-cluster transitions. We find a significant 0.9% increase in errors (n = 173) for cross-cluster
transitions relative to internal transitions within communities (grey). The significance column
indicates p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤).

7.8.5.2 Extended cross-cluster effect

We next study variations in error rates that are driven by perceived information after
controlling for information produced by a sequence. Considering once again the modu-
lar network in Fig. 7.8a, we measure the differences in error rates between the different
types of transitions. We use a mixed effects model of the form ‘Error ⇠ log(Trial) ⇤
Stage + Target + Recency + Trans_Type + (1 + log(Trial) ⇤ Stage + Recency | ID)’,
where Trans_Type denotes the type of transition (either internal, boundary, or cross-
cluster). We find a significant 0.9% increase in errors for cross-cluster transitions relative
to internal transitions within clusters (Tab. 7.8), a significant 0.6% increase in errors
for cross-cluster transitions relative to boundary transitions within clusters (Tab. 7.9),
and a significant 0.2% increase in errors for boundary transitions relative to internal
transitions within clusters (Tab. 7.10). Notably, we find the same hierarchy of effects
on error rates (Fig. 7.8) as for reaction times (Fig. 7.1g) and as predicted by our cross
entropy framework (Fig. 7.7b).
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Figure 7.8: Effects of modular topology on error rates. (a) Modular network with three types
of edges: internal edges within communities (dark blue), boundary edges within communities
(purple), and cross-cluster edges between communities (light blue). (b) Differences in error
rates between the different types of transitions; we find significant differences in error rates
between all three types of transitions (n = 173 subjects).

Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.075± 0.008 8.91 < 0.001 ⇤ ⇤ ⇤
log(Trial) -0.006± 0.001 4.68 < 0.001 ⇤ ⇤ ⇤

Stage -0.044± 0.013 -3.53 < 0.001 ⇤ ⇤ ⇤
Recency 0.000± 0.000 12.82 < 0.001 ⇤ ⇤ ⇤

Trans_Type 0.006± 0.001 4.38 < 0.001 ⇤ ⇤ ⇤
log(Trial):Stage 0.008± 0.002 3.88 < 0.001 ⇤ ⇤ ⇤

Table 7.9: Mixed effects model measuring the difference in error rates between boundary
and cross-cluster transitions. We find a significant 0.6% increase in errors (n = 173) for cross-
cluster transitions relative to boundary transitions within communities (grey). All effects are
significant with p-values less than 0.001 (⇤ ⇤ ⇤).

7.8.5.3 Modular effect

Finally, we investigate the effect of the average perceived information (or cross entropy)
of a network, while still controlling for produced information. Specifically, we compare
subjects’ reaction times in the modular network with reaction times in random k-
4 networks, noting that the average produced information (or entropy) is identical
across all graphs considered. We employ a mixed effects model of the form ‘Error ⇠
log(Trial) ⇤ Stage+ Target+ Recency+Network_Type+ (1+ log(Trial) ⇤ Stage+
Recency | ID)’, where Network_Type indicates the type of network (either modular
of random k-4). Although we find a 0.2% increase in errors for random k-4 networks
relative to the modular network, this difference is not significant (Tab. 7.11).
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.070± 0.008 8.63 < 0.001 ⇤ ⇤ ⇤
log(Trial) -0.006± 0.001 -4.11 < 0.001 ⇤ ⇤ ⇤

Stage -0.034± 0.011 -3.00 0.003 ⇤⇤
Recency 0.000± 0.000 13.81 < 0.001 ⇤ ⇤ ⇤

Trans_Type 0.002± 0.001 2.66 0.008 ⇤⇤
log(Trial):Stage 0.006± 0.002 3.45 < 0.001 ⇤ ⇤ ⇤

Table 7.10: Mixed effects model measuring the difference in error rates between internal and
boundary transitions within clusters. We find a significant 0.2% increase in errors (n = 173) for
boundary transitions relative to internal transitions within communities (grey). The significance
column indicates p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤).

Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.038± 0.010 3.83 < 0.001 ⇤ ⇤ ⇤
log(Trial) -0.004± 0.001 -2.49 0.013 ⇤

Stage -0.034± 0.011 -2.96 0.003 ⇤⇤
Recency 0.000± 0.000 9.98 < 0.001 ⇤ ⇤ ⇤

Network_Type 0.002± 0.002 0.96 0.329
log(Trial):Stage 0.005± 0.002 2.82 0.005 ⇤⇤

Table 7.11: Mixed effects model measuring the difference in error rates between the modular
network and random k-4 networks. We do not find a significant difference in error rates
(n = 84) between the modular network and random k-4 networks (grey). The significance
column indicates p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and less than 0.05 (⇤).

7.8.6 Modular effect on learning rate

In the previous two sections, we investigated the effects of network structure on human
reaction times and error rates, without considering the learning dynamics. Here we
study the effect of network structure on learning rate, or how quickly subjects’ reaction
times decrease for a given increase in the number of trials. Specifically, we seek to
determine which type of network is faster to learn: the modular network (Fig. 7.7a) or
the random k-4 networks (Fig. 7.1h). To do so, we estimate a mixed effects model of
the form ‘RT ⇠ log(Trial) ⇤ Stage+ log(Trial) ⇤Network_Type+ Target+Recency+
(1+ log(Trial) ⇤ Stage+ Recency | ID)’. We note that the only difference between this
model and that used in Sec. 7.8.4.3 is the interaction term between log(Trial) and
Network_Type, which tells us how the network type impacts the effect of log(Trial)
on reaction times (or the learning rate). The estimated model is summarized in Tab.
7.12, reporting a significant 9 ms increase in reaction times for each e-fold increase in
Trial for the random k-4 networks relative to the modular network. Intuitively, this
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1222.6± 50.9 24.00 < 0.001 ⇤ ⇤ ⇤
log(Trial) -76.0± 5.3 -14.21 < 0.001 ⇤ ⇤ ⇤

Stage -401.1± 36.6 -10.95 < 0.001 ⇤ ⇤ ⇤
Recency 1.7± 0.1 19.65 < 0.001 ⇤ ⇤ ⇤

Network_Type -35.9± 30.9 -1.16 0.245
log(Trial):Stage 48.4± 5.1 9.58 < 0.001 ⇤ ⇤ ⇤

log(Trial):Network_Type 8.8± 4.4 1.98 0.048 ⇤

Table 7.12: Mixed effects model measuring the difference in learning rates between the
modular network and random k-4 networks. For each e-fold increase in the number of trials,
we find a significant 9 ms increase in reaction times (n = 84) for random k-4 networks relative
to the modular network (grey). The significance column indicates p-values less than 0.001 (⇤ ⇤ ⇤),
less than 0.01 (⇤⇤), and less than 0.05 (⇤).

means that the learning rate is faster (that is, reaction times decrease more for each
increase in Trial) for the modular network than for the k-4 networks.

7.8.7 Individual differences in network effects

In the previous three sections, we have discussed the fixed effects of network structure
on human behavior, which do not vary from person to person. However, for each
network effect, we also find a significant amount of variation between individuals.
Specifically, for each of the reaction time effects in Sec. 7.8.4 and error rate effects in
Sec. 7.8, we fit a mixed effects model that includes a random (or mixed) effect term that
differs for each subject. In this way, we are able to estimate the effect size for each
participant in our experiments. For all of the reaction time effects (Fig. 7.9a-e) and
all of the error rate effects (Fig. 7.9f-j), we find a significant standard deviation in the
distribution of network effects (p < 0.05), indicating that each network effect exhibits
significant inter-subject variability. Moreover, we find that many of the network effects
on reaction times and error rates are significantly correlated across subjects (Fig. 7.10),
indicating that they are likely to be driven by common underlying mechanisms.

To understand what might be driving these individual differences in behavior, it
helps to recall our linear predictions of subjects’ reaction times r̂(t) = r0- r1 log P̂xt-1,xt

,
where r̂(t) is the predicted reaction time on trial t and P̂xt-1,xt

is the model of human
transition probability estimates, where xt-1 and xt are the stimuli on trials t- 1 and
t (see Sec. 7.8.3.2). The predictions contain three parameters, which are estimated
separately for each subject: the inaccuracy parameter ⌘, which is included in P̂ (Fig.
7.6b), the intercept r0 (Fig. 7.6c), and the slope r1 (Fig. 7.6d). Among these three
parameters, the inaccuracy ⌘ has drawn the most attention in the literature, having
been shown to correlate with working memory performance (419), drive differences
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Figure 7.9: Distributions of network effects over individual subjects. (a-e) Distributions over
subjects of the different reaction time effects: the entropic effect (n = 177), or the increase
in reaction times for increasing produced information (a); the extended cross-cluster effects
(n = 173), or the difference in reaction times between internal and cross-cluster transitions
(b), between boundary and cross-cluster transitions (c), and between internal and boundary
transitions (d) in the modular graph; and the modular effect (n = 84), or the difference in
reaction times between the modular network and random k-4 networks (e). (f -j) Distributions
over subjects of the different effects on error rates: the entropic effect (f ), the extended cross-
cluster effects (g-i), and the modular effect (j).
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Figure 7.10: Correlations between different network effects across subjects. (a) Pearson cor-
relations between the entropic and extended cross-cluster effects on reaction times. (b) Pearson
correlations between the entropic and extended cross-cluster effects on error rates. In a and
b, the modular effects on reaction times and error rates are not shown because they were
measured in a different population of subjects. (c) For each network effect, we show the Pearson
correlation between the corresponding reaction time effect and error rate effect. Statistically
significant correlations are indicated by p-values less than 0.001 (⇤ ⇤ ⇤), less than 0.01 (⇤⇤), and
less than 0.05 (⇤).

in behaviors in reinforcement learning tasks (246), and determine the time-scale of
episodic memories in the temporal context model (247).

Here, we consider the possible role of ⌘ in driving the individual differences in
behaviors observed in Fig. 7.9. We first note that we should not expect a monotonic
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relationship between ⌘ and any of the extended cross cluster effects (Fig. 7.9b-d,g-i)
or the modular effects (Fig. 7.9e,j). Indeed, all of these effects disappear in both the
high- and low-⌘ limits (Fig. 7.7b,c); for low ⌘, humans have exact representations of
the transition network and there will be no difference in the estimated probabilities of
different transitions in the modular network or any other k-4 network, while for high
⌘, human estimates of the transition probabilities become completely disordered and,
yet again, there is no difference in the estimated transition probabilities. However, for
random networks with non-uniform degrees (Fig. 7.1d), as ⌘ increases the estimate P̂ of
the transition network will become less accurate, and therefore the entropic effect (Fig.
7.1e) should become weaker. Indeed, we find a significant negative correlation between
⌘ and the entropic effect on reaction times (Spearman correlation rs = -0.25; p < 0.001);
we note that we use the Spearman correlation coefficient because ⌘ is far from normally
distributed (Fig. 7.6b). Together, these results demonstrate that there are individual
differences in sensitivity to network structure (Fig. 7.9), and that these differences may
be related to variations in the accuracy of people’s estimates of transition networks.

7.8.8 Real networks

In the main text, we show that real networks exhibit two consistent information
properties: they have high entropy and low KL divergence from human expectations.
When calculating the KL divergence, we use the model P̂ defined in Eq. (7.10) with ⌘

set to the average value from our human experiments (Fig. 7.6b). Additionally, in order
to draw on our analytical results (see Secs. 7.8.11 and 7.8.12), we focused on undirected
versions of the real networks. Here, we show that the central conclusions in the main
text concerning the information properties of real networks are robust to variations in
these choices. Specifically, we verify that the KL divergence of real networks remains
low for different values of ⌘ and different models for P̂ altogether, and we confirm that
the entropy remains high and the KL divergence remains low for directed versions of
the real networks.

7.8.8.1 Varying ⌘

We first investigate how the KL divergence varies as a function of the inaccuracy
parameter ⌘. To recall, the KL divergence, defined in Eq. (7.5), represents the inefficiency
due to a person’s expectations P̂. We consider the model of expectations used in the
main text, P̂ = (1- ⌘)P(I- ⌘P)-1, while varying the parameter ⌘ between zero and
one. We find that all of the real networks considered maintain a lower KL divergence
than fully randomized versions of the networks across all values of ⌘ (Fig. 7.11a). In
the limit ⌘! 0, the KL divergence of both real and randomized networks tends toward
zero (Fig. 7.11a), as expected. As ⌘ increases, the difference in efficiency between the
real and fully randomized networks grows (Fig. 7.11b). We also generate randomized
versions of the real networks that maintain identical entropies by preserving the degree
distribution. Even when compared against random networks with the same entropy,
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Figure 7.11: KL divergence of real networks for different values of ⌘. (a) KL divergence of
fully randomized versions of the real networks listed in Tab. 7.13 (Drand

KL ) compared with
the true value (Dreal

KL ) as ⌘ varies from zero to one. Every real networks maintains lower KL
divergence than the corresponding randomized network across all values of ⌘. (b) Difference
between the KL divergence of real and fully randomized networks as a function of ⌘. (c) KL
divergence of degree-preserving randomized versions of the real networks (Ddeg

KL ) compared
with Dreal

KL as ⌘ varies from zero to one. The real networks display lower KL divergence than the
degree-preserving randomized versions across all values of ⌘. (d) Difference between the KL
divergence of real and degree-preserving randomized networks as a function of ⌘. All networks
are undirected, and each line is calculated using one randomization of the corresponding real
network.

all of the real networks attain lower KL divergence across all values of ⌘ (Fig. 7.11c).
Just as for the fully randomized networks, the difference in efficiency between real and
entropy-preserving random networks grows as ⌘ increases (Fig. 7.11d). These results
confirm that our conclusions in the main text are robust to variations in the inaccuracy
parameter ⌘.

7.8.8.2 Different internal representations

Here, we study the KL divergence for different models of the human expectations P̂.
First, we consider the power-law model, defined by Eq. (7.9) with integration function
f(t) = (t+ 1)-↵, where ↵ 2 (1,1) is the single parameter. Varying ↵ between 1 and 10,
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Figure 7.12: KL divergence of real networks under the power-law model of human expecta-
tions. (a) KL divergence of fully randomized versions of the real networks listed in Tab. 7.13
(Drand

KL ) compared with the true value (Dreal
KL ). Expectations P̂ are defined as in Eq. (7.9) with

f(t) = (t+ 1)-↵, and we allow ↵ to vary between 1 and 10. The real networks maintain lower
KL divergence than the randomized network across all values of ↵. (b) Difference between the
KL divergence of real and fully randomized networks as a function of ↵. (c) KL divergence of
degree-preserving randomized versions of the real networks (Ddeg

KL ) compared with Dreal
KL as ↵

varies from 1 to 10. The real networks display lower KL divergence than the degree-preserving
randomized versions across all values of ↵. (d) Difference between the KL divergence of real
and degree-preserving randomized networks as a function of ↵. All networks are undirected,
and each line is calculated using one randomization of the corresponding real network.

we find that all of the real networks display lower KL divergence than fully randomized
versions for all values of ↵ (Fig. 7.12a). Moreover, this difference in efficiency grows
as ↵ decreases (Fig. 7.12b); that is, the difference in KL divergence increases as the
expectations P̂ integrate over longer time scales, which is analogous to ⌘ increasing.
Even when compared with random versions that preserve the entropy, the real networks
still exhibit lower KL divergence across all values of ↵ (Fig. 7.12c,d).

Second, we consider the factorial model for P̂, defined by Eq. (7.9) with integration
function f(t) = 1/t!. As discussed in Sec. 7.8.3.1, this model takes the analytic form
P̂ = e-1PeP, where eP is the matrix exponential, which is closely related to the
communicability of P (209, 250). Calculating the KL divergence, we find qualitatively
the same results as for the previous two models. Namely, when compared against
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Figure 7.13: KL divergence of real networks under the factorial model of human expecta-
tions. (a) KL divergence of fully randomized versions of the real networks listed in Tab. 7.13
(Drand

KL ) compared with the exact value (Dreal
KL ). Expectations P̂ are defined as in Eq. (7.9) with

f(t) = 1/t!. (b) KL divergence of degree-preserving randomized versions of the real networks
(Ddeg

KL ) compared with Dreal
KL . In both cases, the real networks maintain lower KL divergence

than the randomized versions. Data points and error bars (standard deviations) are estimated
from 10 realizations of the randomized networks.

both fully randomized and entropy-preserving (i.e., degree-preserving) randomized
versions, all of the real networks studied maintain a lower KL divergence (Fig. 7.13).
Taken together, the results of this and the previous subsections indicate that the low
KL divergence observed in real networks is robust to different choices for the specific
model of human expectations.

7.8.8.3 Directed networks

We now consider directed versions of the real networks. Among the 40 networks chosen
for analysis, 28 have directed versions (see Tab. 7.13). Analysis of directed networks
follows in much the same way as our previous analysis of undirected networks; the
only difference is that, when computing the entropy (Eq. 9.1) and KL divergence (Eq.
7.5), we calculate the stationary distribution ⇡ numerically by solving the eigenvector
equation ⇡| = ⇡|P. We find that most of the directed real networks have higher entropy
than completely randomized versions (Fig. 7.14a); the main exceptions are the citation
networks, which we discuss in further detail in Sec. 7.8.10. We also find that all of the
directed real networks have lower KL divergence than completely randomized versions
(Fig. 7.14b), where the expectations P̂ are calculated using the model in Eq. (7.10)

If we instead compare against randomized versions that preserve both the in- and out-
degrees of nodes, we see that the entropy of real networks remains relatively unchanged
(Fig. 7.14c); again, the citation networks as a group represent the strongest exception to
this result. Even when compared with degree-preserving randomized versions, all of
the directed real networks attain a lower KL divergence (Fig. 7.14d). Generally, these
results demonstrate that our conclusions regarding the information properties of real
networks also apply to directed networks: (i) their entropy is higher than completely
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Figure 7.14: Entropy and KL divergence of directed versions of real networks. (a) Entropy of
directed versions of the real networks listed in Tab. 7.13 (Sreal) compared with fully randomized
versions (Srand). Entropy is calculated directly from Eq. (9.1) with the stationary distribution
⇡ calculated numerically. (b) KL divergence of directed versions of the real networks (Dreal

KL )
compared with fully randomized versions (Drand

KL ). Expectations P̂ are defined as in Eq. (7.10)
with ⌘ set to the average value 0.80 from our human experiments. (c) Entropy of randomized
versions of directed real networks with in- and out-degrees preserved (Sdeg) compared with
Sreal. (d) KL divergence of degree-preserving randomized versions of directed real networks
(Ddeg

KL ) compared with Dreal
KL . Data points and error bars (standard deviations) are estimated

from 100 realizations of the randomized networks.

randomized versions and is primarily driven by the degree distribution, and (ii) their
KL divergence is lower than both completely randomized and degree-preserving
randomized versions.

7.8.9 Temporally evolving networks

In the main text, we studied the information properties of static communication
networks. However, many of these networks are inherently temporal in nature, evolving
over time to arrive at the final form that we observe today (317). This observation raises
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a number of interesting questions: How does the temporal nature of communication
networks affect their ability to communicate information? Moreover, do communication
networks evolve over time to optimize efficient communication?

To answer these questions, we consider temporally evolving versions of the real
networks studied in the main text. Among the 40 networks chosen for analysis, 19 have
temporal versions (see Tab. 7.13), including all of the language (noun transition) and
music (note transition) networks, as well as the Facebook network and the two arXiv
citation networks. For each network, we record a sequence of up to 100 subnetworks
representing different snapshots in the network’s evolution. For example, in the lan-
guage and music networks, each subnetwork represents the transitions between nouns
or notes up to a given point in the text or musical piece. Similarly, each subnetwork
for the Facebook and citation networks defines the social relationships or scientific
citations at a given point in the growth of the corresponding network.

We find that the communication networks maintain higher entropy (Fig. 7.15a) and
lower KL divergence (Fig. 7.15b) than completely randomized versions along almost the
entirety of their evolutionary processes. Additionally, when compared against degree-
preserving randomized versions, we find that the temporally evolving networks have
the same entropy (Fig. 7.15c), as expected, and still maintain lower KL divergence along
nearly the entire growth process (Fig. 7.15d). These results indicate that, even from
the earliest stages in their development, real communication networks are organized
to communicate large amounts of information (having high entropy) and to do so
efficiently (having low KL divergence from human expectations).

Yet, it remains unclear whether networks evolve over time to optimize efficient
communication. To answer this question, we first investigate how the difference between
the entropy of real networks and that of fully randomized versions changes over the
course of a network’s evolution (Fig. 7.16a). Interestingly, across all of the networks
considered, we find that this difference in information production increases nearly
monotonically as the networks grow, indicating that real communication networks
evolve over time to transmit larger and larger amounts of information. Second, we study
how the difference between the KL divergence of real networks and that of completely
randomized versions changes over the evolution of a network (Fig. 7.16b). Notably, the
music, social, and citation networks all evolve over time to minimize this difference,
thereby becoming more efficient. However, language networks display a markedly
different trajectory, minimizing their KL divergence (relative to randomized versions)
until about 10% of the way into their development, and then slowly growing to become
less efficient. This pattern indicates that transitions between nouns communicate
information most efficiently at the beginning of a text, and then become less efficient
(while communicating larger amounts of information) as the text progresses. Together,
these results suggest that communication networks evolve to (i) maximize the amount
of information being communicated and (ii), with the exception of language networks,
minimize the inefficiency of their communication.
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Figure 7.15: Entropy and KL divergence of temporally evolving versions of real networks.
(a) Entropy of temporally evolving versions of the real networks listed in Tab. 7.13 (Sreal)
compared with fully randomized versions (Srand). Each line represents a sequence of growing
networks and each symbol represents the final version of the network. (b) KL divergence of
evolving versions of the real networks (Dreal

KL ) compared with fully randomized versions (Drand
KL ).

