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ABSTRACT 
 

INSIGHTS FROM PRETZEL SYNDROME:  THE ROLE OF STRADA IN 

NEURONAL MIGRATION AND CORTICAL DEVELOPMENT 

Whitney E. Parker 

Peter B. Crino, M.D., Ph.D. 

Pretzel Syndrome (also Polyhydramnios, Megalencephaly, and Symptomatic Epilepsy 

syndrome; PMSE) is a recently described rare neurodevelopmental disorder occurring in 

the Old Order Mennonite pediatric population, and characterized by intractable infantile-

onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological 

evidence of heterotopic neurons in subcortical white matter, suggestive of failed neuronal 

migration. PMSE is caused by a homozygous deletion of exons 9-13 of LYK5/STRADA, 

which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of 

rapamycin (mTOR). Therefore, we hypothesize that STRADA plays a critical role in 

neuronal migration through modulating mTOR (specifically mTOR complex 1, 

mTORC1) signaling, and that therapeutic mTORC1 inhibition can ameliorate features of 

the PMSE disease phenotype. To test this hypothesis, we model PMSE in vitro using 

stable shRNA knockdown of STRADA (STRADA KD) in mouse neural progenitor cells 

(mNPCs).  In vivo, we use in utero electroporation to create focal STRADA KD in the 

developing mouse brain. We show that STRADA depletion disrupts pathfinding and 

polarization in migrating mNPCs in vitro, and this effect can be rescued by inhibition of 

mTORC1 with rapamycin or of its downstream effector p70S6kinase (p70S6K) with PF-

4708671 (p70S6Ki), indicating an mTORC1-specific dependence. We then define a 
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pathway for this effect downstream of mTORC1, through insulin receptor substrate 1 

(IRS1) signaling to cofilin, and finally modulating actin dynamics. In vivo, we 

demonstrate that STRADA KD causes a cortical lamination defect in the mouse, which 

can be rescued with rapamycin treatment, confirming the dependence of STRADA’s 

effect on mTORC1 signaling and suggesting an important target for patient therapy. To 

correlate our mouse model with PMSE, we demonstrate congruent mTORC1 and 

downstream signaling and rescue of migration deficit with rapamycin and p70S6Ki in 

PMSE patient fibroblasts. Finally, we report reduction of seizure frequency with 

rapamycin treatment in previously intractable PMSE patients. Our findings define a novel 

role for STRADA in neuronal migration, demonstrate a mechanistic link between 

STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 

inhibition can serve as an effective therapeutic bio-target in PMSE as well as other 

devastating mTOR-associated neurodevelopmental disorders. 
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INTRODUCTION1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Figures in this chapter are adapted from images originally published in The Journal of 
Clinical Investigation, Vol. 120, No. 5, May 2010.  Orlova, K.A., Parker, W.E., Heuer, 
G.G., Tsai, V., Yoon, J., Baybis, M., Fenning, R.S., Strauss, K., and Crino, P.B.  
STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in 
humans in mice. 
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STRAD Structure and Classification 

STe20-Related ADaptor (STRAD) was first identified in a yeast 2 hybrid screen 

of a fetal brain library, as a binding partner of the tumor suppressor protein 

serine/threonine kinase 11 (STK11, also known as liver kinase B1, LKB1) (1).  Its 

sequence most closely resembles the STE20 homologues SPAK and ILPIP or PAP kinase 

(1-4).  Unlike these homologous kinases, however, STRAD lacks residues indispensable 

for intrinsic catalysis (phosphoryl transfer), and is thus categorized as a pseudokinase.  

Specifically, it lacks the DFG motif for magnesium interaction in the ATP-binding cleft 

and harbors a serine replacement of the aspartic acid residue critical for mediating proton 

transfer in the catalytic site (1, 5).  As a consequence, STRAD remains unable to 

autophosphorylate or to phosphorylate any of a number of substrates tested in in vitro 

kinase assays (1).  Interestingly, much like a kinase, STRAD can adopt an “active” closed 

conformation, stabilized through association with ATP or binding partner mouse protein 

25 (MO25) (5).  This has led to speculation that STRAD may have evolved from a kinase 

capable of catalysis (6). 

Cellular Role of STRAD as a Pseudokinase 

Prompted by STRAD’s discovery as an LKB1-binding partner, Baas et al. chose 

to investigate this interaction.  Co-immunoprecipitation experiments with mutant strains 

of LKB1 revealed that the entire kinase domain as well as C-terminal amino acid residues 

319-343 are essential for LKB1 to bind the pseudokinase domain of STRAD (1).  This 

interaction results in activating autophosphorylation of LKB1 at at least four sites 

including Thr336, Thr363, Thr185, and Thr402, as well as phosphorylation of STRAD at 
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Thr329 and Thr419 by LKB1 (1).  Kinase assays measuring the phosphorylation of 

myelin basic protein (MBP), a non-specific LKB1 substrate, as an indicator of LKB1 

catalysis revealed that STRAD binding enhances LKB1 activity approximately 4-fold (7).  

Additionally, STRAD translocates LKB1 from nucleus to cytoplasm (1).  Dorfman et al. 

have shown that STRAD accomplishes LKB1 cytoplasmic localization by serving as an 

adapter between LKB1 and nuclear export proteins chromosomal region maintenance 1 

(CRM1) and exportin7 and by serving as a competitive inhibitor to importin-α binding 

LKB1 (8).  Localization in the cytoplasm is crucial for several of LKB1’s functions, 

including growth arrest (9), G1 cell cycle arrest (1), neuronal axon specification (10, 11), 

and modulation of mTORC1 signaling (12).  This was confirmed through a study 

demonstrating that an exclusively cytoplasmic LKB1 mutant (lacking the nuclear 

localization signal) remained able to induce cell growth arrest, while its exclusively 

nuclear mutant counterpart did not (9). 

The STRAD/LKB1/MO25 Complex 

 STRAD and LKB1 form a heterotrimeric complex with the scaffolding protein 

MO25 in a 1:1:1 ratio.  MO25 interacts directly with STRAD by binding to STRAD’s 

last three C-terminal amino acid residues.  MO25 binding enhances formation of the 

STRAD-LKB1 complex, and formation of the trimer enhances LKB1’s catalytic activity 

approximately 10-fold (7, 13).  STRAD and MO25 each exist in alpha and beta isoforms, 

with large sequence homology and considerable phenotypic overlap.  STRADα/β and 

MO25α/β can each participate in the formation of the heterotrimeric complex to activate 

LKB1 (7, 13-15). 
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AMPK Regulation of Cell Energy 

 LKB1 functions as a master kinase, phosphorylating several downstream kinases, 

including 13 of the AMP-activated protein kinase (AMPK) subfamily (16).  AMPK is an 

evolutionarily-conserved cellular energy sensor that serves to inhibit energy-consuming 

metabolic pathways in the setting of increased cellular AMP/ATP ratio, by promoting 

catabolic and antagonizing anabolic processes (17, 18).  LKB1 activated through 

complexation with STRAD and MO25 phosphorylates AMPK at Thr172, a modification 

essential to AMPK function (14, 16, 19).  In fact, LKB1-deficient murine embryonic 

fibroblasts (MEFs) exhibit negligible AMPK (Thr172) phosphorylation and consequent 

lack of AMPK downstream signaling (19).  The drug 5-aminoimidazole-4-carboxamide 

riboside (AICAR) is immediately converted in cells to an AMP mimetic, which activates 

AMPK by simulating low cellular energy levels (20).  AICAR, as well as two additional 

AMPK-stimulating drugs, metformin and phenformin, failed to activate AMPK in LKB1-

null MEFs or LKB1-deficient HeLa cervical cancer cells (14, 21-23).  Expression of 

LKB1 in either of these cell lines, however, restores AMPK sensitivity to 

pharmacological activation, indicating an essential role for LKB1 in the response of 

AMPK to cellular energy levels (14, 19). 

mTOR Signaling 

 AMPK plays a key role in modulating activity of the energy-demanding 

mammalian target of rapamycin (mTOR) cascade.  Complexed with and activated by 

STRAD and MO25, LKB1 activates AMPK.  Activated AMPK phosphorylates Tuberous 

Sclerosis Complex 2 (TSC2) (Thr1227, Ser1345), activating the TSC1:TSC2 complex 
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(23-26).  The TSC1:TSC2 heterodimer inactivates Ras-homolog expressed in brain 

(Rheb), stimulating the conversion of Rheb-GTP to Rheb-GDP, and thereby inhibiting 

mTOR kinase activity (25-30).  mTOR forms two distinct complexes, mTORC1 (with 

raptor) and mTORC2 (with rictor) (31) (reviewed in (32)).  Additionally, AMPK 

phosphorylates raptor, modifying the mTORC1 complex and inhibiting mTORC1 

through a second mechanism (33).  Notably, the macrolide antibiotic rapamycin 

powerfully inhibits mTORC1 almost exclusively, with minimal effects on mTORC2 

signaling after prolonged treatment (34, 35).  mTORC1 regulates several key cellular 

processes including cell growth, transcription, translation, ribosome biogenesis, 

differentiation, autophagy, and metabolism (26).  Perhaps most notably, activated 

mTORC1 directly phosphorylates ribosomal protein p70S6kinase1 (p70S6K), important 

for cell growth, and eukaryotic translation initiation factor 4E binding protein 1 (4E-

BP1), critical for initiation of cap-dependent mRNA translation (36-39).  Phosphorylation 

of p70S6K1 and its substrate ribosomal S6 protein (S6) serves as an important clinical 

biomarker for mTORC1 activation in neurons (40, 41).  Recent phosphoproteomic 

analyses have identified several hundred mTOR-associated substrates, suggesting broad 

relevance in the pathogenesis of several diseases as well as numerous therapeutic targets 

(42, 43). 

mTOR Dysregulation and Cortical Malformation 

 Enhanced mTOR activity has been shown to be associated with focal cortical 

malformation (FCM) characterized by altered cortical cytoarchitecture and epilepsy in 

human disease, and a similar phenotype in murine models with mutation or knockdown 
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of an mTOR inhibitor.  Four FCM subtypes, Tuberous sclerosis complex (TSC), 

hemimegalencephaly (HME), ganglioglioma (GG), and focal cortical dysplasia type IIB 

(FCDIIB) all express evidence of aberrant mTORC1 activation in cortex, associated with 

epilepsy, suggesting a causative link (40, 44-49). 

 mTOR is expressed in the proliferative zones of the murine brain during early 

development, and likely plays a critical role in corticogenesis (50), and its dysregulation 

disrupts this process.  Astrocyte-specific conditional knockout of mTOR inhibitor Tsc1 in 

mice (Tsc1GFAP cKO) results in abnormal hippocampal neuronal organization, 

astrocytosis, seizures, and early death (51).  Similarly, conditional KO of Tsc1 in neurons 

results in structural abnormality of hippocampus and cortex, associated with cytomegaly 

and enhanced phosphorylated S6 (P-S6) immunohistochemical staining, as well as 

seizures and early death (52).  Selective KO of Tsc2 in radial glial progenitor cells results 

in cortical and hippocampal lamination defects, cytomegalic dysplastic neurons and glia, 

enhanced mTORC1 signaling, and early death (53).  Conditional astrocytic KO of Tsc2 

results in a more drastic phenotype than astrocytic KO of Tsc1, with astrogliosis, 

progressive megalencephaly, more severe epilepsy, and earlier premature mortality, 

associated with higher levels mTORC1 activity (54).  Interestingly, treatment with 

rapamycin ameliorates disease phenotype associated with either Tsc1 or Tsc2 depletion, 

implicating a causative role for enhanced mTORC1 signaling in pathogenesis (54, 55). 

 Phosphatase and tensin homolog detected on chromosome ten (PTEN) serves as 

an upstream inhibitor of mTOR through antagonizing PI3kinase and thus, mTOR’s 

response to extracellular growth signals (reviewed in (56)).  Conditional neuronal Pten 
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KO in mice results in neuronal cytomegaly and macrocephaly, with enhanced mTORC1 

activity and spontaneous seizures (57, 58).  Importantly, as with TSC models, rapamycin 

can suppress disease phenotype in Pten-deficient mice, further implicating loss of 

mTORC1 inhibition as a key step in neuropathogenesis of cortical malformation and 

epileptogenesis (59, 60). 

PMSE, a Rare Disorder From STRADA Mutation 

 In 2004, researchers and physicians at the Clinic for Special Children in Lancaster 

County, Pennsylvania identified a cohort of seven previously undiagnosed pediatric 

patients in the Old Order Mennonite community who shared a constellation of symptoms 

including macrocephaly, craniofacial dysmorphism, skeletal muscle hypoplasia, 

hypotonia, and infantile-onset medically-intractable complex partial epilepsy (61).  All 

patients exhibited severe neurodevelopmental deficits, with projected adult mental ages 

between 6 and 12 months across four developmental domains assessed with the Denver 

Developmental Screening Test II.  All patients were distantly related, and all parents 

were asymptomatic, suggestive of a recessive inheritance pattern.  Single nucleotide 

polymorphism (SNP) analysis of patients produced “no calls” for the marker rs721575 

located within chromosome 17.  DNA sequencing and amplification within that region 

revealed that all patients shared a homozygous 7304 bp deletion of exons 9-13 of 

LYK5/STRADA (61).  This was the first time that a STRADA mutation had been described 

in a human disease.  The disorder was designated Polyhydramnios, Megalencephaly, and 

Symptomatic Epilepsy syndrome (PMSE), and referred to colloquially as Pretzel 

Syndrome, to describe the common posturing assumed by the patients.  To date, only 25 
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patients have been diagnosed with PMSE.  Genotyping of healthy individuals in the Old 

Order Mennonite community of Lancaster County reveals the carrier frequency of the 

mutated allele to be approximately 4% within that community. 

 Cranial magnetic resonance imaging (MRI) studies from PMSE patients reveal 

ventriculomegaly, multiple areas of high water diffusion within the white matter thought 

to correspond to astrogliosis and white matter vacuolization seen on histopathological 

analysis, and evidence of subependymal dysplasia (61).  Analysis of a postmortem 7-

month old PMSE patient brain revealed enlarged neurons and areas of vacuolization 

within the cerebellum, hippocampal dentate gyrus, trochlear nerve nuclei, substantia 

nigra, anterior pituitary, and anterior horn of the spinal cord.  Large dysmorphic cells, 

reminiscent of balloon cells found in focal cortical dysplasia, were seen in frontal cortex 

(61).  Importantly, dysmorphic cells in both putamen and cortex were highly reactive for 

P-S6, indicating enhanced mTORC1 activation (12, 61).  Immunohistochemical staining 

for the protein product of LYK5/STRADA, STRADA (also referred to as STRADα), 

revealed a lack of protein expression in PMSE, relative to control cortex, indicating the 

likelihood that the pathogenic mutation produces an unstable variant of the protein (12).  

Indeed, attempted expression in 293 cells of the truncated STRADA protein (truncation 

at residue 251) that serves as the product of the PMSE mutation results in negligible 

protein levels.  Additionally, this variant does not bind or activate LKB1 (5).  

Importantly, PMSE brain exhibits blurring of the grey-white matter junction, due to the 

presence of neurons heterotopically in the subcortical white matter (Figure 1.1) (12).  

This pathological characteristic is highly suggestive of failed neuronal migration, and 
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primes consideration of this as a mechanism contributing to neurodevelopmental 

abnormalities in PMSE and possibly other mTOR-associated disorders. 

Mouse Models of PMSE 

 Earlier work from our lab has demonstrated that experimental models of PMSE 

largely replicate disease pathology through depletion of STRADA.  Stable or transient 

knockdown (KD) of STRADA in mouse neural progenitor cells (mNPCs) using targeted 

short-hairpin RNA (shRNA) in vitro results in cytomegaly associated with enhanced 

mTORC1 signaling (Figure 1.2) (12).  Importantly, treatment with rapamycin is able to 

prevent these effects.  Knockdown of STRADA in the embryonic day 14 (E14) mouse 

brain using in utero electroporation (IUE) results in an abnormal retention of STRADA-

deplete cells in the germinal center ventricular/subventricular zone (VZ/SVZ) at E17 and 

E19, and failure to reach the cortical plate (CP), their appropriate destination by E19 

(Figure 1.3) (12).  We show that this phenotype is associated with enhanced P-S6, 

indicative of aberrant mTORC1 signaling (Figure 1.4).  Interestingly, we report that 

depletion of STRADA in vitro and in vivo is associated with almost exclusively nuclear 

localization of LKB1, consistent with a failure of LKB1 translocation from nucleus to 

cytoplasm in the absence of STRADA (Figures 1.4, 1.5) (8, 12).  This effect is replicated 

in PMSE patient cortex, suggesting that absence of LKB1 in the cytoplasm may 

contribute to disease pathogenesis (Figure 1.6) (12). 

STRADA, mTOR, and Cell Migration 

 Our PMSE modeling studies contribute to a growing body of evidence that 

mTORC1 signaling is important for proper cortical lamination and neuronal migration 
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during brain development.  Similar to STRADA in vivo knockdown experiments, 

knockdown or knockout of Tsc1 or Tsc2 in murine models of cortical development 

results in a failure of Tsc-deficient neurons to reach their intended destination of CP 

layers II/III, adjacent to pia (62, 63).  Importantly, treatment with rapamycin results in 

significant histological rescue (63, 64).  LKB1 knockdown through RNA interference 

(RNAi) in vivo at E14 results in a predominance of LKB1-deficient neurons abnormally 

in the intermediate zone (IZ) at E16, E17, and E18, suggestive of migratory arrest (65).  

