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A bully comes onto a bus

In times past in a country far away, passengers on intercity buses were all assigned seat
numbers, and the buses were always full. There were many casual people, and there
were a few people who were real sticklers for the rules. This is where our problem
begins.

Adam is the first person to enter an n seat intercity bus, and, since he is a casual
person, he takes a seat at random. Subsequently, n − 2 more casual people enter the
bus, and they also happily take seats at random. Of course, the inevitable occurs, and
the last person on the bus is one of the aforementioned sticklers for the rules.

If luck prevails, the stickler’s assigned seat is free; he sits down, and the bus drives
away. On the other hand, if his seat is occupied, the stickler insists on having his
assigned seat, and he even insists that the person whom he displaces must go to his or
her officially assigned seat. Moreover, the stickler continues to oversee the commotion
he has created. He insists that each successively displaced person must go to his or
her assigned seat until there are no more displaced persons. The n − 1 casual people
are not happy about this; but, eventually, the brouhaha dies down, and the bus hits the
road.

Here is the question: “What is the probability that mellow Adam, the first person on
the bus, will be forced to move from his randomly chosen seat?”

If n = 2, it is easy to see that the answer is 1/2. If Adam happens to sit in his
assigned seat, then everything is fine; otherwise, he will have to move. Next, we can
consider a bus with n = 3 seats, but things become more complicated. For a three
seat bus, there are 6 = 3! possibilities that one needs to consider. To work through
these possibilities in a systematic way, one needs some tools like the notation that we
develop in the next section. Still, after an examination of the six cases, one comes to a
noteworthy observation. In exactly half of these cases, Adam is forced to move.

This coincidence suggests a bold speculation: “Can it be true that the probability
that Adam will be forced to move is always one-half whatever the size of the bus may
be?”

Representing a permutation in two or more ways

In purely mathematical terms, we have a problem about a randomly chosen permuta-
tion of the set [n] = {1, 2, . . . , n}, whereby a permutation of [n] we just mean a bijec-
tion (or one-to-one correspondence) between the elements of the set [n]. The prolific
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168 MATHEMATICS MAGAZINE

French mathematician Augustin-Louis Cauchy (1789–1857) suggested that to describe
a permutation one should write the elements of [n] in their natural order in one row
and then write the values to which they are mapped in a second row. For example, to
describe a typical permutation of [6] = {1, 2, . . . , 6} one might write

σ =
(

1 2 3 4 5 6
2 3 5 6 1 4

)
, (1)

by which one would mean that 1 is mapped to 2, and 2 is mapped to 3, and 3 is
mapped to 5, and so on. This representation is called the two-line notation for the
permutation σ , and, after writing a few such representations, one realizes that in most
situations the first line can be safely omitted. When one represents a permutation σ

with just the second line, we have what is unsurprisingly called the one-line notation
for a permutation.

There is a third notation for permutations that offer some serious benefits, but its
construction calls for a little more thought. The underlying idea is that one takes a
value from the set [n], and one then examines where that value is mapped by successive
applications of the function σ : [n] → [n]. For example, if we take the σ given by the
two-lined formula (1) and if we start with 1, then we find the successive images

1 �→ 2 �→ 3 �→ 5 �→ 1. (2)

We could record this information by putting all of the indicated values between paren-
theses, but that would be a bit redundant since 1 would appear twice. We lose no
information if we clip off one of the 1’s, and for the moment we will just clip off the
last 1. We then record our four element cycle as (1, 2, 3, 5).

We then look at the smallest number that is not in this cycle; in this example that
would be 4. To find the cycle containing 4 we again follow the assignments given by
Equation (1), and we find 4 �→ 6 �→ 4. As before, we drop the repeated value at the
end, and we record this cycle information by writing (4, 6). After we have found all
of the cycles, we then need to choose an order in which to present them. One natural
idea is to order the cycles so that their smallest elements are increasing. In the end, this
gives us what we will call the first cycle representation of σ ,

σ = (1, 2, 3, 5)(4, 6).

Back to the brouhaha on the bus

Returning to the bus, we label the passengers 1 through n, and we assume for each
k ∈ [n] that passenger k is officially assigned seat k. Also, without loss of generality,
we assume that the stickler is passenger number 1 and that Adam is passenger number
2. Next, we consider a random permutation σ : [n] → [n], and for 2 ≤ k ≤ n we let
σ(k) denote the seat that that passenger k has randomly occupied. By elimination, seat
σ(1) is the only seat that is empty when the stickler boards the bus.

