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ABSTRACT 

MEMORY AND COUPLING IN NANOCRYSTAL OPTOELECTRONIC DEVICES 

 

Jessamyn A. Fairfield 

Dr. Marija Drndic 

 

Optoelectronic devices incorporating semiconducting nanocrystals are promising 

for many potential applications. Nanocrystals whose size is below the exciton Bohr 

radius have optical absorption and emission that is tunable with size, due to the quantum 

confinement of the charge carriers. However, the same confinement that yields these 

optical properties also makes electrical conduction in a film of nanocrystals occur via 

tunneling, due to the high energy barrier between nanocrystals. Hence, the extraction of 

photo-generated charge carriers presents a significant challenge. Several approaches to 

optimizing the reliability and efficiency of optoelectronic devices using semiconducting 

nanocrystals are explored herein. Force microscopy is used to investigate charge behavior 

in nanocrystal films. Plasmonic structures are lithographically defined to enhance electric 

field and thus charge collection efficiency in two-electrode nanocrystal devices 

illuminated at plasmonically resonant wavelengths. Graphene substrates are shown to 

couple electronically with nanocrystal films, improving device conduction while 

maintaining carrier quantum confinement within the nanocrystal. And finally, the 

occupancy of charge carrier traps is shown to both directly impact the temperature-
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dependent photocurrent behavior, and be tunable using a combination of illumination and 

electric field treatments. Trap population manipulation is robustly demonstrated and 

verified using a variety of wavelength, intensity, and time-dependent measurements of 

photocurrent in nanogap nanocrystal devices, emphasizing the importance of 

measurement history and the possibility of advanced device behavior tuning based on 

desired operating conditions. Each of these experiments reveals a path toward 

understanding and optimizing semiconducting nanocrystal optoelectronic devices.
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1 Introduction 

The work described here focuses on two of the grand challenges of optoelectronic 

nanocrystal based devices—reliability and efficiency. Experimental results are presented 

which characterize the optical and electronic properties of defects and coupled systems, 

discover new physics behind memory effects, and suggest how better understanding and 

control of defect structure and coupled electronic structures can be used to create robust 

nanocrystal based devices. 

1.1 Semiconducting Nanocrystals 

Semiconducting nanocrystals are recognized as revolutionary optoelectronic 

device components for applications as diverse as fluorescent tagging, light-emitting 

diodes, solar cells, and nanoelectronics. The size of nanocrystals, which is at the border 

between the quantum scale and the macro scale, gives them useful physical properties not 

seen in atoms or in bulk solids. Quantum confinement of carriers leads to delocalized 

charge carrier states whose energy depends on the nanocrystal size, thus the optical 

absorption and emission is tunable with nanocrystal size. For this reason, nanocrystals 

with sizes below the confinement limit are also called quantum dots. Difficult physics 

and engineering challenges, however, still remain in order to make the transition from 

nanocrystals in a research lab to nanocrystals in commercial devices. The most important 

factors for optoelectronic nanocrystal devices are reproducibility, reliability, and 

efficiency. 

Reproducibility of nanocrystal size and composition has been solved previously 

by chemical synthesis. The challenges in reliability and efficiency spring from the 

underlying physics of confined carriers, conduction by tunneling, and defects in 

nanocrystals. In bulk semiconductor devices, defects are minimized by careful crystal 

growth and crystal edges that are a small fraction of the device volume. Nanocrystals, 

however, grow quickly, experience significant lattice strain, and have surface atoms that 
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are a sizable fraction of the device volume. And at small scales, discontinuities and 

defects can have a greater effect on device operation than they would in traditional bulk 

semiconductors. Both clever device engineering and a deep understanding of the physics 

will be necessary to optimize performance. 

1.2 Optoelectronic Measurements 

Many methods are available to study electrical behavior in nanocrystal devices. 

Drop-cast nanocrystal films can be placed between two electrodes, allowing voltage to be 

applied across the film. The induced current, which acts as a probe of conductivity, is 

then measured. The nanocrystal film can be illuminated with photons at a variety of 

wavelengths and intensities to produce photogenerated current. Structural information 

about the film, gathered using atomic force microscopy or transmission electron 

microscopy, can be correlated with electrostatic force microscopy data, which measures 

the spatially resolved conductivity of a film. Device design can also be taken beyond the 

two-electrode geometry. For example, metal pillars can be introduced to the nanogap, 

with plasmonic resonances that enhance the electric field experienced by the nanocrystal 

film. Graphene can be used as the substrate for the nanocrystals, to improve electrical 

conductivity between nanocrystals without sacrificing their optical properties. Each of 

these methods sheds light on part of the picture. 

The connection between the assembly patterns of drop-cast nanocrystals and 

conduction in the resultant films can be probed using atomic and electrostatic force 

microscopy. Whereas diffusion dominates conduction in the bulk material, charge carriers 

travel from nanocrystal to nanocrystal by variable range hopping, which is a tunneling 

process. Films of semiconducting nanocrystals are non-uniform and insulating, meaning 

that charge does not propagate through the film easily. This is due to the many tunneling 

barriers present in a nanocrystal film, which yield a system of isolated conducting 

islands. For metal nanocrystals in low concentrations, drop-cast assembly yields 

diffusion-limited aggregates of nanocrystals, due to nanocrystal motion during solvent 

evaporation. The resulting fractal metal aggregates respond to nearby voltages by 

developing image charge, and their structure could be used to apply enhanced voltages to 
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semiconducting nanocrystals.  

Applying a voltage across an electrode gap results in a uniform electric field in 

the gap. This field adds a directional component to the diffusion of charge, causing 

current to flow. Strong electric fields can also be excited by objects with plasmon 

resonances. For high carrier densities and sizes much smaller than the wavelength of 

incident light, the light can resonantly couple with the charge carriers. These driven 

oscillations are referred to as localized surface plasmon polaritons, and they can cause a 

strong electric field close to the nanoscale object. Placing an array of metal pillars in the 

active area of a nanogap device causes plasmonic enhancements of the electric field at 

certain wavelengths of light, determined by the pillar material, size, and spacing. For the 

lithographically defined gold pillars measured, the enhancement is small, though larger 

enhancements could be achieved for smaller plasmonic object spacing.  

The insulating nature of nanocrystal films can also be bypassed by using another 

material for conduction. In a two-electrode device, graphene grown by chemical vapor 

deposition can be used as a substrate for nanocrystals. Nanocrystal luminescence is 

quenched by the graphene, indicating strong electrical coupling between the two 

materials. However, optical absorption measurements show that the characteristic 

nanocrystal absorption peaks are still present, indicating that the quantum confinement of 

nanocrystal energy states is maintained despite the coupling. Thus, graphene shows 

significant promise as a substrate for nanocrystal devices. 

1.3 Extracting the Physics 

Using two-electrode nanocrystal film devices, it is possible to conduct a detailed 

study of photoconductivity by applying light to the devices and measuring current. Many 

variables can be modified that affect photocurrent, including the wavelength and intensity 

of the light, and the temperature of the device. Although there are contradictions in the 

literature concerning the basic physics of photoconductivity in semiconducting 

nanocrystal arrays—specifically different observed temperature dependences for 

photoconductivity, with various explanations proposed—the work reported here 

demonstrates for the first time that there exists a reproducible relationship between 
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photoconductivity and temperature, once memory effects are taken into account. 

Specifically, it has been found that electric field induced population and optically induced 

depopulation of traps can reverse the temperature dependence of the photoconductivity. 

Photoconductivity of CdSe/ZnS nanocrystal arrays can be modified by cycling voltage 

under illumination or in the dark, and the effect exhibits saturation after a few hours. This 

provides a robust and reproducible procedure for controlling the trap population in 

nanocrystal nanogap devices.  

The physical mechanism responsible is the manipulation of charge trap 

populations in nanocrystals, which are affected by applying light and electric fields. The 

trap occupancy modifies low-temperature photocurrent, changing the measured 

temperature dependence. With appropriate control of trap populations, a range of 

temperature-dependent behaviors previously attributed to material differences can in fact 

be reproduced in a single device. This provides a possible explanation for contradictory 

reports of the temperature dependence of photoconductivity in the literature. Dynamically 

controlling trap populations has the important benefit of achieving optimized 

photodetector sensitivity at low or high temperatures for light sources, photovoltaics, 

electronics, and other applications.  

Interestingly, while sub-band gap illumination does not yield measurable 

photocurrents, it does affect the photoconductivity upon subsequent band gap 

illumination. Sub-band gap excitation is actually found to be more efficient for charge 

detrapping than excitations above the band gap. Different wavelengths of light excite 

trapped carriers into different band gap edge states, and charge carriers excited to higher 

states have a larger number of relaxation pathways available than those in the lowest 

conduction state. For example, they can relax into lower states, into trap states, or travel 

out of the nanocrystal via field-driven transport. It is possible that access to higher states 

could reduce the trap emptying efficiency, decreasing the memory effect. This 

conceptually supports the experimental result that sub-band gap energy photons are more 

efficient at trap manipulation in nanocrystal semiconducting films. 
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1.4 Scope of This Work 

This thesis begins with an explanation of the chemical synthesis of cadmium-

based semiconducting nanocrystals. The quantum confinement, energy levels, and optical 

properties of nanocrystals are discussed. Electronic properties of semiconducting 

nanocrystals are then explained, including electron and hole states in an individual 

nanocrystal, charge localization, film conduction, and photocurrent response. The 

experimental techniques used in this work are described in detail, such as substrate 

fabrication, lithography, dark and photocurrent measurements, and the effects of vacuum 

and temperature. Several microscopies are covered, including transmission electron 

microscopy, atomic force microscopy, and electrostatic force microscopy. Force 

microscope studies of both semiconducting and metal nanocrystals are discussed. 

Plasmonic devices, with integrated arrays of metal pillars whose plasmon resonance at a 

visible wavelength should enhance measured nanocrystal photocurrent, are reviewed and 

examined. The effects of charge traps on photocurrent temperature dependence and 

device memory are explored in detail, with time, wavelength, and intensity measurements 

corralled to support a trap population manipulation picture that allows tunable device 

properties. And finally, the coupling of nanocrystals with graphene is studied via optical 

and electronic measurements. 

Together, these measurements paint a fascinating picture of semiconducting 

nanocrystals: their unusual basic physics, their difficult but interesting integration into 

photosensitive devices, and their unique place in the modern nanoscientist‘s toolbox.  
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2 Nanocrystals: Scientific Background 

Summary 

A nanocrystal is an object possessing a crystal lattice structure and an effective 

radius of less than about 50 nm. Spherical semiconducting nanocrystals, sometimes 

called quantum dots, have a growing number of optoelectronic applications as 

photodetectors,
1-5

 solar cells,
6
 and light emitters.

7
 They have a high yield of excitons from 

photons, also called quantum yield, a bandgap that is widely tunable and covers the 

visible spectrum, and well-established synthesis protocols.
8-10

  Nanocrystals with a core 

made of one material and a shell made of another are particularly interesting, because of 

their improved quantum yield, protection against oxidation, and confinement. In this 

work, ―nanocrystals‖ refers to spherically symmetric nanocrystals, and in one chapter 

―nanorods‖ refers to nanocrystals with aspect ratios above 1:1. 

Nanocrystals, which contain a few thousand to a few hundred thousand atoms, 

have properties that are intermediate between simple quantum properties and classical 

bulk properties. Their optical properties deviate from bulk properties: they have intense, 

narrow emission peaks that are useful for fluorescence tagging and spectroscopy, and can 

absorb photons to generate excitons that can be separated and collected as current.
11

  The 

energy bandgap of nanocrystals is inversely proportional to their radius and can be tuned 

to many energies, including the entire visible spectrum. This is useful for the potential 

fabrication of optoelectronic devices such as solar cells, where a range of nanocrystal 

sizes could allow cells to fully utilize the solar spectrum. Light-sensitive artificial solids 

based on nanocrystal arrays are also useful as flexible model systems for the study of 

basic transport phenomena.
1, 12-14

 However, nanocrystals possess unique challenges 

because of their size.  They fluoresce intermittently
15

 and their photocurrent can be 

diminished by the tunneling barriers between nanocrystals and by the presence of traps, 
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defects which spatially localize charge carriers.
9, 16

  Control over the effects of traps 

would be a large step forward in the development of efficient nanocrystal solid devices. 

Nanocrystals inhabit a particularly interesting region of the size spectrum for 

condensed matter physics. They exhibit significantly different behavior from individual 

atoms or their building blocks, but they do not possess the properties of bulk materials 

either. With hundreds of atoms, rather than one atom or a trillion atoms, nanocrystals 

bridge the quantum and macroscale worlds. To study the scientific properties of 

nanocrystals it cannot be assumed that they will behave as other systems do. 

2.1 Synthesis and Characterization 

Nanocrystals intended for use in ensembles in an optoelectronic device should 

ideally possess the following traits: 

1. Nearly monodisperse in size. 

2. Uniform in shape. 

3. Uniform in chemical composition. 

4. Crystalline with few defects in the lattice structure. 

5. Nonreactive (passivated) due to a well-controlled surface chemistry. 

Each of these properties affects the electrical and optical functionality of the 

nanocrystals, which will be discussed in more detail later in this chapter. Nanocrystals 

can be created by gas condensation, arc discharge, ion sputtering, and laser ablation, but 

chemical synthesis is the most convenient and inexpensive method of fabricating 

semiconducting nanocrystals which meet the criteria listed above.
11

 

The nanocrystals used in this work are created commercially using a synthesis 

procedure based on the La Mer model for producing monodisperse colloids
17

 that has 

been applied to cadmium nanocrystal growth.
10
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Figure 2.1.1. Synthesis diagram, showing nucleation, growth, and Ostwald ripening. 

 

Nanocrystal synthesis can be divided into several stages, as shown in Figure 

2.1.1: nucleation, growth, and ripening. La Mer showed that a narrow distribution of 

nanocrystal sizes can be obtained by minimizing the nucleation time and maximizing 

growth time.
17

 This result is achieved by rapidly adding reagents to a reaction vessel to 

raise the precursor concentration above the nucleation threshold, at which point 

nucleation will occur to relieve the supersaturation.
18

 To create CdSe nanocrystals capped 

with tri-n-octylphosphine oxide (TOPO), trioctylphosphine selenide and dimethyl 

cadmium precursors are injected into a heated coordinating solvent.
10

 At high 

temperatures the coordinating ligand, TOPO, is frequently exchanged, which promotes 
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crystal formation.  Many crystals nucleate simultaneously, but the nucleation occurs 

during a very short time. Once the supersaturation of the precursors is relieved by a short 

burst of nucleation, then the solution enters a growth phase, where the seeds continue to 

grow at a controlled rate as long as the solution is heated at a stable temperature.  The 

brevity of the nucleation phase ensures that all the nucleation sites will be a similar size 

upon entering the growth phase, thus the nanocrystals will retain a focused size 

distribution as the existing nuclei grow with a uniform rate.
17

 Although the formation of 

many small crystals is kinetically favored at the nucleation stage, after growth large 

crystals are favored thermodynamically due to their lower surface energy.
19

 Thus, once 

the crystals reach a certain size, the smallest nanocrystals will dissolve due to their high 

surface energy and their material will be deposited on the larger nanocrystals, a process 

called Ostwald ripening.
20-22

 Ostwald ripening broadens the size distribution of the 

nanocrystals, and a focused size distribution of small nanocrystals can be achieved by 

stopping the reaction before Ostwald ripening begins.
23

 When the heat source is removed, 

the crystal growth effectively comes to a halt because the coordinating ligands act as a 

passivating cap, preventing the aggregation of nanocrystals and reducing their chemical 

reactivity.
10

 The ligand can be replaced with a different capping ligand, by precipitation 

and redispersion in a concentrated solution of the new ligand,
23, 24

 or can be completely 

removed via UV annealing or thermal annealing.
12, 25

 

In this synthesis, the TOPO (or other coordinating solvent) plays several crucial 

roles. The ligand forms a coordination complex with one of the two precursors, selenium 

in the case of CdSe synthesis, a requirement because of the electronic properties of 

selenium. During the synthesis, the TOPO desorption rate, which is dependent on 

temperature, directly controls the rate of nanocrystal growth. To stop the reaction, the 

temperature is lowered, and once the TOPO desorption rate is low enough, the TOPO 

now acts as a passivating ligand, preventing surface degradation and precipitation. 