Recent studies in vitro have indicated a role for mTOR signaling in fibroblast migration, 

through the Rho GTPases Rac1 and Cdc42.  Tsc2-null rat embryonic fibroblasts 

demonstrate impaired migration and polarity in a wound-healing scratch migration assay, 

associated with reduced activation of Rac1 and Cdc42 (66).  Consistent with an 

established link between mTORC1 and Rho GTPase signaling, through p70S6K 

phosphorylation of the insulin receptor substrate 1 protein (IRS1), the migration 

phenotype in Tsc2-deficient cells was significantly rescued through expression of 

constitutively-active PI3kinase or treatment with rapamycin (66, 67).  Previously, Rac1 

and Cdc42 have been implicated as playing an essential role in the radial migration of 

cortical neurons, possibly through establishment of appropriate cell polarity (68, 69). 

 STRAD-associated signaling mechanisms are intimately linked to cell polarity.  

LKB1 was originally identified in a genetic screen for mutations that disrupt the zygotic 

anterior-posterior axis determination (70).  Downregulation of STRAD or LKB1 in vivo 

in the developing murine brain results in disruption of neuronal polarization, seen as a 

failure of axonal formation (10, 11).  Conversely, overexpression of STRAD or LKB1 

resulted in the formation of supernumerary axons.  Correlatively, neurons reaching the 
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CP (representing a minority of cells) in LKB1 knockdown IUE experiments exhibited 

inverted apical-basal orientation, with axon-like neurites oriented toward the pia instead 

of the ventricle.  This effect was significantly prevented by co-transfection with an 

RNAi-resistant LKB1 mutant, indicating an essential role for LKB1 in neuronal 

polarization (65).  These studies are reminiscent of a very compelling set of experiments 

demonstrating that induced expression of STRAD in intestinal epithelial cells is sufficient 

to cause cells to remodel their actin cytoskeleton to polarize and form an apical brush 

border, in an LKB1-dependent manner, and independently of cell-cell contacts (71). 

 Given the severity of neurological disease phenotype in PMSE, the strong 

association of STRADA loss with aberrant mTOR activity, and the relationship of 

STRAD/LKB1 and mTOR signaling to cell polarization, we hypothesize that STRADA 

plays a critical role in neuronal migration and polarity through regulating actin 

dynamics.  Work in our lab shows that depletion of STRADA in vitro in mNPCs results 

in migration impairment in a wound-healing migration assay, in an mTORC1-/p70S6K-

dependent manner.  Analysis of this phenomenon on an individual-cell level, using time-

lapse video microscopy, reveals that STRADA knockdown causes a loss of neuronal 

pathfinding capacity, without deficit in total distance translocated.  This corresponds to a 

disruption of mNPC polarity, which is prevented by inhibition of mTORC1 with 

rapamycin or p70S6K with a novel inhibitor PF-4708671 (72).  We propose that 

STRADA loss in PMSE leads to aberrant corticogenesis through impairing neuronal 

polarity and pathfinding in an mTORC1- and p70S6K-dependent manner.  In support of 

this mechanism, rapamycin treatment rescues the cortical lamination defect associated 

with STRADA KD in the developing mouse brain.  Polymerized or filamentous (F) actin 



 12 

plays a critical role in establishing polarity of migrating cells (73).  We demonstrate that 

STRADA knockdown in mNPCs results in enhanced mTORC1 activity, inhibiting IRS1 

signaling, reducing PAK1 and LIMK activation, and consequently disinhibiting cofilin, 

which serves to depolymerize actin.  We confirm this mechanism in STRADA-deficient 

PMSE patient fibroblasts extracted from human skin-punch biopsy samples, and show 

that signaling abnormalities can be rescued through inhibition of mTORC1 or p70S6K.  

Immunohistochemical analysis reveals enhanced IRS1 phopshorylation in PMSE cortex, 

linking STRADA/mTOR activation to downstream cofilin signaling in this disease 

process in the human brain.  Finally, we demonstrate that dysregulated mTORC1/IRS1 

signaling associated with STRADA loss results in the functional consequence of 

diminished actin polymerization, seen as an increase in the ratio of depolymerized 

globular (G) to polymerized F actin, in both STRADA-deplete mNPCs and PMSE patient 

fibroblasts.  We propose that disruption of actin dynamics as a consequence of STRADA 

loss impairs neuronal polarity and pathfinding, resulting in aberrant corticogenesis.  Thus, 

we add STRADA to the list of mTOR-regulatory proteins that play a critical role in 

neuronal polarization and pathfinding, and submit that PMSE serves as a novel model 

disorder for investigation of mechanisms responsible for the pathogenesis of focal 

cortical dysplasia. 

 The following chapters address our investigation of the role of STRADA as well 

as mTOR signaling in cortical development: 

• Chapter 2 provides a descriptive account of the expression of several growth 

factors and receptors that modulate mTOR signaling, in a related canonical 
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mTOR-associated neurodevelopmental disorder, TSC. This provides an initiation 

to the study of mTOR dysregulation and neurological disease. 

• Chapter 3 defines the role of STRADA in cortical development as a director of 

neuronal pathfinding and migration, through regulating actin dynamics. 

• Chapter 4 describes our progress in generating a STRADA knockout mouse to 

model PMSE and STRADA’s role in cortical development in vivo. 

• Chapter 5 provides an overall summary of dissertation studies and their 

implications for future work and clinical treatments. 

 

Significance 

 mTOR cascade signaling regulates several key processes in cortical development. 

Loss of any of several modulators of this signaling pathway results in aberrant 

corticogenesis, and a common spectrum of clinical symptoms including epilepsy and 

autism-like features. While much work has been done to define the effects of TSC1/2 or 

PTEN depletion, associated with the clinical syndromes TSC and autism-macrocephaly 

syndrome, respectively, relatively little is known about the newly-identified mTOR 

regulator STRADA and its rare but dramatic associated clinical syndrome PMSE. We 

believe that STRADA serves as an ideal model mTOR regulatory protein, and PMSE an 

ideal model disorder for several reasons. First, PMSE is the only known human disorder 

resulting from a homozygous mutation in an mTOR inhibitor. Second, STRADA 

homozygous mutation is associated with 100% penetrance of the disease, with a severe 

epileptic and neurocognitive phenotype common to all patients. Finally, all patients with 

PMSE share the same STRADA deletion (61). 
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It is an especially exciting time for the development of biologically-targeted 

therapies, with the mTORC1 inhibitor rapamycin already showing promising results in 

several clinical trials for related mTOR-associated disorders, and with the development of 

other inhibitors to target nodes on the mTOR pathway, such as the p70S6kinase inhibitor 

PF-4708671 and the dual mTORC1/mTORC2 inhibitor Torin1 (72, 74, 75). In our 

studies, we define a novel role for the mTOR inhibitory protein STRADA in directing 

migrating neurons, a function we propose to be critical in cortical development, and the 

disruption of which can account for several neuropathological features of PMSE. 

Importantly, we develop STRADA-depletion PMSE models as a mechanism for defining 

the role of mTOR signaling in cortical development and for identifying molecular targets 

for the development of novel therapeutics for mTOR-associated neurodevelopmental 

disorders. 
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Figure 1.1. PMSE patient brain exhibits lack of STRADA, cytomegaly, enhanced 
mTORC1 activity, and neuronal heterotopia. A, Immunohistochemical analysis reveals a 
lack of STRADA expression in PMSE versus control cortex. B, Luxol Fast Blue-Cresyl 
Violet (LFB-CV) staining reveals numerous cytomegalic cells present in basal ganglia 
(indicated by red arrows). C, Enhanced P-S6K1, P-S6, and c-Myc, in the absence of 
enhanced P-RSK, in PMSE cortex indicates hyperactive mTORC1. D, PMSE cortex 
exhibits heterotopic neurons present in the subcortical white matter, highly suggestive of 
a neuronal migratory defect. Scale bars: A, 100 µm, 20 µm inset; B, 50 µm; C, 50 µm; D,  
1 mm, 50 µm inset.  
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Figure 1.2. Knockdown of STRADA (STRADα) in vitro in mNPCs results in mTORC1-
dependent cytomegaly. A,C, GFP-tagged STRADA KD mNPCs have significantly 
greater surface area than Scrambled shRNA transfected GFP-tagged control mNPCs. 
B,D,E, This effect is fully prevented with 50 nM rapamycin treatment, indicating that 
STRADA’s effects on cell size are mTORC1-dependent. The experiment was conducted 
2 independent times; data are from n=30 cells per transfection and treatment condition. 
*P < 0.01 versus other vehicle-treated control groups; #P < 0.01 versus vehicle-treated 
STRADA KD cells. Scale bar, 20 µm. 
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Figure 1.3. Knockdown of STRADA (STRADα) in vitro results in aberrant cortical 
lamination. A,B, Transfection of neural progenitor cells in the ventricular/subventricular 
zone (VZ/SVZ) via IUE with control GFP-tagged scrambled shRNA (Scram) at 
embryonic day 14.0 (E14.0) results in a pattern of transfected cells migrating from the 
VZ/SVZ through the intermediate zone (IZ) at E17.0. F,G, By E19.0, Scram transfected 
cells have predominantly reached their destination of Layer II/III of the cortical plate 
(CP). C,D, In contrast, transfection of neural progenitor cells with GFP-tagged STRADA 
shRNA (STRADA KD) at E14.0 results in an abnormal retention of GFP+ cells in the 
VZ/SVZ at E17.0, persisting at E19.0 (H,I). E,J, Statistical analysis indicates a failure of 
STRADA KD neural progenitor cells to reach the CP at both E17.0 and E19.0, compared 
with Scram control cells. n = 5 animals per condition at each time point. *P < 0.05 versus 
CP Scram; **P < 0.05 versus VZ/SVZ Scram; #P < 0.05 versus CP STRADA KD. Scale 
bars, 50 µm. 
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Figure 1.4. STRADA (STRADα) knockdown in vivo through IUE results in depletion of 
STRADA, enhanced mTORC1 activity, and a shift toward nuclear localization of LKB1. 
A,B, Immunofluorescent staining reveals a significant decrease in STRADA expression 
in cells transfected with GFP-tagged STRADA shRNA (STRADA KD) versus control 
cells transfected with GFP-tagged scrambled shRNA (Scram). C,D, GFP+ STRADA KD 
cells exhibit enhanced P-S6, indicative of aberrant mTORC1 activation. E,F, Knockdown 
of STRADA results in a significant increase in the percentage of LKB1 localized to the 
nucleus. Data are mean signal/background (B,D) or mean nuclear/total LKB1 (F). n = 10 
cells per condition. *P < 0.05; **P < 0.01. Scale bars, 6.08 µm. 
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Figure 1.5. Knockdown of STRADA (STRADα) in vitro in mNPCs results in increased 
nuclear localization of LKB1. A,B, Wild-type and C,D, stably-transfected control 
scrambled shRNA (Scram) mNPCs exhibit predominantly cytoplasmic LKB1. Nuclear 
area is defined by Hoechst nuclear staining (in B,D,F). E,F,G, Stably-transfected 
STRADA shRNA (STRADA KD) mNPCs exhibit a significant increase in the 
percentage of total LKB1 localized in the nucleus. n = 132 wild-type cells, 143 Scram 
cells, 149 STRADA KD cells. *P < 0.01 versus wild-type; #P < 0.01 versus Scram. Scale 
bar, 20 µm. 
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Figure 1.6. Replicating experimental in vitro and in vivo results, PMSE cortex exhibits 
almost exclusively nuclear LKB1 localization, in contrast to cortex samples from several 
other epileptic conditions. A, Approximately 95% of neurons in PMSE cortex exhbit 
nuclear LKB1 staining. In contrast, in B, non-epileptic control cortex as well as cortex 
from patients with C, cortical dysplasia focal epilepsy syndrome, D, sporadic type II focal 
cortical dysplasia, E, hemimegalencephaly, and F, tuberous sclerosis complex; only 
approximately 5% of neurons exhibit nuclear LKB1. Scale bars, 100 µm; 25 µm (insets).
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ENHANCED GROWTH FACTOR EXPRESSION IN TUBEROUS SCLEROSIS 
COMPLEX2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 This work was originally published in The American Journal of Pathology, Vol. 178, 
No. 1, January 2011. Parker, W.E., Orlova, K.A., Heuer, G.G., Baybis, M., Aronica, E., 
Frost, M., Wong, M., and Crino, P.B. Enhanced Epidermal Growth Factor, Hepatocyte 
Growth Factor, and Vascular Endothelial Growth Factor Expression in Tuberous 
Sclerosis Complex. Published by Elsevier Inc. 
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Abstract 

Epidermal derived- (EGF), hepatocyte- (HGF), and vascular endothelial- (VEGF) 

growth factors regulate angiogenesis and cell growth in the developing brain. EGF, HGF, 

and VEGF modulate the activity of the mammalian target of rapamycin (mTOR) cascade, 

a pathway regulating cell growth that is aberrantly activated in tuberous sclerosis complex 

(TSC). We hypothesized that expression of EGF, HGF, VEGF and their receptors EGFR, 

c-Met, and Flt-1, respectively, would be altered in TSC. We show by cDNA array and 

immunohistochemical analysis that EGF, EGFR, HGF, c-Met, and VEGF, but not Flt-1, 

mRNA and protein expression was upregulated in Tsc1 conditional knockout 

(Tsc1GFAPCKO) mouse cortex. Importantly, these alterations closely predicted 

overexpression of these proteins in TSC human cortex. Expression of EGF, EGFR, HGF, 

c-Met and VEGF protein as well as HIF-1α, a transcription factor that regulates VEGF 

levels and is also modulated by mTOR cascade activity, was enhanced in subependymal 

giant cell astrocytomas (SEGAs; n=6) and tubers (n=10) from 15 TSC patients. Enhanced 

expression of these growth factors and growth factor receptors in human SEGAs and 

tubers and in the Tsc1GFAPCKO mouse provides potential target molecules for therapeutic 

development in TSC.  
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Introduction 

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder resulting 

from mutations in the TSC1 or TSC2 genes, which encode TSC1 and TSC2 proteins, 

respectively (76, 77). Many individuals with TSC exhibit cognitive disability and autism 

(78), and over 75% of TSC patients develop seizures (79-81). Examination of the brain 

demonstrates cortical tubers and subependymal nodules (SENs) in over 70% of TSC 

patients. Tubers are developmental malformations of the cerebral cortex highly associated 

with epilepsy and neurocognitive abnormalities. SENs are nodular lesions (typically less 

than 1 cm in size) located on the surfaces of the lateral and third ventricles. In 

approximately 10-20% of TSC patients, subependymal giant cell astrocytomas (SEGAs) 

arise within the lateral ventricles, often near the foramen of Monro. SEGAs are WHO 

grade I tumors with low mitotic index as evidenced by Ki-67 immunoreactivity 

suggestive of slow cellular proliferation (82, 83). It is widely believed that SENs grow to 

form SEGAs, although the molecular mechanisms governing transformation from SEN to 

SEGA are unknown (84). Both SENs and SEGAs consist of dysmorphic glial cells, 

enlarged giant cells (GCs), and spindle shaped cells of unknown phenotype (85, 86). 

Cellular immunoreactivity for GFAP, neurofilament, S-100, neuron specific enolase, and 

synaptophysin proteins suggests that SEGAs contain both glial and neuronal cell types. 

Lineage studies have demonstrated that SEGAs express cellular markers found in 

progenitors derived from the subventricular zone (SVZ) adjacent to the lateral ventricles 

(87, 88) and that many of these markers are also expressed in cortical tubers.  

The TSC1 and TSC2 proteins combine to form a heterodimer that functions as a 

direct upstream modulator of the mammalian target of rapamycin (mTOR) pathway, 
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which integrates growth factor and energy level signals to promote several cellular 

processes, including cell growth and proliferation (89) protein translation, and 

angiogenesis. TSC1 and TSC2 mutations are associated with loss of inhibitory modulation 

and consequent constitutive activation of the mTOR cascade, resulting in enhanced cell 

size and proliferation, especially under conditions favoring cell growth. Previous studies 

have suggested that altered growth factor expression may be associated with abnormal 

cellular architecture in the brains of TSC patients. For example, differential expression of 

neurotrophins and their receptors has been observed in cortical tubers (90), and TSC1-

TSC2 mediated control of mTOR is modulated by insulin-like growth factor-1 (IGF-1) 

(91-93). Recent evidence also suggests that mTOR signaling is regulated by several 

growth factors such as EGF and HGF and that TSC1-TSC2 may regulate downstream 

expression of select angiogenic factors, such as VEGF via hypoxia inducible factor-1α 

(HIF-1α) (94). For example, EGF regulates smooth muscle cell proliferation via its 

receptor EGFR through mTOR signaling (95). VEGF expression is upregulated in the 

Eker rat TSC model, in mouse embryonic fibroblasts lacking TSC2, and in facial 

angiofibromas from TSC patients (94, 96, 97). Brain and kidney lesions in TSC exhibit 

abnormally enhanced expression of the vascular endothelium protein marker CD31 (98). 

Altered VEGF isoform D levels were observed in serum from TSC patients with 

lymphangioleiomyomatosis (LAM) (99). Of note, enhanced VEGF expression in TSC 

may occur via both mTOR-dependent and mTOR-independent mechanisms (100).  

Altered expression of EGF, HGF, VEGF, and their receptors EGFR, c-Met, and 

Flt-1 (VEGFR1) has not been investigated in the brain in TSC, yet considerable evidence 

suggests that these factors play a pivotal role in the mTOR cascade’s influence on cellular 
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phenotype, and could therefore provide insight into the mechanism of TSC cortical 

pathogenesis. Thus, we assayed both mRNA and protein expression in the Tsc1 

conditional knockout (Tsc1GFAPCKO) mouse and in human TSC brain tissue specimens as 

a strategy to identify growth factors that could be targeted for therapeutic development in 

TSC.  
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Materials and Methods 

Tsc1 Conditional Knockout Mice 

Tsc1 conditional knockout (Tsc1GFAPCKO) mice were generated as previously 

described (51) at The Washington University School of Medicine in accordance with the 

guidelines established by The Animal Studies Committee of Washington University. 

