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We give a systematic treatment of the spin excitations of a family of disordered quasi-two-dimensional

Heisenberg antiferromagnets, Rb,Mn„Ni, „F4, for arbitrary values of x. The density of states, static response
functions, and the dynamic susceptibility are calculated numerically. Results at several concentrations are
presented graphically. We derive simple analytic theories which give an adequate description of the calculated
quantities. The static response functions characterize excitations at low energy and long wave length, and
enable us to predict the concentration dependence of the anisotropy gap frequency and the temperature
dependence of the magnetization. The dynamic susceptibility is in good agreement with recent neutron-
scattering experiments on Rb,Mn05Ni05F4. The spin-wave density of states for 0.1 & x & 1 is found to split into
two separated subbands, consisting essentially of Mn and Ni spin excitations, respectively, The evolution of
the two subbands as a function of concentration is studied through the dynamic susceptibility, which resolves
both q and co, and by numerical tests for localization of the normal modes. The two-mode character of this
system persists even after the gap between subbands has closed to become a pseudogap.

I. INTRODUCTION

Transition-metal fluorides of the form TF~,
ATF3, and A~TF4, where A represents an alkali
metal, usually K or Rb, and T an iron-group
transition metal, are a family of insulating anti-
ferromagnets about which a great deal is known.
Their magnetic properties are accurately de-
scribed by the Heisenberg Hamiltonian

K=2 Q J))S( ~ S) —Q (o') & S)+g) pshaw"'(t) S;),
i& j i

(1)
in which J,&

is the positive exchange interaction
between neighboring spins Si and S,. on sites i and

j, 4,. is a uniaxial anisotropy energy, g,. is the g
factor for atom i, h'~ is an external field, p, ~ is
the Bohr magneton, and

on even sublattice sites,

—1 on odd sublattice sites.
(2)

Nearest-neighbor exchange has been found to
dominate Eq. (1) in these compounds. These
materials and their alloys have recently been re-
viewed by de Jongh and Miedema' and by Cowley
and Buyers. ~

In this paper we shall give a systematic theo-
.retical study of the family RbzMn„Ni, „F4, an al-
loy system which is just beginning to attract ex-
perimental interest. ' In the tetrafluorides, the
transition-metal ions form layers separated suf-
ficiently to be treated as independent two-di-
mensional (2D) square lattices Since Rb. 2MnF4
and Rb~NiF4 differ considerably in the strength of
their magnetic interactions (the ordering tempera-

tures are 38.4 and 91 K, respectively), we can
expect the effects of disorder to be prominent in
the alloy system.

All the parameters to be used in the Hamiltonian
(1) for RbaMn„Ni~ „F4 are known to roughly 10%%up

accuracy, either from measurements on the pure
2D systems, or from measurements at low con-
centrations on mixed 3D systems. Cowley and

Buyers find that the expression for the exchange
interactionbetweendifferent components, A and B,

AB (~AA BB) (3)

which would be expected from superexchange the-
ory, is in error by only a 5/z for most iron-group
metal ions as impurities in manganese fluorides.
From Raman-scattering studies of the local im-
purity mode of low concentrations of Ni in the
perovskite KMnF3, Thorpe has extracted a value
of JM„„, about 1'%%uo greater than would be given by
Eq. (3).

In Rb2¹F4, the anisotropy terms in Eq. (1)
originate from local crystal-field splittings.
Therefore, 4, on Ni sites should have essentially
the same value in the alloy as in the pure system.
In RbaMnF4, however, the anisotropy is much
smaller and of dipolar origin. Thus 4,. on Mn
sites is proportional to the average magnetic mo-
ment per site in the alloy. This dependence of &,.
on composition has only a small effect on the
properties considered here, and will therefore be
neglected. Rb2Mn„Ni, „F4 is thus to a good ap-
proximation a strongly disordered material for which
a microscopic model exists with no unknown parame-
ters. It can furnish a critical test of theory and of
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our intuitions about excitations in disordered systems.
In principle, there are at least three distinct re-

gions of concentration which must be considered.
It is known from studies of 2D site percolationv'
that for &&0.4 all of the Mn atoms will lie in iso-
lated finite clusters, surrounded by Ni atoms, a
large fraction of which will be part of an infinite
connected cluster which spans the crystal. Like-
wise, for x&0.6, the Ni atoms will be isolated in
clusters in a Mn host. At the intermediate con-
centrations, only finite clusters are found. Spin
excitations which extend over large distances should
have different characteristics in the three regions.
We shall also find below that the region of low Mn
concentration introduces some novel features.

Isolated clusters are not necessarily small,
especially in the intermediate-concentration re-
gime. Dean and Bird have studied the cluster
statistics of the randomly diluted 2D square lattice
with nearest-neighbor interactions, and find that
at 50% occupation of the sites, the largest clusters
in their Monte Carlo samples of 62500 sites con-
tained more than 300 connected atoms. For this
case, the average cluster contained roughly 8
atoms. Although the average cluster size de-
creases rapidly at lower concentrations, some
large clusters will still occur. Dean and Bird
found an average connected cluster size of 3 sites
at 35% occupation, but each of their samples con-
tained a few clusters of 40 or more sites. Above
the percolation threshold, isolated small clusters
separated from the infinite cluster persist, their
average size decreasing with increasing x. For
67. 5% occupation, the average isolated cluster
size was found to be 1.9 sites, with a few clusters
of 15-30 sites always present. It appeared in this
numerical study that for the same mean isolated
cluster size, larger fluctuations in the size of the
rare large isolated clusters observed occur above
the percolation threshold than below it. Study of
the strongly disordered Rb&Mn„Ni& „F4 system thus
should afford the opportunity to analyze the effects
of both large and small localized states, as well
as the feature, unique to 2D, of an intermediate re-
gion in which only isolated clusters are present.
There are other advantages to studying effects of
disorder in 2D rather than 3D systems. Not only
are the effects, in general, larger, but numerical
calculations such as we shall describe are more
practical.

Several strongly disordered 3D insulating anti-
ferromagnets have been studied previously by
neutron scattering, ~o but the only experimental
studies of spin excitations in 2D mixed systems of
which we are aware are on Rb~Mno, Nio, F4, by
Birgeneau et al. ' Using inelastic neutron scat-
tering, they have observed two sets of excitations:
a branch consisting of sharp lines extending be-

tween 1 and 9 meV, and a second set of broad lines
at energies above 16 meV. Since the energies of
the centers of both lines shift with momentum trans-
fer q, both were characterized as propagating ex-
citations. A four-sublattice model for the system
was proposed in Ref. 3 to interpret the two modes.
Ni and Mn atoms on each sublattice are distin-
guished, and assumed to satisfy the averaged
equations of motion. This model predicts two
modes of zero width for each value of q, and gives
wave functions which can be used to calculate
scattering intensities. On the basis of these wave
functions, Birgeneau et al. ~ interpret the second
band as a propagating "optical" mode, in which
the Ni and Mn spins of each sublattice move in
opposite directions. Some of the 3D systems
studied by Svensson et al. ' also display this sort
of two-mode behavior.

Alben and Thorpe have recently performed a
Monte Carlo calculation of the neutron-scattering
intensities for x =0. 5, using Eq. (1) as the Hamil-
tonian, and making the assumption (3). Their re-
sults are in good agreement with those of Birgeneau
et al. , and furnish support for our conjecture that
Eqs. (1) and (3) should apply to the RbzMn„Ni, „F4
«~stem at arbitrary x.

The density of states for the closely related
KIMno ~Nio ~F4 has been evaluated numerically by
Huber. ~2 Although his results, based on a small
(30& 30) sample with free edge boundary conditions,
are crude, Huber also observed two subbands,
separated in energy by a gap. Reasoning by
analogy with examples of strong scattering which
have been studied elsewhere in the disordered elec-
tron and phonon problem, ' he identified the
lower band as due to excitations involving Mn spins,
and the upper band as due to Ni.

Our studies show that this two-band behavior is
not restricted to x =0.5, but occurs at all but the
lowest Mn concentrations. We support Huber's
interpretation of the character of the two subbands,
as opposed to the "optical-mode" picture, and
present calculations below which quantify the
amount of participation by ¹ispins in the lower
subband, and vice versa, as well as the regions of
q space in which it occurs. By measuring the
sensitivity of specific eigenvalues of our Monte
Carlo samples to changes in the boundary condi-
tions, it is possible to determine the localized or
extended character of a state directly. In this way
we find that all of the states in the Ni subband at
x=0. 5 are localized, despite the fact that the energy
at which their scattering is strongest shifts with
wave vector. By combining the Monte Carlo studies
at arbitrary concentrations with exact treatments
of the effects of very low concentrations of Mn in
Rb&NiF4 or vice versa, we can assemble a com-
prehensive picture of the phenomena associated
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with the formation of the two subbands in the alloy.
Finally, we have carried out numerical calcula-
tions of the dynamical susceptibility which are in
agreement with the scattering experiments, and
can be used to give a more detailed characteriza-
tion of the eigenmodes than is possible from con-
sideration of the density of states alone.

The paper is organized as follows. In Sec. II
we give derivations of most of the physical quanti-
ties which can be obtained either by exact solution
of the case of a single impurity~' '7 or from a
microscopic Monte Carlo model of the random
magnetic system. We present calculations of the
densities of states of four samples, representing
the different concentration regimes of interest.
In two of these cases, me have tested for the
presence or absence of extended states.

In Sec. III the extended states at low energy are
studied by first expressing their energies in terms
of static response functions, then calculating those
response functions numerically for Monte Carlo
samples. A report on the application of this type
of analysis to ferromagnets, ferrimagnets, and
antiferromagnets is in preparation. A summary
of those results has appeared elsewhere. ' In the
present work we consider only antiferromagnets,
and treat explicitly the presence of atoms with
differing g values. Calculations of the anisotropy,
exchange stiffness, and various susceptibilities
as functions of concentration are presented, and
used to predict the gap frequency and the tempera-
ture dependence of the magnetization. These pre-
dictions of dynamics from static properties are in
agreement with the small amount of experimental
data that exists, as mell as with dynamical cal-
culations on the Monte Carlo samples. They can
readily be tested by future experiments.