Expectations P̂ are defined as in Eq. (7.10) with ⌘ set to the average value 0.80 from our human
experiments. (c) Entropy of temporally evolving versions of real networks (Sreal) compared
with degree-preserving randomized versions (Sdeg). (d) KL divergence of temporally evolving
versions of real networks (Dreal

KL ) compared with degree-preserving randomized versions (Ddeg
KL ).

Across all panels, each point along the lines represents an average over five realizations of the
randomized networks.

7.8.10 Real networks that do not support efficient communication

One of the central results of the paper is that real communication networks tend to
have two properties: (i) high entropy and (ii) low KL divergence from human ex-
pectations. Specifically, these results tend to hold relative to fully randomized and
degree-preserving randomized versions of the networks. However, it is useful to
consider instances when these general results break down; that is, examples of real
communication networks that either have low entropy or high KL divergence. Such
examples are important for two reasons: First, they illustrate that efficient communica-
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Figure 7.16: Evolution of the difference in entropy and KL divergence between real net-
works and randomized versions. (a) Difference between the entropy of temporally evolving
real networks (Sreal) and the entropy of fully randomized versions of the same networks (Srand)
plotted as a function of the fraction of the final network size. Each line represents a sequence
of growing networks that culminates in one of the communication networks studied in the
main text. (b) Difference between the KL divergence of temporally evolving real networks
(Dreal

KL ) and that of fully randomized versions (Drand
KL ) plotted as a function of the fraction of

the final network size. When calculating the KL divergences, the expectations P̂ are defined as
in Eq. (7.10) with ⌘ set to the average value 0.80 from our human experiments. Across both
panels, each point along the lines represents an average over five realizations of the randomized
networks.

tion (defined by high entropy and low KL divergence) is not a necessary property of all
real-world communication networks; and second, studying their properties reveals how
efficient communication can break down. In what follows, we present two examples
of real communication networks that do not support the efficient communication of
information, either by having low entropy (low information production) or high KL
divergence from human expectations (high inefficiency).

7.8.10.1 Directed citation networks

First, we consider directed versions of the citation networks studied in the main paper.
In the Sec. 7.8.8.3, we found that the directed versions of citation networks have
lower entropy than both fully randomized and degree-preserving randomized versions
(Fig. 7.14a,c), contradicting our general observation that real communication networks
have high entropy. Here we show that this contradiction stems from the inherently
temporal nature of citation networks; namely, the fact that directed edges tend to flow
backwards in time as more recent papers cite older papers. This temporal feature
causes newer papers to have a lower in-degree than older papers, thereby disrupting
the natural correlation between in- and out-degree in other real networks. For example,
we see in the arXiv Hep-Th citation network that the in- and out-degrees are only
weakly correlated (Fig. 7.17a), while for the Shakespeare language network, the in- and
out-degrees are tightly correlated (Fig. 7.17b).
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Figure 7.17: Comparison of directed citation and language networks. (a) Out-degrees kout
i

=P
j
Gij of nodes in the arXiv Hep-Th citation network compared with the in-degrees kin

i
=P

j
Gji of the same nodes; we find a weak Spearman’s correlation of rs = 0.18. (b) Out-degrees

compared with in-degrees of nodes in the Shakespeare language (noun transition) network; we
find a strong correlation rs = 0.92. (c) Entries in the stationary distribution ⇡i for different nodes
in the citation network compared with the node-level entropy Si; we find a weakly negative
correlation rs = -0.09. (d) Entries in the stationary distribution compared with node-level
entropies in the language network; we find a strong correlation rs = 0.87.

Since the in-degree of a node i roughly corresponds to the frequency with which
random walks visit i, we can think of the in-degrees kin as approximately determining
the stationary distribution ⇡. By contrast, the node-level entropy Si = -

P
j
Pij logPij

is determined by the out-degree of node i, since Pij =
1

k
out
i

Gij from Eq. (7.6). Since the
network-averaged entropy is simply an inner product of the stationary distribution
and the node-level entropy, S =

P
i
⇡iSi, this quantity is maximized in networks for

which ⇡i and Si are correlated. Returning to our previous examples, we find that
the stationary distribution and node-level entropy are weakly negatively correlated
in the citation network (Fig. 7.17c), whereas in the language network, the stationary
distribution and node entropy are tightly correlated (Fig. 7.17d). Thus, the apparent
contradiction between directed citation networks and our general result that real
networks have high entropy is primarily driven by the temporal nature of directed
edges in citation networks. Indeed, if one instead allows random walks to flow along
either direction of each edge, as in the undirected versions studied in the main text, we
find that citation networks do have high entropy (Fig. 7.2a). Therefore, the capacity of
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citation networks to communicate large amounts of information depends critically on
the ability of walks to hop both forward and backward along citations.

7.8.10.2 Language networks including all parts of speech

In the main text, we focus on language networks consisting of the transitions between
nouns in a given text. This choice to focus on nouns follows from existing literature
that distinguishes “content" words (such as nouns), which contain meaning, from
“grammatical" words (such as articles, conjunctions, and prepositions), which define
the structure of a sentence (225, 447). If we instead consider language (word transition)
networks that include all parts of speech, we find that these all-word transition networks
have both higher entropy and lower KL divergence than fully randomized versions,
aligning with the results from the main text (Fig. 7.3a,b). However, when compared to
degree-preserving randomized versions, we find that the all-word transition networks
have nearly the same KL divergence (Fig. 7.18a), with three of the seven networks
exhibiting KL divergences that are either higher or statistically indistinguishable from
the degree-preserving randomized versions. By contrast, the networks of transitions
between nouns studied in the main text all exhibit lower KL divergence than degree-
preserving randomized versions (Fig. 7.18b).

From the analytic and numerical results presented in the main text (Fig. 8.2e-h) and
Sec. 7.8.12, we know that decreases in KL divergence are largely driven by increases
in clustering. Indeed, for the all-word transition networks, we find that the average
clustering coefficients are consistently lower than for degree-preserving randomized
versions (Fig. 7.18c), thereby explaining their relatively high KL divergences (Fig. 7.18a).
To understand the low clustering (and therefore the high KL divergence) of the all-word
transition networks, it is helpful to consider the fact that words typically transition
from content words to grammatical words in order to maintain grammatical structure.
This hopping between content and grammatical words yields transition networks with
disassortative community structure (225, 447), wherein words from the same class are
less likely to form edges than words in different classes, which, in turn, decreases the
clustering. By contrast, if we restrict our attention to content words (such as the nouns
studied in the main text), we find that the transition networks exhibit high clustering
(Fig. 7.18d) and therefore low KL divergence (Fig. 7.18b).

7.8.11 Entropy of random walks

Given the high entropy and low KL divergence from human expectations observed
in real networks, it is natural to wonder what topological features give rise to these
properties. We note that there has been a large amount of recent research studying
maximum entropy random walks, wherein the topology of the network is fixed but the
edge weights are tuned to maximize the entropy rate (117, 148, 183, 615). By contrast,
here we are interested in understanding how, for fixed edge weights, different network
topologies either increase or decrease the entropy of random walks.
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Figure 7.18: Comparison of all-word transition networks and noun transition networks. (a-
b) Difference between the KL divergence of language (word transition) networks (Dreal

KL ) and
degree-preserving randomized versions of the same networks (Ddeg

KL ). We consider networks of
transitions between all words (a) and networks of transitions between nouns (b). (c, d) Difference
between the average clustering coefficient of language networks (CCreal) and degree-preserving
randomized versions of the same networks (CCdeg), where transitions are considered between
all words (c) or only nouns (d). In all panels, data points and error bars (standard deviations) are
estimated from 100 realizations of the randomized networks, and the networks are undirected.

To make analytic progress, we focus on unweighted, undirected networks. In this
case, Eq. (7.8) shows that the entropy is determined by the degree sequence of the
network. If we consider a random network ensemble with node degrees independently
distributed according to a degree distribution P(k), then the average entropy rate is
given by (263)

hSi = 1

2E

X

i

hki logkii

=
hk logki
hki ,

(7.12)

where the averages are taken over P(k).



7.8 supplementary material 189

7.8.11.1 High-degree expansion

Since k logk is convex in k, it is clear that hk logki > hki loghki, and we arrive at a
simple lower bound for the entropy,

hSi > loghki. (7.13)

In fact, one can show that loghki is the zeroth-order term in an expansion of hSi in the
limit of large average degree hki � 1. Expanding k logk around hki, we find

hSi = 1

hkihhki loghki+ (1+ loghki) (k- hki) + (k- hki)2

2hki +O

✓
1

hki2

◆
i

= loghki+ Var(k)
2hki2 +O

✓
1

hki3

◆
,

(7.14)

where Var(k) is the variance of k. We therefore find that, in addition to increasing
logarithmically with the average degree, the entropy of random walks grows with
increasing degree variance. In turn, this result further supports the conclusion that
networks with heterogeneous degrees produce random walks with higher entropy. In
what follows, we derive analytic results for the entropy of random walks on various
canonical network families.

7.8.11.2 k-regular network

We begin by studying k-regular networks, wherein each node i has constant degree
ki = k. In this case, we arrive at the simple relation hSi = logk, which saturates the
lower bound in Eq. (7.13) (161). This result shows that k-regular networks achieve the
lowest possible entropy among networks of a given density.

7.8.11.3 Poisson distributed network

While k-regular networks maintain a lattice-like structure, many real networks display
random organization (11). The simplest model for generating random networks, known
as the Erdös-Rényi model (204), places E edges uniformly at random between pairs of
N nodes. In the thermodynamic limit N!1, Erdös-Rényi networks follow a Poisson
degree distribution P(k) = e-hkihkik/k!. In this case, the degree variance is given by
Var(k) = hki, and applying Eq. (7.14), we find that

hSi = loghki+ 1

2hki +O

✓
1

hki2

◆
. (7.15)

Therefore, in the high-hki limit, the entropy of random walks on an Erdös-Rényi
network approaches the lower-bound hSi ⇡ loghki. We find that the analytic prediction
in Eq. (7.15) accurately approximates the true entropy of randomly-generated Erdös-
Rényi networks across all values of the average degree (Fig. 7.19a).
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Figure 7.19: Entropy of random walks in Poisson distributed networks. (a) Entropy of ran-
dom walks as a function of the average degree hki for Poisson distributed networks. Data
points are exact calculations using the degree sequences of randomly-generated Erdös-Rényi
networks of size N = 104. Dashed lines are numerical results for N = 104, calculated using
the Poisson degree distribution. Solid lines are analytic results for the thermodynamic limit
N ! 1. (b) Entropy as a function of the degree heterogeneity H for variable hki. (c) Degree
heterogeneity as a function of the average degree.

To investigate the relationship between the entropy and the heterogeneity of degrees
in a network, we defined the degree heterogeneity to be the relative average difference
in degrees,

H =
h|ki - kj|i
hki =

1

hki
X

ki,kj

|ki - kj|P(ki)P(kj). (7.16)

H is a well-studied measure of the dispersion of a distribution, with range [0, 2]. We
note that other often used measures of degree heterogeneity, such as hk2i/hki2 and
Var(k)/hki2, cannot be used to study the impact of degree heterogeneity on entropy
for scale-free networks since hk2i diverges for � 6 3 in the limit N!1. For Poisson
distributed networks, one can show that

H = 2e-2hki�I0(2hki) + I1(2hki)
�
, (7.17)

where I⌫(x) is the modified Bessel function of the first kind (410). For other degree
distributions, however, it is generally difficult to derive an analytic form for H. We
find that the entropy of random walks on Poisson distributed networks decreases with
increasing degree heterogeneity as we vary hki (Fig. 7.19b), seemingly contradicting
our conclusion in the main text that entropy increases with heterogeneity. However,
this effect is driven by the monotonic decrease in H with increasing hki in Poisson
distributed networks (Fig. 7.19c). In the following subsections, we show that entropy
does in fact increase with degree heterogeneity for other network models, confirming
the results in the main text.

7.8.11.4 Power-law distributed network

Compared to random networks, real networks often contain a number of hub nodes
with unusually high degree, leading to a heavy-tailed distribution of node degrees
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Figure 7.20: Entropy of random walks in power-law distributed networks. (a) Entropy of ran-
dom walks as a function of the scale-free exponent � for power-law distributed networks. Data
points are exact calculations from networks of size N = 104 generated using the configuration
model (450). Dashed lines are numerical results for N = 104, calculated using the power-law
degree distribution. Solid lines are analytic results for the thermodynamic limit N ! 1. (b)
Entropy as a function of the degree heterogeneity H for variable �. (c) Degree heterogeneity as
a function of the scale-free exponent.

(11). Often this heavy-tailed distribution is associated with scale-free organization (50),
which is characterized by a power-law degree distribution P(k) ⇠ k-�, where � is the
scale-free exponent. In the limit N!1, we can approximate the averages in Eq. (7.12)
as integrals, and one can show that (263)

hSi = 1

�- 2
. (7.18)

We see that the entropy diverges as � ! 2, while for � > 2 the entropy of scale-free
networks is well-defined. We remark that this critical exponent is different from � = 3,
which is the critical exponent for many other network phenomena driven by the
divergence of hk2i (13, 513). Instead, as � ! 2, super-hubs emerge that connect to
almost all of the nodes in the network, causing the average degree hki to diverge (11).
Each time a random walk arrives at one of these super-hubs, the entropy of the ensuing
transition, roughly - log 1

N
, diverges as N!1.

We compare the analytic prediction in Eq. (7.18) with exact calculations from both
power-law distributed networks generated using the configuration model (450) and
from numerical calculations of the averages in Eq. (7.12), finding that the numerical
estimates agree well with the exact values (Fig. 7.20a). Moreover, we find that the
entropy increases with degree heterogeneity as we sweep over � (Fig. 7.20b), confirming
our conclusions in the main text. This increase in entropy is related to the corresponding
increase in heterogeneity as �! 2 (Fig. 7.20c).

7.8.11.5 Static model

In order to test the effects of network density and degree heterogeneity independently,
we turn to the static model, which is commonly used to generate scale-free networks
of a given density (258). Beginning with N disconnected nodes, we assign each node
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i a weight wi = i-↵, where ↵ 2 [0, 1) is a real number. Then, we randomly select a
pair of nodes i and j with probabilities proportional to their weights, and we connect
them if they have not already been connected. This process is repeated until E = 1

2
Nhki

edges have been added. A number of analytic properties have been derived for the
static model (128, 392), including the fact that, in the thermodynamic limit, the degree

distribution is given by P(k) = 1

↵

� hki
2
(1- ↵)

�1/↵ �

⇣
k- 1

↵
, hki

2
(1-↵)

⌘

�(k+1) , where �(·) is the
gamma function and �(·, ·) is the upper incomplete gamma function. In the large-k
limit, one can show that the degree distribution drops off as a power law P(k) ⇠ k-�,
where � = 1+ 1

↵
.

We are interested in deriving an analytic form for the entropy. Using a hidden
variables method (128), one can show that the average degree of node i is given by

k̄(i) = hki(1-↵)

✓
i

N

◆-↵ �
1-N↵-1

�
. (7.19)

Approximating the numerator in Eq. (7.12) by hk logki ⇡ 1

N

R
N

1
k̄(i) log k̄(i)di, and

taking the limit N!1, we find that the entropy is given by

hSi = loghki+ 1

�- 2
- log

�- 1

�- 2
. (7.20)

We note that the average degree of a pure power-law network is hki = �-1

�-2
. Plugging

this average degree into Eq. (7.20), we recover the entropy of power-law distributed
networks in Eq. (7.18), as expected. Interestingly, we notice that, even for finite hki, the
entropy in the static model diverges as �! 2 in the thermodynamic limit.

We find that the entropy increases as hki increases (Fig. 7.21a) and also as � decreases
(Fig. 7.21b). The thermodynamic result in Eq. (7.20) is accurate for � > 3, while
numerical calculations using Eq. (7.19) and including finite network size yield accurate
predictions for � > 2.5. We note that the only effect of hki on the entropy in Eq. (7.20) is
in the logarithmic lower bound, suggesting that the quantity S- loghki should depend
exclusively on the scale-free exponent �. Indeed, subtracting loghki from our entropy
calculations, we find that networks of varying density collapse onto a single line (Fig.
7.21c). This result is made even more clear by considering how the quantity S- loghki
varies with degree heterogeneity as we sweep over � (Fig. 7.21e). Finally, we note that H
increases with decreasing � (Fig. 7.21f), thereby explaining the monotonic relationship
between entropy and degree heterogeneity in the static model (Fig. 7.21d).

7.8.11.6 Exponentially distributed network

Many real networks exhibit degree distributions with exponential cutoffs for large
values of k (11, 477). In pure exponentially distributed networks, the degree distribution
follows the form P(k) ⇠ e-k/, where  > 0 is the degree cutoff. In the thermodynamic
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Figure 7.21: Entropy of random walks in static model networks. (a) Entropy of random walks
as a function of the average degree hki for various values of the scale-free exponent � in the
static model. Data points are exact calculations using the degree sequences of networks with
N = 104 generated using the static model. Dashed lines are numerical results for N = 104,
calculated using the average degree relationship in Eq. (7.19). Solid lines are analytic results
for the thermodynamic limit N!1. (b) Entropy as a function of � for various values of hki.
(c) The quantity S- loghki collapses to a single function of � across various values of hki. (d)
Entropy as a function of the degree heterogeneity H for varying �. (e) The quantity S- loghki
increases with H for varying �. (f ) Degree heterogeneity increases as � decreases toward the
critical value � = 2.

limit, approximating the averages in Eq. (7.12) as integrals, we find that the entropy is
given by

hSi = loghki+ 1- �e

ln 2
, (7.21)

where �e is Euler’s constant. We see in Fig. 7.22a that this analytic prediction accurately
describes the entropy of randomly-generated exponential networks. Moreover, we find
that the entropy increases with increasing degree heterogeneity (Fig. 7.22b) and that
the heterogeneity increases with the degree cutoff  (Fig. 7.22c).

7.8.12 KL divergence between random walks and human expectations

The results of the previous section demonstrate that, generally, the entropy of random
walks is larger for networks with heterogeneous degrees, a feature that has been found
in many real networks (50, 51, 121, 477). But what are the structural features that allow
a network to maintain a low divergence from human expectations? Here, we answer
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Figure 7.22: Entropy of random walks in exponentially distributed networks. (a) Entropy of
random walks as a function of the degree cutoff  for exponentially distributed networks. Data
points are exact calculations from networks of size N = 104 generated using the configuration
model (450). Dashed lines are numerical results for N = 104, calculated using the exponential
degree distribution. Solid lines are analytic results for the thermodynamic limit N ! 1. (b)
Entropy as a function of the degree heterogeneity for variable . (c) Degree heterogeneity as a
function of the exponential cutoff.

this question by studying the KL divergence DKL(P||P̂) between a network’s transition
structure P and the expectations of an observer P̂.

7.8.12.1 Upper bound

For expectations P̂ of the form in Eq. (7.9), the KL divergence is given by

DKL(P||P̂) = -
X

i

⇡i

X

j

Pij log
P̂ij
Pij

= -
X

i

⇡i

X

j

Pij log

 

C
1X

t=0

f(t)
(Pt+1)ij

Pij

!

,
(7.22)

where (Pt+1)ij/Pij is the relative probability of transitioning from node i to node j in
t+ 1 steps versus one step. Keeping only the first term inside the logarithm, we arrive
at an upper bound for the KL divergence,

DKL(P||P̂) 6 -
X

i

⇡i

X

j

Pij log (Cf(0)) = - log (Cf(0)) . (7.23)

Eq. (7.23) allows us to make a number of simple predictions for the KL divergence. For
example, if the expectations are defined by f(t) = ⌘t, as presented in the main text,
then C = 1- ⌘ and so DKL 6 - log(1- ⌘). In this case, we see that the KL divergence
tends to zero as ⌘ ! 0 and that the upper bound diverges as ⌘ ! 1. In contrast, if
f(t) = (t+ 1)-↵ then C = ⇣(↵)-1, where ⇣(·) is the Riemann zeta function, and we have
DKL 6 log ⇣(↵). As a final example, if f(t) = 1/t! then C = e-1, and so DKL 6 log e

(which we remark is not equal to one since we use log base two).
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7.8.12.2 Relationship to clustering

While Eq. (7.23) provides a simple relationship between the KL divergence and param-
eters in the model for P̂, we are ultimately interested in understanding the effects of
network structure. To gain an intuition for the role of topology, it helps to focus on a
particular model for the expectations. For example, considering f(t) = ⌘t, in the low-⌘
limit the KL divergence takes the form

DKL(P||P̂) = - log(1- ⌘)-
X

i

⇡i

X

j

Pij log
✓
1+ ⌘

(P2)ij
Pij

+O(⌘2)

◆

= - log(1- ⌘)-
⌘

ln 2

X

i

⇡i

X

j

Pij
(P2)ij
Pij

+O(⌘2).
(7.24)

We note that, when calculating information measures such as entropy or KL divergence,
one only considers terms with non-zero probability, such that, for each node i, the
sum on j in Eq. (7.24) implicitly runs over all nodes for which Pij =

1

ki
Gij is non-zero.