Samples at post-natal day 1 (P1) and P10 were analyzed for several reasons. First, at these 

timepoints, the active phases of embryonic neuronal migration are completed and thus, 

there is homeostatic expression of growth factors and receptors. Second, by P1 and P10 

there is active expression of the Cre transgene in the brain and thus, adequate knockout of 

Tsc1 could be documented. Third, we wanted to be certain that none of the altered growth 

factor expression was a consequence of early seizures and altered behavioral phenotypes 

that occur in these animals by P20. 

Extraction of mRNA from Cerebral Cortex in the Tsc1GFAPCKO Mice 

Poly(A) mRNA was extracted from the cerebral cortex of Tsc1GFAPCKO or wild-

type (WT) mice (n=5 each) as described previously (90). The entire cortex from both 

hemispheres was removed from the subcortical structures using a microscalpel at the level 

of the mid-hippocampus. Poly(A) mRNA served as a template for in vitro cDNA 

synthesis with avian myeloblastosis virus reverse transcriptase (AMVRT), and then 

double stranded template cDNA was synthesized with T4 DNA polymerase I 

(Boehringer-Mannheim) from extracted cDNA. mRNA was amplified from the double 

stranded cDNA with T7 RNA polymerase (Epicentre Technologies) incorporating 

32PCTP as a radiolabel. Amplified mRNA served as a template for a second round of 
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cDNA synthesis with AMVRT, dNTPs, and N(6) random hexamers (Boehringer-

Mannheim). cDNA generated from amplified mRNA was made double-stranded and 

served as template for a second mRNA amplification, again incorporating 32PCTP 

radiolabel. The radiolabeled, amplified mRNA was used as a probe for cDNA arrays. 

cDNA Array Analysis 

 cDNA arrays containing full-length mouse EGF, EGFR, HGF, c-Met, VEGF, and 

Flt-1 cDNAs were probed with 32PCTP radiolabeled mRNA amplified from the cortex 

(one probe per array). All hybridization reactions were performed twice for each probe. 

GAPDH cDNA was included to serve as positive hybridization control and pBlueScript 

(pBS) plasmid cDNAs were used to define background levels of hybridization on each 

array. Prehybridization (8 hours) and hybridization (24 hours) conditions were in 6X 

SSPE buffer, 5X Denhardt's solution, 50% formamide, 0.1%SDS, and salmon sperm 

DNA 200 mg/ml at 42oC. Blots were washed in 2X SSC. mRNA probe hybridization to 

array cDNAs was determined by phosphorimaging and densitometry. 

Human Tissue Specimens 

Tuber and SEGA samples (n=15 patients; 7 females; 10 tubers, 6 SEGAs, mean 

age 9.9 years; in one patient a tuber and SEGA were removed en bloc; see Table 2.1) 

were obtained from patients with clinically diagnosed TSC. There were no significant 

differences in age distribution in the TSC patient specimens used in the study. Tubers 

were removed as part of surgery for the treatment of intractable epilepsy, and SEGAs 

were removed to alleviate symptomatic hydrocephalus. Surgical tissue specimens were 

obtained from Academic Medical Center, University of Amsterdam, The Netherlands, 
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and Minnesota Epilepsy Group, St. Paul, MN. Surgical localization of the tuber resection 

site reflected the seizure focus as determined by scalp or intracranial EEG monitoring. 

SEGAs were identified pre-operatively by magnetic resonance imaging as progressively 

enlarging lesions that exhibited enhancement with gadolinium. Three SENs were 

obtained post-mortem from 3 TSC patients (Table 2.1) who died of non-neurological 

causes. In these 3 specimens, morphologically normal cortex adjacent to histologically 

defined tubers was also obtained. Clinical mutation testing (indicated as “Genotype” in 

Table 1) results among the tuber, SEN, and SEGA patients revealed a TSC1 mutation in 5 

patients and a TSC2 mutation in 10 patients; mutation data was unavailable from 3 

patients (indicated as “NMI” in Table 2.1).  

Post-mortem control brain tissue specimens (n=4; 2 females; Table 1) were 

procured from the Brain and Tissue Bank for Developmental Disorders, University of 

Maryland (http://medschool.umaryland.edu/BTBank/) from individuals who died of non-

neurologic causes. Seizures were not terminal events in these patients and none had a 

personal or family history of epilepsy or TSC. The cytoarchitecture of these specimens 

was intact. Additional surgical epilepsy control tissue consisted of temporal neocortical 

specimens (n=5; 3 females; Table 2.1) obtained from individuals undergoing temporal 

lobectomy for intractable complex partial seizures (University of Pennsylvania Medical 

Center). These patients had no history or clinical findings compatible with a diagnosis of 

TSC and the histology of the tissue samples was intact (these specimens were classified 

as epilepsy controls). All human tissue was obtained in accordance with protocols 

approved by the University of Pennsylvania Institutional Review Board and Committee 

on Human Research. 
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Immunohistochemistry  

All mouse and human tissue samples were immersion-fixed in 4% 

paraformaldehyde, embedded in paraffin, and sectioned at 8mm. All fixed tissue blocks 

were hydrated through graded ethanols. Slides were pretreated with antigen unmasking 

solution (Vector Labs, Burlingame, CA) prior to immunostaining reactions. Sections were 

probed one of the following antibodies: EGF (1:1000 dilution, rabbit polyclonal, Santa 

Cruz, Burlingame, CA), EGFR (1:100, rat polyclonal, Santa Cruz), EGFRvIII variant 

(courtesy D. O’Rourke M.D., Department of Neurosurgery, University of Pennsylvania, 

Philadelphia, PA), phospho-EGFR (p-EGFR, phospho Y1068, 1:250, rabbit monoclonal, 

Abcam, Cambridge, MA), HGF (1:500, mouse monoclonal, Abcam), c-Met (1:10 

dilution, rabbit polyclonal, Abcam), VEGF (1:50, mouse monoclonal, Abcam), Flt-1 

(1:100, mouse monoclonal, Santa Cruz), HIF-1a (1:1500, mouse monoclonal, Abcam), 

phospho-S6 ribosomal protein (p-S6, Ser235/236; 1:100, rabbit polyclonal, Cell 

Signaling, New England Biolabs, Beverly, MA), or S6 ribosomal protein (detects 

endogenous S6 expression including both phosphorylated and non-phosphorylated 

isoforms, 1:100, rabbit monoclonal, Cell Signaling) overnight at 4oC, and with secondary 

antibodies at room temperature for 1 hour. The slides were visualized using avidin-biotin 

conjugation (Vectastain ABC Elite; Vector Labs) with 3,3'-diaminobenzidine. Following 

immunolabeling, sections were dehydrated through graded ethanols and xylene and 

coverslip-mounted (Permount). 

Quantitative Cell Counts 
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Three representative contiguous digital photos were obtained (20X magnification) 

from each mouse brain tissue section using image acquisition and analysis software (Spot 

RT CCD camera, Diagnostic Instruments, Inc. and Phase 3 Imaging System integrated 

with Image Pro Plus; Media Cybernetics, Silver Spring, MD). The three images spanned a 

1 mm2 region of interest (ROI) within the lateral neocortex that was operationally defined 

and standardized across all cortex specimens as dorsolateral cerebral cortex at the level of 

the rostral hippocampus mid-way between the superior sagittal sulcus and the rhinal 

sulcus (Bregma coordinate -1.70mm). The area of the cortex for each ROI was 

determined with a glass micrometer under light microscopy.  

In the human specimens, we were particularly interested in the number of GCs 

that expressed each protein growth factor marker. Thus, GCs were defined using maximal 

cell diameter based on cresyl violet and hematoxylin and eosin staining for quantitative 

cell counting analysis. Representative digital photos were obtained (20X magnification) 

under light microscopy from each tissue section (n=3 sections per case) using image 

acquisition and analysis software as above. Each image spanned a 1 cm2 region of interest 

(ROI). Prior to final assignment as a GC by the software, each ROI was visually 

inspected and cellular elements erroneously included in the computerized analysis were 

deleted. Mean maximal diameter (cell diameter at its largest aspect) was calculated using 

Image Pro Plus software as expressed in pixel units that were converted to microns by 

direct calibration with a micrometer. 

The relative optical density ratio (ODR) of labeled cells was calculated using 

Image Pro Plus software using a previously defined approach (90). The ODR is calculated 
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by determining the level of pixel staining density in labeled cells versus the pixel density 

of the non-cellular background (the cell densities are digitally subtracted from the image). 

An ODR >3 was used as a threshold to define immunopositivity for a given antibody. In 

the mouse, the total numbers of p-S6 immunolabeled cells were determined for each case 

and then expressed as a mean (+SEM) for Tsc1GFAPCKO and control specimens. For 

growth factors, we used a semi-quantitative scale (0, no staining to ++++, intense labeling 

across most cells in each ROI) to represent labeling density in each ROI. The size of p-S6 

immunolabeled cells was defined using maximum cell diameter and determining the 

mean (+SEM). In the human specimens, the total numbers of morphologically identified 

GCs were determined in each ROI for each case and the mean (+SEM) numbers of GCs 

in ROIs were determined across all 10 tubers and 6 SEGAs. Statistically significant 

differences in GCs expressing individual protein markers were determined by Student’s t-

test (p<0.05).  

Western Analysis 

Lysates of wildtype and Tsc1GFAPCKO cortex were analyzed for p-S6 protein levels. A 

DuPont Kinetic Microplate Reader was used to approximate 15 µg total protein for each 

of the samples, which were individually loaded into separate wells of a 4-15% Tris-HCl 

polyacrylamide gel (Bio-Rad Laboratories), and electrophoresed at 60V. Proteins were 

then transferred overnight at 4oC onto a polyvinylidene difluoride (PVDF, Millipore) 

membrane. Membranes were incubated in a 5% non-fat dry milk (NFDM) blocking 

solution for 1 hour at room temperature (RT) and then probed with rabbit anti-p-S6 

ribosomal protein (Ser235/236; 1:1000, overnight at 4oC, Cell Signaling) antibodies. 
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Rabbit anti-GAPDH (1:1000, 1 hour at RT, Cell Signaling) and rabbit anti-β-actin 

(1:1000, 1 hour at RT, Cell Signaling) served as protein loading controls. Membranes 

were then incubated for 1 hour at RT with horseradish peroxidase (HRP)-conjugated 

donkey anti-rabbit IgG (1:3000, GE Healthcare). Membranes were washed and developed 

using either ECL or ECL Plus Western Blotting Detection Reagents (Amersham, GE 

Healthcare), as needed for HRP visualization. 

 

Statistical Analysis 

The expression of each mRNA was determined by analysis of the radiolabeled 

mRNA-cDNA hybridization intensity on each array using ImageQuant5.0 software. Non-

specific hybridization to pBS plasmid cDNA was subtracted from the hybridization 

intensity of each mRNA-cDNA to define specific hybridization intensity. The relative 

hybridization intensity for each mRNA was determined by averaging the 

phosphorimaging density of all the mRNA-cDNA hybrids on each individual array and 

then expressing each mRNA-cDNA hybrid as a percentage of the average hybridization 

intensity of the entire array. Differences in relative mRNA abundance were determined 

using a one-way ANOVA and a Bonferroni post-hoc correction was applied to each 

univariate ANOVA. If a significant difference was found with a Bonferroni-adjusted 

ANOVA, individual post-hoc comparisons were made using the Fischer’s test (p<0.05 

was considered significant). 
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Results 

Enhanced S6 Phosphorylation in the Tsc1GFAPCKO Mouse Cortex and Human TSC Brain 

Tissue 

 The expression level of Tsc1 mRNA was determined at P1 and P10 in the cerebral 

cortex in Tsc1GFAPCKO mice. At P1, Tsc1 mRNA levels were reduced by 86+4% and at 

P10, levels were reduced by 92+7% compared to wild-type (Wt) mice (n=10 sections 

each in Tsc1GFAPCKO and Wt control samples at each timepoint, p<0.05; Figure 2.1C). 

Expression of Tsc2 mRNA at P1 and P10 in cortex from the Tsc1GFAPCKO mice did not 

differ from that observed in Wt mice. 

There was a low level of baseline p-S6 protein expression in cortical neurons and 

astrocytes of control Wt mice at P1 and P10. P-S6 labeled astrocytes were observed 

throughout all cortical layers. In neurons, p-S6 expression was observed primarily within 

the somatic and dendritic cytoplasm of pyramidal cells in layers III and V. At both P1 and 

P10, there was a clear increase in the number of p-S6 labeled cortical cells in the 

Tsc1GFAPCKO mouse brain compared with control Wt brains (Figure 2.1A). Quantitative 

cell counts of p-S6 labeled cells were performed at P1 and P10, which antedates the onset 

of clinical seizures in these mice. There was a significant increase in the number of p-S6 

labeled cells at P1 (115 control, and 336 Tsc1GFAPCKO mouse, p<0.05) and P10 (665 

control, and 1319 Tsc1GFAPCKO mouse, p<0.05) (Figure 2.1B). Western assay revealed 

markedly enhanced S6 protein phosphorylation in Tsc1GFAPCKO mice, compared to Wt 

control (Figure 2.1C) (55). Immunolabeling of human TSC cortex also revealed an 

increase in phosphorylation of S6, relative to control cortex, with no corresponding 
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increase in endogenous S6 (both phosphorylated and non-phosphorylated isoforms) 

expression overall (Supplemental Figure). Increased S6 phosphorylation in tubers is 

consistent with previous findings in TSC and confirms mTOR hyperactivity in these 

lesions (40). 

Increased Growth Factor mRNA Expression in Tsc1GFAPCKO Mice 

The expression of EGF, EGFR, HGF, c-Met, and VEGF mRNAs in cerebral 

cortex was increased at P1 and P10 in Tsc1GFAPCKO mice compared with Wt mice (Fig. 

2). EGFR mRNA levels were increased 9.3-fold and 7.1-fold at P1 and P10, respectively, 

while EGF was increased 2.1-fold and 2.8-fold, HGF was increased 3.3-fold and 4-fold, 

c-Met was increased 3-fold at both timepoints, and VEGF was increased 5.8-fold and 5.9-

fold at P1 and P10, respectively. However, Flt-1 mRNA expression in Tsc1GFAPCKO 

mice did not differ from that of Wt mice at either timepoint (not shown). Of note, GFAP 

mRNA expression in the cortex was increased by 3.8-fold at P1 and 6.4-fold at P10, 

consistent with previous reports that there is progressive increase in the number of 

astrocytes in the Tsc1GFAPCKO mice (51). 

Increased Growth Factor Protein Expression in Tsc1GFAPCKO Mice 

 Low levels of EGF, EGFR, HIF-1a, c-Met, and Flt-1 expression were observed in 

Wt mice at P1 and P10, whereas VEGF and HGF protein expression levels were higher at 

both timepoints. Since a dramatic alteration of laminar architecture is not a feature of the 

Tsc1GFAPCKO mouse cortex, we did not observe substantive changes in laminar 

expression of any of the growth factors or their receptors. Rather, our findings suggested 

enhanced expression in the expected distribution of each identified layer. For example, in 
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the Wt mice, EGF was expressed at low levels across the cortical plate at both P1 and P10 

whereas in the Tsc1GFAPCKO mouse, there was a global increase in EGF expression 

across all layers. HGF, c-Met, and VEGF exhibited an alteration in laminar expression 

profiles (see Table 2.2) with enhanced expression in deeper cortical layers in the 

Tsc1GFAPCKO mouse. The expression of EGF, EGFR, HGF, c-Met, VEGF, and HIF-1a 

proteins was increased at P1 and P10 in Tsc1GFAPCKO mice compared with Wt mice 

(Figures 2.3-2.5) in a profile that was similar, though not identical to mRNA expression. 

However, similar to its corresponding mRNA, Flt-1 expression in Tsc1GFAPCKO mice did 

not differ from that of Wt mice at either timepoint (not shown). By P10, immunoreactive 

cells were identified in cerebral cortex across all 6 layers, and both neurons and astrocytes 

exhibited immunolabeling. 

Increased Growth Factor Protein in Human TSC Brain Tissue 

The mean maximal cell soma diameter of the GCs was 112.4 µm (range 104-125 

µm) and thus, this parameter was used to generate cell counts for each individual protein 

marker. The expression profile for each protein marker was heterogeneous across the 

tubers and SEGAs. In some specimens, even when corrected for differing numbers of 

GCs across each case, there was robust expression of individual proteins, while in other 

specimens fewer numbers of cells were labeled (Table 2.3). For some proteins detailed 

below, there was enriched expression in GCs in deeper portions of the tuber (i.e., within 

the subcortical white matter) (Table 2.3, WM), whereas for others, protein expression 

was observed in GCs throughout the thickness of the lesion (Table 2.3, ALL). 
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 Immunohistochemical analysis demonstrated that EGF, EGFR, HGF, c-Met, 

VEGF, and HIF-1α protein expression was markedly increased in tuber (Figures 2.6-2.9) 

and SEGA (Figure 2.10) specimens when compared with specimens of age-matched, 

post-mortem, and non-TSC epilepsy cortex. Cellular expression of growth factor proteins 

was observed in GCs throughout the thickness of each tuber specimen, from pial surface 

to subcortical white matter. For example, expression of EGF and EGFR was primarily 

observed in GCs in tubers (Figure 2.6) and SEGAs (Figure 2.10). Expression of the 

phospho-isoform of EGFR was also enhanced in tubers compared with control cortex. 

The EGFRvIII variant protein isoform is frequently identified as an overexpressed protein 

in certain types of astrocytomas and is linked to enhanced EGF signaling in these tumors. 

However, in contrast to native EGFR, there was no expression of EGFRvIII variant 

protein isoform in tubers or SEGAs (data not shown). HGF and c-Met expression was 

most marked in GCs and some of the surrounding dysmorphic neurons, within tubers 

(Figure 2.7) and SEGAs (Figure 2.10). VEGF was robustly expressed by GCs and 

capillary endothelial cells in tubers (Figure 2.8). Additionally, the level of VEGF 

expression in non-tuber cortex from TSC patients was increased relative to the level of 

VEGF expression in cortex from non-TSC epilepsy control patients (Figure 2.9). The 

distribution of HIF-1α expression was similar to that of VEGF, although HIF-1α 

expression was not as widespread in tubers and was often seen in small clusters of cells, 

especially in the subcortical white matter (Figure 2.8). In contrast, the levels of the 

VEGF receptor Flt-1 were not increased in either tubers or SEGAs (not shown).  

