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ABSTRACT

TEMPORAL PROCESSING IN AUDITORY PERCEPTUAL GROUPING AND DECISION-
MAKING

Andrew S. K. Liu
Yale E. Cohen

How do perceptual decision-making and auditory perceptual grouping
interact on a perceptual, computational, and neural level? The work in this
dissertation lays the groundwork to investigate the neural basis for auditory
perceptual decisions by examining the perceptual and computational effects of the
temporal structure of an auditory stimulus. I examined the role of auditory
perceptual grouping on auditory perceptual judgments by asking whether the
presentation rate of a stimulus sequence, which can affect the perceptual grouping
of the stimulus, affects how sensory evidence converted into a decision. [ devised a
task that allows us to test, under different grouping conditions, whether the
observed performance was consistent with changes in the representation of sensory
evidence used to make the perceptual judgment or in the process by which the
sensory evidence is converted into the decision. Subjects made a judgment on the
frequency changes over time of a tone sequences while the interburst interval (IBI),
or the time between tones of the stimulus, was varied across trials. I examined how
subjects processed the sensory evidence to form their decisions as well as modeled
the effect of IBI on their decision-making process. The results show that subjects
accumulated sensory evidence over time to form their judgment and while IBI and

perceived grouping did not affect the accumulation rate, subjects accumulated less
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total sensory evidence for long IBIs consistent with a collapsing decision boundary.
By understanding how the brain converts sensory stimuli into a perceptual decision
with our task, we can better understand the computational principles and the neural

implementation of how auditory percepts are formed.
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Chapter 1

Introduction

We inform our decisions by inferring the state of the world, which is a
process called perceptual decision-making. This process uses information from a
stimulus to make a categorical judgment about the stimulus, which can then guide a
behavior, such as a motor action. The stimulus is initially transformed by the
peripheral sensory organs, such as the retina in the eye or the cochlea in the inner
ear, into a neural representation of the physical variables of the stimulus. The
cochlea, for example, transforms the acoustic stimulus, a time-varying pressure
waveform, into a neural-code representing the physical attributes of the stimulus,
such as the frequency content of the acoustic waveform. As sensory information is
processed further downstream, through the midbrain and then to the cerebral
cortex, the information represented by neurons is transformed from a
representation primarily encoding the physical attributes of the stimulus to a
representation that is more closely related to the perceptual report. This
transformation is typically thought to have two parts: first, the stimulus features
that correspond to the relevant perceptual dimensions for the judgment are

extracted from early sensory representations by the downstream neurons; second,



this higher-level representation of the relevant sensory evidence for the decision is
converted by neurons further downstream into a perceptual decision, which
typically correlates well with the behavioral report (Shadlen & Newsome 2001). In
this dissertation, I explore the behavioral and computational basis for the
transformation of an auditory stimulus into a perceptual decision. By understanding
how the brain represents sensory stimuli and how sensory information is
transformed into a perceptual decision, we can gain insight into the neural
mechanisms that allow us to adaptively interact with the environment.

Towards the goal of understanding the neural representation of auditory
stimuli and the conversion from sensory stimuli into auditory percepts, in this
dissertation | am investigating how certain perceptual decisions are affected by the
processing of the temporal structure of an auditory stimulus. Auditory perception
depends on the brain extracting and analyzing the temporal structure of a stimulus.
For example, the temporal structure of a Bach concerto for two violins is one factor
that allows a listener to separate out the different parts corresponding to each
violin. To separate out the different parts of the concerto for two violins, the
auditory system uses the temporal structure of the auditory stimulus to separate the
incoming stimulus into two perceptual representations, corresponding to each of
the two violin parts (Bregman 1994). This process is called auditory perceptual
grouping.

Auditory perceptual grouping converts the sensory representation of an
auditory stimulus into the perceptual representation of an auditory stimulus. This
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process, which itself depends on the temporal structure of the stimulus, may affect
the processing of the stimulus to extract perceptually relevant information from the
stimulus as well as how this information is converted into a categorical perceptual
decision. For many perceptual tasks, this transformation of the sensory information
into a perceptual decision depends on combining multiple samples of sensory
information over time in order to deal with unreliable sensory information
(Mauzrek et al 2003, Gold & Shadlen 2007, Shadlen & Kiani 2013). While some
recent studies have explored the effect of the stimulus temporal structure on the
perceptual decision-making process (Kiani et al 2013, Brunton & Brody 2013),
whether auditory perceptual grouping affects the process of combining multiple
samples of sensory information over time to make a decision remains to be
explored.

In this dissertation, [ used human auditory psychophysics to examine the role
of temporal processing in auditory perceptual decision-making. Specifically, my goal
was to establish a novel auditory task in humans to test how the presentation rate of
a tone sequence affected how subjects converted the stimulus into a perceptual
judgment on how the frequencies of the tone sequence change over time. To
understand how auditory grouping based on the temporal structure of a stimulus
affects the transformation of the stimulus into a perceptual decision, subjects’
accuracy as well as the time needed to make a perceptual judgment was measured
while performing a perceptual task and across trials, the stimulus temporal

structure was varied. I used the drift diffusion model, a computational model of



decision-making process, to relate the stimulus information on a given trial to both
the accuracy and the time needed to make a judgment. This model simultaneously
accounts for both measures of subject performance on the perceptual task. By
examining how the model differed across the different stimulus temporal structure
conditions, my aim was to test whether the temporal structure of the stimulus, and
specifically auditory grouping, had an effect on the decision-making process. Here, I
will first review the background for how the temporal structure of an auditory
stimulus affects how sounds are perceived. Then, I will review the approach I used
to study the effect of the stimulus temporal structure on auditory perceptual

decisions. Finally, [ will conclude with a summary of the aims of this dissertation.

Stimulus Temporal Structure and Auditory Perception

To hear sounds and to use sound information to guide behavior, our auditory
system transforms acoustic stimuli into a perceptual representation (Griffiths &
Warren 2004; Bizley & Cohen 2013). These perceptual representations, also
referred to as auditory objects, form the basis of our experience of the auditory
environment. Auditory objects are the perceptual entity representing an
experienced sound, corresponding to a particular sound source or sound event.
Forming these perceptual representations depend on analyzing and extracting
behaviorally relevant information from the acoustic stimulus that may evolve
through time and may even be separated in time. For example, the brain is able to
selectively process the pitches of musical notes separated in time to form a
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perceptual representation of the part of a melody being played by an instrument as
part of a trio. This process begins in the cochlea, where the time-varying pressure
waveform of the acoustic stimulus is converted into neural activity. Downstream
areas in the brain convert this sensory representation based on the physical
attributes of the stimulus into a perceptual representation that we experience as
sound.

Several experimental paradigms have been used to explore how perceptual
representations are formed from the sensory information extracted from the
stimulus (Van Noorden 1975, Kidd et al 1994, Kidd et al 2003, Bregman 1994,
Bregman et al 2000, Nelken et al 1999), but one common process that has been
implicated in the formation of the perceptual representations is auditory perceptual
grouping (Bregman 1990, Bizley & Cohen 2013, Shamma et al 2011). Auditory
perceptual grouping tries to explain how the low-level, physical attributes of a
stimulus are converted into a perceptual representation. The auditory perceptual
grouping process extracts perceptual representations for the different auditory
objects present in the stimulus and is based on the principles of Gestalt psychology.
An acoustic scene is a mixture of acoustic waves from different sound sources that
can either be perceived as a whole, or as the elements that comprise the scene. For
example, a jazz trio can be perceived as a unified whole, or as the individual
components, as the pianist, bass, or vocalist parts of the trio. According to Gestalt

principles, the perception of the unified scene, like the trio playing a jazz piece, is



not just the combination of the percepts of the elements of the scene, such as the
different parts of the trio, but an entirely distinct perceptual entity.

While substantial progress has been made to understand the stimulus
parameters that promote auditory perceptual grouping, how cortical auditory
neurons implement the auditory perceptual grouping process to transform the
sensory input into a high-level perceptual representation remains to be elucidated.
While top-down factors such as attention certainly can play a role in the auditory
perceptual grouping process (Lakatos et al 2013, Bey & McAdams 2002), the
grouping process is typically driven by bottom-up factors derived from the physical
attributes of a stimulus (Bregman 1994, Hartman & Johnson 1991, Beauvois 1998,
Bregman et al 2000, Bizley & Cohen 2013). Bottom-up, or stimulus-driven,
perceptual grouping relies on regularities of the spectral and temporal structure of a
stimulus to allow different stimulus components to be grouped together. Acoustic
features such as spectral and temporal proximity of the different stimulus
components as well as similar spectral and amplitude modulation over time
contribute to the bottom-up processing. For example, the frequency separation and
the presentation rate of an ‘ABA’ tone triplet (where A and B represent tones with
different frequencies), can determine whether subjects perceive a sequence of the
tone triplets as a “gallop” or trill versus as two “streams” or two separate, but
continuously playing tones.