Therefore, for undirected networks, recalling that ⇡i =
ki

2E
, we have

DKL(P||P̂) = - log(1- ⌘)-
⌘

2E ln 2

X

i

ki
X

j

Gij

X

`

✓
1

ki
Gi`

◆✓
1

k`
G`j

◆
+O(⌘2).

(7.25)
Switching the i and ` indices and canceling terms, we arrive at the concise approxima-
tion

DKL(P||P̂) = - log(1- ⌘)-
⌘

E ln 2

X

i

1

ki
4i +O(⌘2), (7.26)

where 4i = (G3)ii/2 is the number of (possibly weighted) triangles involving node i.
We therefore find that the KL divergence is lower for networks with a lager number of
triangles or, equivalently, a higher clustering coefficient. In the following subsections,
we investigate the relationship between KL divergence and clustering in Erdös-Rényi
and stochastic block networks.

7.8.12.3 Erdös-Rényi network

We wish to derive an analytic approximation for the KL divergence of an Erdös-
Rényi network. Considering human expectations defined by f(t) = ⌘t, for undirected
networks Eq. (7.22) becomes

DKL(P||P̂) = -
X

i

ki
2E

X

j

1

ki
Gij log

 

(1- ⌘)
1X

t=0

⌘t
(Pt+1)ij

Pij

!

= - log(1- ⌘)-
1

2E

X

ij

Gij log

 1X

t=0

⌘t
(Pt+1)ij

Pij

!

.

(7.27)
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We note that the second term above is an average of the logarithm over the edges in
the network. Approximating this average of logarithms by a logarithm of the average,
we have

DKL(P||P̂) ⇡ - log(1- ⌘)- log

2

4 1

2E

X

ij

kiGij

1X

t=0

⌘t(Pt+1)ij

3

5 . (7.28)

For unweighted networks, we recognize that
P

j
Gij(Pt+1)ij is the probability of

transitioning from node i to one of i’s neighbors in t+ 1 steps. For t = 0 this probability
is one. For t > 0, we consider two cases: (i) dense networks with high hki, and (ii)
sparse networks with low hki.

For dense networks, we approximate the probability of transitioning from node i

to one of node i’s neighbors in t+ 1 > 1 steps as ki/N, the probability of randomly
selecting one of the ki neighbors from all N nodes. Plugging this approximation forP

j
Gij(Pt)ij into Eq. (7.28), we have

DKL(P||P̂) ⇡ - log(1- ⌘)- log
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(7.29)

We have now reduced the KL divergence to a function of the degree sequence k. For
large Erdös-Rényi networks, the node degrees follow a Poisson distribution, and, for
large hki, we have hk2i ⇡ hki2. Thus, the average KL divergence for a dense Erdös-Rényi
network can be approximated by

hDKLi ⇡ - log(1- ⌘)- hlog
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�
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�

= - log
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✓
1-
hki
N

◆�
,

(7.30)

where the averages are taken over the degree distribution P(k). We find that this approx-
imation accurately predicts the KL divergence of Erdös-Rényi networks as a function
of the integration parameter ⌘ (Fig. 7.23a). We also see that in the thermodynamic limit
N!1, DKL approaches the upper bound - log(1- ⌘).

For sparse Erdös-Rényi networks, the number of loops is small and thus the network
is locally treelike (359). In a tree, the probability

P
j
Gij(Pt)ij of transitioning from a

given node i to one of node i’s neighbors in t+ 1 steps is zero if t is odd. For t even,
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Figure 7.23: KL divergence from human expectations in Erdös-Rényi networks. (a) KL di-
vergence between random walks and human expectations as a function of the inaccuracy
parameter ⌘ for Erdös-Rényi networks. Data points are exact calculations for networks of size
N = 104 with average degree hki = 100. Dashed line is the analytic prediction using Eq. (7.30)
with N = 104. Solid line is the analytic result for the thermodynamic limit N ! 1. (b) KL
divergence as a function of the average degree hki for ⌘ equal to the value 0.80 measured in the
serial response experiments. Dashed line represents the high-density analytic approximation in
Eq. (7.30) with N = 104, while the solid line is the low-density approximation in Eq. (7.32). (c)
KL divergence as a function of the average clustering coefficient for variable hki. (d) Average
clustering coefficient as a function of hki. In the thermodynamic limit the clustering tends
toward zero for all values of hki (solid line).

setting node i to be the root of the tree, if we assume all nodes have the same degree
hki, then the probability of moving down the tree on any given step is 1- 1/hki and
the probability of moving up the tree is 1/hki. Approximating 1- 1/hki ⇡ 1, then the
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probability of moving down the tree t/2+ 1 steps and back up the tree t/2 steps is
roughly 1/hki t2 . Plugging this expression into Eq. (7.28), we have

DKL(P||P̂) ⇡ - log(1- ⌘)- log
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(7.31)

Averaging over the Poisson degree distribution, we have

hDKLi ⇡ - log(1- ⌘)-

⌧
log

N

2E

hki
hki- ⌘2

k

��

⇡ - log(1- ⌘)- log

hki

hki- ⌘2

�
.

(7.32)

We find that the above approximation provides a decent estimate of the KL divergence
for low hki, while the high-density approximation in Eq. (7.30) accurately predicts the
KL divergence for hki > 50 (Fig. 7.23b).

In addition to the dependence of DKL on ⌘ and hki, we are also interested in the effect
of clustering. The clustering coefficient of a given node i is the number of triangles
4i involving node i divided by the number of possible triangles

�
ki

2

�
= ki(ki - 1)/2.

For Erdös-Rényi networks, averaging over all nodes i, the clustering coefficient is
approximately hki/N. We find that, for small hki, the KL divergence increases with
increasing clustering, while, for large hki, the KL divergence decreases (Fig. 7.23c).
Given that the clustering is directly proportional to hki in Erdös-Rényi networks (Fig.
7.23d), the effects of clustering on DKL are driven by the density of the network. To
disambiguate the effects of clustering and density, in the following subsection, we
study a stochastic block model in which these properties can be varied independently.

7.8.12.4 Stochastic block network

In order to test the effects of clustering on the KL divergence without the confounding
impact of edge density, we consider the stochastic block model (177). Specifically, the
N nodes are divided into N/Nc communities of Nc nodes each. Then, a prescribed
fraction f of the E = hkiN/2 edges are placed between pairs of nodes within the same
community, and the remaining fraction 1- f of edges are placed between nodes in
different communities.

We wish to understand the dependence of the KL divergence on the fraction f

of within-community edges. Beginning with Eq. (7.28), we once again consider the
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probability
P

j
Gij(Pt+1)ij of transitioning from node i to one of node i’s neighbors in

t+ 1 steps. As before, for t = 0 this probability is one. For t > 0, we approximate

X

j

Gij(P
t+1)ij ⇡ pin(t+ 1)

kin
i

Nc - 1
+ pout(t+ 1)

kout
i

N-Nc

, (7.33)

where pin(t+ 1) is the probability of ending up in the same community as node i after
t+ 1 steps, pout(t+ 1) is the probability of ending up in a different community from
node i after t+ 1 steps, kin

i
⇡ fki is the number of edges connecting node i to nodes

within the same community, and kout
i
⇡ (1- f)ki is the number of edges connecting

node i with nodes in different communities. We model the transitions in and out of
node i’s community as a two-state Markov process with probability matrix

A =

 
P(in | in) P(in | out)
P(out | in) P(out | out)

!

=

 
f 1- f
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. (7.34)

Using this representation, one can show that
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(7.35)

where the approximations follow from the assumption that
⇣
fN-Nc

N-Nc

⌘t+1

⇡ ft+1.
Plugging Eq. (7.35) into Eq. (7.33), we have
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where the final approximation follows from the assumption that N

Nc
f� 1. We substitute

this result into Eq. (7.28), finding that
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For stochastic block models in the thermodynamic limit N!1, the degree distribution
is Poisson, and for large hki we have hk2i ⇡ hki2. Averaging over the Poisson degree
distribution, the average KL divergence can be approximated by
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(7.38)

We remark that the first three terms inside the logarithm in Eq. (7.38) are identical
to the Erdös-Rényi result in Eq. (7.30), and thus the final term can be regarded as a
correction resulting from the modular structure of the stochastic block model. Interest-
ingly, this third term does not vanish in the thermodynamic limit N!1; however, it
does vanish in the limit f! 0, as the network loses its block structure. We find that the
analytic prediction in Eq. (7.38) is accurate across all values of ⌘ and all fractions f (Fig.
7.24a,b). Furthermore, we find that the KL divergence decreases monotonically with
increasing f for fixed average degree hki (Fig. 7.24a,b).

In order to predict the effect of clustering, it is helpful to have an analytic approxi-
mation for the average clustering coefficient in a stochastic block network. We recall
that the clustering coefficient for a node i is given by 24i /(ki(ki - 1)), where 4i is
the number of triangles involving node i. For a stochastic block network, we define
the probability of an edge existing between two nodes in the same community as
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Figure 7.24: KL divergence from human expectations in stochastic block networks. (a) KL
divergence as a function of the integration parameter ⌘ for stochastic block networks with
average degree hki = 100 and communities of size Nc = 100. Data points are exact calculations
for networks of size N = 104. Dashed lines are analytic predictions using Eq. (7.38) with
N = 104. Solid lines are analytic results for the thermodynamic limit N!1. (b) KL divergence
as a function of the fraction of within-community edges f for different values of ⌘. (c) KL
divergence as a function of the average clustering coefficient for variable f and different values
of ⌘. (d) Average clustering coefficient as a function of f. Dashed line is the analytic prediction
in Eq. (7.41) with N = 104. Solid line is the analytic result in the limit N!1.

pin = fhki/Nc and the probability of an edge between two nodes in different communi-
ties as pout = (1- f)hki/(N-Nc). We then arrive at the following approximation,
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(7.39)
where the approximation follows from the assumptions that N� Nc and kin

i
,kout

i
� 1.

Plugging in for pin, pout, kin
i
= fki, and kout

i
= (1- f)ki, we have
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Thus the average clustering coefficient is given by

1

N

X

i

2h4ii
ki(ki - 1)

⇡ hki
✓

f3

Nc

+
(1+ f)(1- f)2

N-Nc

◆
, (7.41)

where the approximation follows from the assumption that ki � 1. We see that this
analytic result accurately predicts the increase in the average clustering coefficient
with increasing modularity f (Fig. 7.24d). More importantly, we find that the KL
divergence decreases with increasing clustering for fixed ⌘ and hki (Fig. 7.24c). This final
result indicates that increased modularity helps human observers maintain accurate
representations, thereby reducing their inefficiency when processing information.

7.8.13 Hierarchically modular networks

The combination of high entropy and low KL divergence exhibited by real networks is
driven by heterogeneous degrees and modular structure. Interestingly, degree hetero-
geneity and modularity are ubiquitous in natural and human-made systems (50, 51,
121, 207, 250, 461, 570), and together they define hierarchically modular organization
(547). In order to simultaneously study entropy and KL divergence, it is helpful to have
a model for generating networks with variable heterogeneity and modularity. One of
the earliest models of hierarchical systems was developed to understand metabolic
networks (547, 548). Yet this model is deterministic, generating fractal networks in
which it is difficult to tune the heterogeneity or modularity. Another common model is
the nested stochastic block model (25, 26), wherein small modules are nested inside
larger modules. However, this model does not include heterogeneous degrees (a heavy-
tailed degree distribution). Perhaps the closest model to what we require was recently
developed to study the emergence of complex dynamics in the brain (723). In this
model, the nested stochastic block model is combined with a preferential attachment
rule to generate a rich club of hub nodes.

Here we propose a model that directly combines the static model (128, 258, 392) and
the stochastic block model (177). Beginning with N disconnected nodes, we first assign
each node i a weight wi = i-↵, where ↵ 2 [0, 1] is related to the scale-free exponent
by � = 1+ 1

↵
. We also assign each node i to a community. Then, we randomly select

pairs of nodes i and j within the same community with probabilities proportional
to their weights, and we connect them if they have not already been connected. This
process is repeated until fE = 1

2
fhkiN edges have been added within communities. We

then repeat this process again until (1- f)E = 1

2
(1- f)hkiN edges have been added

between communities. The resulting network has a degree distribution that drops off
as a power law P(k) ⇠ k-� and also has the same community structure as a stochastic
block model.

Sweeping over the two parameters � and f, while fixing the average degree hki = 100

and community size Nc = 100, we see that our hierarchically modular model exhibits
a variety of entropies (Fig. 7.25a) and KL divergences (Fig. 7.25b). Additionally, we
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Figure 7.25: Information and structural properties of hierarchically modular networks. (a)
Entropy as a function of the scale-free exponent � and the fraction of within-community edges
f for hierarchically modular networks with average degree hki = 100 and communities of size
Nc = 100. Each point is an exact calculation for a network of size N = 104. (b) KL divergence
as a function of � and f in the same networks with ⌘ fixed to the average value 0.80 from our
experiments. (c) Degree heterogeneity H varies as a function of � and f in a similar fashion to
the entropy (a). (d) Average clustering coefficient varies as a function of � and f much like the
KL divergence (b).

verify that the model can attain a wide range of degree heterogeneities (Fig. 7.25c) and
clustering coefficients (Fig. 7.25d). Notably, the variation in the degree heterogeneity
and clustering coefficient with � and f appears almost identical to the variation in
the entropy and KL divergence, respectively, once again indicating that entropy is
primarily driven by heterogeneity and KL divergence is primarily driven by clustering
or modularity.

Given our investigation of the information properties of different network models,
it is ultimately important to compare against real communication networks. For each
network listed in Tab. 7.13, we generate series of scale-free networks with various
exponents �, stochastic block networks with various within-community fractions f, and
hierarchically modular networks with various exponents � (for fixed f) and various f

(for fixed �). Each model network maintains the same number of nodes N and edges E

as the corresponding real network. For the stochastic block and hierarchically modular
networks, we choose community sizes that are roughly the square root of the network
size Nc ⇡

p
N for the purpose of remaining consistent with our model-based analysis

(wherein N = 104 and Nc =
p
104 = 100). Comparing each real and model network
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Figure 7.26: Comparing the information properties of real and model networks. Entropies
and KL divergences of real and model networks compared to fully randomized versions. For
each model network in Tab. 7.1, we generate SF networks with variable � (red), SB networks
with communities of size Nc ⇡

p
N and variable f (green), and HM networks with Nc ⇡

p
N

and variable � (fixed f = 0.72; blue) or variable f (fixed � = 2.2; purple), all with the same
number of nodes N and edges E as the real network. Each real and model network is then
compared with 100 randomized versions; data points are first averaged over the 100 randomized
networks and then averaged over the set of real networks in Tab. 7.1. HM networks with � = 2.2
and f = 0.72 match the average entropy and KL divergence of real networks.

with completely randomized versions of the same networks (Fig. 7.26), we find that: (i)
scale-free networks cannot attain the low KL divergence displayed by real networks
and (ii) stochastic block networks cannot attain the high entropy displayed by real
networks, but (iii) hierarchically modular networks can achieve both with a parameter
combination of � ⇡ 2.2 and f ⇡ 0.72. Thus, we confirm that both heterogeneous degrees
and modular structure are required (that is, hierarchical organization is required) to
match the information properties of real networks.

7.8.14 Network datasets

The real-world networks analyzed in the main text are listed and briefly described in
Tab. 7.13. While the semantic, web, citation, and social networks are gathered from
online network repositories, the language and music networks are novel. For the
language networks, we developed code to (i) remove punctuation and white space, (ii)
filter words by their part of speech, and (iii) record the transitions between the filtered
words. Here we focus on networks of transitions between nouns, noting that the same
methods could be used to record transitions between other parts of speech. The raw
text was gathered from Project Gutenberg (gutenberg.org/wiki/Main_Page).

For the music networks, we read in audio files in MIDI format using the readmidi

function in MATLAB (R2018a). For each song, we split the notes by their channel,
which represents the different instruments. For each channel, we created a network of
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note transitions. We then create a transition network representing the entire song by
aggregating the transitions between notes across the different channels. The MIDI files
were gathered from midiworld.com and from kunstderfuge.com. Our code and data
are available upon request from the corresponding author.
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Type Name N E Description

Language Shakespeare⇤+ (602) 11,234 97,892 Noun transitions in Shakespeare’s work.
Homer⇤+ (534) 3,556 23,608 Same as above (Homer’s Iliad).
Plato⇤+ (348) 2,271 9,796 Same as above (Plato’s Republic).
Jane Austen⇤+ (34) 1,994 12,120 Same as above (Pride and Prejudice).
William Blake⇤+ (91) 370 781 Same as above (Songs of Innocence...).
Miguel de Cervantes⇤+ (132) 6,090 43,682 Same as above (Don Quixote).
Walt Whitman⇤+ (707) 4,791 16,526 Same as above (Leaves of Grass).

Semantic Bible (383) 1,707 9,059 Pronoun co-occurrences in Bible verses.
Les Miserables (383) 77 254 Character co-occurrences.
Edinburgh Thesaurus⇤ (64, 372) 7,754 226,518 Word similarities in human experiments.
Roget Thesaurus⇤ (64, 561) 904 3,447 Linked semantic categories.
Glossary terms (64) 60 114 Words used in definitions of other words.
FOLDOC⇤ (64, 325) 13,274 90,736 Same as above (computing terms).
ODLIS⇤ (64, 553) 1,802 12,378 Same as above (information science terms).

Web Google internal⇤ (383, 499) 12,354 142,296 Hyperlinks between Google’s own cites.
Education (253, 568) 2,622 6,065 Hyperlinks between education webpages.
EPA (172, 568) 2,232 6,876 Pages linking to www.epa.gov.
Indochina (94, 568) 9,638 45,886 Hyperlinks between pages in Indochina.
2004 Election blogs⇤ (5, 383) 793 13,484 Hyperlinks between blogs on US politics.
Spam (127, 568) 3,796 36,404 Hyperlinks between spam pages.
WebBase (94, 568) 6,843 16,374 Hyperlinks gathered by web crawler.

Citations arXiv Hep-Ph⇤+ (383, 397) 12,711 139,500 Citations in Hep-Ph section of the arXiv.
arXiv Hep-Th⇤+ (383, 397) 7,464 115,932 Citations in Hep-Th section of the arXiv.
Cora⇤ (383, 643) 3,991 16,621 Citation network between scientific papers.
DBLP⇤ (383, 401) 240 858 Citation network between scientific papers.

Social Facebook+ (383, 687) 13,130 75,562 Subset of the Facebook network.
arXiv Astr-Ph (383, 397) 17,903 196,972 Coauthorships in Astr-Ph section of arXiv.
Adolescent health⇤ (383, 455) 2,155 8,970 Friendships between students.
Highschool⇤ (152, 383) 67 267 Friendships between highschool students.
Jazz (254, 383) 198 2,742 Collaborations between jazz musicians.
Karate club (383, 721) 34 78 Interactions between karate club members.

Music Thriller – Michael Jackson⇤+ (336) 67 446 Network of note transitions.
Hard Day’s Night – Beatles⇤+ (660) 41 212 Same as above.
Bohemian Rhapsody – Queen⇤+ (541) 71 961 Same as above.
Africa – Toto⇤+ (670) 39 163 Same as above.
Sonata No 11 – Mozart⇤+ (463) 55 354 Same as above.
Sonata No 23 – Beethoven⇤+ (73) 69 900 Same as above.
Nocturne Op 9-2 – Chopin⇤+ (144) 59 303 Same as above.
Clavier Fugue 13 – Bach⇤+ (40) 40 143 Same as above.
Ballade Op 10-1 – Brahms⇤+ (102) 69 670 Same as above.

Table 7.13: Real networks analyzed in the main text. For each network we list its type; name,
reference, whether it has a directed version (denoted by ⇤), and whether it has a temporally
evolving version (denoted by +); number of nodes N; number of edges E; and a brief description.



Part III

T H E S TAT I S T I C A L P H Y S I C S O F N E U R A L D Y N A M I C S

In Parts I and II, we used foundational ideas from statistical mechanics,
including the maximum entropy principle, the fluctuation-dissipation the-
orem, and the free energy principle, to describe how collective activity
emerges in human populations and to uncover how individual humans
learn and process information using complex networks. Both collective
activity and individual behavior, however, fundamentally arise from the
correlated firing of billions of neurons at the scale below. In Chapter 8, we
provide an overview of current efforts to understand the brain’s complex dy-
namics that draw on intuitions, models, and theories from physics, spanning
the domains of statistical mechanics, information theory, and dynamical
systems and control. For example, recent advances in non-equilibrium statis-
tical mechanics have revealed that enzymatic and metabolic processes drive
the brain away from equilibrium at small scales. Yet it remains unclear if an
how non-equilibrium dynamics manifest at macroscopic scales. In Chapter
9, we present a framework to probe for non-equilibrium dynamics in com-
plex living systems. We apply our method to whole-brain neuroimaging
data, demonstrating not only that the brain operates out of equilibrium, but
that it functions farther from equilibrium during periods of physical and
cognitive exertion. Together, these results establish that non-equilibrium
dynamics can arise at macroscopic scales and provide a general tool for
quantifying the non-equilibrium nature of complex systems.
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T H E P H Y S I C S O F B R A I N N E T W O R K S T R U C T U R E , F U N C T I O N ,
A N D C O N T R O L

This chapter contains work from Lynn, Christopher W., and Danielle S. Bassett. “The physics of
brain network structure, function and control." Nature Reviews Physics 1.5 (2019): 318.

