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The Decomposition of Promotional Response:
An Empirical Generalization

Abstract

Price promotions are used extensively in marketing for one simple reason – consumers
respond. The sales increase for a brand on promotion could be due to consumers accelerating
their purchases (i.e., buying earlier than usual and/or buying more than usual) and/or con-
sumers switching their choice from other brands. Purchase acceleration and brand switching
relate to the primary demand and secondary demand effects of a promotion. Gupta (1988)
captures these effects in a single model and decomposes a brand’s total price elasticity into
these components. He reports, for the coffee product category, that the main impact of a price
promotion is on brand choice (84%), and that there is a smaller impact on purchase incidence
(14%) and stockpiling (2%). In other words, the majority of the effect of a promotion is at
the secondary level (84%) and there is a relatively small primary demand effect (16%).

This paper reports the decomposition of total price elasticity for 173 brands across 13
different product categories. On average, we find that 25% of the elasticity is due to primary
demand expansion (i.e., purchase acceleration) and 75% to secondary demand effects or brand
switching. Thus, while Gupta’s finding that the majority of promotional response stems from
brand switching is supported, the average magnitude of the effect appears to be smaller than
first thought. More important, there is ample evidence that promotions have a significant
primary demand effect.

The relative emphasis on purchase acceleration and brand switching varies systematically
across categories, and the second goal of the paper is to explain this variation as a function
of exogeneous covariates. In doing this, we recognize that promotional response is the con-
sumer’s reaction to a price promotion, and therefore develop a framework for understanding
variability in promotional response that is based on the consumer’s perspective of the benefits
from a price promotion. These benefits are posited to be a function of: (i) category-specific
factors, (ii) brand-specific factors, and (iii) consumer characteristics. The framework is for-
malized as a generalized least squares meta analysis in which the brand’s price elasticity is
the dependent variable. Several interesting results emerge from this analysis.

² Category-specific factors, brand-specific factors and consumer demographics explain
a significant amount of the variance in promotional response for a brand at both the
primary and secondary demand levels.

² Category-specific factors have greater influence on variability in promotional response
and its decomposition than do brand-specific factors.

² There are several instances where exogenous variables do not affect total elasticities
yet significantly affect individual components of total elasticity. In fact, the lack of a
significant relationship between the variables and total elasticity is often due to offsetting
effects within two or more of the three behavioral components of elasticity. This is
particularly true for brand-specific factors, which typically have no effect on total
elasticity, yet have important effects on the individual behaviors.

² There is some evidence to suggest that not all promotion-related increases in primary
demand are due to forward-buying — in some cases promotions appear to increase
consumption.



We use these results to illustrate how category- and brand-specific factors work to drive
primary and secondary demand elasticities in different directions.

In short, the paper offers an empirical generalization of a key finding on promotional
response — how elasticities decompose across brand choice, purchase incidence and stock-
piling — and new insights into factors that explain variance in promotional response. These
findings are likely to be of interest to researchers who are concerned with theory develop-
ment and the generalizability of marketing phenomena, and to managers who plan promotion
campaigns.

Key Words: Price Elasticity; Promotion; Brand Choice; Purchase Incidence; Stockpiling; Primary
Demand; Secondary Demand; Meta Analysis.



1 Introduction

Each year billions of dollars are spent on promotions for a simple reason – promotions work. In

an era of increasing competitiveness, however, it has become vital that promotions and promo-

tional response be addressed with sophistication that goes beyond the recognition that promotions

enhance sales. Prior research has documented that promotions can enhance sales by: (i) influenc-

ing sales of the category (i.e., they have primary demand effects) and thereby sales of the brand,

and/or (ii) influencing sales of the brand directly (i.e., they have secondary demand effects).1

Managers need more precise answers to the questions: Is the impact of a promotion for the

brand(s) they manage on primary demand, secondary demand, or both? If the effect is largely on

primary demand, are the sales spikes due to altered timing (purchase incidence) and/or consumer

stockpiling? If the effect is on both, what is the split between primary and secondary demand?

How do these effects of a promotion differ across brands? Across categories?

Knowledge at this level of detail would allow managers to draw better guidelines for promotion

policies, set priorities for promotional dollars, align promotional campaigns, and anticipate the

moves and counter-moves of rivals. This paper, through a careful investigation of promotional

response for a set of 173 brands across 13 categories, attempts to provide guidance to brand

managers involved in addressing these issues. The paper also provides empirical regularities for

other researchers working on promotional response.

1.1 Research on Price Promotions

There is a wide body of literature employing econometric models calibrated on scanner panel data

to evaluate market, segment or household-level reponse to promotions, across some combination

of brand choice, purchase incidence or purchase quantity behaviors. Early work demonstrating

the impact of promotions on consumer brand choices (Ehrenberg 1972; Guadagni and Little 1983)

has given way to more sophisticated models of price promotions (e.g., Neslin, Henderson and

Quelch 1985; Rossi, McCulloch and Allenby 1996; Bucklin, Gupta and Siddarth 1998). The

1Brand switching corresponds directly to secondary demand. The link between primary demand and incidence
and quantity elasticities, however, is less clear. This is because consumers may, over time choose to forward-buy or
stockpile, yet not ultimately increase consumption. Thus higher incidence and quantity elasticities are necessary but
not sufficient to indicate increases in primary demand. For ease of exposition we will relate incidence and quantity
effects to primary demand, and will return to this issue in x4.1.
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more complex models either calibrate individual-level response, and/or look at interactions in

response across behaviors. A common emphasis, however, is the focus on consumers as the unit

of analysis.

A different stream of research that attempts to understand the drivers of promotional response

across multiple brands, categories, or market conditions is seen in the work of Bolton (1989) and

others that have since followed (Raju 1992; Fader and Lodish 1990; Narasimhan, Neslin and

Sen 1996). Here, the focus is typically on a summary measure of brand elasticity as the unit of

analysis. Thus, the emphasis in past literature tends to be either on promotions as they affect

consumers, or brands, but not both.

Ironically, as pointed out by Blattberg, Briesch and Fox (1995, p.130), the field is in short sup-

ply of the general empirical regularities which frame a more integrated perspective of promotions.

In a similar vein, Narasimhan, Neslin and Sen (1996) note

“In the final analysis, ... promotional policy must be set for specific brands (their
emphasis), and more work is needed to understand how promotional elasticities vary
across brands ...”

Our work, which looks at empirical regularities in promotional response across brands and at the

same time across underlying consumer behaviors, is a step in this direction.

1.2 Research Objective and Approach

Bass (1993) describes an empirical generalization as “a pattern or regularity that repeats over

many different circumstances” and notes the important role of empirical generalization in (mar-

keting) science. This paper examines the empirical generalizability of previous research on the

decomposition of promotional response into primary and secondary demand effects (Gupta 1988;

Chiang 1991; Chintagunta 1993). These studies report that secondary demand effects (i.e., brand

switching) are the dominant consequence of price promotion.2

We begin by examining the decomposition across multiple product categories. Our objective

is to determine the extent to which the emphasis on primary and secondary effects varies across

2Our analysis takes the perspective of a manufacturer. It is for this reason that the brand switching effect reflects
change in secondary demand. From a retailer’s perspective, brand switching could reflect a primary demand effect
if it is accompanied by store switching as well.
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product categories. Second, we formalize, via meta analysis, the linkages between exogenous

category, brand and consumer covariates and the three components of a brand’s elasticity. Our

objective here is to provide a rationale for the effects of the covariates and to demonstrate that

they explain a significant amount of the variance in primary and secondary demand elasticities.

To achieve these goals, we estimate the price promotion effect on primary and secondary

demand using market basket scanner panel data from 250 households. In all, 519 price elasticities

are generated for 173 brands in 13 different product categories. Our household-level choice

model allows for dependencies across the purchase incidence, brand choice and purchase quantity

decisions within a product category and may be viewed as a variant of Chiang (1991).

To analyze variability in the elasticities, we develop a conceptual framework that captures

the consumer’s view of the characteristics of individual brands and product categories. Our

conceptualization is motivated by Bolton (1989) who notes “ ... although market characteristics

are associated with differences in price elasticities, customer tastes (i.e., the customers’ values for

the particular attributes or benefits offered by the category) seem to be important in explaining

differences in promotional price elasticities across categories.” The key premise is that variability

in brand-level price elasticities will be driven by: (1) consumer perceptions of the attractiveness

of a price promotion, conditional upon the category environment, (2) the consumer’s view of how

a price promotion on a given brand influences perceived quality-per-dollar of that brand, and (3)

the characteristics of consumers themselves.3

The unit of analysis is the brand-level elasticity as this is the metric of most interest to the

manager. We examine the extent to which variance in a brand’s choice, incidence and quantity

elasticities can be attributed to three sets of exogenous variables:

² Category Factors. Category factors influence the consumer’s budget allocation process.
In particular, they capture consumer perceptions of the assortment and economic benefits
associated with buying in a particular product category.

² Brand Factors. Brand factors capture consumer perceptions of the brand’s quality-per-
dollar. They include variables which reflect marketing effort and the brand’s position in
the marketplace.

3There is an emerging literature in marketing that examines the issue of whether price-responsiveness of consumers
is driven by the environment, consumer traits, or some combination of the two (see, for example, Ainslie and Rossi
1998). Our conceptualization and empirical results allow an additional perspective.
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² Consumer Factors. Consumer factors reflect the economic profile of the brand’s clientele.
They are summarized by the demographic characteristics of consumers who purchase the
brand.

The framework is formalized as a generalized least squares meta analysis in which the brand’s

price elasticity is the dependent variable.