Calculations of the dynamic susceptibility y" (q, io)
are presented in Sec. IV for four concentrations,
and compared at x=0. 5 with the neutron-scattering
experiments, which measure the same quantity.
The systematic trends in the types of states which
are found as x, q, and co are varied and discussed.
We compare several theories for the mode frequen-
cies. A relatively simple estimate based on moments
of the average susceptibility is found to give accurate
predictions of the positions of the high-energy
peaks. This method introduces no assumptions of
homogeneity or that states are all either extended
or localized. Partial susceptibilities, mhich sepa-
rate the contributions of the two types of atoms to
g" (q, co) are also discussed in Sec. IV. They are
useful in testing the validity of approximate pic-
tures, including the four-sublattice model, of the
character of the modes of this system.

Some details of the numerical techniques we
employed are given in Appendix A. Appendix B
contains the details of our calculations of various

response functions for the case of a single impurity
atom. In Appendix C, the formulas needed to
evaluate moments of lt "(q, ur) are tabulated. In
Appendix D, we derive the dynamic susceptibility
for the four-sublattice model.

II. DENSITY OF STATES

The equations of motion for a spin deviation

5S;(t) = S;"((u)(x+ iy)e '"', (4)

AidS (io) =2 g J;,(S;S&—SiS;)+o;&, S;.

2@i PBki(t)Si ~

where p, ~ is the Bohr magneton. If we linearize
about the Neel state, in which

(S;.)=o,. S, ,

where S, is the magnitude of the spin on site i,
the equations of motion become

bio S;((o) = 2 Q o,- J',,[S, S+,.((u) + S,.S; (io) j

+ o, [&;S;(id) —2g; p. sh;((o)S, j .
Equations (8) may be transformed into

Q M;;(io)S;((u) = —2g; p, s h, (id)S, ,

where

M)~ -—5,, o';hw —4,. —2 J)k Sk —2J)~ S, 10
k

The matrix M is not symmetric, which complicates
both numerical work and discussion of its eigen-
states. We can remedy this by introducing

S;(oi) =S; S;(io) .
These satisfy symmetric equations

P N, , si(oi) = —2g,.p, sh,.(id)S',. ta, (12)

where¹,.= 5,, o;@co—~; —2
k

(13)
It is convenient to define a dynamical matrix W

by writing N in the form

N = OA(d —W,
where 0'is a diagonal matrix with elements cr,

(14)

where x and y are unit vectors, obtained from the
Hamiltonian (1) in the presence of an external field

h,.(t) = h, ((o)(x+iy)e '"', (5)

are
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Since the eigenvalues of the original system (8) are
the same as those of (13), and the eigenvectors
are related by the transformation (11), we can dis-
cuss one-magnon excitations by examining the
eigenstates of (13).

For comparison with experiment, we also need
various susceptibilities. The most general two-
point susceptibility is defined by

X;;(~)=g; p a Sl(~)/&;(~)

= —2R psS (N '); gp.a'S

Its Fourier transform

(15)

(18)

y(q, +) = —g exp[iq ~ (R,. —R,)] y.;J(e),
t2

where V is the volume of the crystal, can be ex-
pressed in the symmetric form

x(q ~) = 2&q IN '(~)
I q)

where

(il q)=g, ,p(aS/V)'~'e x(piq R;) ~.

(18)

x e= 2(qlP N (~)Pslq) ~ (20)

We shall now consider excitations of the spin
system in the absence of external fields. N has
both positive. and negative eigenfrequencies, but
on the average the spectrum is symmetric about
zero, so we shall only consider the positive fre-
quencies. Formally, the density of states can be
extracted from N by

In order to study the nature of the elementary exci-
tations it is useful to distinguish the role of the
two different types of atoms by defining partial
susceptibilities. To do this, we define a diagonal
projection operator P which is unity for sites
occupied by atoms of the type n and zero other-
wise. Then we write

(h(u) „=(1/N) (Tro'WgW) „
)2

Q ~~a Sa+ ~i
I

—P J~ )~a~ S~ Sa
RV

(23)

(24)

28

27

26
E

25

cu z 24

23

22—
2I

was used to check the accuracy of the calculated
densities of states reported in this section. More
interesting are the projected moments,

(h~ )~„= (1/N )(Tr P aWoW)„ (25a)

2
2+g Qx~ 8 q88) —Qzxq J„~ S„Sg,

(25b)
where u or p can stand for either Mn or Ni, S is
the spin of an n atom, X is the number of n
atoms, and so forth. Thus Eq. (25) gives mo-
ments over the density of states weighted by the
amplitude of the average spin deviation of the
states on the atoms in question.

In the numerical calculations which follow, we
shall adopt the parameters cited by Birgeneau et
g$. , although our definition of J differs from theirs
by a factor of 2. These are JM„M„=0.328 meV,

p(&u) = limfm Tro N (w —ie),1 «1

Nr, „p+
(21)

where Tr denotes the trace and N is the total num-
ber of sites. Even frequency moments of p(&u)

are easily calculated (odd moments vanish on the
average by symmetry) by expanding N for large &o:

oN '(&u) = ( hu —o W)

0
E

cu &

=g (@~)" (a W)" . (22)

An integral over the density of states as given by
Eq. (21) with uP in the integrand can be trans-
formed into a contour integral which picks out the
coefficient of &u

2" ~ in Eq. (22). (See Ref. 13,
Sec. 3, for a fuller discussion of the derivation
of moments. ) The configurational averages of
the quantities in Eq. (22), denoted ( ),„, can be
carried out explicitly. For example,

0
Ni

I, I I I I

0.2 0.4 0.6 0.8 Mn

FIG. 1. Characteristic frequencies (Nq)~„and
(~Mn) v for Ni and Mn excitations, respectively, as func-
tions of Mn concentration x. The characteristic fre-
quencies are defined in terms of moments of the density
of states in Eq. (25).



4984 S. KIRKPATRICK AND A. B. HARRIS

J„n„,= J„,M, = 1.17 meV, J„,„,= 4. 15 meV, 4M
=0.03 meV, and 4N, ——0.28 meV. The remaining
parameters needed to specify the alloy system are
gMn= 2. 0& gN~ = 2. 22& SMn = 2. 5~ and SN& ——1.0.

Because of the marked difference between the
rms characteristic frequencies derived from the
projected second moments, as plotted in Fig. 1,
we can expect to find striking differences in the
dynamics of Ni and Mn spins in the mixed systems.
The characteristic frequency of the excitations
seen at a Mn site (h(dM, )',t' is nearly concentration
independent and equal to about 5. 5 meV. The
frequency characterizing the Ni excitations de-
creases with decreasing Ni concentration, but is
never less than 22 meV, a value greater than the
highest single magnon energies (6.6 meV) ex-
pected for pure RbzMnF4. Thus Ni spins at low
concentration will give rise to an isolated high-
frequency localized level, and we must expect to
find a two-band density of states at intermediate
concentrations. That is, there will be two distinct
parts to p(E), one consisting of excitations involv-
ing mostly Ni spins and one mostly Mn. Since the
characteristic frequency for Mn spins exceeds the
gap frequency (4. 3 meV) for Rb~NiF, magnons,
there will be a strong effect caused by Mn im-
purities in the bottom of the Ni magnon band.
However, a more detailed analysis is needed to
tell whether localized impurity modes will occur
in the Ni gap at low Mn concentrations.

The low-concentration regimes, when small
numbers of Mn spins are substituted into the Ni
compound and vice versa, can be treated essential-
ly exactly. The solution of the single-defect prob-
lem has already been studied extensively, 5 ' so
we will not discuss the formalism in detail, but
will concentrate mainly on a presentation of nu-
merical results.

We will study the spin Green's function G, , ((d)
defined by

where L;j= S,~ M, jvj Sj. In the ease of a single
defect at the lattice site m one writes

L(y((()) = Lg J+ V qy )
0 (29)

where Lij is the value of Lij for the pure crystal.
One ean then write the solution for H

H=H +H t H (3o)

where t is the t matrix associated with V

y m(f Ho V m)-l (31)

I~.~&= I~),
6

) = ( I
m+ (0;)—

I

—ax) )/2 t

qn, &
= (I m. + aj& —

I
m —aj&)/2't',

(32)

(5 denotes one of the nearest-neighbor positions
+ ai or + ay) in terms of which

t = t"'+
I v ) t,(m„ I

+ Iv,„&t,(~„I+ I~,)t, (~,I,
where

g tI j I +s( & (+85 I
(34)

by

We express the density of states in terms of t

¹ p((d) = Tr Im I '((d —i&)

= Im g H, , (&() —ie),
i

and if we write p((d) = p (&u)+ N 5p((d), where p (~)
is the density of states of the pure crystal, we
have

(36)

In discussing the t matrix it is convenient to intro-
duce the following symmetry adapted basis func-
tions

G;&(&()) = ' G&J(t)e'"' dt, (26)

Q 5f,(&) G„(~)-5,„2S, , (28a)

G, (t) = [e(t)/ia]([s;. (t), s;.(0)]), (27)

where ( ) indicates a thermal average, which in
this case we take as a ground-state average, and

e(t) =1 for t&0 and zero for t&0. Neglecting
spin-wave interactions and deviations from the
Neel ground state we may write the equations of
motion for the spin Green's function as

5p((d) =7( 'Im QH;~((u —ie)tq, (u) —ic)H„(((d —ig) .
ijk

It can be shown that
(36)

dH@+HO H'.ij ki

so that

INo(m) = —m
' —„(ImP tt', (m —if)t„(td —i~)).