Ligands control growth rate and reaction mechanism, as well as particle shape and size 

distribution.
26

 For device integration, the ligand‘s long length and electrical insulation act 

as barriers to conduction and performance, but in the synthesis the action of the ligand is 

integral. 
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The process described above, where nucleation begins when the precursor 

concentration is just above the nucleation threshold, results in nanocrystals which grow 

slowly and evenly in all directions. The nanocrystals are faceted due to the crystal lattice 

but approximately spherical. Other shapes can be created by adjusting the growth rate, 

which can favor certain crystal faces so that rods, stars, tetrapods, and other shapes 

form.
23

  

For homogeneous nanocrystals, the addition of a shell consisting of several 

monolayers of a different but related material can improve the carrier confinement and 

the optical response of the nanocrystals. This is due to the importance of surface states 

and hence, surface quality in nanocrystals. The bonding and coordination of the surface 

atoms affects both the mechanical properties of the nanocrystal, by modulating the strain, 

and the electronic properties of the nanocrystal.
27

 Adding a shell can also reduce the 

dielectric contrast between the nanocrystal and its surroundings.
28

 For these reasons, 

core-shell nanocrystals are widely used in device studies, either as thin few-monolayer 

shells, thick shells, or multiple shells. Depositing the shell can be done using the same 

procedure described above for nanocrystal synthesis, at a lower temperature to prevent 

nucleation. However, the shell material must be chosen to have a similar surface energy 

and bandgap, must have a similar crystal lattice structure so that defects due to surface 

strain are minimized, must not nucleate or diffuse into the core, and must be deposited 

under conditions which do not destroy the core material. When the shell has a larger 

bandgap than the core, the carriers in the core experience stronger quantum confinement 

than carriers in core nanocrystals with no shell. Such core-shell nanocrystals are said to 

have Type I band alignment. If the shell has a smaller bandgap, one or both carriers may 

delocalize to the shell, which is called Type II band alignment.
29

 For CdSe cores, ZnS is 

widely used as a shell material because it has a well-matched crystal lattice as well as 

Type I alignment.
9
 

Once synthesized, nanocrystals can be examined to determine their structural 

characteristics. Transmission electron microscopy (TEM), where objects are imaged by 

an electron beam on a very thin substrate that is approximately transparent to electrons, is 

a powerful tool for characterization. TEM images can have much higher resolution than 
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optical microscopy, because the de Broglie wavelength of electrons which limits the 

resolution is very small compared to that of light.
30

 In TEM images, objects which scatter 

electrons appear dark, and objects which allow electrons to pass through appear light. 

Thus metal electrodes look very dark in TEM, and semiconducting nanocrystals look less 

dark but are still visible against either amorphous carbon or silicon nitride substrates. The 

crystal lattice planes of a nanocrystal are often visible in high quality TEM images. 

Recently efforts have been made to observe nanocrystal synthesis itself in TEM, with 

either vapor phase or solution growth.
31, 32

 But for synthesis performed outside the TEM, 

imaging the resultant nanocrystals in TEM allows one to verify their shape and size 

dispersity. 

 

 

Figure 2.1.2. High-resolution TEM images of CdSe/ZnS nanocrystals on a carbon grid. 

 

The nanocrystals used in much of this work were CdSe/ZnS core-shell spherical 

nanocrystals purchased from Sigma Aldrich, but fully characterized in the lab. The 

nanocrystals were capped with a mixture of hexadecylamine and trioctylphosphine 

ligands to prevent aggregation and passivate surface traps. TEMs of the nanocrystals are 

shown in Figure 2.1.2, with the crystal lattice planes clearly visible against the 

amorphous carbon substrate in the Figure 2.1.2a. CdSe nanocrystals have a wurtzite 
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crystal structure, as shown in Figure 2.1.3. The wurtzite lattice can be described as two 

interleaved hexagonal close-packed lattices, one for the Cd atoms and one for the Se 

atoms. Wurtzite is the name for the lattice as observed in binary compounds, but the same 

lattice with only one atom type is the diamond lattice, where each atom is tetrahedrally 

coordinated.
33

 

 

 

Figure 2.1.3. Wurtzite crystal structure. 

 

  

2.2 Quantum Properties 

Many of the interesting properties of nanocrystals stem from their quantum 

nature. Although bulk materials have bands of available electronic states, nanocrystals 

have quantized states due to the confinement introduced by their small diameter, which is 
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why they are sometimes called ―artificial atoms‖ and ―quantum dots‖. Semiconducting 

nanocrystals still possess a band gap, as would the same material in bulk, but the states in 

the valence and conduction bands are quantized beyond what states are available in the 

bulk. This state quantization occurs as a result of the spatial restrictions on the charge 

carriers (electrons and holes) in the material. Whether a nanocrystal‘s carriers experience 

quantum confinement or not can be determined by examining carrier behavior in the 

nanocrystal: namely, one can calculate the Bohr radius for a bound electron-hole pair, an 

exciton, within the nanocrystal material by using the Bohr formula and substituting the 

hole for the atomic nucleus:
34, 35

  

 0a
m

m
a

c

B   (2-1) 

The exciton Bohr radius, Ba , is given in the equation above in terms of  , the 

dielectric constant of the material, m , the electron rest mass, cm , the reduced exciton 

mass, and oa , the Bohr radius of hydrogen. When the nanocrystal radius is significantly 

smaller than the exciton Bohr radius in that material, then carriers in the nanocrystal will 

experience quantum confinement and a reduced density of energy levels.
36

 For CdSe, the 

exciton Bohr radius is between 2.4 and 2.9 nm,
15, 37

 and experimentally nanocrystals with 

radii below approximately 3 nm begin to exhibit size-dependent optical properties.
38

 

The simplest model for understanding the electronic structure of a nanocrystal is 

the quantum mechanical particle in a box. For a spherical nanocrystal, charge carriers 

within the nanocrystal are confined by the nanocrystal radius, which can alternately be 

written as the mathematical boundary condition 

 













Rr

Rr
V

0
. (2-2) 

Thus the box described is a nanocrystal with radius R . The solution 

wavefunctions for such a particle, using spherical coordinates, are given by 

 ),()(),,( ,,,  m

llnlmln Yrkj
r

C
r  , (2-3) 

where C  is a normalization constant, )( , rkj lnl  are the l
th
-order spherical Bessel 
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functions, and ),( m

lY  are the spherical harmonic functions. Enforcing the boundary 

conditions above yields 0)( , Rkj lnl , which means that lnln Rk ,,   where ln,  is the nth 

zero of lj . The eigenenergies of carriers in the nanocrystal can now be written as 
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 The energy dependence on R  is the key to why nanocrystal energy levels change 

with the nanocrystal‘s size, leading to the dependence of absorption and emission spectra 

on particle radius. 

The above analysis was applicable for spherical nanocrystals that are confined in 

all directions. Nanorods and nanowires have one axis along which they do not experience 

quantum confinement. Along that axis carrier transport can be thought of as a scattering 

process obeying the Landauer-Büttiker formalism, which relates the transmission fraction 

of incident carriers to conductance for a material with electrical leads.
39, 40

  

The next sections will review several of the properties due to quantum 

confinement that make nanocrystals an interesting material to study.  The optical 

absorption and emission of nanocrystals depend on their size. The electronic states of 

nanocrystals can be approximated by adding excitonic corrections to the quantum 

mechanical particle in a box. Carriers can be localized by lattice defects, and the resultant 

charge traps also affect the electronic properties of nanocrystals. When many 

nanocrystals are incorporated together into a self-assembled thin film, the film retains 

many of the optical properties of individual nanocrystals but its electronic transport, both 

in the dark and under illumination, is determined by the ease with which carriers can 

move between nanocrystals and the electrical quality of the contact to the electrode.  

2.3 Optical Properties 

When a nanocrystal is excited by a photon, the resultant exciton is delocalized 

over the nanocrystal, and the available excitonic states are determined by the 

confinement, which is to say, by the nanocrystal size and material.
18

 For this reason, the 

optical properties of nanocrystals, such as the absorption and emission at different 
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wavelengths, are size dependent, as shown in Figure 2.3.1. Smaller nanocrystals have 

different electronic states, which change the energies of transition between states due to 

the quantum confinement of the electron in all spatial dimensions. 

 

 

Figure 2.3.1. Fluorescent emission of nanocrystals of various sizes.  

 

For nanocrystals below the quantum confinement threshold, discrete electronic 

states are available because the allowed momenta, or k-values, of the states have also 

been quantized. If the nanocrystal diameter is decreased, the separation between 

nanocrystal states increases, widening the bandgap in semiconducting nanocrystals and 

blueshifting the absorption and emission peak wavelengths. This corresponds to the 

energy dependence on 1/R
2
 shown in Equation 2-4. The bluest emission in Figure 2.3.1 

comes from the smallest CdSe nanocrystals pictured, on the left of the image. 

The absorption and emission spectra for nanocrystals yield information about the 

electronic structure of the nanocrystals. The absorption spectra, which describe the 

wavelengths at which nanocrystals absorb incident photons and the extinction at those 
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wavelengths, are superpositions of several absorption peaks at energies corresponding to 

excited state transitions. The primary absorption peak corresponds to the band gap 

energy. The absorption spectra can be used to identify energy transitions
41

 as well as to 

determine nanocrystal quality and investigate electronic coupling with substrates. 

Emission occurs when an absorbed photon creates an exciton which then radiatively 

recombines, emitting a new photon. The emission spectra for semiconducting 

nanocrystals have a Lorentzian profile that is slightly redshifted from the wavelength 

corresponding to the bandgap energy. The redshift of the emission peak relative to the 

first absorption peak is due to the Stokes shift, where some absorbed energy is dissipated 

in the nanocrystal as phonons. The width of the distribution depends on the size 

dispersity of the nanocrystals, with a larger size distribution leading to a broader emission 

peak.   

 

Figure 2.3.2. Absorption and emission intensity vs. wavelength for nanocrystals studied. 

 

The absorption and emission spectra of CdSe/ZnS nanocrystals from Sigma-

Aldrich in toluene solution were recorded using SpectraSuite from Ocean Optics (Figure 

2.3.2). Emission data were gathered with the sample illuminated by an Ocean Optics LS-
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450 with a 470 nm LED and filter. The light source for the absorption spectrum was an 

Ocean Optics LS-1 with a tungsten halogen bulb. The primary excitonic absorption peak 

was at 610 nm and the emission peak was at 638 nm. The reported quantum yield from 

Sigma-Aldrich is 30%. 

The CdSe core size for a given absorption peak can be estimated using the 

empirical formula fitted by Yu et al.
42

: 
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 (2-5) 

Here D is the nanocrystal diameter in nm, and λ is the wavelength in nm of the first 

absorption peak. Adding a ZnS shell broadens and redshifts the absorption peak, with the 

magnitude of the redshift depending on the size of the nanocrystal.
8
 This is due to the 

delocalization of the electron but not the hole into the shell; thus the largest proportion of 

the redshift comes from the first shell monolayer.
43

  

Under continuous illumination, nanocrystals, like many other molecular and 

nanoscale systems, fluoresce intermittently. This fluorescence intermittency, also called 

―blinking,‖ is observed in many molecules, fluorescent green protein, single light 

harvesting complexes, and single organic fluorophores in addition to nanocrystals.
44

 The 

mechanism behind blinking is not well understood, although the most commonly 

accepted theory is that electrically neutral particles are in the off state, and charged 

particles are in the on or fluorescing state.
15, 45

 Blinking can be observed in both 

individual nanocrystals and small ensembles of nanocrystals.
46-48

 In semiconductor 

quantum dots, rods, and wires, the distributions of fluorescence on- and off-times of 

individual particles follow truncated power law (Levy) statistics.
44

 Non-blinking 

nanocrystals have been fabricated by having a continuous transition from core to shell 

material, 
49

 by the addition of dopants,
50

 and after treating nanocrystal films with thiols.
51

 

An analogous electrical switching has been observed in single CdSe nanorods.
52

 Blinking 

and current switching are not observed in the device measurements in this thesis: blinking 

is not measured because optical output of electrical devices was not measured, and 

electrical switching is most likely not observed due to the ensemble averaging when 

many nanocrystals are measured together in a film. 
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2.4 Electronic Properties 

Electronic measurements of nanocrystals are needed to complement the energy 

state information gleaned from optical measurements. Progress in this area has been slow 

due to the many experimental difficulties encountered; for instance, it is quite difficult to 

electrically contact a single nanocrystal lithographically, the nanocrystal is very sensitive 

to its electrical environment, and there can be a large variation between different 

nanocrystals.
53

 Many successful single nanocrystal measurements have been done using 

scanning tunneling microscopy (STM), where the STM tip acts as one of the two 

electrodes contacting the nanocrystal.
54-56

 Instead of examining a single crystal, it is 

possible to look at an ensemble of nanocrystals in a thin film, which has the advantages 

of ease of fabrication and averaging over slight nanocrystal differences. The case of a 

nanocrystal film will be discussed in more detail in the following section, but first the 

electronic states in a single nanocrystal are estimated using qualitative models. 

As shown in Equation 2-4, the most important factor controlling the environment 

of a charge carrier in a nanocrystal is the nanocrystal size. The energy levels for a charge 

carrier in a nanocrystal are given in Equation 2-4, but to obtain electrical solutions that 

are of use in discussing photocurrent, terms for the exciton binding energy, exE , and the 

Coulomb interaction between the photogenerated electron and hole in small enough 

nanocrystals must be added. If the radius of the nanocrystal is much larger than the 

exciton Bohr radius, BaR  , then the carriers are weakly confined and the final exciton 

ground state energy will be 
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This energy depends on the band gap energy GE  for a semiconducting nanocrystal, as 

well as the exciton binding energy and a term for the quantum size. For smaller 

nanocrystals, the quantization of states and the Coulomb interaction become more 

important. If the radius of the nanocrystal is much smaller than the exciton Bohr radius, 

BaR  , then the carriers are strongly confined and the exciton ground state energy will 

be given by 
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The exciton binding energy has been replaced by the electron and hole energies in the 

quantized states whose energies match the incident photon energy, and the final term is a 

Coulombic correction whose value is calculated using first-order perturbation theory.
35

 

As the nanocrystal size decreases, the contribution from the Coulombic term will become 

less important, because of its 1/R dependence as opposed to the 1/R
2
 dependence of the 

other terms. The resultant parabolic energy bands are simplifications of most real world 

semiconductor band structures. The parabolic approximation is good for the bottom of 

the band in cubic and wurtzite semiconductors such as CdSe, but the degeneracy and 

spin-orbit splitting of the bands in this material mean that Equation 2-7 is useful for 

qualitative, not quantitative, description of the electronic structure. Quantitatively, the 

structure can be described in detail using the multiband effective mass approximation.
35

 

2.5 Charge Localization and Trapping 

To apply the particle-in-a-box solution to charge carriers in nanocrystals, it was 

assumed above that the carriers were delocalized over the entire nanocrystal, which is a 

reasonable assumption for a perfect lattice. However, as in the bulk, within a nanocrystal 

it is possible to have a lattice site defect that disrupts the lattice period, creating localized 

electrostatic fields. This defect can be due to a lattice vacancy, a different species of atom 

(i.e. a dopant), or an interstitial atom. The resultant electrostatic field can spatially 

localize a carrier to the defect site. Defects where the carrier has a high probability of 

excitation to a delocalized state using thermal energy are called traps, whereas defects 

where the carrier is likely to recombine with a carrier that has opposite charge before 

thermal freeing can occur are sometimes called recombination centers.
16

 In both cases, 

the carrier is localized and trapped. The energy levels for traps are unfavorable for charge 

transport to another nanocrystal or an electrode, so trapping usually lowers measured 

dark and photocurrent. For simplicity, all localization centers will be referred to as traps, 

with the understanding that whether recombination or thermal excitation dominates will 
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depend on the nanocrystal properties and environmental conditions. 

Bulk defects are possible within the nanocrystal core, but more numerous are 

surface defects resulting from the discontinuity of the nanocrystal lattice at the surface. 

Atoms at the surface of nanocrystals have a lower coordination number and higher 

valence electron density than those in the interior.
57

 The high proportion of surface atoms 

compared to bulk atoms, and the many dangling bonds at the surface, make surface traps 

more likely than bulk traps for nanocrystals. A shell on the nanocrystal can passivate 

some surface traps, but the shell itself will also have surface traps. Chemical ligands 

passivate surface traps as well, though they act as a barrier to conduction which may not 

be desirable for devices.  

For a given charge trap, its energy level will depend on the specific nature and 

location of the defect causing the trap. In a semiconductor, a trap with an energy level 

slightly above the valence band will act as a hole trap, and a trap with an energy level 

slightly below the conduction band will act as an electron trap. The energy difference 

between the trap and the nearest regular energy level can be determined by thermally or 

optically stimulating the trap, by either raising the temperature of the material or applying 

illumination, and measuring at what energy carriers move from the trap into the 

conduction band.
16

 The steady state trap population will be determined by the thermal 

and illumination environment of the material, and if the trap population is enhanced or 

depleted, the rate at which the population will return to equilibrium depends on the 

kinetics of charge carriers in the material. Past measurements of the photocurrent during 

and after a brief pulse of illumination revealed a long decay time, because a large number 

of trapped carriers makes the photocurrent decay time longer than the free carrier 

lifetime.
58

 Trapping can affect the optical spectra, but if non-trap processes dominate, 

then the peaks due to trapping may be very small compared to those due to the band edge 

and other transitions. In samples with a large number of traps, the trapping and 

detrapping of charges has been measured as a 1/f noise at low measurement 

frequencies.
59

 The 1/f character of the noise is due to the distribution of trap energies. The 

presence of charge traps can change the dark conductivity, photosensitivity, speed of 

response, and spectral response of a material,
16

 which makes traps crucial factors in a 
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variety of applications.  

