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INDETERMINACY
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1. Indeterminacy

Much of the history of game theory has been dominated by the problem of inde-
terminacy. The very search for better, more encompassing versions of rationality, as 
well as the long list of attempts to refi ne Nash equilibrium, can be seen as answers, 
or attempted solutions, to the indeterminacy that has accompanied game theory 
through its history. More recently, the experimental approach to game theory 
has attempted a more radical solution: by directly generating a stream of behav-
ioral observations, and thus controlling some crucial parameters, one hopes that 
behavioral hypotheses will be sharper, and predictions more accurate. I shall look 
at several attempts to address indeterminacy, including the shift to evolutionary 
models. However, because my goal is to establish whether rational choice models 
are inescapably doomed to produce indeterminate outcomes, I will pay much more 
attention to the experimental turn in game theory, the diffi culty it encounters, and 
the promising results obtained by more realistic models of rationality that include 
a social component. The sophisticated reader should bear with some initial review 
of familiar ideas for the sake of following the historical (and logical) thread, from 
early attempts to address indeterminacy out to novel ideas and solutions.

There are at least two kinds of indeterminacy we may want to distinguish. 
One, which I will dub epistemic indeterminacy, is something we all have to live 
with. Our knowledge of the world is limited, and the outcomes of our choices 
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usually are not deterministic; instead, any choice corresponds to several possible 
outcomes, each tied to the occurrence of a particular state of the world. Though we 
cannot predict which outcome will occur, we can assess the probability with which 
the corresponding state of the world will occur and can choose on the basis of this 
probabilistic assessment. Rational choice in this context simply means maximiz-
ing expected utility, where the subjective utility of an act is the weighted sum of 
the desirability of its consequences, and the weights are the probabilities we assess 
for each of the possible consequences. Decision theory formalizes all this: It tells 
us which strategies are rational, that is, coherent with the subject’s preferences, 
with respect to certain and uncertain outcomes, and with her beliefs about all the 
variables that are relevant to choice but that she cannot control.

Though we live with epistemic indeterminacy, some form of predictability in 
the context of individual decision making is still possible. By predictability I mean 
the ability of a third party to predict what sort of action an individual will take. 
For example, suppose there are reliable statistical data available and we know our 
subject knows them, we know his preferences, and have every reason to believe he 
is both practically and epistemically rational.1 In this case, we can in fact predict 
what this person will choose. The prediction becomes a little more complicated in 
case there are no objective probabilities to rely on, but suppose again that we hap-
pen to know a person’s subjective probabilistic assessments. In this case, provided 
again that we know that person’s preferences and have every reason to believe 
such individual is both practically and epistemically rational, we can predict his 
choice.2

This simple model of rational choice has been criticized as too abstract and 
demanding: on one end, the amount of knowledge required for third-party pre-
dictability is quite extreme, and on the other end, the decision maker is often 
unable to even imagine all the possible consequences of her actions, calculate the 
probabilities, maximize as the rationality recipe recommends, and so on. What 
I want to stress here, however, is not our obvious condition as cognitive misers. 
Instead, I want to draw attention to the fact that, even if we were perfect cognitive 
machines and/or perfect predictors, there are contexts in which rationality may 
not help us make a choice or predict what another’s choice will be. Such contexts 
are very common; whenever we interact with other individuals and the outcome of 
such interaction depends upon the joint actions of all the parties, we face strategic 
indeterminacy.

To act rationally in a strategic context is much more diffi cult because the con-
sequences of an action depend upon what all the parties involved do. That is, out-
comes are jointly determined by the parties’ independent actions. The interactive 
decision problem of an agent can be represented in general terms as follows: The 
agent will choose a plan of action considering that the consequences of his/her 
choice also depend on a combination of unknown and uncontrollable variables, 
including other agents’ plans of action. Rephrasing the problem in terms of deci-
sion theory, we may say that the agent is rational if she maximizes her expected 
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utility, calculated by assigning subjective probabilities to the possible values of 
all the relevant variables she cannot control, and taking into account her pres-
ent information. The fundamental difference between decision theory and game 
theory is that the latter tries to explain subjective beliefs using strategic reasoning.

For example, think of a two-player bargaining game in which player I moves 
fi rst, and can sell to player II a good for a low price ($1) or a high price ($2). Player 
II can accept (yes) or reject (no) I’s proposal; if II rejects, both get 0 (Figure 6.1). I’s 
problem is one of maximizing expected utility (in this case, expressed in terms of 
money), given what he knows (or believes) about II’s knowledge, preferences, and 
beliefs.

Note that how much information is possessed by the players is crucial in deter-
mining the outcome, and our knowledge of such information is equally critical in 
determining the possibility of predicting what the players will do. Suppose that the 
rules of the game and players’ rationality are common knowledge.3 If II is known 
to be rational, then I can infer that II will refuse if the price is greater than y, and 
accept if the price is lower than y. However, without knowing the value of y, player 
I would still be unable to predict II’s response to his offer. If we also assume that 
payoffs are common knowledge, then I would know the value of y, predict how II 
will react to each offer, and choose accordingly.4 In our case, if I knows that y > 2, 
then he expects II to accept both prices. If instead I knows that 1< y< 2, then he 
expects II to accept only the low price.

Notice that I’s subjective beliefs about player II’s choices are endogenous. He 
infers them from his knowledge of the structure of the game, of player II’s pay-
offs and rationality. In sum, in a strategic context, what is rational for a player to 
do depends upon what he expects other players will do, which in turn is inferred 
from the knowledge that a player has about other players and the structure of the 
game. Each party to a strategic interaction is at the same time a chooser and a predic-
tor of other parties’ choices. In this case, epistemic and strategic indeterminacy are 
entwined.
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2. Nash Predictions

An easy solution to the problem of strategic indeterminacy would be to collapse 
it into epistemic indeterminacy: if players’ subjective beliefs were treated as exog-
enous to the game, other players’ choice profi les would become states of the world 
that have a given probability of occurring, and one might just try to maximize 
expected utility with respect to those states, bypassing the fact that such states are 
determined by what other players believe their counterparts are going to choose. 
Is this an interesting solution to strategic indeterminacy? Not if we think that the 
notion of Nash equilibrium is important.

Nash equilibrium (Nash 1951) is the standard solution concept for noncoop-
erative games. Informally, a Nash equilibrium specifi es players’ actions and beliefs 
such that (a) each player’s action is optimal given his beliefs about other players’ 
choices; (b) players’ beliefs are correct. Thus, an outcome that is not a Nash equi-
librium requires either that a player chooses a suboptimal strategy, or that some 
players misperceive the situation. More formally, a Nash equilibrium is a vector of 
strategies (σ

1
*,. .,σ

n
*), one for each of the n players in the game, such that each. σi

* 
is optimal given (or is a best reply to) σ

−i
*.5

Nash equilibrium is an appealing solution concept for noncooperative games 
for several reasons.6 It captures an important feature of individual rationality, that 
is, that being rational means maximizing one’s expected utility under the con-
straint represented by what one expects other individuals to choose. It is supported 
by correct beliefs, in the sense that, if players are in equilibrium, their beliefs about 
each other’s strategy choice are correct. Finally, the concept of Nash equilibrium 
depicts the idea of a self-enforcing agreement. Were players to agree in preplay 
negotiation to play a particular strategy combination, they would have an incen-
tive to stick to the agreement only in case the agreed upon combination is a Nash 
equilibrium. There are many real-life situations in which there is no third party 
available to monitor and enforce compliance with an agreement: many transac-
tions are conducted with a handshake in the expectation that the parties will fulfi ll 
their promises. Indeed, when this happens it means that it is in the parties’ interest 
to fulfi ll the terms of the agreement, that there is no incentive to unilaterally devi-
ate from it. It means, in other words, that the agreement is a Nash equilibrium.

Game theorists typically assign a predictive value to Nash equilibrium. In a 
well-known passage of their book, Theory of Games and Economic Behavior (1944), 
von Neumann and Morgenstern said that rational players who know (i) all there 
is to know about the structure of the game they are playing, (ii) all there is to 
know about the beliefs and motives of the other players, (iii) that every player is 
rational, (iv) that every player knows (i)–(iii), (v) that every players knows (i)–(iv), 
and so on, will be able to infer the optimal strategy for every player. In that case, 
each player will behave rationally by maximizing his expected utility conditional 
on what he expects the others to do. This states what could be rightly called the 
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 central dogma of game theory: that rational players will always jointly maximize 
their expected utilities, or play a Nash equilibrium.

Ken Binmore (1987/1988) has argued that there are two possible interpretations 
of Nash equilibrium. According to the evolutive interpretation, a Nash equilibrium 
is an observed regularity. Players know the equilibrium, and test the rationality of 
their behavior given this knowledge acquired from experience. The players (and 
the game theorist) can accordingly predict that a given equilibrium will be played, 
since they are accustomed to coordinate upon that equilibrium and expect (cor-
rectly) others to do the same. According to the more commonly adopted eductive 
interpretation, instead, a game is a unique event. In this case it makes sense to ask 
whether players can deduce what others will do from the information available 
to them. The players (and the game theorist) can predict that an equilibrium will 
be played just in case they have enough information to infer players’ choices. The 
standard assumptions game theorists make about players’ rationality and knowl-
edge should in principle be suffi cient to guarantee that an equilibrium will obtain. 
The customary assumptions are:

C(SG + PF). The structure of the game (SG) and players’ preferences (PF) 
are common knowledge among the players;

C(Rat). The players are rational (Rat) and this is common knowledge.

