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Abstract—We consider a class of queueing networks referred to
as “generalized constrained queueing networks” which form the
basis of several different communication networks and informa-
tion systems. These networks consist of a collection of queues such
that only certain sets of queues can be concurrently served. When-
ever a queue is served, the system receives a certain reward. Dif-
ferent rewards are obtained for serving different queues, and fur-
thermore, the reward obtained for serving a queue depends on the
set of concurrently served queues. We demonstrate that the depen-
dence of the rewards on the schedules alter fundamental relations
between performance metrics like throughput and stability. Specif-
ically, maximizing the throughput is no longer equivalent to max-
imizing the stability region; we therefore need to maximize one
subject to certain constraints on the other. Since stability is crit-
ical for bounding packet delays and buffer overflow, we focus on
maximizing the throughput subject to stabilizing the system. We
design provably optimal scheduling strategies that attain this goal
by scheduling the queues for service based on the queue lengths
and the rewards provided by different selections. The proposed
scheduling strategies are however computationally complex. We
subsequently develop techniques to reduce the complexity and yet
attain the same throughput and stability region. We demonstrate
that our framework is general enough to accommodate random re-
wards and random scheduling constraints.

Index Terms—Constrained queueing networks, multicast, opti-
mization, randomized algorithms, stability, throughput, wireless.

I. INTRODUCTION

C ONSTRAINED queueing networks have been ex-
tensively used to model several systems of practical

interest including wireless networks [35], [34], [25], [27],
input queued switches [23], and database systems [34]. A
constrained queueing network is a collection of queues such
that only certain sets of queues can be concurrently served;
these “schedulable sets” depend on the underlying system.
Whenever a queue is served, the system receives a certain
reward. In such systems, queues need to be selected for service
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such that 1) the total reward earned by the system per unit
time (“throughput”) is maximized, and 2) each queue is served
often enough such that the mean queue length in each queue
is bounded (“system stability”). The two goals turn out to be
equivalent if the service of each queue (i.e., the transmission
of each packet) fetches the same reward. The performances of
such networks are now reasonably well understood owing to
several seminal contributions [1], [3], [4], [6], [24]–[26], [35].

We now investigate constrained queueing networks where
different rewards are obtained for transmitting packets from dif-
ferent queues, and furthermore, the reward obtained for serving
a queue depends on the set of concurrently served queues. Such
generalized constrained queueing networks form the basis of
several communication and information systems of practical in-
terest, but have not received adequate attention in the research
community. We first provide examples of such systems, and
subsequently demonstrate that new resource allocation goals
and techniques are required for capturing the tradeoff between
different performance metrics in these systems.

First, consider one-to-many communications in wireless net-
works. Here, a sender may wish to transmit its packets to mul-
tiple receivers in its communication range. Due to the broad-
cast property of the wireless transmission, a single transmission
may reach all these receivers. Here, each sender constitutes a
queue, and the reward attained by a transmission is the number
of receivers who successfully receive it. Since different multi-
cast groups have different number of receivers, the reward at-
tained by serving different queues will be different. Further-
more, whether a receiver can successfully decode a transmis-
sion depends on other transmissions in its neighborhood. Thus,
the reward associated with each transmission depends on the set
of queues served concurrently. For example in Fig. 1 when
is transmitting to , and cannot receive a transmission
from as both the transmissions will collide at these receivers.
Hence, receives a reward of 5 when alone is served, and
it receives a reward of 3 when and are served together.
Thus, the reward for depends on the set of queues served.

Now, consider one-to-one communication in wireless net-
works. Success of each transmission depends upon the inter-
ference due to concurrent transmissions in the network and the
channel state. Let the reward for each transmission be 1 if the
transmission is successful. Thus, different transmissions attain
different rewards depending on the set of queues served. Fur-
thermore, here, the same selection of sessions may generate dif-
ferent rewards at different times as the interferences randomly
change due to fading—rewards may therefore be random.
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Fig. 1. Figure shows an example to demonstrate the application of generalized
constrained queueing networks in one-to-many communication in wireless net-
works. There are two senders S ; S ; and six receivers R to R . The dashed
circles indicate the communication ranges of the senders. A single transmis-
sion from S can reach all its receivers, R ; . . . ; R . Here, R is S ’s receiver.
Each sender corresponds to a queue. Here, L = f~̀ = [0 0]; ~̀ = [1 0]~̀ =
[0 1]; ~̀ = [1 1]g. Here, r (~̀ ) = 0; k 2 f1;2g; r (~̀ ) = 5; r (~̀ ) = 0;
r (~̀ ) = 0; r (~̀ ) = 1; r (~̀ ) = 3; r (~̀ ) = 1.

Fig. 2. Database system with four tablesT1; . . . ; T4 that are accessed by three
applications U1; U2 and U3. The arrows indicate the tables each application
updates. When there are concurrent requests for updates in the same table, the
request from an application with the lowest id is honored. Note that if all three
applications try to simultaneously update the database, then U1; U2; and U3
achieve rewards 3, 1, and 0, respectively. If only U2 and U3 try to simultane-
ously update the database, then they achieve rewards 2 and 1, respectively.

Next, in many database systems, a single update operation
from an application involves updates in many tables. Here, each
application constitutes a queue, and the reward attained by an
update operation is the number of tables that are successfully
updated. Since different applications require to update different
number of tables, rewards received by serving different queues
will be different. Moreover, if many applications try to update
the same table, then only one of them can do so, as the access to
these tables is controlled to avoid inconsistencies due to concur-
rent updates. Thus, the reward for a queue depends on the set of
queues served. We demonstrate this using a specific application
in Fig. 2.

Our contribution is to provide a mathematical framework for
modeling and optimizing key performance attributes in gen-
eralized constrained queueing networks. First, we define ap-
propriate performance metrics (Section II). Next, we demon-
strate that the fundamental relations between performance met-
rics such as throughput and stability change due to the depen-
dence of the rewards on the set of queues served (Section III).
Specifically, maximizing the throughput is no longer equiva-
lent to maximizing the stability region; we therefore need to
maximize one subject to certain constraints on the other. Since

stability is critical for bounding packet delays and buffer over-
flow, we focus on maximizing the throughput subject to stabi-
lizing the system. We design provably optimal scheduling strate-
gies that attain this goal by scheduling the queues for service
based on the queue lengths and the rewards provided by dif-
ferent selections (Section IV). These scheduling strategies are
however computationally complex. We next develop a frame-
work to reduce the computational complexity and yet attain the
optimum performance (Section V). Finally, we consider some
possible generalizations (Section VI) and describe the related
work (Section VII).

