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1. Introduction

String propagation in a Lorentzian-signature spacetime must be described
by a nonunitary world-sheet conformal field theory. For example, in flat space
the oscillators for the time coordinate, X, create states of negative norm. All
is not lost, however. By imposing a suitable set of physical state conditions or
in a more modern language, by imposing BRS-invariance, one finds a physical
subspace of the full Hilbert space in which all states have positive semidefinite
norm. Furthermore, one finds that all of the zero-norm states are BRS-exact
(corresponding to null-states in the older language). The BRS cohemology, the
quotient of the physical Hilbert space (ker Q) by the space of zero-norm states
(im @), is then a positive-definite Hilbert space. Indeed, the BRS-exact states
decouple from correlation functions of physical operators, which behave sensibly
— just as if one were working with a unitary conformal field theory. This is
called the Ne-Ghost Theorem [1] [2][3].

As originally stated, the no-ghost theorem was proven for strings propa-
gating in flat spacetime. However, it is not too hard fo generalize the proof
to the case where some or all of the transverse dimensions are replaced by a
more general unilary conformal field theory, perhaps corresponding to strings
propagating in some curved background. However, it is crucial in all exist-
ing proofs of the no-ghost theorem that at least two directions (X°, X} be
flat, uncompactified B!, This is something of a deficiency, in that one would
like to consider strings propagating in more general spacetime backgrounds —
black hole solutions, cosmological solutions, efc. — in which there are no flat
light-cone directions which can be singled out.

There have been a few prévious attempts to study string propagation in
spacetimes which are non-flat in the above sense. Mostly, they have centered on
string propagation on noncompact group manifolds such as SU(1, 1), since here
we can hope to use methods of current algebra to construct the nonunitary CFT
[4]. This theory is somewhat complicated by the infinite degeneracy of states
at a given mass level. A much cleaner class of theories are the coset models

discussed by Bars and Nemeschansky [5], who econsidered string propagation
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on SO(d,2)}/S0(d,1). None of the above authors went so far as to prove a no-
ghost theorem®. The simplest of the models of [5], d = 1, has recently received a
flurry of interest becanse of the observation by E. Witten [7] that it corresponds
to a two-dimensional spacetime with a black hole?. Given this interpretation,
it is all the more interesting to see if the resulting theory is unitary.

But there are numerous difficulties inherent in such a program. Many
key properties of compact current algebras are absent in the noncompact case,
for example the uniqueness of highest-weight representations used in [8]. The
crucial fact that one may truncate the spectrum of compact current algebra
representations to the unitary ones without spoiling modular invariance is no
longer assured. More generally the meaning of the Knizhnik-Zamolodchikov
equations is unclear; it has even been suggested in the context of complex
groups that we must abandon holomorphy of the conformal blocks [9].

Due to all this uncertainiy one may wonder whether it is possible to go
beyond the semiclassical analysis of [7}. Indeed, in this paper we will not ac-
tually construct the black hole field theory explicitly. We will find, however,
that very general considerations of representation theory can tell us much about
the structure of the theory. Specifically we will use the representation theory
of the coset model currents to find all the physical states which could enter
the full coset-model string theory. As an unexpected bonus we will also find a
new “stringy” symmetry of the spectrum of physical states, an isometry which
exchanges massive and massless states.® We will also see that for Minkowski sig-

nature the no-ghost theorem is true in a rather trivial way. For the Euclidean

L But see [6], where positivity is claimed for the ST/(1,1) string, provided
one appropriately truncated the allowed spectrum of j. It is not clear that this
truncation is respected by the operator product algebra.

2 SL(2,R)/S0O(1,1) gives the Minkowski signature black hole, while
SL(2,R)/U(1) gives Euclidean signature. We will study the BRS cohomology
for both theories.

8 Whether this symmetry is reflected in the dynamics of the theory is beyond
the scope of our analysis.




solution we will find examples where the cancellation of negative-norm states
is quite nontrivial, but we have no general theorem to this effect.

One of the conjectures that Witten made about the black hole theory
is that the amplitudes for scattering off the extremal black hole are identical
to the scattering amplitudes of d = 1 noncritical string theory. We will not
calculate any scattering amplitudes in this theory, but we will compare its
physical spectrum with that of the d = 1 noncritical string. The massless
spectrum, the “tachyon” of the d = 1 string, is identical. In addition to the
tachyon, one finds in the d = 1 string a set of states at higher mass levels at
certain discrete valnes of the momenta [10]. We indeed find the analogs of these
“discrete states” in the physical Hilbert space of the coset theory. However, this
does not complete the list of the physical spectrum of the coset theory. There are
additional discrete states, as well as states at nonfrivial ghost number. Though
the massless spectra agree, the spectrum at higher levels is much richer in the
coset theory. Of course it is possible that the true spectrum is a subset of
the states allowed by representation theory, so that the two theories really are
equivalent. A definitive statement on possible equivalence of these two theories
will have to await a direct calculation of the scattering amplitudes in the coset

model.

2. The coset model

We consider an ;[(Z,JR) current algebra whose currents obey the operator

product relations

“ ;kn“b jeabe . Jé
T w) =+ (2.1)

where 7,, = diag(1,—1,1) The Sugawara stress tensor of the ;[(2,1&&) current
algebra is

Ts[(2,]m): JU = k 5 (T (I (P (2:2)

We will be interested in two important subalgebras of this current algebra: the

(1) current algebra generated by J* whose stress tensor is

1
Ty =3 (il o (2.3)

and the 56(1,1) subalgebra generated by J2, whose stress tensor is

50{1 1)~ 7, (J3)2 - (2'4)

What representations of the current algebra will be relevant to us? To
analyze the Euclidean black hole, it is convenient to diagonalize Ls{2 ) and
JZ. The representations are generated by acting on base states {5, m) with the

modes of the currents where the base states satisfy

140 ) =THUAD ) o

ng], m) :mljnm)
Ln|j1m> =J,;"j,m)~—~0, n >0

1t is convenient to define the ladder operators J*(z) = J3(2) £ iJ%(%), which

have simple commutation relations with J2(z):

72,75 = +J3

m4n

The physics of the WZW model dictates that the representations are en-
dowed with an inner product (which is nondegenerate on the base) and that
currents are realized as Hermitian operators with respect to this inner product.
We may as well require that our representation be an irreducible representation
of ordinary SL(2,R) at the base, since we can always decompose it until this
is true. We will call a representation in which the currents are Hermitian and
the inner product is nondegenerate at the base (but not necessarily positive-
definite), a Hermitian representation, reserving the term unitary representation

for the case in which the inner product is positive-definite. Having a Hermi-

" tian representation is a serious restriction on the allowed values of j,m. In

particular, j(j + 1) must be real. Since we demand that the representation be
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irredticible at the base, then m must also be real. The Hermitian inner product

4 on the highest weight states
(j= m/ | B m) = :t(sm,?ﬁ’ (25)

is only nondegenerate if for every m € spee(J32), 7 is also in the spectrum of J&.
For an irreducible representation, spec(J§) C my + Z, for some fixed m, € C.
So a representation is Hermitian if and only if m, is real.

The types of Hermitian repre'senﬁations which can occur are then classi-
fied by spec(.J2) on the base. A highest-weight representation has spec(J3) lbase
bounded above, a lowest-weight representation has spec(JZ)|yase bounded be-
low, and a double-sided representation has spec(J3 ). bounded on both sides

(Fig. 1). For a continuous representation, spec{J )5 is unbounded.