When a game has a unique Nash equilibrium, we can predict that it will be played 
if we are able to show that players, armed with common knowledge of rationality 
and of the structure of the game, will infer the Nash solution. If players have domi-
nated strategies, C(Rat) entails that they will eliminate them, and this is common 
knowledge (we assume that the consequences of C(SG + PF) and C(Rat) are com-
mon knowledge, too). Often, after we have eliminated strictly dominated strate-
gies for one player, we may fi nd that there are now strictly dominated strategies 
for another player, which will be eliminated as well. This process of successive 
elimination can continue until there are no more strictly dominated strategies left. 
If a unique strategy remains for each player, we say the game has been solved by 
iterated dominance. It is easy to prove that a strategy profi le thus obtained is a Nash 
equilibrium (Bicchieri 1993).

Common knowledge of rationality, preferences, and strategies may thus 
facilitate the task of predicting an opponent’s strategy but, as I argued elsewhere 
(Bicchieri 1993), it does not guarantee that the resulting prediction will be correct. 
This is because the concept of Nash equilibrium embodies a notion of individual 
rationality, since each player’s equilibrium strategy is a best reply to the oppo-
nents’ strategies, but, unfortunately, it does not specify how players come to form 
the beliefs about each other’s strategies that support equilibrium play. Beliefs, that 
is, can be internally consistent but fail to achieve the interpersonal consistency 
that guarantees that an equilibrium will be attained. Bernheim (1984) and Pearce 
(1984) have argued that assuming players’ rationality (and common knowledge 
thereof) can only guarantee that a strategy will be rationalizable, in the sense of 
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being  supported by internally consistent beliefs about other players’ choices and 
beliefs. Yet a combination of rationalizable strategies may not constitute a Nash 
equilibrium. On the other hand, the fact that a Nash equilibrium is always a com-
bination of rationalizable strategies is of no help in predicting it will be played.

Consider for a moment the normal form representation of the Figure 6.1 
game:

I am assuming here that I knows II’s payoffs, and that y=3. Player II has four 
strategies: always accept (yy), always reject (nn), accept if $1, reject if $2 (yn), and 
reject if $1 and accept if $2 (ny). For player II, nn is strictly dominated by yy, so C 
(Rat) allows I to exclude it (and II knows it). However, all three other strategies 
of player II are rationalizable, as well as the two strategies of player I. Moreover, 
there are three pure strategy Nash equilibria of this game: (2,yy), (1,yn) and (2, ny), 
and no way to predict, by C(Rat) and C(SG+PF), which of them, if any, will be 
played.

The refi nements of Nash equilibrium program are precisely attempts to elim-
inate some equilibria as being unreasonable. If we consider again the extensive 
form game of Figure 6.1, we can imagine player II threatening to reject if I asks a 
high price. This threat is embedded in the equilibrium (1,yn), but is it a credible 
threat? Player I knows that y=3 and that II is rational, hence I knows that, faced 
with a choice between 0 and 1, II will always choose 1, that is, will always accept 
the high price. Thus the (1,yn) equilibrium should be eliminated as unreasonable. 
In this case, we have applied the simplest refi nement of subgame perfection. Briefl y, 
a Nash equilibrium s* is perfect if it remains an equilibrium in every proper sub-
game of the original game G. In our simple example, we can calculate the fi nal 
result by backward induction: We take the subgames starting at II’s decision node 
and look at the optimal choice for player II. If y=3, the optimal choice for II is to 
accept at both subgames. Knowing that, player I will always choose to set a high 
price. Another way to look at the same problem is to perturb the game by assuming 
that every strategy has a very small probability of being chosen (Selten 1975). So in 

I
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yy yn ny nn 

1, 2 1, 2 0, 0 0, 0

2, 1 0, 0 2, 1 0, 0

II

Figure 6.2. 
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the equilibrium (1,yn) player II is indifferent between yy and yn simply because II 
is certain that I will choose 1, the low price. However, if there is a small probability 
that I, by mistake, chooses the high price, then yy gives II a higher utility than yn.

The problem with the refi nements literature is that it lacks a coherent interpre-
tation of deviations from equilibrium play (Bicchieri 1988, 1993). A deviation may 
be a mistake, but it may also be a signal. There is no general model of belief revision 
that would include different refi nements as special cases of some general, substan-
tive criterion of belief change. Moreover, in order to predict a specifi c equilibrium 
outcome, it must be assumed that players share (and have common knowledge that 
they share) the same reasonable principles. Multiplicity of equilibria only aggra-
vates a problem already present in cases in which the equilibrium is unique: the 
equilibrium depends on parameters that are not known to an external observer 
trying to predict the outcome of the game. Note that, in this case, the players them-
selves are external observers of their interactive environment who have to guess 
what their opponents will do, which in turn depends upon the opponents’ expec-
tations about other players’ choices, and so on.

3. Evolution and Learning

One way to solve strategic indeterminacy is to think in terms of evolution. 
Evolutionary models describe aggregate dynamics, without explaining in great 
detail how such dynamics are generated by individual behaviors. In fact, individu-
als in such models are often represented as strategy bearers whose choices are fi xed 
or, when they have the possibility of shifting strategies, such shifts are not deter-
mined by what they expect others to do but rather by how well they have done in 
the past. In such models, a Nash equilibrium is no longer interpreted as a unique 
event; it is instead conceived as an observed regularity, about which we want to 
know how it was reached and what accounts for its stability. When multiple equi-
libria are possible, we want to know why players converged to one in particular and 
then stayed there. In this case, the selection process is not the result of complicated, 
multistage reasoning; it simply results from some form of natural selection.

Evolutionary theories are inspired by population biology (e.g., Maynard Smith 
& Price 1973). These theories dispense with the notion of the decision maker, as 
well as with best responses/optimization, and use in their place a natural selection, 
survival-of-the-fi ttest process together with mutations to model the frequencies 
with which various strategies are represented in the population over time. In a 
typical evolutionary model, players are preprogrammed for certain strategies, and 
are randomly matched with other players in pairwise repeated encounters. The 
relative frequency of a strategy in a population is simply the proportion of players 
in that population who adopt it. The theory focuses on how the strategy profi les 
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of populations of such agents evolve over time, given that the outcomes of current 
games determine the frequency of different strategies in the future. As an example, 
consider the symmetric game in Figure 6.3 and suppose that there are only two 
possible behavioral types: hawks and doves.

A hawk always fi ghts and escalates contests until it wins or is badly hurt. 
A dove sticks to displays and retreats if the opponent escalates the confl ict; if it 
fi ghts with another dove, they will settle the contest after a long time. Payoffs are 
expected changes in fi tness due to the outcome of the game. Fitness here means 
just reproductive success (e.g., the expected number of offspring per time unit). 
Suppose injury has a payoff in terms of loss of fi tness equal to C, and victory cor-
responds to a gain in fi tness B. If hawk meets hawk, or dove meets dove, each has 
a 50% chance of victory. If a dove meets another dove, the winner gets B and the 
loser gets nothing, so the average increase in fi tness for a dove meeting another 
dove is B/2. A dove meeting a hawk retreats, so her fi tness is unchanged, whereas 
the hawk gets a gain in fi tness B. If a hawk meets another hawk, they escalate until 
one wins. The winner has a fi tness gain B, the loser a fi tness loss C. So the average 
increase in fi tness is (B-C)/2. The latter payoff is negative, since we assume the cost 
of injury is greater than the gain in fi tness obtained by winning the contest. We 
assume that players will be randomly paired in repeated encounters, and in each 
encounter they will play the stage game of Figure 6.3.

If the population were to consist predominantly of hawks, selection would 
favor the few doves, since hawks would meet mostly hawks and end up fi ghting 
with an average loss in fi tness of (B-C)/2, and 0 > (B-C/2). In a population domi-
nated by doves, hawks would spread, since every time they meet a dove (which 
would be most of the time) they would have a fi tness gain of B, whereas doves on 
average would only get B/2.