Growth factor and growth factor receptor expression in non-tuber TSC cortex did 

not differ from non-TSC epilepsy control cortex, with the exception of VEGF. 
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Specifically, rare GCs at the edge of the resection margin exhibited VEGF expression and 

appeared as a stark contrast to the surrounding tissue, and there were scattered VEGF 

immunolabeled cells in the non-tuber TSC cortex that were more frequent in number than 

in control non-TSC epilepsy cortex. These findings argued against a non-specific effect of 

anti-seizure medications, recurrent seizures, age, or post-mortem interval on protein 

expression.  

Additionally, an important finding was that growth factor and growth factor 

receptor expression was not enhanced in SENs, and appeared within these nodules to be 

similar to expression levels in control tissue (data not shown). These findings suggest that 

enhanced growth factor expression was indeed specific for tubers and SEGAs and hint 

toward a possible role of growth factors in the SEN to SEGA transformation. 
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Discussion 

This is the first study to demonstrate enhanced EGF, EGFR, HGF, c-Met, and 

VEGF expression in association with loss of Tsc1 in the mouse and with human TSC 

brain pathology. We were specifically interested in growth and angiogenic factors 

because of the documented enhancement of cell proliferation and angiogenesis in TSC-

associated lesions such as angiomyolipomas and SEGAs. The expression of EGF, EGFR, 

HGF, c-Met, and VEGF mRNAs was increased at P1 and P10 in Tsc1GFAPCKO mouse 

cortex, and these findings predicted similar changes in human TSC tubers and SEGAs. 

Increased mTOR signaling was demonstrated in Tsc1GFAPCKO mouse brain and human 

TSC cortical tubers and SEGAs, as evidenced by increased phosphorylation of S6 protein. 

We conclude that enhanced expression of EGF, EGFR, HGF, c-Met, and VEGF is linked 

at least in part to altered TSC1 or TSC2 function and aberrant mTOR signaling.  

The Tsc1GFAPCKO mouse has been well-characterized, and recent studies 

demonstrate that mTOR antagonism with rapamycin can ameliorate seizures and prevent 

premature death in this strain (55). Our study is the first to define the temporal pattern of 

mTOR activation, as evidenced by phosphorylation of S6 protein in the cortex of these 

animals. There is clearly a time-dependent increase in S6 phosphorylation consistent with 

the ongoing effects of loss of Tsc1 following conditional inactivation. Indeed, a greater 

number of p-S6 immunolabeled cells were identified at P10 than P1. We submit that 

changes in growth factor expression in the Tsc1GFAPCKO mice did not reflect either 

seizures or behavioral alterations that appear later in this strain (approximately P20-P30) 

and rather represent direct effects of loss of Tsc1.  
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In contrast, the effects of loss of TSC1 or TSC2 on expression of EGF, EGFR, 

HGF, c-Met, VEGF, and HIF-1α in neural cells have not yet been studied, and we are the 

first to report changes in these growth factors and their receptors in TSC brain tissue with 

defined genotypes. Our findings suggest that altered growth factor expression may be a 

consequence of loss of either TSC1 or TSC2. EGFR plays a pivotal role in regulating 

astrocyte proliferation during development and has been implicated in aberrant cell 

growth control in malignant gliomas. EGFR has been localized to radial glial cells in the 

embryonic ventricular zone and is a marker for those that differentiate into astrocytes. 

Both HGF and its tyrosine kinase receptor c-Met are expressed by stem cells in the 

subventricular zone (101), and in view of the prior demonstration of stem cell markers 

such as nestin in tubers (102), these growth factors could also serve to characterize tubers 

as phenotypically immature. Like EGFR, HGF and c-Met are expressed in human 

gliomas and are believed to function in cell proliferation and angiogenesis (for review see 

Abounader and Laterra (101)). Functional blockade of EGFR and c-Met inhibits tumor 

growth. Prior studies have suggested that enhanced HGF expression in proliferating 

hepatocytes is mTOR-dependent (103). Changes in EGF, EGFR, HGF, and c-Met 

expression were identified in the setting of diminished TSC1 or TSC2 function, i.e. the 

Tsc1GFAPCKO mouse or human tuber or SEGA specimens, but not in surrounding non-

tuber cortex and not within SENs, suggesting that complete TSC1 or TSC2 inactivation 

and commensurate hyperactivation of the mTOR pathway may be necessary to induce 

these effects.  

VEGF expression is directly modulated by TSC1 and TSC2 via both mTOR-

dependent and mTOR-independent pathways in vitro (100). Thus, among the growth 
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factor genes assayed, alterations in VEGF mRNA and protein levels may be most 

sensitive to loss of TSC1 or TSC2 (97). High levels of VEGF mRNA expression have 

been reported in angiomyolipomas and in serum from human TSC patients (98, 104). 

VEGF expression was enhanced following Tsc1 knockout in vivo in mice, and we 

observed enhanced VEGF expression in human tubers and SEGAs as well as in peri-

tuberal cortex. 

Increased mTOR signaling, corresponding to loss of TSC1/TSC2 inhibition, has 

been demonstrated specifically in SEGAs (41) and tubers (40). Thus, the findings in 

human TSC tissue specimens of increased expression of EGF, HGF, VEGF, and their 

receptors primarily within these focal areas of mTOR cascade dysregulation suggests that 

reduction of TSC1 or TSC2 could lead to increased EGF, HGF, or VEGF levels via 

mTOR. Indeed, our results support previous observations in mouse kidney cells and 

fibroblasts demonstrating enhanced VEGF detected in either Tsc2 heterozygous (+/-) or 

null (-/-) cells (97).  

These results provide a link between aberrant mTOR cascade activation and 

enhancement of three new candidate growth factors that could be targeted for future 

therapeutic trials in TSC. EGFR, HGF, and VEGF can be blocked with specific 

antagonists, perhaps in association with rapamycin, as a strategy to reduce the size of 

tubers or SEGAs in TSC and diminish the potential toxicity of any one therapeutic 

compound.  
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Table 2.1. TSC and Control Patient Demographics 

	  

Table depicts age at time of surgery, lobar location of resection and TSC genotype. Lat 
Vent, lateral ventricle; NMI, no mutation identified; * specimen contained both SEGA 
and cortical tuber. 

Sample Age Location Genotype

Tuber 4 years Frontal TSC1
Tuber 9 years Frontal TSC2
Tuber 3 years Temporal TSC2
Tuber 9 years Frontal TSC2
Tuber 3 years Temporal TSC1
Tuber 2 years Temporal TSC1
Tuber 4 years Frontal NMI
Tuber 6 years Temporal TSC2
Tuber 7 years Frontal NMI
Tuber* 10 years Frontal TSC2
SEGA* 10 years Lat Vent TSC2
SEGA 14 years Lat Vent TSC1
SEGA 21 years Lat Vent TSC2
SEGA 22 years Lat Vent TSC1
SEGA 19 years Lat Vent TSC2
SEGA 16 years Lat Vent NMI
SEN 27 years Lat Vent TSC2
SEN 37 years Lat Vent TSC2
SEN 41 years Lat Vent TSC2
Epilepsy 
Control

6 years Temporal NMI

Epilepsy 
Control

14 years Temporal NMI

Epilepsy 
Control

12 years Temporal NMI

Epilepsy 
Control

9 years Temporal NMI

Epilepsy 
Control

16 years Temporal NMI

Control 4 years Frontal NMI
Control 9 years Frontal NMI
Control 11 years Temporal NMI
Control 11 years Frontal NMI
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Table 2.2. Laminar Expression of Growth Factors in Wild-type Versus 
Tsc1GFAPCKO Mice at P10 

 

 

Semi-quantitative scale (0, no staining; +, very few labeled cells; ++, >20 labeled cells; 
+++, > 50 labeled cells; ++++, intense labeling across most cells in each ROI) to represent 
labeling density in each ROI. Roman numerical convention indicates expression of each 
growth factor within specified cortical layers; ALL, expression in all cortical layers. 

Protein WT Score Tsc1GFAPCKO Score

EGF ALL + ALL +++

EGFR II-IV + II-IV ++++

HGF I-III ++ ALL ++++

HIF-1a ALL 0 ALL ++

c-Met II-III + ALL +++

VEGF II-III ++ II-V ++++
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Table 2.3. Growth Factor and Growth Factor Receptor Expression in Tubers  

 

 
Table depicts percent of morphologically identified GCs expressing each protein marker, 
across all 10 tuber specimens. WM reflects relative enrichment of labeled cells in 
subcortical white matter; ALL reflects expression detected across all layers. 

 

 

 

 

 

Protein WT Score Tsc1GFAPCKO Score

EGF ALL + ALL +++

EGFR II-IV + II-IV ++++

HGF I-III ++ ALL ++++

HIF-1a ALL 0 ALL ++

c-Met II-III + ALL +++

VEGF II-III ++ II-V ++++
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Figure 2.1. Enhanced S6 phosphorylation (p-S6) in Tsc1GFAPCKO mouse cortex. (A), At 
P1 and P10 timepoints, Tsc1GFAPCKO cortex (Tsc1 KO) shows increased p-S6 
expression compared to wild-type (Wt) cortex. Photo taken at the level of the peri-rhinal 
sulcus; inset, magnification 40X. Scale bars, 20 µm. (B), Graph showing quantitative 
cell counts of p-S6 labeled cells in wild-type (Wt) and Tsc1GFAPCKO (CKO) mice at 
P10. Note increased numbers of p-S6 labeled cells in CKO. (C), Western blot depicting 
increased p-S6 levels in Tsc1GFAPCKO versus Wt mouse cortex homogenates, and cDNA 
array hybridization depicting reduced Tsc1 mRNA expression in CKO versus Wt mice.  
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Figure 2.2. Increased expression of EGF, EGFR, HGF, c-Met, and VEGF mRNAs in 
Tsc1GFAPCKO versus Wt mouse cortex at P1 (red) and P10 (blue). Bars represent mean 
change in relative abundance expressed as fold change relative to Wt cortex (lines above 
bars depict SEM; all significant p<0.05). Increased expression of GFAP mRNA at each 
timepoint is depicted in black. 

 



 47 

 
 

 
 

Figure 2.3. Enhanced expression of EGF and EGFR proteins in Tsc1GFAPCKO (Tsc1 
KO) mouse versus wild-type (WT) mouse cortex at P1 and P10 timepoints; inset, 
magnification 40X. Scale bars, 20 µm. Note EGF expression in heterotopic cells in white 
matter at P10. 
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Figure 2.4. Enhanced expression of HGF and its receptor c-Met in Tsc1GFAPCKO (Tsc1 
KO) mouse versus wild-type (WT) mouse cortex at P1 and P10; inset, magnification 
40X. Scale bars, 20 µm. Note expression of HGF in ectopic cell clusters depicted at P1 
and throughout cortex at P10. In contrast, c-Met expression is more widespread across 
the cortex at both time points. 
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Figure 2.5. Enhanced expression of VEGF and HIF-1α proteins in Tsc1GFAPCKO (Tsc1 
KO) mouse versus wild-type (WT) mouse cortex at P1 and P10; inset, magnification 
40X; depicts VEGF or HIF-1a labeling in individual cells or small clusters of cells. Scale 
bars, 20 µm. 
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Figure 2.6. Increased EGF and EGFR (both phosphorylated and non-phosphorylated 
isoforms) expression in human TSC (tuber) versus control cortex; inset, magnification 
40X. Scale bars, 20 µm. 
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Figure 2.7. Increased HGF and c-Met expression in human TSC (tuber) versus control 
cortex; inset, magnification 40X. Scale bars, 20 µm. 
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Figure 2.8. Increased VEGF and HIF-1α expression in human TSC (tuber) versus 
control cortex. Note VEGF expression in dysmorphic GCs as well as in capillary 
endothelium; inset, magnification 40X. Scale bars, 20 µm. 
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Figure 2.9. Increased expression of VEGF in a tuber specimen from a TSC patient, 
compared with non-tuber cortex in the same TSC patient and with non-TSC epilepsy 
control cortex (top row, 10X magnification; bottom row, 20X). In tuber cortex, there is 
robust cellular VEGF expression. In non-tuber cortex from the same TSC patient, there 
is overall less cellular VEGF expression than in tubers but more than in non-TSC 
epilepsy control cortex, in which there is little cellular VEGF expression. Scale bars, 100 
µm.  
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Figure 2.10. Expression of EGF (A), EGFR (B), HGF (C), and VEGF (D) in SEGAs. 
Scale bar, 100 µm. 
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CHAPTER 3 
 

 

 

LOSS OF STRADA IN PRETZEL SYNDROME DISRUPTS NEURONAL 
PATHFINDING THROUGH ENHANCED IRS1 SIGNALING3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

_______________________________________________________________________ 
3 Much of this work was originally published in Science Translational Medicine, Vol. 5, 
No. 182, April 2013. Parker, W.E., Orlova, K.A., Parker, W.H., Birnbaum, J.F., 
Krymskaya, V.P., Goncharov, D.A., Baybis, M., Helfferich, J., Okochi, K., Strauss, 
K.A., and Crino, P.B. Rapamycin Prevents Seizures After Depletion of STRADA in a 
Rare Neurodevelopmental Disorder. Published by AAAS. 
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Abstract 

Heterotopic neurons in the subcortical white matter are a histopathological 

finding in many neurodevelopmental disorders associated with intractable epilepsy. 

Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE, 

colloquially named “Pretzel Syndrome”) is a neurodevelopmental disorder resulting from 

a loss-of-function mutation in STE20-related kinase adaptor alpha (STRADA), which 

encodes the pseudokinase STRADA. Postmortem PMSE brain tissue exhibits numerous 

heterotopic neurons, and STRADA knockdown (KD) in a mouse model results in 

heterotopic neurons in the subventricular zone, suggesting that STRADA may affect 

neuronal migration and pathfinding, although the role STRADA plays in this process has 

not yet been identified. We demonstrate that depletion of STRADA in vitro in mouse 

neural progenitor cells (mNPCs) results in aberrant pathfinding and disrupted polarity, 

associated with reduced actin polymerization. We define the mechanism for this effect as 

constitutive mTORC1- and p70S6K-dependent phospho-inhibition of IRS1 resulting in 

disinhibition of cofilin and actin depolymerization. Treatment of STRADA-deplete 

mNPCs with the mTORC1 inhibitor rapamycin or p70S6K inhibitor PF-4708671 rescues 

the pathfinding and polarity defects. We confirm the link between enhanced mTORC1 

activity and cofilin signaling by demonstrating aberrant IRS1 phosphorylation in PMSE 

patient cortex. STRADA-deplete human fibroblasts extracted from PMSE patients 

exhibit disrupted migration associated with IRS1 phospho-inhibition and depolymerized 

actin. Finally, we demonstrate that inhibition of mTORC1 with rapamycin rescues the 

neural migratory defect associated with STRADA KD in the developing mouse brain. 
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We define STRADA as a pivotal regulator of neural pathfinding, migration, and polarity 

via mTORC1 and IRS1 signaling to cofilin and regulation of actin assembly.  
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Introduction 

Heterotopic neurons within the subcortical white matter are a common 

histopathological finding identified in brain specimens resected from patients with 

intractable epilepsy (105), tuberous sclerosis complex (TSC), an autosomal dominant 

disorder highly associated with severe epilepsy (106), and all subtypes of focal cortical 

dysplasia associated with intractable pediatric epilepsy (107). Heterotopic neurons 

contribute to pathogenesis of epilepsy by establishing aberrant network connectivity 

(108). It has been proposed that heterotopic neurons result from impaired pathfinding or 

migration into the nascent cortical plate during corticogenesis, although the molecular 

mechanisms responsible for impaired movement have not been fully defined.  

Loss-of-function mutation of LYK5/STRADA is associated with “Pretzel 

Syndrome” (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome, 

PMSE; OMIM #611087), a recessive neurodevelopmental disorder characterized by 

intractable epilepsy and severe cognitive impairment, identified in the Old Order 

Mennonite population (61). Numerous heterotopic neurons are observed in PMSE, 

suggesting a neural migratory defect and priming consideration of STRADA as a pivotal 

regulator of neuronal pathfinding and migration (12, 61). All PMSE patients share a 

common homozygous truncating deletion of exons 9-13 of STRADA, removing the 

protein interacting domains for complex formation with the kinase LKB1, a known 

regulator of mammalian target of rapamycin (mTOR) (6). It is estimated that 

approximately 4% of the more than 40,000 Old Order Mennonite individuals in Ohio, 

Pennsylvania, and New York may be hemizygous for STRADA deletion. 
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The STRADA/LKB1 protein complex inhibits mTORC1 signaling via phospho-

activation of AMP-activated kinase (AMPK) and tuberous sclerosis 2 (TSC2) in gut, 

skin, and brain (12, 14, 16, 23). STRADA knockdown in vitro leads to enhanced 

mTORC1 signaling in lymphoblasts and neural progenitor cells, and in vivo, results in 

clusters of heterotopic neurons within the murine post-natal subventricular zone (12). 

Knockdown of stk25, a potential STRADA interacting protein, leads to altered Golgi 

assembly and polarity of mature neurons, an effect antagonized by reelin (109), and in 

non-neural cancer cell lines, STRADA modulates cell polarity via signaling to PAK1 

(110). While LKB1 has been implicated in neuronal polarization, axon specification, and 

dendrite growth (10, 65), a direct assessment of a role for STRADA in migration and 

pathfinding of embryonic neurons or neural progenitor cells or of the cell signaling 

mechanisms responsible for linking STRADA to progenitor cell migration, has not been 

reported.  