If σ(1) = 1 the stickler sits in seat 1, and the bus departs. In such a case, one should
note that in the random permutation σ , we have that 1 is in a cycle of length 1. On
the other hand, if σ(1) �= 1, then the stickler refuses to sit in the empty seat σ(1); he
wants his assigned seat number 1. This then begins a chain of grumbling dislocations.

To see how the dislocations evolve in a concrete example, we can reuse the sample
permutation σ that we used in Equation (1) to illustrate Cauchy’s notation. Here we
identify an element i of the top row with person i , and, for 2 ≤ i ≤ 6, we let the values
in the second row denote the seat numbers that have been occupied at random by the
corresponding persons from the top row.
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Just before the stickler arrives, only seat 2 is empty; but, when the stickler arrives,
he ignores the empty seat. Instead, marches directly to seat 1 where person 5 is sit-
ting. He then makes person 5 move to seat 5. Unfortunately seat 5 is occupied by
person 3, so person 3 has to move to seat 3. This seat is occupied by person 2 who
then has to move to seat 2. Thankfully seat 2 is empty, so the shuffling can finally
end.

The net effect of this drama is that the individuals {2, 3, 5} are the ones who had
to move, and the key observation is that these values and {1} are exactly the values
that appear in the first cycle of the cycle representation of σ . It’s not hard to see that
this example is generic; no matter what the size of n or what the random permutation
σ , Adam will have to move if and only if Adam is in the first cycle of the cycle
representation of σ .

Given this observation, we have a natural plan for finding the probability of Adam
having to move. We just need to solve a purely combinatorial problem: “How many
permutations of [n] have 1 and 2 in the same cycle?”

A classical counting calculation: Possibly a straw man

Such a natural question is bound to have been asked before, and in fact it has been
posed at least once as an exercise (cf. [9] p. 58). We will see shortly that there is a
lovely bijection that makes it completely obvious that the answer is n!/2. Still, why
not first give a nod to Kipling and the Gods of the Copy Book Headings? In other
words, why not be humble and simply do our sums?

Let k be the size of a cycle that contains both 1 and 2. We have 2 ≤ k ≤ n, and
there are

(n−2
k−2

)
ways to select the other elements of [n] \ {1, 2} that are in the cycle

of size k that contains 1 and 2. Given the elements for this cycle of size k, there are
then (k − 1)! inequivalent ways to order this cycle. Finally, there are n − k elements
of [n] remaining, and these can be ordered in (n − k)! ways to make a permutation. By
following the first cycle with this permutation, we have defined a one-to-one mapping
from [n] onto [n], i.e., we have specified a complete permutation of [n].

Now we do our sums. Specifically, we let Q denote the number of permutations that
have 1 and 2 in the same cycle, so, when we condition on k ∈ {2, 3, . . . , n}, our earlier
observations give us

Q =
n∑

k=2

(
n − 2

k − 2

)
(k − 1)!(n − k)! =

n∑
k=2

(n − 2)!

(n − k)!(k − 2)!
(k − 1)!(n − k)!

= (n − 2)!
n∑

k=2

(k − 1) = (n − 2)!
n−1∑
k=1

k = (n − 2)!
(n − 1)n

2
= n!

2
.

The charm of this calculation is that it offers good practice with some basic tools of
combinatorial counting—plus, of course, it does get the job done. Now we know for
sure that Adam has to move with probability 1/2—no mater what the size of the bus
may be.

On the other hand, just because a problem is solved, it does not mean that one cannot
gain more insight. In fact, as promised earlier, there is a simple bijection that recovers
the relationships Q = n!/2 without the need for any real calculation. Moreover, the
same bijection also gives quick answers to more complex problems.
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170 MATHEMATICS MAGAZINE

Want insight? Consider a bijection!

The classical calculation got us the answer we hoped to find, but the calculations did
not really make us see why Adam always has to move with probability one-half. We
can do better with a bijection.

As usual, we let Sn denote the set of permutations of [n], and now we consider a
partition of Sn into two subsets. Specifically, we let A(1)(2) be the subset of elements
of Sn that have 1 and 2 in different cycles, and we let A(1,2) be the subset of elements
of Sn that have 1 and 2 in the same cycle. In terms of the cycle representation we can
write

A(1)(2) = {σ ∈ Sn : (1 . . . )(2 . . . ) . . . } and

A(1,2) = {σ ∈ Sn : (1 . . . 2 . . . ) . . . }.
In each of these formulas the first two ellipses (i.e., the . . . ’s) can then be any pair of
disjoint subsets of [n] \ {1, 2}, including possibly the empty set.