In this dissertation, I am interested in how auditory perceptual grouping,

which affects whether a stimulus is grouped into a unified perceptual
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representation or separated into distinct perceptual representations and is based on
the temporal structure of a stimulus, affects the process that converts the sensory
information into a judgment. The perceptual representation of a stimulus may affect
how sensory information is extracted and converted into a perceptual decision. The
hypothesized effect is that when the stimulus is represented by a unified, grouped,
perceptual representation, sensory information is more efficiently extracted from
the stimulus than if the stimulus were not grouped and was separated into distinct
perceptual representations. Thus, by having subjects make a judgment on how the
frequency of a tone sequence changes over time while varying the presentation rate
of the tone sequence across trials, the effects of auditory grouping on the overall
perceptual decision-making process should affect subjects' accuracy as well as the
amount of time needed to make their judgment. In the next section, I will explain the
basis for the methods that quantify the effect of auditory grouping based on the
temporal structure of the stimulus on how sensory information is processed and

how this information is used to make a perceptual decision.

Modeling perceptual decisions to understand auditory perceptual
processing

In this dissertation, subjects discriminated whether the frequency of a tone
sequence was increasing or decreasing over time while the presentation rate of the
tone sequence varied across trials. I used computational modeling to test whether

subjects’ behavioral performance on an auditory task was affected by auditory
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grouping. The approach I took infers the nature of the neural representation of
sensory information and the decision-making process from subjects’ performance
on a perceptual task. By modeling subjects’ performance for the different stimulus
temporal structure conditions, I could test whether auditory grouping, based on the
temporal structure of the stimulus, affected the extraction of sensory information
from the stimulus or the conversion of the sensory information into a perceptual
decision. This approach uses the drift diffusion model (DDM) of decision-making
that relates the physical parameters of a stimulus to subjects’ accuracy as well as the
time they took to make a decision for a perceptual task (Gold & Shadlen 2007,
Bogacz et al 2006). The DDM is based on signal detection theory (SDT), which was
initially developed to account for the variability in perceptual detection
performance due to the noisy representation of sensory information as well as to
quantify the effect of varying stimulus parameters on perception (Green & Swets
1966). The DDM extends signal detection theory to relate discrimination
performance, both accuracy and the time it takes to make a decision, to the
perceptually-relevant stimulus parameters (Ratcliff & Tuerlinckx 2002, Ratcliff &
Smith 2004, Ratcliff & McKoon 2008). By quantifying how subjects make their
decisions under a variety of listening duration conditions, the DDM allows us to
infer how the sensory information and the decision-making process varies under
different stimulus timing and auditory perceptual grouping conditions.

While SDT allows us to distinguish stimulus or task-related factors that affect

the sensory representation or the decision criterion, it does not account for how
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long subjects take to make a decision. The general class of sequential sampling
models extends the SDT to relate the stimulus parameters to both the accuracy as
well as the response times of each decision (Ratcliff & Tuerlinckx 2002, Ratcliff &
Smith 2004, Ratcliff & McKoon 2008). The sequential sampling models, which
include the DDM, make the key assumption that decisions are based on the
accumulation of multiple samples of sensory evidence. The accumulation of sensory
evidence over time is a mechanism to handle the inherent variability in the sensory
representation. This variability could be the result of a noisy, stochastic stimulus or
from a noisy neural representation (Gold & Shadlen 2007, Shadlen & Kiani 2013,
Roitman & Shadlen 2002, Mazurek et al 2003).

In the DDM, beginning at the start of the trial, momentary sensory evidence is
accumulated through time to form a decision variable. Variants of the DDM make
different assumptions of the nature of the sensory evidence. In the standard DDM,
the sensory evidence accumulated through time is set at a fixed, constant mean level
for the duration of the trial (Luce 1986, Smith 1995, Ratcliff & Tuerlinckx 2002,
Ratcliff & Smith 2004). In other DDM variants, such as the leaky integration model,
the accumulated sensory evidence is “leaked” away at a constant rate for the
duration of the trial, allowing for recency effects, where sensory information that
was processed closer in time to when the decision was made would have a greater
contribution to the decision variable than sensory information that came much
earlier in the trial (Usher & McClelland 2001). These models where the key

parameters do not vary during the duration of a trial, or are “stationary”, have less
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complex expressions that relate accuracy to the time it takes to make a decision,
thus are easier to fit than more general DDM models (Ratcliff & Tuerlinckx 2002,
Shadlen et al 2006). The more general DDM models relax the stationarity constraint
and have time-varying parameters that can vary during a trial, which increase the
complexity of the model and therefore make them more difficult to fit to the
behavioral data. In these models, the sensory evidence can vary as a function of time
according to a power-law (Eckhoff et al 2008) or has a mean level of sensory
evidence that varies as the trial progresses, consistent with an urgency or
confidence signal that pushes subjects to commit to a decision rather than
perseverating on the process of making a decision (Cisek et al 2009, Churchland et
al 2008, Ditterich 2006, Hanks et al 2011). The goal of using the different variants of
the DDM is to better quantify how auditory grouping based on the temporal
structure of the stimulus affects the nature of the sensory representation. By fitting
the subjects’ performance data collected under different stimulus temporal
structure conditions to the different DDM variants, the model that consistently fits
best would suggest that the neural representation might have features that are
consistent with the assumptions of the best fitting model.

In the DDM, sensory evidence is accumulated as the decision variable
through time. A decision is made when the accumulation process ends. The
termination of the accumulation process can either be due to the experimental
control of the stimulus duration, as in “fixed duration” or “variable duration”

discrimination tasks, or be due to the subject deciding that he or she is ready to
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commit to a decision even while the stimulus is still present. In the case of the
experimentally controlled stimulus duration, at the end of the stimulus
presentation, the level of the accumulated evidence is compared to a decision
threshold to determine which one of two possible choices is made. In the subject-
controlled viewing or listening duration case, the sensory evidence accumulation is
terminated when the accumulated evidence reaches one of two decision boundaries,
corresponding to each of the two choices in a two-choice discrimination task. These
boundaries are the criteria by which the accumulated evidence is converted to a
decision. Once the accumulated evidence reaches one of these boundaries, a
decision is rendered according to the boundary that was reached and typically
converted to a motor command, and eventually a behavioral report. The
accumulated evidence boundaries reflect strategic considerations based on
maximizing benefit and minimizing cost for the decision outcomes as well as other
considerations such as the urgency of making a decision or confidence of the level of
accumulated evidence (Ditterich 2006, Churchland et al 2008, Hanks et al 2011,
Drugowitsch 2012). While the decision outcome reflects which decision boundary
was reached, the time from the start of the accumulation process, typically the start
of the trial, to when the decision variable reached a decision boundary, represents
the decision time. The overall reaction time is the sum of the decision time and the
non-decision time, which represents the time for the decision to be converted into a

behavioral report.
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Because the temporal structure of an auditory stimulus can affect how the
auditory system perceptually represents the stimulus, the goal of this dissertation is
to test whether the temporal structure affects the accuracy and the time it takes to
make a perceptual decision as well as to explore how the temporal structure might
affect decision performance. By using the DDM model, I can quantify the effect of
auditory perceptual grouping as well as the processing of the stimulus temporal
structure on both the process of extracting sensory information from the stimulus to
guide a perceptual judgment and the decision-process that converts the extracted
sensory information into the judgment. In this dissertation, | examine whether
differences in presentation rate of the tone sequence stimulus can account for the
effects on decision performance, consistent with the stimulus temporal structure
affecting the process that extracts decision-related sensory information from the
stimulus. I also test whether the temporal structure of the stimulus affects the
process that converts the sensory information into a decision. Finally, I test whether
auditory perceptual grouping specifically has an effect on the process of extracting
sensory information from the stimulus that is eventually used to make the
perceptual judgment.

Summary

How do perceptual decision-making and auditory perceptual grouping
interact on a perceptual, computational, and neural level? The work in this
dissertation lays the groundwork to investigate the neural basis for auditory

perceptual decisions by examining the perceptual and computational effects of the
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temporal structure of an auditory stimulus. I examined the role of auditory
perceptual grouping on auditory perceptual judgments by asking whether the
presentation rate of a stimulus sequence, which can affect the perceptual grouping
of the stimulus, affects how sensory evidence converted into a decision. [ devised a
task that allows us to test, under different grouping conditions, whether the
observed performance was consistent with changes in the representation of sensory
evidence used to make the perceptual judgment or in the process by which the
sensory evidence is converted into the decision. Subjects made a judgment on the
frequency changes over time of a tone sequences while the interburst interval (IBI),
or the time between tones of the stimulus, was varied across trials. I examined how
subjects processed the sensory evidence to form their decisions as well as modeled
the effect of IBI on their decision-making process. By understanding how the brain
converts sensory stimuli into a perceptual decision with our task, we can better
understand the computational principles and the neural implementation of how

auditory percepts are formed.
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Chapter 2

Integration of  Auditory Contour
Information is Invariant to Time Gaps and
Perceptual Grouping of Stimulus

Introduction

Time plays a key role in auditory perception. The timing of acoustic events in
a stimulus, such as notes in a melody, can affect the perceptual organization of the
stimulus (Moore & Gockel 2013, Shamma et al 2011). A rapid sequence of tones, for
example, are more likely to be perceptually grouped into a single auditory “stream”
than a slow sequence of tones (Van Noorden 1975, Bregman 1994). The auditory
system transforms low-level sensory input into a high level perceptual
representation by grouping acoustic events in a complex auditory scene into
auditory objects (Griffiths & Warren 2004). The processing of low-level temporal
cues to organize perceptually the incoming acoustic signal is fundamental (Bizley &
Cohen 2013) to allow for us to perceive sounds in the auditory environment.