Decomposing a reducible “continuous” repregentation:
a) a highest-weight representation
b} a lowest-weight representation

Fig. 1: c) a double-sided representation

4 A unitary representation would have all + signs.

5

Since the representations are really labeled, not by j, but by the Casimir
—j(j+1), we see that j and —j —1 are really the same representation. To avoid
this trivial redundancy, we restrict j > —-% for j € K. For j in the principal
continuous series, i = ——% + i), we should also in principle restrict the sign of
the allowed values of A. However, we will argue later that, in the context of the
Minkowski black hole, both signs of A are in a certain sense physical.

To analyze the Minkowski black hole, we need to construci representations
on which J3 can be diagonalized. Only then can we perform the coset construc-
tion. These representations behave very differently from those on which J 2 can

be diagonalized. We will denote the highest weight eiganstates of J3 by |7, &)

ng];ﬂ) = #ijnﬂ) . (26)

In this basis, the currents are Hermitian with respect to the inner product:
(G |4y =%b, 5 . (2.7)

The difference now is that spec(J§) C g + iZ. This is because the ladder

operators J¥ = J? F J! have the commutation relations:
[Jr?s :frﬁ] = is‘j$+n

So we see that a Hermitian representation has either &) py € Ror b) g € %-.I—IR
(mod iZ). .

The stress tensor of the coset theory is the difference of the stress tensor
of 5i(2,R) and that of the subalgebra (2.3) or (2.4):

Euclidean :

Minkowski :

T=Tyem ~ Ty (28)

7= Tst(z,m) — 4g0(1,1)

In either case, the central charge of the coset model is ¢ = 2 4+ }—?-_—2 If we
wish to build a critical string theory out of the coset model alone, we shouid
take k = 9/4, so that ¢ = 26. This is interpreted as a string propagating in a
1 + 1-dimensional target space. More generally, we can consider 9/4 < k < o

and take some unitary conformal field theory with central charge 24 — Eéi to
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represent the “transverse” degrees of freedom of a siring propagating in a higher
dimensional space.

Finally, we introduce the conformal ghosts b(z), ¢(z) and a BRS operator
Q——l—ﬁcT—i—bcac (2.9)
T 2w ' '

As in any critical string theory, @ = 0 for ¢ = 26, which in our case means
E = 9/4. However, there is now one subtlety in our way of treating the coset
model. By construction, J°(z) (where J° denotes J2 or J2, depending on
whether we are discussing the Fuclidean- or the Minkowski-signature coset
model) commutes with 7(z), and hence with ¢. Thus if we simply took the
cohomology of € with no further restrictions, we would get an infinite number
of isomorphic copies of the same physical cohomology, created by the action
of the raising operators J° . As in any situation where we have an additional
symmetry acting, we should consider instead the equivariant BRS cohomology.

Our physical state conditions, then, are:

Q) =0 (2.10a)
bo|¥) = Ly|¥) =0 (2.108)
N =6 n>0 {2.10¢)

and two physical states |¥, ,) are considered to be equivalent (cohomologous)
if 0} = |¥,) +Q[A), for some [A) satisfying (2.108, c).

The equivariance condition (2.106) is familiar from usual string theory {3],
[11], and is a consequence of correctly treating the ghost zero-modes. The inner

preduct in which we want to prove positivity is

(s}, [2)) = (¥ feo | g} - (2.11)

() 1s not Hermitian with respeet to this inner product, but on the subspace
satisfying (2.10b), it is Hermitian. (For another motivation for imposing (2.108},
from the point of view of obtaining well-defined string scattering amplitudes,
see [12][13] [14].)

We can usefully rephrase this procedure by taking seriously the Lagrangian
formulation of this theory as a gauged WZW model coupled to gravity. What
we have just said amounts to constructing the coset model first as a conformal
field theory on a fixed Riemann surface. ITmposing the highest weight condition
(2.10¢) can be thought of as calculating the cohomology of the BRS opera-
tor Q’J(l) associated to the gauged U/(1). We then couple the coset model to
gravity and calculate the cohomology of the BRS operator ¢} associated to the
diffeomorphism symmetry. In other words, we are considering an ¢ferated coho-
mology problem. Alternatively, one could consider calculating the cohomology
of @+ Qﬁ(l)' A priori, these two procedures could yield different answers for
the cohomology, since the former corresponds to considering the coset model
as a background for the ordinary bosonic string while the latter corresponds to
considering a sort of U(1)-extended string theory. Fortunately we are spared
this choice. We will see in sect. 8 that both problems yield the samne answer for
the cohomology.

In either formulation, the problem is now simply stated: calculate the
equivariant BRS cohomology of the coset model and prove that the inner prod-

uct (2.11) on the cohomology is positive definite.

3. The cohomology (Euclidean case)

Before introducing any heavy machinery to compute the BRS cohomology,
we can simply look for solutions to (2.10) and see what we find. Let us look
for physical states of the form |¥) = ¢, 16}, where |t} is some state in the coset
theory.

First consider the case |¢) = |j, m}, a Kai-Moody primary state. This will

be @-closed provided |j, m) satisfies the mass-shell condition

G- lim = (FLED 4 Bt lim =0 . @)

This quadratic equation has two roots
m=2(37+3/2) . (3.2)
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A priori, m can be any real number and ~j(j + 1) must be real. We do nof,
however, make any other restrictions on the allowed values of j, m in the hope
that the resulting parafermion module will be unitary (as in [15]). We expect
unitarity to emerge (if at all) only after taking the BRS cohomology. Indeed,
that is precisely what happens here. The physical states that we have found

alh £(87+3/2)), JER, j=-1/2

cannot be written as @ of something and (trivially) have positive norm.

Can we find some other states? Let us try a state of the form
o) = (J2)N i, m - N)

This state is automatically annihilated by L_ and J? for n > 2. We must,

however, impose by hand the conditions
L) = Il =0
Both conditions will be satisfied if
JHim—N)y=0 . (3.3)
This yields a quadratic equation
G+ 1)+ (m— W)= N +1)=0 . (3.9
which, together with the mass-shell condition
<4+ —+N=1 (3.3)
determine the allowed values of §,m. We find two solutions

m = —3/8 + 3N/2,
m =3/4 (N — 1),

J=N/2--3/8 (3.6a)
i=(N-1/4 . (3.6b)

EA B r

Identical reasoning shows that the states
[y = ey (J2)Nld, m + W) (3.7)
are physical states for

m =3/8 — $N/2,
m=-3/4 (N - 1),

j:N/2—3/8 (380&)
i=(N=-1/4 . (3.88)
We will see in sect. 7 that these states are but the first entries in a series

of physical states which are labeled by a paér of positive integers », 5. There is

one series (containing the states (3.6a), (3.8a)) which occurs for

D m= :I:%(l‘s—élr— 1), = %(25—]—47’—5) (3.9a)
and another (containing the states (3.68), (3.80}) for
DF m:i%(s—2r+1), j:%(s—}-?r—ﬁ'.) . (3.95)
Finally, there is a series of physical states with
e: m“*_““%(s—r), = (s+r—1) (3.10)

which come from “continuous series” representations.
One easily calculates that the norms of the states found above. For exam-
ple, the states in (3.6), |¥]) = cllw,bf),

(1), (oY) =G, m — N | (IDYN (TN | §,m = N)
_ 1 Ll +2m — N)

-m(hm—NU,m“N)

have the same sign as that of the highest weight state {j,m — N | j,m — N} for
(3.6a). For (3.65), the relative sign alternates, depending on whether N is even
or odd.