II. SYSTEM MODEL

We consider a queueing network with queues. We assume
that time is slotted. In each queue packets arrive
as per arrival process , where is the number of
arrivals in queue during slot . Arrivals for the same session in
different slots are independent and identically distributed. The
arrival processes for different sessions are independent but not
identically distributed. We assume that in each

slot and for any . Let and
denote the arrival rate vector. Each packet can be served in
at most one slot, and it departs the system at the end of the
slot in which it is served. This assumption has been motivated
by the fact that in wireless networks multiple transmissions of
the same packet consume additional energy and increase the
interference for other transmissions. We denote by the
queue length of the th queue at the beginning of slot . Also,

.
A queue can only be served if it has a packet to transmit,

and in each slot in which it is served it transmits one packet.
The indicator if the th queue is served in slot ,
and is 0 otherwise. The vector denotes
the service vector in slot . The system constraints may prohibit
simultaneous service of certain queues. Thus, all -dimen-
sional binary vectors may not constitute a valid service vector.
Let denote the set of all valid service vec-
tors, and denote the th element of . Clearly .
For example, Fig. 1 elucidates a constrained queueing network
with and . Now, if the system has an additional
constraint that all the receivers should receive every packet, then
both and cannot be served concurrently. Thus, in this case,

and .
We assume the following about . If , then every

also belongs to , where the inequality is element-wise. In other
words, if a certain set of queues can be served simultaneously,
then any subset of these queues can also be served simultane-
ously. Note that this assumption holds in wireless networks. For
each and queue length vector , we define an -di-
mensional vector as follows. The th component of
equals if , and is 0 otherwise. Clearly, for each
and .

The system receives a reward for serving each queue, and the
reward obtained for serving the th queue in slot is
a function of the service vector in slot for each . We
assume that for each . We initially assume
that the reward for each queue is a deterministic function of
the service vector, and later generalize to allow the reward to
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randomly depend on the service vector (Section VI). Refer to
Fig. 1 for some example rewards.

We assume the following properties of the reward function.
First, if then . Thus, if a queue is not served
then it does not receive any reward. Next, for any if

and . Thus,
for any and such that . We justify this as-
sumption in context of one of the application scenarios, wireless
networks. In wireless networks, when fewer queues transmit,
the interference is less in the system and therefore, usually, the
queues that transmit receive higher reward. If this is not the case,
e.g., when the probability of success increases with increase in
interference due to the use of sophisticated decoding strategies,
then if an empty queue is selected, it can transmit a signal1 so as
to ensure that other queues do not receive less reward because
it is empty. This may increase the overall energy consumption,
but our focus here is to maximize the throughput. Joint min-
imization of the energy consumption and maximization of the
throughput consists of interesting topics for future research. The
assumption can also be similarly justified for database systems.

Next, we present some important definitions.
Definition 1 (Scheduling Policy): A scheduling policy de-

cides the service vector in each slot such that
and if .

This class includes offline policies that decide their service
vectors based on the knowledge of packet arrivals in each past,
present and even future slots.

Since if , and if
if . Thus, irrespective of

the scheduling policy, no queue receives any reward in a slot in
which it is empty.

Definition 2 (Throughput): For an arrival rate vector , the
throughput under a scheduling policy , is the reward
it receives per unit time. Mathematically

Since if , and

(1)

Note that if the reward is the number of receivers of ses-
sion that receive a packet when the service vector is , the
throughput under is the sum, over all receivers, of the number
of packets each receiver receives per unit time. This is consis-
tent with the usual definition of throughput in a communication
network.

Definition 3 (Loss): The loss under a scheduling policy at
any slot is the difference between the sum of the maximum
possible rewards of the queues it serves at and the reward it

1Transmission of a signal from an empty queue is not considered service for
the empty queue.

obtains at . The loss under a scheduling policy , is its
total loss per unit time. Mathematically

In a communication network, usually, the loss experienced
by a receiver denotes the number of packets transmitted by its
source that it does not receive per unit time, and the network
loss denotes the sum of the losses of all receivers. Again, if the
reward is the number of receivers of session that receive
a packet when the service vector is , then the formal definition
of loss in Definition 3 has the same connotation as above.

Definition 4 (System Stability): The queueing system is said
to be stable if the time average of queue lengths is finite for each
queue, i.e., with proba-
bility (w.p.) 1 for each . A scheduling policy that stabilizes the
system is called a stable scheduling policy. The stability region
of a scheduling policy is the set of arrival rate vectors for which
the system is stable under the policy. The stability region of the
system is the union of the stability regions of all scheduling
policies. A scheduling policy whose stability region equals is
said to maximize the stability region.

Let denote the convex hull of the vectors in and denote
the interior of . In their seminal work, Tassiulas et al. [35,
Theorem 3.2] showed that .

Definition 5 (Stabilizable Arrival Rate Vector): We denote
the arrival rate vector as stabilizable if .

Definition 6 (Throughput Optimality): A stable scheduling
policy is said to be throughput optimal if w.p. 1 it attains the
maximum throughput among all the stable scheduling policies.
We denote the throughput attained by such a policy for arrival
rate vector vector by .

Definition 7 ( -Throughput Optimality): A scheduling policy
is said to be -throughput optimal for a if 1) it is stable,

and 2) w.p. 1.
In the next section, we show that in generalized constrained

queueing networks maximizing the stability region is not equiv-
alent to maximizing the throughput. Since stability is impera-
tive for guaranteeing bounded delay and for limiting packet drop
due to buffer overflow, we aim to maximize the throughput sub-
ject to stabilizing the system. Specifically, our goal is to design
-throughput optimal policies. We now investigate the relation

between the throughput and the loss

Note that if a system is stable under policy
w.p. 1. Thus,
w.p. 1. Thus,

if is in the stability region of policies
w.p. 1. Thus, for any

stabilizable arrival rate vector , a throughput optimal policy
must also minimize the loss, and an -throughput optimal
policy attains a loss which is at most more than the loss of
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any stable policy. Thus, we focus on obtaining -throughput
optimal policies.

III. RELATION BETWEEN THROUGHPUT AND STABILITY

First, we examine what decisions policies are likely to make if
they want to maximize only the stability region, or if they want
to maximize only the throughput. A policy that aims to max-
imize the stability region serves as many packets as possible
in a slot while giving priority to longer queues. If the policy
aims to maximize the throughput, then it may wait and transmit
only when the reward is high so that each packet fetches the
maximum possible reward. Thus, the control decisions for max-
imizing the stability region and for maximizing the throughput
are not equivalent.

Using an example that is motivated by one-to-many commu-
nication in wireless networks (Fig. 1), we next demonstrate that
a policy that maximizes the stability region does not maximize
the throughput.

Example 1: Consider the system shown in Fig. 1. Let
, where is a small positive real number.

Now, consider a policy that serves each queue whenever it
is nonempty. Thus, if only ( , resp.) is nonempty, then
will select service vector ( , resp.) and achieve a reward of
5 (1, resp.). If both queues are non-empty in a slot, then will
select and achieve a reward of 4. Clearly, maximizes the
stability region. Now, the service process for is independent
of that for . Using Little’s law, the fraction of slots in which
( , resp.) is non-empty and ( . resp.) is empty is
( , resp.), and the fraction of slots in which both queues
are non-empty is . Thus,

. Now, consider a policy that serves only
when is non-empty, and serves only if is empty and
is non-empty. Note that is stable as . Thus,

whenever ( , resp.) is served, the service vector is ( ,
resp.) and the reward is 5 (1, resp.). Since the queues are stable,

and are served in fraction of slots each. Thus,
. Thus, .

Note that in Example 1 always transmits the maximum
number of packets in each slot and also chooses the set of
queues whose sum of queue lengths is the maximum. Tassiulas
et al. [35] showed that a policy that satisfies the latter property
maximizes the stability region in arbitrary constrained queueing
networks, but, Example 1 shows that does not maximize
the throughput. This is because does not consider the re-
ward structure in deciding the service vector. So, the policies
designed to maximize the stability region of the constrained
queueing system (e.g., see [1], [5], [19], [34], [35]) need not
maximize the throughput. Thus, we need alternate mechanism
to design throughput optimal policies.