The manipulation of trap states, on the surface or in the bulk, has been explored in 

recent years. Surface states are the focus of efforts to develop single nanocrystal-

molecule complexes capable of computation, where information processing would occur 

via the surface interactions.
60

 Changing surface interactions by applying potentials or 

absorbing molecules can perturb electronic structures reversibly, which is promising for 

the idea of a ‗computer on a particle.‘
60

 Surface and bulk defects which localize charge 

have been found to affect piezoelectric response.
61

 Photoinduced surface trapping can 

lead to overly high quantum yields, which have erroneously been attributed to carrier 

multiplication in nanocrystals in solution.
62

 Nanocrystals which have been doped by the 

addition of bulk defects have been observed to magnetize by exposure to light.
63

 Charge 

localization also affects the reliability of nanocrystal memory devices.
64

 Since charge-

localizing traps, especially surface traps, seem difficult or impossible to remove from 

nanoscale devices, learning how to control and use trapping behavior seems necessary 

from an application perspective. From a physics perspective, the ubiquity and 

significance of charge traps is unique to nanoscale systems, and adds another layer of 

complexity to the simple particle-in-a-box model. 

 

2.6 Conduction in Nanocrystal Solids 

Films comprised of nanocrystals are especially interesting, both for their rich 

physics and their potential device applications. Nanocrystals can self-assemble into either 

ordered or glassy arrays, and useful films to study can be multilayer, monolayer, or 

submonolayer (with a defined layer edge). These so-called artificial solids are tunable 

both via nanocrystal properties and via inter-nanocrystal coupling, creating a many-body 

physics system which is straightforward to manipulate.
65

 Nanocrystal films have similar 

optical properties to those of nanocrystals in suspension, although the optical path 

through a thin film will include far fewer absorbers and emitters than the path through a 

concentrated solution of nanocrystals. But the electronic properties of nanocrystal films 

are a level of complexity above those of individual nanocrystals because of both the weak 
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coupling between nanocrystals and the presence of a tunneling barrier presented by the 

physical distance between nanocrystals and the insulating organic ligand between the 

nanocrystals. Rather than the infinite potential well dealt with previously, there is now a 

finite potential barrier between nanocrystals which can be tunneled through. Weak 

coupling can pose measurement problems because of the poor conduction through arrays 

of nanocrystals, but stronger coupling would affect the quantum confinement and thus 

compromise the interesting optical properties of the nanocrystals. This is one reason why 

the usage of synthesis protocols with metallic surface ligands, such as hydrazine-

stabilized metal chalcogenide complexes, is unlikely to displace the use of long 

hydrocarbon chain ligands which preserve nanocrystal confinement.
66

 Short ligands, such 

as hydrazine, pyridine, or ethylenediamine, can improve conduction without sacrificing 

confinement in some cases.
67

 

In general, nanocrystal films can be modeled as arrays of conducting islands, 

where bound charge carriers can move between islands by tunneling through an 

insulating barrier. Conduction in these films is a percolation process. This model implies 

that current, I, will have a power law dependence on voltage, V, given by
68
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Here W  is the array width and R  is the tunneling resistance. Below the threshold 

voltage, TV , further current is suppressed by the Coulomb energy of adding a charge 

carrier to the conducting island. 0V  is given by 
0

0
C

e
V   where 0C  is the self-capacitance 

of an island.
68

 The exponent in the power law depends on the film cross-section and 

dimensionality. Above TV , charge carriers begin to be able to traverse the array via 

percolation paths that connect islands in a one-dimensional chain. As voltage continues to 

rise, more paths become available. While temperature is not taken into account in the 

simple model above, finite thermal energy lowers tunneling barriers in the array, 

effectively reducing TV . In a study of metal nanocrystals, the dependence of TV  on 

temperature was found to be approximately
69
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where  /2~)( TkTP B  is the fraction of nanocrystal-nanocrystal contacts that can be 

considered Ohmic because the barrier energy is comparable to TkB ; here,   is a 

charging energy which incorporates disorder, and   is a measure of thermal broadening 

of energy levels. *T  is the temperature at which a complete Ohmic path exists between 

the electrodes by following the Ohmic contacts.
69

 

Although this model takes temperature activation into account, and accurately 

describes some ensembles of metal nanocrystals, the variability in the nanocrystal-

nanocrystal contacts, and thus the variability in the potential barriers encountered by the 

charge carriers as they attempt to percolate through the material, has been omitted.  This 

factor was first considered in a theory of conduction through a disordered solid by Mott, 

who realized that both spatial separation between conducting islands and energy 

separation, i.e. non-overlapping energy levels, will affect the success rate for charge 

carrier hopping.
70, 71

 While simple thermal activation predicts that most carriers hop to 

their nearest neighbor, when differences in energy levels are taken into account, it 

becomes preferable for some carriers to tunnel long distances from their initial island if 

the destination island is energetically very similar to the initial island. This can come into 

play in nanocrystal solids if some of the nanocrystals are charged by pre-existing 

unbound carriers, though very long-range hopping is less likely because thermal energy 

disrupts the wavefunctions. This model, called variable-range hopping, yields an 

expression for the probability, P, for hopping a distance, D, 
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where L is the localization length or conduction island size and aE  is the characteristic 

activation energy for hopping. The dependence of aE  on hopping distance is chosen 

based on the system, and conductivity can be derived from the probability expression 

above to follow 
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 TG ~)ln( , (2-11) 

where   depends on the dimensionality, 1/3 for two-dimensional systems and 1/4 for 

three-dimensional systems. Without variable-range hopping, 1 , which is also called 

Arrhenius behavior. This model can be experimentally confirmed by measuring 

conduction as a function of temperature to extract the exponent.
72

 

A final correction to the variable-range hopping model was proposed by Efros and 

Shklovskii, who discovered that the Coulomb interaction between confined carriers opens 

a gap in the density of states, which would lead to 
2

1
 .

73
  For conductance through 

CdSe nanocrystals, at low temperatures Mott conduction is observed and at high 

temperatures Efros-Shklovskii variable range hopping is observed.
72

 The transition 

occurs when the thermal energy approaches the width of the Coulomb gap in the density 

of states, mathematically when 
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2.7 Photocurrent in Nanocrystal Solids 

The above discussion has focused on conduction in general through nanocrystal 

solids, regardless of whether the charge carriers are injected from electrodes into the film 

or photogenerated within the nanocrystals. While charge carriers moving through the 

nanocrystal film experience the same physics regardless of how they were generated, the 

main difference between these two cases comes from the carrier generation itself. 

Carriers injected from the electrodes are propagating through the film with other carriers 

of the same type, and the case without photoexcitation is called ―dark current‖. For 

photocurrent, when the film is illuminated, the carriers are introduced to the system as 

photogenerated excitons. This means that two carriers of opposite types are initially 

sharing the same nanocrystal, so geminate recombination is possible because the carriers 

cannot diffuse away from each other without tunneling to a new nanocrystal. Without an 

externally applied electric field, very little photocurrent is measured because diffusion 

dominates the carrier motion and most carriers recombine. Photocurrent carrier dynamics 
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thus depend on exciton generation rate, exciton separation efficiency, competition 

between electron and hole mobilities, and the rates of non-radiative and radiative 

recombination. These specific dependencies will be discussion in more detail in Chapter 

6. Very few of these factors affect injected dark current, because of the external electric 

field and the pre-existing separation of carriers. 

The optimization of the photocurrent response of nanocrystal films is a difficult 

problem that can be approached from several different angles. There are mechanical 

approaches, such as modifying the interparticle spacing or ordering the nanocrystal solid, 

and there are electronic approaches, such as doping the nanocrystals, using a metallic 

ligand, eliminating or deactivating charge traps. Within the same nanocrystal film, two 

species of nanocrystals with different doping and properties can be activated by different 

wavelengths of light, creating a photoelectrochemical photocurrent switch.
60

 

Photocurrent in nanocrystal solids has been observed to depend non-linearly on 

the applied electric field. A model of tunneling field-ionized carriers reproduces the non-

linearity, although with unrealistic physical parameters.
75

 

This thesis is largely concerned with exploring these techniques for modifying 

transport behavior, such as the manipulation of defects to affect conductance, as well as 

creating a model of photoconductivity temperature dependence that reliably predicts 

measurement results. These ideas suggest paths forward for devices, and elucidate the 

nature of this interesting nanoscale material.
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3 Experimental Techniques 

Summary 

The experimental work described in the following pages relies on several 

fabrication and measurement techniques. The most commonly used device for this work 

is a two-electrode gap on a thin silicon nitride membrane. The current-voltage (I-V) 

response is measured for a device without nanocrystals, also called a bare device, and 

remeasured after nanocrystal deposition. Finally, the nanocrystals are thermally annealed, 

after which photocurrent measurements begin. Creating a device for the experiments 

described herein has several steps: fabrication of the silicon nitride membranes, electrode 

fabrication using optical and electron beam lithography, deposition of nanocrystals, and 

thermal annealing. These devices are imaged with TEM before nanocrystal deposition, 

and then not imaged until again after deposition once all photocurrent measurements are 

complete, because TEM can modify photocurrent behavior. Detailed descriptions of these 

experimental techniques follow. 

3.1 Membrane Fabrication 

Creating devices at the nanoscale is challenging, because of the difficulties 

inherent in fabrication and lithography and also because of the highly variable nature of 

many nanoscale experimental devices. The active area of these devices is created using 

electron beam lithography, where a polymer resist such as poly(methyl methacrylate) is 

deposited by spinning onto a surface. Exposure to the electron beam crosslinks the 

polymer, changing its solubility, and this can be used to define a pattern with the electron 

beam. The sample is then developed so that the regions exposed to the beam are no 

longer covered by polymer.  If devices are patterned on chips where the active area of the 

device sits over a 40 nm thick silicon nitride membrane, the thin membrane allows for 
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very high resolution electron beam lithography, because the electron backscattering 

scales with membrane thickness.
76

 The membrane also serves as a substrate for high-

resolution structural characterization using TEM. This structural characterization serves 

multiple purposes: it allows the lithography of the fabricated electrodes on the device to 

be checked before nanocrystal deposition, helps determine the thickness and 

homogeneity of the nanocrystal layer, and pinpoints the cause of most device issues that 

may have arisen during measurement. A schematic of the SiN membrane with electrodes 

is shown on the left in Figure 3.1.1. 

 

 

Figure 3.1.1. (a) A schematic of a single SiN membrane and (b) a photograph of a wafer 

with many etch-defined chips and membranes. 

 

Silicon nitride membranes are fabricated from 500 µm thick <100> p-type silicon 

(Si
+
) wafers that have 100 nm of highly polished, low-stress amorphous silicon nitride 

(Si3N4) on both sides. These wafers were processed to produce many ~5  5 mm
2
 chips, 

each with a 50  50 μm
2
 region in its center where the Si3N4 membrane is freely 

suspended. 
76

 The membranes are created using optical lithography, which is similar to 

electron beam lithography in that a polymer resist is used, but in optical lithography the 

entire chip or wafer can be exposed simultaneously to UV light that modifies the resist, as 
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opposed to the serial process of exposing resist with an electron beam. Optical 

lithography also uses a metal mask to define features in parallel, whereas in electron 

beam lithography the beam follows a pattern input to computer control by the user. The 

wafers are first coated on one side with a protective resist and on the other side with NR7 

photoresist spun on at 3000 RPM for 42 seconds, and then baked at 115ºC for 3 minutes. 

The masked wafer is exposed to 365 nm light at 5 mW/cm
2
 for 34 seconds and baked at 

115ºC for 2 minutes. The wafer is placed in RD6 for 16 seconds, a resist developer that 

dissolves the exposed resist polymer, followed by a rinse with deionized water. To 

remove the silicon nitride from the patterned side, the wafer is then exposed to a SF6 

plasma etch in a Technics PeII-A Etcher at 50 W with a pressure under pumping of 400 

mTorr for 120 seconds. The unexposed resist can be removed using acetone. To etch the 

underlying silicon, the wafer is exposed to a 1.5 M potassium hydroxide (KOH) wet etch 

at 130ºC. The KOH etches anisotropically through the silicon, along the <111> face, until 

the silicon nitride on the protected side of the wafer is exposed, which takes 

approximately 18 hours. Once the etching is complete, the membrane of 100 nm thick 

silicon nitride is further thinned to approximately 40 nm using another SF6 plasma etch 

step. A wafer with all the etch steps completed, with many individual chips defined each 

of which has its own thin membrane, is shown in Figure 3.1.1 on the right. 

3.2 Electrode Fabrication 

Electrode properties are critical to device properties. The contact resistance to the 

electrode varies randomly between nanocrystals, due to differences in orientation and 

packing density. But by choosing the electrode material carefully and ensuring that the 

lithography is flawless, reliable electrical contacts between the electrode and nanocrystal 

film can be made. 

The selection of gold as the electrode material is based on the work function of 

the metal relative to the nanocrystal conduction and valence band energy levels.
77

 The 

band gap for a nanocrystal, nano

GE , can be written in terms of the band gap for the same 

material in bulk, GE , by adding excitonic and confinement corrections.
78, 79

 The 

nanocrystal bandgap for CdSe compared to several material work functions are shown in 
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Figure 3.2.1. 

 

 

Figure 3.2.1. Energy levels and work functions for 4 nm CdSe and several materials. 

 

Using a low work function material, such as calcium which has a work function 

of -2.9 eV, would result in carrier injection from the electrodes into the nanocrystals. For 

devices whose aim is to measure photocurrent, it is preferable to have no electrode 

injection. The work function of gold, -5.1 eV, is more suitable. 

Nanoelectrodes were patterned onto the membrane by electron beam lithography 

on an Elionix 7500-ELS. Afterward 3 nm of nickel and 30 nm of gold were evaporated 

onto the devices. Nickel was chosen as an adhesive layer for the small features because it 

leaves almost no debris in nanoscale gaps. Connecting wires and contact pads were added 

using optical lithography, with a glass and metal wafer mask in a Karl Suss MA4 Mask 

Aligner. After the pattern is written, thermal evaporation of 3 nm of Cr and 100 nm of Au 

defines the wires and contact pads.  
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Chips were allowed to outgas overnight after lithography steps to avoid TEM 

contamination. Inspection with high-resolution TEM ensured no visible metal debris was 

present in the gap vicinity that could short the electrodes, which is especially important 

for narrow gaps (~ 30 nm). Gap sizes of 20-230 nm were used, as measured with a JEOL 

2010F field-emission TEM. Standard chip lithography includes twelve nanogaps 

patterned per chip. Figure 3.2.2 shows a schematic diagram of the SiN/Si chip with a pair 

of Au electrodes on the SiN window
76

 and CdSe/ZnS nanocrystals dispersed on the 

surface. 

 

 

Figure 3.2.2. Diagram of a Si/SiN chip with electrodes and nanocrystals on a SiN 

membrane. 

 

3.3 Nanocrystal Size Measurement 

Nanocrystal size was determined to be 5.2 ± 0.6 nm, as the average of 50 

nanocrystals in different drop-cast locations from high-resolution TEM images (Figure 

3.3.1). Each nanocrystal was measured twice, with the measurements of the same 

nanocrystal roughly perpendicular to each other. These 100 measurements were averaged, 

giving a mean value of 5.2 nm with a standard deviation of 0.6 nm. This relatively large 
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variation is typical for commercial samples, and if necessary, a size-selection method can 

be used. For device purposes this size distribution was narrow enough. There may be a 

slight underestimation due to the increased difficulty in discerning the ZnS shell against 

the carbon grid background. 

 

 

Figure 3.3.1. Size histogram of 50 nanoparticles, each measured twice from TEM 

images. 

 

Based on observed size, the estimated redshift is ~5 nm, so that the absorption 

peak for these CdSe cores should be at a wavelength 605 nm. Conversely, the measured 

absorption peak can be used to calculate that the core diameter of the CdSe nanocrystals 

used is ~4.81 nm. It should be noted that without taking into account the redshift caused 

by the shell, the core size would be overestimated by ~0.25 nm. Knowing that the core 

diameter is 4.8 nm and the actual nanocrystal diameter, determined by TEM, is 5.2 nm, 

the shell must be ~0.2 nm, which is approximately one monolayer. 
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3.4 Device Integration 

Integrating chemically synthesized nanocrystals into electrode structures can be 

done with a variety of methods, the most common of which are listed below: 

 

1. Drop-casting: A precise amount of nanocrystal suspension can be ejected from a 

syringe onto a chip and allowed to dry in air. For a few microliter drop, drying 

takes less than five minutes. This process is very simple, but for substrates that do 

not pin the droplet at the edges the film thickness can be uneven. 
80-82

 

2. Spincasting: The chip can be installed on a spinner, which is operated at low 

speed during drop-casting. This process works best if the substrate surface is 

chemically functionalized to encourage the nanocrystals to adhere to the surface. 