Abstract

The brain is a complex organ characterized by heterogeneous patterns of structural
connections supporting unparalleled feats of cognition and a wide range of behaviors.
New noninvasive imaging techniques now allow these patterns to be carefully and
comprehensively mapped in individual humans and animals. Yet, it remains a funda-
mental challenge to understand how the brain’s structural wiring supports cognitive
processes, with major implications for the personalized treatment of mental health
disorders. Here, we review recent efforts to meet this challenge that draw on intuitions,
models, and theories from physics, spanning the domains of statistical mechanics,
information theory, and dynamical systems and control. We begin by considering the
organizing principles of brain network architecture instantiated in structural wiring
under constraints of symmetry, spatial embedding, and energy minimization. We
next consider models of brain network function that stipulate how neural activity
propagates along these structural connections, producing the long-range interactions
and collective dynamics that support a rich repertoire of system functions. Finally,
we consider perturbative experiments and models for brain network control, which
leverage the physics of signal transmission along structural wires to infer intrinsic
control processes that support goal-directed behavior and to inform stimulation-based
therapies for neurological disease and psychiatric disorders. Throughout, we highlight
several open questions in the physics of brain network structure, function, and control
that will require creative efforts from physicists willing to brave the complexities of
living matter.

8.1 introduction

It is our good fortune as physicists to seek to understand the nature of the observable
world around us. In this inquiry, we need not reach to contemporary science to
appreciate the fact that our perception of the world around us is inextricably linked
to the world within us: the mind. Indeed, even Aristotle c. 350 B.C. noted that it is by
mapping the structure of the world that the human comes to understand their own

208
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mind (391). “Mind thinks itself because it shares the nature of the object of thought; for
it becomes an object of thought in coming into contact with and thinking its objects,
so that mind and object of thought are the same” (27). Over the ensuing 2000-plus
years, it has not completely escaped notice that the mappers of the world have unique
contributions to offer the mapping of the mind (from Thales of Miletus, c. 624–546 B.C.,
to Leonardo Da Vinci, 1452–1519). More recently, it is notable that nearly all famous
physicists of the early 20th century – Albert Einstein, Niels Bohr, Erwin Schroedinger,
Werner Heisenberg, Max Born – considered the philosophical implications of their
observations and theories (632). In the post-war era, philosophical musings turned to
particularly conspicuous empirical contributions at the intersection of neuroscience
and artificial intelligence, spanning polymath John von Neumann’s work enhancing
our understanding of computational architectures (690) and physicist John Hopfield’s
invention of the associative neural network, which revolutionized our understanding
of collective computation (322).

In the contemporary study of the mind and its fundamental organ – the brain – nearly
all of the domains of physics, perhaps with the exception of relativity, are not only
relevant but truly essential, motivating the early coinage of the term neurophysics some
four decades ago (596). The fundamentals of electricity and magnetism prove critical for
building theoretical models of neurons and the transmission of action potentials (378).
These theories are being increasingly informed by mechanics to understand how force-
generating and load-bearing proteins bend, curl, kink, buckle, constrict, and stretch
to mediate neuronal signaling and plasticity (675). Principles from thermodynamics
come into play when predicting how the brain samples the environment (action) or
shifts the distribution of information that it encodes (perception) (232). Collectively,
theories of brain function are either buttressed or dismantled by imaging, with common
tools including magnetic resonance imaging (530) and magnetoencephalography (294),
the latter being built on superconducting quantum interference devices and next-
generation quantum sensors that can be embedded into a system that can be worn like
a helmet, revolutionizing our ability to measure brain function while allowing free and
natural movement (98). Moreover, recent developments in nanoscale analysis tools and
in the design and synthesis of nanomaterials have generated optical, electrical, and
chemical methods to explore brain function by enabling simultaneous measurement
and manipulation of the activity of thousands or even millions of neurons (14). Beyond
its relevance for continued imaging advancements (525), optics has come to the fore of
neuroscience over the last decade with the development of optogenetics, an approach
that uses light to alter neural processing at the level of single spikes and synaptic events,
offering reliable, millisecond-timescale control of excitatory and inhibitory synaptic
transmission (100).

Such astounding advances, enabled by the intersection of physics and neuroscience,
have motivated the construction of a National Brain Observatory at the Argonne
National Laboratory (Director: Peter Littlewood, previously of Cavendish Laboratories)
funded by the National Science Foundation, as well as frequent media coverage
including titles in the APS News such as “Physicists, the Brain is Calling You.”(535)
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And as physicists answer the call, our understanding of the brain deepens and our
ability to mark and measure its component parts expands. Yet alongside this growing
systematization and archivation, we have begun to face an increasing realization that
it is the interactions between hundreds or thousands of neurons that generate the
mind’s functional states (14). Indeed, from interactions among neural components
emerge computation (435), communication (228), and information propagation (82). We
can confidently state of neuroscience what Henri Poincare, the French mathematician,
theoretical physicist, and philosopher of science, states of science generally: “The aim
of science is not things themselves, as the dogmatists in their simplicity imagine, but
the relations among things; outside these relations there is no reality knowable.” (531)
The overarching goal of mapping these interactions in neural systems has motivated
multibillion-dollar investments across the United States (the Brain Initiative generally,
and the Human Connectome Project specifically (678)), the European Union (the
Blue Brain Project (426)), China (the China Brain Project (533)), and Japan (Japan’s
Brain/MINDS project (489)).

While it is clear that interactions are paramount, exactly how the functions of the
mind arise from these interactions remains one of the fundamental open questions
of brain science (59). To the physicist, such a question appears to exist naturally
within the purview of statistical mechanics (600), with one major caveat: the interaction
patterns observed in the brain are far from regular, such as those observed in crystalline
structures, and are also far from random, such as those observed in fully disordered
systems (57). Indeed, the observed heterogeneity of interaction patterns in neural
systems – across a range of spatial and temporal scales – generally limits the utility of
basic continuum models or mean-field theories, which would otherwise comprise our
natural first approaches. Fortunately, similar observations of interaction heterogeneity
have been made in other technological, social, and biological systems, leading to
concerted efforts to develop a statistical mechanics of complex networks (11). The
resultant area of inquiry includes criteria for building a network model of a complex
system (118), statistics to quantify the architecture of that network (159), models to
stipulate the dynamics that can occur both in and on a network (283, 289, 727), and
theories of network function and control (460, 661).

Here, we provide a brief review for the curious physicist, spanning the network-
based approaches, statistics, models, and theories that have recently been used to
understand the brain. Importantly, the interpretations that can be rationally drawn
from all such efforts depend upon the nature of the network representation (118),
including its descriptive, explanatory, and predictive validity – topics that are treated
with some philosophical rigor elsewhere (63). Following a simple primer on the nature
of network models, we discuss the physics of brain network structure, beginning
with an exposition regarding measurement before turning to an exposition regarding
modeling. In a parallel line of discourse, we then discuss the physics of brain network
function, followed by a description of perturbation experiments and brain network
control. In each section we separate our remarks into the known and the unknown,
the past and the future, the fact and the speculation. Our goal is to provide an
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accessible introduction to the field, and to inspire the younger generation of physicists
to courageously tackle some of the most pressing open questions surrounding the inner
workings of the mind.

8.2 the physics of brain network structure

We begin with a discussion of the architecture, or structural wiring, of networks in the
brain, focusing on the measurement and modeling of their key organizational features
(see Fig. 8.1 for a simple primer on networks). Each edge in a structural brain network
represents a physical connection between two elements. For example, synapses support
the propagation of information between neurons (517) and white matter tracts define
physical pathways of communication between brain regions (36). In physics, it has long
been recognized that the organization of such structural connections can determine
the qualitative large-scale features of a system (11). In the Ising model, for instance, a
one-dimensional lattice remains paramagnetic across all temperatures (334), while in
two dimensions or more, the system spontaneously breaks symmetry, yielding the type
of bulk magnetization exhibited by magnets on a refrigerator (113, 491). Similarly, the
organization of structural wiring in the brain largely determines the types of mental
processes and cognitive functions that can be supported (438, 449, 520, 621, 623), from
memory (136, 545, 693) to learning (307, 659), and from vision (649) to motion (728).
However, unlike many physics applications, which assume simple lattice or random
network architectures, the wiring of the brain is highly heterogeneous, often making
symmetry arguments and mean-field descriptions far from applicable (57). While this
heterogeneity presents a unique set of challenges, in what follows we review some
powerful experimental and theoretical tools that allow us to distill the brain’s structural
complexity to a number of fundamental organizing principles.

8.2.1 Measuring brain network structure

Some of the earliest empirical measurements of the brain’s structural connectivity
can be traced to Camillo Golgi, who in 1873 soaked blocks of brain tissue in silver-
nitrate solution to provide among the first glimpses of the intricate branching of nerve
cells (261). Soon after, Santiago Ramón y Cajal combined Golgi’s method with light
microscopy to achieve stunning pictures establishing that neurons do not exist in
solitude; they instead combine to form intricate networks of physical connections
(714). This notion that the brain comprises a complex web of distinct components,
known as the neuron doctrine (605), established the foundation upon which modern
network neuroscience has flourished. The introduction of the electron microscope in the
1930s provided even more detailed measurements of the physical connections between
neurons. Perhaps the most impressive application remains the complete mapping
of interconnections between the 302 neurons in the nematode C. elegans (705). Since
this achievement, reconstructions of the synaptic connectivity in other animals have
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A simple primer on networks. Here, we define what we mean by a network and
describe tools for summarizing its architecture. Importantly, a network is agnostic
to the system that it represents (63), whether it be a brain, a granular material (505),
or a quantum lattice (90). By far the simplest network model is represented by a
binary undirected graph in which identical nodes represent system components
and identical edges indicate relations or connections between pairs of nodes (see
the figure). Such a network can be encoded in an adjacency matrix A, where each
element Aij indicates the strength of connectivity between nodes i and j. When all
edge strengths are unity, the network is said to be binary. When edges have a range
of weights, the network represented by the adjacency matrix is said to be weighted.
When A = A|, the network is undirected; otherwise, the network is directed.
One can extend this simple encoding to study multilayer, multislice, and multiplex

networks (373); dynamic or temporal networks (171, 317); annotated networks (474);
hypergraphs (62); and simplicial complexes (252). One can also calculate various
statistics to quantify the architecture of a network and to infer the function thereof
(see figure). Intuitively, these statistics range from measures of the local structure
in the network, which depend solely on the links directly emanating from a given
node (e.g., degree and clustering), to measures of the network’s global structure,
which depend on the complex pattern of interconnections between all nodes (e.g.,
path lengths and centrality) (159). Intermediate statistics exist to study network
organization at the mesoscale, such as cavity structure and community structure,
the latter of which describes the presence of communities of densely connected
nodes (223, 224, 536). As we will see, the encoding of a system as a network and
the quantitative assessment of its architecture can provide important insights into
its function (661, 699).

Degree

Clustering

Path length

Centrality

Communities

Cavities

Node
Edge

Figure 8.1: A primer on network properties. (Center) Nodes, illustrated by circles, repre-
sent stimuli, items, or states in a sequence. Edges, illustrated by lines, connect pairs of
nodes if it is possible to transition from one node to the other. The organization of edges
among nodes is referred to as the network’s topology or structure. (Circumjacent) A network’s
topology can be described using properties that characterize its local, mesoscale, or global
organization.
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evolved rapidly, from a mapping of the optic medulla in the visual system of the fruit
fly Drosophila to the enumeration of connections between 950 distinct neurons in the
mouse retina (304, 649). Efforts continue to press forward toward the ultimate goal of
reconstructing the neuronal wiring diagram of an entire human brain (627).

Concurrently with these achievements using electron microscopy, complimentary
efforts in tract tracing have revealed the mesoscale structure of the macaque (425, 633),
cat (719), mouse (488), and fly (609). Particularly important for our understanding
of human cognition are recent advances in noninvasive imaging that have allowed
unprecedented views of the mesoscale structure of the brain in vivo. Introduced in
the 1970s, computerized axial tomography (CAT) provided among the most detailed
anatomic images of the human brain to date (327). Soon after, the development of
magnetic resonance imagining (MRI) sparked an explosion of refinements, a notable
example being diffusion tensor imaging (DTI) (526). While standard CAT and MRI
techniques capture cross-sectional images of the brain, DTI traces the diffusion of water
molecules through white matter tracts to reconstruct the large-scale neural pathways
connecting distinct brain regions (56, 75). Given measurements of the anatomical wiring
connecting a set of neural elements, such as synapses linking neurons or white matter
tracts connecting brain regions, researchers can build a structural brain network by
forming edges between elements that share a physical connection (Fig. 8.2a). Ongoing
experimental efforts to acquire these measurements continue to provide rich network
datasets detailing the brain’s structural organization.

8.2.2 Modeling brain network structure

A first glance at the brain’s wiring reveals that it is far from homogeneous – a fact that
is not surprising considering the array of physical, energetic, and cognitive constraints
that it is required to balance (116). To handle this heterogeneity, researchers have
increasingly turned to the field of network science for mathematical tools and intuitions
(60, 80). The primary goal of this interdisciplinary effort has been to distill the explosion
of experimental data, spanning structural brain networks in C. elegans (481), the mouse
(305), cat (86), macaque (87, 203), and human (84), down to a number of cogent
organizing principles. Here we review some important properties that are thought
to characterize structural brain networks and introduce several generative network
models that help to explain how these properties arise from underlying biological
mechanisms (Fig. 8.2b).

8.2.2.1 Random structure

While healthy members of a species exhibit anatomical similarities in brain structure, the
specific instantiation of physical connections in each individual is far from deterministic.
Indeed, in vivo imaging techniques in humans, such as DTI described above, have
revealed not only stark differences in brain structure between individuals (663), but
also within the same individual over time (269, 549). Importantly, these structural
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Figure 8.2: Measuring and modeling brain network structure. (a) The measurement of brain
network structure begins with experimental data specifying the physical interconnections
between neurons or brain regions. As an example, we consider a dataset of white matter tracts
measured via DTI. First, the data is discretized into non-overlapping gray matter volumes
representing distinct nodes. Then, one constructs an adjacency matrix A, where Aij represents
the connection strength between nodes i and j. This adjacency matrix, in turn, defines a
structural brain network constructed from our original measurements of physical connectivity.
(b) To capture an architectural feature of structural brain networks, we utilize generative
network models. The simplest generative network model is the Erdös–Rényi model, which
has no discernible non-random structure. Networks with modular structure, divided into
communities with dense connectivity, are constructed using the stochastic block model. Small-
world networks, which balance efficient communication and high clustering, are generated
using the Watts–Strogatz model. Networks with hub structure, characterized by a heavy-tailed
degree distribution, are typically constructed using a preferential attachment model such as the
Barabási–Albert model. Spatially embedded networks, whose connectivity is constrained to
exist within a physical volume, are generated through the use of spatial network models.

differences have been linked to variability in a wide range of behaviors (355), including
empathy (47), introspection (219), fear acquisition (296), and even political orientation
(356). To study the mathematical properties of random networks, and to understand
the types of biological mechanisms that can give rise to qualitative structural properties,
it is useful to consider generative network models (80). The simplest and most common
model for generating random networks is the Erdös–Rényi (ER) model (205), wherein
each pair of nodes is connected independently with a fixed probability P. While the ER
model has a number of interesting mathematical properties, such as a binomial degree
distribution, it has no discernible structure and does not reflect the mechanisms by
which most networks grow in the brain. Accordingly, if we wish to understand some
of the principles underlying naturally occurring brain networks, we must consider
generative models that yield networks with realistic properties.
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8.2.2.2 Community structure

Perhaps the brain’s most well-studied structural property is its division into distinct
anatomical regions, which are widely thought to be responsible for specialized cog-
nitive functions (606). Interestingly, by studying the large-scale structure of brain
networks in several mammalian species, researchers have shown that the organization
of connections tends to partition the networks into densely-connected communities
separated by sparse inter-community connectivity (310, 624–626). Moreover, these
clusters of high connectivity closely resemble postulated anatomical subdivisions (310).
It has therefore been argued that the so-called community structure of brain networks
segregates the brain into subnetworks with specific cognitive functions (38, 61, 394, 618,
656). Practically speaking, in order to extract the community structure of a real-world
network, one must employ algorithms for community detection – a vibrant branch
of research that is now applied throughout network neuroscience (81, 366). From a
complimentary perspective, to generate networks with a defined community structure,
researchers predominantly use the stochastic block (SB) model, wherein nodes are
assigned to distinct communities and an edge is placed between each pair of nodes
with a probability that depends on the nodes’ community assignments (10, 83). Such
SB networks are often used as null models to distinguish between properties of brain
networks that are implied simply by their community structure and those that require
additional biological mechanisms (80, 83).

8.2.2.3 Small-world structure

Seemingly in contradiction to their striking community structure, large-scale brain
networks also exhibit average path lengths between all nodes that are much shorter than
a typical random network (116, 404, 681). This competition between high clustering
and short average paths is thought to facilitate the simultaneous segregation and
integration of information in the brain (179), possibly minimizing the total number
of computational steps needed to process external stimuli (354, 390). Seeking an
explanation for similar “small-world" topologies exhibited by other real-world systems
(most notably social networks (671)), Duncan Watts and Steven Strogatz developed a
model for generating random networks with both high clustering and short average
path lengths (699). Generally, the Watts-Strogatz (WS) model supposes that small-
world networks are an interpolation between two extreme configurations: a ring lattice,
wherein nodes are arranged along a circle and connected to their k nearest neighbors on
either side, and an ER random network. Notably, the presence of small-world structure
in the brain suggests that efficient communication emerges from a finely-tuned balance
of lattice-like organization and structural disorder.

8.2.2.4 Hub structure

In addition to their modular and small-world structure, many large-scale brain net-
works also feature high-degree “hubs", which form a densely interconnected structural
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core (268). Acting as bridges between structurally distinct communities, these special-
ized hub regions are thought to help minimize overall path lengths across the network
(625) and facilitate the integration of information (179). Supporting the notion of a
centralized core, many studies have identified hubs within the parietal and prefrontal
regions, areas that are often active during a wide range of cognitive functions (268, 700).
Such core-periphery architecture is characterized by a heavy-tailed degree distribution,
such as that observed in scale-free networks, in some cases arising through preferential
attachment mechanisms (175). In the Barabàsi–Albert (BA) model (50), for instance,
nodes are added to a network in sequential order, and each new node i forms an edge
with each existing node j with a probability proportional to the degree of node j. In
this way, new nodes preferentially attach to existing nodes of high degree, creating a
“rich club" of centralized hubs that link otherwise distant regions of the network.

8.2.2.5 Spatial structure

Thus far, we have focused exclusively on the topological properties of brain networks,
which are thought to be driven primarily by the simultaneous functional pressures
of information segregation and integration (179). However, brain networks are also
physically constrained to exist within a tight three-dimensional volume and their
structural connections are metabolically driven to minimize total wiring distance (61,
116, 354). Such physical and metabolic constraints are captured by spatial (or geometric)
network models, which embed networks into three-dimensional Euclidean space and
penalize the formation of long-distance connections (80). The simplest such model
assumes that the probability of two nodes i and j forming an edge is proportional to
d-↵

ij
, where dij is the physical distance between i and j, and ↵ > 0 tunes the metabolic

cost associated with constructing connections of a given length (167). If we keep the
number of nodes and edges fixed, one can see that, much like the WS model, this
spatial model interpolates between a lattice-like structure, in which nodes only connect
to their nearest neighbors (↵!1), and an ER random network (↵ = 0).

8.2.2.6 Competition between structural properties

As the brain grows and adapts to changing cognitive demands, it is widely thought that
the underlying network evolves to balance the trade-off between topological value and
metabolic wiring cost (116). Thus, while the modular, small-world, heavy-tailed, and
inherently physical properties of brain networks provide simple organizing principles,
in reality the brain is constantly and dynamically weighing these pressures against
one another. Accordingly, an accurate generative model should aim to explain multiple
real-world properties at once (80). With this goal in mind, recent work has shown
that an impressive range of topological properties can be understood as arising from
a competition between two competing factors: a metabolic penalty for the formation
of long-distance connections and a topological incentive to connect regions with
similar inputs (684). Notably, investigations of the human, C. elegans, and mouse
connectomes have revealed that the total wiring distance is consistently greater than
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minimal, supporting the notion that brain networks weigh the costs of long-distance
connections against the functional benefits of an integrated network topology (61, 572).
Together, these efforts toward a comprehensive generative model are vital for our
understanding of healthy brain network structure, with important clinical implications
for the diagnosis, prognosis, prevention, and treatment of disorders of mental health
(353, 630).

8.2.3 The future of brain network structure

Current advances in neuroimaging techniques and network science continue to expand
our ability to measure and model the architecture of structural connections in the
brain. As experimental measurements become increasingly detailed, an important
direction is the bridging of brain network structure at different spatiotemporal scales
(106, 137, 591). Such cross-scale approaches could link protein interaction networks
within neurons to the wiring of synaptic connectivity between neurons to mesoscale
networks connecting brain regions and all the way to social networks linking distinct
organisms (Fig. 8.3). The goal of such cross-scale integration is to understand how
the architecture of connectivity at each of these scales emerges from the scale below.
Practically, researchers have begun to address this goal by employing hierarchical
network models (76), which treat each node at the macroscale as an entire subnetwork
at the microscale (442).