1.3 A Brief Overview of the Key Findings

The substantive findings are:

1. The basic conclusion of Gupta (1988) and Chiang (1991) that the dominant effect of a
promotion is on switching (i.e., secondary demand) is valid. The magnitude, however, is
considerably lower than previously reported. That is, promotions can have a significant
impact on primary demand for a product (i.e., purchase incidence and quantity choice).

2. The magnitude of primary and secondary demand effects vary substantially across brands
and categories. Our framework built on category-, brand- and consumer-specific factors
explains a significant amount (up to 70%) of this variance in promotional response.

3. It is important to decompose total promotional response into its primary and secondary
components if one is to fully understand the effect of exogenous covariates. There are
several instances where exogenous variables do not affect total elasticity, yet significantly
affect individual components of total elasticity. In fact, the lack of a significant relationship
between the variables and total elasticity is often due to offsetting effects within two or
more of the three behavioral components of elasticity. This is particularly true for the
brand-specific factors.

4. Category-specific factors explain most of the variability in promotional response. Brand-
specific marketing variables play a modest role, and the characteristics of the brand’s core
clientele have relatively little explanatory power.

5. Promotions result in demand dynamics that vary systematically across categories and this
variance is related to the apparent effect on consumption. In particular, some categories
(e.g., bacon, potato chips, softdrinks and yogurt) show increased average purchase quan-
tities on promotion but no subsequent change in inter-purchase times, which implies that
promotions increase consumption in these cases.4 In other categories (e.g., bathroom tissue,
coffee, detergent and paper towels) stockpiling effects are more consistent with forward-
buying only (i.e., increased purchase quantities and increased inter-purchase times).

4We also test for the presence of a consumption increase by comparing, for each household the ratios of average
quantity to average inter-purchase time under promotion and non-promotion purchases (as this number is a straight
proxy for the rate of consumption) and present the results in x4.1.
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An overview of the meta analysis findings is provided by the following matrix. It highlights

how exogenous factors operate differently on the separate components of promotional response.

Entries in the matrix indicate the relative strength of the effect of the exogenous factors on each

consumer behavior.

Consumer Behavior
Secondary Demand Primary Demand

Class of Factor Brand Choice Purchase Incidence Purchase Quantity
Category Factors Strong Moderate Strong
Brand Factors Moderate Moderate Moderate
Consumer Factors Weak Weak No Effect

The finer details of these effects, along with their managerial implications, are discussed in x5.

1.4 Caveats

It is important to note the following caveats. First, while we take a theory-based approach to

developing our conceptual framework for the meta-analysis, it is not derived explicitly from the

underlying choice models. To date, no such integrated model exists in the literature, although

recent work by Lee and Staelin (1999) which seeks to develop multi-category demand systems

from consumer utility structures is a step in this direction. Our framework, however, is largely

consistent with the spirit of choice models in which consumers seek to maximize utility in the

presence of budget constraint.

Second, the unit of analysis is a single elasticity for each brand. That is, we do not explicitly

model consumer heterogeneity in choice model response parameters prior to computing the brand-

level elasticities (as in Bucklin, Gupta and Siddarth 1998). We do, however, include preference

heterogeneity and purchase event feedback in the model and allow for correlation between the

behaviors.5

Third, we do not attempt to address store switching. Clearly, the total elasticity can be defined

at a higher level of generality by including the consumer’s store selection decision (e.g., Bell and

Lattin 1998.) An integrated approach to encompass all aspects of these consumer decisions is a

5Abramson, Currim and Jones (1996) show that it is most important to account for preference heterogeneity and
purchase event feedback, and that “under-specifying ¯ heterogeneity does not result in any significant bias of the
parameters estimated” (p. 18). This view is corroborated by Ailawadi, Gedenk and Neslin (1998) who show that
inclusion of preference heterogeneity and loyalty variables may be sufficient to ensure reliable estimates.
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desirable direction for future research. Fourth, the spirit of the analysis is cross-sectional (i.e.,

across-brand and category differences in the three types of elasticity). Our model and approach

does not address dynamic or long term effects of promotions (e.g., Mela, Gupta and Lehmann

1997). We do, however, use the results of our analysis to inform the issue of whether or not

promotions increase consumption.

The remainder of the paper is organized as follows. The next section provides background

and develops the conceptual framework which motivates the exonenous variables for the meta

analysis. Section 3 describes the data and methodology and we discuss the results and their

managerial implications in x4. Section 5 concludes the paper.

2 Background and Conceptual Framework

We briefly highlight two streams in the literature on consumer response to price promotions:

(1) individual-level models of elasticity decomposition, and (2) regression-based models that

relate exogenous variables to variation in elasticities. Subsequently, we develop a framework for

conducting the meta analysis and compare and contrast this to existing work.

2.1 Elasticity Decomposition and Drivers of Elasticity

Gupta (1988) presents a model to simultaneously capture the primary and secondary demand

effects of a promotion and his results, and the subsequent work by Chiang (1991), suggest

that the majority of promotional response (upwards of 80%) is due to brand switching – that

is, secondary demand effects dominate. Bucklin, Gupta and Siddarth (1998) report an overall

primary-secondary breakdown of 58% - 42% in the yogurt category. Given these differences, the

obvious question arises: Is there a pattern to the elasticity decomposition? This issue is the focus

of the first part of this paper. The second goal of the paper is to then examine variability in the

brand-level choice, incidence and quantity elasticities themselves.

Bolton (1989) was among the first to investigate the market characteristics associated with

differences in promotional price elasticities. She developed a model that related the differences

in promotional elasticities to factors such as brand market share, manufacturer and retailer ad-

vertising levels and promotional activity at the brand and category level. Her data tracked sales
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of three brands in each of four categories across a set of twelve stores. The results indicate that

these brand and market characteristics explain a substantial amount of the variation in promo-

tional price elasticities. In particular, brands with smaller market shares, lower levels of category

and brand display activity, and higher levels of category and brand couponing are more elastic.

Interestingly, she finds that the effects of category display and feature activity on promotional

elasticities are much larger than the effects of brand prices, display and feature activity.

Fader and Lodish (1990) use IRI Marketing Factbook data from 331 product categories

to explore the relationship between category structure (e.g., purchase cycle, penetration, etc.)

and promotional movement (e.g., volume sold on price cuts, display and feature, etc.). They

report systematic relationships between category characteristics and promotional policies. For

example, high penetration, high frequency products were the most heavily promoted (although

they did not receive a disproportionate share of manufacturer couponing). Raju (1992) has a

focus similar to that of Fader and Lodish (1990) in that he explores the relationship between

category characteristics and category sales. His dependent variable is the standard deviation in

category sales over time. He finds that higher variability in category sales is associated with

deeper, albeit infrequent, dealing in the category, cheaper products and the ability of consumers

to stockpile.

Narasimhan, Neslin and Sen (1996) study the relationship between product category charac-

teristics and promotional elasticity using data from 108 product categories. They consider three

types of promotions (regular, featured and displayed price cuts) and seven category characteristics

(penetration, inter-purchase time, price, private label share, number of brands, impulse buying

and the ability to stockpile). Their measures of promotional response were generated from the IRI

InfoScan Topical Marketing Report and the category characteristics were generated from IRI’s

scanner panel data. They report that promotions get the highest response for brands in easily

stockpiled, high penetration categories with short purchase cycles. To summarize, factors which

have been found to increase elasticities are given in the following table.
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Author Factors Increasing Elasticity
Bolton (1989) Smaller market shares

Lower levels of display (brand and category)
Higher couponing (brand and category)

Fader and Lodish (1990)1 High penetration
High frequency of purchase

Raju (1992)1 Deeper, infrequent dealing
Consumer ability to stockpile

Narasimhan, Neslin and Sen (1996) High penetration
Short purchase cycles
Consumer Ability to stockpile

1 They do not study elasticities directly, however their study implies this.

2.2 This Research

Our focus on the elasticity breakdown is motivated by Gupta (1988) and by the information needs

of category managers. Our model relating variability in elasticities to exogenous brand, category

and consumer covariates is closest to Bolton (1989) and Narasimhan, Neslin and Sen (1996).

Table 1 summarizes key differences between our study and previous literature.

——————————————

[ Table 1 about here ]

——————————————

First, we choose to model elasticities using an individual-level choice framework. The ra-

tionale is that market-wide assessment of higher or lower elasticities for a brand, can be traced

back to the underlying behavior of individuals. Second, we obtain elasticity estimates across

brands and categories from the same set of household data. Thus, all purchase decisions are

subject to the same budget constraints and consumers are exposed to common store environ-

ments. Therefore, any potential cross-category substitution effects are implicitly absorbed in the

elasticity calculation. A side benefit is that typical store-level sales data are generated weekly by

different batches of consumers who happen to shop that week. In this situation, it is impossible

to know how this traffic issue affects elasticity estimates, whereas using observations from the

same panelists avoids this potentially confounding factor.

Third, as in Narasimhan, Neslin and Sen (1996) we incorporate factors that account for across-

category differences. To enhance consistency we calculate these variables directly from our panel
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data instead of using national averages. Fourth, we use an iterated GLS method (Montgomery

and Srinivasan 1996) for our meta analysis to account for potential heteroscedasticity from two

sources: measurement errors in the left-hand-side (elasticity estimates), and cross-category mod-

eling errors. This approach leads to better model fits than those found in previous work. Last,

we develop a conceptual framework that relates promotional response in the form of primary

and secondary demand effects to category, brand and consumer covariates. The variables in the

conceptual framework summarize a utility-maximizing consumer’s view of the attractiveness of

a price promotion given the brand’s category environment and the perceived status of that brand

in the category.