ij
(38a)

where M was defined in (10). We shall define G~~

=2a'&H;~, in terms of which Eq. (28a) becomes (ImTrln(I —H V )), (38b)

Li jHjk= 5
j

(28b) which is the usual phase-shift formula. ~' That is,
we set det(I —H V ) = e"'"' and we obtain
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FIG. 2. Phase shifts for g-wave (solid line), p-wave (dashed line), and d-wave (dotted line) scattering by a single
impurity atom. (a) The case of a Ni atom added to Rb~MnF4, ' (b) describes Mn in Rb&¹iF4. Change in the density of
states associated with each partial. wave can be obtained from the slopes of the individual phase shifts by (39). Hori-
zontal arrows in each figure indicate the extent of the host magnon band.

h5()- -' (39)

ln Figs. 2(a) and 2(b) we show the results for
5 (ar), where n is the symmetry label, s, p, or
d, and

5 ((o) = 5, ((u) + 25,((u)+ 5, (&u) . (40)

Figures 2(a) and 2(b) show 5, (+) for positive fre-
quencies and 5~(&o) and 5,(&o) for negative fre-
quencies. As Kanamori and Tonegawa ' have ex-
plained, 5, (&o) for positive frequencies and 5&(&u)

and 5~(m) for negative frequencies contain informa-
tion concerning the nonresonant response in which
a, sublatice is driven opposite to its natural sense
of precession. If one follows the variation of 5(w)
as w increases, then the change in the density of
states due to the defect is given by Eq. (39).

Consider the case of a Ni defect in the Mn sys-
tem. Since JMnNi MnMn~ lt is clear that a local-
ized Ni state will be formed at ~-2zJ»„, SM, -22
meV. Thus one s-like state must be removed
from the Mn band. From Fig. 2(a) we see that
about 0.7 of a state is taken from the extreme
high-energy edge of the Mn band at 6. 5 meV and
the rest is taken more or less uniformly from
the entire band. Since JMn„,. SNi~ JM,M, SM„ it is
possible to form localized modes on the shell of

Mn atoms adjacent to the impurity. The p-wave
shell mode occurs at +-6.9 meV and the d-wave
mode occurs at &-7.2 meV. The d-wave states
have higher energy than the p-wave states since
the former, having larger angular momentum,
have more nodes in their wave functions. Again,
the states removed from the Mn band come pri-
marily from the energy range above 5 meV. As
the Ni concentration is increased we expect the
sharp peak at the top of the Mn band to become
further eroded. Also, since the binding energy of
the shell modes is much less than the width of the
pure Mn band, we expect these states to become
broad resonances. This picture is easily extended
to higher concentrations and is confirmed by the
appearance of the Mn band in the numerical work
at x=0. 5 reported below.

Adding a Mn defect to the pure Ni system [Fig.
2(b)] is more complex. There are no p- or d-wave
bound states because the shell modes would have
energies within the pure Ni band. About one-half
a p-wave and one-half a d-wave state are removed
from the top of the host band and are spread to
lower energies. There is an s-wave bound state
with extremely small (0.033 meV) binding energy

ln Fig. 2(b), one sees that one-half of this
state comes from the upper band edge, and one-
half from the lower band edge. If we relate the
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Rb2Mn065NIO MF4 Rb, Mno, NIo, F4
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FIG. 3. Single magnon density of states for Mn concentrations x=0. 65 (a), x=0. 50 (b), x=0. 34 (c), and x=0. 10 (d).
Light line in (d) indicates the density of states for Hb2NiF4, Vertical scales are the same for Figs. 3(a)-3(c). In Fig.
3(d) one vertical division represents half as many states in Figs. 3(a)-3(c). Arrows in (a) and (b) mark the positions of
the lowest two modes predicted by the Ising cluster model (42). The characteristic frequencies for Ni and Mn excjtatjons,
defined in (25), are also shown where appropriate.

energies near the host gap frequency coo to q by
[see Ref. 22, Eq. (4. 10)j

Acoo —Ez = 8 [co 0+ (d &(IRAQ) /2] (41)

where for a pure system ~~=2JzS, we obtain isa
-0.023, which implies that the bound state size is

of the order of 280 lattice constants. It is obvious
that the low-concentration regime in this case may
be minute. In calculating response functions
which describe pulling the Mn spin out of align-
ment with its neighbors, low-concentration theory
may break down when the bound states overlap.
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For a response in which Mn and Ni spins move in
phase, low-concentration theory may be used to
much higher concentration. Low- concentration
calculations of the susceptibility p and the ex-
change stiffness A are summarized in Appendix
B; the results are used in subsequent sections of
this paper. From the arguments given above,
we conclude that these results for y will have a
smaller range of validity than do those for A.

Now we turn to our numerical results, which are
useful at arbitrary concentrations. Densities of
states were obtained for four large Monte Carlo
samples, each 64-by-64 sites with periodic bound-
ary conditions, representing the four concentra-
tion regimes of interest. The results are plotted
in Fig. 3 as histograms, sampled at 0.5-meV
intervals. The numerical techniques used to ob-
tain Fig. 3 are described in Appendix A. The
four regimes and the concentrations chosen to
represent them are isolated ¹iclusters in a con-
nected Mn host [x=.0.65, Fig. 3(a)]; both Ni and

Mn confined to isolated clusters, which may be rather
large [x=0.5, Fig. 3(b)]; Ni concentration sufficient
to insure connectedness, while the Mn are isolated
[x =0.34, Fig. 3(c)]; and low Mn concentration [x
= 0.1, Fig. 3(d)]. The low Ni concentration limit will
notbe considered further in this section, as it is similar
to the cases discussed extensively in Befs. 15-&V.

In the first three cases, there are two subbands,
separated by an apparent gap. This gap cannot be
a true gap, with zero density of states. One can
argue, following Lifshitz, that there is a finite
probability of finding a region sufficiently large and
Ni rich to give rise to Ni modes of any energy down
to the gap energy, 4. 3 meV, of RbaNiF4. Such
states deep in a pseudogap are too rare to be seen
in a finite sample simulation such as this. How-
ever, this argument also suggests that the states
that are found at the bottom of the upper subband
will form some kind of band tail, and may be
localized. There will be a similar tail of rare Mn
states down to 0.63 meV, the gap energy of
RbaMnF, , but we were not able to observe these
in our numerical studies.

The characteristic excitation frequency for Ni
spins, (&u „,)'J, was found to lie in the peak of the
upper subband, and is indicated by an arrow in
each plot. We carried out a detailed comparison
of (&o~„,)„, and (&o M,)„with the second moments of
the upper and the lower subbands, respectively.
The characteristic frequency of the upper subband
was within a few tenths of an meV of (&o~„,)~„~~ in
each case, but the lower subband frequency was
typically 1 meV greater than (&uaM, )~„~3. This strong-
ly supports a picture of the two subbands as owing
to Ni and Mn excitations, respectively, with only
a slight amount of mixing. The second moment is
sensitive to states at high energies. Admixture

bE)-—2Q J)yS~ . (42)

For Ni atoms surrounded by 0-4 Mn neighbors,
the excitation energies given by Eq. (42) are 33.2,
30.8, 28. 3, 25. 8, and 23.3 meV, respectively,
and in this picture they would enter the density of
states weighted by the respective probabilities of
finding that number of Mn nearest neighbors.

Since the Ising Hamiltonian lacks those terms
which mix spin excitations on adjoining sites, this
approximation is perhaps best viewed as the first
of a series of approximations to localized spin
excitations. Perturbations starting from this
picture will broaden the Ising levels downward in
energy, ~' with those excitations which are most
extended in space lowered the most in energy.

This model has no relevance to the low-lying
Mn modes, but we can find some support for it in
the upper subband densities of states shown in
Figs. 3(a) and 3(b). The peaks at 23. 5 and 25. 5
meV in Fig. 3(a) correspond to the energies of
likely Ising clusters, and both peaks are still evi-
dent in Fig. 3(b). However, the cluster picture

such that the amplitudes of the spin deviations on
Ni sites are roughly l%%uo of those on the Mn sites,
when averaged over the lower subband, is suffi-
cient to cause the observed difference between the
lower subband characteristic frequency and (&u ~M,)'„~ .
A comparable admixture of Mn in the upper sub-
band modes is presumed to occur, but will have no
observable effect on the characteristic frequency.

The usual result for the strong scattering limit,
that the number of states in each subband is equal
to the number of atoms from which the subband
was derived, need not hold in this system, since
the density of states between the subbands is not
strictly zero. However, we examined 64-by-64
samples with gape as small as 1 meV (at x =0. 15)
and found in all cases that the number of states in
each subband was equal to the number of the ap-
propriate type of atoms on the resonant sublattice.

In Fig. 3(d), the light line shows, for compari-
son, the density of states of a pure Bb&NiF4 sam-
ple the same size as the Monte Carlo samples.
Adding 10/o Mn is seen to broaden the peak at the
top of the band, and create a sharp resonance at
low energies. Although there is no gap at this
concentration, there appears to be a decrease in
the density of states just above the resonance.

Cowley and Buyers, among others, have ana-
lyzed the high-frequency excitations of this class
of antiferromagnets using an Ising cluster ap-
proximation. The approximation consists of ne-.

glecting the terms in Eq. (1) involving S" and S".
Then the excitation energy for a unit spin excita-
tion will depend only upon the atomic character of
its nearest neighbors:
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FIG. 4. Density of states in the upper subband at x
=0.5, for two Monte Carlo samples, results superim-
posed. One vertical division represents half as many
states as in Figs. 3(a)-3(c).

would predict that the 25. 5 peak should be twice
as large as the 23. 5 peak in the sample with Ni
concentration of 0.35, while, in fact, it is some-
what smaller. This could reflect the fact that
excitation of a single Ni spin surrounded by Mn
atoms comes closer to being a true excitation of
the system than does a mode which involves one Ni
atom but not its Ni neighbor.