Now, we consider two policies, , that seek to maxi-
mize the reward in a greedy fashion. serves each queue only
when the queue can obtain its maximum possible reward, and

selects in each slot the service vector that attains the max-
imum possible reward among all valid service vectors in the
slot. Simply put, maximizes the reward per packet, and
greedily maximizes the reward in each slot. We show that
does not stabilize the system even when the arrival rate vector

is stabilizable, and does not attain the maximum throughput
among all stable policies.

Example 2: Consider the system shown in Fig. 1. Let
. Clearly, and policy in Example 1 stabi-

lizes the system. Note that will never concurrently serve both
queues. Hence, the sum of the service rates provided to the two
queues is at most 1. Thus, since does not sta-
bilize the system.

Note that maximizes the reward per packet while serving
queues at rates smaller than their arrival rates and thereby com-
promises stability.

Example 3: Consider the system shown in Fig. 1 with the dif-
ference that . Let . Note that
for the above rewards, selects the same service vectors as .
Thus, stabilizes the system. Now, the service process for
is independent of that for . Using Little’s law, the fraction of
slots in which ( , resp.) is non-empty and ( . resp.)
is empty is , resp.), and the fraction
of slots in which both queues are non-empty is . Thus,

. Now, consider
described in Example 1. Again, is stable as .
Thus, whenever ( , resp.) is served, the service vector is
( , resp.) and the reward is 5 (3, resp.). Since the queues are
stable, and are served in fraction of slots each. Thus,

. Thus, does not attain the max-
imum throughput among all stable policies.

The limitation of is that it myopically bases its decision in
a slot solely on the aggregate reward in the slot. Thus, even when
it is possible to wait and serve queues in mutually disjoint slots
and achieve a higher reward per packet, serves the queues in
the same slot.

The examples demonstrate that 1) a policy that maximizes
the stability region need not maximize the throughput, 2) my-
opically maximizing the reward in each slot or the reward per
packet may not maximize the throughput or stabilize the system,
and 3) the optimal policy should wait just long enough so as
to achieve the highest possible reward per packet while serving
each queue at a rate higher than its arrival rate.

IV. OPTIMAL POLICIES

In this section, we propose two policies and prove that they
are -throughput optimal for every stabilizable arrival rate vector

and .

A. Linear Program-Based Optimal Policy

The scheduling policy selects w.p. in every
slot. If is chosen in slot then , i.e., the

th queue transmits a packet if and . Recall
that is the indicator vector for the set of queues served
by in slot .

Let select in a slot . Then . The in-
equality is strict only when some queues in are empty in
, and then, as discussed in Section II,

for each for which . The probability distribution
is computed using the following linear pro-

gram . Here, is a parameter.
:- Maximize:

Subject to:
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1) and for every .
2) for every .
Constraint 1) ensures that is a valid probability distribution.

When constraint 2) ensures that each queue is selected
for service at a rate higher than the arrival rate in the queue.
Thus, constraint 2) ensures stability.

Note that and hence depend on and the chosen .
We indicate this dependence by using the notations and

.
Now, although is well-defined, it need not have any

feasible solution, for arbitrary and . Theorem 1
shows that for all stabilizable and sufficiently small positive
, is feasible and is -throughput optimal.

Note that allowing arbitrary and in
simplifies the proof for Theorem 1.

Theorem 1: Let be any stabilizable arrival rate vector. Then,
for every there exists a such that for every

is feasible and is -throughput optimal. Fur-
thermore

(2)

We prove Theorem 1 in the Appendix.
Finally, the stability region can be maximized using arbitrary

feasible solutions of [5]. Specifically, if se-
lects the service vectors as per any probability distribution that
constitutes a feasible solution of for any positive ,
it stabilizes the system provided is stabilizable [5]. However,
for attaining the maximum throughput among all stable poli-
cies, an optimal solution of must be used. Specifi-
cally, for any stabilizable and is -optimal
for any , where is
the maximum value of for which has a feasible solu-
tion (follows from Theorem 1 and Lemma 5 in the Appendix).

B. Queue Length-Based Optimal Policy

The policy requires the knowledge of in order
to obtain the optimal . The system may not however
know . We now design a policy that attains the maximum
throughput among all stable policies and stabilizes the system
for any stabilizable without knowing .

Recall that an optimal policy should wait as long as possible
to achieve the highest possible reward per packet without vi-
olating system stability (Section III). Now, uses the
knowledge of to ensure the above, whereas ensures the
above by using only the value of .

We now describe . In slot selects the service vector
such that

(3)

where is a constant. Note that the constraint
implies that if and otherwise.

Theorem 2: Let be any stabilizable arrival rate vector. Then,
for every stabilizes the system. Moreover, for every

, there exists such that for every is
-throughput optimal.

The above result implies that any stable offline policy that
takes transmission decisions based on the knowledge of past,
present, and future arrivals cannot attain throughput signifi-
cantly more than for every stabilizable . This holds
even though takes transmission decisions based only on
the current queue lengths.

Now, we describe the intuition behind this result. Let

(4)

Note that intuitively is the loss of reward of
the th queue when service vector is used. Thus, in each
slot selects the service vector that maximizes the dot
product, , of and the difference between the queue
length vector and a scaled loss vector associated with .
Note that a policy that selects the service vector that max-
imizes the dot product, , of and the queue length
vector stabilizes the system for every stabilizable [1],
[18], [35]. This is because under the queue length process
has a negative drift when is sufficiently large
for every stabilizable . When

for every , and therefore,
and select similar service vectors. Thus, intuitively, for every
stabilizable , the queue length process under should also
have a negative drift when is sufficiently large.
Hence, also stabilizes the system for any stabilizable .

We have however shown that all stable policies do not attain
equal throughput (Example 1). So, it is not obvious that
maximizes the throughput among all policies that stabilize the
system; we now provide the intuition behind why this is the case.
Note that when the queue lengths are small, high throughput can
be attained without violating stability by serving the queues only
when they receive high rewards. On the other hand, stability can
be ensured by selecting the queues with higher queue lengths
and by serving a large number of packets when the queue lengths
are large. We now demonstrate that follows both the above
principles. For simplicity, assume that are integers
for all . Now, when

only if . Then, since maximizes
, it will serve the th queue only if the maximum

possible reward is achievable. Now, if ,
then only if . Thus,

will serve the th queue only if the achievable reward is
greater than or equal to . Similarly, if

, then will serve the th
queue only if the achievable reward is greater than or equal to .
Summarily, attains the maximum possible reward for every
packet while maintaining stability by dynamically selecting the
service vectors based on the queue lengths. Thus, attains
the maximum throughput among all stable policies.
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Now, we prove Theorem 2 using a combination of optimiza-
tion and Lyapunov theories. Neely et al. [27] proposed this proof
technique in a different context.

Proof: Consider a stabilizable . For any policy

(5)

Now for is an irreducible, aperiodic, and count-
able Markov chain. Now, consider the Lyapunov function

(6)

Let, . From (5) and (6), it follows that

Thus,

(7)

(8)

Now, since is stabilizable, we can obtain small enough positive
such that is -throughput optimal (Theorem 1). We

consider for such a . Here, is the service
vector would have used at if it had a queue length
vector of at .