Deposited layers of nanocrystals are very homogeneous but also very thin, and 

significant amounts of nanocrystal solution are wasted. 
6, 83

 

3. Spray coating: A commercial paint sprayer can be supplied with nanocrystal 

suspension and nitrogen to spray a thin and homogeneous coat of nanocrystals 

onto a substrate with minimal waste.
84

 

4. Two-solvent deposition: Two solvents that are insoluble with each other can be 

used to create a solvent interface where nanocrystals will self-assemble into a 

monolayer. For nanocrystals dispersed in hexane or toluene, a droplet of 

acetonitrile can be placed in a Teflon container. When a drop of nanocrystal 

suspension is placed on the side of the droplet, the nanocrystal solution will sweep 

laterally across the droplet surface causing a monolayer of nanocrystals to 

assemble at the interface. The monolayer can then be stamped or scooped onto a 

substrate.
85
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Figure 3.4.1. Droplet drying after drop-casting on a device. 

 

Most commonly, drop-casting was used to deposit nanocrystals on these devices. 

This is due to both the simplicity of the procedure, and its compatibility with a device 

that is wired and mounted on a cryostat coldfinger. Drop-casting onto a pre-wired device 

minimizes the time that the nanocrystals will be exposed to air, because once the droplet 

is dry the cryostat can be closed and pumped down. In general, nanocrystals are added to 

devices after electrode fabrication because the reverse procedure, to deposit nanocrystals 

and then evaporate electrodes, would expose the nanocrystals to hot metal atoms that may 

interpenetrate the nanocrystal film and dope the nanocrystals. Drop-casting was not ideal 

for absorption samples, where the substrate was larger and non-uniformity was an issue. 

For thin-film absorption samples, the other three techniques were used, of which two-

solvent deposition was the most reliable.  

3.5 Two-electrode Measurements 

Electrical measurements were performed in either a modified Janis VPF-700 or 
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ST-100H cryostat operated at ~510
-7

 Torr, at a temperature range of 6-575K. 

Photocurrent is generated by focusing laser light at a wavelength range of 472-980 nm 

through the optical windows onto the sample. One of the cryostats used is shown in 

Figure 3.5.1. 

 

 

Figure 3.5.1. Cryostat in operation, with BNC breakout boxes and illumination window. 

 

Each nanogap on the chip was wire bonded to a ceramic chip carrier. The chip 
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carrier pins are fitted into a Macor socket, pressing the chip carrier flush against a copper 

cold finger and heating stage to achieve thermal coupling. The socket pins are electrically 

addressed by silver-soldered wires compatible with high temperature operation which 

couple the source and drain pins to two independent BNC breakout boxes. Voltages were 

applied with a Yokogawa 7651 programmable DC source; current signals were amplified 

and filtered by a Keithley 428 current amplifier and measured with an Agilent 34401A 

digital multimeter. Custom LabView software was used to automate and control the 

experiment. This is schematically shown in Figure 3.5.2. 

 

 

Figure 3.5.2. Diagram of electronics setup for current-voltage measurements. 

 

I-V characteristics for each device were measured by sweeping the voltage across 

the nanogap from 0V to 2V to -2V and back to 0V, with a typical cycle taking 200 

seconds. After TEM inspection the devices were first cleaned with O2 plasma and then 

underwent measurements of their conductance and photoresponse. These serve as 

background measurements of the device without the presence of nanocrystals. These 

background measurements allow us to select devices with negligible leakage current 

before drop-casting nanocrystals. 

Transmission electron micrographs of annealed multilayer nanocrystal films in 

two electrode devices with gap widths of ~ 27 nm (Figure 3.5.3a) and ~ 230 nm (Figure 
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3.5.3b) reveal the overall nanocrystal coverage, and show that nanocrystals self-assemble 

into disordered close-packed arrays.  

 

 

Figure 3.5.3. Transmission electron micrographs of electrode pairs containing 

multilayer nanocrystal films. 

 

TEM imaging was performed after the dc current-voltage (I-V) transport 

measurements, and was used to check that gaps had not visibly degraded or blown up 

during the electrical measurements. No correlation was observed between the electrical 

characteristics and minor variations in nanocrystal ordering. 

3.6 Dark Current Measurements 

In order to understand the results from photocurrent measurements, the devices 

must first be studied for dark current, which is the conductivity without illumination. If a 

device has no dark current but does exhibit current under illumination, then the measured 

photocurrent must be entirely due to exciton generation from the absorbed light, and the 

photocurrent is said to be ―primary‖. If the device does have dark current, and a larger 

quantity of current is measured under illumination, then some of the photocurrent is due 

to exciton generation and some is due to charge injection from the electrodes, and the 
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photocurrent is said to be ―secondary‖.
86

 With primary photocurrent, the nanocrystal 

remains electrically neutral, as equal and opposite charges are generated and swept away 

by electric fields. Secondary photocurrent effectively charges the nanocrystals, as the 

electrodes donate carriers. Devices that have no dark current but do exhibit photocurrent 

are called primary photodetectors. But, for devices where dark current may exist below 

the detection threshold, there is no intrinsic difference between primary and secondary 

photodetectors. Whether a photodetector is labeled ―primary‖ or ―secondary‖ is 

determined by the noise floor of the measurement setup. 

 

 

Figure 3.6.1. A diagram of (a) primary and (b) secondary photocurrent. 

 

Dark current was measured on all nanogaps prior to any nanocrystal deposition, 

prior to any photocurrent measurements, and over the course of several months as devices 

were thermally cycled many times. Dark current was below the noise floor of the setup 

for 80% of devices measured. Figure 3.6.2 shows examples of I-V characteristics for a 

bare nanogap measured at room temperature and for nanogaps with nanocrystals that 

have been annealed at 573K and measured at 78K and 295K. 
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Figure 3.6.2. Representative I-V dark current curves for a bare device, and a device with 

annealed nanocrystals. 

 

Less than ~20% of nanocrystal devices showed a very small dark current (~0.16 

pA at 2V), 2-3 orders of magnitude smaller than the corresponding photocurrent. The 

devices with dark current were annealed at 573K, but not all devices annealed at 573K 

had dark current. Dark current most likely existed in these devices due to especially good 

electronic contacts between the nanocrystals and the electrodes. Dark current increases 

exponentially with voltage and can be empirically fitted to the exponential form 

 oV

V

o

o
dark e

R

V
I  . (3-1) 

Here Ro ~ 2 10
14

  and Vo = 0.7 V are the characteristic resistance and voltage extracted 

from the plot in Figure 3.6.3, which represent the activation scale. This is in agreement 

with previously reported dark current measurements on micron-scale nanocrystal 

arrays.
12
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Figure 3.6.3. I-V curve for one of the few devices with measurable dark current. 

 

Figure 3.6.4 shows the temperature dependence of the dark current, plotted as the 

zero-bias conductance G vs. 1/T. The linear behavior shown is also called Arrhenius 

behavior, and an activation energy can be extracted from a line fit. This plot is 

representative for the few devices that exhibited measurable dark current.   
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Figure 3.6.4. Plot of dark conductivity versus inverse temperature. 

 

The dark current is thermally activated, with conductance scaling as 

 
Tk

E

B

A

eG


~  (3-2) 

for an activation energy AE . A range of activation energies has been measured from ~70-

230 meV, consistent with previously published results.
1
 

 

3.7 Vacuum and Temperature Considerations 

Oxidation can destroy the optoelectronic behavior of many nanocrystals, 

including the cadmium-based nanocrystals used in this work. The photochemical 

instability of these nanocrystals arises because of photocatalytic oxidation of the ligands 

and photooxidation of the nanocrystal material.
87

 As oxygen adsorbs to the nanocrystal 

surface and ligands, charge traps are created. As these traps build up, more carriers 

combine via trap-assisted nonradiative recombination. Photo-assisted oxygen diffusion 

into the core reduces the confinement radius of the exciton wavefunction inside the CdSe 

nanocrystal, which also affects properties such as the photoluminescence peak 
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wavelength.
88

 In order to maintain the unoxidized state and high photocurrent over a long 

series of measurements, the nanocrystals are exposed to air only for a few minutes 

immediately after deposition, then the nanocrystal device is placed in a cryostat and all 

subsequent measurements and treatments are performed under a vacuum of 

approximately 5×10
-7

 Torr. It is widely accepted in the literature that a few minutes 

exposure to air is equivalent to performing the entire deposition procedure in a glovebox, 

and what oxidation occurs is not enough to modify photoconductivity. 
14, 82

 The device is 

only removed from vacuum at the end of all measurements. 

TEM imaging can also damage the nanocrystals, because the high energy electron 

beam creates defects and charge traps. For this reason, TEM is carried out only before 

nanocrystal deposition, to inspect the electrodes, and after all electronic measurements 

are complete, to inspect the nanocrystal film. Electronic measurements themselves have 

not been observed to change the film structure except in extreme cases where the 

electrodes themselves explode due to heating and incidentally break up or fuse the film. 

Such devices are not included in the following results.  

3.8 Annealing and Improving Conduction 

Most of the nanocrystal deposition methods listed in Section 3.4 create glassy, 

disordered films. In addition, the nanocrystal ligands, which prevent aggregation of the 

nanocrystals in solution, create charge transfer barriers when the nanocrystals are 

deposited on a surface. Many methods to improve the conductivity of nanocrystal films 

have been explored, including ligand exchange where the synthesis ligand is exchanged 

with a smaller ligand, and chemical treatment of films with hydrazine.
67, 89

 In both cases, 

bringing the nanocrystals closer together seems to improve the film conductivity, 

although the chemical treatments used can dope the nanocrystals or provide their own 

conducting network which may compromise the usability of the nanocrystals for 

optoelectronic applications. Another approach to improving film conductivity is thermal 

annealing, where the nanocrystal film is heated to a temperature well below the melting 

point of the nanocrystal material.
12, 90

 Annealing has been shown to increase photocurrent 

in nanocrystal solids
12-14, 80

 as the ligands desorb and the film contracts, which reduces 
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interparticle separation and lowers tunneling barriers. This is shown schematically for 

spacing and energy levels in Figure 3.8.1. 

 

 

Figure 3.8.1. Nanocrystal spacing and energy levels (a) before and (b) after annealing, 

adapted from Ref. 
14

. 

 

For successive annealing experiments on a total of twenty CdSe/ZnS nanocrystal 

devices, measurable photocurrent increased with annealing temperature Ta. Annealing 

was performed at a pressure of 10
-6 

torr, using a Lakeshore temperature controller to 

increase the temperature of the heating stage in a Janis cryostat. The annealing 

temperature was held constant for several hours and then allowed to slowly go down to 

room temperature after the heating stage was turned off. For Ta = 423K the percentage of 

devices exhibiting photocurrent was 44%, for Ta = 498K the percentage was 66%, and 

for Ta = 573K all devices showed photocurrent response. In devices that had photocurrent 

above the noise floor (0.03 pA at 295K and 0.15 pA at 78K), increasing the annealing 

temperature from 423K to 498K increased the observed photocurrent by 20 times on 

average. Above 498K, there was no measurable change in photocurrent magnitude or 
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response characteristics. All devices subsequently discussed were annealed at either 498K 

or 573K. 
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4 Force Microscopy Studies 

Summary 

Atomic and electrostatic force microscopy are valuable techniques for both 

mechanical and electrical device characterization. Atomic force microscopy can be used 

to give the number and orientation of fluorescing high aspect ratio nanocrystals (also 

called nanorods) in clusters, to probe the relationship between fluorescence intermittency 

and nanorod cluster size. Electrostatic force microscopy, which allows two-dimensional 

imaging of potential and charge flow in a thin sample, gives both quantitative and 

qualitative insight into the behavior of semiconducting and metallic nanocrystals. 

4.1 Atomic Force Microscopy 

Many different flavors of force microscopy have been developed to measure the 

force interactions between a macroscopically smooth sample and a cantilever probe. The 

cantilever has a resonant frequency of oscillation, and the quality factor of the oscillation 

is so high that interaction with electrostatic, atomic or other kinds of force from the 

sample surface affects the oscillation frequency. Because force microscopy relies on a 

mechanical interaction, it can be used to image samples on a scale far smaller than the 

optical diffraction limit. The use of different microscope probes and configured 

electronics enables measurement of many different forms of force. 

The basic mode of force microscopy, atomic force microscopy (AFM), measures 

either the mechanical hardness of the surface or the van der Waals force, depending on 

whether contact or non-contact mode is used. The microscopy tip which probes the 

sample is a cantilever with a triangular tip that converges to only a few hundred atoms. 

The entire cantilever is driven to oscillate near the surface at a frequency close to the 

characteristic frequency of the tip. As the cantilever oscillates, its oscillation amplitude 
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can be affected by impact with the surface or, on a smaller scale, van der Waals or other 

forces due to the surface. The change in amplitude is highest when the tip is close to the 

resonant frequency. The oscillation of the tip is measured by a laser which reflects off the 

top side of the cantilever, and the changing amplitude is used to generate a topological 

map of the sample surface. 

AFM is a scanning probe microscopy, similar to scanning tunneling microscopy 

or near field scanning optical microscopy, and like these other forms of microscopy it is 

serial. The pixels in an AFM image are read out in series, rather than in parallel as in an 

optical micrograph. For this reason, although it is possible to modify surfaces and pattern 

some kinds of samples using AFM,
91-93

 it is difficult for scanning probe force-based 

lithography to commercially compete with parallel processes such as optical lithography. 

The AFM used in the following experiments is a Veeco Enviroscope, which has 

capabilities that include an enclosed AFM chamber that can be put under a vacuum of 10
-

2
 torr or filled with N2 gas, an electronic feedthrough so that voltages can be applied to 

sample electrodes, and a heating stage for in situ thermal annealing. The tips used were 

Veeco TESP AFM Force Measurement tips and SCM-PIT Conductive AFM probe tips. 

4.2 Blinking and AFM/TEM Correlations 

AFM is an excellent experimental tool for many purposes, such as film thickness 

and surface uniformity measurements. It can also be used to measure the volume of 

nanorods in conjunction with TEM to learn how cluster size relates to blinking statistics 

for nanorods that have assembled into clusters.  
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Figure 4.2.1. (a) AFM topography, (b) AFM phase, and (c) TEM of the same nanorod 

cluster. 

 

CdSe/ZnSe/ZnS core-double shell nanorods, with a radius of 2.9 ± 0.2 nm and a 

length of 34 ± 0.3 nm, were drop-cast at a concentration such that the nanorods were 

arranged in submicron and micron-sized clusters that were either closely packed or well 

isolated with average intercluster spacing of tens of nanometers. Figure 4.2.1 shows a 

sample cluster in AFM and TEM. Using AFM to measure cluster height and TEM to 

measure number of nanorods in the cluster base, the number of nanorods in each cluster 

can be determined. Structural details such as cluster area, orientation and distribution of 

nanorods within clusters can then be correlated to emission properties. The physics of 

blinking in semiconducting nanocrystals is complex, and not the focus of this thesis; thus 

the remainder of this section will give a brief overview of the blinking behaviors 

observed and correlated to cluster size. For a more detailed investigation the reader is 

encouraged to consult Siying Wang‘s dissertation.
94

 

Fluorescence dynamics of semiconductor nanorod ensembles from the single 

particle regime to ~10,000 particles were observed. Fluorescence data are shown for a 

nanorod cluster in Figure 4.2.2, with the corresponding AFM and TEM. In the TEM 

image, the scale bar is 200 nm, and the arrow indicates laser polarization during 

excitation. For the integrated fluorescence intensity versus time graph, the red line is the 

region indicated in the inset, and the black line is a nearby background region with the 

same size. 
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Figure 4.2.2. TEM, AFM, and integrated fluorescence for a nanorod cluster. 

 

Different blinking regimes were observed depending on cluster size, all measured 

over tens of minutes. In small ensembles containing less than 100 nanorods, a nonzero 

residual fluorescence during ―dark‖ periods was observed, superimposed by clear single-

particle blinking events.
47

 The fluorescence intensity from larger groups of more than 

~100 nanorods, and closepacked clusters with several hundreds or thousands of nanorods, 

shows pronounced fluctuations, but with a mean intensity that is relatively constant in 

time.
47

 The observed fluctuations can be as much as 40% higher than the mean 

fluorescence, even in clusters containing several thousands of particles. The contribution 
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from standing nanorods, whose orientation is perpendicular to the laser polarization, is 

less than the contribution from nanorods parallel to the substrate.
47

 Overall, the emission 

intensity scales with increasing cluster size, additionally exhibiting memory effects and a 

dependence on irradiation intensity.
47

 

4.3 Electrostatic Force Microscopy 

Electrostatic force microscopy (EFM) is a technique based on AFM which can 

measure electrostatic force between a conductive scanning tip and the surface. Each line 

in an EFM image is constructed as follows: on the first pass, a regular AFM scan is 

performed to extract the surface topography. On the second pass, the tip is held at a fixed 

distance above the surface, based on the topography scan, and a voltage is applied to 

either the tip, a surface feature, or both. This procedure is shown in Figure 4.3.1, with the 

height scan on the bottom and the EFM scan on top. 

 

 

Figure 4.3.1. A diagram depicting the topography scan and the electrostatic force scan. 