Maynard Smith interpreted evolutionary games as something that goes on at 
the phenotypic level. The fi tness of a phenotype depends on its frequency in the 
population. A strategy is a phenotype, and a player is just an instance of such a 
behavioral phenotype. In our example, we have only two behavioral phenotypes: 
hawks and doves. Evolutionary game theory wants to know how strategies do on 
average when games are played repeatedly between individuals who are randomly 
drawn from a large population. The average payoff to a strategy depends on the 
composition of the population, so a strategy may do very well (in term of fi tness) in 
one environment and poorly in another. If the frequency of hawks in the popula-
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B B-C/2

Figure 6.3. 
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tion is q and that of doves correspondingly (1-q), the average increase in fi tness for 
the hawks will be q(B-C)/2+(1-q)B, and (1-q)B/2 for the doves. The average payoff 
of a strategy in a given environment determines its future frequency in the popu-
lation. Strategies that, on average, earn high payoffs in the current environment 
are assumed to increase in frequency, and strategies that, on average, earn lower 
payoffs are assumed to decrease in frequency. If the average payoffs of the different 
strategies are the same, then the composition of the population is stable. In our 
example, the average increase in fi tness for the hawks will be equal to that for the 
doves when the frequency of hawks in the population is q=B/C. At that frequency, 
the proportion of hawks and doves is stable. If the frequency of hawks is less that B/
C, then they do better than doves, and will consequently spread; if their frequency 
is larger than B/C, they will do worse than doves and will shrink.

Note that if C > B, then (B-C)/2 < 0, so the game in Figure 6.3 has two pure-
strategy Nash equilibria: (H, D) and (D, H). There is also a mixed strategy equi-
librium in which Hawk is played with probability q = B/C and Dove is played with 
probability (1-q) = C-B/C. If the game of Figure 6.3 were played by rational agents 
who choose which behavior to display, we would be at a loss in predicting their 
choices. We know that from C(SG + PF) and C(Rat) the players cannot infer that 
a particular equilibrium will be played; moreover, since there are no dominated 
strategies, all possible outcomes are rationalizable. In our hawk/dove example, 
however, players are not rational and do not choose their strategies. So if an equi-
librium is attained, it must be the outcome of some process very different from 
rational deliberation. The process at work is natural selection: High-performing 
strategies increase in frequency whereas low-performing strategies diminish in 
frequency and eventually go to zero.

The mechanism is quite simple: the bearer of a successful behavioral trait 
will have more offspring than the bearer of a less successful trait, and each of the 
descendants will display the same behavioral trait, hence the frequency increase. 
This is an extremely simplifi ed and probably wrong story of how behavioral traits 
are transmitted among humans. We have no evidence for the genetic transmission 
of behavioral traits such as altruism, selfi shness, or the tendency to escalate con-
fl icts. There is instead evidence that such traits are culturally transmitted, and a 
realistic model of how a specifi c behavioral pattern becomes dominant in a popu-
lation should, therefore, include a description of how individuals learn behavioral 
patterns and imitate those who are successful.

We have seen that in a population composed mostly of doves, hawks will thrive, 
and the opposite would occur in a population composed mainly of hawks. So, for 
example, if hawks dominate the population, a mutant displaying dove behavior 
can invade the population, since individuals bearing the dove trait will do bet-
ter than hawks. The main solution concept used in evolutionary game theory is 
the evolutionarily stable strategy (ESS) introduced by Maynard Smith and Price 
(1973). A strategy or behavioral trait is evolutionarily stable if, once it dominates 
in the population, it does strictly better than any mutant strategy, hence it cannot 
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be invaded. To formalize this concept, let me fi rst make a brief digression. In a 
symmetric game like hawk/dove, we have a fi nite set of pure strategies S and a cor-
responding set ∆ of mixed strategies. A population state is equivalent to a mixed 
strategy x Î. ∆. Note that the evolutionary model gives a natural interpretation to 
mixed strategies as the proportions of certain strategies (or traits) in a popula-
tion. A state in which each individual plays a pure strategy and the proportion of 
different strategies correspond to x is called a polymorphic state. Alternatively, 
we may interpret the population state x as monomorphic, in the sense that each 
player plays the mixed strategy x. In a two-player game, being matched against a 
randomly drawn individual in population state x is equivalent to being matched 
against an individual who plays the mixed strategy x. Hence the average payoff of 
playing strategy y in population state x is equal to the expected payoff to y when 
played against the mixed strategy x, that is, u(y,x). The population average in this 
case is equal to the expected payoff of the mixed strategy x when matched against 
itself, that is, u(x,x).

In a symmetric, two-player game, x is an ESS if and only if, for all y Î. ∆ such that 
y ≠ x,

(1) u(x,x) > u(y,x)

or

(2) u(x,x) = u(y,x), and u(x,y) > u(y,y).

Condition (1) tells us that strategy x is a unique best reply against itself. If the 
bulk of the population consists of type x and a small number of mutants of type y 
enters the population, if x does better against x than y does against x, y will be less fi t 
and disappear. However, if x is a mixed strategy, we know (1) does not hold. In this 
case, for x to be an ESS, (2) must hold. If both x and y perform equally well against 
x, then y will be less fi t than x if x does better against y than y does against y.

In the hawk/dove game, neither of the two pure behavioral types is evolu-
tionarily stable, since each can be invaded by the other. We know, however, that 
a population in which there is a proportion q = B/C of hawks and (1-q) = C-B/C 
of doves is stable. This means that the type of behavior that consists in escalating 
fi ghts with probability q = B/C cannot be invaded by any other type, hence it is an 
ESS. To show that the mixed strategy x = (B/C, C-B/C) is an ESS, we have to show 
that condition (2) is satisfi ed. Indeed, u(x,y)- u(y,y) = 1/2C (B-Cq)2 is greater than 
zero for all q ≠. B/C.

An ESS is a strategy that, when it dominates the population, is a best reply 
against itself. Therefore, an evolutionarily stable strategy such as (B/C, C-B/C) is 
a Nash equilibrium. Though every ESS is a Nash equilibrium, the reverse does 
not hold; in our stage game, there are three Nash equilibria, but only the mixed 
strategy equilibrium (B/C, C-B/C) is an ESS. However, when a strategy is a unique 
best reply to itself, it is both an ESS and a strict Nash equilibrium. In this special 
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case, the reverse also holds: Every strict Nash equilibrium is an ESS. In a strict 
equilibrium, there exists no other strategy that is an alternative best reply to the 
equilibrium strategy, and this guarantees noninvadability.

The prior examples show how evolution can at least partially solve the problem 
of equilibrium selection without imposing heroic cognitive requirements on play-
ers. An ESS is, in fact, not just a Nash equilibrium but also a perfect and proper 
equilibrium (Van Damme 1987). Furthermore, an evolutionary account of how a 
Nash equilibrium is achieved provides an explanation of the dynamics of the selec-
tion process, something which the refi nement program cannot do. In the hawk/dove 
example, we have assumed that the success of a strategy depends on the outcome of 
pair-wise random matches. It is often the case that a strategy’s success depends not 
on the strategy played by a particular opponent, but on the population-wide fre-
quencies of strategies. When examining behavior in a population game, we adopt the 
concept of an evolutionarily stable state (also ESS) (Hofbauer & Sigmund 1998).

Suppose the game has N pure strategies, with an NxN symmetric expected 
payoff matrix A=(a

ij
). There is an infi nite number of players, and each player ini-

tially commits to playing exactly one of the N pure strategies. Let p be the N × 1 
vector denoting the population-wide proportion of each of the N strategies (player 
types) in the population at a given time. Let

f p a p A pi ij
j

j i( ) = =∑
denote the fi tness of strategy i and let f p Api

i
∑ =( ) .  denote the population-wide 

payoff. The population-wide weighted average fi tness value is pT Ap. We say that p̂ is 
an evolutionarily stable state if for any p ≠ p̂ in the neighborhood of p̂, we have:

p̂ Ap p ApT T>

This captures the idea that the population-wide payoff under p̂ is higher 
(locally) than for any other vector p.7

The defi nitions of evolutionarily stable strategies or states are static. To describe 
the dynamic process that leads to a certain distribution of strategies in a popula-
tion, we have models of the selection dynamics that express the growth rate of a 
strategy i in population state p as a function of i’s average payoff in p relative to the 
average payoff to other strategies in p. Evolutionarily stable state does not refer to 
a specifi c dynamic, but biologists and evolutionary game theorists frequently use 
deterministic replicator dynamics (Taylor & Jonker 1978) of the form:

( ) ( )
( ) ( )

( ) ( )
,∗ p t

p t A p t

p t Ap t
i

i i
T

+ =1

where p(t) denotes the population-wide proportions at time t, the denominator is a 
measure of average strategy fi tness in the population at t, and the numerator measures 
the fi tness of strategy i at time t. Strategies with above-average fi tness see their propor-
tions increase, and those with below-average fi tness see their proportions decrease.8
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ESS are asymptotically stable fi xed points of this replicator dynamic, though 
the converse need not be true (see, e.g., Samuelson 1997). A similar relationship 
holds between the replicator dynamic and Nash equilibria: if p̂ is a Nash equi-
librium of the symmetric NxN game with expected payoff matrix A, then p̂ is a 
stationary state of the replicator dynamic.