From definition of (3), for every and

Thus, from (8), for every

(9)

Now chooses each service vector w.p. in-
dependent of the queue lengths, and subsequently serves only
those queues that are included in the selected service vector and
are also non-empty. Thus, if

(10)

In addition, recall that if selects , and if the th queue
is nonempty it receives a reward of at least . Thus, if

If

Now, since
and . Thus,

(11)

From (4), (10), and (11), it follows that

Hence, from (9)

(12)
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1) Stability of : From (12), since
for all it follows that for every stabilizable and every
non-negative

Let
. Then,

for all
if

Thus, since is finite, by Foster’s Theorem ([20, Theorem
2.2.3]), is positive recurrent, and for each queue the
expected queue length under its stationary distribution is finite.
Thus, the system is stable under .

2) -Throughput Optimality of : Taking expectation on
both sides of (12) with respect to the stationary distribution of

, we obtain

(13)

Now, is the number of departures from queue
in under . Since the queue length process
under is a positive recurrent Markov chain, for every

(14)

and

from (15)

Moreover, since the expectations are with respect to the sta-
tionary distribution of , it follows that

(16)

From (13), (14), (15), and (16), it follows that

from Theorem

if (17)

The result follows.
Finally, we comment on the role of the parameter in deter-

mining the throughput of . From (17), it can be seen that if
, then no throughput guarantee can

be provided for . Note that determines the burstiness
of the arrival process. Thus, the minimum required value of
is higher for more bursty arrival processes.

C. Computation Time for and

In the worst case, cardinality of can be as it may con-
tain all -dimensional binary vectors. Then, can be
computed by solving a linear program with variables
and constraints. Thus, the time and the memory required
to compute is in the worst case. Under ,
we need to find a that maximizes for every
. Since is , the time required to compute the op-

timal service vector in each slot is also unless some ad-
ditional structure on the queueing system is assumed. We next
propose two optimal policies which require polynomial compu-
tation time in every slot.

V. COMPUTATIONALLY SIMPLE OPTIMAL POLICIES

We provide a general framework for designing computation-
ally simple policies for maximizing the throughput subject to at-
taining stability by considering the notion of inaccurate sched-
uling (Section V-A). We subsequently utilize this framework to
design two computationally simple policies for maximizing the
throughput subject to stabilizing the system (Sections V-B and
V-C). Finally, we discuss how these policies can be implemented
using distributed computation (Section V-D).

A. Inaccurate Scheduling for Maximizing the Throughput
Subject to Stabilizing the System

We first describe a class of scheduling policies referred to
as ”inaccurate scheduling.” Note that the notion of inaccurate
scheduling has earlier been proposed for designing computa-
tionally simple policies for maximizing the stability region [23],
[32], [34]. Our contribution here is to generalize this notion to
attain the goal of maximizing the throughput subject to stabi-
lizing the system while using simple computations.

We consider policies for which the state
constitutes an irreducible, aperiodic and

countable Markov chain. This assumption holds when is
computed iteratively based on and . Note that
then may not be a Markov process.
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Definition 8 ( -Inaccurate Policy): A policy is called
-inaccurate if in each slot it selects a service vector

such that

(18)

where is a random variable that depends on (i.e.,
the distribution or is determined by the current system
state ), and if has a stationary distribution then
the expectation under the stationary distribution is less
than or equal to . Any service vector that satisfies (18) is called
a -inaccurate service vector.

Note that if is large, then the number of -inaccurate ser-
vice vectors will be large and hence the time needed to find one
such service vector may be small. We show that for appropriate
choices of all stable -inaccurate policies are -throughput
optimal.

Theorem 1: Let be any stabilizable arrival rate vector and
be an arbitrary -inaccurate policy. Then, for every

and , there exists such that for every ,
1) if is a positive recurrent Markov chain, then

is -throughput optimal, and
2) if for every , then

is a positive recurrent Markov chain, and stabilizes the
system.

Now, we provide the intuition. For simplicity of explanation,
we assume that for every , and hence the condi-
tion in (2) of Theorem 3 holds. We first explain why -inaccu-
rate policies maximize the stability region [34]. For large queue
lengths

and hence from (18)

Thus, and select similar service vectors when the queue
lengths are large. We have shown that for every stabilizable

has a negative drift when the queue lengths are large.
Thus, also has a negative drift for large queue lengths.
Hence, stabilizes the system whenever is stabilizable.
Incidentally, other approximate policies may also maximize
the stability region. For example, any policy that satis-
fies (18) with and replaced by

and , respectively, maximize the
stability region [23], [32], [34].

The key difference between only stabilizing the system and
attaining the maximum possible throughput subject to stabi-
lizing the system is that whereas for the former it is sufficient to
appropriately select the service vector when the queue lengths
are large, but for the latter appropriate selection of service vec-
tors is required for all values of queue lengths. Hence, it is not
clear that maximizes the throughput as well; we now ex-
plain why this is in fact somewhat counter-intuitive. Note that

for small queue lengths may be smaller or

comparable with . Then, (18) does not guarantee that the ser-
vice vectors selected by and are similar. Hence, it is not
clear that achieves the same throughput as , which at-
tains the maximum throughput.

We now explain why Theorem 3 holds. We argue that for
proper choice of parameters the queue lengths and the service
vectors under and become similar. Clearly, in the first
slot, both systems have the same queue length vector, . Now,
note that for large and significantly
differ if and are significantly different. Thus, due to (18),
and since .

Thus, the queue lengths in the next slot are also similar in
both systems. Recursive use of the same argument shows that
the queue lengths and the service vectors selected in each slot
are similar in both systems. Thus, both policies attain similar
throughput. Thus, is throughput optimal for large .

Next, we prove Theorem 3.
Proof: We assume that is stabilizable. We define the fol-

lowing Lyapunov function:

Using analysis similar to that for obtaining (8)

(19)

From (18) and (19), it follows that

Using arguments similar to those in the proof of (12) from (8),
we can prove that

(20)
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where is such that is -throughput optimal.
1) Proof for (1): Let the process be a positive

recurrent Markov chain. Then this process has a stationary dis-
tribution. Taking expectation on both sides of (20) with respect
to this stationary distribution, we obtain

(21)

Since is a positive recurrent Markov chain

(22)

and

from (23)

From stationarity

(24)

From (21), (22), (23), and (24), and since from Definition (8),
, it follows that

from Theorem

if

The result follows.
2) Proof for (2): Now, let for

all . Thus, from (20), for every and

Let
.

Thus,

for all
if

Thus, since is finite, by Foster’s Theorem ([20, Theorem
2.2.3]), is positive recurrent, and the expectations
of the queue lengths under its stationary distribution are finite.
Hence, stabilizes the system.

The main challenge in computing -inaccurate service vec-
tors is that may not be known and in most cases its
computation is complex. Thus, even the verification of whether
a given is -inaccurate may be computationally complex.
We circumvent this challenge by designing a computationally
simple approach that obtains -inaccurate service vectors
without requiring the knowledge of .

B. Periodic Computation of Optimal Schedule

We divide the time axis in intervals of length , i.e., in inter-
vals of the form .

We consider a policy that computes at the be-
ginning of each interval, i.e., in the slots for , and
throughout the interval serves each selected queue while it is
non-empty.