We show that STRADA is a pivotal regulatory protein that governs pathfinding in 

neural progenitor cells via an mTORC1-p70S6K-dependent mechanism, activating IRS1, 

inhibiting cofilin, and polymerizing actin, and that PAK1 and LIMK are key signaling 

links between STRADA, IRS1, and cofilin. mTORC1 inhibition rescues aberrant 

neuronal migration and pathfinding in vitro and in vivo in a mouse model of PMSE. Our 

data suggest that PMSE provides a novel disease model to study mechanisms leading to 

neuronal heterotopia.  
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Materials and Methods  

mNPC culture and transfection 

Stable transfection of puromycin-resistant shRNA plasmids in mNPCs (provided by J. 

Wolfe, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA) (111) was 

established using either puro-shRNA STRADA to create a stable STRADA KD line or 

puro-shRNA scram to create a control line (KM41633P; SABiosciences), as previously 

described (12). Cells were cultured on poly-D-lysine-coated plates (10 µg/ml; Sigma-

Aldrich) in complete media consisting of DMEM/F12 (Invitrogen) supplemented with 

1% N2 (Invitrogen), 1% FBS (Sigma-Aldrich), 1% penicillin/streptomycin (Invitrogen), 

20 ng/ml basic fibroblast growth factor (Promega), and 5 µg/ml heparin (Sigma-Aldrich). 

To maintain stable transfection, selective pressure was applied with 6 µg/ml puromycin 

(Invitrogen). 

 

Mouse embryonic fibroblasts (MEFs) 

Lkb1+/+ and Lkb1-/- MEFs were a gift from the laboratories of L. Cantley (Beth Israel 

Deaconess Medical Center, Boston, Massachusetts, USA) and R. Shaw (Salk Institute for 

Biological Sciences, La Jolla, California, USA) (19, 23). Cells were cultured in DMEM 

(Invitrogen) supplemented with 10% FBS (Sigma-Aldrich) and 1% 

penicillin/streptomycin (Invitrogen). For protein quantification assays, MEFs were serum 

starved overnight to attenuate basal mTORC1 activity and pre-treated with AICAR (2 

mM; Cell Signaling) to stimulate AMPK for 2 hours prior to lysis (12). 
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Human fibroblast extraction and culture 

PMSE patient (3), parent (2), and normal control (1) fibroblasts were obtained from skin-

punch biopsies at the Clinic for Special Children in Lancaster, Pennsylvania, USA, 

following informed consent. Fibroblasts were extracted from tissue samples by 

incubation in 0.25% Trypsin/EDTA (Gibco) overnight at 4oC. The next day, epidermis 

was removed, and dermis was digested with Collagenase P (Roche) buffered in 130 mM 

sodium chloride (Sigma-Aldrich), 10 mM calcium acetate (Sigma-Aldrich), and 20 mM 

HEPES buffer (Gibco) for 30 minutes at 37oC. Then 0.5% Trypsin/EDTA (Gibco) was 

added, and the mixture was incubated at 37oC for an additional 10 minutes before 

neutralization with fibroblast culturing media, composed of DMEM (Gibco) 

supplemented with 10% FBS (Sigma-Aldrich), 10 mM HEPES buffer (Gibco), 1% 

penicillin/streptomycin (10,000 u/ml penicillin, 10 mg/ml streptomycin stock; Gibco), 

and 1% fungizone (250 µg/ml stock; Gibco). Fibroblasts were pelleted through 

centrifugation for 5 minutes at 1500 rpm, and the pellet was resuspended in fibroblast 

culturing media to obtain the desired cells. For protein quantification assays, fibroblast 

media was supplemented with CAMKK inhibitor STO-609 (5 µM; Tocris) and AMPK 

activator AICAR (2 mM; Cell Signaling) at 6 hours and 4 hours, respectively, prior to 

cell lysis, to enable isolation of STRADA-dependent inhibition of mTORC1 signaling. 

Rapamycin (100 nM; Cell Signaling) or p70S6Ki (PF-4708671, 10 µM; Pfizer 

Pharmaceuticals) was applied for 2 hours prior to cell lysis. 
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Western blotting 

Cells were lysed and lysates electrophoresed according to previously-established protocol 

(12). The following primary antibodies were used: rabbit polyclonal to LYK5 (1:500; 

Abcam), rabbit monoclonal to phospho-S6 ribosomal protein (Ser235/236, 1:1000; Cell 

Signaling), rabbit monoclonal to phospho-4EBP1 (Thr37/46, 1:1000; Cell Signaling), 

rabbit polyclonal to IRS1 (phospho S636 + S639, 1:500; Abcam), rabbit polyclonal to 

phospho-PAK1 (Ser144)/PAK2 (Ser141) (1:1000; Cell Signaling), rabbit polyclonal to 

phospho-LIMK1 (Thr508)/LIMK2 (Thr505) (1:1000; Cell Signaling), rabbit monoclonal 

to phospho-cofilin (Ser3, 1:1000; Cell Signaling), and rabbit monoclonal to GAPDH 

(1:1000; Cell Signaling). 

 

Immunocytochemistry 

Scram and STRADA KD mNPCs plated on coverslips and subjected to the described 

migration assay were fixed in 4% PFA at room temperature for 20 minutes, 

permeabilized with 0.3% Triton X-100 (Sigma) in PBS (Gibco), and blocked for 2 hours 

in 5% normal goat serum (Vector Laboratories). Cells were incubated in mouse anti-

GM130 monoclonal Ab (1:100; BD Transduction Laboratories) overnight at 4oC. Alexa-

Fluor 488 goat anti-mouse secondary Ab (Invitrogen) was applied for 1 hour at room 

temperature. Cells were then blocked in 1% bovine serum albumin (BSA; Sigma-

Aldrich) for 30 minutes. Phalloidin (1:40; Invitrogen) was applied for 20 minutes, 

followed by Hoechst nuclear stain (0.0001 µg/µl; Invitrogen). Cells were visualized and 

images captured using fluorescence microscopy, as specified above. Golgi-specific 
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labeling was confirmed by co-staining a subset of coverslips with rabbit anti-Giantin 

polyclonal Ab (1:500; Abcam) and Alexa-Fluor 594 goat anti-rabbit secondary Ab 

(Invitrogen). 

 

Human brain immunohistochemistry 

A single postmortem PMSE brain of a 7-month old female was procured from the Clinic 

for Special Children (Lancaster, Pennsylvania, USA). Cortical dysplasia and focal 

epilepsy syndrome cortex served as a non-PMSE epileptic control specimen (112). The 

specimens were fixed in 4% paraformaldehyde (PFA), embedded in paraffin, and cut into 

7-µm sections. Sections were probed with rabbit polyclonal anti-IRS1 (phospho 

S636+S639; Abcam) and processed for immunohistochemistry as reported previously 

(12).  

 

Migration assay 

mNPCs, MEFS, or human fibroblasts were plated on 6-well plates, chamber slides, or 

laminin-coated cover slips, coated with poly-D-lysine (mNPCs; Sigma-Aldrich) or poly-

L-lysine (fibroblasts; Sigma-Aldrich) and cultured in complete mNPC or human 

fibroblast media (specified above). Prior to the migration assay, cells were cultured for 

24 hours in serum-deplete media (1 ml complete media : 4 ml basal media; DMEM/F12 

for mNPCs or DMEM for fibroblasts; Gibco) to attenuate basal mTORC1 activity. 

Serum-deplete media was maintained for the duration of the migration assay. Rapamycin 
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(50 nM for mNPCs, 100 nM for fibroblasts) or p70S6Ki (10 µM) was applied for one 

hour prior to and throughout the duration of the experiment. A 200-µl micropipette tip 

was used to create a linear scratch across a confluent monolayer of cells (113). In PAK 

inhibitor migration analysis, doses ranging from 1-10 µM IPA-3 (Tocris Bioscience) 

were applied to Scram mNPCs for one hour prior to and throughout the duration of the 

experiment. Confirmatory Western p-cofilin signaling analysis was performed using 10 

mM IPA-3 for one hour and pre-treating with the ROCK inhibitor Y-27632 (10 µM; 

BioVision) for 12 hours prior to cell lysis, to isolate PAK-dependent LIMK 

phosphorylation. 

 

Treatment with AraC 

Mitotic inhibitor arabinofuranosyl cytosine (AraC, Cytosine β-D-Arabinofuranoside; 

Sigma) was used to inhibit mitosis of migrating cells, and demonstrate that the migration 

deficit seen with STRADA KD and rapamycin rescue were independent of any effects on 

cell proliferation. Wildtype (WT) mNPCs were plated in serum-starve media in 6-well 

plates, and pre-treated with AraC for 24 hours, after which a fresh dose of AraC was 

applied for 0h, 15h, or 20h, in order to replicate the time course of the migration assay. 

Cells were enzymatically de-adhered using 0.25% Trypsin-EDTA (Gibco) at each 

indicated treatment time, and Trypan Blue (Sigma) was used to visualize and count cells 

under light microscopy. The optimal effective anti-proliferative, non-apoptotic AraC 

dose (20 µM) was applied to Scram and STRADA KD mNPCs for 24 hours prior to and 

throughout the duration of the migration assay with rapamycin treatment. 
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Video capture in migration assay 

Migration of STRADA KD and Scram mNPCs was determined in chamber slides, within 

a micro-incubator (model CSMI; Harvard Apparatus; at 37oC) on an inverted microscope 

(Nikon TE300) equipped with a digital video camera (Evolution QEi; Media 

Cybernetics) (114). Images were taken every 5 minutes in the phase-contrast channel for 

20 hours. For each condition, three or four videos were taken across the scratch. 

 

G:F Actin Assay 

Cell lysates were prepared and actin was extracted and separated into G and F fractions 

using differential ultracentrifugation and a G-actin/F-actin In Vivo Assay Kit 

(Cytoskeleton), according to the manufacturer’s protocol. G and F actin fractions were 

then electrophoresed on a 4-15% SDS-PAGE gel (Bio-Rad) and transferred onto a PVDF 

membrane (Millipore) at 4oC overnight. G-actin/F-actin was assayed by Western blot 

using rabbit anti-actin polyclonal Ab (1:500; Cytoskeleton). 

 

In utero electroporation 

We used in utero electroporation (IUE) to transfect ventricular zone/subventricular zone 

(VZ/SVZ) cells in E14.0 C57BL/6J mouse embryos with GFP-tagged STRADA shRNA 

plasmid (8 µg/µl), as described previously (115). A subset of pregnant dams was injected 
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intraperitoneally with rapamycin (5 mg/kg, in vehicle solution composed of 5% PEG 

400, 5% Tween 80, 0.9% NaCl in sterile water; LC Laboratories) daily from E15.0 

through E18.0. Animals were sacrificed using CO2 overdose on E19.0, at which time 

brains were extracted from the embryos, fixed in 4% PFA, cryoprotected in a sucrose 

gradient, and frozen in Optimal Cutting Temperature solution (OCT, Tissue Tek). 20-µm 

coronal sections were cut on a cryostat (Leica CM 1950), stained with Hoechst 33342 

nuclear stain (0.0001 µg/µl; Invitrogen), and coverslipped in mounting media 

(Fluoromount-G; Southern Biotech). Images were taken using a Leica DMI6000 B 

fluorescent microscope with a Leica DFC360 FX camera. 

 

Quantitative Analysis 

Three independent observers quantified the percentage of GFP+ cells reaching the 

cortical plate, using the Image-Pro Plus 7.0 (Media Cybernetics) automatic count 

function for bright objects within an outlined region of interest, and this was verified by 

hand count. Localization of the cortical plate (CP) was determined by relative nuclear 

density.  

In still-image migration assays, three independent coverslip scratches were made 

per treatment condition per shRNA or disease condition, and three images were taken 

across each scratch at each timepoint. A blinded observer recorded ten measurements per 

image, yielding 90 measures per timepoint per condition (using Photoshop CS2; Adobe 

or Image-Pro Plus 7.0). Migration distances were determined by subtracting the distance 

between edges of the scratch at 15h from the distance at 0h and halving this value. 
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 For video migration assays, a blinded observer evaluated five representative 

leading-edge cells per video, and measured the distance translocated and directional 

angle at each 30-minute timepoint for the same cell, using Image-Pro Plus 7.0 software. 

Migration distance for each cell over the 20 hours recorded was measured as the sum of 

all 30-minute measures. Directional variance for each cell was calculated as the variance 

in the set of directional angles. Greater directional variance was determined to indicate 

reduced linear directionality. 

 In the Golgi compaction assay, a blinded observer used the outlining tool and area 

measurement function in Image-Pro Plus 7.0 to define Golgi area in each cell. The 

crescentic angle of Golgi subtended around the nucleus was calculated by measuring the 

angle between two rays each passing through one end of the Golgi, with a vertex at the 

center point of the nucleus. 

 To define relative levels of G and F actin, densitometric analysis was performed 

using ImageJ (NIH) software. Band densities were standardized to background pixel 

density for each image, and data are represented as a ratio of G:F actin (for STRADA 

depletion conditions) or F:G actin (for LKB1 depletion) in the respective KD or KO 

versus control. 

 

Statistics 

Data are presented in Table 1 as mean + s.e.m. Excel (Microsoft) and Prism 5 

(GraphPad) software programs were used for statistical analysis. In all comparisons, a P 
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value less than 0.05 was considered significant. Unpaired 2-tailed Student’s t tests were 

performed to determine significance for all individual measures, and served as the sole 

method of analysis for experiments set up as binary comparisons, including IUE and 

video migration measures. For all still migration measures and measures of Golgi area 

and crescentic angle, significance was determined by a 1-way ANOVA with a Bonferroni 

correction for multiple comparisons in the migration assays or a Dunnett post-hoc 

analysis to determine the extent of rapamycin or p70S6Ki rescue in the Golgi measures. 

 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Pennsylvania. All human studies were approved by the 

Institutional Review Board of Lancaster General Hospital (Lancaster, Pennsylvania, 

USA). Parents provided informed consent prior to their own and their children’s 

participation. 
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Results 

STRADA KD in mNPCs causes an mTORC1 and p70S6K-dependent migration 

defect in vitro 

We hypothesized that loss of STRADA causes a primary failure of neural progenitor cell 

migration. Thus, we developed a system to model cell migration in the setting of 

STRADA loss in vitro. We established stably-transfected mNPC lines, using puromycin-

resistant STRADA shRNA (STRADA shRNA-puroR, STRADA KD) for STRADA KD 

and control puromycin-resistant scrambled shRNA (Scram shRNA-puroR, Scram). 

STRADA depletion (more than 90%) and enhanced mTORC1 signaling (evidenced by 

enhanced phosphorylation of downstream effectors ribosomal S6 and 4EBP1 proteins) in 

the STRADA shRNA-puroR line was confirmed by Western analysis (Figure 3.1A).  

Cell migration in STRADA KD and Scram mNPC lines was defined in a 

modified wound-healing assay previously described in fibroblasts (113). A 200-ml 

micropipette tip was used to create a scratch gap in confluent mNPCs. The gap 

established opposing migratory leading edges so that measurements of cell migration 

across the gap could be determined from the time of the scratch (0h) to 15 hours later 

(15h). STRADA KD significantly reduced the gap closure at 15h, compared with Scram 

cells, suggesting that STRADA KD impairs mNPC migration. We next show that the 

effect of STRADA KD on gap closure can be rescued by the mTORC1 inhibitor 

rapamycin (50 nM) at 15h (Figure 3.1B,D; Table 3.1). In order to rule out the possibility 

that STRADA KD or rapamycin treatment produced differences in gap closure by 

altering cell mitotic rate, we applied the mitotic inhibitor arabinofuranosyl cytosine 
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(AraC, 20 µM) 24 hours prior to and during the course of migration. Following AraC 

treatment, STRADA-deplete mNPCs continued to exhibit a significant migration deficit, 

rescued by rapamycin, suggesting that STRADA’s role in mNPC migration is mTORC1-

dependent and not altered by changes in cell mitosis (Table 3.1). 

To further define the signaling mechanisms causing impaired migration, we next 

hypothesized that altered migration observed in STRADA KD mNPCs was mediated by 

the mTORC1 substrate p70S6K, due to its putative association with actin dynamics and 

cell migration (116, 117). mNPCs were treated with a novel selective p70S6K inhibitor 

(p70S6Ki), PF-4708671 (72). P70S6Ki (10 µM) was applied one hour prior to the 

initiation of the assay (-1h) and maintained until 15h. Treatment with p70S6Ki provided 

a full rescue of the STRADA KD-associated migration defect and resulted in a 

significantly greater distance migrated by STRADA KD cells at 15h (Figure 3.1C-D, 

Table 3.1). Thus, altered migration of STRADA KD mNPCs is mediated through a 

p70S6K-dependent mechanism. 

 

STRADA KD impairs mNPC pathfinding 

We next analyzed the distance migrated and directionality of individual STRADA KD 

mNPCs in real time using video time-lapse microscopy. Movement of multiple, 

individual STRADA KD and Scram mNPCs was captured every five minutes for 20 

hours. A blinded observer evaluated five representative leading-edge cells per video and 

measured for each cell the distance traveled and direction angle relative to a unit circle, 

over each 30-minute epoch. Total distance traveled for each cell was calculated as the 
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sum of all distances measured over 20 hours, and directionality was calculated as the 

variance of the set of angles over that time period.  

While most Scram cells moved forward in a linear fashion, STRADA KD cells 

moved in divergent, non-linear directions, often oriented away from the opposing cell 

front (Figure 3.2A). In fact, to our surprise, STRADA KD mNPCs translocated a greater 

overall distance than Scram cells (Figure 3.2B, Table 3.1). However, compared to 

Scram cells, STRADA KD resulted in a profound impairment in directionality, with 

STRADA KD mNPCs exhibiting significantly greater directional variance than controls 

(Figure 3.2D, Table 3.1). STRADA KD mNPCs migrated on average 1.5-fold greater 

distance and exhibited a nearly 3-fold increase in directional variance compared to Scram 

cells. Thus, in the absence of functional STRADA, individual mNPCs lose the ability to 

follow a linear migratory pathway. These results demonstrate that STRADA plays a 

pivotal role in establishing linear directionality and pathfinding of migrating mNPCs.  