If there were only one state in the BRS cohomology from any given Her-
mitian representation, we could simply declare it to be positive norm. Unfortu-
nately, there are, in general, several states in the BRS cohomology from a given

representation. It is nontrivial that their norms should be of the same sign.
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Let us look at a simple example. Consider the states in the highest weight
representation with j = 1/2. There are 2 states in the cohomology, ¢, |#,} and

ey |tby), where

1) = (75,)°11/2,-3/2)

) = - Y2

+ (Jfl(Ji“l)

+v2 (—jS'3 — 6872 %, +1807%, 0 +

(J2:)°[1/2,-9/2)

21
?ﬂ" Jfl) 11/2, —-7/2)

LEN 1) 11/2,-5/2)

+\/_(535J Jﬁ—ﬂj i+ 4§8J21J PASES 26§7J2

1868
9

198 7252, + 2900027 /2,92
(3.11)

When we calculate the norms of these states, we find

Walta) = _gg“/ 2,-3/2}1/2,-3/2)
(s | hp) = — Do LA9605T

i (Y2,-3/211/2,-3/2)

Clearly, we can make both of these positive by defining (1/2,-3/211/2,-3/2)
to be negative. We have checked a few low-lying representations and find that
the same seems to hold true: all of the states in the BRS cohomology have the
same sign for their norms and it is consistent to choose them to be all positive.
We suspect that this holds true generally, but unfortunately, we have no proof.

In any case, what we really want is something slightly weaker. We don’t
really care about the norms of the chiral states that we have found. What
we redlly want is that the norms of the nonchiral states obtained by tensoring
together in the left- and right-moving BRS cohomologies should be positive
HOTT. :

We do not have a complete proposal for tensoring together left and right
to obtain the full CFT, but it will suffice to know how to tensor together left-

and right-movers from a given representation. A physically reasonable proposal
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in this regard is discussed in [16]. The prescription is simply that the left- and

right-mover lie in the same representation and m, m must be related by
1 ; 1 '
m:i(n—i—kn), m:i(—n+kn) (3.12)

for some choice of integers n,n'. In general, an arbitrary tensor product of a
left- and a right-moving state will not satisfy (3.12). We only need to check
positivity for those which do.

In the above example (3.11), regardless of the common sign of the norms
of the chiral states, the nonchiral states one forms out of them have positive
norrn. Najvely, one might think that we would obtain four nonchiral states by
tensoring the two chiral states together in all possible ways. In fact, only two

states are allowed by the condition (3.12),
€, 161) ® [y) and e liy) ® 19 (3.13)

These are positive so long as the norms of |}, i#,} have the same sign. More
generally, the condition (3.12) may play an important role in removing trouble-
some would-be states from the spectrum. Indeed, it appears that the spectrum
of states of the Euclidean model satisfying (3.12) may be positive-semidefinite
even before imposing BRS invariance but, again, we have no proof.
There are also states at other ghost numbers. The simplest case occurs
at j = m = 0. Here, in addition to the states that we have already found,
173,10, 1) and ¢;J7;|0,1}, there are also the states |0,0) at ghost number
zero and ¢;¢_,]0,0) at ghost number 2 which are obviously BRS cohomology.
Exactly the same states occur in the BRS cohomology of the bosonic string and
(as discussed in the previous section) are a crucial ingredient in constructing
the physical dilaton state.
Similarly, for each of the other states in (3.9),(3.10), we find a state at

ghost number 0 or 2 at precisely the same values of j,m
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4. Liouville interpretation

In the d = 1 noncritical string theory, we have a free scalar field, X, and
the Liouville field, ¢. The dispersion relation for the *tachyon” vertex operator

(the gravitationally dressed e'P=%) is

Py =2p, —V2 . (4.1)

Comparing this with the dispersion relation (3.2} of the coset model, we can

identify

22
=3 "

This is not to say that the states |7, m) are plane waves; they are honest states

Py = 2\/§Ja o (42)

of the coset conformal field theory. At best, they may approach plane waves
asymptotically on the target space manifold. Note that our restriction on the
allowed valunes of j (j > —%) translates into py > —+/2, which, on the basis of
semiclassical reasoning {17] has been argued to be necessary for normalizable
states in Liouville theory.

The identification of the m with p, could have been anticipated by con-
sidering the geometry of the target space of the coset theory. It is obtained by
taking the quotient of the group manifold SL(2,RR) by the U/(1) action

g—hgh h= (_Czlsfg :l;g)eHzU(l)

The quotient space has a Killing symmetry generated by the U{1) subgroup
H' C SL(2,R) x SL(2, R) which commutes with the above action of H, namely
g — hgh™!. The d = 1 string also has a Killing symmetry — translation in the
X direction. If-we choose our conventions so that in the conformal field theory
H is generated by J§ — "j*;, then the Killing symmetry of the coset theory is
generated by J§ +“f§ which one should naturally identify with p_, the generator
of X-translations in the d = 1 string.

In addition to the tachyon, it is alsc known in the d = | string that there

exist a series of “discrete states” at quantized values of p,[10]. In the coset
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model, too, we have found a series of discrete states. Translated into Liouville

units, the discrete states that we found occur at

~ 2s—4r -1 254+ 4r —~ b
DE e P A 43
P NG Pe= "3/ (4.30)
—2r4+1 s42r—3
DF . =+ f————, = —————— 4.3b
Py ’\/i p¢ \/-2" ( )
e: Py :_—2(3 —7) o 2etr-1) {4.3¢)

vz TR

The discrete states in the d = 1 string occur at \/§pw =u—v, \/§p¢ = (u-!—v—?)
for u,v € Z* (Fig. 2).

Fig. 2: Physical states of the d = 1 noncritical string

For each choice of sign in (4.3b), the states correspond with half of the
discrete states of Liouville theory (u = s, v = 2r+ 1, or vice versa). The states
with u,v both odd are thus doubly occupied. The states of Liouville theory
with u, v both even correspond to the states {4.3c).

In addition to the states with u, v odd, for which there are two states of
the coset theory for each state of Licuville, the states in (4.3a) are completely
new and seem to have no counterpart in d = 1 noncritical string theory. The

situation is summarized in (Fig. 3).
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Physical states of the Fuclidean black hole
0 ¢ ® D (double-occupied)

Fig. 3: Cc D ° D

5. The cohomology (Minkowski case)

Much of the analysis of sect. 3 carries over straightforwardly to the
SL(2,R)/SO(1,1) coset model. The mass shell condition now reads

—ii+1) g
k— 9 A + 1, (5.1
where gt is the eigenvalue of J3 and N is the oscillator number. Kaé-Moody
primary states |7, 4) (recall the notation of {2.6)) are on mass shell provided j

is in the Principal continuous series,

J:——%-i-ih, AER
and
po= 13X

This is the dispersion relation for a free massless scalar field in two dimensions,
the “tachyon” of the Minkowski signature theory. u is the energy, and the

two signs of p correspond to incoming or outgoing plane waves. A corresponds
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asymptotically to the spatial momentum of the wave, and the sign of A defer-

" mines whether the wave is left-moving or right-moving. The Minkowski black

hole has two causally disconnected regions. In one, incoming waves (which
eventually hit the singularity) are necessarily left-moving and outgoing waves
are necessarily right-moving. In the other region, the reverse is true. To ac-
count for waves propagating in both regions, we should allow all four possible
signs of m and A.