To check the reliability of interpretations based
on peaked structures in these Monte Carlo densi-
ties of states, we repeated the calculation of the
upper subband in another nearly equal concentra-
tion sample. The two results are compared in
Fig. 4. The most apparent features, such as the
sharp shoulder at 30. 5 meV and the tail in the
density of states below 20 meV, are well re-
produced, but the spikes appear subject to small
shifts, and may not be observable in crystals of
macroscopic dimensions. However, the modes at
23. 5 and 25. 5 meV do survive averaging over the
two cases in Fig. 4.

The rather different appearance of the two sub-
bands in Figs. 3(a)-3(c) suggests that spatial
characteristics of the states will be different in
the two subbands. In all three of Figs. 3(a)-3(c),
the lower subband has the characteristic shape of
a band of 2D antiferromagnetic magnons, such as

that plotted in Fig. 3(d). The curves are smooth,
and each is peaked at higher energies. The upper
subbands in Figs. 3(a) and 3(b) are roughly sym-
metric, and spiky. In Fig. 3(c), where the Ni

concentration is 0.65, the spikes are less evident,
and the density of states is shifting to higher ener-
gies within the band. Spiky densities of states like
those in Figs. 3 and 4 have been observed in the
strong-scattering limit in many other types of dis-
ordered systems, and are usually associated with
localized eigenstates. ~'~'

An indirect measure of the degree of Localiza-
tion of an eigenstate, first suggested by Thouless,
is the sensitivity of the corresponding eigenvalue
to a change from periodic to antiperiodic boundary
conditions. States whose extent is less than the
sample dimensions are not affected by this change,
while the energies of extended states may shift by
as much as the typical spacing between eigenvalues,
in our examples, a few hundredths meV. The test
ceases to be useful when the density of states per
unit energy exceeds the inverse of the resolution
with which eigenvalues can be determined. In our
examples, this could occur only within 0. 5 meV
of the top of a band of extended magnons.

We applied this test at approximately 30 points
each in the spectra of an x = 0. 5 and an x = 0. 1 sam-
ple. In the x=0. 5 sample, seven states below
5 meV were studied; all showed energy shifts be-
tween 6&10 and 2&&10~ meV, as would be ex-
pected for extended states. The shifts decreased
monotonically between 5 and 6. 5 meV. Above 6.6

meV, no eigenstates shifted by more than 2&10 4

meV, indicating that the states in the upper sub-
band as well, are indeed localized. Localization
at the top of the lower subband is noi unexpected,
since Mn spin excitations can have energies greater
than 6. 5 meV only with Ni atoms as neighbors.
This is apparent from the formation of localized
shell modes at these energies in the low-concentra-
tion limit. Since b, i spins at x=O. 5 occur in iso-
lated clusters, these Mn modes can be localized.

The results for the x=0. 1 sample were more
complicated. Only states with energies below 21
meV were tested. All states studied at energies
below 6. 1 meV or above 16 meV appeared to be
extended. Three states between 11.6 and 15 meV

proved relatively insensitive; their energies shifted
by (1-5)&&10 3. The six states studied between

6.6 and 11.6 meV, a region comprising the top of
the Mn resonance and the dip just above it, shifted
less than 2&&10 4 meV when boundary conditions
were reversed. Ordinarily, one would expect that
this strong a modification of the host band wave
function would only occur for impurity concentra-
tions greater than some threshold value x, , and

that below this threshold the Mn spins will act in-
dependently. But the very large size of the Mn
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bound state found at low concentrations suggests
that, in this case, x, & 10 4.

We did not find clear evidence in our calcula-
tions for the vanishing points27 or blocked states
discussed by Eggarter and Kirkpatrick, 2~ but it
is possible that our samples were too small, or
our resolution too broad, to observe this.

III. STATIC AND LOW-TEMPERATURE PROPERTIES

In this section we sketch a continuum theory of
the low- frequency, long-wavelength excitations
which yields a description of these modes in terms
of static response functions. In the absence of
anisotropy, this derivation gives a consistent ex-

pansion in the small quantities q and &, and is
equivalent to the hydrodynamic treatment of
Halperin and Hohenberg. In this limit the ex-
pressions derived are valid at arbitrary tempera-
tures. When anisotropy is present, all magnon
frequencies are finite, a consistent expansion in
powers of q and & is not possible, and our results
are approximate. However, corrections to the
theory are of order the ratio of an anisotropy field
to an exchange field, both of which will be defined
below, and this ratio is less than 0.01 for the
Rb2Mn„Ni, „F4 system.

Our starting point is a macroscopic expression
for the increase in energy 4E,

aE= z ll d z g (v[S, (r) —S, (r)]] + ~ I d'z p [S, (r) +S,(r) ]4S'.„,~ 5 SR 5

+ ~ d'~ g [s, (r)+s;(r)]',
av %=Xy P

(43)

due to components of spin deviation S, (r) and
Sf(r) per unit volume, on the a and b sublattices.
S„, which denotes the macroscopic average magni-
tude of the spin density, is assumed to be the same
on the two sublattices and independent of position.
In a pure system, S„=Ns/2 V. A, K, and $ are
macroscopic magnetic elastic constants: A is the
exchange stiffness, K a uniaxial anisotropy energy,
and $, which describes the exchange coupling be-
tween sublattices, is related below to the uniform
static susceptibility.

Equations of motion for any Fourier component
of S(r) are obtained by using bE as an effective
Hamiltonian and treating the averaged spins as
spin operators in the commutation relation,

describing the interaction with a uniform field,
Qx:

~Ee"t=- q, n, d'r[S".(r)+S",(r)] . (47)

S",= S",=

pangs„/2

(K+ () .
If we define

x-= ~,(s".+ s&)/Io,

we obtain

5=(u&s.,)'/x"-K.

(48)

(49)

(50)

The equilibrium values of S", and Sb, calculated
by minimizing the sum of Eqs. (43) and (47), are

N = [bE, S(r)] . (44)
Using Eq. (50), the dispersion relation (46) is ex-
pressed as

u)'(q) = (so+ c'q', (5l)
For spins restricted within a manifold of g de-
generate crystal-field levels, the spin to be used
in (44) is the effective spin defined by 2S,&&+ I =g.
From the resulting equations of motion

h&os,'(q) = (2/S.,)[(Aq /4+ K+ $/2)s;(q)

+ (g/2 —Aq /4)S'(q)]

n~S ",(q) = —(2/S„)[(~/2 —Aq'/4) S:(q)

+ (Aq /4+ K+ $/2)s~(q)]

the dispersion relation

[her(q)] = S~~[2Agq + 4K(K+ $)]

(45a)

(45b)

(46)

is extracted.
To put Eq. (46) into a more familiar form we

relate $ to a susceptibility by adding to &E a term

where

~0 = (2u s/@)(K/X-)'",
C= (I/n)[2A(p', /x--K/S'„)]'~',

and in the absence of anisotropy,

c= (u, /@)(2A/x-)'" .

(52)

(53)

(54)

Expressions for the gap frequency ~0 in terms
of anisotropy and exchange fields are obtained by
defining

a„=2K/M,

a, = ~/M,

(55)

(56)

where M is the magnitude of the magnetic moment
per unit volume, from spins of one sublattice, and



4990 S. KIRKPATHICK AND A. B. HARRIS

y„,= M/KS,„,
to yield the usual expression

~o = yes~i 4(2ffz+ 4)]

(57)
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FIG. 5. Relative anisotropy constant R(x)/K(0) (right-
hand vertical scale) and anisotropy energy Deft, defined
as 2&(x)/$«(left-hand scale), as function. of con-
centration.

The above derivation in terms of spin densities
differs slightly from the completely classical
treatment of an antiferromagnet reported in Ref.
18, which considered the dynamics of the magnetiza.
tion density. The present treatment avoids am-
biguity in the definition of y,« in cases, such as
Hb2Mn, Ni, „F„in which components with different
g values are present. Neither g nor y appears in
Eqs. (43)-(54). If we take y in the expressions of
Ref. 18 to be given by Eq. (57), the results of that
paper are identical to the present work.

A consequence of the fact that the dynamics
does not involve g factors is that the susceptibility
which affects low-frequency modes is not the same
as the susceptibility measured by applying an ex-
ternal field. The susceptibility defined by Eqs.
(18) and (19) can be reduced to x" by setting all

g factors equal to unity. Thus we define the gen-
eralized spin-spin susceptibility as

x-(q, )=-2&q'IN '(~)lq')
with

&flq')= u&(~;/I')'" e*'"* (60)

and x" in Eqs. (49)-(54) is identified as x "(0, 0)/
2. [The factor of 2 arises because X "(q, ~) is

defined as X, instead of X'. ]
At the nuclear zone center (q=0), X" is de-

termined by the macroscopic quantities S„, IIE,
and K. Likewise, in the vicinity of the magnetic
zone center Q, where e'@'"& = o, , X" can be ex-
pressed in terms of S,„, K, A.:

X-(Q+ q*, 0) -4q', S'., /(2K+ Aq*') . (61)

Equation (61) was used to calculate K and A as
functions of x for the Monte Carlo samples. From
x "(Q, 0), the staggered susceptibility, we ob-
tained K. Then the slope of x "(Q+q*, 0) ' —x "(Q,
0) ', when plotted against q*2, determined A. The
numerical procedures used to obtain y" are de-
scribed in Appendix A.