 

The electrostatic force interacts with the cantilever, and the change in oscillation 
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frequency depends on the magnitude of the force. This is how the EFM image is 

generated. This force is given by 

 
24

)(

4
)(

2

22

2
V

dz

dC

z

CVQ

z

Q
zF ss












. (4-1) 

The first term is the Coulomb interaction between the static charge on the surface, sQ , 

and an image charge induced in the tip, also sQ , where the tip height above the surface is 

z .
95

 The second term represents the interaction between sQ  and the capacitive charge of 

the tip at a bias voltage V . The third term is due to the capacitive interaction between the 

tip and the surface, which depends on the voltage difference between the tip and the 

surface.
96

 Because of the thin SiN membrane, no substrate or gate term is present. The 

voltage applied can be either AC or DC. 

In the studies of semiconducting nanocrystals, the nanocrystals were dried in a 

film between two metal electrodes pre-patterned on the surface. Small voltages of less 

than 5 V were applied to one electrode, with the tip held at 0 V. In the studies of metallic 

nanocrystals, there were no electrodes, so voltage was applied to the tip only and the 

image charge in the nanocrystals was observed. 

4.4 EFM of Semiconducting Nanocrystals 

EFM gives a two-dimensional map of where current flows in a nanocrystal solid. 

It can also show how strongly, or weakly, charge percolates through nanocrystals.
97, 98

 

EFM has been used to show that current paths in a nanocrystal solid are dependent on the 

locally varying thickness and continuity of an array.
98

 Here, PbS nanocrystals in Au 

nanoelectrode gaps on a SiN membrane were studied using EFM. The PbS nanocrystals 

used had a diameter of 18 ± 2 nm and were capped with oleic acid and suspended in 

toluene. These nanocrystals were purchased from Evident Technologies, and the TEM in 

Figure 4.4.1 shows the size distribution of nanocrystals in a representative cluster. 
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Figure 4.4.1. TEM of PbS nanocrystals. 

 

EFM measurements were taken for bare electrodes with a small voltage (0-5 V) 

applied, which showed that the electric field is strongest over the electrode and spreads 

minimally on the bare substrate. This is shown in Figure 4.4.2: the upper electrodes are 

at -6 V, making them appear dark, and the tip and lower electrodes are both grounded, so 

the lower electrodes are not visible. 
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Figure 4.4.2. EFM of bare electrodes, with the top electrodes at -6 V. 

 

Then a dilute solution of PbS nanocrystals was drop-cast onto the substrate, and 

AFM and EFM were performed. Figure 4.4.3 shows that a thick film of PbS, shown on 

the upper electrode, does not allow charge to propagate and is thus very insulating. In this 

image, the electrode voltage is 5 V.  This sample has not been thermally annealed, hence, 

the ligands still present a formidable tunneling barrier to conduction. 
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Figure 4.4.3. (a) AFM and (b) EFM for a two electrode device with PbS nanocrystals. 

 

Given a voltage on the electrode, there should be a voltage drop with each 

nanocrystal in between the electrode and the EFM tip due to dielectric screening, which 

would cause the electrostatic force felt by the tip to be inversely related to the nanocrystal 

film thickness. The film thickness on the electrode can be estimated by subtracting the 

mean electrode height, as measured by AFM on the bare device before nanocrystal 

deposition, from the height measured by AFM for the electrode with the film on it. This 

film thickness can be used to correlate the dielectric screening with the nanocrystal 

volume, which gives an estimate of the dielectric constant of the nanocrystal film. The 

constant extracted will only be a rough estimate, because there will be some charge 

spread into the nanocrystal film. Figure 4.4.4 shows a plot of EFM signal, which is a 

phase shift measured in degrees, versus film thickness, where the electrode thickness of 

23.5 ± 1.5 nm has been subtracted from the topography of the electrode with the 

nanocrystal film. 
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Figure 4.4.4. EFM phase data plotted versus film height. 

 

While a trend is visible, the data shown in Figure 4.4.4 are very scattered. One 

possible explanation is that the electrode height is not perfectly uniform, so using the 

mean electrode height will propagate electrode fluctuations into the film thickness. But 

when the data were processed by aligning and subtracting the bare electrode topography 

instead of the mean, the noise was considerably worse, so the electrode non-uniformity 

cannot be responsible. 

With DC EFM measurements, in order to extract a dielectric constant from the 

line fit in Figure 4.4.4, several simplifying assumptions to Equation 4-1 are needed. In an 

AC measurement, it is possible to quantify the tip image charge using the voltage 

frequency response of the cantilever.
99

 However, for this DC measurement since the tip 

image charge cannot be measured, it is ignored, which will make the expression less 

accurate but still qualitatively useful by causing the terms with sQ  to drop out. For the 
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capacitive term between the tip and the surface, the system can be treated as two infinite 

parallel plate capacitors in series, one of which has the nanocrystal film as a dielectric 

medium, the other of which has no dielectric medium. The total capacitance between the 

surface electrode and the tip, C , will then be given by 
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for a tip that is a distance z  from a dielectric film with thickness h  and dielectric 

constant  . Here r  is a constant related to the dielectric constant of the material   

by 0 r . This gives the following equation for electrostatic force measured by the 

EFM probe, given a voltage on the electrode of V : 
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To get F  from the raw EFM data, which is measured as the phase shift  , the relation 
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is used, where   is the EFM cantilever resonant frequency and k  is the cantilever spring 

constant. Using the experimental parameters, the dielectric constant of the nanocrystal 

film can be extracted from the EFM phase shift as a function of film height. For the 

cantilever used, mNk /42  and kHz300~ . The voltage applied to the electrode was 

4 V and the probe was scanned a distance of 100 nm above the sample surface. Applying 

these parameters to a numerical fit to the data in Figure 4.4.4 gives 3102.1   for this 

PbS nanocrystal film, considerably less than the bulk dielectric constant of 170 .
100

 

This measured value for   of the PbS nanocrystal film is too small to be physically 

accurate, and this is most likely due to the film and tip charging effects which were 

ignored. Clearly, AC EFM measurements are required in order to get a physically realistic 

number for the nanocrystal dielectric constant.
99

 A larger value for   in nanocrystal films 

compared to the bulk is expected, because of the difficulty carriers have passing through 

monolayers of nanocrystals, even after even thermal annealing.
98
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4.5 EFM of Metal Nanocrystals 

Metal nanocrystals have a different response to applied voltages than 

semiconducting nanocrystals do, in part due to the higher carrier concentration of metal 

nanocrystals which causes them to polarize in an electric field.
95

 Au nanocrystals 20 nm 

in diameter purchased from Sigma Aldrich were used, as shown in a transmission 

electron micrograph in Figure 4.5.1. These nanocrystals were suspended in water and 

capped with sodium citrate.  

 

 

Figure 4.5.1. TEM of Au nanocrystals. 

 

Samples were made by drop-casting Au nanocrystals onto a SiN substrate for 

AFM and EFM analysis. The Au nanocrystals did not assemble into a uniform layer as 



56 

 

was expected, but rather formed a thick, branched structure, as seen in the AFM 

topography scan in Figure 4.5.2a. EFM was performed with a voltage was applied to the 

tip of 2 V in Figure 4.5.2b and 4 V in Figure 4.5.2c. 

The distinctive structures in Figure 4.5.2 are called Brownian trees, a result of 

diffusion-limited aggregation during evaporation of the solvent.
101

 In these samples, 

while the droplet of nanocrystal solution is drying, the nanocrystals diffuse on the 

substrate until they stick to any existing aggregation, without further diffusion. This 

dendritic cluster growth is governed by a fractional power law, making these structures an 

example of a two-dimensional fractal.
101

 

 

 

Figure 4.5.2. (a) AFM, and EFM with (b) 2 V and (c) 4 V on the tip, for a drop-cast 

assembly of Au nanocrystals on SiN. 
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The EFM signal from the gold structures increases as the tip voltage is increased, 

due to the polarization of the charge carriers in the gold. If the ligands in this system were 

removed by annealing, the Brownian trees would form a dendritic gold wire network. But 

the presence of the ligands before annealing ensures that the conduction mode within the 

nanocrystal branches will be driven by tunneling processes. From a conduction 

perspective, hypothetically the charge carriers should experience the Brownian trees as 

one-dimensional paths with occasional forks, implying that the conduction will be more 

dependent on temperature changes and cycling than it would be in a two-dimensional 

array.
102

 

If semiconducting nanocrystals were drop-cast so that they filled the voids 

between the dendritic metal clusters, any electric field applied to the metal would result 

in highly inhomogeneous fields in the voids, which in some places would be strongly 

enhanced by the fractal metal shape. Previous studies using mixtures of semiconducting 

and metal nanocrystals show that photoconductivity in semiconducting nanocrystals is 

affected by even a very small number of metal nanocrystals.
68, 103

 The electric field 

modifications that metal nanostructures and their resonances cause will be discussed in 

more detail in the following chapter.   



58 

 

 

5 Plasmonic Field Enhancement 

Summary 

Nanoscale metals exhibit resonant coupling to incident light which arises because 

of their size and high carrier concentration. In this section, the localized surface plasmon 

polaritons and plasmon modes in nanoscale metal pillars are discussed. Coupling between 

surface plasmons and nanocrystals has been previously shown,
104

 and has potential 

applications for photodetectors
105

 and fluorescence enhancement.
106

 Devices were created 

to determine whether an array of such pillars can be used to enhance the electric field on 

semiconducting nanocrystals in a photosensitive device. This has the potential to improve 

device performance by increasing charge separation efficiency.  

5.1 Plasmon Resonance in Nanoscale Metals 

In semiconducting devices, metal electrodes are used to apply a voltage difference 

that creates a uniform electric field across the semiconductor. The electric field biases 

current flow and separates photogenerated excitons for collection. Conductors with 

nanoscale spacing, such as electrodes in a nanogap, can generate strong electric field 

enhancements, where the confined fields exhibit the characteristics of a transverse 

electromagnetic waveguide mode.
107

 Additional resonances of the charge carriers can be 

excited in a nanoscale metal. The electron gas in a metal can experience collective charge 

density oscillations, and a plasmon is the quantized quasiparticle of these oscillations. 

Under illumination, incident photons can drive the plasmon oscillations if the photons are 

at a resonant wavelength. This driven oscillation due to coupling between the photon, the 

plasmon resonance, and the polarization of the medium is called a surface plasmon 

polariton. A surface plasmon polariton at a metal interface is shown schematically in 

Figure 5.1.1a. 
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Figure 5.1.1. (a) Surface plasmon polaritons and (b) localized surface plasmon 

polaritons.
108

 

 

On a rough metal surface, where surface features are below the wavelength of 

incident light, plasmonic modes will be excited in the metal. Any interactions with 

surface molecules, enhanced by the plasmonic coupling, affects refractive index and 
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absorption. This effect can be used as a probe of surface interactions, and is the basis of 

surface plasmon resonance spectroscopy as well as surface-enhanced Raman 

spectroscopy.
109, 110

 Plasmonic structures can also be used to couple and guide optical 

signals at a resolution below the diffraction limit, by using surface plasmon polaritons in 

metal structures smaller than the wavelength of incident light.
111

  

While any nanoscale feature on a metal surface can plasmonically couple to light, 

if the metal object is nanoscale in all three dimensions, the charge oscillations are 

localized by the object size, creating localized surface plasmon polaritons. Whether 

resonant excitation occurs or not depends on the wavelength of the light and the size of 

the object, in addition to the carrier density. This is pictured in Figure 5.1.1b for two 

metal nanocrystals and a photon. 

5.2 Theory of Plasmonic Response 

A very simple equation for the resonance of a spherical metal nanocrystal with 

incident light can be derived using the Drude model for a free electron metal, which 

assumes that the electrons are acting in phase.
112

 For objects whose size,  , is much 

smaller than the wavelength of incident light,  , the resonant frequency r  is given by 

 
cle

r
m

Ne
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 .
 

(5-1) 

Here N denotes the total number of conduction electrons in the sphere, e is the charge of 

an electron, me is the mass of an electron, and cl  is the polarizability of a metal sphere 

of radius r 

 
3

04 rcl   .
112

 (5-2) 

This model gives the correct size dependence for the plasmon resonance of an isolated 

metal sphere, despite the unphysical assumption of electrons acting in phase. The most 

general mathematical approach to a sphere interacting with an electromagnetic field was 

presented by Gustav Mie.
113

 In order to express the internal electromagnetic field in terms 

of spherical wavefunctions, one can use Maxwell's equations, and express both the 

incident plane wave and the scattering field from the particle using multipole expansions. 
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By applying the spherical surface boundary conditions, analytical solutions are obtained 

which depend on spherical Legendre functions, cylindrical functions, and a size 

parameter. This derivation is not presented here for brevity‘s sake, but it can be found in 

the textbook by Bohren and Huffman in addition to Mie‘s original paper.
113, 114

 The 

solutions, though derived from classical physics, contain a phenomenological quantum 

term in the form of the dielectric function ),( r  which depends on the incident photon 

frequency and the nanocrystal radius.
114

 The dielectric function for bulk metals is 

generally governed by transitions within the conduction band. However, in nanoscale 

metals, the r –dependence arises when the size of the particles is smaller than the mean 

free path of an electron.
114

 Collisions with the edge of the nanocrystal then dominate the 

mean free path, changing the dielectric function. 

In the case where  , Mie‘s formalism can be simplified further by treating 

the electromagnetic field as approximately constant over the object. This constant applied 

field will polarize the metal, and in fact a metal sphere can be replaced in the formalism 

with an ideal dipole. 
114

 This is because the time required for a signal to propagate across 

the sphere is much smaller than the characteristic time of the incident field, which is the 

inverse of the frequency.
114

 Thus the excitations will take the form of electric multipoles, 

as shown in Figure 5.2.1. 

 

 

Figure 5.2.1. Electric multipoles observed at a distance due to surface plasmon polaritons 

on a nanocrystal.
112

 

While more commonly observed in metals, localized surface plasmons have also 

been observed in doped semiconducting nanocrystals with a similarly high carrier 
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density.
115

 Undoped semiconducting nanocrystals can be affected by nearby plasmonic 

structures via interactions with the plasmonic electric field. With nanostructured metals, 

the complex non-uniform electrostatic environments modify the dielectric, or Förster, 

coupling of excitons in two neighboring nanocrystals.
116

 A logical question for device 

design is, is it possible to include objects with a plasmonic resonance in a photodetector, 

to enhance the device sensitivity by applying a locally higher electric field without 

risking destruction of the electrodes by applying a higher voltage? Electric field 

enhancement has been observed in metal nanoparticles connected by a molecule,
117

 and 

by mixing metal and semiconducting nanocrystals.
68

 In the following experiment, an 

array of plasmonically resonant pillars is lithographically defined with the goal of 

enhancing the electric field, and thus carrier separation, for a semiconducting nanocrystal 

film. 

5.3 Design of Plasmonic Metal Pillars 

To see plasmonic enhancement of electric field, devices were made where the gap 

area contained an area of gold pillars. The nanogap was 1 µm to give adequate space for 

the pillar array. Electron beam lithography was used to pattern both the nanoelectrodes 

and the pillars. The pillars had the same metal composition as the electrodes, 30 nm of Au 

on top of 3 nm of Ni. An electrode gap containing a metal pillar array is shown in TEM 

before nanocrystal deposition Figure 5.3.1a, and the pillars are shown up close in TEM 

after nanocrystal deposition in Figure 5.3.1b. 
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Figure 5.3.1. Metal pillar arrays, (a) before and (b) after nanocrystal deposition. 

 

The pillar size and spacing determine the plasmonic response: the pillar size 

affects what wavelength of illumination causes localized surface plasmon resonance, and 

as the pillars move closer together they interact such that closer pillar spacing redshifts 

the response wavelength.
118

 This wavelength dependence is shown below in Figure 5.3.2. 
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Figure 5.3.2. Plasmon resonance shift versus interparticle gap, adapted from Ref. 
118

. 

 

Using 40 nm diameter pillars, with a spacing of 30 nm, gives non-interacting 

pillars with a plasmon resonance of 530 nm. A square lattice of pillars was chosen to 

minimize liftoff difficulties. CdSe/ZnS nanocrystals were then drop-cast to create 

devices; these nanocrystals had a diameter of 5.2 ± 0.6 nm and an absorption peak of 610 

nm.  

 

5.4 Photocurrent of Nanocrystals in Plasmonic Devices 

Once the devices were installed in a cryostat, they were confirmed to have no 

dark current with or without nanocrystals. Then photocurrent was measured at various 

wavelengths to observe whether the plasmonic resonance of the metal pillars affected the 

photoresponse. The light source used was a white lamp whose output was wavelength 

selected by a series of spectrometers and then passed through a fiber and focused onto the 
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device active area. Wavelengths from 400-900 nm were used, with a light bandwidth of 

25 nm. The intensity of the focused light varied depending on wavelength from 10-100 

µW.  

These devices had a high capacitance due to the large interelectrode spacing. 

Traditional I-V measurements, even at a low sweep rate, had a large amount of hysteresis 

which made measuring current values challenging. An alternate measurement procedure 

was developed due to this capacitance, pictured in Figure 5.4.1. 

 

 

Figure 5.4.1. I-V measurement with delay to account for hysteresis. 