What about the discrete atates? We will learn in sect. 8 that the condition

for the existence of a discrete state at level N =n, n_ is
2j+1+2ip/3=n, €Z

For the principal continuous series, j = —1/24-4A, there are no solutions (except
for the tachyon found above). However, if we take j to be real and g to be pure
imaginary, we have in principle (a subset of) the solutions found in sect. 3 for
the Euclidean theory, with m replaced by ip.

It is crucial, however, that the inner product in the two theories is different.
In the Minkowski theory, the inner product pairs ¢ and 7. In the Euclidean case,
for j,m both integer or half-integer, we can use the invariant inner product to
decompose a continuous representation into a direct sum of a highest weight, a
lowest weight, and a “double-sided” representation. Since in the Minkowski
case, the inner product is inherently off-diagonal for imaginary p, we can
perform an orthogonal decomposition into (double-sided representation)@®(the
rest), but we cannot further decompose “the rest” into (highest weight)d(lowest
weight) representations. Rather, it forms a single Hermitian representation®.

With the appropriate inner produet {2.7), we can ship over from the Eu-
clidean theory all of the discrete states that we found with m € 1Z to become
discrete states of the Minkowski theory.

Of particular interest are the states at level 1,

[WE) = ¢, JE |0, Fi) . (5.2)

5 Recall that Im{y) € 37 for a Hermitian representation.
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These both have p = 0. These are analogs of the graviton-trace in the flat
space string. Correspondingly, at ghost numbers 0, 2 we have the states |0} and
cie_4|0).

We will defer a discussion of the norms of the discrete states to sect. 10.

6. The k — oo limit

We have been considering the coset model with ¢ = 9/4 as our string
background. However, we could equally well imagine tensoring the coset model
with a unitary conformal field theory with ¢ = 24 — 6/(k - 2), and considering
that as our string background. We might expect that a no-ghost theorem should
go through in this more general case. Indeed, in the limit & — oo, the central
charge of the “transverse” theory, ¢ — 24, and we expect that our theory should
approach that of the eritical bosonic string with a flat light-cone. How does this
come about?

Tirst of all, we should rescale the currents

Fi(z) = V/2IRT(2)

so that, in terms of the J*’s, the current algebra (2.1) has a well-defined limit as
k — oo. In this limit, the current algebra becomes abelian and we recognize Jt
as the light-cone currents {9X%. We also need to rescale the quantum numbers
j, m which label the states. Let

b= IR+, {PZVEIEm (eiden

so that, for instance,

1

b= -9

pf:l: %Pg + +N+L8ransverse

ES IR

(where N is the light-cone oscillator contribution, and the + {—) sign is for the
Euclidean (Minkowski) theory). In the & — oo limit, this becomes precisely

the Virasoro gemerator for flat space. For the Principal continuous sertes, j =

17

—1/2 + X, and so p, is real. This is exactly what one expects for a flat light-
cone. In our analysis of the & = 9/4 theory, the “transverse” theory had only
one state — the identity. We found that for any fixed value of p* = p; + pq,
there was one state in the BRS cohomology, which we called the tachyon. More
generally, we expect that for every state in the transverse theory, we obtain one
state in the BRS cohomology. In sect. 7 we will use a “vanishing theorem” to
show that there are no other states than this. As & — co this theorem, which
we will prove in sect. 8, indeed becomes precisely the vanishing theorem of [3].

Unfortunately, the vanishing theorem which we will prove does not apply
to the discrete states, and we should examine thelr fate in the & — oo limif.
The answer is very illuminating. The vanishing theorem does not apply when

(see sect. 8)

) 1 .
ip, £ p, = Z(T—Q) ny {(Euclidean) o
! (Minkowski)

i(py £po) = m ny
for some choice of integers ny € Z. We then get extra states in the BRS

cohomology at light-cone oscillator level
N=n,n_>0 (6.2)
provided we can satisfy the mass-shell condition

LD—1=‘(1—ﬁ>(N—1):O . (6.3)

For k > 9/4, the right-hand side of (6.3) vanishes if and only if N = 1. But
the N = 1 states are precisely the “extra” states c,a™, |0} which one finds in
the BRS cohomology at zero momentum of the bosonic string [3]. The rest of
the discrete states disappear for k > 9/4. Qualitatively, at least, the behavior
of the coset model in the k& — oo limit is just what we expect for strings whose

light-cone becomes flat in this limit.
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7. Systematic analysis of the cohomology

So far we have written various anseize for the physical states. This ap-
proach has the advantage of being concrete, but leaves us wondering whether
we have really found all the states. In this section and the next we will employ
much more abstract means to verify that we haven’t missed any states in the
BRS cohomelogy.

Our strategy of proof will be as follows. First we will compute the index
of the BRS complex. This will give the alternating saum of the dimensions
of the BRS cohomology groups, graded by their ghost-number. The states
found in the previous sections actually saturate the index. Thus to show that
they exhaust the cohomology it suffices to show by some other means that the
cohomology is trivial for all but one value of ghost-number. Tn other words we
need a vanishing theorem, similar to the one used in the corresponding bosonic
string problem [2][3]. Just as in the bosonic string {3], the vanishing theorem
holds enly for generic values of j,m. Thus we will have to treat a few special
cases separately. To simplify the discussion in this section we will stmply state
the vanishing theorem and apply it, deferring the somewhat technical proof to
the next section.

Let us begin by restating the problem. In this section we will only consider
the Euclidean black hole. Thus we begin with a module for the s[(2,R}/s0(2)
parafermion algebra. We have argued that we wish to consider modules induced
from Hermilian representations of the full current algebra, (see the definition
above {2.5)).% Our space of states is now the tensor product of the parafermion
algebra with the standard b, ¢ system, subject to the physical state conditions
(2.10). To get the physical state space we finally need to pass to the BRS
cohomology of the operator @ in (2.9).

The first step is to compute the index of the BRS complex. Let A

3, Mo

be the Verma module of the current algebra built by acting on a Kag-Moody

® In particular our module could contain null vectors; we are not going to
rernove them by hand since there is no physical mechanism to do so. Instead
we are to investigate whether the BRS cohomology procedure removes them
automatically.
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primary state |§, my) with the modes of the currents J%, (n > 0). This module
is (almost) freely generated. The only relation we impose is the one coming

from the global algebra:

Jiliym = /mmED) =G+ Dlim*1)
Let Vi be the subspace of V; . consisting of states which satisfy

JHwy =0  1>0
Jgle) = ml)

The direct sum &,,V; ,, forms a module for the SL(2, R) parafermion algebra.
We will, loosely, refer to V; ., as the parafermion Verma module; even though
it is not itself freely generated by the parafermion currents, it is a subspace of
ﬁj,mu which is freely generated by all the currents.

Tepsoring V, ,, with the ghost Fock space built by acting with the b_,
{n>1) and c_, (n > —2) on the SL,-invariant vacuum, we obtain the module
éj,m of the (parafermion)®(ghost) system. C'j,m has a submodule C; ., of states
satisfying

by |¥) =0

C;  is naturally graded by ghost-number, and we denote the eigenspace

with ghost-number n by C},, (where the “ground state” ¢,|7,m} has ghost-
number 1). CZ,., in turn, has a finite dimensional subspace £7, of states

satisfying the mass-shell condition
Ly|¥) = 0.
The equivariant BRS complex is simply the complex

Qg1 Qg Qg Q@ (7.1)

3,m

and by the Euler-Poincaré principle, the index of the BRS operator (the alter-
nating sumn of the dimensions of its cohomology groups) is equal to the alter-

nating sum of the dimensions of the E?
Indezy = — Y _(=1)"dim H* = =Y (~=1)*dim ET,, .  (7.2)
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To compute this, we define the character-valued “index”
Ind{q) =— . (=1)*gho
(@) == L trley (1"

=- T?“|c,-,m(_1)Gf1L°

(7.3)

where G is the ghost-number. Then Indez is simply the q° term in Ind(g).
But the ghost contribution to Ind(g) is easily computed:

o

Ind(q) = ~(1 = ¢ Y1 - ) [ - ")xym(@) (7.4)
2

where x; ,,(¢) is the character (T ¢™°) of the SL(2, R)/U(1) parafermion mod-
ule V, .