In the Rb2Mn„Ni, , F4 system, K should depend
nearly linearly upon concentration. To zeroth or-
der in H„/Hs, the spins respond to a staggered
field of the form (47) by rotating uniformly, and
K is the average of the Mn and Ni values:

K(x) -xKM„+ (1 —x)K„, (62)

Higher-order terms represent relaxation to a non-
uniform response, which decreases 4E and K by
trading off anisotropy energy for exchange energy,
but this effect is small when Il„«IIE. The exact
limiting slope, —K 'dK/dc, for x close to 0 or 1
is 13 /~ greater than that given by Eq. (62) when
small concentrations of Mn are added to Rb~NiF4,
and 4%%u~ less than Eq. (62) predicts for Ni added to
Rb&MnF4. This calculation is summarized in
Appendix B. As expected, calculated values of
K(x), shown in Fig. 5, lie only slightly below
the straight line connecting the two end points. 30

The Monte Carlo data for concentrations within
10/p of the end points of Fig. 5 agree with the low-
concentration predictions. At intermediate con-
centrations, however, Eq. (62) is more accurate

For the exchange stiffness A(x), the approxima-
tions of assuming that the gradient of spin density
remains uniform on the local scale and neglecting
the anisotropy terms lead to

A(x) -x'AM, +2x(1 —x)(AM, A„,)'i'

+ (1 —x)'A„, , (63)

where we have made use of Eq. (3). Effects of
local relaxation about the uniform response are
more important in A(x) than in K(x), because
variations in exchange energy from site to site
are an appreciable fraction of the average ex-
change energy. As with K(x), local relaxation to
a lower-energy arrangement of spins depresses
A below the uniform theory result (63), as the
results in Fig. 6 show. The relative decrease
due to relaxation is largest, although only 6—

8%%uo,

in the concentration range from x=0. 3 to 0.6.
This is to be expected, since the fluctuations
which accompany the breakup of the stiff infinite
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FIG. 6. Exchange stiffness constan. t A (x)/A(0) nor-
malized tothe value for Rb2NiF4, calculated from
Xss (Q + q*, 0), as described in. the text. Solid line gives the
approximation to A (x)/A (0) defined in Eq. (63). Dashed
lines show the limiting slopes calculated from the exact
single-defect solution.

Ni cluster will have an important effect on A(x),
while the formation of an infinite soft Mn cluster
is not a dramatic change in the already soft ma-
terial. At the Mn-rich end, for x&0. 75, the uni-
form approximation is accurate to better than 3%.
Because the ratio of the endpoints, A(0)/A(1), is
only a factor of 2, the amount of bowing seen in
Fig. 6 in both the approximate and the calculated
stiffness is relatively slight.

The limiting slopes of A(x) at x =0 or 1 were
calculated from the low-concentration results for
Ii(q, 0), keeping terms to first order in H„/H~.
The details of this calculation are summarized in
Appendix B. The calculated values of —A '(dA/dx),
as indicated by the dashed lines in Fig. 6, were
0.827 at the Ni-rich end (x=0), and 0.691 at the
Mn-rich end (x=1). Both are in good agreement
with the Monte Carlo results. The curvature of
the data away from its limiting slope is much
greater at the Ni-rich end, as is expected from
the arguments introduced above: soft inclusions
in a stiff matrix will cause larger local relaxation
effects than stiff inclusions in a soft matrix.

The perpendicular susceptibility, x„giving the
response to a uniform external field, i.e. , y(0, 0)
as calculated from (18), is shown by the solid-circle
data points in Fig. V. As was done with A(x), we
can obtain a simple approximation to y(0, 0) by
neglecting local relaxation and assuming that all
Ni spins rotate by the same angle, 8„,, and all
Mn spins by 8M„, in response to a uniform'applied
field. The expression for y(0, 0) which results
from minimizing the average energy under this
assumption can be expressed in terms of the values
at the Mn and Ni endpoints if we make use of Eq.
(8):

(xR'MnSMn —M„, S„;) +2xySMn S„,(cilia, + o ~KM'n)
-1 /2 -1/2 2 y

( RMn Mn XMn + MNi Ni X Ni

where o.'= (JM,M„/J'„,„,)', and y=1 —x. The upper
solid line in Fig. 7 is the result of applying Eq.
(64) to RbzMn„Ni, „F,. Local relaxation causes
a shift upwards in this response function, since
the elastic energy is proportional to p 1. The ex-
tent of the bowing is greater in Fig. 7 than in
Fig. 6 for two reasons. First, the endpoints are
further apart. Second, at intermediate concentra-
tions, there will be regions in which the net spin
on the two sublattices does not cancel and the ma-
terial will respond locally to a field as a ferrimag-
net, " rather than as an antiferromagnet.

To separate the effects of the ferrimagnetic
fluctuations, we have calculated g, for a hypotheti-
cal alloy with the same parameters J and ~ as
Bb2Mn„Ni, „F4, but with g=2 and S= 1 for both
atomic species. For this material, the net torque
on the system is always locally zero, and only the
stiffness of the spin system fluctuates. The re-
sulting susceptibility, plotted against concentra-
tion as crosses in Fig. 7, bows downward, and
agrees with its corresponding virtual crystal pre-
diction about as closely as did A(x) in Fig. 6. The
much larger upwards relaxation and scatter in the
data points for the true Ii(0, 0) is clear evidence for

the strong response of local ferrimagnetic Quctua-
tions. The effect is greatest near the percolation
threshold for Mn, the component with the greater
spin and weaker exchange interactions. This type
of fluctuation does not have a strong effect on the
values of A. or K. Although in the ordered system
one can write A, K, and y, in terms of II~ and

H„, in the disordered system the three quantities
become independent. This difference is most
marked in dilute antiferromagnets, where y,
diverges at the percolation threshold. 1 '

A low-concentration calculation of y, (x), which
gives the limiting slopes indicated by dashed lines
in Fig. 7, is summarized in Appendix B. Unlike
the "averaged medium" arguments which were used
to derive Eq. (64), this treatment includes (to
lowest order) the effects of ferrimagnetic fluctua-
tions. In particular, it predicts the increase in y~

on adding Ni to Rb2MnF4, which is seen in Fig. V.
The range of validity for the low-concentration
treatment of the Ni-rich end is quite small, as we
argued above in discussing the very-large bound
state formed by Mn impurities. At the Mn-rich
end, Fig. 7 shows that the limiting slope agrees
with the data over a larger range of concentrations.
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limit of vanishing q and ~. The gap frequency ean
be measured quite accurately by antiferromagnetic
resonance, an experiment which would provide a
valuable test of the present theory.

The continuum theory of this section can also be
applied to calculate the temperature dependence
of the sublattice magnetization. From the basic
expressions (43) we can evaluate AS(T)/S„, where
&S(T) = S„(0)—S, (T). The continuum-theory re-
sults given in Eqs. (51)-(53) are restricted to the
case H„«II~. In this limit, all spins preeess in
phase in the low-frequency modes, so that AM(T)/
M- AS(T)/S„. Since

S;(r ) = [S'„—S",(r)' —S,'(r )']' ', (65)

O.ON.
I

0.2
I

0.4
I

0.6
I

0.8 we can evaluate AS by expanding (65) for small S"
and S' and, assuming isotropy in x and y,

FIG. 7. Perpendicular susceptibility X~(x)/X~(1) (solid
circles) for several 64-by-64-site samples of
Rb2Mn„Ni& „F4. Crosses represent X~(x)/X~(l) for a hy-
pothetical material without ferrimagnetic fluctuations,
derived from Rb2Mn2Ni& „F4 by setting $ = 1 and g= 2 for
all atoms. Solid lines show the prediction of the virtual
crystal approximation (64) for these two cases, while
dashed lines give the. limiting slopes for the actual X~

calculated from low-concentration theory. The two cases
are normalized to unity at x=1, in contrast to Figs. 5
and 6, since both have the same magnitude at that point.

d, s/S= S-,',(S".(r )')
= (1/2 S „)(S",(r ) + S"(r ) ),

where ( ) denotes a thermal expectation value.
Then

4.0—

(66)

Calculation of y" gave results similar to Fig. 7,
although the bowing was more extreme. At con-
centrations between x =0.5 and 0. 9, y„" slightly
exceeded its value at the endpoint x=1.0. This
type of concentration dependence for an elastic
constant can only occur through the effects of those
fluctuations (e.g. , in S, or g, ) whichaffect the cou-
pling to the external field. It is absent, for example,
in the virtual crystal approximation to g", obtained
from Eq. (64) by setting all g's equal to unity. We can
use X"and K(x) to predict the gap frequency, via (52).
This prediction is compared in Fig. 8 with the
only available experimental data, from the work
of Birgeneau et al. , 3 and with the lowest eigen-
value found in our 64-by-64-site Monte Carlo sam-
ples at several concentrations. As mentioned
above, the lowest-lying state in our simulations
was always found to be an extended state. Its
frequency is therefore a good approximation to the
frequency of the q=0 extended mode in the infinite
system. The predictions are higher than the ob-
servations in all cases, with the error increasing
as the gap frequency increases toward the Ni-rich
end, but the discrepancy is never more than 0.3
meV. Such a discrepancy is expected, since our
procedure of calculating the effective value of the
quotient of two response functions as the quotient
of their effective values is strictly valid only in the
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FIG. 8. Gap energy &~(x) as predicted from the static
properties Xss(x) and K(x) using Kq. (52) (squares), and
as observed in Monte Carlo simulations (circles) and, for
x= 0.5, by inelastic neutron scattering (diamond). The
solid line is drawn through the observed points as a guide
to the eye.
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=;s, P&ls".(q)l', ls",(q&l'& (6V)
in which

n(q) = s".(q) —s",(q) . (71)

=(as,„)~P & I
s".(q)+ s",(q}I'+ ls".«) - s".«&l'&.