In evolutionary theory replication, variation and heredity are the basic assump-
tions. Any entity capable of replicating itself with differential success will be subject 
to an evolutionary process. Differential success, in turn, is related to hereditary varia-
tions. In biology, replicators are genes and in genetic evolution, variation is provided 
by random mutations and recombinations of gene sequences. Behavioral patterns can 
be replicators, too, in the sense that behavioral trait x is replicated when a gene x that 
predisposes its carriers to behave according to this pattern replicates itself. This means 
that bearers of gene x will behave in ways that make them reproductively successful, 
so that in the next generation there will be more copies of x. To the extent that behav-
ior x promotes the replication of its predisposing gene, we are correct in saying that 
the behavior is replicating itself. Individuals are just bearers of such genetic material, 
hence they are born with fi xed behavioral traits. Variation of competing strategies is 
provided by random mutations and recombinations of gene sequences.

When we think of strategies, however, we usually refer to behaviors that are 
not genetically inherited. In economic and political applications of game theory, 
actors can be fi rms, political parties, nations. Even when actors are individuals, 
their strategies have a strong cultural component. Evolutionary models can still 
be applied to explain how Nash equilibria are attained and whether they are sta-
ble, but selection mechanisms in this case work through processes of cultural 
transmission such as learning and imitation. Learning and imitation are sub-
ject to mistakes, and new strategies may enter the population either by random 
mistake or by purposeful innovation. For example, we tend to imitate successful 
individuals, where success is measured in terms of some shared values. Since it is 
usually diffi cult to point to one particular behavior as responsible for successful 
performance, what is imitated will often consist of a set of behavioral rules, and 
this in turn may generate mistakes. Payoffs in this case cannot represent fi tness 
changes, but if we give them a utility interpretation, we must provide for inter-
personal comparisons of utilities. Indeed, to imitate a more successful individual, 
one must be able to compare one’s payoffs with the payoffs of others, but tradi-
tional von Neumann-Morgenstern utilities do not allow for such comparisons.

Evolutionary games provide us with a way of explaining how agents that may 
or may not be rational and—if so—subject to severe information and calculation 
restrictions, achieve and sustain a Nash equilibrium. When there exist evolution-
arily stable strategies (or states), we know which equilibrium will obtain, with-
out the need to postulate refi nements in the way players interpret off-equilibrium 
moves. Yet we need to know much more about processes of cultural transmission, 
and to develop adequate ways to represent payoffs, so that the promise of evolu-
tionary games is actually fulfi lled.
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An alternative to a traditional evolutionary model is a learning model. By learn-
ing, we mean a mechanism by which a player’s present choice depends on previous 
experience, which in interactive environments includes the choices made by other 
players. In learning models, players may be endowed with small or large memo-
ries, and be as sophisticated as we want them to be. Some such models assume that 
players only look at past actions and outcomes, and choose more frequently those 
actions that are associated to higher payoffs. In this case, we are far from the tra-
ditional model of rational choice, and the problem of strategic indeterminacy does 
not arise. Other models, however, assume that players are also forward-looking; at 
every stage of the game, players make probabilistic conjectures on the opponents’ 
strategies, and then they maximize expected utility on the basis of such conjectures. 
Though players are usually assumed to ignore the effects that their own choices 
have on their opponents’ future choices, they are endowed with belief- revision 
capabilities and modify their conjectures on the basis of their observations of how 
the opponents have played. It can be proved that, in the long run, if a learning 
dynamics converges (and thus players’ subjective probabilistic assessments coin-
cide with the observed frequencies), the limit is a Nash equilibrium (Fudenberg & 
Levine 1998). Clearly, in any learning model, observation of other players’ choices 
is crucial. But what does a player observe? Suppose a simultaneous-move game 
is played repeatedly. After each stage game, since actions and strategies coincide, 
what a player observes are the opponents’ strategies (single uncontingent actions). 
It is worthwhile to note that in such models one need not assume complete infor-
mation or common knowledge of rationality. What is important to assume is that 
players are epistemically rational in a weak sense: their beliefs must be internally 
consistent, and belief revision is done according to Bayes rule. Strategic indetermi-
nacy seems to be resolved in that, when a successful learning process will lead the 
players to a Nash equilibrium, such equilibrium can reproduce indefi nitely, and 
thus players’ predictions about each other’s actions turn out to be accurate.

The problem with these kinds of models is that most of the interactions we 
want to represent are dynamic ones. In a dynamic game, players only observe the 
terminal nodes that are reached in that play of the game, not the parts of their 
opponents’ strategies that specify how they would have played at information sets 
in unreached parts of the tree. Thus players cannot observe their opponents’ strat-
egies, since, in this case, a strategy does not coincide with an action. Note that a 
strategy is a complete, contingent plan of action that tells a player how to behave 
in all sorts of circumstances (i.e., at every information set). In a dynamic game, it 
is impossible to tell how an opponent would have played in circumstances that did 
not occur; all that can be observed are the actions performed during the game. The 
problem here is that a conjecture can be compatible with what is observed, but it 
may be wrong. Consider again the game in Figure 6.1. Suppose player I believes, 
for whatever reason, that player II would only buy for a low price. In this case, the 
optimal choice for player I would be to ask for a low price, and if II accepts, play-
ers will be locked in the outcome (1, y). Player I will have no reason to change his 
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initial conjecture, and will never be able to know how II would have reacted to a 
higher price. In this case, the outcome (1, y) is compatible with the Nash equilib-
rium (1, yn), but yn might not be the strategy chosen by II.

What we are facing here is an interesting twist: Players can learn to correctly 
predict the outcome of the game, and thus reproduce it indefi nitely, even if they are 
wrong about each others’ strategies. In fact, players can even generate stable out-
comes that are incompatible with Nash equilibrium. Fudenberg and Levine (1998) 
did show that there are situations in which each player chooses a best reply to her 
conjecture, and that conjecture is compatible with the pattern of play she observes, 
but the self-confi rming equilibria thus obtained are not Nash equilibria.

The conclusions we can draw for strategic indeterminacy are not reassuring. 
On the one hand, we have seen that, in the context of common knowledge of SG, 
PF and Rat, strategic indeterminacy can be resolved only by endowing players with 
an unrealistic load of extra information (and common knowledge thereof). For 
example, players would have to have common knowledge of how to interpret devia-
tions from the equilibrium path, have a common understanding of how to pri-
oritize within a hierarchy of possible interpretations, have common priors about 
players’ types, and so on. Note that in this case we resolve strategic indeterminacy 
by completely eliminating epistemic indeterminacy. Only in these circumstances 
Nash predictions can be made by the theorist and the players. If instead we abandon 
full rationality and information in favor of an evolutionary approach, Nash equilib-
rium can be justifi ed as the outcome of a process of natural selection. In this case, 
we have completely bypassed the problem of strategic indeterminacy, since players 
have no need to reason to an equilibrium. Finally, learning models cast doubt on the 
possibility of predicting Nash equilibria. Limited observability of players’ actions 
may prevent convergence to a stationary state, and even with observability, dynamic 
games may converge to stable and stationary states that are not Nash equilibria.

3. Experiments

As we shall see next, the experimental approach, by controlling the rules of the 
game, the monetary payoffs, and the amount of knowledge players have about these 
parameters, seems at fi rst sight a viable solution to the problem of indeterminacy. 
Observations about players’ behavior are generated in the laboratory, where the 
experimenter can control the game description, the order of moves, players’ infor-
mation about earlier moves, the outcomes and their relation with players’ moves, 
as well as players’ knowledge of all of the above. However, since players’ preferences 
over outcomes cannot be easily controlled, the experimenter will have to make 
hypotheses about players’ preferences, and about players’ knowledge about each 
other’s preferences. Only in this case we will be able to make predictions about the 
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outcome of the game. When experimental economists started testing the predic-
tion that players converge to a Nash equilibrium, the default auxiliary hypotheses 
were that players only have selfi sh preferences over monetary outcomes, and that 
this fact is common knowledge among them. The falsifi cation of many such predic-
tions in a variety of games has led some to claim that Nash equilibrium theory has 
been falsifi ed, but all that was falsifi ed are the auxiliary hypotheses about players’ 
preferences and common knowledge thereof. The challenge now is to make new, 
better hypotheses about players’ utilities, hypotheses that are general enough to 
explain the results of a variety of experiments, and are specifi c enough to allow for 
meaningful predictions. To illustrate the diffi culties and potential pitfalls of the 
new approach, as well as the consequences for the indeterminacy problem, I shall 
now turn to a well known experimental game that has engaged both theorists and 
experimentalists in an attempt to make sense of the unexpected results.

In 1982, Guth, Schmittberger and Schwarze published a study in which they 
asked subjects to play what is now known as an Ultimatum bargaining game. Their 
goal was to test the predictions of game theory about equilibrium behavior. Their 
results instead showed that subjects consistently deviate from what game theory 
predicts. To understand what game theory predicts, and why, let us consider a typi-
cal Ultimatum game. Two people must split a fi xed amount of money M according 
to the following rules: the proposer (P) moves fi rst and offers a division of M to 
the responder (R), where the offer can range between M and zero. The responder 
has a binary choice in each case: to accept the offer or to reject it. If the offer is 
accepted, the proposer receives M-x and the responder receives x, where x is the 
offer amount. If the offer is rejected, each player receives nothing. If rationality 
(and self-interest) are common knowledge, the proposer knows that the responder 
will always accept any amount greater than zero, because Accept dominates Reject 
for any offer greater than zero. Hence proposer should offer the minimum amount 
guaranteed to be accepted, and responder will accept it. For example, if M = $10 
and the minimum available amount is 1 cent, the proposer should offer it and the 
offer should be accepted, leaving the proposer with $9.99. This is the result pre-
dicted by perfect equilibrium theory.