Perhaps the most ambitious future goal is the reconstruction of the entire human
connectome at the scale of individual neurons, pressing the current boundaries of
3D electron microscopy and statistical image reconstruction (627). Extensive mapping
efforts in other species have revealed notable and quantifiable neuronal diversity (28,
601), suggesting the importance of extending network models to include non-identical
units. At the mesoscale, advances in noninvasive imaging have allowed researchers
to begin tracking changes in structural connectivity over time (68, 481, 592, 730). To
analyze these temporally ordered measurements, network scientists have extended
standard static graph theoretic tools to study networks with dynamically evolving
connections (366). Notably, these so-called temporal networks (317) were recently
shown to be easier to control, requiring less energy to attain a desired pattern of neural
activity, than their static counterparts (403).

Properly modeling the dynamics of brain networks requires also understanding
the functional dynamics occurring on brain networks. For instance, dating to Donald
Hebb’s 1949 book The Organization of Behavior, it has been posited that the strength of a
synaptic connection increases with the persistent synchronized firing of its pre- and
postsynaptic neurons (301). Such Hebbian plasticity has been observed in vitro (422)
and is thought to explain many aspects of brain network structure (453, 619). More
generally, Hebb’s postulate highlights the fact that a complete understanding of the
brain cannot simply include a description of its structural wiring; it must also stipulate
the types of dynamics supported by this physical circuitry.
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Bridging spatiotemporal scales. In the context of complex systems generally and
neural systems specifically, the cutting edge work relates to extending our tools,
theories, and intuitions from a single network to so-called multiscale, multilayer,
and multiplex networks (273, 373). Perhaps the most obvious context in which to
make this extension is from regional networks to cellular-scale neuronal networks
(442). Large-scale brain activity provides a coarse-grained encoding of neural
processes, and the map from cellular dynamics to regional dynamics reflects rules
of system function. By combining these two layers we can address questions like,
“How do cellular processes shape circuit behavior?” The next logical extension
is to move even further down the natural hierarchy of scales to understand how
molecular networks – including gene coexpression networks (28, 557, 565, 704)
– shape the behavior of cells (293). Understanding how molecular mechanisms
affect large-scale brain network function is critical for the development of effective
pharmacological interventions (104, 413, 630). By extending the network model
from regions to cells to molecular drivers, we can ask questions like, “How do
genetic codes and epigenetic drivers shape circuit behavior across spatial scales?”
And in a final extension, it is time to move up in the natural hierarchy of scales
to combine information from the connectivity within a single human brain to the
connectivity between human brains in large-scale social networks (191, 508, 509,
587). While brain activity and structure offer biological mechanisms for human
behaviors, social networks offer external inducers or modulators of those behaviors
(212). By extending the network model to this larger scale, we can start to ask –
and potentially answer – questions like, “How do brains shape social networks?
And how do social ties shape the brain?” This extension will be important in
understanding human behavior within the broader contexts of culture and society.

Molecular network Neuronal network Social networkRegional network

a b c d

Figure 8.3: Brain networks at various scales. (a) Molecular networks composed of inter-
acting molecules. (b) Neuronal networks composed of firing neurons. (c) Regional network
composed of disparate brain areas communicating with one another. (d) Social network
composed of individuals interacting with one another.
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8.3 the physics of brain network function

While structural brain networks represent the physical wiring between neural elements
(e.g., between individual neurons or brain regions), knowledge of this circuitry alone is
not sufficient to understand how the brain works. For this reason, we turn our attention
to models of brain network function that stipulate how neural activity propagates along
structural connections. Just as the neuron doctrine postulates that the brain’s structure
is divided into a network of distinct nerve cells, it is also widely expected that the
brain’s array of cognitive functions emerges from the collective activity of individual
neurons (14, 59, 141, 228, 668). To understand how the firing of simple nerve cells can
give rise to the brain’s rich repertoire of cognitive functions (1), analogies are often
drawn with notions of emergence in statistical mechanics (59, 141, 178). Developed
concurrently with the neuron doctrine in the late 19th century, statistical mechanics
established (among other achievements) that the thermodynamic laws governing the
macroscopic behavior of gas molecules can be derived from the microscopic dynamics of
the molecules themselves (551). Similarly, growing evidence suggests that the dynamics
of individual neurons and brain regions, when embedded in networks of structural
connections, can produce the types of long-range correlations and collective patterns
of activity that we observe in the brain (109, 110, 141, 398, 589, 622, 692). Here we
traverse what is known about brain network function in relatively broad strokes, from
the dynamics of distinct neurons to the networked activity of the entire brain.

8.3.1 Measuring brain network function

The first measurements of the brain’s functional organization date to 1815, when
Marie-Jean-Pierre Flourens pioneered the use of localized lesions in the brains of
living animals to observe their effects on behavior. Through his experiments, Flourens
discovered that the cerebellum regulates motor control, the cerebral cortex supports
higher cognition, and the brain stem controls vital functions (220). The remainder of
the 19th century brought increasingly detailed measurements of the brain’s functional
organization, from the demonstration that the occipital lobe regulates vision (503) to
the discovery that the left frontal lobe is essential for speech (108). These discoveries,
combined with the early images of neural circuits captured by Ramón y Cajal (714),
culminated in Thomas Scott Sherrington’s book The Integrative Action of the Nervous
System, which proposed the idea that neurons behave in functional groups (606).

Meanwhile, in 1849 the physicist Hermann von Helmholtz achieved the first electrical
measurements of a nerve impulse (689), sparking a wave of experiments investigating
the electrical properties of the nervous system. Through invasive measurements in
animals using newly-developed electroencephalography (EEG) techniques (288), it
quickly became clear that individual neurons communicate with one another via
electrical signals (70, 129, 411), thus providing a clear mechanism explaining how
information is propagated and manipulated in the brain. Today, scientists possess a
rich menu of experimental techniques for measuring brain dynamics across a range
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of scales. At the neuronal level, the development of invasive methods in animals,
such as electrophysiological recordings of brain slice preparations in vitro (199, 276)
and calcium imaging of neuronal activity in vivo (278, 638), have vastly expanded
our understanding of synaptic communication. At the regional level, complimentary
minimally-invasive imaging techniques have identified fundamental properties of
information processing in humans (515). Interestingly, these advances in mesoscale
functional imaging can largely be traced to the efforts of physicists. MEG methods,
for instance, use superconducting quantum interference devices (SQUIDS) to directly
measure the magnetic fields generated by electrical currents in the brain (98, 292); and
PET techniques measure the positron emission of radioisotopes produced in cyclotrons
to reconstruct the metabolic activity of neural tissue (43). Over the last twenty years,
measurements of brain dynamics have been increasingly dominated by functional
MRI (fMRI) (544), which estimates neural activity by calculating contrasts in blood
oxygen levels, without relying on the invasive injections and radiation that limit the
applicability of other imaging techniques (724). This modern progress in functional
brain imaging has galvanized the field of network neuroscience by making detailed
datasets of large-scale neural activity widely accessible.

One particularly important application of functional brain imaging has been the
study of so-called functional brain networks (677), which have allowed researchers
to investigate the organization of neural activity using tools from network science.
In functional brain networks, as in their structural counterparts, nodes represent
physical neural elements, ranging in size from individual neurons to distinct brain
regions (115). However, whereas structural brain networks define the connectivity
between elements based on physical measures of neural wiring (e.g., synapses between
neurons or white matter tracts between brain regions), functional brain networks define
connectivity based on the similarity between two elements’ dynamics (115). To see
how this works, we briefly consider the common example of a large-scale functional
brain network calculated from fMRI measurements of regional activity (677) (Fig. 8.4a).
First, blood oxygen levels indirectly reflecting neural activity are measured within
three-dimensional non-overlapping voxels, spatially contiguous collections of which
each represent a distinct brain region. After preprocessing the signal to correct for
sources of systematic noise such as fluctuations in heart rate, the activity of each brain
region is discretized in time, yielding a vector (or time series) of neural activity. Finally,
to quantify functional connectivity, one computes the similarity between each pair of
brain regions, for example using the quite simple Pearson correlation between the
two regions’ activity time series (109, 722). The end result, even for different types of
functional data and different choices for the preprocessing steps and similarity metric,
is a functional brain network representing the organization of neural activity.

After constructing a functional brain network, researchers can utilize techniques from
network science to study its key organizing features. Such efforts have demonstrated
that large-scale functional brain networks, much like structural networks, exhibit signs
of modular, small-world, heavy-tailed, and metabolically constrained organization (2,
79, 299, 577, 677). The existence of strong functional community structure, for instance,
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further supports the hypothesis that brain networks segregate into subnetworks with
specialized cognitive functions (575, 720). Moreover, the presence of high clustering
and short average path lengths, combined with the existence of high-degree hub
regions, highlights the competing functional pressures of information segregation and
integration in the brain (2, 58). Metabolic constraints on the brain’s structural wiring are
also evident in its functional connectivity (566), with spatially localized brain regions
generally supporting more strongly correlated activity than distant regions (116). In
light of the similarities between the brain’s functional and structural organization, it is
tempting to suspect that functional brain networks closely resemble the physical wiring
upon which they exist (270, 321). However, the relationship between brain function and
structure is highly nonlinear (439), and understanding how a functional brain network
arises from its underlying structural connectivity remains a subject of intense academic
focus (106, 507).

8.3.2 Modeling brain network function

To understand how the web of physical connections in the brain gives rise to its
functional properties, statistical mechanical intuition dictates that we should begin
by studying the dynamics of individual elements. Once we have settled on accurate
models of the interactions between individual neurons and brain regions, we can link
these elements together in a network to predict macroscopic features of the brain’s
function from its underlying structure (60, 63). Interestingly, the history of modeling
in neuroscience has followed precisely this path, beginning with models of neuronal
dynamics (218, 316, 435), then increasing in scale to mean-field neural mass models of
distinct brain regions (88, 710), and eventually achieving models of entire networks of
neurons and brain regions (322, 384, 589). Here we review important developments
in the modeling of neural dynamics, dividing the modeling techniques into two
complimentary classes: those with artificial dynamics and those with biophysically
realistic dynamics (Fig. 8.4b). As we will see, models from each of these two classes are
able to reproduce important aspects of neural activity and system function that have
been observed in a range of physiological and behavioral experiments.

8.3.2.1 Artificial models

One of the earliest mathematical models of neural activity whatsoever was proposed in
the mid-1940s by Warren McCulloch and Walter Pitts to describe the logical functioning
of an individual neuron (435). Known as the MP neuron, their model accepted binary
inputs, combined these inputs using linear weights, and produced a binary output
reflecting whether or not the weighted sum of inputs exceeded a given threshold (Fig.
8.4b). Albeit a simple caricature of neuronal dynamics, this model has been shown to
reproduce some important qualitative features of neuronal activity, including the linear
summation of excitatory inputs (125) and the “all-or-none" response to the resulting
integrated signal (214). Moreover, by connecting the inputs and outputs of multiple MP
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Figure 8.4: Measuring and modeling brain network function. (a) The measurement of brain
network function begins with experimental data specifying the activity of neurons or brain
regions. As an example, we consider variations in blood oxygen level in different parts of
the brain measured via fMRI. Calculating the similarity (e.g., correlation or synchronization)
between pairs of activity time series, one arrives at a similarity matrix. This matrix, in turn,
defines a functional brain network constructed from our original measurements of neural
activity. (b) We divide models of neural activity into two classes: abstract models with artificial
dynamics (left) and biophysical models with realistic dynamics (right). Models of artificial
neurons, such as the MP neuron, typically take in a weighted combination of inputs and pass
the inputs through a nonlinear threshold function to generate an output. Networks of artificial
neurons, from deep neural networks to Hopfield networks, have been shown to reproduce
key aspects of human information processing, such as learning from examples and storing
memories. By contrast, biophysical models of individual neurons, such as the Hodgkin–Huxley
or FitHugh–Nagumo models, capture realistic functional features such as the propagation
of the nerve impulse. When interconnected with artificial synapses, researchers are able to
simulate entire neuronal networks. Complimentary mesoscale approaches, including neural
mass models such as the Wilson–Cowan model, average over all neurons in a population to
derive a mean firing rate. To simulate the large-scale activity of an entire brain, researchers
use neural mass models to represent brain regions and embed them into a network with
connectivity derived from measurements of neural tracts (e.g., as measured via DTI).

neurons, researchers have achieved deep insights about how brain networks perform
basic cognitive functions. For example, soon after the introduction of the MP model,
researchers demonstrated that networks of artificial neurons could be used to represent
any Boolean function (i.e., any function mapping a list of binary variables to a binary
output), thereby establishing the basic capability of neural networks to perform logical
computations (596).
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While their ability to perform basic computations was quickly realized, it was not
clear at the outset whether artificial neural networks could reproduce other cognitive
functions, such as the ability to learn or store memories. The former was established
by Frank Rosenblatt in 1957, when he showed that the weights on the inputs to an
MP neuron could be tuned such that the output defines a binary classifier. Known as
the perceptron, this algorithm enabled a single MP neuron to segregate incoming data
into one of two classes by learning from past examples. This remarkable result directly
inspired more advanced learning algorithms, including support vector machines (300)
and artificial neural networks (374), effectively setting in motion the study of machine
learning. Today, deep neural networks, consisting of multiple layers of artificial neurons
feeding in one direction from the input layer to the output layer (Fig. 8.4b), are able to
learn a wide range of impressive cognitive functions that we have come to expect from
the brain (588). While the list of applications is ever-expanding, deep neural networks
have been used to process and identify images of objects, scenes, and people (200);
recognize, interpret, and respond to spoken language (315); and formulate strategies
and make decisions in adversarial settings (614).

In addition to performing computations and learning from examples, the physicist
John Hopfield showed in 1982 that neural networks can also store and recall memories.
Specifically, Hopfield demonstrated that the synaptic weights connecting a set of
MP neurons could be adjusted in a Hebbian fashion such that the network is able
to “memorize" a number of desired activity states (322) (i.e., configurations of the
network in which each neuron is either active or inactive). Notably, the number of
memorized states grows linearly with the number of neurons in the network (473),
and errors in recall often yield states that are semantically similar to the target state,
a phenomenon commonly observed in humans (308). Interestingly, the memorized
activity states can be interpreted as local minima of an associated energy function,
making each Hopfield network equivalent to an Ising model at zero temperature
(113). More recently, Ising-like models have also been used to explain the critical or
avalanche-like behavior of activity in neural ensembles (456), which is thought to
support adaptation to environmental changes (713), information storage (291), optimal
information transmission (74), maximal dynamic range (369, 608), and computational
power (78). Further building upon this connection to statistical mechanics, scientists
have recently used maximum entropy techniques to construct data-based models of
neuronal dynamics. These maximum entropy models, which are equivalent to networks
of Ising spins with specially-chosen external fields and interaction strengths, have been
shown to predict the observed long-range correlations within naturally occurring
networks of neurons and brain regions (241, 589). Together, artificial models of neural
dynamics, from simple MP neurons to artificial neural networks and data-driven
maximum entropy models, continue to inform our understanding of brain networks as
information processing systems.
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8.3.2.2 Biophysical models

While artificial models continue to generate insights about the nature of neural compu-
tation, they only vaguely resemble the complex biophysical mechanisms that guide
observable neural activity. Among the first biophysically realistic models of the electrical
behavior of an individual neuron was achieved nearly a decade after the introduction
of the MP neuron by physiologists Alan Lloyd Hodgkin and Andrew Fielding Huxley
(316). Beginning from a principled description of the initiation and propagation of ac-
tion potentials in living neurons, the Hodgkin–Huxley (HH) model explains important
qualitative aspects of neuronal behavior (596), including the spontaneous emergence of
limit cycles or oscillations in activity (393) and the presence of a Hopf bifurcation in the
neuronal firing rate, which is thought to underlie the all-or-none principle (316) (Fig.
8.4c). Subsequent extensions of the HH model expand biophysical realism by incor-
porating multiple ion channel populations (311), the complex geometries of dendrites
and axons (528), and more realistic stochastic dynamics yielding thermodynamic and
hybrid HH models (20, 497). Concurrent with these descriptive improvements, several
simplified neuronal models were also developed, including the notable FitzHugh–
Nagumo model (218, 466), facilitating efficient large-scale simulations of groups of
neurons.

Simplifications in neuronal modeling, paired with fine-scale measurements of the
synaptic wiring in several animals, have spurred large-scale simulations of real neu-
ronal circuits (Fig. 8.4b). For example, on the heels of mapping the entire C. elegans
connectome (705), researchers began simulating the 302-neuron network at the cellular
level (482), eventually even including the nematode’s entire muscular system and repre-
sentations of its physical environment (114). Despite these and other efforts simulating
the Drosophila brain (24) and the rat’s neocortical column (427), it remains unclear how
networks of neurons combine to generate the complex range of behaviors observed
even in these relatively simple organisms. This contrast between the simplicity of
neuronal dynamics and the apparent complexity of large-scale neural behavior hints
at the crucial role of emergence. To understand how macroscopic behaviors emerge
within groups of neurons, researchers began developing mean-field descriptions of
large neuronal populations. Known as neural mass models, these efforts culminated in
the foundational Wilson–Cowan (WC) model of population dynamics (710). Whereas
previous neural mass models only considered excitatory interactions between neurons,
Wilson and Cowan also included inhibitory interactions, thereby enabling the WS
model to predict the collective neural oscillations observed in experiments as well
as the emergence of other key properties of neural behavior, including the existence
of multiple stable states and hysteresis in the neural response to stimuli (710). This
progress was further extended to include spatial fluctuations in activity, yielding neural
field models that exhibit other behaviors typically observed in the brain, including
regions of localized activity (371) and traveling waves (527).

In much the same way that neuronal circuits have been modeled using observable
synaptic wiring in animals, one could imagine simulating a network of neural mass
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models whose connections are drawn based on non-invasive measures of regional
connectivity in humans. By doing so, researchers are now able to simulate whole
sections of the human brain (Fig. 8.4c), opening the door for comparisons with experi-
mental measurements of regional activity. Precisely this approach has driven a deeper
understanding of the structure-function relationship, including the demonstration that
the broad spectrum of MEG/EEG recordings of electrical activity can be reproduced by
networked models of neural masses (168) and that the functional connectivity within
such recordings depends critically on the coupling strength between neural masses
(169). To facilitate large-scale simulations of the entire human brain, researchers have
frequently turned to the Kuramoto model of oscillatory dynamics as a simplified neural
mass model (384, 385). These efforts have provided insights about the spontaneous
synchronization of neural oscillations (698), a phenomenon which is thought to play a
critical role in neural communication (229), information processing (500), and motor
coordination (590). Moreover, by embedding Kuramoto oscillators into a realistic map
of the human connectome, researchers have shown that even this simple model is
able to reproduce the patterned fluctuations in activity and long-range correlations
observed in fMRI data (119). Detailed biophysical models of neural dynamics, from
descriptions of the electrical activity of individual neurons to networked neural mass
models simulating the entire brain, continue to inform our understanding of how
collective neural behavior and high-level cognitive functions arise from the brain’s
underlying physical circuitry.

8.3.3 The future of brain network function

Over the last two centuries, our understanding of the brain’s functional organiza-
tion and information processing capabilities has progressed immensely. Despite this
progress, the modern neuroscientist remains fundamentally limited by the experimental
and theoretical tools at their disposal (521, 522). Invasive techniques such as intracra-
nial electrocorticography, and even minimally invasive techniques such as stereotactic
electroencephalography (sEEG) (Ch8-todaro2018mapping, 46, 138), provide immense
precision in mapping human brain dynamics, but remain constrained to patients with
medically refractory epilepsy. Other noninvasive imaging techniques all suffer from
trade-offs between spatial and temporal resolution (443); methods that directly measure
electromagnetic signals (e.g., EEG and MEG) have high temporal resolution but low
spatial resolution, while measurements of blood flow and metabolic activity (e.g.,
via fMRI or PET) have relatively high spatial accuracy but poor resolution in time.
Even fMRI – widely considered the standard for high spatial resolution in humans
– integrates signals over hundreds of thousands of neurons and several seconds (9).
Consequently, any changes in neural activity that occur over tens of thousands of
neurons or even over the span of a second are imperceivable on a standard fMRI scan.

To improve the precision of functional neuroimaging (fMRI in particular), recent
efforts have leveraged modern advances in image processing to strengthen the signal
and reduce background noise. For example, to minimize the inevitable effects of
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head movements and fluctuations in blood flow during scanning, fMRI signals are
increasingly corrected using techniques similar to image stabilization in video cameras
(146). Additionally, in order to draw general conclusions from neuroimaging results
across a group of subjects, impressive strides have been made to correct for inter-
subject heterogeneities in brain structure (35). Together, advances in image processing
have begun to push neuroimaging from a tool exclusively used for academic research
to one that can aid in the diagnosis and treatment of psychiatric disorders such as
schizophrenia and Alzheimer’s disease.

Beyond data collection, data analysis and models in network neuroscience have
historically been limited to dyadic relationships between neural elements, such as
synapses connecting pairs of neurons or Pearson correlations between pairs of brain
regions (60, 63). While these dyadic notions of connectivity have provided important
insights about the brain’s circuitry, mounting evidence suggests that higher-order
interactions between three or more elements are also crucial for understanding the large-
scale behavior of entire brain networks (16, 241, 616). In order to study these higher-
order connections, recent efforts have focused on generalizing traditional definitions
and intuitions from network science, primarily by adopting methods from algebraic
topology (252). One notable approach, known as persistent homology, has allowed
researchers to extrapolate conclusions about neural activity across scales, escape the
problem of selecting appropriate thresholds for functional edge strengths (251), and
extract principled mesoscale features of network organization (552, 616).