Now consider the transformation U : A(1)(2) → A(1,2) that one gets by erasing the
back-to-back parenthesis pair “)(” that precedes the 2 in a permutation σ ∈ A(1)(2).
Thus, for example, if n = 7, then one would have

σ = (153)(24)(67) �→ U (σ ) = (15324)(67) = τ.

To define the inverse transformation U−1 : A(1,2) → A(1)(2) we just reverse our recipe;
that is, we insert the parenthesis grouping in front of the 2 in a given τ ∈ A(1,2).
To continue with our example, one would have

τ = (15324)(67) �→ U−1(τ ) = (153)(24)(67) = σ.

Since we have a bijection between A(1)(2) and A(1,2) the two sets have equal cardinali-
ties. Moreover, since their disjoint union is Sn , the sum of these cardinalities is n! and
we have

|A(1)(2)| = |A(1,2)| = 1

2
n!.

This formula seems to provide a richer understanding of the reason why Adam has to
move with probability 1/2. It’s because there is a bijection between A(1)(2) and A(1,2).
Moreover, the bijection is very simple: we just erase the first pair of back-to-back
parentheses in the cycle representation of the permutation.

Building a better bijection from Sn onto Sn

In our continuing example, we began with a permutation σ with Cauchy’s representa-
tion (1), and we found that there were two cycles that one could write as paths with
the same head and tail:

1 �→ 2 �→ 3 �→ 5 �→ 1 and 4 �→ 6 �→ 4. (3)

We then built an efficient cycle representation of σ by cutting of the tails of these paths
and ordering the resulting strings in increasing order of their heads. The benefit of
this representation became evident when it lead us to the surprisingly simple bijection
between A(1)(2) and A(1,2).

Still, when two paths diverge in a wood, it sometimes pays to go back to see where
the other path may have led. Let’s consider cutting off the heads in (3) and keeping the
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tails. We can then order the resulting strings in increasing order of the tails, and we
have a second recipe for going from a permutation to a uniquely string of parentheses
and numbers. For example if σ = [3, 6, 5, 8, 1, 2, 4, 7] in one-line notation, then our
two recipes give us the strings:

First Recipe: σ = (1, 3, 5)(2, 6)(4, 8, 7),

Second Recipe: σ = (3, 5, 1)(6, 2)(8, 7, 4). (4)

When viewed as products of cycles, each of these strings represent the same permu-
tation. Nevertheless, if we ignore the interpretation of these formulas and just look at
them as the strings of symbols, then some interesting distinctions emerge. For example,
consider a new erasure operation where we erase all of the back-to-back parentheses.
We then interpret the resulting string as a permutation in one-line notation.

Each of the two recipes then gives us mapping from Sn to Sn . If we mnemonically
call the first mapping F and the second mapping S, then for our example we have

Using the First Recipe: F(σ ) = [1, 3, 5, 2, 6, 4, 8, 7],

Using the Second Recipe: S(σ ) = [3, 5, 1, 6, 2, 8, 7, 4].

Curiously enough, the mapping F : Sn → Sn has a serious limitation. It is not sur-
jective. To see the problem, just note that for any σ ∈ Sn the first element of the string
F(σ ) is always equal to 1, so it cannot be a surjection. To be completely explicit just
note that τ = [2, 3, 4, 5, 6, 7, 1] is not equal to F(σ ) for any σ .

On the other hand, the mapping S : Sn → Sn is an honest bijection—and a stun-
ningly useful one to boot! Since S maps the finite set Sn into itself, the map S must be
injective if it is surjective. Thus, to show that S is a bijection, we just need to show that
for each τ ∈ Sn there is a σ ∈ Sn such that S(σ ) = τ .

We will show this by means of an algorithm. Specifically, we take τ ∈ Sn in its
one-line form [a1, a2, . . . , an], and we follow a four step process to find a σ such that
S(σ ) = τ .

Step 1: Scan τ until we come to 1, then put down back-to-back parenthe-
ses after 1, unless we are at the end—in which case we just stop.

Step 2: Compute the smallest value s that has not yet been scanned.
Step 3: Continue scanning the rest of τ until arriving at s, then put down

back-to-back parentheses after s, unless we are at the end—in which
case we just stop.

Step 4: Repeat Steps 2 and 3 until done.