Experiments fi nd, however, that nobody offers 1 cent or even 1 dollar. Note 
that such experiments are always one-shot and anonymous. That is, subjects play 
the game only once with an anonymous partner and are guaranteed that their 
choice will not be disclosed. The absence of repetition is important to distinguish 
between generous behavior that is dictated by a rational, selfi sh calculation and 
genuine generosity. If an Ultimatum game is repeated with the same partner, or 
if a player suspects that future partners will know of her past behavior, it may be 
perfectly rational for players who are only interested in their material payoff to give 
generously, if they expect to be on the receiving side at a future time. On the other 
hand, a Receiver who might accept the minimum in a one-shot game might want 
to reject a low offer at the beginning of a repeated game, in the hope of convincing 
future proposers to offer more.
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In the United States, as well as in a number of other countries, the modal 
and median offers in one-shot experimental games are 40% to 50% of the total 
amount, and the mean offers are 30% to 40%. Offers below 20% are rejected about 
half the time.9 These results are robust with respect to variations in the amount of 
money that is being split, and cultural differences (Camerer 2003). For example, 
we know that raising the stakes from $10 to $100 does not decrease the frequency 
of rejections of low offers (those between $10 and $20), and that in experiments 
run in Slovenia, Pittsburgh, Israel, and Tokyo, the modal offers were in the range 
of 40% to 50% (Hoffman et al. 1998; Roth et al. 1991).

If we go by the default assumption that players only value their monetary out-
comes, then we must conclude that the prediction that players will choose the per-
fect equilibrium has been falsifi ed. However, as I already mentioned, what has been 
falsifi ed are the auxiliary hypotheses about players’ preferences (and their common 
knowledge of such preferences). Individuals’ behavior across games suggests that 
money is not the sole consideration, and instead there is a concern for fairness, so 
much so that subjects are prepared to punish at a cost to themselves those that behave 
in inequitable ways.10 A concern for fairness is just one example of a more general fact 
about human behavior: we are often motivated by a host of factors of which mone-
tary incentives are one, and often not the most important. When faced with different 
possible distributions, we usually care about how we fare with respect to others, how 
the distribution came about, who implemented it, and why. The variety of reasons 
we have for behaving one way or another should be incorporated into a utility func-
tion, and economists have recently started to develop richer, more complex models 
of human behavior that try to explain what we have always known: We do care about 
other people’s outcomes. Thus a better way to explain what is observed in experi-
ments is to provide a richer defi nition of rationality: People still maximize their utili-
ties, but the arguments of their utility functions include other people’s utilities.

In what follows, I will look at two possible explanations for the generous dis-
tributions we observe in Ultimatum games. There is no room here to provide a 
detailed account of how to test these explanations against some interesting varia-
tions of the game, and the reader is referred to the relevant literature.11 I want only 
to note that such testing is not always easy to conduct. The problem is that we 
still have quite rudimentary theories of how motives affect behavior. And to test 
a hypothesis about what sort of motives induce us to act one way or another, we 
have to be very specifi c in defi ning such motives, and the ways in which they infl u-
ence our choices. In the Ultimatum game, the uniformity of responders’ behavior 
suggests that people do not like being treated unfairly. That is, if subjects perceive 
an offer of 20% or 30 of the money as unfair, they may reject it to “punish” the 
greedy proposer, even at a cost to themselves.12 One possible hypothesis we may 
make is that both proposers and responders are showing a social preference for fair 
outcomes, or an aversion to inequality.13 If we make this hypothesis, we can still 
explain the experimental results with a traditional rational choice model, where 
the agents’ preferences take into account the payoffs of others.



rationality and indeterminacy  175

UNCORRECTED PROOFUNCORRECTED PROOF

In models of inequality aversion, players prefer both more money and that allo-
cations be more equal. Though there are several models of inequality aversion, per-
haps the best known and most extensively tested is the model of Fehr and Schmidt 
(1999). This model intends to capture the idea that people may be uneasy, to a certain 
extent, about the presence of inequality, even if they benefi t from the unequal distri-
bution. Given a group of L persons, the Fehr-Schmidt utility function of person i is
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where x
j
 denotes the material payoff that person j gets. α

i
 ÔÔΙÔÔÔÔΙÔÔ is a parameter 

that measures how much player i dislikes disadvantageous inequality (an “envy” 
weight), and β

i
ÔÔΙÔÔÔÔΙÔÔ measures how much i dislikes advantageous inequality (a 

“guilt” weight).14 One constraint on the parameters is that 0< β
i
ÔÔΙÔÔÔÔΙÔÔ < α

i
ÔÔΙÔÔÔÔΙÔÔ, 

which indicates that people dislike advantageous inequality less than disadvanta-
geous inequality. The other constraint is β

i
ÔÔΙÔÔÔÔΙÔÔ < 1, so that agents do not suf-

fer terrible guilt when they are in relatively good positions. For example, a player 
would prefer getting more without affecting other people’s payoff, even though 
that results in an increase of the inequality.

Applying the model to the Ultimatum game I just described, the utility func-
tion is simplifi ed to
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Obviously if the responder rejects the offer, both utility functions are equal to zero, 
that is, U
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 = 0. If the responder accepts an offer of x, the utility func-
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 = 0. Solving 
for x, we get the threshold for acceptance: x > α

2
M/(1+2α

2
ÔÔΙÔÔÔÔΙÔÔ). Evidently if 

α
2
ÔÔΙÔÔÔÔΙÔÔ is close to zero, which indicates that player 2 (R) does not care much 

about being treated unfairly, the responder will accept very mean offers. On the 
other hand, if α

2
ÔÔΙÔÔÔÔΙÔÔ is suffi ciently big, the offer has to be close to half to be 

accepted. In any event, the threshold is not higher than M/2, which means that 
hyper-fair offers (more than half) are not necessary for the sake of acceptance.

Note that for the proposer, the utility function is monotonically decreasing 
in x when x ≥ M/2. Hence a rational proposer will not offer more than half of 
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the money. Suppose x ≤ M/2; two cases are possible depending on the value of 
β

1
ÔÔΙÔÔÔÔΙÔÔ. If β

1
ÔÔΙÔÔÔÔΙÔÔ>1/2, that is, if the proposer feels suffi ciently guilty about 

treating others unfairly, the utility is monotonically increasing in x, and his best 
choice is to offer M/2. On the other hand, if β

1
ÔÔΙÔÔÔÔΙÔÔ<1/2, the utility is monotoni-

cally decreasing in x, and hence the best offer for the proposer is the minimum one 
that would be accepted, i.e. (a little bit more than) α

2
MÔÔΙÔÔÔÔΙÔÔ(1+2α

2
ÔÔΙÔÔÔÔΙÔÔ). 

Lastly, if β
1
ÔÔΙÔÔÔÔΙÔÔ=1/2, it does not matter how much the proposer offers, as long 

as it is between α
2
MÔÔΙÔÔÔÔΙÔÔ(1+2α

2
ÔÔΙÔÔÔÔΙÔÔ) and M/2. Note that the other two 

parameters, a
1
 ÔÔΙÔÔÔÔΙÔÔand β

2
ÔÔΙÔÔÔÔΙÔÔ

,
 are not identifi able in Ultimatum games.

As noted by Fehr and Schmidt, the model allows for the fact that individuals are 
heterogeneous. Different αÔÔΙÔÔÔÔΙÔÔ’s and βÔÔΙÔÔÔÔΙÔÔ’s correspond to different 
types of people. Although the utility functions are common knowledge, the exact 
values of the parameters are not. The proposers, in most cases, is not sure what type 
of responders they are facing. Along the Bayesian line, her belief about the type 
of the responder can be formally represented by a probability distribution P on 
α

2
ÔÔΙÔÔÔÔΙÔÔ and β

2
ÔÔΙÔÔÔÔΙÔÔ. When β

1
ÔÔΙÔÔÔÔΙÔÔ>1/2, the proposer’s rational 

choice does not depend on what P is. When β
1
ÔÔΙÔÔÔÔΙÔÔ<1/2, however, the pro-

poser will seek to maximize the expected utility:
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Therefore, the behavior of a rational proposer in the Ultimatum game is deter-
mined by her own type (β

1
ÔÔΙÔÔÔÔΙÔÔ) and her belief about the type of the responder. 