(68)
For continuum variables we shall use the following
definitions of the Fourier transform:

W'e distinguish the independent contributions of
fluctuations in the real and imaginary parts of e:

= (2S„)' 2 (n'(q)'+ n "(q)'&

S",(q) = I/ ' dr S",(r)e-"', (69a)

s =(as„)-'+ &ln(q}l'&
q

(70}

s",(r ) = Q s."(q)e"', (69
q

where V is the volume of the system. Because
fluctuations of 8,+ S, are of high energy, we can
neglect & I s~+ S~ 13&, and obtain «(q)=, g ln(q)l'(Aq3+2K&.

av

Using Eq. (74), we obtain

(74)

=as. P&n'((I)'&. {V3
av

Since our macroscopic theory ls not quantized'
we shall use classical statistics to evaluate the
amplitudes &n'(q) &. The energy of a fluctuation
n{q), obtained from Eq. (43), is

J dn 'n'(q)' exp{- [2n'(q)'/kT](V/4S' )(A(I'+ 2K)]
f dn'exp(- [an'(q)~/kT](V/4S3„)(Aq'+2K)]

= (kTS'„/V)(Aq'+ 2K)-', (76)

where we have used n '(q) = n '(—q) in Eq. (75).
Substituting Eq. (76) into (73) we find

(VV)Aq +2K

Using Eqs. (52) and (53) in the limit H„«He, the
spin-wave energies at low q are of the form

j1(d(q) = &(Aqn+ 2K)'/3 .
Then Eq. (V7) can be written

~S A kT
s 2 v, [lf(o(q )]~

(78)

(79}

We can now make contact with the usual quan-
tum-mechanical expressions by identifying kT/
j1+(q ) as a Bose occupation probability:

A
[k(d( )] -1(eFi(u(a& /kT 1)-1

S 2V. "q
e

Q$ P2
dan[8'(d(q)] 1(e((GI (0) /kT 1)S 4mc „

(80)

w'here c is the lattice constant perpendicular to
the plane of spins. As long as Eq. (78) is valid,
Eq. (81) can be evaluated exactly, and reduces to
the same form as that for a perfect 2D lattice:

nM/M-bS/S- —(kT/41/cA) ln(l —e er/~ ) (83)

where E is the gap energy and cA is the exchange
stiffness in units appropriate to a 2D system. For
the planar square antiferromagnet, for example,
cA= O'S3. Inserting this value of A into Eq. (83)
gives the expression used by de Wijn et al. , who

have obtained good agreement between the predic-
tion of this formula and the temperature depen-
dence of the sublattice magnetization in K2NiF4
and K2MnF4.

In Fig. 9, we indicate the predictions of several
approximations to 4M(T)/M for the case
Rb2Mno, Nio, F4. The dashed line was obtained
by using the uniform approximation, Eq. (63}, in
Eq. (83). Introduction of the more accurate Monte
Carlo value for A(0. 5) gives a further increase in
the slope of nM(T)/M, of about 10/o. Experimental
data on this system, obtained by Birgeneau et al. ,

'
are plotted against Tin[1 —exp(-E /kT)) in Fig.
9. As in the pure systems, ' hM(T)/M proves to
be linear on this scale at low temperatures. Both
of our static approximations to hM(T) agree with
the data to within experimental accuracy. The
solid line, using the numerical calculation for A,
appears to be in somewhat better agreement than
the dashed line.

IV. EXCITATIONS AT HIGHER ENERGIES

The static response functions discussed in Sec.
III are sufficient to characterize the extended
states at low energies but contain no useful infor-
mation about the excitations at higher energies,
some of which may be localized. To study these
states we have calculated the dynamic susceptibility

. }((q, &u) for frequencies up to the highest magnon
energies of Rb2NiF4, and q along the symmetry di-
rection from (0, 0) to Q= ((//a, ((/a), the magnetic
zone center. Henceforth, in referring to a wave
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(86)
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(87)
Equations (85)—(87) were used as checks on our
calculations. The data which will be plotted and
discussed below satisfied them to 5/o or better at
all values of q.

By inserting projection operators, PM„and I'„,-,
to the left and right of the operators whose matrix
elements are evaluated in Eqs. (86) and (87), we
can evaluate moments of the partial susceptibilites,
X'„'„M,(q), X'„'„„,(q), and X'„',.„,. (q ). Just as was done

in studying the subbands of the density of states,
it is possible to obtain characteristic energies for
the excitations associated with a given type of
atom which scatter at wave vector q. Since high
energies dominate the moments defined in Eqs.
(86) and (87) this procedure is most useful for the
Ni subband. We shall define a characteristic en-
ergy for Ni

FIG. 9. Sublattice magnetization M(T) as a function. of
temperature for x=0.5. Dashed line was obtained by
using the result (83) of the long-wavelength theory and
the uniform approximation (63) to A (x). 'Solid line results
from using the Monte Carlo results for A(x) with (83).
Data points were obtained from neutron-scattering in-
tensities by Birgeneau et al. (Ref. 3).

vector along this direction, we will use units of Q:

q=(qn/a, qv/a) . (84)

d» 'x" (q, ~) = x(q, o) . (85)

In addition, a procedure of expanding N and
doing a contour integral, as in the derivation of
(28), gives

The results can be directly compared with neu-
tron scattering data, since the inelastic scattering
intensity at momentum transfer q and energy trans-
fer &o is proportional to X "(q, w), the imaginary
part of g evaluated at an & just off the real axis.
In the work reported in this section, the imaginary
part of ~ was taken to be 0.2 meV, a value smaller
than present experimental resolution, but large
enough to eliminate the effects of the discrete
spectrum of the 64-by-64-site samples studied.

Since g" is odd in w, its even moments will
vanish, on the average, but the average value of
its odd moments can be evaluated exactly. The
moments can be calculated in two ways. The .

Kramers-Kronig relation between g' and g" re-
quires that

~„(q ) = ( [~N;N;(q )]., / [~N'N (q )j;)"
1/2

&& & x NING(q~ +)

1/2

~i
d& &x N&N&(q~ &) (88)

The terms which must be evaluated to use Eqs.
(86)-(88) are derived in Appendix C and tabulated
as (C7) and (C10).

The calculated total scattering intensities X"(q, v)
for the four concentration regimes studied are dis-
played in Figs. 10(a)-10(d). Each of the figures
shows X"(q, &u) for 14 values of q between 0 and l.
The origins of the plots are shifted upwards in
proportion to the magnitude of q. Although the
vertical scale is in arbitrary units, all of the curves
in the four figures are plotted to the same scale
and may be compared against one another. Re-
sults were obtained at intervals of 0. 5 meV.

Figure 10(a) shows the highest Mn concentration
studied, x =0.662. The low-energy lines seen in
Fig. 10(a) show the expected behavior for extended
states in that the width of the peaks is limited by
the imaginary part added to co and the intensities
increase smoothly as q increases towards &. The
Ni states between 16 and 32 meV appear to be
strongly localized. These lines are all 4-8 meV
wide, depending upon how ~he width is defined,
and the peak centers shift with q over an amount
which is less than this width. The characteristic
frequency &s„,(q) is plotted as a vertical solid line
on each of the upper subband scattering intensities.
It gives an accurate estimate of the position of the
upper subband peaks. Fingally, we note that the
line widths are insensitive to q in both subbands.
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At a Mn concentration of 0.48, shown in Fig.
10(b), both the Mn and Ni lines are broader than
in the previous case. The dispersion of the Ni
peaks is now slightly greater than their width, yet
it was shown in Sec. II that these states are well
localized. Therefore, this rule of thumb for dis-
tinguishing localized from extended states is in-
sufficient, at least in 2D. Qne can also infer from
Fig. 10(b) that the Ni states are relatively large.
A band of localized states confined to a few atomic
sites each will get its width from the distribution
of local environments which are encountered. The
scattering of such states will occur at the same
frequency for all q. In contrast, the upper sub-
band of Fig. 10(b) must include states which have
lowered their energies by spreading over large
clusters. Large localized states of this type will
scatter preferentially at q near a reciprocal lat-
tice vector. Dean 3nd Bird's observation' that, in
a sample with x= 0.5, the average cluster contained
eight sites is consistent with this interpretation.

Measurement of half-widths of the peaks near
q-0. 5 indicates that the lines seen at concentra
tions for which either the Mn or the Ni atoms are
connected in an infinite cluster [Figs. 10(a) and
10(c)] are narrower than those of Fig. 10(b). Also
the apparently "propagating" Ni modes at x =0. 5
were shown in Sec. II to be localized. Both of these
observations are consistent with our intuition that
the intermediate regime, in which the underlying
lattice consists only of isolated clusters, should
be the most disordered.

The calculation in Fig. 10(b) is in agreement with
the neutron scattering data of Birgeneau et al. '
The experimental peak positions are indicated on
the upper subb3nd scattering intensities with heavy
dashed lines, and are within less than 0. 5 meV
of the characteristic frequency predicted from
moments in each case. The lower subband peak
positions also agree with those measured by neu-
tron scattering. Qur calculation for this case,
and the calculations of Alben and Thorpe, appear
to agree down to the presence of similar fine
structure in the upper subband intensities. This
is to be expected since their calculations differ
from the present one only in the numerical tech-
niques employed.

In Fig. 10(c), for a Mn concentration of 0. 354,
the peaks in both subbands have developed an asym-
metric shape, with long tails to lower energies.
The upper subband lines are narrower than in Fig.
10(b). As the dispersion of this subband increases,
and the peaks become skewed, +«(q) becomes less
accurate as an estimate of the mode energy. It
is in error by as much as 1 meV at the extremes
of the upper subband in Fig. 10(c). A lack of sym-
metry between the two subbands is evident in Figs.
10(a) and 10(c). Although both the Mn spins at

x = 0.662 and the Ni spins at x = 0.354 occur in
infinite clusters, the Ni subband states for x=0. 354
are more strongly affected by disorder than are the
Mn subband states at x=0.662. The Ni states are
considerably broader than the Mn states, and show
a spiky structure like that found in the density of
states and discussed in Sec. II. The dissimilarity
in these two cases can be related to their respec-
tive low-concentration limits. When x is close to
1, Ni addition leads to localized modes above the
Mn band. At values of x close to 0, Mn impurities
cause a low-energy resonance, but cannot localize
the long-wavelength acoustic modes.