Efforts have also been made to expand traditional metrics of functional connectivity,
which are typically based on correlation, to include more sophisticated notions of
causality (79). Since causality reflects the flow of information in a network from one
element to another, efforts which aim to uncover causal relationships between neurons
and brain regions have naturally drawn inspiration from concepts in information
theory (see below) (66). From mutual information to transfer entropy, information
theoretic notions of functional connectivity are increasingly being used to quantify the
flow of information in the brain (370, 500, 731). These measures of causality, in turn,
have real-world implications for controlling brain networks and intervening to treat
neurological disease and psychiatric disorders.

Information theory and network neuroscience. At its core the brain is an infor-
mation processing system, having evolved over millions of years to encode and
manipulate a continuous stream of sensory signals (560). As such, information
theory – the science of how signals are encoded and processed – provides a com-
pelling lens through which to study the brain’s function (161). Information theory
began with the 1948 paper “A Mathematical Theory of Communication,” wherein
Claude Shannon proposed the entropy of a signal as the natural measure of its
information content and derived fundamental limits on the information capacity
of a communication channel (603). Soon after, MacKay and McCulloch adapted
the concept of channel capacity to obtain limits on the rate at which one neuron
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can transmit information to another (421), sparking the study of information flow
in the brain. Subsequent work by Attneave and Barlow proposed the idea that
neural activity is optimized for the transmission of sensory information (32, 53),
providing the foundation for future investigations of neural coding (1, 560).

Despite these initial efforts bridging information theory and neuroscience,
progress slowed primarily due to difficulties obtaining unbiased information
estimates from neural systems. Improvements in experimental techniques, how-
ever, eventually sparked renewed interest (682), spurring the introduction of robust
methods for estimating information theoretic quantities (470, 502, 640). On the
basis of these advancements, information theory has once again become a power-
ful tool for the network neuroscientist. Recent attempts, for instance, to uncover
causal relationships between neural elements have successfully adapted notions
of information flow, such as mutual information and transfer entropy (593, 685).
At the same time, efforts to understand large-scale correlations within neuronal
populations have utilized the principle of maximum entropy (339), resulting in
Ising-like models of collective neural behavior (241, 589). As information the-
ory becomes increasingly integrated into the fabric of neuroscience, physicists
are uniquely positioned to pioneer exciting new techniques for investigating the
nature of information processing in the brain.

8.4 perturbations and the physics of brain network control

Thus far, we have examined what is known about the structural circuitry connecting
neural components in the brain as well as the dynamical laws governing the interactions
between these components. An ultimate test of our understanding, however, lies in our
ability to intervene and shift the brain’s dynamics to facilitate desirable behaviors. An
important implication of the brain’s networked structure is that localized perturbations
(e.g., targeted lesions or stimulation) do not just yield localized effects – they also induce
indirect effects that propagate along neural pathways (412, 436). In this way, the task
of controlling brain dynamics requires knowledge of how signals transmit along the
brain’s structural wires, making the problem inherently one of network control (409).
Building upon targeted lesioning experiments in animals and clinical interventions in
humans, efforts toward a theory of network control in the brain have recently taken
shape, inspiring several fundamental questions (586). Are brain networks designed to
facilitate control (367)? What are the principles that allow brain networks to control
themselves toward desired activity states (284, 341)? Can we leverage these principles to
inform stimulation-based therapies for neurological diseases and psychiatric disorders
(319, 440, 464, 655)? To address these questions, here we review the current frontiers in
the physics of brain network control.
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8.4.1 Targeted perturbations and clinical interventions

The first attempts to systematically control brain dynamics date to the early 19th century,
when Marie-Jean-Pierre Flourens noticed that targeted lesions to the brain in living
rabbits and pigeons yielded specific changes in the animals’ perception, motor coordi-
nation, and behavior (220). These efforts, in conjunction with other targeted lesioning
experiments in animals (108, 503), supported the notion of functional localization – the
theory that specific cognitive functions are supported by specific parts of the brain.
In humans, evidence for functional localization has typically relied on patients with
localized brain damage (e.g., due to a stroke or head trauma). Historical studies of this
kind have revealed, for instance, that damage to one half of the occipital lobe often
induces blindness in the opposite field of vision (318) and that lesions in the frontal
lobe can result in memory loss and an increase in impulsivity and risk taking (495).
More recently, advances in non-invasive stimulation techniques such as transcranial
magnetic stimulation (TMS) (694), which induces “transient" lesions by disrupting the
brain’s normal electrical activity, have opened the door for the control of localized brain
functions, including perception (17), learning (511), language processing (510), and
attention (695). These non-invasive transcranial techniques have been supplemented
by more invasive deep brain stimulation (DBS) methods to provide targeted therapies
for a number of psychiatric and neurological disorders (382, 694). By focusing elec-
tromagnetic stimulation on the brain regions associated with specific disorders, both
TMS and DBS have been used to treat Parkinson’s disease, epilepsy, depression, and
schizophrenia, among other disorders that are resistant to traditional therapies (243,
518) (Fig. 8.5a). Despite these therapeutic benefits, it remains unclear exactly how and
why TMS and DBS are so effective (382, 436); however, recent evidence suggests that
the answers may rely on a deeper understanding of the indirect effects of stimulation
that are mediated by the brain’s physical circuitry (579, 654).

With the recent development of whole-brain neuroimaging methods such as fMRI, ev-
idence continues to mount that brain regions are heavily interdependent on one another,
often working in unison to process information and formulate responses (179, 677). In a
particularly clear demonstration of the brain’s functional integration, Anthony Randall
McIntosh and colleagues trained human subjects to associate an auditory stimulus
with a visual event. Later, when the auditory stimulus was presented alone, the investi-
gators observed increased activity in the occipital lobe, more traditionally thought of
as being reserved for visual processing (725). Experiments such as these reveal how
activity or stimulation in one part of the brain can propagate along neural pathways
to induce activity in other distant parts. To understand the system-wide impacts of
targeted stimulation, researchers have increasingly drawn upon network models of
brain dynamics (579, 654). These efforts have resulted in the identification of neural
circuits, rather than isolated regions, that are critical for reducing the symptoms of
Parkinson’s disease (142, 579). Similar network-based approaches are also being used to
suppress epileptic seizures using DBS (77), non-invasively treat depression using TMS
(363), and modulate consciousness during surgery using anesthesia (143). Moreover,
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Figure 8.5: Targeted perturbations and brain network control. (a) Methods for targeted control
are used in the study, design, and optimization of external control processes, such as transcranial
magnetic stimulation and deep brain stimulation. These targeted perturbations of neural activity
are being utilized in clinical settings to treat major depression, epilepsy, and Parkinson’s disease.
By simultaneously stimulating and measuring neural activity, researchers can now perform
closed-loop control, continuously updating stimulation strategies in real time. (b) Controllability
metrics provide summary statistics regarding the ease with which a given node can enact
influence on the network. Two common metrics are the average controllability, which assesses
the ease of moving the system to all nearby states, and the modal controllability, which assesses
the ability to move the system to distant states (see Fig. 8.6). Notions of controllability have
proven useful in the study of the brain’s internal control processes, such as homeostatic
regulation and cognitive control. For example, the human brain displays marked levels of both
average and modal controllability, and the proportion of average and modal controllers differs
across cognitive systems, suggesting the capacity for a diverse repertoire of dynamics (284).

by stimulating and recording neural activity in several brain regions simultaneously,
researchers have achieved closed-loop strategies for dynamically updating targeted
treatments (302, 320) (Fig. 8.5a). Meanwhile, clinical applications are increasingly being
informed by detailed computational simulations of perturbations to specific brain
regions, typically employing networked biophysical models such as those discussed in
the previous section (164, 578). Together, these real-world and computational studies of
targeted stimulation have opened the door for sophisticated strategies that aim to shift
neural activity with the ultimate goal of guiding healthy cognitive function.

8.4.2 Network control in the brain

To inform strategies for targeted stimulation and brain network control, it helps to
draw upon existing tools from control theory in mathematics and intuitions from
cognitive control in psychology. Given a mathematical model of a system, control
theory seeks to understand how the system can be influenced such that it moves
toward a desired state (335, 409) (see Fig. 8.6). Cognitive control, on the other hand,
encompasses a broad class of processes by which the brain enacts control over itself,
typically to achieve an abstract goal or desired response (538). For example, dating to
the early 1970s neurophysiological studies revealed that the act of holding an object
in working memory induces a sustained neural response in the prefrontal cortex (235,
259). In fact, the prefrontal cortex is now believed to play a key role in many cognitive
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control processes, from the representation of complex goal-directed behaviors (69) to
the support of flexible responses to changes in the environment (186). But how do these
notions of cognitive control (as defined by psychologists and cognitive neuroscientists)
compare to theories of network control (as defined by physicists and engineers)?
Furthermore, how can knowledge of the brain’s intrinsic control processes inform
targeted therapies for mental illness?

To address these questions, we begin by comparing cognitive notions of intrinsic
control with theoretical measures of control and controllability in brain networks (see
Fig. 8.6). It is interesting, for example, to ask which brain regions are most capable
of inducing desired neural responses in other brain regions that are responsible for
common functions such as vision, audition, and motor coordination. Toward this end,
Gu et al. used methods from control theory to demonstrate that the strongest driver
nodes corresponded to brain regions with high communicability – or many topological
paths through the brain network – to the target brain regions (285). In a related study,
Betzel et al. used the structural wiring of the brain to simulate transitions between
commonly observed activity states (85). They found that optimal control nodes tended
to have high degree in the network, and that when this rich-club of hub regions was
destroyed by simulated lesioning, the ability of the brain to make common transitions
was significantly reduced.

In addition to studying the roles of specific control trajectories, complementary
approaches have considered trajectory-independent metrics such as the average and
modal controllabilities discussed in Fig. 8.6 (512). By comparing control theoretic
measures of node controllability with the cognitive functions associated with each
brain region, researchers have observed that different types of controllers are located
in distinct areas of the brain (Fig. 8.5b) (284). For example, brain regions with strong
average controllability are disproportionately located in the default mode system,
which is associated with baseline neural activity; meanwhile, strong modal controllers
are primarily located in cognitive control systems. These observations are particularly
interesting because they suggest that regions associated with the default mode are
optimally positioned to push the system into many easily reachable states, while
regions associated with cognitive control are optimally positioned to steer the system
toward distant states.

As a final layer of abstraction, rather than studying the controllabilities of specific
brain regions, one could envision averaging over all regions to quantify the mean con-
trollability of an entire brain network. Interestingly, by taking precisely this approach,
Tang et al. established that brain networks as a whole are finely tuned to maximize
both average and modal controllability, thereby supporting a diverse range of possible
control strategies (653). Furthermore, by comparing subjects in different stages of
adolescence, the researchers found that brain network controllability increases with
age, suggesting that neural circuitry evolves over time to support increasingly complex
dynamics. In related studies, metrics of network controllability were found to differ by
sex (Ch8-cornblath2018sex) and to be altered in individuals with high genetic risk for
bipolar disorder (341). Taken together, these results demonstrate that network measures
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Linear control and network controllability. To investigate the principles of control
in the brain, it is useful to understand the theory of network control generally.
In network control, the system in question typically comprises a complex web of
interacting components, and the goal is to drive this networked system toward
a desired state by influencing a select number of input nodes (409). The starting
point for most control theoretic problems is the linear time-invariant control system
x(t+ 1) = Ax(t) + u(t), where x(t) defines the state of the system (e.g., the BOLD
signal measured by fMRI), A is the interaction matrix (e.g., white matter tracts
estimated using DTI), and u(t) defines the input signal (e.g., electromagnetic
stimulation using TMS or DBS) (352). Such a system is said to be controllable if
it can be driven to any desired state. Often, however, many naturally occurring
networks that are theoretically controllable cannot be steered to certain states due
to limitations on control resources (376, 410), motivating the introduction of control
strategies u⇤(t) that minimize the so-called control energy E(u) =

P1
t=0

|u(t)|2
2

.
By limiting the control input to a single node, we can quantify the ability of

that node to steer the dynamics of the entire system. For example, the average
controllability of a node represents its capacity to drive the network to many nearby
states (284), while a node’s modal controllability quantifies its ability to push the
network toward distant hard-to-reach states (512) (see figure). Averaging these
metrics over all nodes in a system, one can estimate the inherent controllability of an
entire network itself. Control theoretic efforts such as these have only recently been
applied to understand the locomotion of the nematode (715) and the networked
behavior of the brain more broadly (412, 586, 652), promising new strategies
for stimulation-based therapies and fresh insights about the brain’s capacity for
intrinsic control.
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Figure 8.6: Control theory in the brain. (a) Linear control theory describes how to influence
a linear system to move along a desired trajectory. (b) Controllability metrics, including
average and modal controllability, quantify the ease with which a given system can be
controlled.



8.4 perturbations and the physics of brain network control 232

of optimal control and controllability correspond closely to existing notions of intrinsic
and cognitive control in neuroscience. This close correspondence, in turn, suggests that
network control theory, by taking into account the complex wiring of the brain, has the
promise to enrich our understanding of the brain’s control principles (652).

8.4.3 The future of brain network control

Throughout this section, we have focused primarily on targeted therapies that rely on
the coarse-grained stimulation of entire brain regions and simple control strategies that
assume idealized linear dynamics. Emerging efforts in neuroscience and control theory,
however, are opening the door for a number of significant improvements, including:
(i) techniques for fine-scale control of neural activity (4, 181, 282, 287), even down
to the level of individual neurons (540, 558), (ii) systems identification approaches
that allow for the incorporation of effective connectivity measurements to inform
control, superseding solely structural explanations (72), and (iii) generalizations of
linear control theory that include more realistic nonlinear dynamics (158, 377). Among
recent advances in the manipulation of fine-scale neural activity, arguably the most
promising tool is optogenetics, which offers millisecond-scale optical control of specific
cell types within the brains of conscious animals (4, 181). Its striking precision (287),
in some cases even down to single-cell resolution (540, 558), has enabled researchers
to investigate the nature of causal signals between neurons and to study how these
signals give rise to qualitative changes in animal behavior (282).

While linear control theory continues to provide critical insights about how signals
propagate along the brain’s structural wiring (85, 284, 285, 367), interactions between
neural components, from individual neurons to entire brain regions, are highly non-
linear (Fig. 8.4b) (106). Initial efforts to develop a theory of nonlinear control, dating
as early as the 1970s (298, 306, 644), quickly converged on the conclusion that results
as strong and general as those derived for linear dynamics could not be obtained for
a general nonlinear system (409). Fortunately, concerted theoretic efforts have led to
weaker notions of nonlinear controllability (157), notable among which are techniques
for linearizing nonlinear systems around stable equilibrium states (158, 377) and meth-
ods for leveraging the symmetries of a system (703) such as repeated network motifs to
simplify control strategies (333). Additional efforts have utilized advances in computing
power to simulate the effects of external perturbations across a range of model systems,
including networks of FitzHugh–Nagumo neurons (703), Wilson–Cowan neural masses
(464), and Kuramoto oscillators (145) as well as artificial neural networks such as the
Ising model (416, 417). Together, recent advances in high-precision neural stimula-
tion like optogenetics and our emerging understanding of the principles governing
nonlinear control are pushing the boundaries of what is considered possible in the
investigation of neural activity. Targeted control of the brain’s complex behavior – once
considered a topic of science fiction – now has the promise to shape targeted therapies
for a range of psychiatric and neurological disorders.



233

8.5 conclusions and future directions in the neurophysics of brain
networks

The intricate inner workings of the brain remains one of the greatest mysteries defy-
ing resolution by contemporary scientific inquiry. On the heels of decades of effort
investigating the functions of the brain’s individual components (19), from neurons
to neuronal ensembles and large-scale brain regions, conclusive evidence points to
the need for maps and models of the interactions between these components in order
to fundamentally understand the brain’s ensemble dynamics, circuit function, and
emergent behavior (63, 151). Here we reviewed recent advances toward meeting this
challenge with an eclectic array of curios from the physicist’s cabinet: statistical me-
chanics of complex networks, thermodynamics, information theory, dynamical systems
theory, and control theory. In the course of our exposition, we considered the principles
of small-worldness (57), interconnected high-degree hubs (679), modularity (624), and
spatial embedding (637) that provide useful explanations for the architecture of struc-
tural brain networks. We then saw these same principles reflected in the organization
of long-range functional connectivity supporting information dissemination, and the
computations that can result therefrom (36, 500). As with any physical system, a natural
next step is to probe the validity of our descriptive and explanatory models using
perturbative approaches both in theory and experiment. Thus, we next summarized the
utility of network control theory in offering insights into internal control processes such
as homeostatic regulation and cognitive control, as well as external control processes
such as neurostimulation, which are currently being used to treat multiple disorders of
mental health (652).

Throughout the exposition, we described current frontiers in the investigation of
brain network structure, function, and control. Although we will not reiterate those
points here, we do wish to offer the sentiment that, while the empirical advances laying
the foundation of the field have spanned several decades, the network physics of the
brain is an incredibly young area, rich with opportunities for discovery. And perhaps
– with a bit of courage – we may even begin to provide an empirical constitution to
the deeper philosophical questions that humans have wrestled with for millennia:
What makes us unique and different from non-human animals (367, 680)? How do
we represent abstract concepts such as value to ourselves (519) and others (191)? How
are representations transmitted throughout the brain or reconfigured based on new
knowledge (155)? What makes a mind from a brain? Physicists, the brain is calling you.
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N O N - E Q U I L I B R I U M D Y N A M I C S A N D E N T R O P Y P R O D U C T I O N
I N T H E H U M A N B R A I N

This chapter contains work from Lynn, Christopher W., Eli J. Cornblath, Lia Papadopoulos,
Maxwell A. Bertolero, and Danielle S. Bassett. “Non-equilibrium dynamics and entropy pro-
duction in the human brain." In preparation.

Abstract

Living systems fundamentally exist out of equilibrium (594), producing entropy in
the environment by maintaining order and performing biological functions. However,
whereas non-equilibrium processes are critical for molecular and cellular operations
(103, 197, 328, 389, 441, 641, 718), it remains unclear if and how non-equilibrium
dynamics manifest at macroscopic scales. Here we present a framework to probe
for non-equilibrium dynamics and quantify entropy production in complex living
systems. Applying our method to whole-brain imaging data, we demonstrate that the
human brain fundamentally functions out of equilibrium. Moreover, the brain produces
more entropy – operating further from equilibrium – during periods of physical and
cognitive exertion. Comparing against simulated dynamics, we show that this capacity
of the brain to operate at different distances from equilibrium resembles tuning the
temperature of an asymmetric Ising model. Together, these results provide a general
tool for probing and quantifying non-equilibrium dynamics at macroscopic scales.

9.1 introduction

The functions that support life – from processing information to generating forces and
maintaining order – require organisms to operate far from thermodynamic equilibrium
(255, 594). For a system at equilibrium, the fluxes of transitions between different states
vanish (Fig. 9.1a), a property known as detailed balance; the system ceases to produce
entropy and its dynamics become reversible in time. By contrast, living systems exhibit
net fluxes between states or configurations (Fig. 9.1b), thereby breaking detailed balance
and establishing an arrow of time (255). Critically, such non-equilibrium dynamics lead
to the production of entropy, a fact first recognized by Sadi Carnot in his pioneering
studies of irreversible processes (124). At the molecular scale, enzymatic activity
drives non-equilibrium processes that are crucial for intracellular transport (103), high-
fidelity transcription (718), and biochemical patterning (328). At the level of cells
and subcellular structures, non-equilibrium activity enables sensing (441), adaptation

234
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Figure 9.1: Macroscopic non-equilibrium dynamics in the brain. (a-b) A simple four-state
system, with states represented as circles and transition rates as arrows. (a) At equilibrium,
there are no net fluxes of transitions between states – a condition known as detailed balance –
and the system does not produce entropy. (b) Systems that are out of equilibrium exhibit net
fluxes of transitions between states, breaking detailed balance and producing entropy in the
environment. (c) Brain states defined by the first two principal components of the neuroimaging
time-series, calculated for all time points and all subjects. Colors indicate the z-scored activation
of different brain regions, ranging from high-amplitude activity (green) to low-amplitude
activity (orange). Arrows represent possible fluxes between states. (d-e) Probability distribution
(color) and net fluxes between states (arrows) for neural dynamics at rest (d) and during a
gambling task (e). In order to use the same axes in panels d and e, the dynamics are projected
onto the first two principal components of the combined rest and gambling time-series data.
The flux scale is indicated in the upper right, and the disks represent two-standard-deviation
confidence intervals for fluxes estimated using trajectory bootstrapping (604) (see Methods; Fig.
9.5).

(389), force generation (197), and structural organization (641). However, despite the
importance of non-equilibrium processes at small scales, there remain fundamental
questions concerning how – and even whether – non-equilibrium dynamics unfold in
macroscopic systems composed of many interacting components. Indeed, the amount
of entropy produced by a system can only decrease with coarse-graining (208), leading
to the possibility that complex living systems, despite operating far from equilibrium
at small scales, may appear to regain equilibrium at large scales (201).

Here we study the non-equilibrium nature of the human brain, a complex web
of interacting neurons that, despite accounting for only 2% of the body’s weight,
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consumes up to 20% of its energy (295). This immense metabolic expenditure drives an
array of non-equilibrium processes at the microscale, including molecular cycles (486),
cellular housekeeping (194), and neuronal firing (206). But does the brain function out
of equilibrium at large scales? And if so, does the non-equilibrium nature of the brain
vary with physical or cognitive demands? To answer these questions, we develop a
framework to probe for non-equilibrium dynamics and quantify entropy production in
complex living systems.