The “empirical generalization” contribution of the paper takes place at two levels. First, we

present findings on the decomposition or promotional elasticity. Second, we explain the variability

in promotional response by modeling the elasticities as a function of exogenous factors suggested

by our framework.

2.3 Conceptual Framework

In building the conceptual framework we rely heavily on the classic notion of a utility-maximizing

consumer operating under a budget constraint (Varian 1992) and on the prior literature discussed

above. Our rationale is that the derived elasticities come from choice models which assume

utility-maximizing consumers; the conceptual framework should also share this view. As noted

previously, the conceptual framework incorporates three broad classes of factor (category, brand

and consumer) and Table 2 lists the variables and the hypothesized effects of each. (Details of

the operational measures are given Appendix A).

——————————————

[ Table 2 about here ]

——————————————

2.3.1 Category Factors

Category Factors influence the value of the economic opportunity (as perceived by the consumer)

that price promotions offer in a particular product class. For example, a price promotion in a
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storable category might be viewed very favorably because the consumer can manage inventory

and time-shift purchases to take advantage of the promotion.

² Share of Budget. Given that all product categories on the consumer’s shopping list are
subject to the same budget constraint, we anticipate that consumers are more likely to
accelerate their purchase for items that have a higher share of budget. The hypothesis is
that consumers are likely to adjust incidence and purchase quantity to take advantage of
a promotion in this type of category. This is analogous to the idea that heavy users in
a category are likely to be the most responsive to promotions. The impact of share of
budget on secondary demand is less clear. Consumers are more likely to have well-formed
preferences for items that constitute a large share of budget. This suggests less switching.6

² Brand Assortment (breadth of variety). Narasimhan, Neslin and Sen (1996) utilize number
of brands as an independent variable in their study of promotional elasticities. They observe
a negative effect on total elasticity which they attribute to brand switching. The rationale for
this result is the presence of many brands reflects broader product differentiation. This, in
turn, protects an individual brand from “the enticement offered by a competitor’s promotion
(p 20).” Bawa, Landwehr and Krishna (1989) find that larger assortments tend to generate
higher trial for new products. Thus, we expect the primary demand effect to increase with
brand assortment.

² Size Assortment (depth of variety). Consumers should be more elastic in categories that
offer a broad variety of size assortments, because they have more options and more refined
information about the unit (Russo 1977 indicates that unit-price knowledge increases price
sensitivity). Furthermore, consumers may either buy larger sizes, or switch brands depend-
ing on the way in which unit price information is presented and/or processed. Guadagni
and Little (1983) also find that, when offered price promotions, consumers switch up to
larger sizes. Thus we expect positive primary and secondary demand effects.

² Storability. Storable products facilitate stockpiling and therefore inter-temporal purchase
displacement (Litvack, Calantone and Warshaw 1985; Raju 1992; Narasimhan, Neslin and
Sen 1996). That is, consumers can purchase at irregular intervals in response to deals,
which means they can buy more, but are not compelled to buy on any particular trip. We
therefore expect a higher overall primary demand response to promotions. The effect on
secondary demand is not as clear. If, however, the storable product is also a non-food item
(e.g., detergent) we might expect to see a positive effect on secondary demand too. This is
because consumers appear more willing to switch brands in categories where they are not
consuming the product directly, and are therefore less vulnerable to taste incompatibilities.

² Perceived Differentiation. This construct is a refinement of the brand assortment con-
structs presented earlier. Assortment is determined by the retailer – all consumers are
exposed to the same degree of assortment within a given category, but may perceive it

6Raju (1992) utilizes expensiveness in his study of sales variability. The share of budget variable here captures
similar information.
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differently. Perceptions of differentiation are based on consumer experience with differ-
ent brands. Categories where brand alternatives are perceived as highly differentiated will
be characterized by greater responsiveness in primary demand and less responsiveness in
secondary demand.

² Necessity. Narasimhan, Neslin and Sen (1996) hypothesize that promotional elasticity is
higher for categories that are characterized by a higher degree of impulse buying. The notion
is that impulse buying is an in-store response often attributable to promotional activity. We
therefore expect non-impulse (i.e., relative necessity) products to be less elastic with respect
to purchase incidence and stockpiling and hence, exhibit a lower primary demand effect.
Given that a product is a necessity and as such consumers have little flexibility to adjust
primary demand, their only outlet for saving money is via brand switching. This suggests
a higher secondary demand effect.

² Purchase Frequency. We expect to see greater switching effects for more frequently pur-
chased products, but less stockpiling (Fader and Lodish 1990).

2.3.2 Brand Factors

Brand Factors influence the consumer’s perception of how brand characteristics interact with

promotions to affect the perceived quality-per-dollar assessment for a brand. For example, a

price promotion on a market leader might be viewed more favorably than a price promotion on

a lesser brand.

² Relative Price Position. The consumer’s perspective on whether or not a given brand is a
“premium” brand will influence elasticity. Blattberg and Wisneiwski’s (1989) finding on
asymmetric switching — that premium brands draw more consumers when they promote —
implies a higher primary demand effect due to increased incidence and a higher secondary
demand effect due to increased switching.

² Price Variability. From the consumer’s perspective, relative price stability improves the
ability to distinguish between regular and promoted prices, and therefore take advantage of
price promotions by strategically accelerating purchases or switching brands. This leads
to Bolton’s (1989) suggestion that greater price variability will be associated with lower
response. Consequently, we expect greater price variability will lead to a lower primary
demand effect and lower secondary demand effect.

² Deal Frequency. More frequent dealing leads to more opportunities for the consumer to
exploit price promotions. All other things equal, however, very frequent dealing implic-
itly reduces the attractiveness of any individual deal in any time period. Prior research
shows that consumers are able to accurately detect promotion frequency (Krishna, Currim
and Shoemaker 1991). Furthermore, Thaler (1985) and Winer (1986) imply that frequent
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promotions will lead to lower reference prices. Consequently, brands with more frequent
deals should have lower elasticities.

² Deal Depth. A higher percentage discount from the base price greatly improves the quality-
per-dollar equivalent of a brand. Consequently, greater depth should be accompanied by
higher purchase acceleration (Golabi 1985; Ho, Tang and Bell 1998). Raju (1992) hypoth-
esizes that deep discounts can induce some consumers who are loyal to competing brands
to switch to the promoted brand. Hence, greater deal depth should also be associated with
a positive secondary demand effect.

² Brand Experience. A promotion on a brand that has been tried by a large fraction of
consumers, will, all else equal, have higher primary elasticities of demand, due to higher
drawing power. “Double jeopardy” suggests that these brands with high trial also experience
more frequent purchase and higher than expected repeat, and “excess” behavioral loyalty
(Fader and Schmittlein 1993). As discussed below, higher brand loyalty leads to lower
secondary demand elasticities.

² Brand Loyalty. Brands with more repeat purchasing and a more loyal franchise will be less
elastic in brand choice and more elastic with respect to purchase quantity (Krishnamurthi
and Raj 1991). This is also conjectured by Tellis (1988). We might also expect these
brands to have a higher drawing power and as such generate higher incidence elasticities.

2.3.3 Consumer Factors

Consumer Factors influence the ability or disposition of the brand’s core clientele to respond to

a price promotion. For example, a brand with a predominantly higher income clientele might see

less response to its promotions.

² Income. Brands with higher income consumers should be less sensitive to price in brand
choice (Ainslie and Rossi 1998). Conversely, they may experience stockpiling because their
consumers have more ability to take advantage of deals when the opportunity arises.

² Age. To the extent that older households should have more time available to shop and search
for deals, one could argue that they should be more elastic. Ainslie and Rossi (1998, p99)
however, find directional support for the idea that older consumers are in fact less price
sensitive, which leads us to expect lower elasticities for brands with older clienteles.

² Education. More educated consumers are expected to be more diligent in taking advantage
of price variability. Brands with a more educated clientele will see more response to their
price promotions.
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3 Methodology and Data

3.1 Choice Models and Price Elasticity

In deriving the choice models, we assume consumers (households) have a linear additive utility

function and for each product category there is a set of brands available which consumers perceive

to be substitutes. To conserve space, we simply describe the essence of the model and our

modeling decisions here, and place the details in Appendix B.

Gupta (1988) modeled the category decision using inter-purchase time. Our dataset allows

us to model the “buy/no buy” decision directly. In addition, while some authors (e.g., Bucklin,

Gupta and Siddarth 1998) have modeled quantity as a discrete variable, we adopt a continuous

formulation. We make this trade-off in order to allow for correlation between the choice and

quantity decisions (e.g., Krishnamurthi and Raj 1988).

We assume consumer i at each purchase occasion t has to decide whether to purchase,

respectively, in each of the product categories, and if so, which brand to choose and what amount

to buy. For brand choice, we assume that, conditional on purchase incidence, a brand is selected

if and only if it yields the highest indirect utility in that category. Furthermore, consumers can

forego purchasing in the category if the purchase utility threshold is not crossed.

In specifying the purchase quantity equations, we employ either a system of log-log or semi-

log demand equations in which each demand equation corresponds to a selected brand. For a

given category, we choose among alternative formulations of the purchase quantity model on the

basis of model fit. It is important to note that in integrated choice, incidence and quantity models

of this type, the quantity portion of the model typically generates the least reliable parameter

estimates and the poorest model fits of the three behavioral pieces. A poor-fitting model, may in

turn, lead to a downward bias in the estimated quantity elasticity.