To see how the algorithm works, one can take τ = [7, 1, 4, 5, 2, 3, 6]. After Steps 1
and 2, we have the intermediate result (7, 1)(4, 5, 2, 3, 6) and s = 2. When we apply
Steps 3 and 2 we have (7, 1)(4, 5, 2), (3, 6) and s = 3. Finally, after another repetition
of Step 3, we have σ = (7, 1)(4, 5, 2)(3)(6), and we can safely stop. It is trivial to
check that we have the correct result; when we apply the process S of internal paren-
thesis removal on σ , we have S(σ ) = τ . Incidentally, this is a good time to note that
a cycle of size one is the same as a fixed point, e.g., if 3 is a fixed point of σ , then
σ(3) = 3 and the cycle of σ that contains 3 is simply (3).

At the end of the day we have confirmed that S : Sn �→ Sn is an honest bijection,
but we face some natural questions. Why is this interesting? What can one do with the
bijection? We can answer these questions by quizzing ourselves a little harder about
Adam and the other boarders of the bus.
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Back on the bus with new questions

Suppose that Adam boarded the bus at the same time as four other people from work.
What is the probability that the stickler’s insistence on the rules will force all five of
these workers to move from their seats?

In more mathematical terms, we take 2 ≤ k ≤ n, and we ask for the probability that
all of the values {2, 3, . . . , k} happen to be in the first cycle of a random permutation
of [n]. Remarkably, this probability again turns out not to depend on n, and one can
see this with help from the bijections S and S−1.

Suppose that τ = [a1, a2, . . . , an] is a random ordering of [n] that we view as the
one-line notation of a random permutation τ . One can generate such a random permu-
tation by sampling n times without replacement from the set [n]. By the one-to-one
correspondence given by S−1 this permutation is paired with a unique permutation σ

that is given in cycle notation and whose first cycle is (a1, a2, . . . , a j ), where a j = 1
and 1 ≤ j ≤ n.

What’s the bottom line? We now see that the probability that the values {2, 3, . . . , k}
are all in the same cycle of σ as 1 is the same as the probability that all of the values
{2, 3, . . . , k} precede 1 in the one-line permutation τ = [a1, a2, . . . , an]. In a random
ordering of [n] the values of [k] also appear in random order, so the probability that
{2, 3, . . . , k} precede 1 in τ is the same as the probability that 1 is the last number in
a random ordering of [k]. In such a random ordering, every placement of 1 is equally
likely, so the probability that 1 comes last is 1/k.

Thus, the probability that the values {2, 3, . . . , k} are all in the first cycle of a ran-
dom permutation of [n] is exactly 1/k for all 2 ≤ k ≤ n. For k = 2 we get 1/2, and
this is just the result we found from our first bijective argument. For k = n, this just
reflects that the number of permutations of [n] with 1 in the last position is just 1/n.
To fill in all the values in between, we just use our bijection!

Parenthetically, we should note that the bijection constructed here is essentially the
same as a standard ordering that is widely used (e.g., [6] or [1]). The only distinction is
that the more common standard ordering breaks τ at the successive maxima, and, here,
for compatibility with our first bijection, we have broken τ at the successive minima.

How many get bumped?

If the set of co-workers on the bus is identified with the set {2, 3, . . . , k} where we
have 2 ≤ k ≤ n, then it is also natural to ask about the total number of co-workers
who get bumped. The bijections S and S−1 can help us with this question.

To put the problem formally, we consider the random quantity defined by setting

N = ∣∣{ j ∈ {2, 3, . . . , k} such that j gets bumped}∣∣,
where we use |B| to denote the cardinality of the finite set B. Here, of course, N is a
random variable that depends on the random ordering τ of [n], and N can take on any
of the integer values m with 0 ≤ m ≤ k − 1.

We would like to determine the probability mass function of N ; that is, we would
like to find the probability of the event {N = m} for each m. If we reason as before,
we have the logical equivalence:

N = m ⇔ in τ there are exactly m elements of {2, 3, . . . , k} that precede 1.

Now, in a random ordering of [k], the value 1 occurs with the same probability at each
of the k possible places, so the probability that 1 has rank m + 1 is the same for all
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0 ≤ m < k. Hence, N is uniformly distributed on the set {0, 1, . . . , k − 1}, or, to be
explicit, we have

P(N = m) = 1

k
for all 0 ≤ m < k. (5)

Despite our long familiarity with this result, it still seems remarkable to us that the
probability P(N = m) does not depend on m or n except through the minimal require-
ment that 0 ≤ m < k ≤ n.