One of the fundamental tools for studying these parafermion modules is
the fact that they admit a construction in terms of free bosons coupled to
background charges [18]{19] [20]. Introduce three free bosons with the stress

tensor

T = 13¢8¢ — 4 (80do — ad®e) — 104'0¢’
where a = +/2/(k — 2). Then the 5[{2, R) current algebra can be represented as
TH(z) = e~ 16 fa + 84’ [a)
J*(2) = i0é /o (7.5)
I (z) = &*9=9Yidg fa — d¢’ [

where o = +/2/k. The Kai-Moody primary states |j, m) are created by the

(chiral) vertex operators
Vi=TG+m+ 1)1/21"(_7' —m4 1)1/2e""£""°“‘5e_“-’k"’ei"”""“"r ) (7.6)

To obtain the sl(2, R)}/u(1) parafermion theory, we simply drop all dependence
on the boson ¢. The stress tensor of the coset model is T = —1(dcdo —
ad?0)—18¢'8¢’. The parafermion currents ¥, , wI are obtained by dropping the
exponentials of ¢ in the expressions for J* and the vertex operators for the coset

model by dropping the corresponding exponentials of ¢ in (7.6) [18]. Normally,
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the free-field representation is used to study the érreducible parafermion module
either by taking the Felder cohomology [21], [18] or by removing the null vectors
by hand[20]. As mentioned above, however, we are interested in the parafermion
Verma module, rather than its irreducible quotient. )

For generic j, m, the parafermion Verma module V; . is obtained by acting
on the primary state |j, m) with the bosonic oscillators o_,, ¢.,, where we
expand

o(x) =Y 0,27 8 () =) ¢z

The parafermion Verma module V; . is, in fact, a Fock module — freely gen-

erated by two sets of bosonic oscillators. Thus the character is
e xm=dmLJ0-)? (r.7)
1
Plugging this into (7.4), one finds
Ind(q) = ¢"m71 . (7.8)

Thus the index Indexy = 1 provided 7, satisfy the mass-shell condition
h; =1 and vanishes otherwise.

When 7, m lie in a discrete representation, however, the parafermion Verma
module #s not isomorphic to the free boson Fock module. For highest weight
representations (such as those which contain the physical states (3.6)), the

characters are

oo oo
D - Xjm = qh,-,m H(l _ qn)w»Z Z(_l)sqs(s~2(m—j)+1)/2 (790‘)
1 5=0

for the representations of type (3.6a) and

D™ Xy = (L= )Ry (A1) AR (7 08
1 s=0

for the representations of type (3.88). These representations are characterized
by the fact that the highest weight state at the base has m = j (for D7) or
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m = —j — 1 (for D). Since they are not of the form (7.7), the free boson
construction does not directly give these modules. Similarly, for the lowest

weight representations of type (3.8a,d), the characters are, respectively,
DF: Xy =097 [J(1 = ¢ 72D (1) g 20D E02 (7 100)
1 #=0

o0 0Q
DF: xym = 9 (= g2 Y (1) g AR R (7 108
1 5=0

What is happening? For special values of §, m the Fock module may be re-
ducible at the base; indeed this happens when j, m describe a discrete represen-
tation of 5{(2, R). In terms of the free boson representation, DF are submodules
of the free bosonic Fock module, characterized by [18][20]

D*E = ker(8%) (7.11)

where

gt . %ea/aiié'/a ) (712)

(For generic f,m the current in (7.12) is not local with respect to the vertex
operators which create the base states, and so § is not defined.y Hence the free
boson module is bigger than the parafermion Verma module D%, and this is
why (7.9), (7.10) differ from (7.7). We summarize the situation by the pictures
Fig. 1.

There is just one other possibility, Namely the submodules DE may them-
selves be reducible at the base. This can happen when both the operators 8%

are well defined on the Fock module, so that we can define a submodule U by
U =ker{8*)Nker(87) . (7.13)

This happens when j € %Z, j—m & Z. In this case F contains a lowest-
weight vector at the base in addition to the highest-weight vector, and we get

a “double-sided” parafermion module. See Fig. 1c. The character is then

u- Xjm = H(l _ qn)—z 1— Z(_l)sqs(s—2j~1)/2(qms + q—ms)]
i s=0

(7.14)
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Thus the modules DE and U are submodules of the free boson Fock module.
The modules D, Dt are best characierized as the gquetient of the free boson
Fock module by D+ = ker($%) and D = ker(8™) respectively. The reader
may recall that we have argued against considering the quotient of parafermion
Verma modules, since these are the primary physical spaces arising from the
path integral in the coset model and there is no mechanism other than BRS
to project to a quotient. No such scruples apply to to the boson Fock spaces,

however. They are simply an alternate representation of the primary object,

* the parafermion Verma modules. If we need to take a quotient to reproduce

the latter in a particular case, then we may do so without further ado.
We now have all the characters we need in (7.9)(7.10), (7.14). Plugging
these characters into (7.4), we find that Index, # 0 for certain values of j,m

labeled by a pair of positive integers r, s.

Index;  Representation J m
+1 D- 1(2s+4r—5) —3(2s—4r—1)
+1 D (s +2r—3) S(s—2r+1)
+1 D L@as+4r—5)  2(2s—4r—1)
+1 Dt Hs+2r—3) —Hs—-2r+1)
~1 D~ T2s+2r—8) ~3(2s—2r+1)
-1 - l(2s+4r~5) 3H2s—4r—1)
~1 Dt 12s+2r—3)  2(2s—2r+1)
-1 Dt (254 4r—5) —3(2s—4r—1)
-2 U Hs+r—2) Hs—m)

This completes the first step of our strategy to compute the BRS coho-
mology. As mentioned earlier, the second step involves a vanishing theorem,
whose proof we defer to the next section. Here we simply state the result.
Recall that a parafermion module is always a Virasoro representation by the
Sugawara construction, and hence also a module for the raising part Vir~ of

Virasoro.
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Vanishing Theorem. a) Whenever a parafermion module M is a free Vir-
module, the BRS cohomology vanishes identically: Hp(M) = 0. The only
exception is when there is 2 highest weight state and it satisfies the mass-shell
condition; then Hb(M) = C. b) In particular, when j ¢ %Z, then the free
boson module ¥ satisfies the condition in (a). ¢) When j € 1%, m € 3Z then
Ha(f}u) = HOQ(EF) =C

We will prove (a), (b) in the next section; for proofs of (b), (¢) see [22] . We
will now combine these results with our index analysis.