 

To measure photocurrent at a particular wavelength, the voltage was swept to -10 

V, held at -10 V for ten minutes, and then swept to 0 V. The current readings at 0 V before 

and after the applied voltage provided values with which to calculate the current offset. 

This offset has already been subtracted from the data in Figure 5.4.1. The long period of 

time at -10 V allowed current to stabilize, and only the final 30 seconds of data were used 
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to calculate the average photocurrent. This procedure was performed at several different 

wavelengths, with the final photocurrent values normalized for differences in illumination 

intensity.  

 

 

Figure 5.4.2. Normalized photocurrent plotted versus wavelength. Inset: Nanocrystal 

absorption. 

 

Results are graphed in Figure 5.4.2, with the absorption curve for the 

nanocrystals as the inset. The primary absorption peak of the nanocrystals at 610 nm is 

clearly visible on both graphs, as expected. A small enhancement of the photocurrent 

signal is observable at the plasmonic resonance of 530 nm. This wavelength is the 

location of the second absorption peak, but the photocurrent response is larger than would 

be expected simply from the peak, by approximately 10%. The wavelength at which 

plasmonic effects are observed depends on the pillar spacing and composition. Identical 

devices with silver instead of gold electrodes were made, but silver is much more difficult 

to work with and degraded when exposed to the necessary measurement treatments that 
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remove barriers to nanocrystal conduction. These plasmonically enhanced devices 

exhibited the same memory effects observed in other semiconducting nanocrystal 

nanogap devices, indicating that the plasmonic coupling to the pillars does not affect 

device memory. Plasmonic enhancement of photodetector performance by up to 160% 

has also been observed for a device with an array of holes rather than pillars, using InAs 

nanocrystals.
105

 These measurements support evidence from other groups that 

nanostructured plasmonic materials are a promising avenue to improve photosensitive 

device performance.
119
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6 Memory and Traps in Nanocrystal Films 

Summary 

Semiconductor nanocrystal arrays are artificial solids with many potential 

optoelectronic applications. 
3, 6, 10

 Many nanocrystal photoproperties have been studied, 

such as quantum yield in suspension, 
9, 120

 photoconductivity in films, 
14, 82, 121

 and carrier 

recombination rates. 
122-124

 Photoconductivity in CdSe/ZnS nanocrystal arrays has been 

found to follow a simple two-site resonant-tunneling model which describes the 

probability of electron-hole pair separation as a function of applied electric field. 
82

 The 

resonant-tunneling model can qualitatively reproduce the field dependence of the 

photocurrent, which also depends on interparticle spacing, nanocrystal size, and surface 

passivation.
82

  Nanocrystal-based photodetectors have been realized, 
3, 14, 82, 121, 125

 but 

their stability over time may be compromised by charge traps that can cause variations in 

conductivity. In particular, the dark current, photocurrent, and photoconductivity 

temperature dependence of nanocrystal arrays all exhibit memory effects.
1, 80, 125

 

In this chapter, a robust and reproducible procedure for controlling the trap 

population in nanocrystal nanogap devices is demonstrated, showing that qualitatively 

different photocurrent behaviors can be produced depending on how traps are initialized 

prior to a measurement. Electric field induced population and optically induced 

depopulation of traps can reverse the temperature dependence of the photoconductivity in 

two-terminal electrode devices containing CdSe/ZnS nanocrystal arrays. A model is 

presented that explains the role of traps and the importance of measurement sequence. 

This method for dynamically controlling trap populations achieves optimized 

photodetector sensitivity at low or high temperatures for light sources, photovoltaics, 

electronics, and other applications. Moreover, a range of temperature-dependent 

behaviors previously attributed to material differences are reproducible in a single device 

and provide a possible explanation for contradictory reports of the temperature 
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dependence of photoconductivity in the literature.
1, 12, 14, 80, 82, 121

 Photocurrent in 

nanocrystal films had been found to increase with temperature
82

 or decrease with 

temperature,
14

 and it was proposed that adding a shell to the nanocrystal caused the 

different behavior.
14

 In contrast, it is shown here that the illumination and electric field 

history of the film can affect the photocurrent temperature behavior by changing charge 

trap populations, which provides a reasonable framework for previously published results 

as well as explaining these seemingly contradictory results.  

Photocurrent temperature dependence can be altered by cycling voltage either 

under illumination or in the dark prior to measurement, and the change in photocurrent 

saturates after a few hours. The energy required to excite carriers from trap states into the 

conduction band is less than the band gap energy, implying that sub-band gap 

illumination of nanocrystals can affect the overall charge state of the sample by exciting 

carriers out of the traps. This in turn, changes the photocurrent measured later. Therefore, 

sub-band gap illumination of devices affects the photoconductivity, even though sub-band 

gap excitation is not energetic enough to result in measurable photocurrent. Interestingly, 

sample exposure to sub-band gap illumination prior to photocurrent measurements is 

more effective at modifying the photoconductivity than the band gap illumination, even 

though sub-band gap illumination does not induce a measurable photocurrent. These 

effects can be explained by the emptying and filling of charge trap levels located within 

the band gap. Sub-band gap excitation may be closer in energy to the trap levels and is 

more effective at depopulating traps than light whose energy is larger than the 

nanocrystal band gap.  

These results advance the understanding of charge-transport-based semiconductor 

nanocrystal devices, such as photodetectors and solar cells, and suggest methods to adjust 

performance in situ by emptying or filling charge traps using light and electric fields. 
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6.1 Initial Measurements of Photocurrent Memory 

 

 

Figure 6.1.1. (a) Schematic of the photodetector nanogap device. (b) TEM image of the 

electrodes prior to nanocrystal deposition. (c) Optical image of the device with 12 

electrode pairs. (d) TEM images of several nanocrystals and a single nanocrystal. 
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Figure 6.1.1a shows the schematic representation of the photodetector device 

measured, based on nanocrystals in a nanogap electrode geometry.
125

 Electrodes made of 

3 nm of nickel and 30 nm of gold, separated by only 20-30 nm, ~4 nanocrystal diameters, 

are patterned using electron beam lithography on a 40 nm thick silicon nitride (Si3N4) 

membrane that is supported by a Si wafer.
76

 Nanocrystals are eventually deposited on the 

electrodes and substrate, forming a few-layer film in the active gap area. The membrane 

is compatible with high-resolution structural characterization using TEM, which allows 

us to confirm that the nanogaps did not have any metallic debris, as shown in Figure 

6.1.1b. An optical image of lithographic features on a typical device is shown in Figure 

6.1.1c. For more details on device fabrication, please see Chapter 3. One advantage of 

nanoscale gaps is that the application of relatively small voltages yields high electric 

fields in the gap area. For a 20 nm gap with a bias voltage of 2V, the field strength 

experienced in the 2000 nm
2
 of active area is 10

8
 V/m. This gives a maximum voltage 

drop per nanocrystal of 0.5 V. The active area of these photodetectors in comparison to 

previous literature
12-14

 is decreased by six orders of magnitude in area and decreased in 

gap size by two orders of magnitude. 

CdSe/ZnS core-shell nanocrystals were used, as shown in Figure 6.1.1d, with a 

mean diameter of 5.2 ± 0.6 nm and mean ZnS shell thickness of 0.2 nm. The primary 

absorption peak in solution was at 610 nm and the emission peak was at 640 nm. Five 

microliters of nanocrystal solution were drop-cast onto the 5 by 5 mm SiN/Si chip, 

forming a ~20-nm-thick multilayer nanocrystal film on the surface. Film thickness was 

determined by using AFM on a similarly prepared sample. The nanocrystal film was 

thermally annealed in vacuum by heating to 573K for 2 hours, which improved film 

conductivity by decreasing the inter-nanocrystal separation and increasing the 

coupling.
12-14, 80

 Annealing at this temperature improves the conductivity by about two 

orders of magnitude.
12

 For more characterization of the nanocrystals used, see Section 

2.1. 

Figure 6.1.2 shows an optical image of an entire chip after nanocrystal 

deposition, annealing, and photocurrent measurements. Figure 6.1.3 shows two TEM 

images of different nanogaps on the same chip after nanocrystal deposition, annealing, 
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and photocurrent measurements. The nanocrystal film in the gap area appears blurred due 

to the thickness of the film. 

 

 

Figure 6.1.2. Optical image of a device with annealed nanocrystals after measurement. 

 

 

 

Figure 6.1.3. TEM of two nanogaps after measurement with nanocrystals annealed at 

498K. 
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The dark current of devices was measured by performing an I-V sweep with the 

nanogap in the dark, and photocurrent was measured by performing an I-V sweep while 

the nanogap was illuminated by a continuous wave 532 nm diode laser. In each 

measurement set, the dark current of all devices on a chip was measured at room 

temperature, and then the photocurrent of the same devices was measured. The device 

was then cooled with either liquid nitrogen or liquid helium, and both dark current and 

photocurrent were measured again at low temperature. Changing measurement order, e.g. 

performing low-temperature measurements first and room-temperature measurements 

second, did not affect current characteristics.   

The samples were thermally annealed in situ. For more details about the effect of 

annealing on photocurrent and dark current measurements, see section Annealing and 

Improving Conduction. Photocurrent was detected in 17 out of 24 nanogaps, and no dark 

current signal above the maximum noise floor of ~0.03 pA at 295K and ~0.15 pA at 78K 

in 70% of devices after annealing up to 573K. TEM imaging confirmed that nanogaps did 

not have any metallic debris that could contribute to the dark current, and this was 

consistent with subsequent I-V characterization of the nanogaps. More importantly, all of 

the measured photocurrent is primary, as it is a result of direct exciton generation in the 

nanocrystals and there is no measurable charge injection from the metal electrodes into 

the nanocrystal film, which would be measured as dark current.
121

  

Background I-V measurements, between -2V and +2V at 0.04 V/s, ensured that 

the bare device had no dark or photocurrent. The maximum electric field magnitude in 

the active gap area was between ~ 9  10
6
 and ~ 7  10

7
 V/m, depending on gap size. The 

dark current after nanocrystals were annealed was negligible, indicating that measured 

photocurrent was due to carrier photogeneration in the nanocrystals and not injected 

carriers from the electrodes. For photocurrent measurements, the laser beam was centered 

on the SiN/Si chip, and all gaps were illuminated equally. An illuminated device is shown 

in the photograph in Figure 6.1.4. 
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Figure 6.1.4. Device under illumination from a green laser. 

 

The stability of the photocurrent was then investigated. Between photocurrent 

measurements, the voltage was swept continuously, and the device was either left in the 

dark or illuminated. Figure 6.1.5 shows I-V curves in the dark and under 532 nm 

illumination for a single device. Because of the small gap size, photocurrents were on the 

order of pA which is lower than in larger devices,
12-14

 but well above the dark current and 

the RMS noise floor of ~5 fA.  The black and purple curves are I-V curves for dark 

current and photocurrent of the bare device at 295 K prior to nanocrystal deposition. The 

blue curve shows dark current for a device after nanocrystal deposition. The other I-V 

curves in this figure (green, orange, light blue, and red) are photocurrent I-V curves at 

78K after nanocrystal deposition.  
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Figure 6.1.5. I-V curves in the dark and under 532 nm illumination, for a device before 

and after nanocrystal deposition and laser or dark voltage treatments. 

 

The difference in these curves is a result of the different sample histories prior to 

the I-V measurements. In particular, after cycling the voltage while illuminating the 

sample with a laser overnight, the photocurrent at 78K increases, shown by the green and 

orange curves in Figure 6.1.5. Conversely, after cycling the voltage in the dark overnight, 

the photocurrent at 78K decreases, shown by the light blue and red curves in Figure 

6.1.5. This process was reversible and reproducible for all devices. 
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Figure 6.1.6. Photocurrent vs. voltage curves at various temperatures. 

 

Figure 6.1.6 shows the I-V response under 532 nm illumination at different 

temperatures for CdSe/ZnS nanocrystals in two different nanogaps. Photocurrent at 5K 

(light blue), 78K (dark blue), and 295K (red) for CdSe/ZnS nanocrystals show that the 

low temperature photocurrent can be either higher, as in Figure 6.1.6a, or lower, as in 

Figure 6.1.6b, than the room temperature photocurrent. The photocurrent is well 

described by a second-order polynomial in voltage. Measurements at other wavelengths 

show similar behavior once temperature-dependent absorption shifts are accounted for; 

see Figure 6.5.1 for I-V characteristics obtained using different illumination 

wavelengths. Over all measured devices, the initial room temperature photocurrent was in 

the range of 0.1 to 50 pA, with a mean value of ~5 pA, and the initial low temperature 

photocurrent was in the range of 0.1 to 240 pA, with a mean value of ~30 pA. A 

histogram of photocurrent values is shown in Figure 6.1.7 for all measured data using a 

532 nm laser. The large variation in measured photocurrent is probably due to the small 

number of nanocrystals in the nanogap; thus the variations in each individual nanocrystal 

are not averaged out. Additionally, film thickness within the nanogap and the energy 

barrier at the contacts between the nanocrystals and the electrodes may vary. Transport 



77 

 

through the nanocrystals inside the gap dominates the photocurrent, while nanocrystals 

outside the gap region have a negligible contribution.
2
 Although more than just the gap 

area is illuminated, outside the gap, the high barrier to interparticle transport and the low 

field prevent significant contribution to photocurrent. See Section 3.4 for optical and 

TEM images of measured nanogaps. 

 

 

Figure 6.1.7. Photocurrent magnitudes for nanogap devices illuminated with 532 nm 

light. 

 

The magnitude of the measured photocurrent depends on the recent illumination 

history of the device. Even more strikingly, some nanogaps showed photocurrent that was 

higher at 295K than at lower temperatures, while other nanogaps on the same chip and 

under equivalent conditions showed the opposite. Moreover, if the nanocrystals were 

illuminated overnight and voltage was applied (hereafter referred to as a laser voltage 

treatment), the low-temperature photocurrent was enhanced, whereas if the nanocrystals 

were left in darkness overnight and voltage was applied (hereafter referred to as a dark 

voltage treatment), the low-temperature photocurrent was suppressed. If voltage was not 

applied while the sample was left in darkness overnight, the photocurrent magnitude 

returned to its initial value. This trend was repeatable over a measurement period of 



78 

 

several months. The photocurrent at 295K followed the same trend as the low-

temperature photocurrent in ~75% of devices, but the effect was smaller (~10-30% of the 

photocurrent change at 78K).  

6.2 Relative Photocurrent Ratio 

To best quantify the photocurrent increase or decrease with temperature, T, it is 

convenient to define the relative photocurrent ratio R = I78K /I295K , of the low-temperature 

photocurrent, I78K, and the room-temperature photocurrent, I295K. This is analogous to the 

relative resistance ratio between the low- and room-temperature resistance in metals, 

commonly used as a criterion of metal purity; if the photoconduction in nanogaps were 

Ohmic, resistance would be well defined, and then R would be the same as that defined 

for metals. Each ratio R was calculated for one cool-down cycle of measurements taken 

in a single day. The relative photocurrent ratio has two distinguishable regimes: if R < 1, 

this means that the photocurrent increased with T, and if R > 1, the photocurrent 

decreased with T. In the discussion below, I78K and I295K were calculated as averages of 

photocurrent magnitudes for the maximum electric field applied across the nanogaps, 

corresponding to voltages -2V and 2V. The following conclusions hold qualitatively for 

other voltages, and also apply independently of annealing temperature. Examples of 

nanogaps with R = I78K /I295K  smaller or greater than 1 are shown in Figure 6.1.6a (R = 

2.2) and Figure 6.1.6b (R = 0.1). Out of the seventeen nanogaps, fifteen initially showed 

R > 1 and two showed R < 1. A histogram of R values for 532 nm illumination and a 

comparison of R values for both 532 and 650 nm illumination are given in Figure 6.2.2 

and Figure 6.2.3. As measurements progressed, illumination history was observed to 

affect this ratio, so that R could be switched from less than 1 to greater than 1 or vice 

versa in a single nanogap. A sample table of the change in relative photocurrent ratios 

after laser and dark voltage treatments is given in Table 1.   
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Figure 6.2.1. Histogram of Rfinal/Rinitial on a logarithmic scale, including laser voltage 

treatments (green) and dark voltage treatments (blue).  

 

Figure 6.2.1 shows a histogram of the change in R from initialR  to finalR  from 70 

measurements over all devices after laser and dark voltage treatments. A logarithm 

transformation is used to write the change in R on the x-axis as 
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meaning that an increase or decrease of R by the same factor is represented on this 

logarithmic scale symmetrically around zero; 0ln 










initial

final

R

R
 means that R does not 

change. There are two distinct distributions in this histogram, showing that device 

behavior after a laser and dark voltage treatment is clearly separated. The laser voltage 

treatment increases the ratio by an average factor of 2.2, meaning that Rfinal > Rinitial. The 

dark voltage treatment decreases the ratio by a factor of 10, meaning that Rfinal < Rinitial. 
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This effect has also been observed in a large gap with an active area of ~109 μm
2
 (~43.6 

x 2.5 μm), implying that this effect is independent of device size. 

