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Abstract

In Moortgat ���� the Lambek Calculus L �Lambek ����� is extended
by a pair of residuation modalities � and ��� Categorial Grammars

based on the resulting logic L� are attractive for linguistic purposes

since they o�er a compromise between the strict constituent struc	

tures imposed by context free grammars and related formalisms on

the one hand
 and the complete absence of hierarchical information

in Lambek grammars on the other hand� The paper contains some

results on the generative capcity of Categorial Grammars based on

L�� First it is shown that adding residuation modalities does not

extend the weak generative capacity� This is proved by extending the

proof for the context freenes of L	grammars from Pentus ���� to L��

Second the strong generative capacity of L�	grammars is compared
to context free grammars� The results are mainly negative� The set

of tree languages generated by L�	grammars neither contains nor is

contained in the class of context free tree languages�

� Introduction

Lambek style Categorial Grammar is characterized by the complete absence
of hierarchical information in syntactic structures� All syntactic informa�
tion resides in the linear order of the lexical entries� This is an advantage
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in all cases where the traditional notion of constituency proves to be too
rigid� notably in connection with non�constituent co�ordination� Doing away
with hierarchical structure altogether seems to be too radical� however� For
one thing� constituents are a factum brutum that cannot be discussed away
in phonology� But also in the realm of syntax proper and its connection
to semantics� certain generalizations cannot be formulated in purely linear
terms� Island constraints and quanti�er scope are obvious examples� These
and similar considerations motivate the extension of L with unary modali�
ties in many recent works on type logical grammar� Pentus ���� makes the
inadequacy of L�based grammars precise in proving that they are weakly
equivalent to context�free grammars�
Multimodality extends the generative power� In a sense Categorial Grammar
now repeats the history of transformational grammar� since the attempt to
leave context�freeness leads to a grammar format that is Turing complete� A
proof of this claim can be found in Carpenter ����� To develop a realistic
framework for NL grammar� the use of multimodality therefore has to be re�
stricted appropriately� After introducing some basic prerequisites in sections
� and �� we prove in sections 	 and � that multimodal Lambek grammar is
still context free as long as the inference rules governing the behavior of the
unary modalities are restricted to the residuation laws� This has two notable
consequences� First� it shows that the use of multimodality is 
harmless� and
we can use it to formalize syntactic island constraints and prosodic phrasing
without su�ering from a generative overkill� Second� it shows that there is
a tight connection between interaction postulates and generative capacity�
This may eventually lead to a taxonomy of languages and grammars that is
much more �ne�grained than the traditional Chomsky hierarchy�
Since L��grammarsunlikeL�grammarsgenerate trees rather than strings�
the issue of strong generative capacity can be addressed� This is done in sec�
tion �� It will turn out that context free grammars and L��grammars are
in a sense complementary� CFGs restrict the breadth of local trees� i�e� the
number of daughter nodes that a mother node can have� while trees can be
arbitrarily high� L��grammars impose the opposite constraint� while local
trees can be arbitrily broad� the height of trees is bounded�
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� Two notions of recognition

A Lambek Grammar consists of a lexicon L� i�e� a �nite relation between
lexical items and categories� and a �nite set D of designated categories� A
string l� � � � ln of lexical assignments is recognized by the grammar i� there
is a string A� � � � An of categories such that hli� Aii � L for all � � i � n and
there is a category S � D such that �L A� � � � An � S�
Now let us consider the simplest multimodal extension of L� L� from Moort�
gat ����� Here the inventory of type�forming connectives is extended by the
unary operators � and ��� Premises of sequents are bracketed strings of
types� i�e� sequences of trees� As additional inference rules we have the rules
of use and rules of proof for both connectives �cf� Moortgat ������

De�nition � �Sequent Calculus for L��

X� �A�� Y � B
�L

X��A� Y � B

X � A
�R

�X�� �A

X�A� Y � B
�

�L
X� ���A�� Y � B

�X�� A
�

�R
X � �

�A

This o�ers two ways to de�ne string recognition in a L� grammar �where a
grammar is still a lexical assignment plus a set of designated categories��

De�nition � �S�Recognition� l� � � � ln is s�recognized i� there are types
A� � � � An� S such that for all i �� � i � n�� hli� A�i � L� S � D� and
�L� A�� � � � � An � S�

De�nition � �T�Recognition� l� � � � ln is t�recognized if there are types
A� � � � An� S such that for all i �� � i � n�� hli� A�i � L� S � D� and there is
a sequence of trees X with A�� � � � � An as its yield such that �L� X � S�

In the next section we will prove that L��based grammars both s�recognize
and t�recognize exactly the context�free languages� To this end we make use
of the translation from L� to L given in Versmissen ����� This translation
allows us to reduce the proof in both cases to Pentus� proof�
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� Translation

De�nition � Let A be the ��nite� set of atoms of L� and A� be a disjoint
set of atoms of the same cardinality and t�� t� two atoms with t�� t� �� A�A

��
Let f be a bijective function from A to A�� The translation is given by the
clauses

p� � f�p� �p atomic�

�A �B�� � A� �B�

�A nB�� � A� nB�

�A�B�� � A��B�

��A�� � t� � A
� � t�

���A�� � t� n A
��t�

�A�X�� � A�� X�

��X��� � t�� X
�� t�

Lemma �

�L� X � A �� �L X
� � A�

Proof� see Versmissen ����

� The context�freeness of s�recognition

Moortgat ���� proves that L� enjoys the sub�formula property and cut
elimination� This leads to the following lemma�

Lemma � If a sequent � contains no modal operators� then � is derivable
in L� i� it is derivable in L�

Proof� An inspection of the inference rules of L� shows that the rules involv�
ing modalities only come into play if the conclusion contains modal operators�
By the sub�formula property� no modalities occur in a cut free derivation of
�� Hence any cut free derivation of � in L� is also a derivation of � in L�
Since every inference rule of L is also a rule of L�� the other direction holds
as well�
a

	



Theorem � L��grammars s�recognize exactly the context�free languages�

Proof� Let an L��grammar hL�Di be given� We transform it into and L�
grammar hL��D�i by assuming L� � fhv� �A�ijhv� Ai � Lg and D� � f�S�jS �
Dg� By lemma �� these grammars �s��recognize the same language� Pentus�
proof shows that this language is context�free� since it is recognized by an L�
grammar� So every language s�recognized by a L��grammar is context�free�
As for the other direction� assume that a given language L is context�free�
Cohen ���� proves that there is an L�grammar which recognizes L� Since
neither the lexical nor the designated categories contain modal operators�
lemma � entails that this grammar s�recognizes the very same language L if
conceived as an L��grammar�
a

� T�recognition

In this section we will demonstrate that L��grammars t�recognize exactly
the context free languages� The proof idea is adopted from Pentus� proof�
First we extend Roorda�s ���� proof of the Interpolation Theorem for L to
L�� Then we show that all derivable L��sequences can be derived from a
�nite set of axioms by using only cut if we impose an upper bound to the
length of formulas� This �nite axiom set can be used as the core of a context
free grammar that is equivalent to a given L��grammar�
Let X be a sequence of L�formulas� By m�X� we refer to the multiset of
atomic types occurring in X�

Theorem � �Interpolation Theorem� LetX and Y be bracketed sequences
of L��formulas such that X � ZYW �� and A be an L��formula such that
L� � X � A� Then there is a formula B such that L� � Y � B�L� �
ZBW � A� and m�B�� � m�Y �� 	 �m��ZW ��� �m�A����

Proof� By induction over cut�free derivations� We refer to the interpolant of
a sequence U in the premise of a sequent rule with 
i�U��� for the interpolant
in the conclusion we use 
j�U����

�Z and W need not be well�bracketed
�The L�part of the proof is essentially due to Roorda �����
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�� id
C � C