Many studies have characterized the factors that affect auditory perceptual
organization (Moore & Gockel 2013) and grouping can affect perceptual judgment

performance (Micheyl & Oxenham 2010, Thompson et al 2011, Borchert et al 2011,
14



Roberts et al 2002, Bey & McAdams 2002). However, because of the task- and
stimulus-dependence of these grouping-related effects, the mechanisms that
contribute to these effects are unclear. For example, perceptual judgments of timing
differences are more accurate if the comparison is made within a stream than
comparisons between streams (Roberts et al 2002). In contrast, the grouping of
stimuli into different streams can facilitate the identification of a tone sequence if
the sequence is contained within one stream, effectively, segregating the target from
the distractor (Bey & McAdams 2002). These studies raise the question: by what
mechanism does perceptual grouping affect the processing of sensory evidence for
auditory perceptual judgments?

To address this, we examined the role of grouping on auditory perceptual
judgments by asking whether time gaps in a stimulus sequence, which can affect the
perceptual grouping of the stimulus, affect how sensory evidence converted into a
decision. We devised a task that allows us to examine, under different grouping
conditions, the representation of sensory evidence used to make the perceptual
judgment and the process by which the sensory evidence is converted into the
decision. Subjects made a frequency-change judgment based on tone sequences
increasing or decreasing in frequency while we manipulated the interburst interval,
or the time between tones of the stimulus. We examined how subjects processed the
sensory evidence to form their decisions as well as modeled the effect of IBI on their
decision-making process. We found that subjects accumulated sensory evidence

over time to form their judgment and while IBI and perceived grouping did not
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affect the accumulation rate, subjects accumulated less total sensory evidence for

long IBIs consistent with a collapsing decision boundary.

Methods

Experimental Setup

Subjects rested their chin on a chin rest approximately 2’ from the speaker
while seated in a soundproof booth (IAC) during the experiment. The task was
developed using the MATLAB-based Snow-Dots (http://code.google.com/p/snow-
dots) psychophysics software. On each trial, task parameters from the Snow-Dots
environment were used to generate the stimulus on a digital signal processor
(Tucker Davis Technologies RX6). The stimulus was presented free-field using a
calibrated speaker (Yamaha MSP-7). Subjects responded by a button press on a
gamepad (Microsoft Sidewinder) and task instructions and feedback was displayed

on a LCD flat panel monitor (DELL E171FP).
Stimulus

The stimulus was a tone-burst sequence (Figure 1A-D). Each tone burst was
presented at 65 dB SPL and had a duration of 30 ms (onset/offsets were smoothed
with a 5-ms cos? gate). The time between the offset of one tone to the onset of the
next tone (i.e., the “inter-burst interval”; IBI) ranged between 10 and 150 ms (Figure
1D). The range of IBIs chosen were based on pilot studies in which subjects tended
to report that the stimulus sounded continuous when the IBI was relatively small

(<50 ms) but like discrete tones for larger IBIs (Figure 2). The properties of a tone-

16



burst sequence was a function of (1) sequence direction (increasing or decreasing
frequency), (2) sequence duration, (3) IBI, and (4) coherence (Figure 1A-C); the
stimulus direction, duration, IBI, and coherence varied on a trial-by-trial basis
depending on the specific task constraints (see task descriptions below).

At the beginning of each trial, the frequency for the first tone burst in the
sequence was randomly sampled from a uniform distribution corresponding to the
direction of the stimulus. A monotonically increasing or decreasing frequency
sequence was first generated by adding or subtracting a fixed frequency increment
(Delta_f = 7.5 hz) to the previous tone-burst frequency.

Stimulus coherence was the proportion of tones in a tone-burst sequence
whose frequencies were a fixed frequency increment from the previous tone. A
tone-burst sequence in which all of the tone bursts were monotonically increasing
or decreasing had a coherence of 100%. For sequences with coherence <100%, we
first generated the 100% coherent stimulus and then randomly shuffled the
temporal order of a subset of tone bursts. A 50% coherent stimulus, for instance,
was generated by randomly shuffling 50% of the tone bursts. A 0% coherent
stimulus had 100% of the tone bursts shuffled. By generating the stimulus in this
manner, we could ensure that each sequence traversed a fixed frequency range for
both increasing and decreasing stimuli. This is to reduce the likelihood of subjects
basing their decisions on the frequency content of the stimulus instead of the

pattern of frequency changes.
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Tone-Sequence Frequency-Direction Discrimination Task

In the tone-sequence frequency-direction discrimination task (Figure 3),
subjects reported whether the frequency of the tone-burst sequence was increasing
or decreasing. Subjects were tested in three variants of the task: “response-time”,
“interrogation”, and “hybrid”. Prior to participating in the experiments, subjects
provided informed consent. The University of Pennsylvania Institutional Review

Board approved the experimental protocol and informed-consent procedures.

Response-time task

We tested 6 subjects (5 male, 1 female) in 4 weekly 1.5 hour sessions.
Subjects were told to respond as quickly as possible, without sacrificing accuracy,
after they reached their decision. Each session contained 4 blocks of trials. Subjects
took a short break between each block. During each block, we varied, on a trial-by-
trial basis, IBI (10, 60, or 150 ms), coherence (0, 10, 25, 50, or 100%), and stimulus
direction (increasing or decreasing). Each combination of these sequence properties
was presented 5 times within a block, for a total of 150 trials per block. Subjects

were given feedback at the end of each trial.

Interrogation Task
We tested 5 subjects (4 male, 1 female) in 6 weekly 1.5 hour sessions. On
each trial, the stimulus duration was sampled from a truncated exponential

distribution (A = 2000 ms for all IBIs; upper and lower stimulus duration limits by
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IBI: 10 ms, [160, 1400] ms; 60 ms, [360, 3150] ms; 150 ms, [720, 6300] ms) so that
subjects could not anticipate the end of the stimulus. The truncation limits are
standardized across IBI by the minimum (4) and maximum (35) number of tones
presented. After the end of the stimulus, a response cue flashed on the screen, and
subjects had 800 ms to respond. Each session contained four blocks of trials.
Subjects took a short break between each block. During each block, we varied, on a
trial-by-trial basis, IBI (10, 60, or 150 ms), coherence (0, 10, 25, 50, or 100%), and
stimulus direction increasing or decreasing). Each combination of these sequence
properties was presented 5 times within a block, for a total of 150 trials per block.

Subjects were given feedback at the end of each trial.

Hybrid Task

We also tested 5 subjects (3 male, 2 female) in 4 weekly 1.25 hour sessions.
Like on the interrogation task, on each trial, stimulus duration was sampled from a
truncated exponential distribution (A = 2000 ms) so that subjects could not
anticipate the end of the stimulus. The truncation limits are standardized across IBls
by the minimum (4) and maximum (35) number of tones presented. In addition to
making a judgment regarding whether stimulus direction, subjects also reported
whether they perceived the stimulus as “one, continuous sound” or “as a series of
discrete sounds”. Subjects reported their responses during two 800-ms response

periods, and a response cue indicated the response order. The order of the stimulus-
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direction judgment and stimulus-continuity judgments was alternated on a block-
by-block basis.

Prior to participating in the hybrid task, each subject’s “50%-IBI threshold”
and “coherence threshold” was measured and incorporated into the parameters
used to generate the tone-burst sequence. Each subject’s IBI threshold, defined to be
the IBI value for which 50% of the responses rated the stimulus as continuous, was
measured using a 1-up/l-down adaptive procedure. The IBI threshold was
measured daily, before the start of each session. We found, in early pilot
experiments, that each subject’s IBI threshold varied across days. We measured
each subject’s coherence threshold using a 2-up/1l-down adaptive procedure.
Threshold was defined to be 70.7% correct performance, which corresponds to a d’
of 0.77. Each subject’s coherence threshold was calculated for tone-burst sequences
using the initial session’s IBI threshold. Coherence threshold was calculated prior to
a subject’s participation in the hybrid task and kept constant for all subsequent
hybrid-task sessions.