 

STRADA mediates mNPC pathfinding via mTORC1 signaling 

We next hypothesized that STRADA regulates mNPC pathfinding via mTORC1 

inhibition. Indeed, rapamycin treatment significantly reduced total distance migrated by 

STRADA KD cells, as well as diminished directional variance compared with untreated 

STRADA KD mNPCs. (Figure 3.2C,E; Table 3.1). Overall, rapamycin enhanced linear 

directionality, and enabled more uniform migration of STRADA KD mNPCs. Thus, 

STRADA drives migrating cell directionality by inhibiting mTORC1 signaling. 
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STRADA regulates mNPC polarization through mTORC1/p70S6K signaling 

Since STRADA KD impairs mNPC directionality, and since pathfinding depends in large 

measure on appropriate establishment of cell polarity, we next investigated whether 

STRADA KD alters mNPC polarity. It is well established that the Golgi apparatus is 

compacted and localized forward of the nucleus in the direction of migration, i.e., the 

cell's leading edge, during active motility of fibroblasts and neurons (118) and that cell 

polarity depends on intact structure, function, and localization of the Golgi apparatus 

(119) (69, 73). Therefore, we used Golgi compaction as a bioassay to measure 

polarization of mNPCs. 

Ten hours after initiation of migration, cells were fixed and immunostained for 

the Golgi marker GM130, and co-labeled with Hoechst nuclear stain and phalloidin for 

actin cytoskeleton visualization. A blinded observer measured Golgi area and the 

crescentic angle subtended by the Golgi around each cell’s nucleus. We hypothesized 

that if STRADA KD disrupted neural progenitor polarization, STRADA-deplete mNPCs 

would exhibit Golgi dispersion (greater area and crescentic angle). In fact, STRADA KD 

significantly increased Golgi area and the crescentic angle of the Golgi around the 

nucleus compared with Scram cells (Figure 3.3A-B,E-F; Table 3.1). In a separate 

experiment, Scram and STRADA KD mNPCs were treated with rapamycin (50 nM) or 

p70S6Ki (10 µM). Enhanced Golgi area and crescentic angle in STRADA KD mNPCs 

was partially rescued with rapamycin and fully rescued with p70S6Ki treatment (Figure 

3.3C-F; Table 3.1). Thus, reduced Golgi compaction associated with STRADA 
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depletion suggests that STRADA plays a critical role in polarizing migrating mNPCs, in 

an mTORC1- and p70S6K-dependent manner. 

 

STRADA promotes inhibitory cofilin phosphorylation through IRS1 

We hypothesized that STRADA contributes to cell polarization and pathfinding in 

mNPCs via p70S6K phosphorylation of IRS1, a recognized downstream target of 

p70S6K that signals to the actin cytoskeleton machinery via cofilin (67, 120). Indeed, 

Western analysis demonstrated that STRADA KD in mNPCs led to enhanced P-IRS1 

levels (Figure 3.4B). To confirm our findings in human brain, we investigated the level 

of IRS1 phosphorylation in PMSE patient cortex and found that P-IRS1 was enhanced in 

PMSE compared with control cortex (Figure 3.4A). Next, we evaluated the cofilin 

signaling pathway, which is modulated by IRS1 signaling via PAK1 and LIMK. In the 

setting of STRADA depletion and enhanced inhibitory phosphorylation of IRS1, PAK1 

phospho-activation (indicated by autophosphorylation at Ser 144 residue) was reduced, 

leading to diminished LIMK phosphorylation and diminished phospho-inhibition of 

cofilin (Figure 3.4B). To validate p70S6K/IRS1 as a mechanistic link between mTORC1 

and the cofilin signaling pathway, we evaluated the phosphorylation status of IRS1 and 

cofilin in a subset of STRADA KD mNPCs treated with p70S6Ki (10 µM). Inhibition of 

p70S6K rescued enhanced IRS1 phosphorylation as well as diminished cofilin 

phosphorylation in the STRADA-deplete cells, indicating that STRADA’s role in cofilin 

signaling operates through p70S6K/IRS1 (Figure 3.4C).  
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Because signaling from IRS1 to LIMK/cofilin occurs via PAK1, which in normal 

cells is activated during migration, we hypothesized that pharmacological blockade with 

a PAK1 inhibitor would attenuate mNPC motility. Indeed, application of the PAK 

inhibitor IPA-3 (121) caused a migration deficit in Scram mNPCs similar to that seen in 

the STRADA KD line, and reduced distance migrated in a dose-dependent manner 

(Figure 3.4D, Table 3.1). Using a Rho kinase (ROCK) inhibitor (Y-27632) (122) to 

attenuate compensatory LIMK phosphorylation in the absence of PAK1 activation, we 

further show that PAK1 inhibition results in a decrease in phosphorylated cofilin in 

Scram mNPCs, mirroring the signaling pattern of STRADA KD (Figure 3.4E). These 

data demonstrate that STRADA inhibits mTORC1/p70S6K activity, resulting in active 

IRS1 and consequent PAK1 phosphorylation of LIMK, which phosphorylates and 

inhibits cofilin (mechanism proposed in Figure 3.5). STRADA inhibition of cofilin 

promotes migrating cell linear directionality. Conversely, loss of STRADA leads to 

enhanced IRS1 phosphorylation, reduced phospho-inhibition of cofilin, and impaired 

motility. 

 

STRADA and LKB1 exhibit dissociable effects on cofilin 

Loss of LKB1 in cancer cell lines as well as in Lkb1-null MEFs is associated with 

enhanced cell migration, in direct contrast to our results demonstrating impaired 

migration in STRADA KD mNPCs. Thus, since STRADA has only been defined 

previously as an activator of LKB1 (1, 6-8, 14, 23), we investigated several signaling 

nodes both upstream and downstream of PAK1 in Lkb1-/- versus Lkb1+/+ MEFs (19, 23), 
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for comparison with signaling patterns in our STRADA KD mNPCs. In fact, in contrast 

to STRADA KD mNPCs, Lkb1-/- MEFs exhibited distinct and opposite patterns of PAK1, 

LIMK, and cofilin phosphorylation, with enhanced P-PAK1 (Ser 144), P-LIMK and P-

cofilin, suggestive of activated PAK1 (Figure 3.4B). These results demonstrate that 

phosphorylation patterns associated with STRADA versus LKB1 depletion diverge at the 

level of PAK1, suggest opposing influences of STRADA and LKB1 on signaling to 

cofilin, consistent with opposite functional effects of STRADA and LKB1 on cell 

migration. 

 

Fibroblasts from PMSE patients exhibit aberrant IRS1/cofilin signaling 

We next hypothesized that the effects of STRADA loss on IRS1 and cofilin 

phosphorylation in mNPCs would be replicated in human PMSE cells. Thus, we 

generated fibroblasts from skin punch biopsy samples from control (STRADA+/+; n=1) 

and PMSE (STRADA-/-; n=3) subjects (Figure 3.6A). Compared to control cells, PMSE 

fibroblasts exhibit enhanced S6 and IRS1 phosphorylation and diminished cofilin 

phosphorylation, directly corroborating the signaling mechanism defined in STRADA 

KD mNPCs (Figure 3.4F). These results were in contrast to the phosphorylation profile 

of cofilin seen in Lkb1-/- MEFs, suggesting a STRADA-specific effect. 

 

PMSE patient fibroblasts exhibit a migration defect 
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We next performed the wound-healing migration assay in human PMSE and control 

fibroblasts as a strategy to further corroborate the effects of STRADA KD in mNPCs. 

PMSE and control fibroblasts were treated with rapamycin (100 nM) or p70S6Ki (10 

µM) throughout the duration of the assay (ending at 15h). The distance migrated by 

PMSE fibroblasts was significantly reduced relative to control fibroblasts, and this effect 

was reversed with rapamycin or p70S6Ki treatment, suggesting a dependence on 

mTORC1/p70S6K signaling (Figure 3.6B-C, Table 3.1). Thus, both the signaling and 

functional effects of STRADA loss identified in mNPCs are robustly replicated in human 

PMSE cells. We then evaluated the effects of p70S6Ki treatment of these cells on the 

phosphorylation status of S6 and IRS1, and found that inhibiting p70S6K in PMSE 

fibroblasts reduces phosphorylation of both effectors, also consistent with our proposed 

mechanism (Figure 3.6D). Importantly, parallel signaling patterns and migration deficit 

phenotypes in STRADA KD mNPCs and PMSE fibroblasts demonstrate that our in vitro 

murine data provide translational insights into PMSE pathogenesis and the role of 

STRADA in human brain development. 

 

STRADA and LKB1 differentially regulate actin polymerization 

We hypothesized that if STRADA functions to regulate cofilin activity, loss of STRADA 

should change the composition of actin structure. Notably, polymerized or filamentous 

(F) actin plays a critical role in establishing polarity of migrating cells (73). To test this, 

we measured the relative contents of depolymerized globular (G) versus polymerized F 

actin in STRADA KD and Scram mNPCs using a differential centrifugation assay. As 
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expected, in association with reduced cofilin phosphorylation in STRADA KD mNPCs, 

the ratio of G:F actin was approximately 2.91 times greater in STRADA KD than in 

Scram mNPCs (Figure 3.7A). Thus, loss of cofilin inhibition associated with STRADA 

KD in migrating neurons disrupts actin polymerization and establishment of F actin. We 

next performed the differential centrifugation actin assay on PMSE versus control 

fibroblasts, and found that PMSE fibroblasts exhibit an approximately 12.59-fold greater 

ratio of G:F actin than control cells (Figure 3.7B). We submit that STRADA promotes 

the phosphorylation and inhibition of cofilin, enabling actin polymerization and 

consequent migrating cell polarization and linear directionality. Importantly, these results 

demonstrate that impaired actin polymerization is a common mechanism highly 

associated with the absence of STRADA both in human PMSE fibroblasts and in 

STRADA KD mNPCs. Interestingly, Lkb1-/- MEFs exhibited the opposite pattern, with a 

predominance of polymerized actin. Compared with Lkb1+/+ MEF control cells, the Lkb1-

/- line exhibited a 2.78-fold greater ratio of F:G actin (in contrast to the trend seen in 

conditions of STRADA depletion), consistent with enhanced cofilin phosphorylation and 

increased migration associated with LKB1 depletion (Figure 3.7C).  

 

Rapamycin prevents heterotopic neurons associated with STRADA KD in 

developing cortex 

Since STRADA modulates IRS1 signaling through mTORC1 inhibition, we 

hypothesized that pharmacological mTORC1 inhibition could rescue aberrant cortical 

lamination in a mouse PMSE model (12). STRADA shRNA knockdown (KD; GFP-



 78 

tagged shRNA plasmid targeting STRADA) by IUE on embryonic day 14 (E14) in the 

mouse cortex results in heterotopic neurons in the VZ/SVZ that fail to migrate to the CP 

by E19. Transfected pregnant dams were treated with daily intraperitoneal injections of 

rapamycin (5 mg/kg) or vehicle control solution (0.9% saline) from E15 until sacrifice at 

E19. While vehicle-treated pups exhibited a cortical malformation with the majority of 

STRADA KD neurons failing to migrate into the CP at E19, rapamycin treatment 

significantly rescued the cortical migratory defect and enabled STRADA KD neurons to 

reach the CP (Figure 3.8, Table 3.1). These findings support a mechanistic link between 

enhanced mTORC1 signaling and aberrant neuronal migration in PMSE.  
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Discussion 

 We demonstrate that STRADA functions as pivotal regulator of polarity and 

pathfinding in migrating neurons by signaling from IRS1 to cofilin and promoting actin 

polymerization. Loss of STRADA in PMSE patient fibroblasts or following shRNA 

knockdown in mNPCs leads to mTORC1 activation and enhanced phospho-inhibition of 

IRS1 via p70S6K, which in turn diminishes PAK1 phospho-activation of LIMK. 

Activated PAK1 phosphorylates and activates LIMK, which phosphorylates and inhibits 

cofilin, promoting actin polymerization, an essential process in leading edge formation 

and establishment of polarity in migrating neurons and fibroblasts (73, 123-125). 

Reduced LIMK activation leads to diminished phospho-inhibition of cofilin and 

enhanced actin depolymerization. Thus we submit that STRADA depletion disrupts 

neuronal polarity and consequently, pathfinding and migration via effects on actin. 

Detection of enhanced P-IRS1 in human PMSE cortex supports the hypothesis that 

disruption of this signaling mechanism occurs in PMSE during brain development, 

resulting in failed neuronal migration and consequent heterotopic neurons in the 

subcortical white matter. The rescue of heterotopic neurons following STRADA KD with 

rapamycin suggests dependence of PMSE phenotype on mTORC1-p70S6K signaling and 

yields an important therapeutic target. 

Our studies define STRADA as a critical modulator of mTORC1-p70S6K-IRS1 

signaling in neural progenitor cells. The rescue of impaired migration with rapamycin 

following STRADA KD in vitro and in vivo strongly supports an mTORC1-dependent 

mechanism, further substantiated by rescue in vitro with an inhibitor of p70S6K, which 
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reverses the phospho-inhibition of IRS1. p70S6K signaling has been identified as an 

essential pathway in cell migration, contributing to cell motility and actin filament 

remodeling (116). P-p70S6K phosphorylates IRS1, driving a decrease in PI3K-mediated 

activation of the Rho GTPases Rac1 and Cdc42 and corresponding decrease in PAK1 

activation, an effect associated with impaired cell migration in TSC2-depleted 

fibroblasts, downstream of STRADA (66, 67, 126). TSC2-null MEFs exhibit impaired 

cell motility and enhanced mTORC1 activation, suggesting a link between enhanced 

mTORC1-p70S6K-IRS1 signaling and diminished cell motility (66). In our STRADA 

KD studies, diminished downstream phospho-signaling through PAK1 and LIMK leads 

to decreased cofilin phosphorylation and disrupted actin polymerization, evidenced by an 

increase in the relative proportions of G to F actin, which is corroborated in PMSE 

patient fibroblasts. In fact, the phenotype of STRADA KD in mNPCs is reminiscent of 

cells expressing mutant PAK1, which exhibit disrupted pathfinding (127). 

Our findings of impaired cell migration in the setting of STRADA depletion are 

in direct contrast to enhanced cell migration reported in LKB1 depletion models (128), 

suggesting dissociable effects of LKB1 on cell migration in the presence or absence of 

STRADA that shed light on these phenotypic differences. We thus propose a new model 

for the interaction between STRADA and LKB1, wherein STRADA binding LKB1 

modulates LKB1 to preferentially activate AMPK and therefore inhibit mTOR, providing 

a downstream activation of PAK1 via IRS1, PI3K, and Rho GTPases. When STRADA is 

present, PAK1 activation through the mTORC1 pathway is dominant and cofilin is 

phosphorylated and inhibited, favoring actin polymerization and establishment of 

migrating cell polarity. In contrast, in the absence of STRADA, PAK1 is inhibited dually, 
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through enhanced mTORC1 signaling and consequent inhibition of IRS1/p70S6K-

dependent activation of PAK1, and possibly through direct LKB1 inhibition of PAK1. 

Indeed, a recent study has defined a direct inhibitory link between LKB1 and PAK1, 

through phosphorylation at PAK1 Thr 109 (128). In the absence of LKB1, the 

predominant effect is PAK1 activation, as a consequence of removing LKB1 direct 

inhibition of PAK1. In this case, cofilin phospho-inhibition by activated LIMK is 

increased, resulting in enhanced actin polymerization and increased migration. Thus, we 

propose that under normal circumstances, STRADA binding to LKB1 favors PAK1 

activation to drive polarity and pathfinding in migrating neurons. This is consistent with 

previous studies demonstrating that induction of STRADA in intestinal epithelial cells 

was sufficient to cause cell-autonomous establishment of polarity in an LKB1-dependent 

manner (71). Interestingly, a recent study has demonstrated that overexpressing 

STRADA in the setting of LKB1 loss in cancer cells could activate PAK1 and induce cell 

polarization (110). The dependence of this effect on mTORC1/p70S6K and IRS1 

signaling, as suggested by our work, will need to be considered in further experiments. In 

a previous study, we have shown that STRADA depletion is associated with a 

predominance of LKB1 in the nucleus, consistent with a role for STRADA in nucleo-

cytoplasmic transport of LKB1 (7, 8, 12). Because each component of our defined 

signaling mechanism (Figure 3.5) can function in nucleus as well as cytoplasm, further 

studies are needed to determine the particular effects of subcellular localization on the 

interaction between LKB1 and PAK1, and the consequent polymerization state of actin 

(1, 129).  
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Using PMSE as a model disease, we have defined a novel mechanism linking 