The time needed to compute is in the amortized
sense, i.e., is on every sample
path, where is the computational complexity is slot [17].
Thus, if we choose to be sufficiently large , then
requires computation time in the amortized sense.

In the following lemma, we show that for all
where .

Lemma 1: Let be the queue length vector under in
. Then

Proof: Without loss of generality let
for some . Now, from (5)

(25)

Similarly, from (5)

(26)
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Now, from (4), (25), and (26), we obtain

(27)

Now, from (3)

(28)

Also, since the service vector selected by changes in the
interval only if some queues empty during the period and then
the change is to not serve them, and if

then . Thus,
for all for which . Hence,

(29)

The result follows from (27), (28), and (29).
However, is not a Markov chain. Thus, in spite of

Lemma 1, is not -accurate. Now, is an irreducible,
aperiodic, Markov chain, and the framework for -inaccurate
scheduling can be generalized to such cases. We omit this gen-
eralization for brevity. But, using Lemma 1 and a proof similar
to that for Theorem 3, we can prove that when is stabilizable,

is -throughput optimal for every . We formally state
this in the following theorem, and prove it in the Appendix.

Theorem 4: Let be any stabilizable arrival rate vector. Then,
for every , there exists such that for every the
policy is -throughput optimal.

The main challenge in using is that it needs to periodically
compute the optimal service vector. Since the time required in
each such computation is exponential in , for large , such
computations may become infeasible. We next propose an op-
timal randomized policy which requires computation time
in every slot.

C. Optimal Randomized Policy

We now propose a randomized policy which has been in-
spired by a randomized policy proposed by Tassiulas [34]. The
policy in [34] attains the maximum possible stability region in a

constrained queueing network using linear time computations in
each slot. Our contribution here is to show that linear-time com-
putable randomized policies can also maximize the throughput
subject to stabilizing the system.

We now describe . In every slot generates a
service vector randomly among all service vectors
such that as per a distribution . In every slot

, once a random vector is generated as above, obtains
iteratively, as shown by the equation at the bottom of

the page. Thus, in any slot, uses a new service vector only
when it increases the value of ; otherwise it continues with
the service vector used in the previous slot. It is interesting to
observe that the randomized policy proposed by Tassiulas [34],
which maximizes the stability region using linear computation
time in each slot, uses a new service vector only when it in-
creases the value of .

Note that the distribution may depend on the current
queue length vector. We only consider distributions such

that for every for some .

Lemma 2: Let be a stabilizable arrival rate vector. Then
is a positive recurrent Markov

chain, and stabilizes the system.
We prove Lemma 2 in the Appendix. Now, we show that

is -inaccurate.
Lemma 3: Let be the queue length vector under in

. Then, for any initial distribution of

Proof: Since for every

infinitely often w.p. 1. Let be the slots in
which . Again, since for

every .
Consider the for which . Like in Lemma

1, we obtain

Thus, the result follows since .
Now, from part 1 of Theorem 3 and Lemmas 2 and 3, it fol-

lows that is -throughput-optimal for any . We formally
state this in the following theorem.

Theorem 5: Let be a stabilizable arrival rate vector. Then,
for every , there exists such that for every the
policy is -throughput optimal.

Now, if can be computed in time in
each slot. Each non-empty queue can be selected w.p. 1/2. If
the resulting vector is not in , then no queue is served.

otherwise
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D. Distributed Implementation of and

Distributed scheduling can be defined in different ways. One
definition is to consider a policy as distributed if each node
selects its action based on its observation, state and the infor-
mation it acquires by exchanging messages with its neighbors.
Such policies are then evaluated on the basis of their perfor-
mance and the frequency and the amount of message exchange.
Another definition is to consider a policy as distributed if each
node selects its action based on its observation, state and the
states and actions of nodes in a certain neighborhood.

We first describe how and can be implemented as
per the first definition. The time axis can be divided in periods
of length . Each node can broadcast its queue length at the
beginning of every period. The period length should be se-
lected so that the broadcasts in a period reach other nodes in
the same period. For executing , each node computes the
optimal service vector at the beginning of every period based
on the broadcasts it receives in the previous period. For exe-
cuting , each node randomly selects a service vector at the
beginning of each period, and subsequently chooses between
the service vectors selected in the current and previous periods
based on the broadcasts it receives in the previous period, and
finally uses the chosen service vector throughout the period. All
nodes use the same seeds in the random number generators and
therefore obtain the same random selections. For both policies,
each node’s computations depend on the queue lengths of other
nodes in the previous period. Theorems 4 and 5 still hold. The
message exchange complexity can be made arbitrarily small in
both cases by increasing .

Determination of an optimal policy which is distributed as per
the second definition for distributed scheduling remains open.
Note that the design of such scheduling policies in the pre-
cursor problem, that of maximizing the stability region, is still
not completely understood, although some illuminating results
have been obtained recently [10], [29], [36]. We hope that the
optimality results in this paper and the recent advances in con-
text of distributed scheduling will motivate further exploration
of the above open problem.

Finally, Ross et al. has obtained local search based policies,
which are likely to be computationally simple in practice, for
maximizing the stability region of certain classes of constrained
queueing networks [31]. It will be interesting to determine
whether the throughput can be maximized subject to stabilizing
the system using similar local search policies, and how the com-
putation time required by the -accurate policies we propose
compare with those for the resulting local search policies.

VI. DISCUSSIONS AND GENERALIZATIONS

We now generalize our framework so as to obtain optimal
policies when some of the assumptions made in Section II do
not hold. First, we have so far assumed that a packet is dis-
carded only after it is transmitted. We discuss how our frame-
work can be generalized to allow a queue to discard some or
all packets before transmitting them, and examine the advan-
tages and disadvantages of this option (Section VI-A). We next
describe how our framework can be generalized to accommo-
date random rewards and random sets of valid service vectors
(Section VI-B). Finally, we discuss how and reward functions

can be chosen so as to attain certain performance goals in an im-
portant application domain for this framework that of wireless
networks (Section VI-C).

A. Discarding Packets Before Transmission

In Section II, we have assumed that each packet is discarded
from its queue only after it is served once. However, in prac-
tice, a packet may be discarded from its queue even before it
is served. The availability of this option enhances the stability
region, and its judicious use increases the throughput. For ex-
ample, in Example 1 in Section III, when
where is a small positive number, .
Now, if can discard packets before serving them, is stable
and attains a throughput close to 5. But, clearly, indiscriminate
use of this option substantially reduces the throughput.