The experimental data suggest that for many proposers, either βÔÔΙÔÔÔÔΙÔÔ is big 
(βÔÔΙÔÔÔÔΙÔÔ>1/2), or they estimate the responder’s αÔÔΙÔÔÔÔΙÔÔ to be large. The choice 
of the responder is only determined by his type (α

2
ÔÔΙÔÔÔÔΙÔÔ) and the offer. Small 

offers are rejected by responders with a positive αÔÔΙÔÔÔÔΙÔÔ.
The positive features of the Fehr-Schmidt utility function are that it can ratio-

nalize both positive and negative outcomes, and that it can explain the observed vari-
ability in outcomes with heterogeneous types. One of the major weaknesses of their 
model, however, is that it has a consequentialist bias. Players only care about fi nal 
distributions of outcomes, not about how such distributions come about. However, 
recent experiments have established that how a situation is framed matters to an 
evaluation of outcomes, and that the same distribution can be accepted or rejected 
depending on “irrelevant” information about the players or the circumstances of 
play (Bicchieri 2006; Camerer 2003). Another diffi culty with this approach is that, 
if we assume the distribution of types to be constant in a given population, then 
we should observe, overall, the same proportion of fair outcomes in Ultimatum 
games. Not only this does not happen, but we also observe individual inconsisten-
cies in behavior across different situations in which the monetary outcomes are the 
same. If we assume that individual preferences are stable, then we would expect 
similar behaviors across Ultimatum games. If instead we conclude that preferences 
are context-dependent, then we should provide a mapping from contexts to pref-
erences that indicates in a fairly predictable way how and why a given context or 
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situation changes one’s preferences. Of course, different situations may change a 
player’s expectation about another player’s envy or guilt parameters, and we could 
thus explain why a player may change her behavior, depending on how the situation 
is framed. In the case of Fehr and Schmidt’s utility function, however, experimental 
evidence implies that a player’s own β (or α) changes value in different situations 
(Bicchieri 2006, Chapter 3). Yet nothing in their theory explains why one would feel 
consistently more or less guilty (or envious) depending on the decision context.

4. Norms and Expectations

To make clear what I mean, let us consider the results of a questionnaire distrib-
uted to 100 Carnegie Mellon undergraduate students that depicted three situations 
in which the payoffs were the same, but the descriptions of the situation signifi -
cantly differed.15

1. Imagine you must choose how to allocate $10 between yourself and person Y, 
whom you don’t know. You must allocate the money in one of two ways:

A. You and person Y both get $0
B. You get $2 and person Y gets $8

82% of the students choose B, (2, 8).

2. In this scenario, you can offer whatever you want, but Y lets you know that she 
wants to be offered more than $5. Y announces that you must offer $8 (and keep 
$2) or she will reject the offer. To prove this to you, Y takes a “commitment pill” 
that will biologically compel her to reject any offer of less than $8.

A. You keep more than $2 of the $10 for yourself and Y rejects—both you 
and Y get $0

B. You offer to keep only $2 of the $10 and Y accepts—you get $2 and Y gets $8

Only 49% of the students choose B (2, 8).

3. In this scenario, Y wants to be offered more than $5. Y lives on an island with a dif-
ferent culture, but where the people are of similar wealth to you. In Y’s culture, the “last 
mover” is perceived as the person who controls this game, and is expected to get more 
of the money. An anthropologist, who will phone your offer to Y, informs you that in 
Y’s culture, any offer less than $8 is viewed as insulting. If you do not offer the split $2, 
$8, Y will reject your offer. The anthropologist tells you that if the roles were reversed, 
Y would offer you $8. There is no anthropologist telling Y what you think is fair.

Here 63 percent of the students choose B (2, 8).
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Note that all these choices are consequentially equivalent: either both parties 
get 0, or we have a (2,8) distribution. As I argued before, most models of social pref-
erence are consequentialist, but the results I am reporting show that people assign 
a value to the process through which the outcome is obtained.16 The (2,8) outcome 
in the “commitment pill” choice is clearly less attractive; here the responder is 
rejecting potentially fair offers and, by taking the pill, has given herself an unfair 
advantage.17

In the anthropologist scenario, the responder obeys a different rule, and 
doesn’t know you don’t know it. Moreover, it is clear that the rule is symmetrical: 
Were the responder in the proposer’s role, he would just keep $2. If we consider the 
three cases, and the students’ responses, it seems that what makes the difference is 
the presence (or absence) of social norms that can be violated, and violation con-
sistently elicits a negative reaction in a majority of participants.

The fi rst case presents a simple choice. Only a person with a strong aversion 
to inequality would choose the (0, 0) outcome, and lose $2. Such people exist, but 
their number is quite small. Because there is no clear rule about how to behave, the 
(2, 8) outcome seems the obvious choice. The second case instead is one in which 
Y is patently unfair, and the majority of students choose to punish him, at a cost to 
themselves. The last case is one in which a different norm is at work, and thus the 
receiver who expects $8 is not seen as greedy or manipulative.

If a person has a strong aversion to inequitable outcomes, the number of rejec-
tions should stay the same, irrespective of the description of the situation. But the 
above examples and many experimental results show that this is not the case; most 
people are extremely sensitive to the way a situation is framed, and when fairness 
is at stake, many will choose to punish transgressions at a cost to themselves.18 
Preferences, that is, are conditional on the decision context. But what exactly maps 
a context into a specifi c interpretation that involves, among other things, expec-
tations, beliefs, and causal attributions about other people’s motives and future 
behaviors? I have argued elsewhere (Bicchieri 2006, Chapter 2) that we interpret 
any situation we are in, and especially new ones, according to scripts that represent 
stored, generic knowledge about classes of situations. We have scripts that describe 
what happens at parties, lectures, family reunions, party meetings, and so on. Such 
scripts contain roles, sequence of actions rules, beliefs and expectations regard-
ing individuals’ roles, as well as prescriptions for unexpected occurrences. Scripts 
are typically shared within a given culture, and, indeed, what is apparent from 
a variety of experiments is that individuals share a common understanding and 
interpretation of the experimental situation and the kind of behavior that is most 
appropriate in those circumstances.19 Social norms, I have argued, are embedded 
into scripts. In the typical Ultimatum game, once a fair division script is acti-
vated, players will have defi nite beliefs about what the proposer should offer, espe-
cially if they do not have any specifi c information about him. If a fairness norm is 
prompted, not only will one expect to get a fair share, but one will be ready to attri-
bute an unfair share to the greediness of the proposer, feel outraged, and retaliate.
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Since script activation involves activation of the appropriate expectations and 
beliefs, the expectations subjects have about what others do in the same situation, 
as well as about what they believe is expected of them, play an important role in 
guiding their choices. The majority of individuals do not show a consistent dis-
position to behave in a cooperative, trusting, or fair way. People do not punish 
transgressors in all circumstances, nor do they positively reciprocate in all cases in 
which reciprocation is a possible choice. Rather, individuals change their behavior 
according to the way the situation is framed, which in turn generates very differ-
ent expectations about what other individuals similarly situated would do, as well 
as beliefs about what one is expected to do in such situations. Experimental data 
show that such expectations, when elicited, are interpersonally consistent, and 
I want to argue that the social norms that generate them are key to understanding 
experimental behavior and can offer a solution to the indeterminacy problem.

My defi nition of social norm (see Appendix) is different from the traditional socio-
logical ones, in that I understand a social norm to be a behavioral rule that is supported 
by (and consists of) the empirical and normative expectations of those who abide by it. 
People, I have argued, have a conditional preference for following a norm, provided their 
expectations are met (Bicchieri 2006, Chapter 1). In an Ultimatum game, for example, 
the proposer will have an incentive to be fair if she believes the responder expects a fair 
share, and in the absence of any other information that is precisely what most propos-
ers expect. Note that I am not assuming the proposer wants or prefers to be fair, uncon-
ditionally. Surely there are such individuals, but we need not count on them to have fair 
distributions. It is enough to assume that most individuals conditionally prefer to be 
fair given that they believe that (a) others typically behave in a fair way, and (b) they are 
expected to choose a fair division. Whether their motive is fear of retaliation or just the 
recognition of others’ legitimate expectations is not relevant to the present discussion.

The norm-based utility function I introduced in (2006) can now be applied to 
the Ultimatum game. Let π

i
ÔÔΙÔÔÔÔΙÔÔ be the payoff function for player i. The norm-

based utility function of player i depends on the strategy profi le s, and is given by

U s s k s N s si i i
s L m j

m j j j m
j j

( ) ( ) max max{ ( , ( )) ( ), }= − −
− −∈ ≠ − −p p p  0

where k
i
 ≥ 0 is a constant representing i’s sensitivity to the relevant norm. Such sen-

sitivity may vary with different norms; for example, a person may be very sensitive 
to equality and much less so to equity considerations. The fi rst maximum operator 
takes care of the possibility that the norm instantiation (and violation) might be 
ambiguous in the sense that a strategy profi le instantiates a norm for several play-
ers simultaneously (as would be the case, for example, in a social dilemma with 
three players). The second maximum operator ranges over all the players other 
than the norm violator. In plain words, the discounting term (multiplied by k

i
) is 

the maximum payoff deduction resulting from all norm violations.
In the traditional Ultimatum game, the norm usually prescribes a fair amount 

the proposer ought to offer. The norm functions that represent this norm are the 
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following: N
1
 is a constant N function, and N

2
 is nowhere defi ned.20 If the responder 

rejects, the utilities of both players are zero.