As a sidebar, we should also note that (5) implies that the random variable N has
expectation

E[N ] =
k−1∑
m=0

m × 1

k
= k(k − 1)

2
× 1

k
= (k − 1)/2.

In fact, we could have guessed this from the beginning. The set of co-workers
{2, 3, . . . , k} has cardinality k − 1 and each of these co-workers has probability 1/2
of begin bumped. Linearity of expectation then tells us that the expected number of
bumped co-workers has to be (k − 1)/2, just as one would confirm by calculation
from (5).

Noting records: Counting cycles

There is one further topic that is too striking to be left untouched, even if the treatment
we give here must be brief. Perhaps the most classical application of the operation of
erasing all of the back-to-back parentheses is to determine the mean and variance—or
even the distribution—of the number of cycles in a random permutation.

Remarkably enough, it will be useful to introduce the third recipe for constructing
a cycle representation from the one-line representation of a permutation σ . First, we
find the set of cycles as we have done before. Since we can start a cycle with any of the
values in the cycle, we now choose to start each cycle with its largest value. Finally, we
list the cycles in the order that puts leading elements into an increasing sequence. For
example, if we take our favorite permutation σ = [3, 6, 5, 8, 1, 2, 4, 7] in its one-line
representation, then our three recipes give us the following strings:

First Recipe: σ = (1, 3, 5)(2, 6)(4, 8, 7),

Second Recipe: σ = (3, 5, 1)(6, 2)(8, 7, 4),

Third Recipe: σ = (5, 1, 3)(6, 2)(8, 7, 4). (6)

Here one should note that each of these three strings represents exactly the same per-
mutation σ .

Now, to construct a mappings from Sn to Sn , we again erase all of the back-to-back
parentheses in the third cycle representation. Thus, from the three representations of
the permutation σ given above, we find three different images:

Using the First Recipe: F(σ ) = [1, 3, 5, 2, 6, 4, 8, 7],

Using the Second Recipe: S(σ ) = [3, 5, 1, 6, 2, 8, 7, 4],

Using the Third Recipe: T (σ ) = [5, 1, 3, 6, 2, 8, 7, 4].

Finally, one argues as before to show that the third mapping T is really a bijection of
Sn into itself. To underscore the importance of this check, one should recall that S is a
bijection, but F is not!
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So, how can the new mapping T help us with our declared goal of determining the
mean and variance of the number of cycles in a random permutation? The key is that
it gives us a way to relate the number of cycles in σ to another notable object, the
number of records in the image permutation τ = T (σ ).

To make this concrete, we introduce random variables Ri , i = 1, 2, . . . , n that we
define by setting Ri = 1 or Ri = 0 accordingly as ai is a record maximum or not, as
one scans the random permutation (written in one-line notation) [a1, a2, . . . , an] from
left to right. Naturally we always have R1 = 1 since the first value a1 is always the
largest one that we have seen so far. More generally, if we continue with our familiar
example, τ = T (σ ) = [5, 1, 3, 6, 2, 8, 7, 4], then we find that R1, R4, and R6 are equal
to one, and the rest of the Ri are all equal to zero.

Now we come to a key observation: the number of cycles in the permutation σ

is equal to the total number of record maxima in permutation τ = T (σ ). Thus, the
bijection T shows us that as random variables the number of cycles and the number
of record maxima have exactly the same distribution; or, in the language of combina-
torics, it shows us that the number of permutations with exactly k cycles is equal to
the number of permutations with exactly k records. The punch line is that instead of
always working with the number of cycles in a random permutation we can just as well
work with the number of records. Moreover, from a probabilistic point of view records
turn out to be almost magically nice.

First of all, for all 1 ≤ k ≤ n, we have the notably simple relation

E[Rk] = P(Rk = 1) = 1/k.

This identity follows from the reasoning we have used before several times. Specif-
ically, if Rk = 1 then the kth item in the list has to be the largest among the first k.
But the probability that a given element in a list of k elements occupies any particular
place in a random ordering of that list (say the last place) is equal to 1/k.

We noted earlier that the number Cn of cycles of a random permutation σ is equal
to the number of maxima that one observes when scanning a random permutation
τ = T (σ ) = [a1, a2, . . . , an], so in symbols we have the identity

Cn = R1 + R2 + · · · + Rn.

Now, if we take the expectation of both sides of the identity, then by the linearity of
expectation (cf. [2], p. 206) we find

E[Cn] = 1 + 1

2
+ 1

3
+ · · · + 1

n
def= Hn ∼ log n as n → ∞,

and we have the charming appearance of the harmonic number and the logarithm in a
problem that begins with counting cycles.