Given the choice model structure just described (and laid out in Appendix B), we can derive

the exact expression for each elasticity component (see Appendix C), and it follows immediately

that the total elasticity is given by the sum of the three component elasticities: ´T = ´C +´I +´Q

(Gupta 1988). Given that our focus is on examining the elasticity differences across brands and

categories, we have to first ensure that these elasticities are indeed comparable. To establish
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consistency, we first normalize all sizes within a category by the most commonly purchased size

in that category (prices are adjusted accordingly). In this way, we ensure that all categories are

measured in their respective purchase units and eliminate any potential “magnitude” problem

in the meta analysis which follows. Once the coefficients of the model have been estimated,

the elasticities are calculated for each observation and household and then averaged over all

households.7

3.2 Meta Analysis Explanatory Model

Let debjc denote the elasticity estimate for consumer behavior b (i.e., choice, incidence or quantity)

for brand j in category c. The following equations detail our application of the Montgomery

and Srinivasan (1996) Generalized Least Squares approach to meta analysis. Their approach

is predicated on the notion that errors across observations in the meta analysis will not be

i.i.d. This intuition is relevant in our setting for the following reason. Our elasticity estimates

are generated from choice model parameter estimates that have been estimated with error (we

apply the Delta Method to derive the standard errors for the elasticity estimates), therefore the

relationship between the true and estimated elasticities is given by (where the b subscript is

dropped for ease of exposition)

cejc = ejc + ²jc; ²jc » N(0; ¾2
² ) (1)

Furthermore, the true model that relates the elasticity to exogenous factors that determine that

elasticity is

ejc = ®+
FX

f=1

KfX

k=1

¯fkXfkjc + vjc; vjc » N(0; ¾2
v) (2)

where ¾2
v is the unique variance in the true elasticity measure, f indexes the classes of exogenous

factors, and Kf the number of variables in each class of factor. We assume that the estimation

errors (equation 1) and unique errors (equation 2) are uncorrelated so that the total error is

partitioned into the sum of these two components: Ãjc = ²jc + vjc and Ãjc » N(0; ¾2
² + ¾2

v).

7Note that due to non-linearities in the elasticity expression this method is preferred to the method where one
simply inserts average values of the covariates into the analytical expression for the elasticity. See Ben-Akiva and
Lerman (1985).
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From the conceptual framework in x2 we have three sets of variables: (1) Category Factors,

(2) Brand Factors, and (3) Consumer Factors which contribute the exogenous variables for the

meta equation

cejc = ®+
K1X

k=1

¯1kX1kjc +
K2X

k=1

¯2kX2kjc +
K3X

k=1

¯3kX3kjc + Ãjc (3)

where the subscripts 1; 2 and 3 denote the three categories of exogenous variables and Ãjc denotes

the total error in the elasticity estimate. This partitioning of the meta regression error is especially

important when estimates of the left hand side variable are drawn from many studies conducted

under different conditions.8 While in this paper the elasticity estimates are developed from

the same choice models and households, the estimates do come from a wide range of product

categories. A further conceptual and practical advantage of the GLS procedure is that it allows

us to control somewhat for heterogeneity in the meta analysis model rather than in the parameters

of the underlying choice models. That is, we recognize that the brand’s elasticity estimate

follows a distribution that varies by brand and category and take this into account in performing

the meta analysis. Estimates of the coefficient vectors, and the variance partitioning are obtained

iteratively, with standard errors of the elasticities serving as GLS weights in the initial estimation.

Subsequent weights are obtained by further iteration and we find that in all cases convergence

occurs rapidly in 5-6 iterations.9

3.3 Data

Source and Description. The data were generated from a market basket database provided by

IRI. Purchase records for a random sample of 250 panelists, shopping in three supermarkets over

a period of 78 weeks were used in the analysis. The 250 panelists were chosen at random from

a total pool of 494 households. These panelists reflect the underlying demographics of the larger

pool (which, in turn, was selected by IRI to be representative of the whole market). The first 26

weeks of data were used to initialize within-household market share variables; the remaining 52

weeks were used for calibration of the choice models derived in Appendix B.

8For example, meta analyses often combine work from several different authors, conducted over many different
time periods and datasets.

9The interested reader is referred to Montgomery and Srinivasan (1996) for complete details on this iterative
scheme.
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Category Selection and Explanatory Variables. The selection of product categories for the

analysis was deliberate. We sought to include a range of categories heterogeneous on several

dimensions (e.g., share of budget, storability, etc.). Our chosen products cover 3 out of 4 PROM-

CLUS and PURCLUS groups, respectively, as defined in Fader and Lodish (1990). Table 3

presents some basic descriptive information on the product categories in the dataset.

——————————————

[ Table 3 about here ]

——————————————

4 Results

Recall that this paper has two goals: (1) to investigate variability in the elasticity percentage

decomposition across product categories, and (2) to analyze more formally, via meta analysis, the

variability in the brand-level elasticities themselves.

4.1 Elasticity Percentage Decomposition

Dispersion in Elasticities. We report the mean and variance of the brand-level elasticities for all

13 categories in Table 4.

——————————————

[ Table 4 about here ]

——————————————

Examination of the results reveals the following. First, there is considerable across category

variation in brand-level elasticities. Second, there is variation across behaviors, within a cate-

gory, but the pattern is consistent: choice elasticities are much larger than either incidence or

quantity elasticities. The choice (i.e., secondary demand) elasticities are all greater than one and

the incidence plus quantity (i.e., primary demand) elasticities are generally less than one. The

exceptions are liquid detergents, coffee and dryer softeners.

The overall pattern of results is consistent with our expectations for mature packaged goods.

That is, it seems unlikely that promotions in most of these types of categories will expand

16



primary demand, although recent empirical and analytical studies (e.g., Assuncao and Meyer

1993; Ailawadi and Neslin 1998; Ho, Tang and Bell 1998) that link consumption dynamics to

promotion response, have shown that there can be important primary demand effects even for

these types of products. We return to this issue shortly.

The Decomposition of Elasticities. Table 5 shows the percentage decomposition due to choice,

incidence and quantity for each of the 13 categories.

——————————————

[ Table 5 about here ]

——————————————

With the exception of sugar, the breakdowns for a number of categories differ from those reported

in Gupta (1988) and Chiang (1991). The choice elasticity varies from a minimum of 49% of

total elasticity for butter to a maximum of 94% for margarine; the incidence elasticity ranges

from a minimum of 1% of total elasticity for liquid detergents to a maximum of 42% for butter;

the quantity elasticity ranges from almost zero for margarine to a maximum of 45% for coffee.10

These ranges are reflected in the overall average of 75/11/14 which places less emphasis on

choice and more on quantity, relative to previous work.

Role of Storability. Further sorting of the estimates in Table 5 reveals: (1) all refrigerated

products (margarine, yogurt, ice cream, bacon and butter) have much higher proportions for the

incidence effect than for the quantity effect, and (2) all storable products (softdrinks, paper towels,

bathroom tissue, dryer softeners, liquid detergents and coffee) have just the opposite pattern. Both

observations have intuitive appeal and are consistent with the experimental findings of Litvack,

Calantone and Warshaw (1985). The result is highlighted in Table 5 where even though the

choice percentage is constant between storable and non-storable products (75% in both cases),

the quantity effects are much higher for storable products (21% versus 8%). (We discuss the two

categories – potato chips and sugar – that do not fall into these two groups, shortly.)

Role of Consumption Dynamics. Further analysis is required in order to understand whether

promotions: (a) increase consumption, (b) cause stockpiling but no consumption increase, or (c)

10Our results for the coffee category differ somewhat Gupta (1988). We attribute this to two factors: (i) we have
newer and different data, and (ii) while Gupta’s model addresses the “when” question of purchase timing, we focus
on the “whether” decision of purchase incidence.
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have no appreciable effect on either stockpiling or consumption. All three results have been

observed in the literature. For instance, Ailawadi and Neslin (1998) show that promotions lead

to increased consumption in yogurt and Krishnamurthi and Raj (1991) document stockpiling by

brand loyal consumers. Krishna, Currim, and Shoemaker (1991) show that when promotions are

very frequent, consumers do not need to stock up on deals.

To make this issue more concrete, consider the decompositions for sugar and potato chips.

Neither category is refrigerated, yet both are non-storable due to freshness considerations — the

decompositions suggest that consumers purchase more potato chips but not more sugar when

these products are on sale. Our speculation is that consumers’ buy more potato chips because

they want to consume more and this is less likely to occur with sugar. Softdrinks is another

interesting category. It is well known that softdrinks is one of the most frequently promoted

categories11, yet Table 5 shows that softdrinks have a somewhat small stockpiling effect (8%),

despite being a storable item. In addition, Lal (1990) provides a theoretical explanation for

alternating promotions by major softdrink brands (e.g., Coke and Pepsi) – this ensures that rival

store brands are effectively kept out of the market.

In order to investigate consumption dynamics in more detail, we analyzed panelist purchases

in all product categories during promotion and non-promotion. One important observation here is

that the elasticity estimates themselves are insufficient to determine whether or not consumption

increases as a result of promotion. This is because one needs a temporal analysis to uncover

this — the elasticity estimates reflect how consumers respond to price changes at given points in

time, but do not indicate how long it takes before these consumers return to the market.

To ascertain whether consumption increases were occuring we computed summary statistics

from the data. First we measured average quantities on promotion and non-promotion and also

measured average inter-purchase times subsequent to promotion and non-promotion purchases.