STRADA and mTOR signaling to actin assembly, cell polarization, neuronal migration, 

and cortical development, which may be functional in other mTORC1-associated 

neurodevelopmental disorders. We propose that STRADA plays a critical role in neural 

progenitor cell migration during cortical development, and likely accounts for heterotopic 

neurons in PMSE. In the future, targeting functional nodes along the STRADA/mTORC1 

cascade could offer plausible therapeutic approaches to inhibit aberrant IRS1/cofilin 

signaling in other mTORC1-associated neurodevelopmental disorders such as TSC or 

autism-macrocephaly syndrome.  
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Table 3.1. Data Quantification and Statistical Measures for STRADA Migration
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Figure 3.1. STRADA KD is associated with migration deficit in mNPCs, in an 
mTORC1- and p70S6K-dependent manner. 
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Figure 3.1. STRADA KD is associated with migration deficit in mNPCs, in an 
mTORC1- and p70S6K-dependent manner. A, STRADA depletion and enhanced 
mTORC1 signaling in a stably-transfected STRADA shRNA-puroR (STRADA KD) 
mNPC line used for migration assays. STRADA KD cells exhibit reduced expression of 
STRADA and enhanced phosphorylated S6 (P-S6) and 4EBP1 (P-4EBP1) protein levels, 
indicating mTORC1 activity, relative to Scram shRNA-puroR (Scram) control cells. 
GAPDH was used as an internal loading control. B, Untreated STRADA KD mNPCs 
exhibit reduced migration in a wound-healing migration assay, relative to Scram mNPCs. 
n = 3 wells, 90 measures per condition at each timepoint, ***P < 0.001. Treatment with 
either rapamycin or C, p70S6Ki significantly increases the distance migrated by 
STRADA KD cells, confirming that STRADA regulates mNPC migration through 
mTORC1/p70S6K signaling. n = 3 wells, 90 measures per condition at each timepoint, 
***P < 0.001. D, Representative images depict gap closure in each transfection (Scram 
or STRADA KD) and treatment (Untreated, Rapa, and p70S6Ki) condition from the time 
the scratch is made (0h) to the endpoint of measurement (15h). Scale bar: D, 250 µm. 
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Figure 3.2. STRADA-deplete migrating mNPCs exhibit impaired linear directionality. A, 
The migratory paths of individual cells recorded every 30 minutes for 20 hours in each 
panel are represented by individual colors, and white arrows indicate the composite 
migration vectors of each cell. Scram mNPCs migrate in a predominantly uniform linear 
manner to close the gap created in the wound-healing migration assay. STRADA KD 
mNPCs migrate in a haphazard fashion without consistent linear direction. Treatment 
with rapamycin restores linear directionality in these cells. B-E, Quantitative analysis 
reveals a significant increase in B, overall distance migrated as well as D, directional 
variance in STRADA KD mNPCs. C,E, These effects are both attenuated with 
rapamycin treatment. n = 15 cells for untreated STRADA KD, 20 cells for each other 
condition, ***P < 0.001. Scale bar: A, 100 µm. 
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Figure 3.3. STRADA depletion in mNPCs impairs polarization capacity, evidenced by 
Golgi dispersion. A, Representative immunofluorescent images demonstrate compaction 
of Golgi (indicated by GM130) forward of the nucleus toward the leading edge in 
migrating Scram mNPCs, and B, dispersion of the Golgi around the nucleus with failure 
to establish cell polarity in migrating STRADA KD mNPCs. Golgi compaction is largely 
restored in STRADA KD cells with C, rapamycin or D, p70S6Ki treatment. White 
arrowheads indicate representative Golgi bodies in each panel. E, Quantification of Golgi 
area as a measure of compaction reveals significantly increased area in STRADA KD 
compared with Scram mNPCs, attenuated with rapamycin or p70S6Ki treatment. n = 640 
cells for Scram, 600 cells for untreated STRADA KD, 300 cells for Rapa-treated 
STRADA KD, 360 cells for p70S6Ki-treated STRADA KD, ***P < 0.001, **P < 0.01. 
F, Similarly, quantification of crescentic angle subtended by Golgi around the nucleus 
reveals greater dispersion (larger angle) in STRADA KD mNPCs, attenuated with 
rapamycin or p70S6Ki treatment. Taken together, these results suggest that STRADA 
mediates migrating mNPC capacity to polarize, in an mTORC1-/p70S6K-dependent 
manner. n = 640 cells for Scram, 600 cells for untreated STRADA KD, 300 cells for 
Rapa-treated STRADA KD, 360 cells for p70S6Ki-treated STRADA KD, ***P < 0.001, 
*P < 0.05. Scale bar: (in A) A-D, 50 µm. 
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Figure 3.4. STRADA regulates cell migration through IRS1 signaling to cofilin, 
dissociable from LKB1’s regulation of cofilin. 
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Figure 3.4. STRADA regulates cell migration through IRS1 signaling to cofilin, 
dissociable from LKB1’s regulation of cofilin. A, PMSE patient cortex exhibits enhanced 
expression of P-IRS1 relative to control epileptic cortex, linking aberrant mTORC1 
signaling associated with STRADA loss in the brain to the cofilin signaling pathway, via 
IRS1. B, Western analysis reveals enhanced phosphorylation of S6 and IRS1, and 
diminished autophosphorylation of PAK1 (Ser 144) and phosphorylation of LIMK and 
cofilin, in STRADA KD mNPCs. In contrast, the phosphorylation pattern of Lkb1-/- 
MEFs diverges from that of STRADA KD at the level of PAK1. Lkb1-/- MEFs exhibit 
enhanced phosphorylation of S6 and IRS1, but also enhanced phosphorylation of PAK1, 
LIMK, and cofilin, indicating dissociable roles for STRADA and LKB1 in the cofilin 
signaling pathway. GAPDH serves as an internal loading control. C, p70S6Ki rescues 
aberrant IRS1/Cofilin signaling in STRADA KD mNPCs. Compared with Scram control 
cells, untreated STRADA KD mNPCs exhibit enhanced phosphorylation of S6 and IRS1, 
with diminished inhibitory phosphorylation of cofilin. Treatment with p70S6Ki rescues 
these effects, indicating a p70S6K dependence of this mechanism. GAPDH serves as an 
internal loading control. D, Application of the PAK inhibitor IPA-3 at increasing doses 
(1-10 µM) in Scram mNPCs produces a migration defect at 10h and 20h that mimics that 
caused by STRADA KD, implicating PAK1 as a key operator in this effect, consistent 
with the signaling mechanism proposed. n = 3 wells, 90 measures per condition at each 
timepoint, ***P < 0.001. E, Reduced cofilin phosphorylation caused by PAK inhibition 
with ROCK inhibition. To isolate the effects of PAK inhibition with IPA-3 treatment on 
cofilin phosphorylation, ROCK inhibitor Y-27632 (10 µM) was applied 12 hours prior to 
1-hour treatment with IPA-3 (10 µM). ROCK inhibition alone (R) reduces cofilin 
phosphorylation relative to untreated cells (U), and PAK inhibition (R+P) provides 
further reduction, indicating an independent effect of PAK on cofilin phosphorylative 
inhibition. GAPDH serves as an internal loading control. F, PMSE patient fibroblasts 
(PMSE; STRADA-/-) exhibit enhanced phosphorylation of S6 and IRS1, and diminished 
phosphorylation of cofilin, relative to control (CTL; STRADA+/+) fibroblasts, supporting 
the mechanism established in STRADA KD mNPCs. GAPDH serves as an internal 
loading control. Scale bars: A, 50 µm (top), 10 µm (bottom). 
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Figure 3.5. We propose that STRADA inhibits mTORC1/p70S6K, which promotes 
Rac1/Cdc42 activation of PAK1 through P-IRS1/PI3K signaling, activating LIMK, and 
inhibiting cofilin. STRADA-dependent phosphorylative inhibition of cofilin promotes 
actin polymerization, which enables migrating cells to polarize by establishing an F-actin 
based leading edge to drive linear directionality. LKB1 independently phosphorylates 
and inhibits PAK1, producing the opposite pattern of phosphorylation at the level of and 
downstream of this node as a consequence of LKB1 versus STRADA depletion.
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Figure 3.6. PMSE fibroblasts exhibit enhanced mTORC1/p70S6K activity and IRS1 
phosphorylation and impaired migration, rescued with mTORC1 or p70S6K inhibition. 
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Figure 3.6. PMSE fibroblasts exhibit enhanced mTORC1/p70S6K activity and IRS1 
phosphorylation and impaired migration, rescued with mTORC1 or p70S6K inhibition. 
A, Enhanced mTORC1 activity in PMSE fibroblasts. Western analysis performed on 
control (CTL; STRADA+/+), heterozygous STRADA (HET; STRADA+/-), and PMSE 
patient (PMSE; STRADA-/-) fibroblasts reveals enhanced P-S6, indicative of mTORC1 
activity level, in HET compared to CTL fibroblasts, and further enhanced P-S6 in PMSE 
fibroblasts. Each band represents a fibroblast line derived from a separate donor. 
GAPDH serves as an internal loading control. B, In a wound-healing migration assay, 
untreated PMSE fibroblasts demonstrate impaired migration at 15h, compared with 
controls, corroborating the deficit associated with STRADA KD in mNPCs. C, PMSE 
fibroblast migration is fully rescued by treatment with rapamycin or p70S6Ki. n = 3 
wells, 90 measures per condition at each timepoint, ***P < 0.001, **P < 0.01. D, 
p70S6K inhibition reduces enhanced S6 and IRS1 phosphorylation in PMSE fibroblasts. 
Western analysis was used to quantify P-S6 and P-IRS1 in Control (CTL) and PMSE 
patient (PMSE) fibroblasts, with (P) and without (U) p70S6Ki treatment. Untreated 
PMSE fibroblasts exhibit greater P-S6 and P-IRS1 than CTL cells, and these effects are 
attenuated with p70S6K inhibition, suggesting the efficacy of this mechanism as a 
potential therapeutic approach. GAPDH serves as an internal loading control. Scale bar: 
B, 250 µm. 
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Figure 3.7. STRADA and LKB1 differentially regulate actin dynamics. A, Analysis of G 
and F actin fractions reveals a 2.91-fold greater G:F ratio in STRADA KD compared 
with Scram mNPCs, suggesting diminished capacity of cells to polymerize actin in the 
absence of STRADA, consistent with enhanced cofilin activity. B, Actin analysis reveals 
that PMSE fibroblasts exhibit a 12.59-fold enhanced G:F actin ratio compared with 
controls, supporting the actin-based mechanism of aberrant migration proposed in 
mNPCs and confirming this STRADA-specific role in actin polymerization across 
different cell types, fibroblasts in addition to mNPCs. C, In contrast to STRADA-
depleted mNPCs and PMSE fibroblasts, Lkb1-/- MEFs show the opposite pattern of actin 
polymerization, with a 2.78-fold greater F:G ratio compared with Lkb1+/+ controls, 
consistent with diminished cofilin activity.  
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Figure 3.8. Inhibition of mTORC1 with rapamycin rescues the cortical lamination defect 
associated with STRADA KD in the developing mouse brain. A-B, Vehicle-(0.9% saline) 
injection does not alter cortical lamination defect at E19 induced by IUE transfection 
with GFP-shRNA STRADA at E14. The majority of transfected cells remain in the 
ventricular/subventricular zone (VZ/SVZ) and fail to reach the cortical plate (CP). C-D, 
Rapamycin treatment of GFP-shRNA STRADA transfected animals from E15 to E18 
prevents the laminar defect, and the majority of GFP+ cells reach the CP by E19. E, 
Percentage of GFP-shRNA STRADA transfected cells reaching the CP at E19 following 
rapamycin (Rapa) versus saline (Vehicle) treatment. ***P < 0.001. White arrowheads 
indicate regions of GFP+ cells in each panel. Scale bar: (in A) A-D, 100 µm. 
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CHAPTER 4 
 

 

GENERATING A TRANSGENIC MOUSE MODEL OF PMSE 
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 PMSE patients present with intractable, multifocal epilepsy, starting in infancy 

(61). Similarly, seizures are a common phenotypic manifestation of TSC, often 

presenting in association with cortical tubers (29, 130, 131). In order to most effectively 

model PMSE and investigate the role of STRADA in cortical development and epilepsy, 

we are generating de novo a STRADA knockout (KO) mouse, in collaboration with Penn 

Transgenic Facility. 

We designed a transgenic floxed construct to replicate the deletion seen in PMSE 

patients, with loxP sequences flanking exons 9-13 of the STRADA gene, which shares a 

high degree of homology between mice and humans. In humans, this deletion results in a 

lack of STRADA expression, producing an unstable variant of the protein (5, 12). Our 

construct was transformed into embryonic stem (ES) cells generated from a C57BL/6 

mouse, neomycin selection was applied, and resulting clones were confirmed to carry the 

transgene via Southern analysis (Figure 4.1). The transformed ES cells were injected 

into the blastocyst of a BALB-C albino mouse, and chimeric mice were generated, with 

white fur indicating BALB-C background and black fur indicating the presumed 

percentage of transgenic C57BL/6 carriage (for a diagram of this process, see Figure 

4.2). Chimeric males with >75% black fur were mated to wildtype (WT) C57BL/6 

females, and black F1 offspring were selected from agouti littermates and genotyped 

using Southern analysis. We confirmed carriage of the STRADA KO transgene in two F1 

offspring (STRADA+/fl), which we are breeding to generate a KO line (Figure 4.3). 

Subsequent generations are evaluated for carriage of the transgenic floxed STRADA allele 

through PCR detection of the neomycin resistance gene (NeoR) (Figure 4.4). Carriers are 

then evaluated for heterozygosity or homozygosity through Southern analysis. 



 97 

Homozygous floxed mice (STRADAfl/fl) will be mated to Cre recombinase-expressing 

(Cre) mice to yield the knockout (STRADAfl/fl;Cre+/- or STRADAfl/fl;Cre+/+), and 

homozygous floxed mice not mated to Cre partners will be used as controls 

(STRADAfl/fl;Cre-/-) (See Figure 4.5 for a schematic). If our KO mouse is non-viable, we 

will create a conditional KO by mating the STRADAfl/fl mouse to a nestin promoter-driven 

or drug-inducible promoter-driven Cre mouse. Additionally, we will perform focal KO in 

cortex using IUE with a Cre plasmid in the STRADAfl/fl mice not mated to Cre partners, in 

order to assess specifically the effects of STRADA gene KO in the developing brain, in a 

cell-autonomous manner. 

We anticipate that focal KO in the STRADAfl/fl mice will provide an effective way 

to evaluate the implications of failed neuronal migration in cortical epileptogenesis and 

thus model seizures in PMSE. Bai and colleagues demonstrated that knockdown of 

Doublecortin (DCX), a microtubule-associated protein that plays a key role in migration, 

using RNAi in IUE results in a subcortical band heterotopia (SBH) (132). Interestingly, 

this is associated with aberrant neural firing patterns in the region of cortex overlying the 

SBH. Calcium imaging recording of neurons in the cortical area of failed migration 

revealed that these cells display both greater activity and greater co-activity, indicating 

enhanced synchronization, suggestive of epileptogenic activity (133). Preliminary 

electrophysiological analysis using calcium imaging in slice preparations from our IUE-

generated STRADA KD mice suggests that STRADA loss is associated with regional 

hyperactivity in cortical areas overlying retention of transfected cells in VZ/SVZ. 

Particularly in a high-potassium (5.5 mM K+) artificial cerebrospinal fluid (aCSF) 

solution, we found a pattern similar to that generated by DCX knockdown, of enhanced 
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neural firing and neural synchronicity, in the cortical area experiencing failed migration 

of STRADA KD cells (Figure 4.6). Since we have demonstrated that STRADA 

depletion impairs neuronal migration (see Chapter 3), and since appropriate neuronal 

migration during development is critical to the establishment of effective cortical 

networks, we hypothesize that this mechanism may account at least in part for the severe 

epilepsy experienced by patients with PMSE (108, 133). Evaluation of behavioral 

patterns and neural activity in the STRADA KO animals will provide an ideal platform 

for investigation of this mechanism. 

 With the generation of a STRADA KO mouse, we will be able to evaluate more 

effectively the phenotype associated with STRADA loss and test multiple therapeutic 

options. Lifespan, head circumference, brain and body weights, metabolic panels, and 

behavioral phenotype will be evaluated in this strain. A likely epileptic phenotype will be 

assessed through video/EEG recording and calcium imaging of cortical and hippocampal 

slice preparations. Additionally, it will be important to determine the capacity for 

treatment with rapamycin and other mTOR inhibitors. Immunohistochemical analysis of 

mTOR activity, cortical lamination, and neuronal differentiation profiles in KO brain 

specimens will allow comparison between this model and the neuropathological patterns 

seen in PMSE brain. Through our endeavors, we hope to delineate the role of STRADA 

in cortical development and epilepsy, and optimize biologically-targeted therapies for 

patients with mTOR-associated neurodevelopmental disorders, who are often refractory 

to standard antiepileptic drugs. 
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Figure 4.1. Southern blotting confirms several clones of transformed ES cells to carry 
the transgenic STRADA (STRADAfl) allele. Each column of bands represents DNA 
extracted from a single clone of transformed ES cells and probed for STRADA. Higher 
molecular weight bands (MW) represent wild-type (WT) STRADA, while lower MW 
bands represent the transgenic floxed STRADA allele. 
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Figure 4.2. Generation of a STRADA+/fl carrier mouse. As indicated in the diagram, we 
replicated the deletion of STRADA exons 9-13, as seen in PMSE patients, to create the 
transgenic STRADA allele, with this region flanked by loxP sites for later Cre 
recombination. The transgene was engineered to carry this sequence as well as a 
neomycin resistance (NeoR) gene, for selection. Embryonic stem (ES) cells were 
extracted from the inner cell mass (ICM) of a C57BL/6 blastocyst, at 3 days post-
fertilization (DPF). These cells were cultured and transformed with the transgene. 
Neomycin selection was applied, and viable colonies were expanded and genotyped to 
confirm carriage of the transgene, via Southern blotting (SB). Transformed ES cells were 
microinjected into the blastocyst of a BALB-C albino mouse and incorporated into the 
developing embryo. This embryo was transferred to a host pseudopregnant female for 
gestation and delivery. Resulting offspring expressed a chimeric phenotype, with white 
fur color linked to non-transgenic cells from the BALB-C mouse, and black fur color 
linked to transgenic ES cells transformed from the original C57BL/6 mouse. 
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Figure 4.3. Southern blotting confirms F1 offspring to carry the transgenic STRADA 
(STRADAfl) allele heterozygously. Each column of bands represents DNA extracted from 
a single animal and probed for STRADA. Higher molecular weight bands (MW) represent 
wild-type (WT) STRADA, while lower MW bands represent the transgenic floxed 
STRADA allele (Floxed). “Female Black” and “Male Black” refer to mice with black fur 
in the F1 generation, sired by P-generation chimeric males. Agouti mice served as 
littermate controls, carrying only the WT STRADA allele. 
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Figure 4.4. Polymerase chain reaction (PCR) indicates the presence of transgenic 
STRADAfl allele in F2 animals. Each column represents DNA extracted from a separate 
animal. Plus signs identify animals carrying the 493 bp neomycin resistance (NeoR) gene, 
which indicates presence of the STRADA floxed transgene. 
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Figure 4.5. Diagram outlines the process of generating a STRADA KO mouse from the 
chimeric P/F0 generation. Refer to the text for details. 
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Figure 4.6. Calcium imaging of the cortical plate layer 2/3 (CP 2/3) region overlying 
heterotopic STRADA KD mNPCs reveals aberrant neuronal firing patterns. IUE was 
used to transfect animals at embryonic day 14 (E14) with GFP-tagged STRADA shRNA, 
to effect STRADA KD. At postnatal day 7 (P7), animals were sacrificed, and 350 µm 
coronal sections were cut on a microtome. Fluorescent microscopy was used to define the 
region of heterotopic GFP+ mNPCs located in the ventricular/subventricular zone 
(VZ/SVZ), as well as the overlying CP 2/3 region, representing the appropriate 
destination area to which the STRADA-deplete cells failed to migrate. Coronal slices 
were bathed in artificial CSF (aCSF) solution or a potassium-supplemented (5 mM K+) 
aCSF activating solution. In both solutions, the CP 2/3 region overlying the STRADA 
KD heterotopia exhibited considerably higher levels of neuronal firing. This was 
especially evident in the high-K+ solution (pictured), in which neurons in the CP 
overlying the heterotopia exhibited evidence of epileptiform activity. Cells in this region 
showed synchronous firing (indicated by yellow arrowhead) as well as burst spiking (red 
arrow).  A, Top panel demonstrates cortical neuronal firing outside the area of failed 
migration in a focal STRADA KD animal at P7.  B, Bottom panel demonstrates 
enhanced cortical neuronal firing in the area of failed migration. 
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CHAPTER 5 
 