The most intriguing and complex case studied
is x=0. 104, shown in Fig. 10(d). The Ni lines
have narrowed further, and have the appearance
of extended states, at least at the top of the spec-
trum, around q=0. 5. The Ni peak positions could
be estimated with an accuracy of better than 1
meV from a&„,(q), as would be expected for such
narrow lines. The Mn subband scattering shows
a constant width and nearly constant intensity
from q=0. 375 to 0.625, as one would expect for
strongly localized states. The calculations of the
sensitivity of specific eigenvalues to changes in the
boundary conditions, discussed in Sec. II, support
this interpretation. The states which had filled
in the gap just above the Mn resonance in the
density of states shown in Fig. 3(d) can be seen in
Fig. 10(d) to come from a small area of q space
near the point Q (or, equivalently, 0). Even in the
absence of a gap in p(E), two-mode behavior is
seen at all q. We shall discuss the gap states
further below, in the light of the partial suscepti-
bilities calculated for this case.

In Figs. 10(a)-10(c), there is structure in
y "(q, ~) near @=0.5, some, but not all, of which
can be associated with the Ising resonances seen
in the density of states and discussed in Sec. II.
Such resonances will be more pronounced and
easier to analyze in a dilute one-component sys-
tem. They have previously been studied numerical-
ly for a dilute 3D antiferromagnet. 3

In order to give a quantitative analysis of the
Monte Carlo results displayed in Figs. 10(a)-10(d),
we shall develop some analytic approximations for
y "(q, ur). The most useful of these is a generaliza-
tion to arbitrary x of the four-sublattice model
introduced in Ref. 3. This model is just an aver-
aged medium approximation carried out at finite
q and ~, and is similar in some respects to the
"average t-matrix" approximation which has been
used in the study of electrons in alloys. One
makes the Ansatz that the response of a spin on
site i to a driving field ho exp(iq R, —i ~t) can have
one of four values, S,exp(iq ~ R& —i&et), depending
only on the type of atom at site i (n,. = Mn or Ni)
and the sublattice (o,.= + 1). To determine the
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S„(q, u&), one minimizes the average energy of the
system (1) in the presence oi the driving field.
The linearized equations which result are

P M*,8,(q, v)Sz, (q, +) = —2g p. sS ho, (89)

in which

M*,z, =6 z6~(d +hv&u)

+ (1 —6 )2zy(q) J~zS xz,
where z is the number of nearest neighbors,

d~ = ~~+ 2ZX J~Mn SMn+ 2Z y J~„,S„, ,

and for the 2D square lattice,

y(q) = z'[cos(q "a)+ cos(q'a)] .

(90)

(91)

(92)

s, (q, ~) = (x'"S-'")S,(q, w),

which satisfy

(93)

ln calculating X(q, ~) it is in convenient to have a
symmetric system of equations. This is achieved

by defining

QN*,&,(q, &o)sz,(q, &o) = —2g p, zxi~izS izho,

(94)
where the diagonal elements of N* are the same
as those of M*, and for 0 4v,

N *,8 2z y——(q )J' z(x x8 S Sz) i

Averaging the response S,(q, &u) over sublattice
and type of atom gives for the dynamic susceptibili-
ty in this approximation

X(q~ m) =
y Q g gzpz(S S, zx xz) (N* )

etya& (96)
The imaginary part of N*(q, m)

' is evaluated in
Appendix D, and will be used below in the dis-
cussion of the total and projected scattering in-
tensities. It is not difficult to show that the real
part of Eq. (96) reduces at q=0 in the static limit
to the average medium expression for X, given in
Eq. (64) and tested in Fig. 7. The approximation
(63) for A. can also be extracted from this theory.

The secular equation that results from inverting
M ~ or N~ and using Eq. (3) is

0= +' —to [dz, +d N,
—4z y(q) (xJu,~,S~„+yJ'N, N, SN, ) i+d~, d N,

—4z y(q) (xJN,~„S~,dN, + yJN, N, SN, d~, )
(97)

When Eq. (3)does not hold, the more general secular
equation is easily obtainedby setting the determi-
nant ~, calculated inAppendix D, equal to zero.
This theory must be used with caution, since N*(&u)

is not the average of a dynamical matrix for any
actual arrangement of "effective" spins. Equation
(97) gives reasonable results in some limits, and

incorrect predictions in others. Thus, at q=0. 5,
all the terms involving y in Eq. (97) vanish, leaving

~
= + dM» 2 = + dN (98)

v, =d —16y(q) J S

2= 2
N2 =Cf

(99a)

(99b)

and &2 is spurious. However, the difficulty seen
in Eq. (99) does not immediately rule out applying
this model to a material in which the J,,'s and

S,.'s differ considerably.
The mode frequencies predicted by the four-

sublattice model are qualitatively correct, but not
in quantitative agreement with the observed results
plotted in Fig. 11. We have plotted the energies of

which are the average for ea,ch type of atom of its
Ising cluster energy levels. This is a quite reason-
able result. At q=0 or 1, however, the frequency
of the upper mode always exceeds dM„, so there is
always a gap between subbands. In addition, in
the absence of disorder, when all J,, = J, and all
S,. = S, the two modes are

d(o X "(q, (o —ie),
~ nth subband

(100)

the two modes at q = 1.0 in this figure, since the
presence or absence of an energy gap between the
subbands depends primarily upon the energy of the
upper mode at this point. The agreement is best
in the lower subband. The difference between the
four-subblatice prediction of the gap frequency
and the value observed in our Monte Carlo calcula-
tions is roughly twice the error found for the pre-
dictions of the static theory, plotted in Fig. 8.
The upper mode frequency, however, is seen to
be 3-5 meV less than the prediction of the four-
sublattice model, while the estimate from moments
of the partial susceptibility is reasonably accurate.
We were not able to obtain accurate estimates of
&oz(Q) from the moments at concentrations close
to the Ni or Mn endpoints, because of the greater
strength of the scattering from the lower subband.
At the Ni endpoint, of course, &ui(Q) = &oz(Q}=E, .
At the Mn endpoint, the low-concentration theory
of Sec. II was used to obtain the limiting value of
co2 which is indicated

A stronger test of our physical picture of the two
branches of excitations and of the four-sublattice
theory is the calculation of scattering intensities,
which depend sensitively upon wave functions. The
absolute scattering intensities I, and I2 from our
Monte Carlo calculations, defined as
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for an enhancement of 5.6 times at x =0. 104 (our
calculations give a 7.3 times enhancement), 2.0
times at x=0. 35 (2. 8 is calculated), 1.6 times at
x = 0.48 (2. 6 is calculated), and 1.4 times at x
=-0. 66 (1.7 is calculated). The remaining enhance-
ment may be due to ferrimagnetic fluctuations, or
to fluctuations in g, , both of which shift scattering
intensity from the vicinity of Q to the vicinity of 0.
The rolloff of intensity seen near q= 1 in Fig. 12(a)
is consistent with this interpretation.

Since the Ni-dominated upper mode consists
primarily of localized states in several of the
samples under study, we have plotted I„„„(q)for
the four cases [in Fig. 12(b)], normalized to the
constant Ising cluster prediction, yg~„, S„, In the
upper mode, all the calculated intensities at inter-
mediate values of q are higher than the scattering
intensity per spin fourid in pure Bb~NiF4, which is
shown with a dotted line in Fig. 12(b). The dif-
ference increases monotonically as the Ni concen-
tration decreases.

Since the upper-mode frequency remains large

FIG. 11. Energies of the two modes at Q, the magnetic
zone center, as a function of x, as observed in 64-by-64-
site Monte Carlo calculations (data bars denote half-maxi-
mum widths of the upper subband peaks, the short dashed
line indicates the lowest eigenvalue, or gap frequency,
from the simulations), are compared with prediction of
the four-sublattice model (solid lines) and extrapolations
from moments (long dashed line). Experimental data
from Ref. 3 at x= 0. 5 agree with the observations plotted
here [see Figs. 8 and 10(b)]. The arrow at the Mn-rich
end of the upper mode indicates the energy of an isolated
Ni spin in Rb&MnF4, as shown in Fig. 2(a).

are displayed as functions of q, normalized in ap-
propriate ways, in Figs. 12(a) (lower mode) and
12(b) (upper mode). Since I, can be thought of as
due to Mn spin excitations, we have used the scat-
tering intensity per Mn spin in pure BbzMnF4:

I )=' 'S II„+II [1-y(q)]
pure Mn(q R Mn PB Mn [(II + II )2 II2 y( )2]1 /2

(a)
3.0

2.0

I.O

0.0

40

2.0

0.25 0.50
q

TENS(TY

I

0.75 I.OO

(101)
as a reference, and plot I„„„(q)/xI,„„M,in Fig.
12(a). In each case we find that the scattering in-
tensity is decreased at intermediate values of q.
The decrease is greatest, roughly 50%, for the
most dilute sample studied, x=0. 104, and least,
about 20%, for the most concentrated, x=0.662.

At each concentration shown in Fig. 12(a), there
is excess scattering in I, above this reference
level for q&0. 25. This occurs in part because the
spin waves near q = 0 are not just Mn excitations,
but must involve both Mn and Ni spins, precessing
in phase. The scattering intensity at q=0 is there-
fore proportional to g„S„instead of to x„„gM„S„„.
Including Ni participation in this way accounts

l.0

0.0'
0.0 0.25 0.50 0,75 l.00

FIG. 12, Integrated scattering intensities in the upper
and lower subbands as functions of q', for the four cases
plotted in Figs. 10(a)-10(d). In (a) the lower subband in-
tensities are plotted, normalized to the product of the Mn
concentration and the scattering intensity expected for
pure Hb2MnF4, as given in (101). Upper subband inten-
sities, shown in (b), are normalized to the constant,
ygz, ps S„„the intensity predicted by the Ising cluster
model.