Each session contained four blocks of trials. Subjects took a short break
between each block. During each block, we varied, on a trial-by-trial basis, IBI (50%-
threshold - 15 ms, 50%-IBI threshold, and 50%-IBI threshold + 15 ms) and stimulus
direction (increasing or decreasing). The sequence coherence was set to each
subject’s coherence threshold. For each stimulus direction condition, the threshold
IBI condition was repeated 40 times per block, and the two off-threshold IBI

conditions were repeated 10 times per block. The trials were randomly presented
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within each block. Subjects were given feedback regarding whether they made the

correct stimulus direction judgment at the end of each trial.

Data Analysis

Each subject’s behavioral data was fit to a drift diffusion model (DDM) to
quantify the effects that sequence coherence and IBI had on the decision-making
process. We computed psychophysical kernels for each IBI using data pooled across
all of the subjects to test whether subjects were accumulating sensory evidence
across time and whether the time course of integration was affected by IBI. We also
tested whether subjects could use the frequency of the stimulus as an alternative

strategy to decide whether the stimulus was increasing or decreasing in frequency.

Drift Diffusion Model

The DDM relates a subject’s accuracy on a two-alternative forced-choice
(2AFC) task to the amount of time that the subject used to reach their decision.
Central to the drift diffusion model is that sensory evidence is accumulated through
time as the decision variable (Bogacaz 2006, Gold & Shadlen 2007). For the
response-time task, a categorical decision is generated, according to the DDM, when
the accumulated sensory evidence reaches a response threshold, or the decision
boundary. Similarly, according to the DDV, for the interrogation task, the value of
the accumulated sensory evidence is compared to its value at the start of the trial to
determine the choice that is reported. Because of the different assumptions of how
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the decision is generated based on the accumulated sensory evidence for the two
types of tasks, we used one mathematical formulations of the DDM to model the
reaction-time and a different formulation of the DDM for interrogation and hybrid
data.

For the response-time data, the DDM (Palmer et al 2005) is parameterized by
the drift rate coefficient, two decision boundaries, and a non-decision time. The drift
rate coefficient scales the coherence of the stimulus proportionately to obtain the
drift rate, which represents the amount of momentary evidence available at a given
moment. The drift rate is normally distributed with the mean given by u = kC,
where k is the fitted drift rate coefficient and C coherence, and unit variance. As the
accumulated sensory evidence reaches one of the two decision boundaries, the
corresponding choice is made. The non-decision time is the component of response
time corresponding to motor preparation time and low-level sensory processing

latencies. The probability of the accumulated evidence reaching boundary A is

2B _1
o2UB _ p2uA"

P, = The mean decision time for choice A, or the time from stimulus onset

to the accumulated evidence reaching boundary A, isT, = A%Bcoth[(A + B)ul] —

%coth[Bu]. Similarly, for choice B, the mean decision time is Ty = A%Bcoth[(A +

B)u] — %coth[Au]. The response time for a given choice is the sum of the decision

time and the non-decision time.
For the interrogation and hybrid tasks, the DDM is parameterized by the drift

rate and lapse rate (Eckhoff et al 2005). Like the reaction time model, the drift rate
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is given by u = kC, where k is the fitted drift rate coefficient and C coherence. For a
given listening duration, the probability of choosing choice A is given by P,(t) =
*G0Err

All model fits were based on maximizing the likelihood of the parameters
given the data. Subjects’ choices were modeled as binomial errors and mean
response times were modeled as Gaussian errors. The models were implemented
and fit using Matlab. To avoid local maxima, the fitting procedure was initialized
with multiple random starting points in the parameter space. Parameter confidence

intervals were estimated using a bootstrap method.

Simulated DDM

We examined how decision boundary dynamics of the DDM affects choice,
response-times, and the psychophysical kernels by simulating the DDM with
different types of decision boundary dynamics. We simulated the temporal
evolution of the accumulated sensory evidence on each trial by numerically
integrating the stochastic differential equation: dX = kC*dt + dW. Here, k
corresponds to the drift rate coefficient, C is the coherence of the trial being
simulated, dW is a standard Gaussian process representing the noise in the sensory
evidence, when combined, represents dX, the momentary sensory evidence. For
each coherence and IBI condition, we simulated 5000 trials for 5000 ms using a
variable simulation time step that varied according to the IBI in order to run the

simulations in signal time.
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We computed the simulated choices and response times by comparing the
accumulated sensory evidence, X, on each trial to a decision boundary. We tested
two types of boundaries, one that did not vary in time (“fixed bound”) and one that
decreased linearly to zero as the trial progressed (“collapsing bound”). The fixed
boundary had one parameter, the bound height. The collapsing bound had two
parameters, the bound height at the start of the trial and the time (in elapsed time,
not signal time) when the bound reached zero. In addition to the type of bound, we
also tested two different relationships between the boundary and IBI. One way only
had one set of boundary parameters for all IBI conditions, whereas the other way
had one set of boundary parameters for each IBI condition. In summary we tested
whether a fixed bound or a collapsing bound with one set of boundary parameters
for all IBIs or with a set of boundary parameters for each IBI.

To find the best fitting parameters, we maximized the likelihood of the model
given the parameters using, as before, a binomial likelihood for choices and a
Gaussian likelihood for the mean response times. We used a derivative-free
optimization method (fminsearch in Matlab) to compute the maximum likelihood
fits. To compare the different models we computed the Bayesian information
criterion (BIC = -2*log(F(x|8)) - p*log(n); n: number of observations; p: number of
parameters; 8: model parameters) for each of the tested models. to account for the

differences in the number of parameters for the models we tested.
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To generate the kernel predictions for the best fitting model, the simulation
paths for the 0% coherence condition were averaged across trials separated by

choice and then averaged across time.

Psychophysical kernel

The psychophysical kernels were estimated using a logistic regression that
related the stimulus to the subject’s choice on a particular trial: (Equation: logit(y) ~
b0 + b1*x1 + ..+ bn*xn + epsilon, epsilon ~ N(0,1)). The covariates (x1,...,xn)
represented the difference in frequency between consecutive tones for a tone-burst
sequence presented on each trial. The estimated regression coefficients (b1,...,bn)
represented the degree to which a subject weighed, at a given moment in time, the
difference in frequency of a tone burst pair to form a judgment. We pooled choice
data and stimuli across all 6 subjects in the response-time task to compute the
psychophysical kernels for each of the IBI conditions. The kernels were computed
using only 0% coherence trials and not on any coherent patterns of frequency
changes in the stimulus.

A permutation test was used to test whether the observed kernels were
significantly different from a null kernel, assuming that there was no systematic
relationship between the stimulus and subject’s response. We generated N synthetic,
test datasets by randomly permuting the reported choice on each trial and the
associated stimuli. Each synthetic dataset was used to calculate a kernel. The

collection N kernels for each IBI approximated the distribution of kernel weights
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assuming that the null hypothesis was true. The kernel weights calculated based on
the actual, observed data was compared to the null distribution of kernel weights to
compute a p-value.

The kernel widths were calculated for each kernel at its half-maximum value.
Bootstrap confidence intervals were calculated by resampling trials within each
subject’s dataset with replacement and then pooling across subjects to generate a
pooled bootstrap dataset. Kernels were estimated using these pooled bootstrap
dataset and this procedure was repeated 2000 times. Kernel widths were estimated
for each of the bootstrap kernels and confidence intervals were calculated based on

the 2.5% and 97.5% percentiles of the bootstrap kernel width distribution.

Absolute Frequency Decision Model

We tested whether subjects used an alternative strategy to solve the task by
comparing the absolute frequency of the stimulus to an optimal criterion based on
an ideal observer. The tone frequencies immediately preceding when the decision
was reported was sorted by the reported decision outcome. The frequency
distribution corresponding to “increasing frequency” choices was compared to the
frequency distribution corresponding to “decreasing frequency” choices by an ROC
analysis for all trials of a given IBI. The frequency threshold corresponding to the
point on the operating curve that minimizes false positives and maximizes true
positives is used to calculate is used as the decision rule to make a judgment

whether the stimulus presented on a given trial was increasing or decreasing in

26



frequency. In addition to the tone immediately preceding the moment that the
decision was reported, we tested up to 9-tones back from when the decision was
made. We also tested this strategy using the average frequency of up to 9-tones back

from when the decision was reported.