U
1reject

 (x)=U
2reject

 (x)=0

Given that the proposer offers x and the responder accepts, the utilities are the 
following:

U x M x k N x

U x x k N x

accept

accept

1 1 1

2 2 2

0

0

( ) max( , )

( ) max( , )

= − − −

= − −

where N
i
 denotes the amount player i thinks he should get/offer according to some 

social norm applicable to the situation, and k
i
 is non-negative. Note that k

1
 measures 

how much player 1 dislikes to deviate from what he takes to be the norm. To obey 
a norm, sensitivity to the norm need not be high. Fear of retaliation may make a 
proposer with a low k behave according to what fairness dictates but, absent such 
risk, his disregard for the norm will lead him to be unfair. I assume here it is com-
mon knowledge that N

1
 = N

2
 = N, which is reasonable in the traditional Ultimatum 

game. Again, the responder should accept the offer if and only if U
2accept

(x) > U
2reject

 
= 0, which implies the following threshold for acceptance: x > k

2
N/(1+k

2
). Notice that 

an offer larger than the norm dictates is not necessary for the sake of acceptance.
For the proposer, the utility function is decreasing in x when x ≥ N, hence a 

rational proposer will not offer more than N. Suppose x £ N. If k
1
 >1, the utility 

function is increasing in x, which means that the best choice for the proposer is to 
offer N. If k

1
 < 1, the utility function is decreasing in x, which implies that the best 

strategy for the proposer is to offer the least amount that would result in accep-
tance, that is, a little bit more than the threshold k

2
N/(1+k

2
). If k

1
 =1, it does not 

matter how much the proposer offers, provided the offer is between k
2
N/(1+k

2
) 

and N.
It should be noted that k

1
 plays a very similar role as that of b

1
ÔÔΙÔÔÔÔΙÔÔ in the 

Fehr-Schmidt model. In fact, if we take N to be M/2 and k
1
 to be 2b

1
ÔÔΙÔÔÔÔΙÔÔ, the 

two models agree on what the proposer’s utility is. It is equally apparent that k
2
 

in this model is analogous to α
2
ÔÔΙÔÔÔÔΙÔÔ in the Fehr-Schmidt model. There is, 

however, an important difference between these parameters. The αÔÔΙÔÔÔÔΙÔÔ’s and 
βÔÔΙÔÔÔÔΙÔÔ’s in the Fehr-Schmidt model measure people’s degree of aversion toward 
inequality, which is a very different disposition than the one measured by the k‘s, 
that is, people’s sensitivity to different norms. The latter will usually be a stable 
disposition, and behavioral changes may thus be caused by changes in focus or 
in expectations. A theory of norms can explain such changes, whereas a theory of 
inequity aversion does not.

It is also the case that the proposer’s belief about the responder’s type fi gures in 
her decision when k

1
 < 1. The belief can be represented by a joint probability over k

2
 

and N
2
, if the value of N

2
 is not common knowledge. The proposer should choose 

an offer that maximizes the expected utility
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EU x P k N k x M x k N x( ) ( /( ) ) ( ( )).= + < × − − −2 2 2 1 11

If we now apply the above utility function to the questionnaire we just dis-
cussed, it is reasonable to assume that in the Ultimatum game the norm prescribes 
(5, 5) offers, and the proposer should thus never expect to keep less than 5. Her 
choice in the pill scenario is whether to induce rejection or accept $2:

U1reject ( )x =0

U1accept ( ) ( )x k= − −2 5 21

If k
1
 > 2/3, reject is the utility-maximizing choice. In the anthropologist sce-

nario instead, the conditions for obeying the (5, 5) norm fail: the responder neither 
knows the rule nor expects the proposer to follow it. Actually, the relevant norm is 
(2, 8). The discounting term drops out and it is again preferable to offer 8.

Consider once more the game in Figure 6.1. Let us suppose that it represents a 
situation in which, for whatever reason, low price is the norm. In this case, even if 
player I does not know the value of y, she knows that player II will reject an offer of 
2 for any y > 2 and k

II
 > 1.21 Player I is thus playing a Bayesian game in which player 

II can be one of different types.22 However, his prior probabilities are infl uenced by 
the norm’s existence. The norm points to the equilibrium (1, yn) and, in case the 
norm is de facto followed in the population, player I will have good reason to assess 
a high probability to k

II
 > 1. Note that assessing the k of player II is crucial even if 

I were to know the value of y. For example, if y=3 and in the absence of a norm, 
player I would most certainly choose the high price. The presence of a norm, how-
ever, drastically changes the situation, since now player I has to assess the probabil-
ity that II cares about the norm. In this case, it is better for player I to choose the 
low price, even if he personally does not care that much about following the norm. 
Expectations, in other words, are crucial to our decision to obey norms.

I said before that norms are a way to solve the indeterminacy problem, and 
I have argued elsewhere (Bicchieri 2006) that established norms are equilibria. 
However, since social norms often go against our self-interest, especially when we 
narrowly interpret self-interest as a desire for material incentives, a social norm 
need not be an equilibrium of an ordinary game in which payoffs represent self-
interested preferences. Thus, for example, a cooperative norm cannot be a Nash 
equilibrium of a Prisoner’s Dilemma (PD) game. If such a norm exists and is fol-
lowed, however, the original PD game would be transformed (at least for the norm-
followers) into the subsequent, very different game:

In the traditional PD, each player’s preference ranking is DC > CC > DD > 
CD. B in Figure 6.4 stands for best, S for second best, and so on. In the symmetric 
coordination game instead, each norm follower’s preference ranking is CC > DD 
> DC > CD.23 That is, the players who follow a cooperative norm will do it because 
their empirical and normative expectations have been met, hence they prefer to 
obey the norm. The new coordination game has two strict Nash equilibria, one of 
which is Pareto superior to the other.24, 25 When a norm of cooperation exists and is 
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obeyed, a game like the PD above is transformed into a coordination game: Players’ 
payoffs in the new game will differ from the payoffs of the original game, since 
their preferences and beliefs will be as in conditions 2, 2(a) and 2(b) or 2(b′) in the 
Appendix. Indeed, if a player knows that a cooperative norm exists and expects a 
sizeable part of the population to follow it, then, provided she also believes she is 
expected (and maybe also prefers) to follow such norm, she will have a preference 
to conform to the norm in a situation in which she has the choice to cooperate or to 
defect. Note that what I am saying implies that a social norm, unlike a convention, 
is never a solution of an original coordination game, though it is an equilibrium of 
the new, transformed game it creates.

More formally, and to further illustrate the norm-based utility function intro-
duced above, consider the PD we are discussing. The norm-based function for 
either player is defi ned at C and undefi ned at D. The utility function for player 1 is 
then the following:

U C C C C k C C C C C C

U D D D D
1 1 1 1 1 1

1 1

( , ) ( , ) ( ( , ) ( , )) ( , )

( , ) ( , )

= − − =
=
p p p p
p −− − =

= − −
k D D D D D D

U C D C D k C C
1 1 1 1

1 1 1 1 1

( ( , ) ( , )) ( , )

( , ) ( , ) ( ( , )

p p p
p p p (( , ))

( , ) ( , ) ( ( , ) ( , ))

C D

U D C D C k C C C D1 1 1 2= − −p p p2

Player 2’s utility function is similar. The game turns out to be a coordination 
game with two equilibria when U

1
(D,C) < U

1
(C,C) and U

2
(D,C) < U

2
(C,C), that 

is, when26

k
D C C C

C C C D

k
D C C C

C C

1
1 1

2 2

2
2 2

1

> −
−

> −

p p
p p
p p
p

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , )−−p1( , )C D

Otherwise it remains a PD.
It is important to note that my defi nition of social norm does not entail that 

everybody conforms. In fact, the defi nition (see Appendix) says that a social norm 
may exist and not be followed. For some, the PD in our example is never trans-

C

C

D

Coordination Game

D

Self Self

Others Others

C

C

D

S, S W, B B, B

T, T

W, T

T, W S, SB, W

PD  Game

D

Figure 6.4.
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formed into any other game. And even a person who starts playing a coordination 
game like the one described above may revert to playing the regular PD if she 
realizes that empirical expectations have been violated. Let me clarify this point 
with a simple example. Suppose an actor is faced with a fi nitely repeated PD, and 
suppose the situation is such that a cooperative norm is primed. The player knows 
there exists a cooperative norm that applies to this kind of situation. The player 
also knows that there are several types of players, some of whom would not see 
the game as he does. To make matters easy, suppose there are two types of players, 
those who simply see the game as a PD, and those that follow a cooperative norm.27 
In this case we may model the choice situation as a Bayesian game (Figure 6.5) 
in which Nature picks a player type with a given probability, so that with prior 
probability p the opponent one faces is playing a coordination game, and with 
probability (1-p) he is playing a PD. If a norm-follower assesses a suffi ciently high 
probability to being matched with a similar type, he will cooperate.28

Note that, when faced with a defection, a player will reassess his probabilities, 
and possibly revert to playing the equilibrium strategy (defect) for the traditional 
PD. Thus, one might say that the existence of a norm always presents a conditional 
follower with a Bayesian game: If the normative and empirical expectations con-
ditions are fulfi lled, she will attach a higher probability to being matched with a 
similar player type (a norm follower), and act accordingly. But she must also be 
prepared to revise her probabilistic assessment in case experience contravenes her 
previous expectations.29 Note that the existence of a social norm facilitates equi-
librium selection in the Bayesian game faced by the conditional norm’s followers. 
If the probability of being matched with a similar type is high enough, C,C is the 
selected equilibrium. Otherwise D,D will be selected.