Just about everything is known about the BRS cohomology of the free
boson system. In fact, this is precisely the system studied in [22] in the context
of d = 1 noncritical string theory. For generic 7, m we have seen that the free
boson cohomology is just what we want. Even for the special cases (3.9a-b) we
can still use the free boson construction, however. For example, the long exact

sequence in cohomology associated to the short exact sequence
0—DF - F - DF =0

tells us about the cohomology of D,@ starting from the cohomology of JF.
When j = 2(2s+4r—5) (¢.e. for the series (3.9a)) the vanishing theorem applies
and so Hp, (F) = 0. The lmig exact sequence then implies HB"’%@*) =~ I3 (DF).
But for these values of j, D, being a submodule of a free Vir~-module, is itself

a free Vir~-module. Hence the vanishing theorem holds for it as well:
HY(D)=0, n#l

Since the index in the above table is nonzero, H* must in fact be nonzero. Using

the long exact sequence, we finally conclude

- -1 3
HL(DE ) = HO(DF ﬂ{IC j=35(2s+4r—5), m==x5(2s —4r—1)
ol ‘"’m) Q( "’m’) 0  otherwise

The next case to consider is j = (s 4+ 2r — 3}, m = £3(s — 2r + 1) (the
series (3.96)). Here the vanishing theorem tells us that 0} (F) = HY(F) = C.

Let us begin with the subcase where D# is irreducible at the base, i.e. s is
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even. We notice that any state annihilated by $% can actually be written as
$* acting on something. Thus, since it commutes with BRS, §* provides an

isomorphism of BRS cohomologies

+ ~ I
8 E(QDEW)_)HE(Dj—I/S,m:}:Q/S)

But we can use the previous technique on the right hand side. Thus we learn

that

R o :
HQ(i)%«(5+2r—3),:|:%(3—2r+1}) - Hq(®€(23+4r—5),i%(25—4r—1))

From this, and the long exact sequence, we conclude that the index is again
saturated by Hp(DF) = C and HY(D*) = C.

We have still to consider the series (3.98) for j = (s’ + 7/ —2), m =
3(s' — ') (the case where 5 above is odd, so we get a double-sided parafermion

representation (7.13)). We have the exact sequence
0—+U—>3'—>‘Df€{9®_ -
As before, the isomorphism
8% 1 H(DFn) = HO(Di1/s maoss)

tells us that H}Q(D"“) = H}(D7) = C, and from the long exact sequence, we
learn that Hg(U) = HZ(U) = C.

We have now exhausted all cases where the free boson module is reducible.
As we mentioned at the outset, in other cases the vanishing theorem may be
used directly, We need only remember the exceptional case. This occurs when
i€ %Z but is not one of the reducible values studied above, i.c. for

j:%(s+r—-1), m:%(s~r)

(the series (3.9¢)). In this case, even though the index vanishes, there is coho-

mology: the third part of the vanishing theorem says Hb(?) = HOQ(.'}') =C.
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Our use of the free boson representation has been little more than a formal
trick to get at the relations between the BRS cohomologies associated to the
various representations. However, it does shed some indirect light on the use of
the free boson representation to, for instance, calculate correlation functions.
The free boson representation is obviously applicable to correlation functions of
continuous representations. However, it is not obviously meaningful to calcu-
late the correlation funcéions which involve, say, combinations of D¥ and D-
operators. For in the free boson representation, the operators in DT are rep-
resented as the equivalence class of the free bosom operator modulo operators
in D~. I that representation is to be consistent, then operators in D~ must
be equated to zero. In the free boson representation, we cannot simultaneously
have operators of both types bheing nontrivial. This 1s not to say that opera-
tors of both types don’t exist, merely that the free boson representation cannot

simultaneously represent them both nontrivially.

8. The vanishing theorem

We will now prove parts (a), (b) of the vanishing theorem enunciated in the
previous section. We will again make use of the free boson representation for
parafermion modules. Since as we will see the bosonic representation proves to
be a rather clumsy tool for this task, we will also comment on how part (a) may
be obtained using the powerful theorem of Lian and Zuckerman [23] . To this
end we will need to relate our ¢} cohomology to that of Q@+ Q;;(l), as promised

earlier.

8.1. Free-boson proof

When the free boson module is rreducible at the base, there is a direct
method of proof, which more or less follows the proof of Kato and Ogawa for
the flat space bosonic string [2]. Let us decompose the BRS operator in the

usual way
Q=c L +b,M+Q
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where é contains neither ¢, nor b,. The states in the equivariant BRS complex
are all annihilated by L5 and by, so on the equivariant BRS complex, é =@,
and Q% = —ML{" = 0.

Let us consider a 1-parameter family of deformations of Q

QB = 3 Lo~ +inaf2e_n(0 -+ idly)

m#A0

+ ﬁ[z t_m N, + (three ghost terms)]
m#0 (8.1)

+8 Y dpt e (0 — id)

m#0

= Qo+ PQy + 5@,y
where” (recall that a = \/2/(k — 2), a = \/2/k)
pt = oy + 52‘5 +igh = i[a(j + 1/2) £ am] (8.2)

and

Nm = Z (mengn + ¢:'n—n¢:'a)
wm

Now, é(ﬁ)z = —B°MLE* = 0 on the equivariant complex, so we can consider
its equivariant cohomology for any value of the deformation parameter 3. Also
Q(#) interpolates between é(,ﬁ’ =0} = ), and é(ﬁ =1) = Q. Following Kato
and Ogawa [2], we assume that the states in the cohomology of @(8) can be

expanded 1n the form

[w(8)) =>_Bw,) . (8.3)

n>0
(In fact this is guaranteed, as we will briefly indicate below using a more sophis-

ticated point of view.) Equating powers of 3, the state |¥) is in the cohomology

7 For one of the two tachyon representations, p~ actually vanishes. To ana-
lyze that case, we can consider the opposite deformation, in which the roles of
pt and p~ are reversed.
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of @, and the states |¥,) are determined by the recursion relations

QDN’D} =0
Qol¥;) = Q1| %o} (8.4)
QD|‘I’n) = "Q1|'I’n»-1) - Qzl‘I’n—z)

Our ability to calculate the cohomology of @, (and, coincidentally, to show
that there is no obstruction to solving the recursion relations (8.4)) rests on the
following observation. Consider the operator

=Y e —idl,) (85)

o ing/2 "

For generic j, i.e. when 27+ 1 — -2—9“;”—’ not an integer, R is defined, preserves the

equivariance conditions and satisfies
{Qu, R} =N
where
N=14 Z(a_no-n +¢',8L)—eb_y +e_iby + Z n(b_,c, +c_,b,)
n>0 n>1

N is a positive semi-definite operator. It annihilates only the ground state
¢, |4, m) of the Fock module at ghost number 1. For all other states, N >
0. Imagine we have some state |¥), other than this ground state, which is

annihilated by {2;. We now see that in fact |¥) is exact,

) = Qolx)

where .
) = 7 B1%)

Thus the cohomology of @, is empty, unless the ground state ¢ |j, m}) is phys-
ical. Since we have just inverted @,, we can now solve the recursion relations
(8.4) to show that the same is true of the cohomology of Q. This is the desired

vanishing result.
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Essentially, what we are doing here is using the spectral sequence of a
filiered complex [24] to calculate the cohomology of (), starting with the coho-
mology of the simpler operator @,. The filtration is by the lowest power of #
appedaring in the formal power series expansion of |¥3) (8.3). Indeed, provided
p~ +ina/2 # 0, HE = 0for m # 0. In that case, this spectral sequence de-
generates at £y = HF, . This proves that Hf, >~ Hp, , as we have seen explicitly
above.

Parenthetically we note that €}, defined in (8.1} itself looks like a BRS
operator, where the role of the Virasoro generators is played by the linear Fock
raising operators. The Fock module is of course free with respect to the latter
operators. Deforming @, to ) we see that whenever (8.4) can be solved then
Fis a free Vir-module as claimed in the vanishing theorem.