This demonstrated change in ratio R with laser or dark voltage treatments shows 

that the temperature dependence of conductivity is controlled by the measurement 

protocol. Consequently, all such measurements on nanocrystal arrays must be framed in 

the context of the sample measurement history in order to be properly interpreted. This 

consideration may explain apparent discrepancies in the reported temperature dependence 

of observed photocurrent. 
1, 12, 14, 80, 82, 121

 Localized charge carriers in the nanogap can 

measurably affect the temperature dependence of photoconductivity.  The manipulation 

of trap states by optically stimulated emptying or voltage induced populating can then be 

used to control device performance. 
125

 

For the initial I-V measurements of the devices taken using a 532 nm laser after 

several days without measurements, the measured photocurrent ratio R was in the 

approximate range of 1 to 10. Figure 6.2.2 shows a histogram of R values measured for 

all treatments in nanogap devices illuminated with 532 nm light. 

 

 

Figure 6.2.2. Distribution of R values for nanogap devices. 
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Illumination with a 650 nm laser produced photocurrent at room temperature 

(0.01-2.9 pA, with a mean of 0.36 pA) but lower photocurrent at low temperature (0.01-

0.7 pA, with a mean of ~0.17 pA), yielding overall smaller ratios R in the range of 0.1 to 

2. These two ratio populations are shown in a histogram in Figure 6.2.3. The smaller 

ratio R values for 650 nm versus 532 nm excitation can be understood by recalling the 

change in the absorption peak of these nanocrystals with temperature. At room 

temperature, the peak is thermally broadened which allows an overlap between the laser 

excitation and the absorption peak. The peak at 610 nm is thermally narrowed and 

blueshifted at low temperature because of the temperature dependence of the Stokes 

shift,
126, 127

 which reduces the overlap of the laser excitation and the peak, causing 

photocurrent to be lower. Higher illumination energy (532 nm) results in larger R, with an 

average R of 2.8. The average R for the 650 nm excitation is 0.7. The photocurrent from 

illumination at 980 nm was also measured, but was found to be negligible as expected 

due to the energy mismatch between the nanocrystal bandgap and the energy of the 

incident photons.   
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Figure 6.2.3. Histogram of the ratio R = I78K/I295K  for two excitation wavelengths. 

 

Gap 
R after no 

measurements 

R after laser 

voltage treatment 

R after dark 

voltage treatment 

R after laser 

voltage treatment 

5-1 0.38 1.81 0.72 0.94 

5-2 2.67 4.44 1.20 1.43 

5-3 0.36 1.00 0.33 0.48 

5-4 1.63 2.85 0.53 0.75 

5-7 1 0.88 0.31 0.59 

5-8 0.75 1.56 0.43 0.72 

5-9 0.69 1.88 0.23 0.75 

5-10 0.85 3.29 0.51 1.27 

5-11 0.095 1.06 0.04 0.20 

 

Table 6.1. Relative photocurrent ratios for several nanogap devices illuminated with 650 

nm light, increasing or decreasing with different treatments. 

 

Using the laser voltage treatment to increase the relative photocurrent ratio R = 

I78K/I295K, or using the dark voltage treatment to decrease R, is a robust and repeatable 

process. Nanogap devices can be cycled to high and low R values many times without the 

effect losing potency. These devices were measured for several months and continued to 

demonstrate the same reversible behavior. Table 1 shows the relative photocurrent ratio R 

of several nanogaps, and its changing value after laser or dark voltage treatments. These 

data were taken with a 650 nm laser. 

The temperature dependence of the photocurrent can be repeatedly reversed in a 

single nanogap device to yield a temperature-decreasing or temperature-increasing 

photocurrent. This is illustrated by a single nanogap in Figure 6.2.4, which shows the 

ratio R =  I78K/I295K switching from (a) R > 1 when I78K (blue) >  I295K (red) to (b) R < 1 

when I78K (blue) <  I295K (red) for all laser intensities used. 
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Figure 6.2.4. Photocurrent versus laser intensity (a) before and (b) after a dark voltage 

treatment.  

 

6.3 Exciton Dynamics: Trap Manipulation 

To understand the underlying mechanism, one must first look at the energy levels 

through which the charge carriers travel. Figure 6.3.1a shows energy levels for the 

electrodes with a single nanocrystal between them; the shortest charge carrier path in 

these devices includes four nanocrystals. The carrier tunneling between nanocrystals can 

be lost by recombining with other oppositely charged carriers through radiative or 

nonradiative recombination, which usually corresponds to free recombination or 

recombining with trapped carriers at recombination centers, respectively. Radiative 

recombination is a kind of bimolecular carrier dynamics, because of the two free carrier 

types involved, whereas non-radiative recombination at a charge trap is called 

monomolecular. The primary photocurrent in a semiconductor is given by 

 eFGTEI ),( , (6-1) 

where e is the charge of an electron, F is the exciton generation rate, and G is the number 
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of free charge carriers created that pass between the electrodes for each photon absorbed, 

which is also called the photoconductive gain.
13, 14, 16

 F is defined by 

 ),( TEaF  ,
14

 (6-2) 

where Φ is the excitation flux, a is the film absorption, and η(E,T) is the field-dependent 

exciton separation efficiency. η(E,T) is defined in terms of the relevant rates that affect 

exciton recombination and transport: 
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 , (6-3) 

where kE(E,T) is the field-dependent rate of charge carriers escaping to neighboring 

nanocrystals or electrodes, kR(T) is the rate of charge carriers radiatively recombining, 

and kN(T) is the rate of charge carriers nonradiatively recombining.
16

 

The tunable temperature dependence of the observed photocurrent can be 

explained by the relative magnitudes of the rates kR(T), kN(T), and kE(E,T) involved, 

shown in Figure 6.3.1a, and their temperature dependences. The contribution from both 

radiative recombination and the number of traps is constant over these measurements and 

fixed for a given sample, but the contribution from trap states depends on trap population, 

which can be adjusted by laser and dark voltage treatments.  
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Figure 6.3.1. Recombination and transport processes for charge carriers in a nanocrystal 

circuit. These processes are affected by the laser and dark voltage treatments.  

 

The energy level diagram for a steady state CdSe/ZnS core-shell nanocrystal 

between two gold electrodes are shown in Figure 6.3.1. Trap states above the Fermi 

energy, EF, act as electron traps, whereas trap states below EF act as hole traps. An 

exciton is created by illumination of the sample, and it can either recombine radiatively 

with rate kR, recombine nonradiatively via the trap states with rate kN, or tunnel away 

from the nanocrystal at a rate kE related to the applied field E. Before any treatment, the 

system has a number of occupied trap states that is defined as the steady state, as in 

Figure 6.3.1a.  

The laser voltage treatment excited trapped carriers to the conduction band where 

they tunnel out of the nanocrystal, causing traps that are occupied in steady state to be 

emptied, as in Figure 6.3.1b; this effect of optically stimulated trap emptying in 

nanogaps is similar to an analogous phenomenon well documented in the semiconductor 
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literature.
16

 The laser voltage treatment eliminates many charge carriers, even in 

energetically favorable traps, and fewer charge carriers recombine with trapped charges. 

The low charge trap population enhances kE processes and suppresses kN processes. 

Photocurrent increases temporarily, but over a few days of waiting time, the trap 

occupancy returns to its steady state value, as energetically favorable traps are 

repopulated, causing photocurrent to return to a steady state value as well.  

Conversely, the dark voltage treatment repeatedly sweeps the voltage, trapping 

carriers without providing the optically harvested energy to escape, as in Figure 6.3.1c. 

Thus, after dark voltage treatment even energetically unfavorable traps are populated; the 

populated traps capture more carriers and cause them to recombine, temporarily 

decreasing photocurrent. The high charge trap population suppresses kE processes and 

enhances kN processes. Over a few days of waiting time the trap occupancy returns to its 

steady state value, as charge carriers in some traps escape using thermal energy. This 

returns kE and kN processes to their steady state values, causing photocurrent to return to a 

steady state value as well.  

To summarize, by applying the laser and dark voltage treatments, the trap 

population is modified, which allows tuning of the photocurrent response; this has a 

greater effect at low temperature because traps can be emptied using the larger thermal 

energy at room temperature. Relevant processes for photogenerated electrons in the 

conduction band are shown in detail in Figure 6.3.1. Hole processes are affected by the 

treatments in the same way, but are not shown. The photocurrent temperature dependence 

can be tuned using these effects, and the resultant adjustability is robust even when other 

variables are changed. 

The emptying and filling of traps via light and electric fields can explain the 

controlled variation in photoconductivity temperature dependence that have been 

measured thus far. But whether this is an accurate model of physical reality can also be 

probed by examining the intensity, wavelength, and time behavior of photoconductivity 

as it responds to laser and dark voltage treatments. Those measurements are described in 

the following sections. 
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6.4 Illumination Intensity Measurements 

Measuring photocurrent dependence on laser intensity at a fixed wavelength 

supports the trap-based model in explaining the adjustable photocurrent dependence on 

temperature. While initial photoconductivity measurements were taken with a fixed 

illumination intensity of ~65 mW/cm
2
, intensity was later varied between 1.6 to 120 

mW/cm2 at both 78K and 295K. As illumination intensity was varied, the current was 

measured at a constant voltage of 1V, which corresponds to 3·10
5
 V/cm. The laser and 

dark voltage treatments had little effect on the intensity dependence at 295K, but had a 

greater effect at 78K. The treatments can result in an inversion of the temperature 

dependence of the photocurrent for a wide range of intensities, see Figure 6.2.4. 

 

 

Figure 6.4.1. Photocurrent versus illumination intensity at (a) 295K and (b) 77K.  

 

Empirically, the intensity dependence of the photocurrent always follows a power 

law,  

 IntensityI photo  . (6-4) 

For 532 nm laser excitation measured at an electric field strength of 3·10
7
 V/m and a 

temperature of 295K,  = 0.82 ± 0.02, as shown in Figure 6.4.1a. This is consistent with 
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previous room temperature measurements on large arrays of core-shell nanocrystals 

yielding the same value.
14

 Intensity dependence of the photocurrent at 78K gives  = 

0.96 ± 0.02 as shown in Figure 6.4.1b. This value is in agreement with the linear 

response at low temperature reported in the literature.
82

 The specific value of  helps 

reveal the type of carrier dynamics present. If  = 1 then the carrier dynamics are 

monomolecular, because the high number of trapped carriers increases the importance of 

nonradiative recombination. Nonlinear values of  correspond with larger numbers of 

free carriers, and thus bimolecular carrier dynamics. 

In order to understand the power law fit, it is instructive to examine the rate 

equation for n, the density of free electrons, 

 nnnCF
dt

dn
trap)(  .

13, 16
 (6-5)  

Here, C is the probability of an electron to be captured, n is the density of free electrons, 

and ntrap is the density of trapped electrons. trapnn   represents the density of holes in the 

system which can recombine with free electrons, assuming a neutral nanocrystal. For a 

steady state system, 0
dt

dn
 and F can be rewritten: 

 nnnF trap )(  . (6-6) 

Substituting equation (6-2) into equation (6-5) yields 

 
a

nnntrap )( 
 . (6-7) 

There are two interesting cases of this equation that can be examined: the case where 

there are more trapped carriers than free carriers, ntrap >> n, and the case where there are 

more free carriers than trapped carriers, ntrap << n. Solving for excitation flux as a 

function of free carriers yields 
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Since photoIn  , this relation can be restated as a photocurrent dependency on excitation 

flux: 
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This is a more specific theoretically justified case of the general power law dependence 

given in equation (6-4).  1 implies monomolecular (first-order) carrier dynamics, 

whereas  = 0.5 implies bimolecular (second-order) carrier dynamics.
16

 First-order 

kinetics contribute more when the material has many recombination centers, such as deep 

hole traps, and when the material has a lower free electron concentration than in the bulk, 

as is the case in nanocrystals where the presence of surface traps is likely.
82

 Contributions 

of surface and deep traps, which are only partially passivated by the shell and ligands, 

can cause a deviation of the photocurrent dependence on intensity from the expected 

dependence in a bulk solid, where bimolecular recombination would dominate giving  = 

0.5. The measured exponent  = 0.8 at room temperature implies that a combination of 

first and second order recombination dynamics is observed. However, at low temperature, 

the exponent  = 1 implies that first-order recombination dynamics dominate. The 

variation in the fitting exponent sheds light on the difference of recombination center 

density at each temperature, which supports the low-temperature trap emptying model 

shown in Figure 6.3.1 and encompasses reported intensity dependence.
14, 16, 82

 

6.5 Excitation and Treatment Wavelength Measurements 

Varying the wavelength of light used in photocurrent measurements is a useful 

tool, because using light at different energies allows us to probe different energy levels 

and different exciton states of the nanocrystal. If the wavelength of light used in the 

actual photocurrent measurement is changed, the nanocrystal bandgap should affect 

which wavelengths yield the largest photocurrents. If the wavelength of light used in laser 

voltage treatments is changed, varying results should be observed as trapped carriers are 

excited to different conduction band states. 

Examples of I-V sweeps at illumination wavelengths of 473 nm (blue), 532 nm 

(green), and 650 nm (red) and the positions of these laser excitation wavelengths on the 

absorption vs. wavelength curve are shown in Figure 6.5.1.  The difference in measured 
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photocurrent values is due to the variation in absorptivity of nanocrystals with 

wavelength, as shown in the inset where absorption and emission intensities are plotted 

versus wavelength for CdSe/ZnS nanocrystals in solution. The blue, green, and red 

circles indicate the positions of the excitation wavelengths with respect to the absorption 

curve. The variation in absorptivity is itself a result of the quantized energy levels of the 

nanocrystals. The first absorption peak corresponds to the transition between the highest 

occupied molecular orbital and the lowest unoccupied molecular orbital, the HOMO-

LUMO or band gap transition, which corresponds to the energy difference between the 

1S3/2 and 1Se states.
41

 As the energy of the incident photons increases above this 

transition energy, the measured photocurrent increases, whereas photocurrent is minimal 

for photons whose energy is below the nanocrystal band gap. The 650 nm I-V curve 

below is very close to the nanocrystal band gap energy, thus the measured photocurrent is 

small compared to that measured with higher energy (lower wavelength) photons. 

 

 

Figure 6.5.1. Photocurrent vs. voltage curves for 650 nm, 532 nm, and 473 nm laser 

excitations.  

 

Figure 6.5.2 shows the energy level diagram for a nanocrystal under illumination 
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at different wavelengths. All photocurrent measurements were performed using 532 nm 

few-mW green laser excitation. To investigate the effects of sample history on 

photoconductivity samples were additionally exposed to three different excitations (532 

nm, 650 nm and 980 nm) prior to photocurrent measurements, as part of the laser voltage 

treatment. This places the treatment illumination wavelength below or above the 

nanocrystal band gap, which probes the levels of charge traps inside the band gap. 

 

 

Figure 6.5.2. Diagram showing photoexcitation of charge carriers from trap levels at 

various wavelengths of light.  

 

The data in Figure 6.1.5 were obtained using the same excitation wavelength 

prior to the measurement and for the actual I-V measurement, a 532 nm laser whose 

energy (2.33 eV) is higher than the band gap energy of the nanocrystals (2.03 eV). In 

addition, light with energy smaller than the band gap, 650 nm (1.91 eV) and 980 nm 

(1.27 eV), was used to illuminate devices prior to I-V measurements with 532 nm light. 

Devices were illuminated for 16 hours for a laser voltage treatment, and this 

measurement was repeated 3-5 times for each wavelength. From the data taken on three 

electrode gaps, larger average Rfinal/Rinitial was observed when sub-band gap illumination 

was used: 4.9±1.0 and 3.0±1.0 for 980 and 650 nm excitations respectively, compared to 

1.6±1.0 for 532 nm excitation.
128

 Although the absorption coefficient for nanocrystals 
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decreases with decreasing illumination energy,
129

, these measurements suggest that lower 

energy photons are more efficient at exciting carriers out of charge traps.  

The effect of different excitation energies used prior to measuring photocurrents 

with 532 nm excitation can be understood from the diagram in Figure 6.5.2. The 

conduction band (CB), valence band (VB), and trap levels are marked. Photocurrent is 

measured only with 532 nm and the other wavelengths are used to illuminate samples 

before the I-V measurement with 532 nm. The energy required to excite carriers from 

trap states into the conduction band is less than the band gap energy, implying that sub-

band gap illumination of nanocrystals can affect the overall charge state of the sample by 

exciting carriers out of the traps. This in turn, changes the photocurrent measured later 

with 532 nm excitation. Therefore, sub-band gap illumination of devices affects the 

photoconductivity, even though sub-band gap excitation is not energetic enough to result 

in measurable photocurrent. Photocurrent lifetime wavelength dependence has also been 

studied using current noise spectroscopy, for energies below and above the band gap.
59, 

130, 131
 Varying the illumination wavelength alters the level of noise from generation-

recombination and trapping-detrapping. 
131

 Wavelength dependence was found to be 

strong in the low frequency range of the photocurrent noise power spectra.
59, 131

 This 

behavior was attributed to long trapping-detrapping times similar to those observed here. 