X � Y � B � C

��
U�U� � C V�V�DW�W� � E

nL
V�V�U�U� C nD W�W� � E

�a� j�V�U�� � i�V�� � i�U�� �V�� U� non�empty�

�b� j�U� C nD W�� � i�U�� n i�DW�� �U� non�empty�

�c� j�U C nD W�� � i�DW��

�d� j�V�U�U� C nD W�� � i�V�DW��

�e� else j�Y � � i�Y �

��
C�U � D

nR
U � C nD

�a� j�Y � � i�Y �

The induction steps for �L and �R are analogous�

	�
U�U�CDV�V� � E

�L
U�U�C �DV�V� � E

�a� j�U�C �DV�� � i�U�CDV��

�b� else j�Y � � i�Y �

��
U�U� � C V�V� � D

�R
U�U�V�V� � C �D

�a� j�U�V�� � i�U�� � i�V�� �U�� V� non�empty�

�b� else j�Y � � i�Y �
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��
U�U��C�V�V� � D

�L
U�U��CV�V� � D

�a� j�U��CV�� � i�U��C�V�� �U�� V� non�empty�

�b� else j�Y � � i�Y �

��
U � C

�R
�U�� �C

�a� j��U�� � ��i�U��

�b� else j�Y � � i�Y �

��
U�U�CV�V� � D

�
�L

U�U���
�C�V�V� � D

�a� j���C� � ��i�C�

�b� j�U���
�C�V�� � i�U�CV��

�c� else j�Y � � i�Y �

��
�U�� C

�
�R

U � �
�C

�a� j�Y � � i�Y �

a

De�nition � �Length of a type�

�� ��p� � �

�� ��A �B� � ��A nB� � ��A�B� � ��A� � ��B�

�� ���A� � ����A� � ��A� � �

�



In the sequel we distinguish between exocentric bracket pairs that are intro�
duced by �R and endocentric bracket pairs that are introduced by ��L�

Lemma � Let X��Y ��� A be a derivable L��sequent such that the longest
formula occurring in it has length n�

�� If the bracket pair around Y is exocentric� the interpolant of Y is some
formula B and the interpolant of �Y � is �B with ���B� � n�

�� If the bracket pair around Y is endocentric� the interpolant of �Y � is
some formula B and the interpolant of Y is ��B with ����B� � n�

Proof� By induction over cut�free derivations� following the proof of the
interpolation theorem� The induction base for exocentric brackets is �R�
Here the interpolant� of �U� is �i�U�� and the interpolant of U is i�U��
From the very notion of interpolation it follows that ��i�U�� � ��C�� and
thus ���i�U�� � ���C�� Due to the subformula property� �C must occur
as a subformula in X � A� Hence ���C� � n� Furthermore� note that
the interpolant of a certain subsequence in the premise of a sequent rule is
always identical to the interpolant of the corresponding subsequence in the
conclusion� Thus the interpolant of of Y is i�U�� and the interpolant of �Y �
is �i�U��
As for endocentric brackets� the induction base is ��L� Here the interpolant
of �Y � is i�C� and the interpolant of Y is ��i�C�� ��i�C�� � ��C�� thus
����i�C�� � ����C� � n� a

A deductive system is a set of sequents X � A which is closed under Cut�
A deductive system is �nitely axiomatizable i� it is the closure of a �nite set
of sequents under Cut� For any natural number n� the deductive system Pn
is is the closure of the following set of axioms under Cut� fA� BjL � A�
B and ��A�� ��B� � ng � fA�B � CjL � A�B � C and ��A�� ��B�� ��C� �
ng � fA � A�j��A� � ng � fA� � Aj��A� � ng� Obviously� Pn is �nitely
axiomatizable�

Lemma � Let A�� � � � � Ai � B be an L��sequent� A�� � � � � Ai � B � Pn i�
L� � A�� � � � � Ai � B and ��Aj�� ��B� � n�

�There may be more than one interpolant for a given sequence� In the sequel� by �the

interpolant� we refer to the unique interpolant that is determined by the algorithm given

in the proof of the interpolation theorem�
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Proof� Pentus proves that the set fA � BjL � A � B and ��A�� ��B� �
ng � fA�B � CjL � A�B � C and ��A�� ��B�� ��C� � ng axiomatizes
the set of valid L�sequents where the maximal length of a formula does not
exceed n� Pn is a proper extension of this deductive system� Now suppose
L� � A�� � � � � Ai � B and no formula involved exceeds length n� According
to lemma �� L � A�

� � � � � � A
�
i � B�� Since the translation preserves the

length of a formula� A�
� � � � � � A

�
i � B� � Pn� Since the translation relation

is derivable in both directions in Pn� by repeated application of Cut we derive
A�� � � � � An � B � Pn�
Now suppose A�� � � � � Ai � B � Pn with A� � � � Ai� B being L��formulas� We
take some sound and complete semantics for L� and stipulate for L��formulas
that kAk � kA�k� Clearly Pn is sound and complete for this semantics if
we restrict ourselves to formulas with a length � n� Thus A�� � � � � Ai � B is
valid� Since every L��formula has the same interpretation as its translation�
A�
� � � � � � A

�
i � B� is valid too� By completeness we know that this sequent is

L�derivable� and by completeness of the translation� we infer that the original
sequent is L��derivable�a
In a next step� we extend Pn by adding the axioms �A�� �A and ���A��
A for all L��formulas A with ��A� � n
 � and closing under Cut� The new
system is dubbed P �

n� P
�

n is also �nitely axiomatizable�

Lemma � Let � be an L��sequent which only involves formulas with a
length � n� Then L� � � i� � � P �

n�

Proof� By induction over the number b of bracket pairs in �� For b � �� this
is just lemma 	� Now suppose the claim holds for b � k� and let X��Y ��� A
be a sequent involving k�� bracket pairs� We have to distinguish two cases�
Suppose the bracket pair around Y is exocentric and L� � X��Y �� � A�
Then� according to lemma �� the interpolant of Y is some formula B and the
interpolant of �Y � is �B with �B � n� Therefore Y � B�X��B�� A are
derivable� Since both sequents contain at most k bracket pairs� they are in
P �

n by induction hypothesis� Furthermore� �B� � �B � P �

n� By applying
Cut twice� we derive that X��Y ��� A � P �

n�
Now suppose the bracket pair around Y is endocentric and L� � X��Y ���
A� According to lemma �� the interpolant of �Y � is some formula B� the
interpolant of Y is ��B� and ����B� � n� Hence Y � �

�B and X�B�� A
are valid� Since both sequents involve less than k bracket pairs� both are in

�For instance interpretation in ternary frames� cf� Do�sen ����
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P �

n� Furthermore� ���B� � B � P �

n� By applying Cut twice� we derive that
X��Y ��� A � P �

n�
As for the other direction� suppose X��Y �� � A � P �

n� Let us extend the
semantics for Pn given above by the stipulation that k�X�k � kt�� �X��� t�k�
It is straightforward to see that P �

n is sound with respect to this interpreta�
tion� Therefore X � A is valid under this interpretation� This entails that
X� � A� is valid too� By completeness of the chosen interpretation for L�
L � X� � A�� By completeness of translation� L� � X � A�
a

Theorem � L��grammars t�recognize exactly the context�free languages�

Proof� Suppose a language L is recognized by an L��grammar G� � hL�Di�
Let the maximal length of formulas occurring either in L or in D be n� Fix a
CFG G� � hT�NT� P� Si �S not being a formula of L or L�� such that T is
the set of lexical items inG�� NT � fAj��A� � ng�fA�j��A� � ng�f�� �� Sg�
P � fA� XjX � A � P �

ng � fS � AjA � Dg� fA� vjhv� Ai � Lg � f��
�� � � �g� Suppose a string l� � � � li is recognized by G�� Then there is a
bracketed sequence X of L��formulas such that the yield of X is A�� � � � � Ai�
hlj� Aji � L� and a formula B with B � D and L� � X � B� By lemma
�� there is a derivation from B to X in P �

n and thus also in G�� By the
construction of G�� we can pre�x this derivation with S� and replace every
Ai and every bracket by the empty string� Hence l� � � � li is recognized by G��
Now suppose l� � � � li is recognized by G�� Then� by the construction of G��
there must be a bracketed sequence of formulasX with A�� � � � � Ai as its yield
and hlj� Aji � L� and a formula B � D such that X � B � P �

n� By lemma
�� L� � X � B� Thus l� � � � ln is recognized by G�� In other words� every
language that is t�recognized by an L��grammar is context�free� The proof
of the reversed inclusion is identical as in the case of s�recognition� a

� Strong generative capacity

Unlike L�grammars� L��grammars �t��recognize trees rather than strings�
So it makes sense to ask how they relate to CFG�s wrt� their strong capacity�
Here an interesting new perspective comes into view� Unlike context free
grammars� L��grammars do not impose an upper bound on the number of
daughter nodes a node in a tree might have� So the set of tree languages
generated by L� is not contained in the context free tree languages� The
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inclusion in the other direction doesn�t hold either� The proof of the latter
fact is based on the insight that every L��grammar imposes an upper limit
to the height of the trees in its tree language �where the height of a tree is
the length of the shortest path from the root to a leaf�� No such constraint
exists for context free grammars�
We will �rst prove that the height of the trees in an L��language is bounded�
Based on this fact� we show that the context free tree languages are not
contained in the class of L��languages� After this� we show that the other
inclusion doesn�t hold either�

De�nition 	 �Tree recognition� A tree �X� with the yield l� � � � ln is rec�
ognized by an L��grammar hL�Di i� there are L��formulas A� � � � An with
hli� Aii � L and there is a formula S � D such that the result of replacing
every li in X by Ai yields a sequence of trees Y with L� � Y � S�

Note that the outermost bracket pair �i�e� the root node� of the tree to be
recognized is ignored in the de�nition since the premises of L��sequents are
sequences of trees�
The height of a sequence of trees over some vocabulary V is de�ned recur�
sively as

�� h�v� � � if v � V

�� h�XY � � min�h�X�� h�Y ��

�� h��X�� � h�X� � �

Obviously� if a tree of height n is recognized by an L��grammar� the corre�
sponding sequence of trees over categories has height n
 ��
Next we introduce the notion of the modal embedding depth of an occurrence
of a formula within a superformula� Following common usage� A�B� ranges
over formulas that contain an occurrence of the atom p�

De�nition 


d�p� p� � �

d�p� A�p� �B� � d�A�B �A�p�� � d�p� A�p��

where � ranges over �� �� n

d�p��A�p�� � d�p� A�p�� � �

d�p���A�p�� � d�p� A�p��
 �
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The modal embedding depth of an occurrence of a formula A in a sequence of
trees X�A� �d�A�X�� is de�ned as the number of bracket pairs enclosing A in
X� These two notions can be extended to the modal embedding depth of an
occurrence of an atom p in a sequent X � A� If p occurs in the conclusion�
this parameter is d�p� A�� If p occurs in some formula B in the premise� it is
d�p� B� � d�B�X��
A sequent is called special i� every atom that occurs in it occurs exactly
twice�� L� and L share the property of independence of branches� This
means that we can uniformly substitute the formulas in a axiom and all its
occurrences down in the proof tree by some other formula� and the resulting
proof tree remains valid� Furthermore� we can restrict the identity axiom to
atomic formulas� Therefore we can transform any derivable sequent into a
special one by renaming the atoms in the axiom leafs of its proof tree� Clearly�
the height of the premise of this special sequent is identical to the height of
the original premise� Likewise� the modal depth of an atom in a formula or
of a formula in the premise in the original sequent are preserved during this
transformation� Thus we can restrict out attention in what follows to special
sequents�
Two formulas in a special sequent are called directly connected i� they share
one atom� Two formulas are connected i� they are in the transitive closure
of the previous relation� A sequent is connected i� every formula in it is
connected with every other formula�

Lemma 	 Every derivable special sequent in L� is connected�

Proof� By induction over sequent derivations� a

Lemma 
 Let X � A be a derivable special sequent and p be an atom
occurring in it� Then the modal embedding depths of the two occurrences of
p in X � A are equal�

Proof� By induction over sequent derivations� a

Lemma � For any tree language L generated by an L��grammar� there is
an upper bound for the height of trees in L�

�This is the terminology of Buszkowski ���	� Pentus ���
 calls these sequents �thin��
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Proof� Let G � hL�Di be an L��grammar that generates L� and let X be
a tree in L� Then there is a sequence of trees Y which is isomorphic to the
sequence of immediate constituents of X such that the leafs of Y are lexical
categories from L� and there is a designated category S from D such that
L� � Y � S� Let Y � � S � be the result of transforming Y � S into a
special sequent� Since Y � � S � is connected� there is an atom p which occurs
both in S � and in Y �� Let us call the formula from Y which contains p A�
Let n be the maximal modal embedding depth of an atom in a formula in D�
Then� according to lemma �� d�p� A��d�A� Y �� � d�p� S �� � n� Let m be the
minimal modal embedding depth of an atom in any lexcal category from L�
Then d�p� A�  m� Thus d�A� Y �� � n 
m� Consequently� h�Y �� � n 
m�
Since Y � is isomorphic to Y � h�Y � � n
m� and therefore h�X� � n
m���
Thus n
m� � is an upper bound for the height of trees in L� a

Theorem � There are context free grammars that are not strongly equiva�
lent to any L��grammar�

Proof� Take the CFG G � hfag� fSg� fS � SS� S � aa� S � aS� S �
Sag� Si� It generates all binary trees where all terminal nodes are labeled
with a and all other nodes with S� Clearly there is no upper bound for the
height of such trees� It follows from lemma � that there can�t be any L��
grammar that is strongly equivalent to G� a

To prove that the inclusion does not hold in the other direction is even
simpler�

Theorem � There are L��grammars that are not strongly equivalent to
any context free grammar�

Proof� Take G � hfha� Si� ha� S�Sig� fSgi� It generates the set of trees �an�
for n  �� So there is no upper bound for the number of daughter nodes of
the top node� and therefore there cannot be a strongly equivalent CFG�a

� Conclusion and further research

This article contains two main results� It shows that adding residuation
modalities to the Lambek calculus does not a�ect weak generative capacity�
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and it demonstrates that the class of tree languages de�ned by L�is a gen�
uinely new class that is independent from the corresponding class generated
by context free grammars� These two results together entail that the L��
grammars do not coincide with other well�studied grammar formats either
in strong generative capacity� For Basic Categorial Grammars �Bar�Hillel
����� for instance� this follows from the fact that the corresponding class of
tree languages is properly contained in the class of context free languages�
Tree Adjoing Grammars �Joshi ����� extend the weak generative capacity
of context free grammars and thus cannot be equivalent to L��grammars
either�
These two results suggest two di�erent agendas for further inquiries� On the
level of weak capacity� we may study the impact of interaction postulates for
the modalities� It is obvious that already fairly innocent postulates lead us
beyond context freeness� Emms ���	 for example proves that the permuta�
tion postulate �A �B � B ��A has this e�ect� and it is easy to show that
the distributivity postulates �A � B � ��A � B� and A ��B � ��A � B�
together are su�cient to come up with a grammar for anbmcndm�n�m  ����

It is an interesting question whether there are natural sets of postulates that
lead exactly to the tree adjoining languages or to the context sensitive lan�
guages� As for strong generative capacity� one might ask whether there is
an independent characterization of the class of L��grammars� analogously
to the result of Thatcher ���� for context free languages� Furthermore it is
open whether the Basic Categorial Languages are included in the intersec�
tion of L��languages and context free languages� and if yes� whether or not
this inclusion is proper or not� Last but not least one would like to know
which interaction postulates are necessary to overcome the boundedness of
the height of trees�
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