 

DISCUSSION AND CLINICAL TRANSLATION4 

 

 

 

 

 

 

 

 

 

 

 

 

_______________________________________________________________________ 
4 The PMSE patient data reported here was originally published in Science Translational 
Medicine, Vol. 5, No. 182, April 2013. Parker, W.E., Orlova, K.A., Parker, W.H., 
Birnbaum, J.F., Krymskaya, V.P., Goncharov, D.A., Baybis, M., Helfferich, J., Okochi, 
K., Strauss, K.A., and Crino, P.B. Rapamycin Prevents Seizures After Depletion of 
STRADA in a Rare Neurodevelopmental Disorder. Published by AAAS. 
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So often, rare genetic disorders can offer key insights into the normal functioning 

and role of a biological pathway based upon understanding the pathogenesis resulting 

from what is lacked. Here, we have employed one such disorder, PMSE, to elucidate the 

role of STRADA and mTOR signaling in cortical development. Although PMSE 

provides us with a fortuitous opportunity to understand an important biological process, 

we understand that this comes at a cost to those who suffer from the disorder without 

effective treatment options. This chapter will summarize the conclusions of our work, 

place STRADA into the larger context of mTOR-regulatory proteins, offer future 

directions, and finally discuss the implications of our findings for treatment of PMSE and 

other mTOR-associated neurodevelopmental disorders. 

STRADA Plays a Critical Role in Cortical Development Through Directing Neuronal 

Migration: A Summary of Our Results and Proposal of Future Studies 

 The landmark study by Puffenberger and colleagues, defining PMSE as a 

STRADA mutation and describing the clinical and pathological phenotype of the disease, 

identified periventricular nodules on MRI scans of two patients (61). Histopathological 

analysis of tissue from a postmortem PMSE brain showed evidence of cytomegaly, 

mTOR hyperactivity through enhanced P-S6, and the presence of heterotopic neurons in 

the subcortical white matter, highly suggestive of failed neuronal migration (12, 61). 

Further work in our lab was able to recapitulate the cytomegalic phenotype of PMSE 

through shRNA knockdown of STRADA in mNPCs, and this effect could be prevented 

with rapamycin treatment, indicating mTORC1 dependence (12). Additionally, we 

showed that STRADA knockdown in vivo, results in clusters of heterotopic neurons 
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within the murine post-natal VZ/SVZ, similar to heterotopia in PMSE (See Chapter 1) 

(12). The VZ/SVZ heterotopic neurons expressed enhanced mTORC1 activation, 

suggesting this as a possible mechanism. In a set of experiments outlined in Chapter 3, 

we chose to investigate the hypothesis that aberrant mTORC1 signaling actually causes 

aberrant cortical lamination in a STRADA-deplete experimental model. Additionally 

based on the evidence of neuronal heterotopia in PMSE human and STRADA KD mouse 

brain, we explored the hypothesis that STRADA affects cortical lamination through 

directing neuronal migration. 

 First, we sought to determine whether a disruption in migration per se could 

account for aberrant cortical lamination in the setting of STRADA loss. To do this, we 

devised a minimalistic in vitro approach. We extracted mNPCs from neonatal murine 

VZ/SVZ and transfected them with an shRNA targeting STRADA to induce STRADA 

KD. We then subjected these cells to a wound-healing scratch migration assay, and saw a 

significant decrease in distance migrated associated with STRADA KD. Importantly, this 

effect could be prevented by treatment with rapamycin or p70S6Ki, indicating 

dependence on mTORC1/p70S6K signaling. Next, we characterized this migration defect 

as a disruption of neuronal pathfinding, using video microscopy, which revealed a loss of 

directionality in migrating mNPCs with STRADA KD. This too was rescued by 

rapamycin treatment, suggesting dependence of this effect on mTORC1. To corroborate 

this finding, we used immunocytochemistry to evaluate the size and position of the Golgi 

body relative to the nucleus of leading-edge migrating cells, and found an mTORC1-

/p70S6K-dependent disruption in cell polarity corresponding to STRADA KD. To 

confirm mTORC1-dependence of failed neuronal migration in a mouse model, we 
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subjected embryos to STRADA KD through IUE, and found that treatment with 

rapamycin was able to rescue the capacity of transfected cells to reach their appropriate 

destination in the CP. 

 We next hypothesized that STRADA regulates neuronal pathfinding through 

modulating cofilin and actin dynamics, downstream of mTORC1. In a series of protein 

quantification experiments, we defined phosphorylation profiles of several nodes in this 

pathway consistent with enhanced IRS1 phosphorylation and a dysregulation of cofilin 

signaling and consequent actin depolymerization in the setting of STRADA depletion. 

Interestingly, profiling the phosphorylation status of nodes on this pathway in the setting 

of LKB1 depletion in MEFs revealed a divergence at PAK1, consistent with a recent 

report that LKB1 can directly phosphorylate and inhibit PAK1 at a separate 

phosphorylation site (128), resulting in enhanced actin polymerization. This is also 

consistent with a well-documented association of LKB1 loss with enhanced cell 

migration in certain forms of metastatic cancers and in LKB1-null MEFs. 

It is interesting to consider the mechanisms through which LKB1 depletion and 

STRADA depletion might have opposite effects on cell migration. We speculate that 

STRADA might in fact not be a universal activator of LKB1 as previously postulated (7). 

We propose that it is likely that STRADA binding LKB1 activates the kinase specifically 

toward phosphorylating certain downstream substrates, AMPK inclusive. When 

STRADA is present, LKB1 activity toward the cofilin pathway is driven primarily 

through mTOR, activating AMPK, inhibiting mTOR, activating PAK1, and inhibiting 

cofilin, resulting in actin polymerization. In the absence of STRADA, however, the 
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inhibitory influence of LKB1 on PAK1 appears stronger. We postulate that without 

STRADA, LKB1 can not appreciably activate AMPK and thus can not inhibit mTOR, 

resulting in a lack of PAK1 activation through the mTOR pathway. Secondarily, LKB1’s 

direct phosphorylative inhibition of PAK1 goes unopposed, resulting in a second-hit 

inhibition of PAK1, disinhibiting cofilin and depolymerizing actin, opposing effective 

cell polarization and pathfinding. Further experiments, particularly employing mutation 

of phosphorylation sites on PAK1 and AMPK in the presence and absence of STRADA 

and LKB1 individually and together, will be necessary to delineate the specific 

mechanism and test our hypotheses. 

Evaluation of Our Proposed Mechanism of Cell Migration in PMSE: Summary of Our 

Results in Patient Cells and Establishment of Preclinical Data 

 In order to be able to apply our proposed mechanism and role for STRADA in 

neuronal migration to the human disease, we extracted fibroblasts from PMSE patients, 

heterozygous parents, and controls. Western analysis of the phosphorylation profiles of 

key nodes in our signaling pathway revealed a corroboration of our mNPC results. 

Compared with control cells, PMSE fibroblasts exhibited enhanced phosphorylation of 

mTORC1 targets S6 and IRS1, and diminished phosphorylative inhibition of cofilin. 

Importantly, this was associated with actin depolymerization and a defect in cell 

migration, rescued with rapamycin or p70S6Ki. To confirm the link from mTORC1 

signaling into our defined pathway, we immunostained postmortem PMSE cortical tissue 

for phosphorylated IRS1 and found enhanced P-IRS1 in PMSE compared with control 

cortex. 
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 Importantly, our results show that abnormal brain development in PMSE can be 

attributed significantly to a defect in neuronal migration resulting from STRADA loss. 

This defect results from enhanced mTORC1 signaling, as evidenced by rescue with both 

mTORC1 inhibition through rapamycin and inhibition of its direct effector p70S6K. 

Through our experiments in vitro and in vivo in mice, corroborated by parallel effects in 

cells extracted from PMSE patients, we provide sufficient preclinical data for the 

consideration of targeting the mTORC1/p70S6K pathway as a treatment strategy for 

PMSE. 

Modeling Epilepsy in PMSE: Future Directions 

 Our experiments extensively address the role of STRADA in neuronal migration, 

and failed neuronal migration has been proposed as a mechanism for epileptogenesis 

(108). Our preclinical data evaluating cortical activity in the region of failed neuronal 

migration resulting from STRADA knockdown suggests that this may be an important 

mechanism in our model as well, since this region exhibits neuronal hyperactivity and 

enhanced synchronization (see Chapter 4). However, we have not yet addressed the 

direct effects of STRADA depletion on altering the firing potential of individual neurons. 

Recent studies by Filippi and colleagues have shown that STRADA’s binding partner 

MO25 can induce an approximately 100-fold activation of SPAK/OSR1 kinases, 

enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2, and 

NKCC (134). Knockdown of MO25 inhibited phosphorylation of NKCC1 by 

SPAK/OSR1, and this was rescued by MO25 re-expression. Alteration of NKCC1 and 

NKCC2 expression can dramatically alter membrane potential and thus likelihood of a 
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neuron to fire an action potential. In fact, it is precisely a change in the ratio of NKCC1 

to NKCC2 membrane expression that is thought to change the response of early neurons 

in the developing brain to GABA from excitation to inhibition, based on a switch from 

predominantly intracellular to predominantly extracellular chloride concentrations (135). 

Importantly, NKCC1 has recently been suggested as a potentially attractive 

pharmacological target in epilepsy (136). Common loop diuretics, particularly 

bumetanide, can be used to inhibit this transporter and consequently reduce intracellular 

chloride concentration and susceptibility to depolarization upon opening of chloride 

channels. Given the compelling link to MO25, it is worth investigating how the absence 

of STRADA in PMSE might impact MO25 function, and particularly NKCC1 activation 

and neuronal firing potential. Finally, it will be important to determine whether easily 

accessible and generally well-tolerated loop diuretics might be able to impact neuronal 

firing and treat seizures in PMSE patients. 

 To evaluate the effects of STRADA loss on NKCC1 activity and neuronal firing, 

as well as the treatment potential of loop diuretics, we are establishing cultures of derived 

PMSE patient and control neurons, in collaboration with Dr. Jack Parent at the University 

of Michigan. PMSE patient and control fibroblasts were reprogrammed into pluripotent 

lines through transduction of four transcription factors, including Oct4, Sox2, Klf4, and 

c-Myc (137, 138). Induced pluripotent stem cells (iPSCs) originating from PMSE 

patients and controls were established, then differentiated into Tuj1-positive PMSE 

neurons (Figures 5.1 and 5.2). Importantly, this will allow single-cell recording in a 

human neuronal line to determine if STRADA loss affects the firing potential of 

individual neurons independently of network dynamics, as well as evaluation of 
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treatment options, without requiring invasive procedures to obtain these cells from 

patients. 

mTOR Dysregulation, Neurodevelopmental Disease, and Epilepsy: Toward Effective 

Therapy 

mTOR signaling plays a critical role in corticogenesis. Tight regulation of this 

cascade is essential to normal development, and disruption of this process can result in 

myriad developmental disorders. Interestingly, loss of function mutations in mTOR-

inhibitory genes such as TSC1 or TSC2, or gain of function mutations in mTOR 

activators such as AKT3 result in aberrant brain development and intractable seizures (28, 

29, 139). Since epilepsy in these patients is so often refractory to treatment with anti-

epileptic drugs, it has been suggested that directly targeting the mTOR pathway might 

prove more effective (140, 141). Indeed, recent clinical trials have been promising. The 

mTORC1 inhibitor rapamycin (sirolimus) has been shown to induce the regression of 

astrocytomas on MRI in TSC patients, while cessation of treatment was associated with 

mass regrowth until treatment was resumed (142). Additionally, rapamycin treatment has 

been shown to reduce seizure frequency in TSC patients with otherwise medically 

intractable epilepsy (143). Recently, treating TSC patients with the rapamycin analogue 

everolimus was associated with reduction of subependymal giant cell astrocytoma 

(SEGA) volume and seizure frequency (144). 

PMSE is a rare genetic disorder, yet it can offer key insights into the role of 

aberrant mTOR signaling in several more common neurodevelopmental disorders. We 

propose that PMSE serves as an important model of mTOR-associated brain disease 
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since all PMSE patients share the same deletion in STRADA and thus represent a 

homogeneous study group, and since this is to date the only identified mTOR-associated 

disorder resulting from a genetic homozygous deletion. 

PMSE is disorder with 100% penetrance. All patients will develop intractable 

seizures and cognitive decline, and no effective treatment strategies have yet been 

reported. Based on our pre-clinical results demonstrating rescue of cell size and 

migration defects with rapamycin treatment, we administered rapamycin (sirolimus) to 5 

PMSE patients at the Clinic for Special Children in Lancaster, PA, in collaboration with 

their physician Dr. Kevin Strauss. Rapamycin treatment was tolerated by all 5 patients 

and no adverse events to necessitate cessation of the treatment were experienced (Table 

5.1). Compared with historical PMSE controls (n=16, ages 7 months to 28 years), of 

whom 100% currently experience ongoing and intractable seizures at least monthly, and 

in many cases daily, rapamycin-treated patients experienced a profound decrease in 

seizures, with only one child in the cohort experiencing one seizure, at a time of febrile 

illness, during the most recent year of rapamycin therapy (61). Of note, Patient 1 in our 

cohort has never had a seizure at age 8 months, whereas rapamycin-naïve PMSE patients 

typically start to seize between 3 and 6 months of age. Patient 3, who was previously 

burdened with 180 seizures per year, has been seizure free over the last year on 

rapamycin. In both the historical control group and our rapamycin-treated cohort, the 

Denver Developmental Screening Test II was used to measure psychomotor 

development, and provisional developmental differences between the two groups were 

noted in receptive language and social domains. Anecdotally, parents of PMSE children 

report that those on rapamycin seem more interactive and more emotionally engaged than 
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those not treated with the drug.  Long-term effects will need to be evaluated in order to 

make safe clinical recommendations, but promising early results suggest that targeting 

mTORC1 signaling might be the key to effectively treating seizures and other disease 

manifestations in these otherwise-intractable patients. 

Through PMSE, we were able to model STRADA depletion and define the role of 

STRADA and mTORC1 signaling in neuronal migration and brain development, as well 

as characterize the effects of STRADA’s absence and consequently aberrant mTORC1 

signaling in disrupted corticogenesis. Thus, we have added STRADA to the list of key 

regulators of neuronal migration and mTOR signaling during cortical development. By 

evaluating the rescue potential of rapamycin and p70S6Ki throughout our experiments, 

we established pre-clinical precedent for targeting mTORC1 signaling as a therapeutic 

strategy to treat PMSE as well as other mTOR-associated neurodevelopmental disorders.  

Our promising early clinical data in the PMSE population suggests that pharmacological 

mTOR inhibition could be a highly effective treatment strategy and a key to preventing 

seizures and cognitive decline in these patients.  
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Table 5.1. Clinical Summary of PMSE Patients Treated With Sirolimus 
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*For patient <1 year of age, this column lists the number of seizures since birth. 

†Developmental Quotient is defined as developmental age, determined by the Denver 
Developmental Screening Test II, divided by chronological age.  A score of 1.0 
represents psychomotor development commensurate with age. 

§Gross motor development of STRADA-deficient children is hindered by congenital 
absence of anterior cruciate ligaments, which leads to recurrent knee dislocations and 
typically precludes ambulation. 

¶All STRADA-deficient patients are mute; we therefore determined separate 
Developmental Quotients for expressive or "spoken" langauge and receptive or 
"understood" language, the latter represented by pointing to or otherwise indicating 
pictures, body parts, named family members, etc. 

Abbreviations:  AED, antiepileptic drug; CBZ, carbamazepine; GTC/SE, generalized 
tonic-clonic seizure +/- status epilepticus;LEV, levetiracetam;  OXC, oxcarbazepine; PB, 
phenobarbital; TOP, topiramate. 
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Figure 5.1. A colony of reprogrammed PMSE iPSCs. The colony sits atop a layer of 
fibroblast feeder cells. Courtesy of Jack Parent, University of Michigan. 
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Figure 5.2. PMSE derived neurons, with red fluorescence indicating Tuj1 staining for 
neuronal maturity, and blue fluorescence indicating nuclear DNA. Courtesy of Jack 
Parent, University of Michigan. 
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