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» Capacity of CDCs is higher than that
of carbon nanotubes and other carbon
nanomaterials.
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at 77K using Quantachrome Autosorb-1. Pore size something important.
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Reversible hydrogen storage capacity of CDC is 10
times that of multi-walled nanotubes, 3.5 times that of
singl lled carbon nanotubes and 2 times than that of
metal organic framework (MOF-5) at 1 atm pressure and
77K.

Volume of hydrogen
adsorbed, cc/g

0 100 200 300 400 500 600 700 &R0

0.74
2.2 f\ CDC from SiC 1.6
2.0 CcDC from B,C
1.8 pores <2nm 1.4

Wt.%
== (X 1000)

Pressure, mm of Hg

> Nanoporous CDC'’s with tunable pore size provide SSA up to
2000 m?/g, pore volume > 1 cc/g available for hydrogen storage.

» At 1 atm. and 77K, gravimetric capacity > 3.0 wt.%, volumetric >
24 kg/mé.

» At 1 atm. and 77K, CDC capacities > MOF-5, SWNT, MWNT.
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