The crucial step in the above analysis was constructing the “chain homo-
topy” operator B. Clearly R fails to exist if 2ip~ fa € Z. However, we could
equally well have dsformed @ in the opposite way (exchanging the roles of o
and p~). Then the obstruction to finding an operator R would be 2ip*/a € Z.
Thus we get the vanishing result unless both conditions hold:

2
—2pTla=2j+1% ImE 7
Putting this together with the mass shell condition,
Lyt = 3pTp” 4+ N=0

we find the solutions labeled by a pair of integers r, 5 (both poéitive, or both
negative).

j:i-(r-l—s—?),

For these values of j,m the cohomology can be nontrivial, a refinement of the

3
mzz(r—s)

claim in the vanishing theorem part {b).

A slightly more sophisticated analysis [22] allows us to find the cohomology
of the free boson module in these cases as well. The answer is that for r,s > 0,
HY(F) = B%F) = C. For r,s < 0, HY(F) = HZ(F) = C. This is the claim in

the vanishing theorem part (c).
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We stated the vanishing theorem for the Euclidean SL(2,R)/U(1) case, but
the proofl can be rather trivially adapted to the Minkowski SL(2,R)/S0(1,1)
case. We can equally well represent the sl(2, R) current algebra as
Tt(2) = e~ 85 /a — B¢ /o)
I3 (z) = 04"/ (8.6)
T~ (2) = e 2@ ¥ 8o /a+ /)

The primary states |j, u) are created by the (chiral) vertex operators

Vi =TD( +ip+ 1)@ i + 1) 7Y 2% imademaivginad’ (8.7)

Again, for generic j, p1, the parafermion Verma module V; | 13 isomorphic to the

bosonic Fock module generated by the bosonic oscillators ¢_, and ¢_,, acting

-1

on the Fock ground state |7, 1), where we expand

= Zqﬁnz-ﬁnwl

Following exactly the same steps, we prove the vanishing theorem in the
Minkowski case. We deform the BRS operator é

QB =D 1™ +ian/2)e_ (0, + ¢m)

ido(z) = Zanz_”_l, i0¢(z)

m£0
+ ﬁ[z ¢ N, + (three ghost terms)]
m£D (8.8)
+8° ) 50" +ian/2e_ (0, — 65,)
mG
= Qo +5Q, +5°Q,
where )
P = oy + 5 6y = ia(j +1/2) £ ap (8.9)

The chain-homotopy operator R =", = +z =anyatn
{Q, R} = N > 0 which leads directly to the desired vamshmg theorem.
Presumably, the free-field representation of the sl(2,R) current algebra

———=—b,(0_, —¢_) again satisfies

can be used in proving a vanishing theorem for the BRS cohomology of strings
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propagating on the group manifold itself. In that case, however, it is known
that the BRS cohomology 1s not sufficient to remove all of the negative norm
states, and one must by hand restrict the allowed representation content of the
theory. Also, one has the technical headache of an infinite degeneracy of states
at each mass level (since L, is independent of m). Thus more care is needed in

order to apply the index arguments that we have used here.

8.2. Another proof

The proof in the previous subsection is adequate for the applications in
sect. 7. As stated, however, the vanishing thecrem part (a} makes no reference
to the frec boson representation. In this subsection we will briefly indicate how
to obtain part (a) from the general result of ref. [23].

The first issue we must contend with is the fact that the analysis of {23]
applies only to a single complex, while we have been discussing the iterated
cohomology HE(HZ,.. ) (see the discussion at the beginning of sect. 7). One can
readily show, howevé;), that H}. =0, n # 1. This means that in the double
complex associated to ¢ and Qu:zl), all the rows are exact with the exception
of just one entry at n = 1. Standard arguments® then imply that the desired
iterated cohomology is just HGH(Hp,.. ) = Hj,q. . Thus as claimed earlier
these are completely equivalent co};‘olmoiogy prolnailems. We can now use the
result of [23] to compute the cohomology of ¢} + Qu(l)

We start with the SL(2, R) WZW model coupled to the U/7(1) gauge field.
In covariant gauge, the gauge field becomes a conformal field (9 A(z) = 0), with
the OPE 2k

Alz)A(w) = Gowp
In choosing the covariant gauge, we introduce a set of U/(1) ghosts and the BRS

operator

Qi = 5 FEOE) + FAG) (8.10)

8 QOne says that the spectral sequence of the double complex degenerates at
the F, term [24].
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where the U7(1) ghosts satisfy

() = ——

We are to consider the cohomology of @ = Q + Q’J{z)’

. k
QT - 2_?1'2}6 (TQ(Z,E) +T,4. +T,?§) + bcac-l-{ (J2 4 §A)

with the equivariance conditions
Lo |¥) = bg|E) = 0 {8.11a)

k
(72 + SA0)W) = m,|¥) =0 . (8.118)

Lian and Zuckerman considered the equivariant BRS cohomology associated to
gauging an arbibrary Lie {superjalgebra G, where the equivariance conditions
are specified by an abelign subalgebra H,. We now see that our problem is of
this form, with § = (Vir)x1i(1) and Hy = CL, & C(JF + £ 4;).

The reader may have noticed that (8.115) does not quite agree with
(2.10c)*. The modification is needed in order for H;, to be abelian. Eqn. (8.118)
reduces to {2.10¢) because, when we remove states by gauging the U/(1) rather
than by fiat, the contribution of the modes of the gauge field A_, and of J2
precisely cancel the contribution of the /(1) ghosts. For the same reason the
index of the BRS complex in the present formulation is exactly the same as
what we calculated in sect. 7.

Lian and Zuckerman proved that the eohomology of 4 vanishes for ghost
number# 1 provided that we have a freely generated §~-module. This is the
desired statement (a) of the vanishing theorem. .

Once again, we find that there can be nontrivial cohomology if the null
vectors generated by L_,’s and (J2,, + £A_ Vs vanish identically. For generic
J,m this does not happen, the modnle is indeed freely generated and the van-
ishing theorem applies. However, for j € %Z, m e %ZZ., there are Virasoro nufl
vectors which vanish identically. These are precisely the locations where we

have already seen that the free boson module has nontrivial cohomology.

® Recall that in (2.10) JO refers to J? for the present Euclidean case or J3
for the Minkowski case.
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9. Stringy symmetry

In sect. 7, we noticed that free boson representation provided a way of
realizing an isomorphism of parafermion modules 8% : D¥ DE. In this
section, we will point out some of the surprising physical consequences of that
isomorphism. Recall that since the screening operator 8+ commnutes with the
parafermions, this is really an isomorphism of representations of the parafermion
algebra. In particular, it is an isometry of the invariant metric on these modules.

The existence of such an isomorphism is rather remarkable. D and D come
from ineguivalent SL(2, R)modules. Nevertheless as parafermion modules, they
are equivalent.

Still more surprising, the isomorphism exchanges massive states (states
with nonzero “oscillator number”) along the “edge” of the representation (see
Fig. 1) with massless states (“tachyons”). In particular, if we write

(i +1 ;

we see that since [$%, Ly] = 0, 8% does not commute with the number operator.

Rather,
8N =(G+m$E=8E(j+1+m) . (9.1)

The highest (lowest) weight state of DT gets carried into the lowest (highest)
welght state of f!’lv)i, but the base of D gets carried into the edge of 5, and vice
versa. This is very different from the familiar “R — 1/R”—type symmetries
which commute with oscillator number. Perhaps this symmetry relating states
of different spin is a peculiarity of two-dimensional target spaces, but it is
worthwhile looking for other examples of this phenomenon in string theory.
Because of this “stringy” symmetry, it is perhaps redundant to include both
D and D in our list of the BRS cohomology. If we include only D, then the “cor-

respondence” with d = 1 noncritical string theory is somewhat strengthened!?.