9.2 fluxes and broken detailed balance in the brain

We analyze whole-brain dynamics from 590 healthy adults both at rest and across a
suite of seven cognitive tasks, recorded using functional magnetic resonance imaging
(fMRI) as part of the Human Connectome Project (678). The time-series data consist of
blood-oxygen-level-dependent (BOLD) fMRI signals from 100 cortical parcels (662) (see
Methods), which we concatenate across all subjects. To visualize the neural dynamics,
we project the time series onto the first two principal components, which are calculated
for all data points and all subjects (Fig. 9.1c). In fact, this projection defines a natural
low-dimensional state space (165), capturing over 30% of the variance in the neural
activity (Fig. 9.6). One can then probe for non-equilibrium dynamics by calculating the
net fluxes of transitions between different regions of state space (67) (see Methods).
During rest scans, wherein subjects are instructed to remain still with their eyes open,
we find that the brain exhibits net fluxes between states (Fig. 9.1d), thereby breaking
detailed balance and departing from equilibrium. However, these resting-state fluxes
are randomly oriented and weak compared to statistical errors. For comparison, we
consider task scans, wherein subjects respond to stimuli and commands that require
attention, cognitive effort, and computations. For example, during a gambling task in
which subjects play a card guessing game for monetary reward, the brain’s dynamics
form a distinct loop of fluxes (Fig. 9.1e) that are nearly an order of magnitude stronger
than those present during rest. Such closed loops of flux are a characteristic feature of
non-equilibrium steady-state systems (729), and we verify that the brain does operate
in a stochastic steady state (Fig. 9.7). Finally, we confirm that if the neural dynamics are
shuffled in time – thereby destroying the temporal order of the system – then the fluxes
between states vanish and equilibrium is restored (Fig. 9.8). Together, these results
demonstrate that the brain fundamentally operates out of equilibrium at large scales,
and moreover, that the nature of this non-equilibrium behavior depends critically on
the cognitive function being performed.

9.3 non-equilibrium dynamics in an asymmetric ising model

To understand how non-equilibrium dynamics arise at large scales, it is helpful to
consider a canonical model of stochastic dynamics in complex systems. In the Ising
model, the interactions between spins are typically constrained to be symmetric, yield-
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Figure 9.2: Simulating complex non-equilibrium dynamics using an asymmetric Ising
model. (a) Two-spin Ising model with asymmetric interactions (left), where the interaction
J↵� represents the strength of the influence of spin � on spin ↵. Simulating the model with
synchronous updates, the system exhibits a clear loop of flux between configurations (right). (b)
Asymmetric version of the Sherrington-Kirkpatrick (SK) model, wherein directed interactions
are drawn independently from a zero-mean Gaussian with variance 1/N, where N is the size
of the system. (c) For an asymmetric SK model with N = 100 spins, we plot the probability
distribution (color) and fluxes between states (arrows) for simulated time-series at temperatures
T = 0.1 (left), T = 1 (middle), and T = 10 (right). In order to visualize the dynamics, the
time series are projected onto the first two principal components of the combined data across
all three temperatures. The scale is indicated in flux-per-time-step, and the disks represent
two-standard-deviation confidence intervals estimated using trajectory bootstrapping (see
Methods).

ing simulated dynamics that obey detailed balance and converge to equilibrium (476).
However, if we relax this constraint to allow for asymmetric interactions, then the sys-
tem diverges from equilibrium, displaying closed loops of flux between configurations
at small scales (Fig. 9.2a). But can these fine-scale violations of detailed balance com-
bine to generate macroscopic non-equilibrium dynamics? To answer this question, we
study a system of N = 100 spins (matching the 100 parcels in our neuroimaging data),
with the interaction between each directed pair of spins drawn independently from
a zero-mean Gaussian (Fig. 9.2b). This model is the asymmetric generalization of the
Sherrington-Kirkpatrick (SK) model of a spin glass (607). After simulating the system
at three different temperatures, we perform the same procedure that we applied to
the neuroimaging data (Fig. 9.1), projecting the time-series onto the first two principal
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components of the combined data and calculating net fluxes in this low-dimensional
state space. At high temperature, stochastic fluctuations dominate the system, and we
only observe weak fluxes between states (Fig. 9.2c, right). However, as the temperature
decreases, the interactions between spins overcome the stochastic fluctuations, giving
rise to clear loops of flux (Fig. 9.2c, middle and left). These loops of flux demonstrate
that large-scale non-equilibrium dynamics can emerge from fine-scale asymmetries in
the interactions between elements. Moreover, by tuning the strength of interactions, a
single system can transition from near equilibrium to far from equilibrium, suggesting
that the brain may operate at different “effective" temperatures when performing
distinct cognitive functions (Fig. 9.1d,e).

9.4 quantifying entropy production in complex systems

While fluxes in state space reveal non-equilibrium dynamics, quantifying this non-
equilibrium behavior requires measuring the “distance" of a system from equilibrium.
One such measure is the entropy production, a central concept in non-equilibrium
statistical mechanics (598), which quantifies the amount of entropy that a system
generates. Consider a system with joint transition probabilities Pij = Prob[xt-1 =
i, xt = j], where xt is the state of the system at time t. If the dynamics are Markovian
(as, for instance, is true for the Ising system), then the entropy production is given by
(562)

S =
X

ij

Pij log
Pij
Pji

, (9.1)

where the sum runs over all states i and j. If the system obeys detailed balance (that
is, if Pij = Pji for all pairs of states i and j), then the entropy production vanishes.
Conversely, any violation of detailed balance leads to an increase in entropy production,
thereby reflecting the non-equilibrium nature of the system.

Calculating the entropy production requires estimating the transition probabilities Pij.
However, for complex systems the number of states grows exponentially with the size of
the system, making a direct estimate of the entropy production infeasible. To overcome
this hurdle, we employ a hierarchical clustering algorithm that groups similar states in
our observed data into a single cluster, yielding a reduced number of coarse-grained
states (Fig. 9.3a; see Methods). Estimating the entropy production this way yields two
desirable properties: First, because a system’s entropy production can only decrease
with coarse-graining (208), in order to establish that a system is fundamentally out of
equilibrium, one must simply demonstrate that the coarse-grained entropy production
is significantly greater than zero. Second, by defining the clusters hierarchically (388),
we prove that the estimated entropy production becomes more accurate (ignoring
finite data effects) as the number of clusters increases (Fig. 9.9). Indeed, across all
temperatures in the Ising system, the estimated entropy production increases with the
number of clusters k, thereby providing an improving lower bound on the true entropy
production (Fig. 9.3b). Moreover, as the temperature decreases the entropy production
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Figure 9.3: Estimating entropy production using hierarchical clustering. (a) Schematic of
clustering procedure, where axes represent the activities of individual components (e.g., brain
regions in the neuroimaging data or spins in the Ising model), points reflect individual states
observed in the time-series, shaded regions define clusters (or coarse-grained states), and
arrows illustrate possible fluxes between clusters. (b) Entropy production in the asymmetric SK
model as a function of the number of clusters k for the same time-series studied in Fig. 9.2c,
with error bars reflecting two standard deviations estimated using trajectory bootstrapping (see
Methods).

grows dramatically, revealing the stark difference in the non-equilibrium nature of the
system at high versus low temperature.

9.5 entropy production in the brain

We are now prepared to investigate whether the brain operates at different distances
from equilibrium when performing distinct functions. We study seven tasks, each of
which engages a specific cognitive system: emotional processing, working memory,
social inference, language processing, relational matching, gambling, and motor ex-
ecution (52). To estimate the entropy production, we cluster the neuroimaging data
(combined across all subjects and task settings, including rest) into k = 8 coarse-grained
states, the largest number for which all transitions were observed at least once in each
task (Fig. 9.10). Across all tasks and rest, the brain produces a significant amount of
entropy (specifically, the entropy production is significantly greater than the noise floor
that arises due to finite data; one-sided t-test with p < 0.001), confirming that the
brain operates out of equilibrium (Fig. 9.4a). Furthermore, the brain produces more
entropy during all of the cognitive tasks than at rest, with each task inducing a distinct
pattern of fluxes between states (Fig. 9.11). In fact, the motor task (wherein subjects
are prompted to perform specific physical movements) induces a 20-fold increase in
entropy production over resting-state dynamics, thereby demonstrating that the brain
is capable of operating at a wide range of distances from equilibrium.
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Figure 9.4: Entropy production in the brain varies physical and cognitive demands. (a) En-
tropy production at rest and during seven cognitive tasks, estimated using hierarchical cluster-
ing with k = 8 clusters. (b) Entropy production as a function of response rate (i.e., the frequency
with which subjects are asked to physically respond) for the tasks listed in panel (a). Each
response induces an average 0.07± 0.03 bits of produced entropy (Pearson correlation r = 0.774,
p = 0.024). (c) Entropy production for low cognitive load and high cognitive load conditions in
the working memory task, where low and high loads represent 0-back and 2-back conditions,
respectively, in an n-back task. The brain produces significantly more entropy during high-load
than low-load conditions (one-sided t-test, p < 0.001, t > 10, df = 198). Across all panels, raw
entropy productions (Eq. (9.1)) are divided by the fMRI repetition time �t = 0.72 s to compute
an entropy production rate, and error bars reflect two standard deviations estimated using
trajectory bootstrapping (see Methods).

To carry out the physical and cognitive functions required for each task – from
focusing attention to performing computations and responding to stimuli – the brain
consumes large amounts of energy (295). In living systems generally, such energy
consumption is often critical for supporting non-equilibrium dynamics (255). Therefore,
it is natural to wonder whether increases in physical and cognitive demands drive
the brain away from equilibrium. Indeed, across tasks, entropy production increases
with the frequency of physical responses (Fig. 9.4b), with each response producing
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an additional 0.07 ± 0.03 bits of entropy. Furthermore, within the working memory
task (which controls for the frequency of physical responses), the brain produces more
entropy during conditions that require greater cognitive effort (Fig. 9.4c). We verify
that these findings do not depend on the Markov assumption in Eq. (9.1) (Fig. 9.12),
are robust to reasonable variation in the number of clusters k (Fig. 9.13), and cannot be
explained by head motion in the scanner (a common confound in fMRI studies (231))
nor variance in the neural time-series (Fig. 9.14). Together, these results suggest that
physical and cognitive demands, which are supported by the consumption of energy,
lead the brain to produce more entropy, thereby driving neural dynamics away from
equilibrium.

9.6 conclusions

In this study, we describe a method for investing non-equilibrium dynamics by quan-
tifying the amount of entropy that a system produces in its environment. While
microscopic non-equilibrium processes are known to be vital for molecular and cellu-
lar operations (103, 197, 328, 389, 441, 641, 718), here we show that non-equilibrium
dynamics also arise at large scales in complex living systems. Analyzing whole-brain
imaging data, we find not only that the human brain functions out of equilibrium, but
that the brain’s entropy production (that is, its distance from equilibrium) increases
with physical and cognitive exertion. Notably, the tools presented are non-invasive,
applying to any system with time-series data, and can be used to study stochastic
steady-state dynamics, rather than deterministic dynamics that trivially break detailed
balance. Furthermore, the framework is not limited to the brain, but instead can be
applied broadly to probe for non-equilibrium dynamics in complex systems, including
collective behavior in human and animal populations (126), correlated patterns of
neuronal firing (501), and aggregated activity in molecular and cellular networks (380,
676).

9.7 methods

9.7.1 Calculating fluxes

Consider time-series data gathered in a time window ttot, and let nij denote the number
of observed transitions from state i to state j. The flux rate from state i to state j is
given by !ij = (nij -nji)/ttot. For the flux currents in Figs. 9.1d,e and 9.2c, the states
of the system are points (x,y) in two-dimensional space, and the state probabilities
are estimated by p(x,y) = t(x,y)/ttot, where t(x,y) is the time spent in state (x,y). The
magnitude and direction of the flux through a given state (x,y) is defined by the flux
vector (67)

u(x,y) =
1

2

 
!(x-1,y),(x,y) +!(x,y),(x+1,y)

!(x,y-1),(x,y) +!(x,y),(x,y+1)

!

. (9.2)
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In a small number of cases, two consecutive states in the observed time-series x(t) =
(x(t),y(t)) and x(t+ 1) = (x(t+ 1),y(t+ 1)) are not adjacent in state space. In these
cases, we perform a linear interpolation between x(t) and x(t+ 1) in order to calculate
the fluxes between adjacent states.

9.7.2 Estimating errors using trajectory bootstrapping

The finite length of time-series data limits the accuracy with which quantities can
be estimated. In order to calculate error bars on all estimated quantities, we apply
trajectory bootstrapping (67, 604). We first record the list of transitions

I =

0

BBBBB@

i1 i2

i2 i3
...

...
iL-1 iL

1

CCCCCA
, (9.3)

where i` is the `th state in the time-series, and L is the length of the time-series. From
the transition list I, one can calculate all of the desired quantities; for instance, the
fluxes are estimated by

!ij =
1

ttot

X

`

�i,I`,1�j,I`,2 - �j,I`,1�i,I`,2 . (9.4)

We remark that when analyzing the neural data, although we concatenate the time-
series across subjects, we only include transitions in I that occur within the same subject.
That is, we do not include the transitions between adjacent subjects in the concatenated
time-series.

To calculate errors, we construct bootstrap trajectories (of the same length L as the
original time-series) by sampling the rows in I with replacement. For example, to
compute errors for the flux vectors u(x) in Figs. 9.1d,e and 9.2c, we first estimate the
covariance matrix Cov(u1(x),u2(x)) by averaging over bootstrapped trajectories. Then,
for each flux vector, we visualize its error by plotting an ellipse with axes aligned with
the eigenvectors of the covariance matrix and radii equal to twice the square root of
the corresponding eigenvalues (Fig. 9.5). All errors throughout the manuscript are
calculated using 100 bootstrap trajectories.

The finite data length also induces a noise floor for each quantity, which is present
even if the temporal order of the time-series is destroyed. To estimate the noise floor, we
construct bootstrap trajectories by sampling individual data points from the time-series.
We contrast these bootstrap trajectories with those used to estimate errors above, which
preserve transitions by sampling the rows in I. The noise floor, which is calculated for
each quantity by averaging over the bootstrap trajectories, is then compared with the
estimated quantities. For example, rather than demonstrating that the average entropy
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productions in Fig. 9.4a are greater than zero, we establish that the distribution over
entropy productions is significantly greater than the noise floor using a one-sided t-test
with p < 0.001.

9.7.3 Simulating the asymmetric Ising model

The asymmetric Ising model is defined by a (possibly asymmetric) interaction matrix J,
where J↵� represents the influence of spin � on spin ↵ (Fig. 9.2a), and a temperature
T > 0 that tunes the strength of stochastic fluctuations. Here, we study a system with
N = 100 spins, where each directed interaction J↵� is drawn independently from a
zero-mean Gaussian with variance 1/N = 0.01 (Fig. 9.2b). One can additionally include
external fields h↵, but for simplicity here we set them to zero. The state of the system is
defined by a vector x = (x1, . . . , xN), where x↵ = ±1 is the state of spin ↵. To generate
time series, we employ Glauber dynamics with synchronous updates, a common Monte
Carlo method for simulating Ising systems (476). Specifically, given the state of the
system x(t) at time t, the probability of spin ↵ being “up" at time t+ 1 (that is, the
probability that x↵(t+ 1) = 1) is given by

Prob[x↵(t+ 1) = 1] =
exp

⇣
1

T

P
�
J↵�x�(t)

⌘

exp
⇣

1

T

P
�
J↵�x�(t)

⌘
+ exp

⇣
- 1

T

P
�
J↵�x�(t)

⌘ . (9.5)

Stochastically updating each spin ↵ according to Eq. (9.5), one arrives at the new
state x(t+ 1). For each temperature in the Ising calculations in Figs. 9.2c and 9.3b, we
generate a different time-series of length L = 100, 000 with 10, 000 trials of burn-in.

9.7.4 Hierarchical clustering

To estimate the entropy production of a system, one must first calculate the transition
probabilities Pij = nij/(L - 1). For complex systems, the number of states i (and
therefore the number of transitions i ! j) grows exponentially with the size of the
system N. For example, in the Ising model each spin ↵ can take one of two values
(x↵ = ±1), leading to 2N possible states and 22N possible transitions. In order to
estimate the transition probabilities Pij, one must observe each transition i ! j at
least once, which requires significantly reducing the number of states in the system.
Rather than defining coarse-grained states a priori, complex systems (and the brain in
particular) often admit natural coarse-grained descriptions that are uncovered through
dimensionality-reduction techniques (156, 165, 408).

Although one can use any coarse-graining technique to implement our framework
and estimate entropy production, here we employ hierarchical k-means clustering for
two reasons: (i) Generally, k-means is perhaps the most common and simplest clustering
algorithm, with demonstrated effectiveness fitting neural dynamics (156, 408); and (ii)
specifically, by defining the clusters hierarchically we prove that the estimated entropy
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production becomes more accurate as the number of clusters increases (ignoring finite
data effects; Fig. 9.9).

In k-means clustering, one begins with a set of states (for example, those observed in
our time-series) and a number of clusters k. Each observed state x is randomly assigned
to a cluster i, and one computes the centroid of each cluster. On the following iteration,
each state is re-assigned to the cluster with the closest centroid (here we use cosine
similarity to determine distance). This process is repeated until the cluster assignments
no longer change. In a hierarchical implementation, one begins with two clusters; then
one cluster is selected (typically the one with the largest spread in its constituent states)
to be split into two new clusters, thereby defining a total of three clusters. This iterative
splitting is continued until one reaches the desired number of clusters k. In Sec. 9.8.5,
we show that hierarchical clustering provides an increasing lower-bound on the entropy
production; and in Sec. 9.8.6, we demonstrate how to choose the number of clusters k.

9.7.5 Neural data

The whole-brain dynamics used in this study are measured and recorded using blood-
oxygen-level-dependent (BOLD) functional magnetic resonance imagining (fMRI) col-
lected from 590 healthy adults as part of the Human Connectome Project (52, 678).
BOLD fMRI estimates neural activity by calculating contrasts in blood oxygen levels,
without relying on invasive injections and radiation (543). Specifically, blood oxygen lev-
els (reflecting neural activity) are measured within three-dimensional non-overlapping
voxels, spatially contiguous collections of which each represent a distinct brain region
(or parcel). Here, we consider a parcellation that divides the cortex into 100 brain
regions that are chosen to optimally capture the functional organization of the brain
(662). After processing the signal to correct for sources of systematic noise such as head
motion (see Sec. 9.8.11), the activity of each brain region is discretized in time, yielding
a time-series of neural activity. For each subject, the shortest scan (corresponding to the
emotional processing task) consists of 176 discrete measurements. In order to control
for variability in data size across tasks, for each subject we only study the first 176
measurements in each task.
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9.8 supplementary material

In this Supplementary material, we provide extended analysis and discussion to
support the results presented in the main text. In Sec. 9.8.1, we describe how the flux
vectors (in Figs. 1d,e and 2c of the main text) are calculated and illustrated. In Sec. 9.8.2,
we show that principal component analysis (PCA) provides a natural low-dimensional
embedding of neural dynamics that we can use to visualize fluxes between brain states.
In Sec. 9.8.3, we show that, although the brain functions out of equilibrium, it does
operate at a steady state. Demonstrating that the brain operates at a non-equilibrium
steady-state opens the door for future investigations using tools and intuitions that
have recently been generalized from traditional statistical mechanics (187, 211, 599).
In Sec. 9.8.4, we show that if one shuffles the order of neural time-series data (thereby
destroying the arrow of time), then the fluxes between states vanish and the system
returns to equilibrium. In Sec. 9.8.5, we establish that estimating entropy production
using hierarchical clustering yields two desirable properties: First, because a system’s
entropy production can only decrease with coarse-graining (208), in order to establish
that a system is fundamentally out of equilibrium, one must simply demonstrate
that the coarse-grained entropy production is significantly greater than zero. Second,
by defining the clusters hierarchically (338), we prove that the estimated entropy
production becomes more accurate as the number of clusters increases. In Sec. 9.8.6, we
demonstrate how to choose the number of clusters (or coarse-grained states) k when
estimating the entropy production. In Sec. 9.8.7, we present the flux between coarse-
grained states in the neural dynamics as directed networks, which we refer to as flux
networks. We demonstrate that these flux networks vary in structure across different
cognitive tasks. In Secs. 9.8.8-9.8.10, we show that the entropy production results in Fig.
9.4 do not depend on the assumption that the neural dynamics are Markovian (Sec.
9.8.8), are robust to reasonable variation in the number of coarse-grained states k (Sec.
9.8.9), and cannot be explained by head movement within the scanner nor variance in
the neural time-series (Sec. 9.8.10). Finally, in Sec. 9.8.11, we detail how the neural data
was processed.

9.8.1 Visualizing flux currents

In order to visualize net fluxes in neural dynamics, we project the dynamics onto the
first two principal components and employ a technique known as probability flux
analysis (67). The net flux of transitions from a given state (x,y) to its neighboring
states can be visualized using the flux vector

u(x,y) =
1

2

 
!(x-1,y),(x,y) +!(x,y),(x+1,y)

!(x,y-1),(x,y) +!(x,y),(x,y+1)

!

. (9.6)

To compute the errors for a given flux vector u(x), we calculate the covariance matrix
Cov(u1(x),u2(x)) by averaging over 100 bootstrapped trajectories. Then, we illustrate
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Figure 9.5: Visualizing flux vectors. Schematic demonstrating how we illustrate the flux of
transitions through a state (vector) and the errors in estimating the flux (ellipse).

the errors by plotting an ellipse whose axes are aligned with the eigenvectors of
the covariance matrix and whose radii are equal to twice the square root of the
corresponding eigenvalues (Fig. 9.5).