Results

We tested how the time-course of sensory evidence integration in an
auditory task was affected by a temporal manipulation that affected the perceived
grouping of the stimulus. We used a two-alternative forced-choice task that required
subjects to report whether frequency direction of a tone burst sequence was
increasing or decreasing (Figure 1A). To control task difficulty, we manipulated
stimulus “coherence,” corresponding to the fraction of tones that increased or
decreased systematically in frequency (Figure 1A-C). To manipulate the sequential-
grouping cues of the stimulus, we altered the stimulus presentation rate (i.e., the
inter-tone-burst-interval [IBI], Figure 1D). As detailed below, we used three
versions (Figure 3) of the decision task to test how perceptual grouping affects the
time-course of the decision: 1) a “response-time” task where subjects could respond
at any time after the beginning of the stimulus presentation, 2) an “interrogation”
task where the stimulus duration was experimentally varied on each trial, and 3) a
“hybrid” task where subjects reported both the continuity of the stimulus and the

stimulus direction.

27



Response-time Task

The response-time task tested whether subjects’ accuracy and reaction time
varied with task difficulty (coherence) and stimulus presentation rate (IBI). Figure
4A-B shows the behavioral data collected from the response-time task for one
subject. As can be seen, this subject was more accurate and responded faster when
the decisions were easy (i.e., +100% coherence trials) than for difficult trials (i.e,,
0% coherences trials).

We quantified the effect of coherence and IBI on the decision process by
fitting the choice and response-time data for each subject to a drift diffusion model
(DDM). (The solid curves in Figure 4A, B represent best-fitting DDM psychometric
and chronometric functions.) The best-fitting DDM parameters for the 6 subjects are
shown in Figure 5A-C. IBI significantly modulated the fit boundary heights (or
response criteria) (F(2,10) = 53.73, p < 0.05) and the drift rates (rate of sensory
evidence accumulation) (F(2,10) = 239.6, p < 0.05). The nondecision times were also
significantly affected by IBI (F(2,10) = 6.336, p<0.05).

The differences in the fitted drift rates and boundary heights across IBIs
could be due to IBI affecting the accumulation rate, the response criteria for making
a response, or both. The stimulus presentation rate has a clear effect on the
accumulation rate of sensory evidence. The faster the stimulus is played
(equivalently the shorter the IBI), then the faster the information will accumulate.
Similarly, if subjects made their decisions by integrating sensory evidence over a

fixed time window, the faster the presentation rate, the more information will
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accumulate over this period and thus have higher corresponding bound heights. In
order to disambiguate the effects of IBI on the decision-making computation that
cannot be explained by the differences in the presentation rate across IBls, we fitted
the DDM to transformed chronometric data to control for the presentation rate
differences. We transformed RTs for each trial to “signal response time,” (signal RT)
by number of elapsed tones from the start of the stimulus presentation to the
subject’s response multiplied by the tone duration (30 ms).

If there was no difference in signal RTs across IBI conditions, this would
suggest that subjects based their decisions solely on accumulating a fixed number of
tones independent of IBI and therefore the accumulation rate would vary with the
stimulus presentation rate and the bound height would decrease at long IBIs,
corresponding to a fixed signal-time integration window. However, we found that
signal RTs (Figure 4C) for short IBI trials in a representative subject was increased
across all coherences compared to long IBI trials. This was observed for all 6
subjects. This suggests that subjects are not merely integrating each tone to a
common bound so to quantify this, we fitted the signal RT data to the DDM.

Indeed, when the DDM was fit to the signal RT data (See Figure 4C for DDM
fit to example subject, Figure 5D-F for fitted parameters by subject), we found that
the accumulation rate was not modulated (F(2,10) = 3.122, p > 0.05) by IBI, whereas
response thresholds (decision criteria for the accumulated information) decreased
reliably (F(2,10) = 306.2, p < 0.05) with increasing IBI. The nondecision times

increased as IBI increased (F(2,10) = 21.15, p < 0.05). This suggests that after
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controlling for the presentation rate of the stimulus, the quality or the signal-to-
noise of the sensory evidence did not change as the IBI varied and that subjects
were actually varying the amount of information they accumulated before
responding.

We wanted to then examine how subjects actually converted the information
in the stimulus into the decision and whether we can validate our previous finding
in a model-independent manner. First we tested whether subjects could base their
judgments on the absolute frequency of the stimulus. We found that this absolute
frequency-based strategy is incompatible with the observed performance (Figure 6).

To test the effect of IBI on the time course of the sensory evidence
contributing to the decision, we computed the reverse -correlation-based
psychophysical kernels based on data pooled across the 6 subjects who participated
in the response-time task. The psychophysical kernel is computed based on the
principles of signal-detection theory (Murray 2011; Knoblauch & Maloney 2008)
and, here, it relates the temporal dynamics of the tone frequencies presented on a
given trial to the subjects’ choice. This analysis is model free in that it does not make
any particular assumptions on the strategy that subjects use to convert the stimulus
to the decision. These kernels show the relative weighting of each sample of sensory
evidence over time that contribute to the decision. In other words, regions of the
kernel closest in value to 0 represent the times when the sensory evidence

contributed very little towards making the decision, and, similarly, the regions of the
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kernel with relatively large values represent the times when the sensory evidence
had a large contribution towards making the decision.

Consistent with our alternative absolute frequency strategy analysis, we
found that kernels calculated using the tone frequencies alone were not significantly
different from zero (not shown). By calculating the kernels using the difference in
frequency between adjacent tones, we found that subjects were using frequency
differences as sensory evidence in this task. We found that the kernels calculated for
each IBI using the frequency differences as the sensory evidence showed significant
non-zero weights across multiple, consecutive samples of sensory evidence,
consistent with the accumulation of sensory evidence. We calculated the kernels
both by aligning the data to the start of each trial (Figure 7A,C), as well as by
aligning the data to when the judgments were reported, as seen in the choice-
aligned kernels (Figure 7B,D). By calculating the kernels in this way, we can examine
the kernel dynamics at the start of each trial, however, as the trial progresses, the
kernels become less informative because of fewer number of trials with long
response times. We use the choice-aligned kernels to examine the kernel dynamics
towards the end of the trial, when presumably subjects are actively deliberating and
processing the sensory evidence to make their decision. Overall, our results suggest
that the non-zero weights seen in both the start-aligned and choice-aligned kernels
show that subjects accumulate sensory evidence contained in the stimulus

sequentially, through time, to inform their decisions.
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While the kernels plotted in terms of elapsed time and the kernels plotted in
terms of signal-time represent the same information, the different time scales allow
us to compare the kernel dynamics in terms of the number of samples of sensory
evidence with the dynamics in terms of elapsed time. By comparing the dynamics of
the kernel across the different time units, we can examine how subjects are
deliberating over the incoming sensory evidence across IBI conditions. For example,
the time to reach the peak of the kernel, when expressed as elapsed time seem to be
similar overall (Figure 7C-D), whereas when expressed as the number of elapsed
samples of sensory evidence, there is a dramatic reduction in the time-to-peak for
long IBI compared to short IBI (Figure 7A-B).

We quantified whether IBI had an effect on the shape of the kernels by
calculating the width of the choice-aligned kernels at half of its peak value for each
IBI. We found that the kernel widths estimated in elapsed time units were 840 ms
for the 10 ms IBI (Bootstrap 95% CI: [700 ms, 880 ms]), 1080 ms for the 60 ms IBI
([900 ms, 1350 ms]), and 1440 ms for the 150 ms IBI ([1260 ms, 1620 ms]). The
kernel widths across IBI suggest that subjects integrate the incoming sensory
evidence over a temporal integration window that varies as a function of stimulus

presentation rate/IBI.

Interrogation Task
Since the data collected for the response time task depended on each

subject’s particular speed-accuracy tradeoff, which we can not directly measure,
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there is still the possibility that the output of the DDM fitting procedure could result
in the trade-off of drift rates with the bound heights across IBI (Ratcliff 2002). This
could give us results that do not accurately reflect the differences in the drift rate
due to legitimate IBl-related effects. To circumvent this possibility, we tested
subjects using the interrogation task, which allowed us to test directly the
relationship between IBI and drift rate by experimentally controlling the listening
duration of the stimulus and monitoring subjects’ performance. In the interrogation
task, subjects based their decisions on the sensory evidence that was provided. We
used a two-alternative forced choice “interrogation” task (Figure 3B) where we
experimentally manipulated the listening duration across trials. The stimulus
durations in this task were set randomly at the start of each trial and subjects could
respond only after the end of the stimulus presentation.