19 Though the meaning of this correspondence is somewhat obscured, since
4, are no longer good quantum numbers. Note, however, that when we tensor
together left and right, 88 does commute with m — i, which is therefore still a
good quantum number.
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The only remaining discrepancy is that for j = (s +r —2), m = %2(s —r),
there are two states in the coset theory (one from D7, and one from D7),

whereas there 13 only one state in Liouville theory.

10. The norms of discrete states

Actually, the no-ghost theorem does not, as is commonly supposed, assert
that all states in the BRS cohomology are positive norm. Even for the covariant
quantization of the bosonic string in 26-dimensional flat space, that formulation
of the no-ghost theorerm is false! There are extra states in the BRS cohomology
which oceur only at exceptional values of the momenta. These states, a subset
of which have become known in the context of d = 1 noncritical string theory
as “discrete states” [10], do not necessarily have positive norm. In fact, as we
shall see presently, half of them have positive norm and half negative norm.

Doesn’t this apparent “violation” of the no-ghost theorem lead to some sort
of disaster? In fact, it does not. The discrete states do not lead to unphysical
poles in scattering amplitudes. Because they occur in pairs with positive and
negative norm, the residue of the would-be pole vanishes. Secondly, because
these states occur only at exceptional values of the momenta, there is no phase
space to produce them. One can obtain a consistent (if non-covariant) theory
by omitting them. This noncovariant theory is isomorphic to the light-cone
gauge.

Let us illustrate this familiar, if not widely appreciated, phenomenon by
enumerating the BRS cohomology occurring at & = 0 in the 26-dimensional
hosonic string. So as to be totally explicit, we will tensor together the holo-

morphic and antiholomorphic sectors and we will use the inner product

(Ixh 1)) = {x leoeq [ 4) . (10.1)
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We will consider states which are simultaneously in the equivariant cohomology
of @ and @ (equivariant with respect to b, and b, )L
The following table contains all of the states in the equivariant BRS coho-

mology at k& = 0:
Ghost # # States

0 1 . [0}

1 52 c;a” 110), c,a" |0}

2 678 e e &7 |0}, eie_410), e e_1]0)

3 52 cre_y6,@%4|0), eje_qe 0”(0)
4 1 e;e_jeye_10)

(10.2)
Let us first consider the states at ghost number 2. At nonzero momentum
(with k% = 0), there are 299 transverse gravitons, 276 transverse modes of the

antisymmetric tensor field, and one physical dilaton, the state
[eyera_y @y +(crey =~ 515.—1)”7‘?)

As & — 0, these become b76 of the 678 states we have found. What of the re-
maining 102 states at zero momentum? When we calculate their norms, we find
that 51 have positive norm and 51 have negative norm. There is no covariant
way of distinguishing the discrete states from the k& — 0 limit of the physical
graviton and antisymmetric tensor field states at nonzero k. Thus in a covariant
treatment we must include all of them, even though some have negative norm.
As mentioned before, these discrete states actually cancel in their contributions
to a sum over intermediate states in any scattering amplitude. Thus in a non-
covariant treatment (like light-cone gauge) it is possible to eliminate them in a

consistent way.

11 The list of discrete states at exotic ghost numbers is somewhat shorter
if, instead, we consider the cohomology of @ + (, equivariant with respect to
by — Eo- Though this is all that is physically necessary in order to have well-
defined string scattering amplitudes, we will stick to the above definition of
physical states because it is closer the chiral considerafions of the rest of this

paper.

36



The same phenomenon takes place for the states at “exotic” (# 2) ghost

numbers. The 104 states at ghost numbers 1 and 3 combine?? to form 52 positive

and 52 negative norm states. Similarly, the two states at ghost numbers 0 and
4 combine to form one positive norm and one negative norm state. Again, these
cancel in pairs in their contribution to sums over intermediate states.

We can also look at contributions to the one-loop partition sum. The
partition sum simply counts states with a factor of (—1)#***#* regardless of
their norm (which cancels out when one takes the trace). The 104 states at odd
ghost mumber cancel the contributions of the 104 extra states at even ghost
number,

The moral of this story is very simple. The precise statement of what we
require in a no-ghost theorem is nof that all states in the BRS cohomology be
positive norm. Rather, we should demand that if there are states of negative
norm, a} they should appear only at certain quantized values of the momenta
and b) they should be paired with extra positive norm states which also only
occur at those same quantized values of the momenta. All propagating states
— those which occur for continuous values of the momenta — must be positive
norm.

It should come as no surprise that, if one goes back and calculates the
norms of the discrete states in the Minkowski-signature theory found in sect. 5,
one discovers that, just as in flat space, half are positive and half nega.tivé.
Counsider the states (5.2). The inner product is off-diagonal and the linear
combinations which diagonalize the inner product are |¥+) & |[¥~}. One linear
combination is positive norm, the other is negative norm. (Exactly the same
remark holds true for the other discrete states.} But that is precisely the same
behavior we see for the discrete states in flat space. As we have seen, this is
perfectly compatible with the no-ghost theorem. The tachyon, which is the only
propagating state in the theory, is manifestly positive norm. Thus the no-ghost

theorem is true in a rather trivial way.

12 Ghost-charge conscrvation forces the inner product to be pure off-diagonal
in the basis of (10.2), pairing states of ghost charge 1 with states of ghost charge
3.
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We should note that in the Buclidean-signature theory (as is commonly
considered in d =1 noncritical strings), the discrete states can play a more
fundamental role. There, the states at ghost number 2 all have positive norm
(except, of course, the state (¢;c_; — ¢,c_1)|0}). Thus, rather than cancelling
in a sum over intermediate states, they add. Thus, in the Euclidean theory, the
discrete states cam lead to physical poles in scattering amplitudes, as has been

seen in d = 1 noncritical string theory {10].

11. Conclusions

We have found all possible physical states allowed by the representation
theory of the algebra of parafermion currents defining the SL(2,R)/U(1) and
SL{2,R)/50(1,1) coset models. The no-ghost theorem is satisfied for the
Minkowskian (SL(2,R)/S0(1,1)) coset, albeit in a rather siruple way, The
actual spectrum of the theory could be smaller than our hist, though it is not
easy to see how such a truncation could be consistent with modular invari-
ance. The spectrum we have found is similar, but not identical to that of
the d = 1 noneritical string theory. It is also interesting that it is not quite
what one would expect from a naive “Wick-rotation” of the Euclidean-signature
SL(2,R)/SO(2) coset model {16]. This is not surprising, given that there is
curvature in the time direction. Indeed, the relation between Fuclidean- and
Minkowski-signature quantum gravity has never been obvious, for in a general
spacetime background there is no notion of Wick-rotation. It will be interesting
to explore further the relation between the Euclidean- and Minkowski-signature
theories to see how string theory addresses this question in quantum gravity.

It would alsc be interesting to extend our analysis to even more general
nonunitary CFT’s. Roughly speaking, we expect that BRS decoupling can
take care of one time-like free boson’s worth of negative-morm states {in the
fermionic string, one time-like boson and one time-like fermion’s worth). Can
this be made precise? Just how nonunitary can a nonunitary CFT be and still

have a no-ghost theorem hold?
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