C 

D 

D 

C 

D 

S, S W, B 

B, W T, T

PD game Coordination game 

B, B W, T

T, W S, S

1-p p 

Type 1 Type 2 
Nature 

C D C 

Figure 6.5. 
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5. Conclusions

The search for better, empirically grounded theories of how agents make deci-
sions has led experimental economists to make many new assumptions about what 
motives guide us, and to incorporate these motives in utility functions. We are a 
long way from designing utility functions that are general enough to capture the 
richness of experimental data available. A promising way to proceed is to include 
a truly social component into utility functions. An example is the introduction of 
social norms, since their existence shapes our choices through the expectations 
they generate. We can maintain a traditional rational choice model, but make 
more interesting and realistic auxiliary hypotheses about preferences and motives. 
Epistemic indeterminacy is mitigated by the existence of social norms since, as I 
have argued, norms come in packages that include beliefs, expectations, causal 
attributions, and so on. Strategic indeterminacy is mitigated, too, since the exis-
tence of a norm points to a specifi c equilibrium, allowing players to coordinate 
on it. I use the term mitigate because players still have to assess their opponents’ 
sensitivity to the relevant norm, and their choice will depend on this assessment. 
Experimental evidence, however, points to the fact that players, when a norm 
applies to the situation they are in, tend, ceteris paribus, to have quite uniform 
expectations of their opponents’ caring about it (they are expected to care) and 
act accordingly in a uniform way.30 Bringing more empirical data of this kind into 
our models is the only way I can see to solve the indeterminacy problem that has 
plagued otherwise excellent choice models for too long.

Appendix: Conditions for a Social 
Norm to Exist

Let R be a behavioral rule for situations of type S, where S can be represented as 
a mixed-motive game. R is a social norm in a population P if there exists a suffi -
ciently large subset P

cf
 # P such that, for each individual i [ P

cf
 :

Contingency: i knows that a rule R exists and applies to situations of type S;
Conditional preference: i prefers to conform to R in S on the condition that:

(a)  Empirical expectations: i believes that a suffi ciently large subset of P 
conforms to R in S;

and either

(b)  Normative expectations: i believes that a suffi ciently large subset of P 
expects i to conform to R in S;
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or

(b′)  Normative expectations with sanctions: i believes that a suffi ciently large 
subset of P expects i to conform to R in S, prefers i to conform and may 
sanction behavior.

A social norm R is followed by population P if there exists a suffi ciently large 
subset P

f
 # P

cf
 such that, for each individual i [ P

f
 , conditions 2(a) and either 2(b) 

or 2(b′) are met for i and, as a result, i prefers to conform to R in S.

NOTES

 1. By practical rationality I mean that an agent will choose that action that best 
fulfi lls her goals, given her beliefs about the situation. By epistemic rationality I refer to 
the rationality of an agent’s beliefs. This may simply mean that probabilistic beliefs obey 
the axioms of probability calculus, but it may also mean that an agent will use all the 
statistical data that are available to her (see Bicchieri 1993, Chapter 1)
 2. In fact, we can even infer a person’s utility by looking at a sequence of choices she 
made, provided we assume she is consistent. F. P Ramsey (1931) was the fi rst to show how, 
by observing a series of bets an individual is prepared to make, it is possible to infer both 
her preferences and probabilistic beliefs.
 3. An event p is common knowledge among the players if all the players know that p, 
all know that all know that p, and so on. (Lewis 1969; Aumann 1976).
 4. When players have common knowledge of the rules of the game and of their 
mutual preferences, the game is one of complete information. In our example, if I does not 
know y, or if I knows y but he does not know that II knows that, then the game is one of 
incomplete information (Harsanyi 1967–1968).
 5. Note that optimality is only conditional on a fi xed σ

−i
, not on all possible σ

−i
. A 

strategy that is a best reply to a given combination of the opponents’ strategies may fare 
poorly vis a vis another strategy combination.
 6. One important virtue of Nash equilibrium is that for games with a fi nite 
number of pure strategies and fi nitely many players, a Nash equilibrium always exists, at 
least in mixed strategies (Nash 1951).
 7. By contrast, p̂ is a symmetric Nash equilibrium if p̂T Ap̂ ≥ pT Ap̂ for all feasible p.
 8. Note that (*) is a deterministic system, which allows some strategies to become 
extinct, in the sense that pi(t) = 0 for some i,t. To prevent extinction, mutations are 
added, but a discussion of how to modify (*) to include mutations and how to interpret 
the latter would take us too far from the present topic. For an analysis of stochastic 
models, see Foster and Young (1990).
 9. Guth et al. (1982) were the fi rst to observe that the most common offer by 
proposers was to give half of the sum to the responder. The mean offer was 37 percent of 
the original allocation. In a replication of their experiments, they allowed subjects to think 
about their decision for one week. The mean offer was 32 percent of the sum, which is still 
very high.
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 10. We know that responders reject low offers even when the stakes are as high 
as three months’ earnings (Cameron 1995). Furthermore, experiments in which third 
parties have a chance to punish an unfair proposer at a monetary cost to themselves show 
that (moderately) costly punishment is frequent (Fehr & Fishbacher 2000).
 11. See Camerer (2003, Chapter 3) and Bicchieri (2006, Chapter 3).
 12. Note, again, that the experiments I am referring to were all one-shot, which 
means that the participants were fairly sure of not meeting again; therefore, punishing 
behavior cannot be motivated as an attempt to convince the other party to be more 
generous the next time around. Similarly, proposers could not be generous because they 
were expecting reciprocating behavior in future interactions.
 13. By social preference I refer to how people rank different allocations of material 
payoffs to self and others.
 14. The term max (x

j
—x

i
, 0) denotes the maximum of x

j
—x

i
 and 0; it measures the 

extent to which there is disadvantageous inequality between i and j.
 15. The questions were devised by Jason Dana and Daylian Cain, who were taking 
my course on social norms.
 16. I have extensively discussed this point in Bicchieri (2006, Chapter 3)
 17. T. Schelling (1960) presents several cases of ‘commitment strategies’ that help 
one of the parties to get the upper hand in negotiating an agreement.
 18. See, for example, Fehr et al. (2003), Dana, Weber et al (2003), Frey and Bohnet 
(1995), Hoffman, McCabe et al. (1994), Bicchieri and Chavez (2007).
 19. Bicchieri and Chavez (2007).
 20. Intuitively, N

2
 should proscribe rejection of fair (or hyperfair) offers. The 

incorporation of this consideration, however, will not make a difference in the formal 
analysis.
 21. Note that for 1<y<2, I knows II will only accept the low price.
 22. When players are uncertain as to the type of player they are facing, they will 
assess some probability that the other player is of a certain type. Typically, the list of all 
possible types and their prior probability of occurring in the population are taken to be 
common knowledge among the players (Harsanyi 1967, 1968).
 23. For a justifi cation of this ranking, see Bicchieri 2006, 16–19.
 24. In a strict Nash equilibrium each player’s strategy is a unique best reply to the 
other players’ strategies. This means that a strict Nash equilibrium cannot include weakly 
dominated strategies.
 25. A coordination game is a game in which there are at least two Nash equilibria in 
pure strategies, and players have a mutual interest in reaching one of these equilibria (CC 
or DD in our game), even if different players may prefer different equilibria (which is not 
the case in the above example).
 26. Note that U

1
(D,C) stands for the utility of player 1 when 1 plays D and 2 plays C. 

Analogously, U
2
(D,C) stands for the utility of player 2 when 1 plays C and 2 plays D.

 27. In a fi nitely repeated game, even a selfi sh’ player may want to cooperate for a while, 
if it is not common knowledge that all players are rational and selfi sh (Kreps et al. 1982). This 
consideration, however, has no bearing on my argument, since until a defection is observed a 
player cannot distinguish between a forward-thinking selfi sh type and a true cooperator.
 28. If players use an availability heuristic to come to this probability assessment, the 
probability of playing a coordination game might initially be much higher. That is, if a 
player is the type who follows a cooperative norm, that player tends to believe there is a 
high probability that others are like him or her.
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 29. Recent experiment I conducted showed that, even if subjects do not particularly 
care about a (fairness) norm, their expectations about their partner’s sensitivity to it drive 
their choices (Bicchieri & Chavez 2007). Moreover, we also discovered that subjects are very 
sensitive to what other people in their situation have done, and when there is confl ict between 
normative and empirical expectations, the latter always win (Bicchieri & Xiao 2007).
 30. Bicchieri and Chavez (2007), Bicchieri and Lev-on (2007).
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