We found that, for the interrogation task, subjects improved their
performance as listening durations increased (Figure 8A-C). We fit the DDM to the
time-dependent psychometric data, converted into signal time units, and found
(Figure 8D) that subjects integrated the available sensory evidence to form their
judgments and that IBI had no effect on the rate at which sensory evidence is
integrated. The 95% confidence intervals for the drift rates were overlapping for the
IBIs. These results provide further evidence that IBI had no effect on the
accumulation rate of sensory evidence, despite that it can have a crucial effect on
whether subjects perceive the stimulus as a continuous sound or as a discrete series

of tone bursts.
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Hybrid Task

In a third experiment (the “hybrid” task, Figure 3C), we directly addressed
whether perceptual grouping had an effect on the listener’s decisions. At the start of
each session of the hybrid-task we determined the IBI for each subject that elicited
equal numbers of grouped and discrete judgments. We adapted the interrogation
task by adding a second response interval for subjects to report whether they heard
the tone-burst sequence as a single, grouped sound or as a series of discrete sounds.
Figure 9A shows the choice data pooled across subjects separated by the reported
percept (“grouped” versus “discrete”). We fit the DDM to the data and we found that
the 95% confidence intervals of the drift rates for continuous versus the discrete
trials were overlapping (Figure 9B). This suggests that the same physical stimulus
can elicit ambiguous (on a trial-by-trial) basis perceptual report, and that the rate of
accumulation is indistinguishable, regardless of whether the stimulus is perceived

as a continuous sound or as a series of discrete sounds.

Discussion
We examined the role of grouping on auditory perceptual judgments by

asking whether time gaps (i.e., the IBI) in a stimulus sequence, which can affect the
perceptual grouping of the stimulus, can also affect how sensory evidence is
converted into a perceptual decision. We used a novel auditory-discrimination task
that required human subjects to report whether a stochastic auditory stimulus was

increasing or decreasing in frequency. We found that their performance was
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consistent with an accumulate-to-bound model, in which incoming auditory
evidence was accumulated over time until reaching a fixed criterion that determined
choice and RT. We manipulated the IBI of the stimulus and found that as IBI
increased, the decision criterion decreased, thereby affecting the speed-accuracy
trade-off. However, the accumulation rate of sensory evidence, or the drift rate, was
independent of both IBI and how subjects perceived the grouping of the stimulus.
Perceptual grouping can affect perceptual judgments under certain
conditions (Micheyl & Oxenham 2010, Thompson et al 2011, Borchert et al 2011,
Roberts et al 2002, Bey & McAdams 2002). For example, judgments about timing
differences are more accurate if the comparison is made within a stream than
comparisons between streams (Roberts et al 2002). In contrast, in other situations,
the grouping of stimuli into different streams can facilitate the identification of a
tone sequence (Bey & McAdams 2002). However, because of the task- and stimulus
dependence of these effects, the mechanisms that may have contributed to these
effects are not clear. Our goal was to devise a stimulus and a task that allowed us to
vary the temporal structure of the stimulus to affect how it was perceptually
grouped by the listener as well as requiring the temporal accumulation of sensory
evidence to solve the task. As sequential grouping is affected by the timing of the
tones of the stimulus, we expected that decreasing the IBI, which would
correspondingly increase the presentation rate of the tones of our stimulus, would
also affect increase the rate of sensory evidence accumulation. We also expected

that perceptual grouping effects resulting from the IBI manipulation could further

35



facilitate the processing of the sensory evidence and therefore increase the rate of
sensory evidence accumulation. Whereas we found that varying the IBI of the
stimulus changed how the stimulus was perceived (see Figure 2), the mechanisms
that account for the differences in performance on the frequency-change
discrimination task was independent of both the perceptual organization of the
stimulus and the timing of the stimulus. In the following sections we discuss first,
the interpretation of our data; second, how our results suggest that subjects vary
their speed-accuracy-tradeoff depending on the IBI; and third, why was the
accumulation of sensory evidence invariant to IBI or the perceptual grouping of the
stimulus.

Discussion of IBI and Grouping Effects on the Accumulation of Sensory
Evidence

Our finding that both IBI and grouping do not affect the accumulation of
sensory evidence is based on several lines of evidence. First, our analysis of the
response time data addresses the facile explanation that by decreasing the IBI, the
sensory evidence accumulation rate would naturally increase and could explain the
decrease in RT for shorter IBI. We controlled for any presentation-rate related
effects by using signal RT or signal time, which measures the listening duration in
terms of the total duration of the tones presented but does not include the the silent
time between the tone bursts. By controlling for the presentation rate, we found that
there was no significant difference in the drift rates across IBI for the response-time
task. Second, subjects effectively controlled the listening duration in the response-
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time task by arbitrarily adjusting their speed-accuracy trade-off strategy, which
cannot be directly measured. Because of the lack of explicit control over each
subject’s speed-accuracy tradeoffs, the output of the DDM fitting procedure could
result in the trade-off of drift rates with the bound heights across IBI (Ratcliff 2002).
This trade-off between model drift rates and bound heights could give us results
that do not accurately reflect the differences in the drift rate due to legitimate IBI-
related effects. To circumvent this possibility, we tested subjects using the
interrogation task, which allowed us to test directly the relationship between IBI
and drift rate by experimentally controlling the listening duration of the stimulus
and monitoring subjects’ performance. In the interrogation task, subjects based
their decisions on the sensory evidence that was provided, and we found that across
IBI, there was also no difference in the drift rate, after controlling for the
presentation rate, consistent with our initial findings using the RT task. Third, we
wanted to test whether grouping per se had an effect on the perceptual judgment
that could be explained by differences in IBI. This was tested directly with the
hybrid task. In this task, we compared the drift rate for decisions that, for the same
IBI stimuli, differed by how subjects’ perceived the stimulus. At the start of each
session of the hybrid-task, to aid our grouping-based comparison, we determined
the IBI for each subject that elicited equal numbers of grouped and discrete
judgments. Again, subjects did not differ in the rate of sensory evidence

accumulation, regardless of how they perceived the stimulus.
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We note that there are a couple of limitations to our overall approach. First,
the measure we used to quantify the relationship between IBI and the perceptual
organization of the stimulus has been criticized for its dependency on the subjects’
subjective report (Thompson et al 2010). By asking whether subjects perceived a
grouped stimulus or not lacks an objective standard by which stimuli can be
compared. An alternative approach is to simultaneously measure the mismatch
negativity (MMN) of event related potentials in humans, whose amplitude has been
used an objective index of the perceptual organization of the stimulus (Sussman
2004, Steinschneider & Sussman 2006, Fujioka et al 2004). Second, another possible
limitation is that we pooled data across subjects for many of our analyses, including
the psychophysical kernel analyses as well as the fixed duration and hybrid task
DDM fits. While it would have been ideal to collect a large number of trials for each
condition for each subject, it would not have been practical to do so. This limits our
findings because there may have been subtle per-subject effects that could have
been the result of IBI or grouping-related effects on the sensory evidence
accumulation process but could not detect due to the lack of statistical power for
per-subject inference and the wash-out effects of pooling across multiple subjects.

Accumulation of Sensory Evidence & DDM findings

The accumulation of sensory evidence is a well-established computational
model that describes how multiple samples of sensory evidence presented over time
are converted into a decision (Gold & Shadlen 2007, Kiani & Shadlen 2013) and is

consistent with our findings. We found that subjects accumulated sensory evidence
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to different decision criterions, which varied by IBI. One possibility to for subjects to
based their decisions on varying amounts of accumulated sensory evidence for
different IBIs, could be that subjects implicitly vary their speed-accuracy trade-off
criteria based on the elapsed time. That is, after a fixed period of time, the costs of
accumulating more sensory evidence outweighs any benefits associated with
improved accuracy. A number of studies have found that human and non-human-
primate subjects make perceptual judgments based on an accumulation-to-bound
process with a time-varying bound (Ditterich 2006, Churchland et al 2008, Cisek et
al 2009, Hanks et al 2011, Drugowisch et al 2012). These models incorporate the
idea that subjects weigh the costs and benefits of accumulating additional sensory
evidence as a trial progresses and adjusts the decision boundary accordingly to
determine when to stop accumulating evidence and commit to a decision. We found
that a model in which sensory evidence accumulation is subject to a time-varying,
collapsing bound (Churchland et al 2008, Hanks et al 2011, Drugowisch et al 2012)
can better explain our response-time data and generate kernel predictions that are
more consistent with our observed kernels than a fixed bound model. This suggests
that, for our task, subjects’ performance agrees with a model in which they
implicitly vary their speed-accuracy tradeoff by comparing the costs and benefits of
the accumulating additional sensory evidence on the basis of elapsed time and not

the number of samples of sensory evidence.

Invariance of Drift Rate to IBI & Grouping
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Here, we discuss two possible but non-exclusive explanations for the
accumulation of sensory evidence to IBI and to the perceptual grouping of the
stimulus. The first possibility is that the neural mechanisms that accumulate
sensory evidence are invariant to IBI. Recent work suggests that the accumulation of
sensory evidence indeed is insensitive to IBI, or, more generally, periods without
stimulus present (Kiani et al 2013, Brunton & Brody 2013). Trial-by-trial variability
in the choice and response-times of an auditory spatial discrimination task was the
result of noise in the representation of sensory evidence and not noise in the
sensory evidence accumulation process (Brunton & Brody 2013). If the sensory-
evidence accumulation process for our task were noisy, then the variability in the
accumulated evidence would scale with the listening duration of each trial. As more
tones are presented for a given period of time for short IBI than for long IBI, the
overall signal-to-noise ratio of the sensory evidence, and therefore the rate of
sensory evidence accumulation, would decrease for long IBI. We did not observe an
IBI dependent decrease in the drift rate across the two tasks (Fig 5E, for response-
time task and Fig 7D for interrogation task) suggesting that the accumulation
process for our task may be an instance of a noiseless integrator.