Moreover, one can go much further. The random variables {Ri : 1 ≤ i ≤ n} are
actually independent! At first glance this assertion may seem counterintuitive, but the
independence property can be proved without much work; it is a great exercise. Once
one has independence, the flood gates of probability theory are open. In particular, we
know that for independent random variables, the variance of the sum is equal to the
sum of the variances (e.g., [2], p. 278), so we ge another harmonic number formula:

Var[Cn] =
n∑

k=1

Var[Rk] =
n∑

k=2

1

k

(
1 − 1

k

)
= Hn −

n∑
k=1

1

k2
∼ log n as n → ∞.
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Furthermore, by Lindeberg’s classic version of the central limit theorem (cf. [2],
p. 359), one then has for all real values t ∈ (−∞, ∞) that

lim
n→∞

P

(
Cn − log n√

log n
≤ t

)
= 1√

2π

∫ t

−∞
e−x2/2 dx .

Among other things, this formula tells us that for large n, one has probability close to
95% that the number of cycles (or the number of records) in a random permutation of
[n] is within plus or minus 2

√
log n of log n. This is surely something that one could

not have easily guessed just given the raw first facts about permutations. To be sure,
this excursion into the probability of random permutations has gone quickly; but, even
such a brief sketch may help to give some sense of the unanticipated power that is
cradled in the third recipe.

The rest of the road: What’s next?

Our cri de cour is simple: “Want insight? Consider a bijection!” This puts one onto a
major path of modern combinatorics where one sees many ways that bijections help
us to understand combinatorial structures more deeply.

To give a example of a theme worth exploration, one can consider the behavior of
cycles in special subsets of permutations. For example, consider the set Dn of derange-
ments of [n], i.e., the set of permutations without fixed points. If you choose σ at ran-
dom from Dn , what is the probability that 1 and 2 are in the same cycle? This is a
problem that can be addressed with tools of the kind that we have developed here.

For a more a sophisticated problem with a similar flavor, one can consider the fol-
lowing experiment. Choose independently two cycles of size n, say, for example, σ =
(a1, a2, . . . , an) and σ ′ = (b1, b2, . . . , bn). Next, consider the permutation defined
by the compositional product of these permutations, i.e., consider the mapping
i �→ σ(σ ′(i)). Stanley [7] found that the probability pn that 1 and 2 are in the same
cycle of this permutation is given by

pn =
{

1
2 if n is odd
1
2 − 2

(n−1)(n+2)
if n is even.

Thus, for large n, we see that the cycle behavior of the permutations generated by
this experiment and the cycle behavior of simple random sampling from Sn are quite
similar—at least with respect to this one particular question. One can anticipate that
there are many other sampling experiments for Sn where analogous behavior can be
found.

A little further afield, one of the most famous results in combinatorial probability is
Spitzer’s identity [5], and it also has at its heart a bijection between Sn and Sn . In fact,
simple modifications of the construction of Spitzer and Bohnenblust lead one to a rich
family of bijections from Sn and Sn (cf. [8]).

Finally, we should mention the Robinson–Knuth–Schensted correspondence, which
is surely the most notable bijection in the theory of permutations. The RKS corre-
spondence is a bijection between permutations and pairs (P, Q) of remarkable dis-
crete objects called standard Young tableaux. A clear and gentle introduction to the
RKS correspondence is given by Stanton and White [4], and much further material is
given in texts of Bóna [1] and Stanley [6]. Finally, we should also note that Romik
[3] gives a wonderful account of the RKS correspondence and its connection to the
longest increasing subsequence problem, which is rich topic that has experience stun-
ning progress over recent years.
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Summary. The random—or orderly—seating of passengers on a bus is used to motivate several questions
about cycles of permutations. These in turn motivates the investigation of bijections between special subsets of
permutations. The goal, of course, is to give simple explanations of surprising facts.
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Artist Spotlight
Robert Fathauer

Three Fishes, Robert
Fathauer; limited edition
screen print, 1994. This
work depicts tessellating fish
having threefold rotational
symmetry about the tail, top
fin, and mouth. The motif
bears a resemblance to one of
Escher’s tessellation designs,
but the symmetry of the
design is quite different.
Escher’s design has fourfold
rotational symmetry about
the tail and the top fin, with
twofold rotational symmetry
about the jaw.

See interview on page 220.
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