In addition, we computed the averages for household ratios of quantities to inter-purchase times

under both promotion and non-promotion purchases.12

11Totten and Block (1987) report that Coke promotes 41% of the time and Pepsi 47%. In our data the comparable
figures are 50% and 58%, respectively. We should also note here that it is possible that the switching effect for this
category is overstated. It is well known from the Totten and Block data and other studies, that deal-to-deal buying
for softdrinks is widespread. If it is also the case that quantities on deal-to-deal purchases are relatively unchanged,
the model will account for the large swings via the brand choice part of the model.

12This ratio is an estimate of the rate of consumption.
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The following table is based on this exploratory analysis and therefore only indicative of

presence and absence of consumption increases — a thorough examination of this issue requires

additional research.

Category Promotional Purchases Non-Promotional Purchases t-ratios
Q IP Q=IP Q IP Q=IP Quantity Time Cons.

Stockpiling Only
Bathroom Tissue (roll) 6.76 27.65 0.30 4.83 22.38 0.28 4.47 1.59 0.53
Coffee (oz) 35.71 58.84 0.80 24.76 43.75 1.19 4.45 1.67 -1.15
Detergent (oz) 132.42 77.32 2.37 82.70 48.12 2.71 4.05 2.35 -0.52
Paper Towel (roll) 2.00 45.12 0.08 1.40 34.77 0.08 4.98 1.71 0.20

Increased Consumption
Bacon (oz) 27.23 46.57 0.92 19.92 47.49 0.68 4.42 -0.12 1.47
Potato Chips (oz) 10.25 44.63 0.64 7.37 41.78 0.41 4.44 0.32 1.62
Softdrinks (oz) 240.32 45.28 9.18 135.86 45.86 6.27 5.69 -0.06 2.02
Yogurt (oz) 33.12 37.69 1.43 25.12 38.32 1.10 3.75 -0.08 1.85

“No Effect”
Butter (oz) 21.09 41.96 0.70 20.62 38.67 0.83 1.03 0.70 -1.08
Dryer Softeners (sheets) 45.83 69.50 0.88 41.24 67.63 0.81 1.02 0.15 0.42
Icecream (oz) 66.63 38.76 1.72 66.33 35.79 1.85 0.28 0.67 -0.64
Margarine (oz) 19.27 40.01 0.59 18.46 38.65 0.67 1.21 0.28 -1.10
Sugar (lb) 5.42 59.37 0.18 5.41 58.21 0.23 0.09 0.13 -0.69

In the table, Q, IP and Q=IP represent average quantities, inter-purchase times and rates of

consumption, respectively, and all three quantities are calculated for both promotion and non-

promotion purchases.

Prior to interpreting the data in this table, several facts need to be noted. First, all of the

calculations in the table have been performed conditional on a purchase having taken place. We

know, however, that consumption may increase as a result of greater consumption by a fixed

number of consumers, or, through expansion to additional consumers. Hence, we use the label

“No Effect” with some caution, and with this in mind, return to discuss the case for icecream

shortly.

Second, there are several ways to infer consumption increases from the data in the table. The

most direct would be to simply compare our estimates of the consumption rate (i.e., Q=IP ) under

promotion and non-promotion purchases. There are, however, two potential difficulties here. The

first is simply statistical – the estimates of the consumption rates are created by averaging ratios

across trips and households – and this process makes it more difficult to detect effects. The

second reason that we want to look beyond just the consumption rate estimates is substantive.

It could be the case that even though the estimates of the consumption rates are not different
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from each other, there is still some inter-temporal purchase displacement as a result of promotion.

Consider bathroom tissue. In this instance, the average consumption rates of 0.28 and 0.30 rolls

of tissue per day under promotion and non-promotion are not significantly different from each

other. Looking at the average purchase quantities and average inter-purchase times separately

does, however, provide additional information. The average purchase quantity at regular prices

is 4.83 rolls and consumers take about 22.38 days before buying again, yet when faced with

promotion, consumers buy an average of 6.76 rolls, but take much longer (27.65 days) before

purchasing again. That is, they buy significantly more, but take significantly longer before buying

again, which suggests that promotions on bathroom tissue encourage consumers to stockpile.

Beginning at the top of the table, we list four storable categories (bathroom tissue, coffee,

detergent, paper towels) that show evidence of stockpiling. In each case, average quantities are

significantly higher and average inter-purchase times significantly longer following a purchase

on promotion. The second grouping contains four categories (bacon, potato chips, softdrinks

and yogurt), which show some increase in average consumption rates across the non-promotion

and promotion conditions (for bacon p < 0:10 and for the other three categories p < 0:05 on a

one-tailed test). The probable consumption increases that result from promotions is also manifest

in the fact that average purchase quantities are significantly higher, but average inter-purchase

times are not significantly longer. It is interesting to note that the only storable category which

seems to experience increased consumption is softdrinks. We speculate that this could be due to

the extraordinarily high levels of promotion documented earlier.13

The “No Effect” group warrants one further comment. As noted above, the statistics in the

table are computed conditional upon a purchase having occurred. Thus, they are only able to

detect consumption increases for a fixed group of consumers. If, however, promotions also draw

additional consumers into the category, overall consumption may increase too. For example, while

we classify icecream in the “No Effect” category, we note from Tables 4 and 5 that icecream

has a relatively large incidence elasticity. Our calculations suggest that when icecream goes on

promotion, overall penetration for the category is up by about 2%. In a way, this implies increased

13We do not address the “reverse causality” or endogeneity issue here. That is, firms may promote more because
they realize that consumers will consume more. For an analysis of the endogeneity issue in a brand choice context,
see Villas-Boas and Winer (1997).
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consumption as more consumers are moved from “no buy” to “buy,” although it does not allow

us to say whether the average consumption for the individual consumers increases.

This final point also highlights the advantages and disadvantages of this sort of exploratory

analysis vis-a-vis model-based analysis. While the elasticity estimates do not fully capture inter-

temporal consumption changes (which must be captured in order to make statements about ulti-

mate primary demand increases), they do have the advantage of being model-driven and calculated

with everything else constant. Furthermore, they capture the inter-relationship between the three

consumer behaviors. The sample averages on the other hand provide a preliminary indication of

consumption effects, but any differences in these raw estimates could be due to a host of uncon-

trollable factors. Despite these offsetting benefits, we would expect the data-based proxies in the

table and the model-based proxies of primary demand expansion (i.e., the quantity elasticities) to

be positively correlated. For our data, the correlation between the thirteen quantity elasticities in

Table 4 and the percentage change in average quantities under promotion and non-promotion is

about 0.47.

To summarize, the results from the investigation of the elasticity decomposition reveal that the

majority of the promotion effect (75%) is due to brand switching. This proportion is smaller than

previously reported and suggests a larger than expected primary demand component. Storable

products have a proportionally greater quantity effect than do non-storables. Further examination

of this issue shows that most storables are simply stockpiled (i.e., even though promotions in-

crease average purchase quantities, inter-purchase times also increase so that there is no apparent

increase in total consumption). Blattberg, Eppen and Lieberman (1981) perform an analysis very

similar to ours and find evidence of stockpiling in aluminum foil, facial tissue, liquid detergent

and waxed paper (Tables 1 and 2, p124-25). They also derive a theoretical model to explain

conditions under which storable products are dealt in order to transfer inventory carrying costs

to the consumer. For softdrinks and some food products, promotions do appear to increase con-

sumption. Thus, our empirical findings for the yogurt category parallel those of Ailawadi and

Neslin (1998). Our more general evidence for promotions increasing consumption is consistent

with the models of Assuncao and Meyer (1993) and Ho, Tang and Bell (1998) who show that

rational consumers increase consumption when faced with promotions. As highlighted above,
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this is a very important and complex problem and will require a different type of model to fully

investigate it. Silva-Risso, Bucklin and Morrison (1999) develop a decision support system for

determining optimal promotion calendars – their model captures all three consumer decisions

(choice, incidence and quantity), and has the potential to estimate consumption effects and their

relationship to promotional effectiveness.14

4.2 Meta Analysis Results

For ease of exposition and brevity we do not focus on the effect of each and every variable on

all three consumer behaviors. Rather, we: (i) discuss the general pattern of findings as they

relate to the conceptual framework and hypotheses (Tables 1 and 2), (ii) highlight results that are

consistent with prior literature, and (iii) address some counter-intuitive findings. x4.3 expands

on the managerial implications of the framework.

4.2.1 An Overview of Main Findings

Table 6 reports the standardized GLS parameter estimates for each of the three behaviors, and

for the total elasticity.

——————————————

[ Table 6 about here ]

——————————————

The model fits are substantially higher than those found in previous work and we are better

able to explain brand choice and purchase quantity elasticities, than we are able to explain

purchase incidence elasticities. Category-specific factors are especially powerful in explaining

variability in brand-level elasticities and brand-factors somewhat less so. Consumer factors have

relatively little explanatory power. Nevertheless, we do observe two small but significant effects.

Bolton (1989) speculates that the reason for weaker effects of the brand factors (e.g., relative

price levels) is that their values tend to be similar across categories, making it difficult to detect

any effect in the regression. For example, the degree of variance in relative normalized prices in

14Their empirical application, however, used data from the tomato sauce category – a category which is unlikely
to exhibit consumption increases due to promotions.
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category A might be very similar to that in category B.15 Thus, we believe that Bolton (1989)

is correct, if one is looking only at the effects of brand-specific factors on total elasticities.

Total elasticity, however, fails to tell the full story. It is interesting to note that the number of

significant effects for the brand factors is much higher when we look at individual behaviors.

Here the number of significant brand factors (8/18) approaches one half, in constrast to 1/6 for

total elasticity.

A comparison of the hypotheses expressed in Table 2, with the empirical findings in Table 6,

yields the following.