Such a noiseless integration process may be implemented by a multi-stable
attractor network (Kiani et al 2013, Pouget & Latham 2002, Koulakov et al 2002) in
which the level of the accumulated sensory evidence does not decay or become

corrupted by noise during periods without any stimulus present. Whether such a
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network is instantiated by actual neural circuits for our task to noiselessly
accumulate sensory evidence remains to be explored.

In addition to the noiseless accumulation mechanism, it is also possible that
the neural circuits involved in auditory-perceptual grouping are separated from the
neural circuits that process and accumulate the sensory evidence for the frequency-
change judgment. The computations for the frequency direction judgment and
grouping judgment may be segregated along the dorsal and ventral auditory
processing pathways. The ventral pathway is thought to be involved in extracting
stimulus features to identify auditory objects while the dorsal pathway is thought to
extract spatial information and integrate sensory and motor representations for
speech perception and production (Rauschecker & Scott 2009, Bizley & Cohen 2013,
Rauscheker 2011, Hickok & Poppel 2007). Belt regions of auditory cortex, which
receive input from core auditory cortex, show the first signs of a functional
difference in their neuronal tuning consistent with the dual pathway hypothesis.
The ventral pathway extends from the anterolateral belt region of the auditory
cortex to ventrolateral PFC, whereas the dorsal pathway originates in the caudal
belt region of the auditory cortex and terminates in the dorsolateral PFC, via the
parietal lobe.

On one hand, the sensory evidence for the frequency-change judgment may
be processed along the ventral processing pathway. The anterolateral belt regions of
auditory cortex, which are part of the ventral stream, is sensitive to complex

combinations of stimulus features such as FM (Tian & Rauscheker 2000) and have
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long temporal integration windows compared to primary auditory cortex (Scott et al
2011). The conversion of the sensory evidence to a categorical judgment by the
accumulating sensory evidence is likely to take place downstream of anteriolateral
belt auditory cortex in ventrolateral PFC, consistent with previous reports of
auditory choice-related activity in vIPFC (Russ et al 2008).

On the other hand, dorsal stream areas, such as intraparietal sulcus, may be
involved in the perceptual organization of incoming auditory stimuli into different
streams (Teki et al 2011, Cusak 2005). Whether these areas are processing temporal
information, consistent with a “when” processing pathway in the parietal lobe
(Davis et al 2009), to form perceptually organized high-level representations or are
combining sensory and motor information for guiding behavior remains to be

explored in the future.
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between successive tone bursts.
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Figure 2

IBI affects subjects’ reports of perceived grouping of stimuli. Subjects reported
whether they perceived the stimulus as a continuous, grouped sound or as a series
of discrete tones. Each subject was tested with a method of constant stimulus
psychometric procedure across four separate sessions. A: Psychometric function for
each subject (indicated by the color), fit to response data and IBI, pooled across
sessions. B: Psychometric threshold IBI for each subject, corresponding to
continuous responses on 50% of trials, plotted for each session.
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Figure 3

Task variants. Subjects, in a 2AFC paradigm, discriminated between tone sequences
increasing or decreasing in frequency. A countdown (“3”, “2”,”1”) and a “GO” cue
preceded the stimulus presentation period. After the subjects responded with their
decision, feedback regarding the judgment was given (“green” - correct, “red” -
incorrect, “yellow” - response timeout). A: In the response-time task, subjects could
respond as soon as the the stimulus was presented. The response time is defined as
the time interval from the start of the stimulus presentation to when the subject
responded with their choice on a game pad. B: In the interrogation task, subjects
could only respond after the end of the stimulus and the stimulus duration was
experimentally varied on each trial. C: The hybrid task adapts the interrogation task
to include an additional response period in which subjects reported that they
perceived the stimulus as a single, continuous sound or as a series of discrete tones.
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Figure 4

Response-time psychometric and chronometric data for one representative subject
averaged across the repeated presentations for the particular inter-tone burst-
interval (IBI) & coherence condition. A: Choice accuracy data (circles), and drift
diffusion model (DDM) fits (solid line) for three IBIs plotted against signed
coherence (negative coherence corresponds to stimuli decreasing in frequency
while positive coherence corresponds to stimuli increasing in frequency). B.
Response time (RT) data (“+” symbols) and DDM fits (solid line) for three IBIs. C:
Signal response time (Signal RT) data (“+” symbols) and DDM fits (solid line) for
three [BIs. Signal RT is the tone burst duration (30 ms, same for all IBI conditions)
multiplied by the number of elapsed tones.
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Figure 5

A,D: Decision bound height and B,E: drift rate (accumulation rate) C,F: non-decision
time for DDM fitted to (A-C) RT data and (D-F) Signal RT data. Each colored triangle
corresponds to one subject. Connected circles are the median values across subjects.
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Figure 7

Psychophysical kernels based on 0% coherence trials (blue solid curves) aligned by
the start of the trial (A,C) and by when the choice was made (B,D). Kernels were
computed using logistic regression with data from the response-time task, pooled
across 6 subjects. Red solid curve corresponds to mean of bootstrap weights and red
dotted curve represents +2 SEM for the bootstrap weights. The kernels in panels A,B
are plotted in signal time (tone number multiplied by tone duration, fixed at 30 ms
for all IBIs), while the kernels in C, D are plotted in real time.
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Figure 8

Time-dependent psychometric data (dots) and DDM fits (solid curves) for
interrogation task on A: 10 ms, B: 60 ms, C: 150 ms IBI trials. The colors in A-C
correspond to the coherences tested. D: Plot of fitted DDM drift coefficients for the

three IBI conditions (circle) and their associated bootstrapped, 95% confidence
intervals.
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Figure 9

Time-dependent psychometric data (dots) and DDM fits (red solid curves) for the
hybrid task in A. Prior to each session, the 50% IBI threshold for perceiving the
stimulus as a single, continuous sound versus a discrete series of tones was
measured for each subject. Subjects were then run on the hybrid task using this
threshold IBI. The data for the threshold IBI was separated by the subjects’ report of
perceived continuity for analysis. B: Plot of fitted DDM drift rates (circle symbols)

for the separately analyzed hybrid task data at the threshold IBI and their associated
bootstrapped 95% confidence intervals.
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Chapter 3

General Discussion & Conclusions

Our study establishes a new auditory decision making paradigm to test how
sensory information is converted into a perceptual judgment. We used a novel
auditory-discrimination task that required human subjects to report whether a
stochastic auditory stimulus was increasing or decreasing in frequency. Using this
task, we examined how temporal gaps in a stimulus, which can affect the perceptual
grouping of the stimulus, can also affect the computations that convert sensory
evidence into a perceptual judgment. By understanding how the brain converts the
sensory stimulus into a perceptual decision with our task, we can better understand
the computational principles and the neural implementation of how auditory
perceptions are represented in the brain. We will discuss first, how timing affects
the perceptual grouping of our stimulus, second, how our task provides evidence
that the decision making processes are insensitive to IBI and to the perceptual

grouping of the stimulus, and finally, future directions to extend our findings.

IBI & Perceptual Organization
The timing of acoustic events can affect how they are perceived. We
characterized how IBI, or the temporal gaps in our tone sequences, affected the

perceptual grouping the stimulus. We found that by varying the IBI of our tone
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sequences, listeners indeed perceive our stimuli differently. At short IBIs, listeners
tend to perceive the stimulus as a continuous, grouped sound, and at long IBIs,
listeners perceive the stimulus as a series of discrete tones. By varying the IBI of our
stimulus, subjects could perceive the stimulus as grouped or as a discrete series of
tones.

Our findings add to the types of stimuli that can be used to study how
stimulus features can affect how sounds are perceptually organized. Auditory
perceptual organization is typically studied using the “ABA” streaming paradigm
(van Noorden 1975, Bregman 1994, Moore & Gockel 2012). The “ABA” stimulus
consists of repeating “A” and “B” tones, which different frequencies. Specifically, for
the “ABA” stimulus, faster presentation rates or larger frequency separations
between the “A” and “B” tones are perceived as separate streams at the two
frequencies. For slower presentation rates and smaller frequency separations,
listeners perceive the stimulus as a galloping sound, representing one stream. This
paradigm set the groundwork for understanding how perceptual grouping of the
stimulus is affected by changes in the acoustic features of the stimulus. However, the
“ABA” stimulus, as we have established, is not the only stimulus that can be used to
study the principles of sequential auditory perceptual grouping.