These results also indicate that sub-band gap excitation is more efficient for 

charge detrapping than excitations above the band gap. Different wavelengths of light 

excite trapped carriers into different band gap edge states, as depicted in Figure 6.5.2. 

Charge carriers in higher states have a larger number of relaxation pathways available 

than those in the lowest conduction state. For example, they can relax into lower states, 

into trap states, or travel out of the nanocrystal via field-driven transport. It is possible 

that access to higher states could reduce the trap emptying efficiency, decreasing the 

memory effect. High energy excitation has also been shown to create a charge-separated 

complex that is slow to decay. 
83

 This conceptually supports the result that sub-band gap 

energy photons are preferable for trap manipulation in nanocrystal semiconducting 

films.
128
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6.6 Photocurrent Behavior versus Treatment Time  

The effect of sample history on the photocurrent can be characterized further by 

studying how the photocurrent temperature dependence is affected by the time elapsed 

between two consecutive measurements of R during which the sample was exposed to 

electric fields and light. These measurements probe the timescales over which traps can 

be populated and depopulated, and their overall effect on photoconductivity. The different 

measurement histories can modify photocurrent by changing the population of charge 

traps in the nanocrystals, which may affect the rate of non-radiative recombination.
125

 

Laser voltage treatment reduces the trap population, temporarily lowering non-radiative 

recombination, which raises low-temperature photocurrent. Dark voltage treatment 

increases the trap population, temporarily raising non-radiative recombination, which 

lowers low-temperature photocurrent. Thus, when trap population is affected by the 

illumination and electric field history, the value of Rfinal/Rinitial indicates how photocurrent 

temperature dependence has changed.  

 

 

Figure 6.6.1. Rfinal/Rinitial as a function of time for laser and dark voltage treatments.  

 

Figure 6.6.1 shows Rfinal/Rinitial vs. time elapsed when voltage was cycled between 

the I-V measurements of Rinitial and Rfinal. When the device was in the dark (blue squares), 

Rfinal/Rinitial decreased with time, and when it was under illumination (green circles), 
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Rfinal/Rinitial increased with time; for both cases, Rfinal/Rinitial changes rapidly in the first few 

minutes and hours after exposing devices to electric fields and light, or electric fields 

alone. But over time the rate of change decreases, and after three hours the subsequent 

change is less than 5%. These results indicate that the change in trap population slows 

asymptotically, initially proceeding quickly but slowing with time as the most 

energetically accessible trapped carriers are excited and transported out of the 

nanocrystal. The majority of the effect on photoconductivity takes place in the first three 

hours (dashed line). Voltage cycling beyond the initial few hours does not appear to 

change Rfinal/Rinitial significantly, meaning that it does not change the photocurrent or the 

trap state population significantly. The data in Figure 6.6.1 are for one 230 nm gap. Other 

gaps measured behaved similarly. Each point is averaged over 5-15 measurement cycles 

and has an error of ±0.3. The R values for these data were in the range 0.25 to 15, with 

~60% lying between 1 and 3. 

This result implies that traps can be populated and depopulated over 

approximately three hours and that more time does not seem to significantly affect the 

number of trapped carriers.
128

 Previously, carrier processes in nanocrystals that happen 

over long time scales have been observed, such as hour-scale changes in 

photoluminescence lifetime of nanocrystals in solution,
132

 and defect emission from 

nanocrystals for over an hour after initial illumination.
133

 Photocurrent lifetime 

wavelength dependence has also been studied using current noise spectroscopy in 

CdS/CdSe/PbSe polycrystals, for energies below and above the band gap. Varying the 

illumination wavelength alters the level of noise from generation-recombination and 

trapping-detrapping. Wavelength dependence was found to be strong in the low 

frequency range of the photocurrent noise power spectra. 
134

 This behavior was attributed 

to long trapping-detrapping times similar to those observed here. 

These examples of slow recombination processes support the observation that 

emptying or filling traps in an insulating sample can take up to three hours for devices at 

this scale.
128
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6.7 Trap Population Manipulation Affects Photoconductivity 

 Studies on nanogap devices with annealed CdSe/ZnS core-shell nanocrystals in 

the gap region have shown that the photoconductivity temperature dependence of 

CdSe/ZnS nanocrystal arrays depends on device exposure to light and electric fields, i.e. 

the illumination history of the device. Recent laser illumination causes optically induced 

trap emptying and higher low-temperature photocurrent, while recent voltage cycling in 

the dark causes electric field induced trap population and lower low-temperature 

photocurrent. The effects of laser and dark voltage treatments exhibit saturation after a 

few hours. Interestingly, while sub-band gap illumination does not yield measurable 

photocurrents, it affects the photoconductivity upon subsequent band gap illumination. 

This can be understood by the presence of charge traps that are emptied or filled by 

applying electric fields and light, where traps are most easily emptied with sub-band gap 

illumination. These results resolve existing discrepancies in the literature, demonstrating 

the difficulty in defining temperature dependence of photoconductivity for 

semiconducting nanocrystal systems. The controllable photocurrent temperature 

dependence is robust over multiple wavelengths and intensities of laser excitation and 

suggest a route towards achieving maximal photodetector response at a specific 

temperature. This approach of tuning the photocurrent response via trap population can 

be useful for nanocrystal device applications, such as sensors, solar cells, and light 

emitters, as well as aiding in the study of carrier dynamics and energy levels in nanoscale 

materials. Tuning trap populations is also potentially crucial for nanocrystals that have 

strong nonradiative processes or a significant number of interband states, such as doped 

semiconducting nanocrystals.
135, 136

 These factors are essential for the optimal and robust 

operation of optoelectronic devices based on semiconductor nanocrystals. The result is a 

unification of previous and current measurements of photoconductivity under a relatively 

simple theory, resolving contradictions in the literature and pointing the way toward 

useable applications. 
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Figure 6.7.1. Device illustration and exciton dynamics for observed photocurrent 

behavior. 
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7 Coupling Nanocrystals to Graphene 

Summary 

Although the optical properties of semiconducting nanocrystals are impressive, 

the poor charge conduction of nanocrystal arrays has led many researchers to look for 

device design tricks that will preserve the desirable optical properties while improving 

charge separation and transfer. Alternating monolayers of CdSe and CdTe nanocrystals 

has been shown to improve exciton splitting in photodevices.
137

 Thin layers of PbS 

nanocrystals have also been fully depleted in a TiO2 heterojunction, improving transport 

of charges out of the PbS layer.
138

 Sintering can also improve charge collection 

efficiency, but sintered devices end up with a much larger grain size than was present in 

the initial colloidal nanocrystals.
139

  

Another approach is to couple nanocrystals in a two-electrode structure to a better 

electrical conductor. Graphene, a two-dimensional crystal of hexagonally bonded carbon, 

is an interesting choice as a nanocrystal substrate. While the mechanical properties of 

graphene have been widely studied, such as its high tensile strength and impermeability, 

140
 it is the electrical properties of graphene, such as its high conductivity and the 

dangling bonds perpendicular to the plane of the graphene, which make graphene a viable 

candidate for strong electronic coupling.
141

 Graphene is also currently under investigation 

for optoelectronic applications such as solar cells, lasers, and photodetectors.
142-146

 

An ideal graphene/nanocrystal device would possess electrical coupling strong 

enough that carriers can easily transfer to the graphene and be collected at metal 

electrodes. However, if quantum confinement of charge carriers in the nanocrystal is 

compromised, or if both species of carriers are transferred to graphene causing 

recombination to occur there, measured current may be greatly diminished. Experiments 

in creating optoelectronic devices where semiconducting nanocrystals are supported by a 

graphene substrate are described in the following sections. 
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7.1 Fluorescence Quenching 

Before undertaking any lengthy device fabrication, it is desirable to probe whether 

drop-cast nanocrystal films can electronically couple to graphene. The fluorescent 

behavior of nanocrystals on a substrate can provide such a probe. On an inert substrate, 

such as optically smooth mica, a film of drop-cast nanocrystals will fluoresce under 

illumination from a bright enough light source with a wavelength corresponding to a 

hoton energy above the nanocrystal band gap. The fluorescence is due to carriers which 

are excited by the incident photons, decay to the band gap edge states, and then 

radiatively recombine, emitting a photon whose energy is equal to the band gap energy. If 

the nanocrystals are placed on a substrate to which carriers can be transferred, the 

fluorescence is lowered compared to the fluorescence on a neutral substrate. This 

phenomenon is called quenching, and it is also observed in solution for nanocrystals 

which have coupled to materials.  

To experimentally test the electronic coupling between semiconducting 

nanocrystals and graphene, we prepared two substrates: bare mica, and mica covered by a 

few-layer graphene sample. The graphene was grown by chemical vapor deposition, 

using methane flow in a tube furnace on a heated copper foil.
147, 148

 Both the mica 

substrates and the mica/graphene substrates were tested for fluorescence, then CdSe/ZnS 

nanocrystals from NN Labs with emission at 620 nm were drop-cast and the fluorescence 

measured again. The mica/graphene/nanocrystal sample was then annealed in a glovebox 

at 300ºC for several hours, and its fluorescence was measured a final time. 

Fluorescence measurements were performed in air at room temperature, with the 

sample imaged in a Nikon Eclipse 80i fluorescence microscope. The sample was 

illuminated using a 488 nm laser at 3 mW, and the emission was sent through a 620 ± 25 

nm filter before being collected. Fluorescence was measured at 7-10 spots with similar 

nanocrystal coverage, and the results were then averaged to give a fluorescence 

magnitude for each sample. A sample fluorescence image is shown in Figure 7.1.1, and 

averaged data for several samples is shown in Table 7.1. The nonuniformity in the 

fluorescence image is most likely due to nonuniformity in the nanocrystal film, which is 

why averaging over the beam area was used. 
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Figure 7.1.1. Sample fluorescence image of nanocrystal film on graphene. 

 

Substrate/Sample Material 
Mean fluorescence 

(A.U.) 

Mica 0 

Mica/graphene 0 

Mica/nanocrystals 1.18×10
4
 

Mica/graphene/nanocrystals 2.9×10
3
 

Annealed Mica/graphene/nanocrystals 2.3×10
2
 

 

Table 7.1. Mean fluorescence for mica/graphene/nanocrystal samples. 

 

These data indicate that the nanocrystals do couple electronically to the graphene, 



100 

 

quenching fluorescence emission compared to the same nanocrystals on mica. The 

graphene/nanocrystal sample‘s fluorescence is quenched by a factor of four compared to 

the nanocrystals on mica, and annealing the graphene/nanocrystal sample causes another 

factor of ten quenching. Thus the annealed graphene/nanocrystal sample has forty times 

less fluorescence than the unannealed nanocrystals on mica. Thermal annealing enhances 

the effect, as would be expected due to the removal of the ligand. 

These rough results also correspond with several reported results in the literature, 

measuring fluorescence quenching for isolated CdSe nanocrystals on graphene due to 

Förster energy transfer,
149

 ZnO nanoparticles on a graphene oxide substrate,
150

 and CdTe 

nanocrystals on graphene oxide in solution.
151

  

7.2 Absorption and Quantum Confinement 

Although the fluorescence data shown above indicate that radiative recombination 

has decreased, the nature of the electrical coupling is still unclear. If the barrier between 

the nanocrystal interior and the graphene is low enough, the quantum confinement of the 

nanocrystals may be destroyed, which would modify their optical properties such as 

absorption spectra. 

The optical absorption for a single layer of graphene has been calculated in 

previous work to be 2.3% across the visible spectrum.
152, 153

 For few-layer graphene, the 

absorption is expected to scale linearly with the number of layers. Adding nanocrystals to 

graphene should superimpose their absorption spectra, as discussed in section 2.3, onto 

that of graphene, assuming no loss in quantum confinement of the nanocrystals.  

The light source for the absorption setup is an Ocean Optics LS-1 tungsten 

halogen lamp. The absorption signal from the sample is filtered through one of several 

filters followed by a Trivista triple spectrometer to provide wavelength selection. The 

resulting signals for each filter are then stitched together to create a final spectrum across 

the visible wavelengths. In Figure 7.2.1, absorption spectra are shown for a film of 

nanocrystals drop-cast on a glass microscope slide, and for a film of nanocrystals drop-

cast on graphene on a glass microscope slide which has been thermally annealed at 

300˚C. 
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Figure 7.2.1. Absorption of nanocrystals on glass, and annealed nanocrystals on 

graphene. 

 

Characteristic nanocrystal absorption peaks are visible in the annealed 

nanocrystal/graphene spectra above. The peaks are somewhat broadened and flattened 

compared to the peaks for nanocrystals on glass. Broadening and flattening of peaks has 

also been observed for nanocrystals which have been annealed,
12

 so the same process in 

the samples with graphene is likely a result of small improvements to the electrical 

coupling between nanocrystals. The presence of the peaks implies that quantum 
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confinement has not been significantly compromised, because the peaks correspond to 

energy level transitions determined by the size. 

7.3 Graphene Nanoribbon Device 

The next step, after the fluorescence measurements showing that nanocrystals can 

electrically couple to graphene and the absorption measurements showing that quantum 

confinement of carriers in nanocrystals on graphene is not compromised, is to create a 

device with an active area of nanocrystals on a graphene substrate. These experiments 

follow in the footsteps of several recent developments in the literature. Hybrids of 

graphene oxide and silver nanoparticles have been proposed as effective substrates for 

Raman spectroscopy.
154

 A solar cell has been demonstrated in the literature by combining 

CdSe nanocrystals and graphene oxide in solution, then integrating the composite into an 

electrolyte cell with a sandwich geometry.
155

 

Graphene grown by chemical vapor deposition was transferred to a SiN substrate, 

where spin on glass (hydrogen silsesquioxane) was used as a lithographic resist. Two 

gold electrodes were defined using electron beam lithography and thermally evaporated 

on top of the graphene, giving very good electrical contact between the electrodes and the 

graphene. A nanoribbon of graphene is also lithographically defined, 100 nm wide and 

500 nm long, which connects the two electrodes. The remaining spin on glass is removed 

using a dilution of hydrofluoric acid. A schematic of the electrodes and nanoribbon is 

shown in Figure 7.3.1. 
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Figure 7.3.1. Schematic of gold electrodes and graphene nanoribbon. 

 

I-V response of the graphene devices is measured before nanocrystal deposition, 

showing that the nanoribbons act as effective resistors. A representative I-V curve is 

displayed in Figure 7.3.2. 
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Figure 7.3.2. I-V curve for bare graphene nanoribbon. 

 

The next step for this work is to drop-cast CdSe/ZnS nanocrystals from NN Labs 

with emission at 620 nm onto the devices and measure photocurrent, which is expected to 

be a slight enhancement of signal. The fluorescence and absorption measurements 

described suggest that this will be a promising route forward for coupled nanocrystal 

devices.  
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8 Conclusions 

Having examined many aspects of devices made from semiconducting 

nanocrystal films—dielectric conduction, charge defects, device memory, coupling to 

metal structures and graphene—one can ask where to go from here. In order to take 

advantage of the optical properties of nanocrystals, it is necessary to find a way to cope 

with their idiosyncratic electronic properties. The electronic behavior of nanocrystals, 

though sometimes inconvenient for straightforward incorporation into devices, proves 

endlessly fascinating. While some qualitative ideas from bulk semiconductors apply, the 

quantum nature of nanocrystals whose size is below the Bohr exciton limit requires a new 

approach. Designing devices that utilize size-dependent optical absorption, plasmon 

resonances of nanoscale metals, two-dimensional carbon sheets, manipulation of 

electronic traps, and hopping conduction between semiconducting nanocrystals, and then 

trying to understand the physics of these systems and combine them into a useful 

structure, requires mental flexibility. This is not ―thinking outside the box‖; if anything is 

clear, it is that there is no box.  

Looking forward, it seems likely that the processing methods and device 

geometries which move charge through a monolayer or a few layers of nanocrystals will 

be the most useful commercially. Defect states, long minimized through fabrication 

processes in bulk semiconductors, are a fact of life in nanocrystals due to the large 

fraction of surface atoms. Therefore, control of defects, rather than the elimination 

thereof, must be the strategy to optimize device performance. The optical properties of 

nanocrystals are unprecedented and therefore of great interest; but, to use the electrical 

properties of nanocrystals, it is clear that the circuits and devices which have been shaped 

by our enthusiastic embrace of silicon may not be the same devices in which nanocrystals 

shine. Nanocrystal electronics must take advantage of the optoelectronic coupling and the 

unique conduction mode of nanocrystals, and the most successful nanocrystal circuits 
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likely require radical redesign from their silicon incarnations. 

And what sort of device will use nanocrystals to finally demonstrate an optimal 

application of their properties? While many optoelectronic devices may seem to be 

frontrunners, there is an idea worth keeping in mind, stated most eloquently by Herbert 

Kroemer in his Nobel lecture: 

 

"The principal applications of any sufficiently new and innovative 

technology always have been—and will continue to be—applications 

created by that technology."
156

  

 

The most useful application for nanocrystals may not be an application that exists 

at all currently. As their underlying physics is revealed, and as more is learned about how 

they act in ensembles and electronic devices, the scientific community moves closer to 

that exciting moment of discovery. 
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