² Hypotheses relating six of the sixteen variables (Share of Budget, Storability, Perceived
Differentiation, Necessity, Price Variability and Loyalty) to the primary and secondary
demand effects are supported. For example, brands in high share of budget categories see
less switching in response to promotions (¯C = ¡0:599 t = ¡10:93), but more stockpiling
(¯Q = 0:148, t = 2:68).

² Hypotheses relating another six of the sixteen variables (Brand Assortment, Purchase Fre-
quency, Deal Depth, Brand Experience, Age and Education) to one of the two effects (i.e.,
either primary or secondary demand) are supported. That is to say we have one finding
significant in the expected direction and the other non-significant. For example, increased
brand assortment leads to higher primary demand elasticities (¯Q = 0:583, t = 8:64), but
does not lead to the expected reduction in secondary demand elasticities (¯C = ¡0:031,
t = ¡0:45).

² We have null results for Deal Frequency16 and Income. The remaining two results for
Size Assortment and Relative Price Position are somewhat counter-intuitive and require
additional explanation. We discuss these shortly.

4.2.2 Relationship to the Literature

A total of twelve of the sixteen variables influence primary and secondary demand elasticities in

a manner consistent with our expectations and the results in prior literature. This suggests that

we have a relatively stable and internally-consistent pattern of results that are informative for

explaining variability in brand-level elasticities.

15We examined the cross-category variability in the one variable, Deal Frequency, that was non-significant for all
behaviors. A Â2 test for equality of variances across categories for this variable fails to reject the null hypothesis.

16The null result is different from Mela, Gupta and Lehmann (1997). They examine the impact of promotional
frequency on a given brand over time and find that consumer sensitivity increases. In our case, we examine deal
frequency cross-sectionally for a variety of brands and categories in a shorter time horizon. It is possible that our
null result is due to aggregation and the shorter time span.
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Although increased size assortment produces the expected positive effect on secondary demand

elasticities and a positive effect on stockpiling, it is hard to interpret the negative effect for

purchase incidence. One possible explanation is that consumer size loyalty (e.g. Guadagni and

Little 1983; Bucklin and Gupta 1992) undermines the ability of promotions to increase purchase

acceleration. We predicted that brands with a relative price premium would, on average, have

higher switching. This argument follows the Blattberg and Wisneiwski (1989) conjecture that

lower-tier buyers switch up when given the opportunity. One alternative interpretation of our

opposite result is simply that buyers of relative premium brands are less price-sensitive and that

these brands therefore have lower switching elasticities — it might be the case that these regular

premium brand buyers who are relatively price-insensitive in choice, outnumber the potential

number of buyers who trade up.

An important feature of our work is that we relate variability in elasticities to the underlying

behaviors.17 Table 6 shows seven instances in which an analysis of total elasticity reveals that

an exogenous variable has no influence, yet significant effects can be seen for one or more of the

underlying behaviors. As noted above, this is especially true for the brand-specific factors. Our

result is important because if managers simply examined total elasticities, they could be misled

into thinking their actions have no impact. For example, increased Deal Depth affects primary

demand through stockpiling (¯Q = 0:131, t = 2:81), yet no effect appears for total elasticity.

Similarly, the null result for Loyalty with respect to the total elasticity is due to the countervailing

effects on secondary (¯C = ¡0:164, t = ¡2:71) and primary demand (¯Q = 0:191, t = 3:13).

These primary and secondary effects are consistent with what one would expect given the findings

of Krishna (1992) and Krishnamurthi and Raj (1991).

4.3 Implications

The results can be used to: (i) better inform managers and researchers of general patterns in pro-

motional response, and (ii) project consequences of managerial decisions regarding promotional

activity.

We illustrate the first point in two different ways. First, note that the overall elasticities for

17Narasimhan, Nelsin and Sen (1996) develop hypotheses based on underlying consumer behaviors (e.g., brand
switching, purchase acceleration, etc.) but their data only allow analysis of effects on total elasticity.
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coffee and softdrinks reported in Table 4 are approximately equal. A more careful analysis of

the breakdown in elasticity reveals that a relatively large fraction (47%) of the coffee elasticity

is attributable to primary demand, while the analogous figure for softdrinks is only 15%. The

managerial implication is that promotions on coffee might encourage forward-buying and therefore

generate very little in the way of incremental sales. Although forward-buying does not lead to

incremental sales, it does produce desirable competitive effects — a consumer with a pantry full

of Maxwell House has little need for Folgers. On the other hand, if all promotions on softdrinks

were to do is increase switching, then the benefits of the promotion (to the manufacturer) may be

shortlived. Recall, however, that in this particular case of softdrinks, we also obtained evidence

that promotions increase consumption (see x4.1), but did not find this effect for coffee.

Second, the results allow us to make directional statements regarding how promotions are

likely to affect elasticity components for a particular brand.18 Among the exogenous factors

listed in Table 6, it is likely that the manager has immediate access to proxies for the share of

budget his category consumes, and the extent of brand loyalty. Furthermore, it is straightforward

to assess storability for the product in consideration. The following 2 X 2 X 2 table illustrates

how each of these forces push primary and secondary demand elasticities in different directions.

The entries in the table refer to the primary/secondary percentage decomposition.

High Share of Budget Low Share of Budget
High Loyalty Low Loyalty High Loyalty Low Loyalty

Storable 31/691 25/752 22/783 15/854

Non-Storable 19/815 28/726 19/817 21/798

Several comparisons are possible from this table. First, comparing cells 1 and 2 of the matrix,

we see that for high budget share, storable products, higher loyalty reduces the relative impact of

secondary demand elasticities and increases the impact of primary demand elasticities. Second,

a comparison of the breakdowns in cells 1 and 3 illustrates that high share of budget categories

will see greater primary effects. Third, a comparison of cells 1 and 5 highlights our finding that

storability leads to greater primary demand effects. Clearly, several such tables and comparisons

18In developing the example, we note that this is just one of many possible illustrations of how our framework
can be used. Our intention is not to list all in detail, but merely illustrate the usefulness of the meta analysis results.
We believe that such speculation is fruitful given the high level of agreement between the underlying results and
those from prior research, and the high meta analysis model fits.
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can be drawn out of our framework. This illustrative example shows how a manager or researcher

might use the matrix to: (1) make an educated guess as to how market conditions and other factors

influence elasticities, and (2) understand the likely reward from marketing efforts (e.g., efforts to

increase loyalty).

A final application of the framework takes a “decision support” approach. In this case, we

use explicit knowledge of the values of the exogenous variables to simulate changes in elasticity,

given certain managerial actions.

For example, assume that the brand manager for Dannon yogurt is considering a change in

promotional policy for the 8oz size. At present the brand promotes 30% of time, and offers

an average discount of 15%. The corresponding elasticity breakdown is 79%, 14% and 7%

for choice, incidence and quantity respectively. Now imagine that he considers reducing deal

frequency by 50% and at the same time increasing the deal depth by 50% over the current value.

Using the parameter estimates in Table 6, we estimate the new breakdown is closer to 63%,

24% and 13%. Thus, the increased emphasis on depth of promotion sees a shift in favor of

primary demand effects. This may be an important insight for the Dannon manager, given our

earlier finding that this category appears to experience increased consumption, and the similar

empirical result of Ailawadi and Neslin (1998). That is, the Dannon brand manager might be

better off stimulating consumers to accelerate purchase and stock up, as this leads to increased

consumption, rather than focusing as much on encouraging switching. This is especially true in

our Dannon example, where the brand already has a healthy share position. Finally, this change

in policy might also be palatable for retailers who have private label yogurt (as many do), as they

could potentially benefit from a reduction in brand switching to Dannon.19

5 Conclusion

One of the significant advances in the promotions literature was the development of a methodology

for decomposition of promotional response into primary and secondary demand components. To

date, this methodology has been applied to only two categories, so the generalizability of the

substantive finding from this work is unknown.

19We thank Dick Wittink for this insight.
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Our research has two goals. First, to document cross-category differences in the decomposition

of brand-level promotional response, and in particular, differences in the relative importance of

primary and secondary demand elasticities. Second, to formalize via meta analysis, a consumer-

based framework for understanding the impact of exogenous factors on variability in brand-level

elasticities.

The important takeaways from this research effort are:

1. Primary and Secondary Demand. We confirm that, with the exception of butter (where the

split is approximately 50/50), the largest percentage of the elasticity decomposition falls

on secondary demand, or brand switching. This is consistent with the findings of Leeflang

and Wittink (1996) who show that managers tend to overreact (relative to a normative

benchmark) to the promotional activities of competitors, thus reinforcing the switching

effects.

2. The Decomposition. The earlier breakdown of 84=14=2 appears to be an exception. Within

the spectrum of these decompositions, we find that a 75=11=14 split is about the average

across all product categories. Storability is an important moderator. We find that the

decomposition becomes 75=3=22 for storable products versus 75=17=8 for non-storable

products.

3. Elasticity Drivers. Category-specific factors are more powerful than brand-specific factors

in explaining the variability in elasticities. For example, share of budget and storability are

two category characteristics that play a large role. Share of budget decreases the switch-

ing elasticity, but increases the quantity elasticity, while storability increases both. Price

variability and deal depth are important brand-specific factors, but they have less marginal

impact. Variability decreases all three types of elasticity, whereas increased deal depth

increases the quantity elasticity. Consumer-factors (as measured in terms of demographics

alone) have relatively little impact in explaining across-brand differences in elasticities. It is

the case, however, that for a given brand, elasticity response might differ across consumers

(Bucklin, Gupta and Siddarth 1998). Furthermore, variables that describe consumer shop-

ping patterns might be more valuable in capturing price response than are demographics
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alone (e.g., Ainslie and Rossi 1998; Bell and Lattin 1998).