We now show that appropriate augmentation of allows us
to design policies that attain the maximum possible throughput
in presence of this option. Let be the original system that does
not allow packets to be discarded before transmission, and let
be the new system which allows the above. In , a queue is said
to be served when a packet is removed from its queue. The ser-
vice vectors in have 0–1 components. The first compo-
nents denote which queues are being served and the remaining
components denote whether the packets from the queues that
are being served are transmitted or discarded before transmis-
sion. We obtain the set of valid service vectors of from the
corresponding set of as follows. Let and let have
0 components where . Now, corresponds to ser-
vice vectors in , and each of these service vectors (a) transmit
packets from the queues were serving in and (b) discard
packets from a certain (possibly empty) subset of queues which

were not serving in . Note that the set of queues were not
serving in has subsets. Thus, the number of service vectors

generated by is . Let be one such service vector generated

by . Since and transmit packets from the same queues,

for each .
The stability region of is a (possibly improper) superset of

that of . This is because as long as the arrival rate of a queue
is less than 1 it can be stabilized in by simply discarding all
its packets before transmission. Thus, the stability region of
is a superset of and a subset of

. For any that is stabilizable
in , the maximum throughput of a stable policy in is less
than or equal to that of the maximum throughput of a stable
policy in . This is because every policy in is a valid

policy in , since for each there exists that does
not discard packets from any queue before transmission, and
transmits packets from the same queues which serves. Note
that , and can be defined similar to that
in ; the only difference is that must be substituted by .
The performance guarantees for these generalized versions, i.e.,
Theorems 1 to 5, hold in . are the same as those for .

However, note that higher throughput and stability region
can be attained in while sacrificing fairness. Specifically,
for any that is stabilizable in , if an -throughput optimal
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policy in attains a throughput which is higher than that
of an -throughput optimal policy in discards packets
before transmission from some queues. Thus, attains higher
throughput by being unfair to some queues. Also, in commu-
nication networks, in presence of this option, some receivers
may only receive a small fraction of packets transmitted by the
corresponding sources, which will in turn prevent them from
successfully decoding the transmitted information. Thus, this
option is not likely to be widely used (refer to Section VI-C).

B. Random Rewards and Random

We have so far assumed that the reward received by the th
queue in is completely determined by the service vector chosen
in . We now allow the rewards to be random variables (r.v.’s)
that depend on an external random component in addition to
the service vector (Section VI-B). This generalization is rel-
evant in context of wireless networks, where the success of
a transmission is a random event whose probability depends
on the fading state of the channels. Thus, in one-to-many or
one-to-one communication the reward is a r.v. whose distribu-
tion depends on the service vector and the channel fading state
between each sender-receiver pair. We generalize

and so as to maximize the throughput subject to stabi-
lizing the system in presence of random rewards.

We first formally describe the generalization. We consider a
random process which in any slot is in state with
probability independent of its state in any
other slot and also independent of the arrival process in any slot.
Here, for each . The policy knows
at the beginning of slot . The reward received by the th queue
when is the service vector and the process is in state
is a random variable, , whose distribution depends on

and . Let for every and . We
assume that if , and
if and . Thus, the throughput under a
policy and arrival rate vector is

(30)

Finally, when the arrival rate vector is , the maximum
throughput of any stable policy is . We next elucidate
the above formalisms with a specific example.

Example 4: In Fig. 1 assume that the channel to each receiver
is in good (bad, resp.) state w.p. 0.8 (0.2), and each receiver can
decode the packet w.p. 0.9 (0.2, resp.) when its channel is in
good (bad, resp.) state and it is not in the range of any other
sender that is transmitting packets. The state of a channel in
a slot is independent of that in other slots and also indepen-
dent of the states of other channels in any slot. In each slot,
the system knows the states of all channels, but does not know
whether a receiver can decode the packet its sender transmits.

Thus, the system has 64 states corresponding to different com-
binations of channel states. Now, if ( resp.)

equals the number of receivers in the set
( , resp.) that can decode the packet transmits
and if . Next, if

and can decode the packet, otherwise.
Thus, are random variables whose distribu-
tions depend on . For example, if is such
that the channels to are in good state,
if and is such that the channel to is in good state.

First, note that since does not depend on , the stability
region of the system remains the same. Now, we present the
optimality results. We first describe how can be
generalized. In any slot in which , the gener-
alized policy selects w.p. . If is selected
in slot then the system selects service vector
(i.e., ). The probability distribution

for every is computed
using the following linear program.

Subject to:
1) for every .
2) for every and .
3) for every

.
Note that is similar to ; the only difference

is that the distribution for selecting the service vectors depends
on the state of the system.

Theorem 6 (Generalization of ): Let be any stabilizable
arrival rate vector. Then, for every there exists a such
that for every is feasible, and is
-throughput optimal. Furthermore

(31)

Both the statement and proof for Theorem 6 are similar to that
for Theorem 1. Hence, we do not prove Theorem 6.

Theorem 7 (Generalization for ): Consider a stabilizable
arrival rate vector and a scheduling policy that chooses
service vector such that

(32)
in every slot . Then, for every stabilizes the
system. Moreover, for every , there exists such that for
every is -throughput optimal.

Note that the only difference between and is
that the former considers in selecting the service
vector while the latter considers in selecting the service
vector. The statement of Theorem 2 is similar to that of Theorem
7. Using the fact that constitutes a Markov chain,
Theorem 7 can be proved using similar arguments and the same
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Lyapunov function as Theorem 2. We omit the proof for The-
orem 7 for brevity.

We now generalize the framework for designing computa-
tionally simple policies for maximizing the throughput subject
to stabilizing the system. We first generalize the notion of inac-
curate scheduling.

if
otherwise.

Note that is the last time instant before such that the
process was in state . Thus, for every

.
We consider policies for which

are
irreducible, aperiodic and countable Markov chains. Let

(33)

Note that the only difference between and
is that the former depends on the expected rewards

associated with both and , whereas the latter depends on the
deterministic rewards associated with .

Definition 9 (Generalized -Inaccurate Policy): A policy
is called generalized- -inaccurate if in each slot it selects a
service vector such that

(34)

where is a random variable that depends on
and if has a stationary distribution, then the expectation

with respect to the stationary distribution, is upper
bounded by .

The main difference between a -inaccurate policy and a gen-
eralized- -inaccurate policy is that the former seeks to approx-
imate and the latter seeks to approxi-

mate at every time .

We next show that for appropriate choice of all stable gen-
eralized- -inaccurate policies are throughput optimal.

Theorem 8: Let be any stabilizable arrival rate vector and
an arbitrary generalized- -inaccurate policy. Then, for

every and , there exists such that for every
,

1) if is a positive recurrent Markov chain, then
is -throughput optimal, and

2) if for every , then is
a positive recurrent Markov chain, and stabilizes the
system.

Both the statement and proof for Theorem 8 are similar to that
for Theorem 3; the only difference is that we consider as
the system state in the former and as the system state in
the latter. We omit the proof for Theorem 8 for brevity.

Both and can be generalized using the framework of
generalized- -inaccurate policies. For brevity, we only describe
how can be generalized. We denote the generalized version
of as .

The policy obtains the service vector as fol-
lows. In every slot generates a random service vector

among all service vectors such that
as per a distribution that may depend on
and . In every slot , after generating the random
service vector, obtains using the following itera-
tive algorithm, as shown in (35) at the bottom of the page. We
only consider distributions such that for every

for some .

First, we point out the key difference between and .
In each slot compares for the randomly generated
service vector with under the service vector used in
slot . Now, compares for the randomly generated
service vector with under the service vectors used
in slots and . For example, recall that there are
64 system states in Example 4. Let , and
be the times at which states were last encountered
before . Then compares for the randomly generated
service vector with under the service vectors used
in slots . This additional comparison is necessary as
the reward in the generalized system also depends on the state
of the process . Hence, a service vector that maximizes

for some state may not do so for some other state .
Theorem 9 (Generalization for ): Consider a stabilizable

arrival rate vector . Then, stabilizes the system for every
. Moreover, for every , there exists a such that

for every is -throughput optimal.
The statement of Theorem 9 is similar to that for Theorem 5.