How might the auditory system process the grouping cues in our stimulus? A
number of models (Beauvois & Meddis 1996, Hartman & Johnson 1991) have been
developed to explain how frequency-separation can affect the perception of

streaming with the “ABA” streaming paradigm. These models are based on the
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frequency selectivity and adaptation properties of neurons in primary auditory
cortex. Stream segregation occurs when distinct populations of neurons are
activated. For example, the population of neurons responding to two tones closely
separated in frequency would be overlapping and therefore represent one stream.
On the other hand, for two tones separated far apart in frequency, two distinct
populations of neurons would be responding to the stimulus, and therefore the
stimulus would be perceived as two streams. These population-based models could
explain how listeners can perceive a grouped sound based on the frequency content
of our stimulus, since coherent tones are separated by 7.5 hz, which is a smaller
frequency separation than the bandwidth of primary auditory cortex neurons
(Recanzone et al 2000). However, these population-based models do not take into
account the relative timing of the different sound elements in a stimulus, which can
have a large impact on how the stimulus is perceived.

One model that takes into account the temporal structure of the stimulus is
the temporal-coherence model (Elhilali 2009, Shamma et al 2010). This model
extends previous frequency-separation based models of streaming to account for
the timing between acoustic events in the perceptual organization of sounds.
According to the temporal coherence model, sounds that are closely separated in
time and have a common rhythm, even if they are separated in frequency, will evoke
temporally coherent activity across the neural population. The temporal coherence
model can mirror human subjects’ performance on a challenging auditory stochastic

figure-ground detection task in which subjects detect the presence of a multi-tone
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sequence embedded in a simultaneously presented random chord distractor
stimulus (Teki et al 2013).

An open question is whether the brain perceptually organizes sounds by
using the temporal coherence of neural populations representing the stimulus. One
possible mechanism that is consistent with the temporal-coherence model is the
phase entrainment of stimulus-evoked oscillations acting as a spectrotemporal
filter. This filtering mechanism boosts the excitability of the neural populations
corresponding to the temporally coherent stimuli and selectively attenuates activity
of neural populations corresponding to the temporally incoherent sounds (Lakatos
et al 2013). Whether phase-entrainment can be extended to more complex stimuli
and be tested in awake, behaving animals remain to be seen.

In humans, the perceptual organization of a stimulus activates the
intraparietal sulcus (Teki et al 2010, Cusack 2005). Using the stochastic figure-
ground stimulus in which a tone sequence is embedded in a sequence of random
chords, the detection of the target tone-sequence was correlated with activity in IPS,
suggesting that this area contains an anatomical substrate for processing the
perceptual organization of the stimulus. The IPS receives input from caudal belt
regions of auditory cortex (Lewis & van Essen), and in non-human primates lateral
intraparietal cortex (LIP) an area in the IPS has been shown to be involved in
integrating spatial localization of an auditory stimulus and planning motor behavior
(Cohen & Gifford) as well as forming high-level categorical representations

independent of PFC activity (Freedman & Assad 2006, Swaminathan et al. 2012),
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suggesting that the parietal cortex may play a role in high-level auditory perceptual
processes such as the perceptual organization of an acoustic stimulus. Whether IPS
plays a role in representing the outcome of the perceptual organization process or
in actively processing the stimulus to perceptually organize the sounds sounds

remains to be examined in the future.

Sensory Evidence Accumulation

The accumulation of sensory evidence is a general computational model for
explaining how sensory evidence is converted to a perceptual decision. Auditory
tasks are no exception to this model. Our goal has been to focus on the role of time
in auditory perception and by examining how sensory evidence is processed to form
a perceptual judgment, we can examine how auditory processing may process time
differently. We found that subjects accumulate sensory evidence to make their
frequency-change judgments. In particular, subjects integrated sensory evidence
over a fixed period of time independent of IBI, consistent with an accumulation-
based perceptual decision making model with a collapsing decision boundary that
took into account the costs and benefits of accumulating additional sensory
evidence. We also found that the drift rate, which is a measure of the signal-to-noise
of the sensory evidence and the rate of sensory evidence accumulation was
independent of IBI.

Our finding that subjects integrate sensory evidence over a fixed period,

consistent with a collapsing bound decision-making model suggests that listeners
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making auditory judgments also adjust their strategy according to the difficulty and
speed of the judgments. Subjects in the response-time task appear to compare the
costs and benefits of accumulating additional sensory evidence in terms of elapsed
time and not by the number of samples of sensory evidence. While we did not
impose any explicit costs or rewards, finishing the trials as quickly as possible and
as accurately as possible can be seen as an implicit reward for our task. Because trial
parameters such as IBI, coherence, and the absolute frequencies of the stimulus
sequence varied between trials, in order to efficiently complete the experimental
task, subjects’ strategies had to take into account the considerable variability in
difficulty across trials. While examining the role of the decision bound was not the
focus of this work, it would be useful in the future to examine directly each subject’s
cost function to determine how subjects weighed the costs and benefits to
accumulating additional information and to allow for a direct comparison with the
cost function for human subjects on a visual discrimination task (Drugowisch et al
2012).

Our main result is that the sensory evidence accumulation process was
invariant to IBI and to the grouping of the stimulus. Our findings are consistent with
recent work showing that accumulation of sensory evidence is insensitive to gaps in
the stimulus (Kiani et al 2013, Brunton & Brody 2013). In one study, subjects in
made a decision regarding which one of two stochastic, Poisson pulse trains had the
higher rate. The trial-by-trial variability in the choice and response-times in this

auditory spatial discrimination task was found to be the result of noise in the
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representation of sensory evidence and not noise in the sensory evidence
accumulation process (Brunton & Brody 2013). A separate study found that a time
gap between two distinct stimulus pulses did not affect subjects’ performance on a
visual motion direction discrimination task (Kiani et al 2013). If the accumulation
process for our task were noisy, the accumulator noise present during the silent IBI
periods would be added to the accumulated sensory evidence. As IBI increased the
amount of noise accumulated along with the incoming sensory evidence would also
increase, leading to an overall increase in the variability in the total, accumulated
sensory evidence. This increase in the variability of the accumulated sensory
evidence would correspond to a decrease in the drift rate (Ratcliff et al 2002, Voss et
al 2004), which we did not observe, suggesting that a noiseless sensory evidence
accumulation process may be able to account for the invariance of the drift rate to
IBI.

This noiseless integration process may be implemented by a multi-stable
attractor network (Kiani et al 2013, Pouget & Latham 2002, Koulakov et al 2002).
These network models use biologically plausible assumptions to construct a neural
network which replicates some aspect of the target system. For the multi-stable
attractor networks, the level of the accumulated sensory evidence does not decay or
become corrupted by noise during periods without any stimulus present. Whether
actual neural circuits instantiate such a network and how such circuits might
function for our task remain to be explored and could provide insights into how the

brain converts the auditory stimulus into a perceptual judgment.
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In addition to the noiseless accumulation mechanism, it is also possible that
the neural circuits involved in auditory-perceptual grouping are separated from the
neural circuits that process and accumulate the sensory evidence for the frequency-
change judgment. The computations for the frequency direction judgment and
grouping judgment may be segregated along the dorsal and ventral auditory
processing pathways. The ventral pathway is thought to be involved in extracting
stimulus features to identify auditory objects while the dorsal pathway is thought to
extract spatial information and integrate sensory and motor representations for
speech perception and production (Rauschecker & Scott 2009, Bizley & Cohen 2013,
Rauscheker 2011, Hickok & Poppel 2007). Belt regions of auditory cortex, which
receive input from core auditory cortex, show the first signs of a functional
difference in their neuronal tuning consistent with the dual pathway hypothesis.
The ventral pathway extends from the anterolateral belt region of the auditory
cortex to ventrolateral PFC, whereas the dorsal pathway originates in the caudal
belt region of the auditory cortex and terminates in the dorsolateral PFC, via the
parietal lobe.

On one hand, the sensory evidence for the frequency-change judgment may
be processed along the ventral processing pathway. The anterolateral belt regions of
auditory cortex, which are part of the ventral stream, is sensitive to complex
combinations of stimulus features such as FM (Tian & Rauscheker 2000) and have
long temporal integration windows compared to primary auditory cortex (Scott et al

2011). The conversion of the sensory evidence to a categorical judgment by the
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accumulating sensory evidence is likely to take place downstream of anteriolateral
belt auditory cortex in ventrolateral PFC, consistent with previous reports of
auditory choice-related activity in vIPFC (Russ et al 2008).

On the other hand, dorsal stream areas, such as intraparietal sulcus, may be
involved in the perceptual organization of incoming auditory stimuli into different
streams (Teki et al 2011, Cusak 2005). Whether these areas are processing temporal
information, consistent with a “when” processing pathway in the parietal lobe
(Davis et al 2009), to form perceptually organized high-level representations or are
combining sensory and motor information for guiding behavior remains to be

explored in the future.
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