4. Total Versus Component Elasticities. It is insufficient to simply examine drivers of total

elasticity. In many instances a variable has no effect on total elasticity because it has

countervailing effects on primary and secondary demand elasticities. This is particularly

true in the case of brand-specific factors.

5. Promotions and Consumption. There is evidence that promotions increase consumption in

some categories (e.g., bacon, potato chips, softdrinks and yogurt). Conversely, we observe

that other categories (e.g., bathroom tissue, coffee, detergents and paper towels) experience

forward-buying, yet they see no apparent corresponding increase in consumption. As noted

in our discussion in x4.1, this is a complex issue and likely to be a very fruitful avenue for

future research.

To summarize, the words of Bass (1995) on the state of marketing knowledge are relevant to

the status of the choice literature

“... the field has matured to the point where it seems desirable to take stock of where
we are, what we have learned, and fruitful directions for extending the knowledge
base.”

We show that there are regularities in the decomposition of brand-level price elasticities and

that they can be explained by variables derived from a framework that reflects the consumer’s

view of price promotions. The empirical regularities identified in this paper should be useful to

researchers developing models of promotional response, and as an aid to managers in making

better-informed promotion allocation and execution decisions.
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A Operational Measures

² Category Factors

– Share of Budget is computed by determining total dollars spent in the category by
each panelist and then expressing this as a fraction of total grocery expenditures. The
resulting fractions are then averaged across all households.

– Brand Assortment is the total number of brand alternatives offered in the category.
– Size Assortment is the total number of size alternatives offered in the category.
– Perceived Differentiation is computed from the household-level choice data. First, we

compute the within-household market shares for each brand in the product category
under consideration. Each element of the household’s choice-share vector is then
squared and all elements are summed together.20 This measure is then weighted
across all users in the product category, to obtain a category-specific measure of the
consumers’ view of inter-brand substitutability. Higher values mean that consumers
perceive the brands in the category to be more differentiated, less substitutable.

– Storability is a dummy variable indicating whether the category is storable.
– Necessity is a dummy variable indicator of the whether or not the category is a

necessity product according to accepted IRI definitions.
– Purchase Frequency reflects likelihood that a product appears on the shopping list on

any randomly selected trip. It is the fraction of all trips and individuals who buy the
category.

² Brand Factors

– Relative Price Position. We estimate the extent to which a brand is perceived as
a premium brand in its product category by first computing brand-specific average
prices. These brand-specific prices are then normalized within the category to create
a measure that is comparable across categories.

– Price Variability is the coefficient of variation of the brand’s price. Higher values
indicate more variability.

– Deal Frequency measures the proportion of times a brand is found on deal, normalized
according to relative deal frequency in the category.

– Deal Depth gives the average percentage discount for a brand, conditional upon the
brand being on promotion. This variable is normalized with respect to category
activity.

– Brand Experience is the fraction of consumers who have tried the brand, of all those
who have bought in the category.

– Brand Loyalty is the average number of purchases of the brand, by all consumers who
purchase the brand. This variable is normalized across categories to take into account
different purchase rates of different categories.

² Consumer Factors

– Income reflects the modal income level of consumers who purchase the brand. Em-
pirically, we found the mode to be a better discriminator than the mean — this is
consistent with recent work by Dhar and Hoch (1997).

– Age. The modal age of panelists who purchase the brand.
– Education. The modal education (higher values indicate higher levels of education)

of the panelists who buy the brand.
20This calculation provides a household-specific version of the Herfindahl index and varies from 1

n
to 1, where n

is the number of choice alternatives in the category.
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B Model and Likelihood Function
For each product category, let Iit denote a dichotomous indicator so that Iit = 1 if consumer i
purchases that category at occasion t and Iit = 0 otherwise. Furthermore, let B = f1; :::; Jg
denote the set of brands so that Dijt = 1 indicates that brand j is chosen by the consumer and
Dijt = 0 otherwise. Thus,

PJ
j=1Dijt = 1 conditional on a purchase.

Following the spirit of Hanemann (1984) and Chiang (1991), the choice decisions and the
interdependence between decisions are described as follows

Qijt = Xijt¯j + ²ijt i® ¹Uijt + ´ijt > Maxf ¹Uikt + ´ikt; 8k6= jg &
¹Uijt + ´ijt > ¹Ui0t + ´i0t

0 i® ¹Ui0t + ´i0t > Maxf ¹Uikt + ´ikt; 8kg
where j 2 B, Qijt is the quantity demanded for brand j, Xijt denotes the associated covariates,
¯j contains the corresponding coefficients, ¹Uijt represents the perceived benefits of brand j per
dollar, ¹Ui0t is the utility threshold for category purchase, and ²ijt and ´ijt are unobservable error
terms. To reflect the interdependency between decisions, ²ijt and ´ijt are assumed correlated.
Moreover, ¹Uijt may contain variables also in Xijt.

Note that to avoid unnecessary estimation complications, we assume decisions across cate-
gories are independent except they are all subject to the same budget constraint.21 By assuming
²j and ´j are correlated, the model in effect can be viewed as a hybrid of Krishnamurthi and Raj
(1988) and Chiang (1991).

We assume ²j is normally distributed and ´ = (´i0t; ´i1t; :::; ´ijt; :::´iJt) are jointly GEV dis-
tributed and i.i.d across all households and occasions. Specifically, let H(´) = exp(¡G(¡e¡´))
denote the joint cdf such that G(¡e¡´) = [

P
k2B exp(¡´k=(1 ¡ ±)](1¡±) + exp(¡´0) where

0 < ± < 1. Given the model structure and these assumptions on the errors, the incidence and the
choice probabilities can be derived, respectively, as

Pr(Iit = 1) =
e(1¡±)¢ln[

P
k2B e

¹Uikt=(1¡±)]

e(1¡±)¢ln[
P

k2B e
¹Uikt=(1¡±)] + e ¹Ui0t

Pr(Dijt = 1jIit = 1) =
e¡±¢ln[

P
k2B e

¹Uikt=(1¡±)]+ ¹Uijt=(1¡±)

e(1¡±)¢ln[
P

k2B e
¹Uikt=(1¡±)]

This specification is equivalent to a nested logit model (McFadden 1978) in which the “in-
clusive value” has a special form of ln

P
k2B exp[ ¹Uikt=(1¡ ±)] and its corresponding coefficient

is (1¡ ±). ± is interpreted as the degree of similarity between brands.
Let J+ = f0; 1; 2; :::; Bg denote the option set (including the non-purchase option), and let

J+
¡j = f0; 1; :::; j ¡ 1; j + 1; :::; Bg denote the set without the jth option. The joint condition of
Dijt = 1 and Iit = 1 can be re-written as follows (i and t are suppressed)

¹Uj + ´j > Maxf ¹Uk + ´k; k 2 J+
¡jg

¹Uj > Maxf ¹Uk + ´k; k 2 J+
¡jg ¡ ´j

¹Uj > ´¤j

21This is not a serious flaw because we eventually adopt a Generalized Extreme Value (GEV) distribution for ´
error terms. Chiang and Lee (1992) show that the GEV distribution satisfies the necessary and sufficient conditions
which ensure the unbiasedness of the estimates when other categories are intentionally omitted.
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Given ´ » GEV as described above, it is straightforward to show that ´¤j » Fj(¢) such that

Fj(¢) =
(e

´¤
j

1¡± +
P
k2J;k6=j e

¹Uk
1¡± )¡± ¢ e´¤j =(1¡±)

e¹U0 + (e
´¤
j

1¡± +
P
k2J;k6=j e

¹Uk
1¡± )1¡±

We assume (²k; ´
¤
k); k = 1; :::; B has a pairwise joint distribution denoted by B(²k; ´

¤
k; ½k), where

½k represents the correlation. Though we do not know the shape of B(¢; ¢; ¢), we know both
marginal distributions. Thus, the following transformation identity, which maintains the same
correlation coefficient can be established (Lee, 1983)

B(²k; ´
¤
k; ½k) ´ BN(»1k; »2k; ½k)

where BN is a bivariate normal distribution, »1k = ©¡1(©( ²k
¾k

)) = ²k
¾k

, and »2k = ©¡1(F (´¤k)).
For any observation Qikt; k 2 J , the corresponding sample likelihood function is

Likt =
Z ©¡1(F ( ¹Uikt))

¡1
fbn(

Qikt ¡Xikt¯k
¾k

; »2k)d»2k

where fbn(¢; ¢; ¢) is the bivariate normal density. The evaluation of ©¡1(F (¢)) can be carried out
numerically during the MLE iterations. The sample likelihood for I = 0 is 1¡Pr(I = 1). Thus,
the log likelihood function is

LL = ln
Y

i

8
<
:
Y

Ti

2
4Pr(Iit = 0)1¡Iit ¢

Y

k2J
(Likt)

Dikt¢Iit

3
5
9
=
;

B.1 Variables
Variables included in Xijt, ¹Uijt, and ¹Ui0t, respectively, are

² Xijt = (constant, log price, feature, display, inventory, family size, log expenditure, family*
log price)

² ¹Uijt = (brand constant, log price, feature, display, last brand purchased, last size purchased,
brand loyalty, size loyalty, family size*log price)

² ¹Ui0t = (constant, log expenditure, inventory, family size)

C Price Elasticities
It is straightforward to show that the purchase incidence, brand choice and purchase quantity
elasticities are

eI = µp ¢ pj ¢ Pr(DjjI) ¢ (1¡ Pr(I))

eDj jI =
µp

(1¡ ±) ¢ pj ¢ (1¡ Pr(DjjI))

eQj jDj ;I =
pj

E(QjjDj; I)
¢
(
¯pj + ¾j

Á(©¡1(Pr(Dj))