We prove Theorem 9 in the Appendix.
Note that we have so far assumed that the maximum number

of packet arrivals in each slot in any queue is upper bounded
by a finite constant . However, even when the above as-
sumption is relaxed, as long as the arrival distribution has finite
second moment, all the results, except Lemmas 1, 3 and Theo-
rems 4, 5, 9 hold.

We finally consider the case where the set of allowed service
vectors evolves randomly. Specifically, evolves as
per a finite state random process whose state in any slot is inde-
pendent of that in any other slot and independent of the number

(35)
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of arrivals in any queue in any slot. The stability region is now
different from that when does not change. We refer to the inte-
rior of this new stability region as . We assume that the policy
knows at the beginning of slot . All policies can be gen-
eralized to this case as well, using the framework of random re-
wards. Here, consider a new system in which the set of allowed
service vectors is the power-set of the set of queues, and the re-
ward for serving each queue is 0 in a slot if the service vector is
not in . The system is otherwise similar to the actual system.
Theorems 7, 8, and 9 hold for all , and for and
computed in the new system. For small , these policies rarely
select service vectors in if .

C. Choice of and Rewards in Wireless Networks

Our model allows each packet to be delivered to a subset of
receivers, and therefore induces some packet loss. We can ap-
propriately design the set so as to ensure that the receivers can
successfully decode the packets in presence of packet loss. For
example, we can eliminate packet loss by restricting to con-
sist of only those service vectors that serve a queue only when its
packet can be delivered to all receivers. For example, in Fig. 1,

will accomplish the
above goal, but, observe that if then the stability re-
gion in a system where is a subset of that in a system
where . Also, for any which is in the stability re-
gion of both systems, the maximum throughput (minimum loss,
resp.) of a stable policy in the former is greater than or equal
to (less than or equal to, resp.) that in the latter. Thus, such re-
strictions on should be imposed only when the system cannot
tolerate any loss.

Many applications, e.g., real-time applications like audio,
video, and some data applications like anycast2 can inherently
tolerate certain amount of packet loss. Applications can recover
the information present in lost packets when they use coding
redundancy (forward error correction [28], [30] or digital
fountain [8]), path diversity (multiple transmissions of the
same packet in different paths [21]), retransmissions at higher
layers3 (e.g., TCP or RTCP resend a packet at the transport
layer if an end-to-end acknowledgement is not received within
a time-out period). Also, for multicast transmissions a receiver
may recover lost packets by requesting transmission from
another receiver that has received the packet [9]. This “local
recovery” is often useful if receivers are clustered and the
distance between receivers in each cluster is significantly less
than that between a receiver and the sender. should be larger
in all the above cases.

Thus, must be chosen in accordance with application
requirements and system design. The loss tolerant applications
and also the mechanisms for recovering lost packets are ef-
fective only when either each packet is delivered to a certain
minimum number of receivers, or each receiver receives a
certain minimum fraction of packets transmitted by its source.
The former is useful for anycast applications and local recovery

2In anycast, a packet need only be delivered to a certain minimum number
of receivers. An example application of anycast is a client-server query system.
When a client needs to locate a service, it needs its query packet to reach a
certain minimum number of servers.

3These retransmissions are treated as separate packets at lower layers.

mechanisms. The latter is useful for real time traffic, and in
presence of loss recovery schemes like forward error correction,
path diversity and retransmissions at higher layers. In the first
case, may be designed to consist of only those service vectors
that deliver each packet of queue to at least receivers,
where can be determined based on application
requirements and recovery mechanisms. Usually, for
each , which in turn implies that packets cannot be discarded
from the queues before transmission.

In the second case, may be designed to consist of only those
service vectors that ensure that each receiver receives a packet
transmitted by its source with a certain minimum probability,
which can in turn be determined in accordance with applica-
tion requirements and system design (e.g., the amount of coding
redundancy, multipath diversity and local recovery used). Note
that the design of under this requirement may be computa-
tionally hard as in the worst case each subset of the possible
service vectors may need to be examined to determine whether
the desired policy, e.g., one among and ,
attains the above goal. However, this computation needs to be
performed once every time nodes move, and hence only once
in static networks, and infrequently in networks where nodes
move slowly. Furthermore, heuristic selection strategies may be
used to ensure fast computation, e.g., heuristics for the coverage
problems [22] may be used if we assume the knowledge of the
probability that a service vector in is selected by the given
policy. Designing computationally simple algorithms for appro-
priately selecting given the requirements of the application
and the higher layer protocols and the service vector selection
policy (e.g., one among ) is a topic of future
research.

Finally, the reward functions can also be appropriately se-
lected so as to ensure that optimal policies prefer service vectors
that facilitate successful decoding of information. For example,
if a receiver has limited loss tolerance owing to application re-
quirements and/or the nature of its loss recovery schemes, the
reward associated with service vectors that deliver packets to
this receiver can be made high. Appropriate selection of reward
functions constitutes a topic for future research.

VII. RELATED WORK

Tassiulas et al. have characterized the stability region of con-
strained queueing networks, and have obtained a scheduling
policy that maximizes the stability region [35]. Several inter-
esting generalizations of this basic result have been obtained in
context of mild assumptions on arrival and service processes [1],
[5], [18] and a diverse class of systems including wireless net-
works [19], [34], input queued switches [23], parallel processing
systems [6], and manufacturing systems [2]. We consider con-
strained queueing networks where different queues receive dif-
ferent rewards for service, and more importantly, the reward ob-
tained by the same queue may be different depending on the set
of concurrently served queues. An important performance goal
in such networks is to maximize the reward per unit time or the
throughput subject to stabilizing the system. Our contribution
has been to design a scheduling policy that attains this goal. We
have earlier designed a scheduling policy that attains the same
goal but only in a system with a single queue [12], [16].

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31, 2008 at 10:34 from IEEE Xplore.  Restrictions apply.



CHAPORKAR AND SARKAR: STABLE SCHEDULING POLICIES FOR MAXIMIZING THROUGHPUT 1927

Recently, Neely has considered a queueing system in which in
each slot different queues can be simultaneously served at dif-
ferent rates [27]. The rate vector can be selected among some
given choices, and different selections have different costs. In
this scenario, Neely has proposed a scheduling policy that min-
imizes the cost while stabilizing the system. In our case, in each
slot all queues that are served must be served at the same rate,
but receive different rewards depending on the service vector.
We maximize the total reward achieved per unit time subject to
stabilizing the system. Thus, in some sense, we study the dual of
the problem studied in [27]. Concurrent with our work, Stolyar
has investigated a similar problem, and has proposed optimal
policies similar to and [33].4 Our proof techniques
are however significantly different, and also simpler, than that
used by Stolyar. Furthermore, the optimal policies proposed by
Stolyar, and also the basic optimal policies we
propose, turn out to be computationally complex. One of our
important contributions has been to provide a general frame-
work for designing optimal policies that are also computation-
ally simple. The design of this general framework in turn relies
on the techniques used for proving the optimality of
and .