9.8.2 Low-dimensional embedding using PCA

In order to visualize net fluxes between states in a complex system, we must project
the dynamics onto two dimensions. While any pair of dimensions can be used to probe
for broken detailed balance, a natural choice is the first two principal components of
the time-series data. Indeed, principal component analysis has been widely used to
uncover low-dimensional embeddings of large-scale neural dynamics (165, 230, 610).
Combining the time-series data from the rest and gambling task scans (that is, the
data studied in Fig. 9.1), we find that the first two principal components capture over
30% of the total variance in the observed recordings (Fig. 9.6a), thereby comprising a
natural choice for two-dimensional projections. Moreover, we confirm that the projected
dynamics capture approximately the same amount of variance in both the rest and
gambling tasks, confirming that PCA is not overfitting the neural dynamics in one task
or another (Fig. 9.6b).

9.8.3 The brain operates at a stochastic steady state

Some of the tools and intuitions developed in traditional statistical mechanics to
study equilibrium systems have recently been generalized to systems that exist at
non-equilibrium steady states (599). For example, Evans et al. generalized the second
law of thermodynamics to non-equilibrium steady-state systems by discovering the
(steady state) fluctuation theorem (211). More recently, Dieterich et al. showed that,
by mapping their dynamics to an equilibrium system at an effective temperature,
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Figure 9.6: PCA reveals low-dimensional embedding of neural dynamics. (a) Fraction of
variance explained by first ten principal components (line) and increase in explained variance
for each principal component (bars) in the combined rest and gambling data. (b) For the same
principal components (calculated for the combined rest and gambling data), we plot the fraction
of variance explained (lines) and individual increases in explained variance (bars) for the rest
(red) and gambling (blue) data.

some non-equilibrium steady-state systems are governed by a generalization of the
fluctuation-dissipation theorem (187). Thus, it is both interesting and practical to
investigate whether the brain operates at a non-equilibrium steady state.

We establish in the main text that the brain operates out of equilibrium. To determine
if the brain functions at a steady state, we must examine whether its state probabilities
are stationary in time; that is, letting pi denote the probability of state i, we must
determine whether ṗi = dpi/dt = 0 for all states i. The change in the probability of a
state is equal to the net rate at which transitions flow into versus out of a state. For the
two-dimensional dynamics studied in Fig. 1 in the main text, this relation takes the
form

dp(x,y)

dt
= !(x-1,y),(x,y) -!(x,y),(x+1,y) +!(x,y-1),(x,y) -!(x,y),(x,y+1), (9.7)

where !ij = (nij -nji)/ttot is the flux rate from state i to state j, nij is the number of
observed transitions i! j, and ttot is the temporal duration of the time-series (67).

Here, we calculate the changes in state probabilities for both the rest and gambling
scans. Across all states in both task settings, we find that these changes are indis-
tinguishable from zero when compared to statistical noise (Fig. 9.7). Specifically, the
the changes in state probabilities are much less than twice their standard deviations,
indicating that they cannot be significantly distinguished from zero with a p-value
less than 0.05. Combined with the results from the main text, the stationarity of the
neural state probabilities demonstrates that the brain operates at a non-equilibrium
steady-state.
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Figure 9.7: Small changes in state probabilities imply steady-state dynamics. Change in state
probabilities ṗi, normalized by the standard deviation �ṗi

, plotted as a function of the first two
principal components at rest (a) and during the gambling task (b).

9.8.4 Shuffling time-series restores equilibrium

In the main text, we demonstrate that the brain operates out of equilibrium by exhibiting
net fluxes between states (Fig. 9.1d,e in the main text). These fluxes break detailed
balance and establish an arrow of time. Here we demonstrate that if the arrow of time
is destroyed by shuffling the order of the neural time-series, then the fluxes vanish
and equilibrium is restored. Specifically, for both the rest and gambling task scans,
we generate 100 surrogate time-series with the order of the data randomly shuffled.
Averaging across these shuffled time-series, we find that the fluxes between states
are vanishingly small compared to statistical noise (Fig. 9.8), thus illustrating that the
system has returned to equilibrium.

9.8.5 Bounding entropy production using hierarchical clustering

Complex systems are often high-dimensional, with the number of possible states
or configurations growing exponentially with the size of the system. In order to
estimate the entropy production of a complex system, we must reduce the number
of states through the use of coarse-graining, or dimensionality reduction, techniques.
Interestingly, the entropy production admits a number of strong properties under
coarse-graining (208, 264, 532, 611). Of particular interest is the fact that the entropy
production can only decrease under coarse-graining (208). Specifically, given two
descriptions of a system, a “microscopic" description with states {i} and a “macroscopic"
description with states {i 0}, we say that the second description is a coarse-graining of
the first if there exists a surjective map from the microstates {i} to the macrosctates
{i 0} (that is, if each microstate i gets mapped to a unique macrostate i 0; Fig. 9.9a).
Given such a coarse-graining, Esposito showed (208) that the entropy production of the
macroscopic description S 0 can be no larger than that of the microscopic description S;
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Figure 9.8: Shuffled data do not exhibit net fluxes between brain states. Probability distribu-
tion (color) and nearly imperceivable fluxes between states (arrows) for neural dynamics, which
are shuffled and projected onto the first two principal components, both at rest (a) and during
a gambling task (b). The flux scale is indicated in the upper right, and the disks represent
two-standard-deviation confidence intervals for fluxes estimated using trajectory bootstrapping
(see Methods).

in other words, the coarse-grained entropy production provides a lower bound for the
original value, such that S 0

6 S.
The monotonic decrease of the entropy production under coarse-graining implies two

desirable mathematical results. First, if one finds that any coarse-grained description
of a system is out of equilibrium (that is, if the coarse-grained entropy production
is significantly greater than zero), then one has immediately established that the
full microscopic system is out of equilibrium (since the “true" microscopic entropy
production is at least as large as the coarse-grained value). We use this fact in the main
text to show – only by studying coarse-grained dynamics – that the brain fundamentally
operates far from equilibrium.

Second, here we show that hierarchical clustering provides a hierarchy of lower
bounds on the true entropy production. In hierarchical clustering, each cluster (or
coarse-grained state) at one level of description (with k clusters) maps to a unique
cluster at the level below (with k- 1 clusters; Fig. 9.9b). This process can either be
carried out by starting with a large number of clusters and then iteratively picking
pairs of clusters to combine (known as agglomerative clustering), or by starting with
a small number of clusters and then iteratively picking one cluster to split into two
(known as divisive clustering, which we employ in our analysis) (338). In both cases,
the mapping from k clusters to k- 1 clusters is surjective, thereby defining a coarse-
graining of the system. Thus, letting S(k) denote the entropy production estimated
with k clusters, hierarchical clustering defines a hierarchy of lower bounds on the true
entropy production S:

0 = S(1) 6 S(2) 6 S(3) 6 . . . 6 S. (9.8)



9.8 supplementary material 250

a b

i
i’

Microstates Macrostates
Coarse-graining

S(2)S(3)S(4)S ������

k = 2k = 3k = 4Full system
Hierarchical clustering

S S’��
Figure 9.9: Hierarchy of lower bounds on the entropy production. (a) Coarse-graining is
defined by a surjective map from a set of microstates {i} to a set of macrostates {i 0}. Under
coarse-graining the entropy production can only decrease or remain the same. (b) In hierarchical
clustering, states are iteratively combined to form new coarse-grained states (or clusters). Each
iteration defines a coarse-graining from k states to k- 1 states, thereby forming a hierarchy of
lower bounds on the entropy production.

This hierarchy, in turn, demonstrates that the estimated entropy production S(k)

becomes more accurate with increasing k.
We remark that the discussion above neglects finite data effects. We recall that

estimating the entropy production requires first estimating the transition probabilities
Pij from state i to state j. This means that for k clusters, one must estimate k2 different
probabilities. Thus, while increasing k improves the accuracy of the estimated entropy
production in theory, in practice increasing k eventually leads to sampling issues
that decrease the accuracy of the estimate. Given these competing influences, when
analyzing real data the goal should be to choose k such that it is as large as possible
while still providing accurate estimates of the transition probabilities. We discuss how
to choose k in a reasonable manner in the following section.

9.8.6 Choosing the number of coarse-grained states

As discussed above, when calculating the entropy production, we wish to choose a
number of coarse-grained states k that is as large as possible while still arriving at an
accurate estimate of the transition probabilities. One simple condition for estimating
each transition probability Pij is that we observe the transition i! j at least once in the
time-series. For all of the different tasks, Fig. 9.10a shows the fraction of the k2 state
transitions that are left unobserved after coarse-graining with k clusters. We find that
k = 8 is the largest number of clusters for which the fraction of unobserved transitions
equals zero (within statistical errors) for all tasks; that is, the largest number of clusters
for which all state transitions across all tasks were observed at least once. This is the
primary reason why we used k = 8 coarse-grained states to analyze the brain’s entropy
production in the main text (Fig. 9.4).
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Figure 9.10: Choosing the number of coarse-grained states k. (a) Fraction of the k2 state
transitions that remain unobserved after hierarchical clustering with k clusters for the different
tasks. Error bars represent two standard deviations over 100 bootstrap trajectories for each
task. (b) Percent variance explained (top) and the increase in explained variance from k- 1
to k clusters (bottom) as functions of k. (c) Dispersion, or the average distance between data
points within a cluster (top), and the decrease in dispersion from k- 1 to k clusters (bottom) as
functions of k.

Interestingly, we find that k = 8 coarse-grained states is a good choice for two
additional reasons. The first comes from studying the amount of variance explained by
k clusters (Fig. 9.10b). We find that the increase in explained variance from k- 1 to k

clusters is roughly constant for k = 3 and 4, then k = 5 to 8, and then k = 9 to 16. This
pattern means that k = 4, 8, and 16 are natural choices for the number of coarse-grained
states, since any further increase (say from k = 8 to 9) will yield a smaller improvement
in explained variance. Similarly, the second reason for choosing k = 8 comes from
studying the average distance between states within a cluster, which is known as the
dispersion (Fig. 9.10c). Intuitively, a coarse-grained description with low dispersion
provides a good fit of the observed data. Similar to the explained variance, we find
that the decrease in dispersion from k- 1 to k clusters is nearly constant for k = 3

to 4, then k = 5 to 8, and then k = 9 to 16, once again suggesting that k = 4, 8, and
16 are natural choices for the number of clusters. Together, these results demonstrate
that the coarse-grained description with k = 8 states provides a good fit to the neural
time-series data while still allowing for an accurate estimate of the entropy production
in each task.

9.8.7 Flux networks: Visualizing flux between coarse-grained states

In Fig. 9.4, we demonstrated that the brain has the capacity to operate at a wide range
of distances from equilibrium. We did so by estimating the amount of entropy the
brain produces during different cognitive tasks. In addition to investigating the entropy
production, one can also examine the specific neural processes underlying the brain’s
non-equilibrium behavior, which are encoded in the fluxes between coarse-grained
states.
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Figure 9.11: Flux networks reveal non-equilibrium dynamics unique to each cognitive task.
(a) Coarse-grained brain states calculated using hierarchical clustering (k = 8), with surface
plots indicating the z-scored activation of different brain regions. For each state, we calculate the
cosine similarity between its high-amplitude (green) and low-amplitude (orange) components
and seven pre-defined neural systems (662): default mode (DMN), frontoparietal (FPN), visual
(VIS), somatomotor (SOM), dorsal attention (DAT), ventral attention (VAT), and limbic (LIM).
We label each state based on its largest high-amplitude cosine similarities. (b-i) Flux networks
illustrating the fluxes between the eight coarse-grained states at rest (b) and during seven
cognitive tasks: emotional processing (c), working memory (d), social inference (e), language
processing (f ), relational matching (g), gambling (h), and motor execution (i). Edge weights
indicate flux rates, and fluxes are only included if they are significant relative to the noise floor
induced by the finite data length (one-sided t-test, p < 0.001).
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We find that each of the k = 8 states corresponds to high-amplitude activity in
one or two cognitive systems (662) (Fig. 9.11a). For each task, we can visualize the
pattern of fluxes as a network, with nodes representing the coarse-grained states and
directed edges reflecting net fluxes between states (Fig. 9.11b-i). These flux networks
illustrate, for example, that the brain nearly obeys detailed balance during rest (Fig.
9.11b). Interestingly, in the emotion, working memory, social, relational, and gambling
tasks (Fig. 9.11c-e,g,h) – all of which involve visual stimuli – the strongest fluxes connect
visual (VIS) states. By contrast, these fluxes are weak in the language task (Fig. 9.11f),
which only involves auditory stimuli. Finally, in the motor task, wherein subjects are
prompted to make physical movements, the dorsal attention (DAT) state mediates
fluxes between disparate parts of the network (Fig. 9.11i), perhaps reflecting the role
of the DAT system in directing goal-oriented attention (226, 691). In this way, the
brain’s non-equilibrium dynamics are not driven by a single underlying mechanism,
but rather emerge from a complex pattern of fluxes that changes depending on the
task. Examining the structural properties and cognitive neuroscientific interpretations
of these flux networks is an important direction for future studies.

9.8.8 Testing the Markov assumption

In the main text, we employ a definition of entropy production that relies on the
assumption that the time-series is Markovian; that is, that the state xt of the system at
time t depends only on the previous state xt-1 at time t- 1. Specifically, the entropy
production of a Markov system is given by

S =
X

ij

Pij log
Pij
Pji

, (9.9)

where Pij = Prob[xt-1 = i, xt = j] is the probability of observing the transition i! j.
For real time-series data, however, the dynamics may not be Markovian, and Eq. (9.9)
is not exact. In general, the entropy production (per trial) is given by (562, 563)

S = lim
`!1

1

`

X

i1,...,i`+1

Pi1,...,i`+1
log

Pi1,...,i`+1

Pi`+1,...,i1
, (9.10)

where Pi1,...,i`+1
= Prob[xt-` = i1, . . . , xt = i`+1] is the probability of observing the

sequence of states i1, . . . , i`+1. If the dynamics are Markovian, for example, then the
limit converges for ` = 1 and we recover Eq. (9.9) (562). In general, one can approximate
Eq. (9.10) by evaluating the function inside the limit for ` as large as possible. In order
to do so, however, one must estimate k`+1 different probabilities for a system with
k states. Thus, given data limitations, it is often impractical to estimate the entropy
production beyond the Markov approximation (` = 1).
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Figure 9.12: Second-order approximation of entropy production in the brain. (a) Second-
order entropy production at rest and during seven cognitive tasks (dark bars), estimated using
hierarchical clustering with k = 8 clusters. For comparison, we also include the first-order
entropy productions from Fig. 9.4a (light bars). (b) Second-order entropy production as a
function of response rate for the tasks listed in panel (a) (dark points). Each response induces
an average 0.07± 0.03 bits of produced entropy (Pearson correlation r = 0.770, p = 0.026). For
comparison, we include the first-order entropy productions from Fig. 9.4b (light points). (c) We
find a significant difference in the second-order entropy production between low cognitive load
and high cognitive load conditions in the working memory task (dark bars), where low and
high loads represent 0-back and 2-back conditions, respectively (one-sided t-test, p < 0.001,
t > 10, df = 198). For comparison, we include the first-order entropy productions from Fig. 9.4c
(light bars). Across all panels, second-order entropy productions (calculated using Eq. (9.11))
are divided by the fMRI repetition time �t = 0.72 s to compute an entropy production rate,
and error bars reflect two standard deviations estimated using trajectory bootstrapping (see
Methods).

Here we demonstrate that the main conclusions about entropy production in the brain
(summarized in Fig. 9.4) do not depend qualitatively on the Markov approximation in
Eq. (9.9). To do so, we consider the second-order approximation

S ⇡ 1

2

X

i,j,k

Pijk log
Pijk
Pkji

, (9.11)
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which incorporates information about sequences of length three. As in the main text,
we cluster the neural data using k = 8 coarse-grained states. Given that we are now
required to estimate k3 = 512 probabilities rather than just 82 = 64, there are inevitably
entries in the sum in Eq. (9.11) that are infinite (i.e., those corresponding to reverse-time
sequences k! j! i that are not observed in the time-series). As is common (562, 563),
we simply ignore these terms.

Across the different task settings, we find that the second-order entropy productions
are nearly identical to the first-order (Markov) approximations presented in the main
text (Fig. 9.12a). Moreover, the second-order entropy production remains significantly
correlated with the frequency of physical responses in different tasks, with each
response still inducing an additional 0.07± 0.03 bits of produced entropy (Fig. 9.12b).
Finally, in the working memory task, the second-order entropy production remains
larger for high-load conditions than low-load conditions (Fig. 9.12c), suggesting that
cognitive demands drive the brain away from equilibrium. Together, these results
demonstrate that the brain’s entropy production is well-approximated by the Markov
formulation used in the main text (Eq. (9.9)).

9.8.9 Varying the number of coarse-grained states

In Sec. 9.8.6, we presented methods for choosing the number of coarse-grained states
k, concluding that k = 8 is an appropriate choice for our neural data. However, it is
important to check that the entropy production results (summarized in Fig. 9.4) do
not vary significantly with our choice of k. In Fig. 9.13a, we plot the estimated entropy
production for each task setting (including rest) as a function of the number coarse-
grained states k. We find that the tasks maintain approximately the same ordering
across all choices for k considered, with the brain producing the least entropy during
rest, the most entropy during the motor task, and the second most entropy during the
gambling task. Furthermore, we find that the correlation between entropy production
and physical response rate (Fig. 9.4b) remains significant for all k 6 8 (that is, for
all choices of k for which we observe all transitions at least once in each task; Fig.
9.10a) as well as k = 9, 11, 12, 13, and 14 (Fig. 9.13b). We remark that we do not
study the case k = 2 because the entropy production is zero by definition for two-
state systems (Fig. 9.13a). Finally, we confirm that the brain produces significantly
more entropy during high-cognitive-load conditions than low-cognitive-load conditions
in the working memory task (Fig. 9.4c) for all choices of k considered (Fig. 9.13c).
Together, these results demonstrate that the relationships between entropy production
and physical and cognitive effort are robust to reasonable variation in the number of
coarse-grained states k.
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production at rest and during seven cognitive tasks as a function of the number of clusters k
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9.8.10 Robustness to head motion and signal variance

In the main text, we showed that the brain’s entropy production is significantly corre-
lated with the frequency of physical responses (Fig. 9.4b) and increases during periods
of cognitive exertion (Fig. 9.4c). Here, we show that the effects of physical and cognitive
effort on entropy production cannot be explained by head movement within the scanner
(a common confound in fMRI studies (231)) nor variance in the neural time-series. To
quantify head movement, for each time point in every time-series, we compute the
spatial standard deviation of the difference between the current image and the previous
image. This quantity, known as DVARS, is a common measure of head movement
in fMRI data (539). Importantly, we find that entropy production is not significantly
correlated with the average DVARS within each task (Fig. 9.14a), thereby demonstrating
that the relationship between entropy production and physical response rate is not
simply due to the confound of subject head movement within the scanner. Additionally,
we find that entropy production is not significantly correlated with the variance of the
neural data within each task (Fig. 9.14b). This final result establishes that our entropy
production estimates are not simply driven by variations in the amount of noise in the
neural data across different tasks.

9.8.11 Data processing

The resting, emotional processing, working memory, social inference, language process-
ing, relational matching, gambling, and motor execution fMRI scans are from the S1200
Human Connectome Project release (52, 678). Brains were normalized to fslr32k via the

58.5 59 59.5 60 60.5
0

0.01

0.02

0.03

0.04

0.05

70 80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

En
tro

py
 p

ro
du

ct
io

n 
(b

its
/s

)

Average DVARS

ba

En
tro

py
 p

ro
du

ct
io

n 
(b

its
/s

)

Variance

Rest
Emotion
Working memory
Social
Language
Relational
Gambling
Motor

r = -0.312

p = 0.452

r = 0.199

p = 0.637

Figure 9.14: Entropy production in the brain cannot be explained by head movement nor
signal variance. Entropy production versus the average DVARS (a) and the variance of the
neural time-series (b) at rest and during seven cognitive tasks. Across both panels, entropy
productions are estimated using hierarchical clustering with k = 8 clusters and are divided by
the fMRI repetition time �t = 0.72 s to compute entropy production rates. Error bars reflect
two standard deviations estimated using trajectory bootstrapping.
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MSM-AII registration with 100 regions (581). CompCor, with five principal components
from the ventricles and white matter masks, was used to regress out nuisance signals
from the time series. In addition, the 12 detrended motion estimates provided by the
Human Connectome Project were regressed out from the regional time series. The
mean global signal was removed and then time series were band-pass filtered from
0.009 to 0.08 Hz. Then, frames with greater than 0.2 mm frame-wise displacement
or a derivative root mean square (DVARS) above 75 were removed as outliers. We
filtered out sessions composed of greater than 50 percent outlier frames, and we only
analyzed data from subjects that had all scans remaining after this filtering, leaving 590
individuals. The processing pipeline used here has previously been suggested to be
ideal for removing false relations between neural dynamics and behavior (612). Finally,
for each subject and each scan, we only analyze the first 176 vectors in the time-series,
corresponding to the length of the shortest task (emotional processing); this truncation
controls for the possibility of data size affecting comparisons across tasks.
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