Pr(Dj)
¢
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"
©¡1(Pr(Dj))

@©¡1(Pr(Dj))

@pj
+

µp

(1¡ ±)(1¡ ±Pr(DjjI)¡ (1¡ ±)Pr(Dj))

#)

where µp is the price coefficient in Pr(DjjI). The variance of each elasticity estimate is calculated
via the delta method (Rao 1973). Furthermore, it can be shown (Gupta 1988) that the total
elasticity is the sum of the elasticities of the three components.
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Table 1: A Comparison of Frameworks for Promotional Response

Study Exogenous Endogenous Data Objective

Bolton (1989) Market Characteristics Brand elasticity Store Explanatory
Category Price Activity
Brand Market Share
Mfr Advertising
Coupon Magnitude
Display Activity
Ret Advertising

Fader and Lodish (1990) Structural Promotional Aggregate Exploratory
HH Penetration % Vol on Feature
Purchases per HH % Vol on Display
Purchase Cycle % Vol on Price Cut
Private Label Share % Vol on Mfr Cpn
Price % Vol on Ret Cpn

Raju (1992) Category Characteristics Variability in sales Aggregate Explanatory
Expensiveness of Cat
Bulkiness of Cat
Competitive Intensity
Magnitude of Discounts
Frequency of Discounts

Narasimhan, Neslin Category Characteristics Price elasticities Aggregate Explanatory
and Sen (1996) Cat penetration Featured price cut

Inter-purchase Time Displayed price cut
Price Featured price cut
Private Label Share
Number of Brands
Impulse Buying
Ability to Stockpile

Our Study Category Characteristics Price elasticities Panel Explanatory
Share of Budget Total elasticity
Brand Assortment Brand elasticity
Size Assortment Incidence elasticity
Storability Quantity elasticity
Perceived Differentiation
Necessity
Purchase Frequency

Brand Characteristics
Relative Price Position
Price Variability
Deal Frequency
Deal Depth
Brand Experience
Brand Loyalty

Consumer Characteristics
Income
Age
Education
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Table 2: Summary of Meta Analysis Hypotheses1

Secondary Demand Primary Demand

(1) Category Factors

Share of Budget - +
Brand Assortment - +
Size Assortment + +
Storability + +
Perceived Differentiation - +
Necessity + -
Purchase Frequency - -

(2) Brand Factors

Relative Price Position + +
Price Variability - -
Deal Frequency - -
Deal Depth + +
Brand Experience - +
Loyalty (Repeat Purchase) - +

(3) Consumer Factors

Income - +
Age - -
Education + +

1 ¡ (+) indicates this variable leads to lower (higher) elasticities.

Table 3: Description of Product Categories
Category Alternatives1 Purchases Storable Necessity Price Range2

Bacon 6 844 No No (1.60, 2.69)
Margarine 10 1504 No Yes (0.55, 1.44)
Butter 4 388 No Yes (1.30, 1.85)
Ice Cream 11 1168 No No (1.60, 4.01)
Paper Towels 10 1442 Yes Yes (0.54, 1.08)
Sugar 6 686 No No (1.61, 2.15)
Liquid Detergents 25 886 Yes Yes (4.41, 9.80)
Coffee 18 750 Yes No (4.65, 8.97)
Softdrinks 15 967 Yes No (0.22, 6.99)
Bath Tissue 20 2192 Yes Yes (0.92, 2.11)
Potato Chips 20 1179 No No (1.09, 2.82)
Dryer Softeners 18 288 Yes No (1.49, 2.76)
Yogurt 10 318 No No (0.33, 2.35)

Totals 173 12,612

1 Number of unique brand-size alternatives.
2 In the model estimation, prices are normalized to a common unit.
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Table 4: Mean and Variance of Elasticity Estimates1

Category Total Choice Incidence Quantity
( ¹XT ; ¾̂T ) ( ¹XC ; ¾̂C ) ( ¹XI ; ¾̂I ) ( ¹XQ; ¾̂Q)

Bacon (1.57, 0.078) (1.25, 0.216) (0.20, 0.143) (0.13, 0.009)
Margarine (2.34, 0.003) (2.22, 0.064) (0.11, 0.116) (0.01, 0.051)
Butter (1.98, 0.004) (1.24, 0.075) (0.57, 0.456) (0.17, 0.382)
Ice Cream (2.58, 0.004) (1.89, 0.206) (0.58, 0.524) (0.10, 0.319)
Paper Towels (4.74, 0.061) (4.00, 0.179) (0.22, 0.255) (0.52, 0.122)
Sugar (4.60, 0.026) (4.03, 0.498) (0.46, 0.727) (0.11, 0.241)
Liquid Detergents2 (5.66, 0.600) (3.95, 0.704) (0.07, 0.306) (1.63, 0.139)
Coffee2 (3.06, 0.049) (1.65, 0.060) (0.06, 0.065) (1.36, 0.036)
Softdrinks (3.09, 0.066) (2.66, 0.108) (0.11, 0.106) (0.31, 0.062)
Bath Tissue (4.66, 0.214) (3.85, 0.308) (0.09, 0.488) (0.71, 0.079)
Potato Chips (3.38, 0.046) (2.50, 0.089) (0.07, 0.105) (0.81, 0.054)
Dryer Softeners2 (5.28, 0.097) (4.08, 0.128) (0.12, 0.359) (1.07, 0.187)
Yogurt (1.92, 0.069) (1.57, 0.084) (0.15, 0.139) (0.20, 0.114)

1 Based on raw (unweighted) elasticities
2 Primary demand elasticities > 1.

Table 5: Elasticity Decomposition Across Categories1

Percent of Total Elasticity Due to Demand
Category Choice Incidence Quantity Secondary Primary

Margarine 93.9% 5.7% 0.4% 93.9% 6.1%
Softdrinks 85.6% 5.8% 8.5% 85.6% 14.4%
Sugar 84.1% 13.3% 2.5% 84.1% 15.9%
Paper Towels 83.2% 6.0% 10.8% 83.2% 16.8%
Bathroom Tissue 81.2% 3.6% 15.2% 81.2% 18.8%
Dryer Softeners 78.9% 1.4% 19.7% 78.9% 21.1%
Yogurt 78.4% 12.2% 9.4% 78.4% 21.6%
Ice Cream 77.4% 18.9% 3.7% 77.4% 22.6%
Potato Chips 72.0% 4.5% 23.5% 72.0% 28.0%
Bacon 71.6% 20.3% 8.2% 71.6% 28.4%
Liquid Detergents 69.6% 0.7% 29.7% 69.6% 30.4%
Coffee 52.6% 2.8% 44.6% 52.6% 47.4%
Butter 48.8% 42.3% 8.9% 48.8% 51.2%

Average 75.2% 10.6% 14.3% 75.2% 24.8%
Std Deviation 0.13 0.11 0.12 0.13 0.13
Minimum 48.8% 0.7% 0.4% 48.8% 6.1%
Maximum 93.9% 42.3% 44.6% 93.9% 51.2%

Storable 75.2% 3.4% 21.4%
Non-Storable 75.2% 16.7% 8.1%

Necessity 75.3% 11.7% 13.0%
Non-Necessity 75.1% 9.9% 15.0%

1 Based on share-weighted brand elasticities.
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Table 6: Standardized GLS Parameter Estimates

Secondary Demand Primary Demand
Choice Incidence Quantity Total

Variable Parameter t-ratio Parameter t-ratio Parameter t-ratio Parameter t-ratio

(1) Category Factors

Share of Budget -0.599 -10.93a 0.001 0.01 0.148 2.68a -0.409 -7.74a

Brand Assortment -0.031 -0.45 0.079 0.87 0.583 8.64a 0.278 4.30a

Size Assortment 0.097 1.82b -0.340 -4.48a 0.386 7.33a 0.177 3.38a

Storability 0.586 8.34a 0.105 1.07 0.486 6.84a 0.676 9.99a

Perceived Differentiation -0.196 -2.59b 0.305 2.92a 0.295 3.85a -0.010 -0.14
Necessity 0.328 5.22a -0.185 -1.86c -0.018 -0.31 0.247 4.11a

Purchase Frequency 0.003 0.05 0.097 1.03 -0.294 -4.54a -0.122 -1.97b

(2) Brand Factors

Relative Price Position -0.099 -2.38b -0.027 -0.46 0.016 0.38 -0.016 -0.39
Price Variability -0.129 -2.11b -0.185 -2.40b -0.146 -2.62a -0.157 -2.88a

Deal Frequency 0.025 0.59 0.028 0.47 0.025 0.59 0.074 1.64
Deal Depth 0.076 1.56 -0.007 -0.11 0.131 2.81a 0.035 0.85
Brand Experience -0.059 -1.17 0.540 7.98a -0.068 -1.41 -0.016 -0.33
Brand Loyalty (Repeat Buying) -0.164 -2.71a 0.096 1.10 0.191 3.13a -0.022 -0.37

(3) Consumer Factors

Income -0.070 -1.59 -0.025 -0.41 -0.018 -0.41 -0.066 -1.53
Age -0.087 -1.78c -0.043 -0.63 0.044 0.92 -0.066 -1.39
Education -0.011 -0.23 0.135 2.10b -0.047 -1.04 0.008 0.19

Willet-Singer (1988) R2 0.74 0.38 0.69 0.75
a = p < 0:01; b = p < 0:05; c = p < 0:10
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