Bonald et al. also showed that a policy that maximizes the in-
stantaneous throughput does not attain the system stability region
[7]. However, while they focus on a wire-line network we con-
sider more general scheduling constraints. Also, they assume that
flows arrive as per an arrival process and each flow arrives with
a random number of packets, whereas we assume that the set of
flows do not change but packets arrive in each flow as per an ar-
rival process. Finally, the most important difference is that they
investigated the tradeoff between fairness and stability, whereas
we maximize the average throughput subject to stability.

We now describe some interesting open problems, and how
some existing results can be used to solve these problems. We
have assumed that the arrivals and the random rewards are tem-
porally independent, and every packet can be served in 1 slot.
An interesting direction for future research is to generalize our
results for all stationary, ergodic arrival, service and reward pro-
cesses. Several classes of policies have been shown to maximize
the stability region in constrained queueing networks under the
above mild assumptions on the arrival and service processes [1],
[5], [18]. The analytical techniques proposed in these papers
may be useful for the above generalizations in our context.

We have assumed that a packet can be transmitted at most
once. Note that since each additional transmission increases
the energy consumption, and the interference for other trans-
missions, several existing medium access policies, e.g., IEEE
802.11, transmit a packet only a bounded number of times, and
subsequently discard the packet even if it has not reached some,
or all, of its receivers. We assume this bound to be one which
corresponds to a special case of the above. Note that in the
broadcast mode IEEE 802.11 transmits every packet only once
at the MAC layer, which is consistent with our assumption. An
interesting open problem is to maximize the throughput subject

4Most of our results have been reported in [11], [14]. Both papers were sub-
mitted before Stolyar published his result [33].

to stabilizing the system when each packet can be transmitted
up to times where . We have recently proposed a policy
that minimizes, in a network consisting of a single multicast
sender, the amount of time each packets waits at the head of
line position of the queue before it is transmitted, when each
packet can be transmitted up to times where is a parameter
[13]. It will be interesting to investigate whether similar results
can be obtained for a network consisting of multiple queues
and whether the guarantee on the waiting time at the head of
line position can be used to obtain guarantees on the throughput
and the stability region.

APPENDIX
I. PROOF OF THEOREM 1

First, we prove two supporting lemmas (Section A) and sub-
sequently prove Theorem 1 using these lemmas (Section B).
In Lemma 4, we show that if is stabilizable, then there ex-
ists such that has a feasible solution. Thus,
policy is well defined. In Lemma 5, we upper bound
the throughput of any stable scheduling policy. For stating these
lemmas, we generalize the definitions of and .
Let .

:- Maximize: .
Subject to:

1) and for every .
2) for every .

Supporting Lemmas:

Lemma 4: Let . Then, there exists a neighborhood
around such that is feasible if .

Proof: Let . Since is the interior of the convex
hull of

Thus, is a valid distribution. Moreover, is a
feasible solution for for every .

Now, consider a given . Since is an open set, there
exists an open ball centered at (denoted by ) such that

. Thus, for every . Now, as shown above,
this implies that has a feasible solution.

Lemma 5: For every stabilizable
w.p. 1.

Proof: Consider any policy that stabilizes .
Let denote the number of slots in which uses as

the service vector till time , i.e.,

for every (36)

for every (37)

w.p. 1 for every (38)
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The last equality follows since is stable.
Consider any , and let for each

(39)

Let . Since from (36), (37) and (39),
is a feasible solution of

(40)

We will show that given any , w.p. 1 there exists 1) a
such that for all , and 2) such that for
every

(41)

From Lemma 4, there exists a neighborhood around such
that is feasible if . Thus, given any ,
there exists a such that for all , and

for all such that . Thus, is
defined for all such that . From (38), w.p. 1 there
exists such that for every . Thus,
for every . Now, (41)
follows from (40).

Now, from (41) and by the continuity of , w.p. 1

Since is an arbitrary stable policy, the lemma follows from
the above inequality, (1) and Definition 6.

Proof of Theorem 1:

Proof: From Lemma 4, there exists a neighborhood
around such that is feasible if . Thus,
there exists a such that for all

. Thus, by Lemma 4, has a feasible solution
for every .

Now, from continuity of it follows that

Thus, from Lemma 5 it follows that for every there exists
such that for every is well-defined and

(42)

Select such that . Now, is well-defined.
Since selects the th queue for service w.p. ,
the rate at which the th queue is offered service is greater than
its arrival rate. Hence, under constitutes a
positive recurrent Markov chain, and the expected queue lengths
under the stationary distribution of this Markov chain are finite.
Thus, is stable.

Let if selects in slot , and 0 otherwise.
Thus,

(43)

(44)

and

(45)

Relation (44) follows because is stable and
is the number of packets

departing from the th queue in . Relation (45) follows
from (43) and . Now

if

(46)

The result follows from (42) and (46).

II. PROOF OF THEOREM 4

Proof: Let be stabilizable and

Using an analysis similar to that for obtaining (8)

(47)
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From Lemma 1 and (47), it follows that

Using arguments similar to those in the proof of (12) from (8),
we can prove that

(48)

where is such that is -throughput optimal.
1) Proof for Stability of : From (48), for every

Let

. Thus,

for all
if .

Thus, since is finite, by Foster’s Theorem ([20, Theorem
2.2.3]), is positive recurrent and the expecta-
tions of the queue lengths under the stationary distribution
of are finite. Thus, since the queue lengths in

consecutive slots can differ only by a constant, stabilizes
the system.

2) Proof That : Taking expectation
on both sides of (48) with respect to the stationary distribution
for , we obtain

(49)

Since is a positive recurrent markov chain, and
% is a periodic markov chain with period

(50)

and

(51)

(52)

From (49), (50), (51), and (52), it follows that

if

The result follows since stabilizes the system as well.

III. PROOF OF LEMMA 2

Here, we outline the proof, but provide the complete proof
in [15].

Let the system use and the arrival rate vector
be stabilizable. Let represent the
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system state under . Consider a Lyapunov function:
, where

Using similar technique as that in the proof of Proposition 1 of
[34], we show that for
all but the finite number of ’s. Thus, by Foster’s theorem ([20,
Theorem 2.2.3]), the process is a positive recurrent
markov chain. Hence, the system is stable under .

IV. PROOF OF THEOREM 9

Let the system use and the arrival rate vector be stabiliz-
able. Let be the system state under . Using similar argu-
ments as in the proof of Lemma 2, we can prove that
is a positive recurrent markov chain. Next, we outline the proof.

Let denote the service vector selected by in slot
if the queue length vector and the random process at the

beginning of are and . As in the proof of Lemma
2, we consider the Lyapunov function

, where

Using instead of , and the
same arguments as in the proof of Lemma 2, we can show that
1) there exists a constant such that

for all , and 2) there exists a constant
, such that

for all such that . Thus, since
is finite, the stability of fol-

lows from Foster’s theorem ([20, Theorem 2.2.3]). Thus, the
first part of Theorem 9 follows.

We now prove that
.5 Then,

the second part of Theorem 9 follows from the first part of
Theorem 8.

Recall that for each .
Since for every , and for each

infinitely
often w.p. 1 for each . Let be the
slots in which . Again, since

for every , S,
for each .

5Note that henceforth all expectations are under the stationary distribution of
the process f~I(t)g.

Without loss of generality, let and
for some . Now

(53)

(54)

(55)

Next

Thus, since

(56)

Thus, from (55) and (56), and since from the definition of

The result follows since for each
.
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