12 THEORY OF THE SPIN EXCITATIONS OF Rb~Mn„Ni, „F, 4999

at q=0 and 1, I, does not show the enhancement
due to the factor &(q) ' in (101), which comes
from coupling to the nonresonant sublattice. In-
stead, in all four cases, Ia(0)/yI, „„,„,(0)-Iz(1)/
I,„„„,(1)-0.2. In Figure 10(a), which depicts
x = 0.66, the upper mode has almost no dispersion.
We have compared Ia(q) per Ni atom for this case
with the scattering intensity for the localized res-
onance on an isolated Ni atom, as calculated in
Appendix B. The two intensities are identical for
q&0. 5. As q tends to 0, the upper-mode intensity
per Ni atom for x=0.66 was less than the isolated
Ni limit, but the maximum error was 25/o. This
corroborates our observation above that localiza-
tion has set in in the Ni subband by x =0. 5. Since
the scattering intensity has saturated by the time

q is within 0.25 of the magnetic zone center, we
conclude that localized states of greater extent than
(1 —q) ~-4 sites are probably rare. The most Ni-
rich sample studied, x=0. 104, showed the greatest
variation in Iz(q). Ia increased to a maximum of
3.4 Ia(0. 5), just before the two modes merged at
q=1, making separation of the intensity into I, and

Ia somewhat arbitrary.
Our calculated intensities are in fair agreement

with the experimental data on RbaMno, Nio, F4
published by Birgeneau et a/. Although they did
not measure absolute intensities, we can compare
our calculations with their measured intensity
ratios. For I~(q)/I, (q) at q = 0.2, 0.5, and 0.8,
they obtained 0.47, 0.9 + 0.2, and 0. 58, while our
calculations give 0.26, 0.7, and 0.44, respective-
ly. The consistently larger ratios observed ex-
perimentally may be a consequence of spin-wave
interactions. We found in Sec. II that the Ni
modes are localized at this concentration, which

implies relatively large spin deviations per atom
in each mode. Since each such excitation will de-
crease the exchange stiffness felt by nearby spins,
the net effect is an enhanced susceptibility. If this
interpretation is correct, a similar, but smaller
increase of intensity, due to these interactions in
the lower subband, will be observed at low Mn con-
centrations, such as the x = 0. 104 case discussed
above, when all the Mn states are localized and
the Ni states extended for q-0. 5.

The scattering intensities of the two sharp modes
w ithin the four-sublattice model have qualitatively
the same dependence on x and q as do the Monte
Carlo integrated intensities, I& and I~, shown in
Figs. 12(a) and 12(b). Since this approximation
is a simple one, we will discuss the limits of its
accuracy in some detail. The intensity predicted
by the four-sublattice model is larger than that
observed in the lower subband, and smaller in the
upper subband. The ratio of the model's intensi-
ties to the observed I, and Ia, however, is nearly
constant over the range 0.25 & q & 0.75, and can

be obtained from Figs. 12(a) and 12(b), as dis-
cussed below.

First we consider the lower subband. At q=0. 5

in the lower mode, the four-sublattice model gives
spin deviations on Mn sites of the resonant sub-
lattice only. Consequently, the predicted intensity
is the Ising cluster intensity, and the amount by
which the model overestimates I~(q) can be read off
Fig. 12(a) by comparing the Monte Carlo results
with the dotted line at q=O. 5, where the dotted line
is equal to the four-sublattice prediction. The
discrepancy between this approximation and the
Monte Carlo results decreases as q tends to 0 or 1,
and the modes become more extended. The ob-
served I, (0) and E, (1) reach 85%-95% of the four-
sublattice prediction for all x studied. Most of
the shift in intensity from the vicinity of q=1 to
q =0 seen in Fig. 12(a) is predicted in this model
as well.

In the upper subband we find that Iz(q) exceeds the
four-sublattiee estimates by a constant 10'%%up-25%

for most values of q. The difference, which de-
creases with increasing Ni concentration, may be
read off Fig. 12(b) by comparing the data with
the dotted line at q=0. 5. In the discussion below,
we attribute this systematic overestimate by the
four-sublattice model of the lower-mode intensity
and underestimate of the upper-mode intensity
to the fact that the model underestimates the net
coupling between Ni and Mn spin deviations in the
random system.

The partial susceptibilities X "z(q, w) were cal-
culated for the x=0.4& sample at all frequencies,
and for the x =0. 104 sample at energies in the
lower subband and the pseudogap, up to 14. 5 meV.
We can estimate the admixture of Ni states in the
lower subband by comparing the integrals of
X N', N, (q, &o) and XM,„„(q, &u) over that subband at
values of q-0. 5. At q=0. 5 this ratio is 3%% in the
x=0. 48 sample, and 5'%%uo in the x=0. 104 sample.
It was no greater than 5%% in both samples over the
range 0.25 & q & 0.75, which constitutes most of
phase space in 2D. In the upper subband, for
x = 0.48, the integrated Mn intensity at q = 0. 5 in
6% of the Ni intensity, and remains less than 10/o
of the Ni intensity for 0.25 & q & 0.75. This sub-
stantiates the interpretation of the two subbands as
due largely to spin deviations on Mn and Ni sites,
respectively.

The four-sublattice model does not treat these
admixture effects correctly in the vicinity of q =0.5,
since interactions between neighboring spins vanish
at q=O. 5 in the high symmetry of the averaged
medium. The normal modes in the four-sublattice
model at q=O. 5 consist only of spin deviations on

Ni or on Mn sites on the resonant sublattice. Thus
the model predicts X'„',»(0. 5, &u, ) = XM,„,(0. 5, &u~)

ly X M M (0 5i& ~3) X N'M ( 5i& ~Z)
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= 0. The systematic differences in absolute inten-
sities between the four-sublattice model and our
observations seen in Figs. 12(a) and 12(b) are due
to the underestimate of y ~„„,. in the model. The
contribution of this cross term to E, (0. 5) in the
Monte Carlo results at x=0.48 is negative and
about 20'%%up of the contribution from X~„~„. In
I2(0. 5) for the same sample the cross-term con-
tribution is positive, and about 7% of the Ni-Ni
contribution. For the more dilute x=0. 104 sample
the cross term was again negative, reducing y~„„,
by more than 40%. The difference in sign between
the two subbands can be explained by the fact that
in the lower subband, the Ni spins are below their
resonant frequency, and will tend to lag the driving
Mn spins, while in the upper subband the Mn spins
are above resonance, and will lead. This mixing,
which vanishes by symmetry in the pure system,
will not vanish in the presence of fluctuations, and
accounts for the systematic trends in the intensi-.
ties seen in Figs. 12.

V. CONCLUSIONS

We summarize our conclusions as follows
(i) The low-frequency behavior of mixed magnetic

systems is conveniently formulated in terms of the
static magnetic elastic constants, the exchange
stiffness, the spin-spin susceptibility, and the
anisotropy, in the context of a continuum theory
which reproduces hydrodynamics in the limit of
small anisotropy.

(ii) The concentration dependence of these mag-
netic elastic constants in mixed crystals can be
qualitatively understood within an average medium
theory which is equivalent to the "four-sublattice"
model introduced by Birgeneau et al. ' The ratio
of the exchange fields of the two components in the
system under study is not sufficiently different from
unity for dramatic effects of the respective perco-
lation thresholds to be observable, as they would
be in a dilute one-component system.

(iii) The high-frequency excitations can usefully
be simulated by exact solution of the dynamical
equations of a large randomly prepared system.
In the case of Rb2Mn„Ni, „F4, the Ising resonances
are barely observable. It is clear from previous
work~ that these should be prominent in 2D alloys
with one component nonmagnetic.

(iv) The partial susceptibilities and intensities
calculated numerically agree qualitatively with
results from the simpler four-sublattice model.
The conditions under which this model can fail
are discussed in Sec. IV.

(v) Low-concentration theory provides useful in-
sight into the higher concentration behavior of
mixed crystals, especially when the different types
of spins have widely differing Ising excitation en-
ergies. The localized Ni modes seen in
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APPENDIX A

A common set of numerical procedures was used
in all calculations based upon large Monte Carlo
samples of interacting spins. This includes both
the static properties of Sec. III and the dynamic
properties of Sec. IV, and the densities of states
discussed in Sec. II. In this appendix, we describe
these procedures, characterize their performance,
and contrast them with the molecular dynamics
method used in calculation of the dynamic sus-
ceptibility by Alben and Thorpe. "

Each of the response functions we are concerned
with can be written in the form

X 8(~) =
& o'

~

N '(~)
~
P), (A1)

where N was given in Eq. (13). In practice one
need not compute N, but can introduce an auxilia-
ry vector, I p), which satisfies'2

Rb3Mn„Ni, „F4 for x&0.5 are tightly bound to Ni
clusters, and have properties very similar to those
of isolated Ni spins.

(vi) In RbzMn, Ni, „F4, localization, as indicated
by insensitivity of the eigenvalues to changes in
the boundary conditions, is usually accompanied
by spikiness in the density of states, and some-
times by similar structure in the dynamic sus-
ceptibility. For x=0. 5 we find that the high-fre-
quency excitations are predominantly Ni modes.
They are localized even though they exhibit dis-
persion, which is normally taken to be a sign of
delocalization. The energies at which localization
is observed can be crudely accounted for by sim-
ple arguments based on the relation of the Ising
energies to the pure-system spin-wave bands, and
on a knowledge of the cluster statistics of the un-
derlying lattice.

(vii) We could find no evidence in Rb3Mn, Ni, „F4
for Lifshitz states localized in those statistically
rare large regions rich in one spin species. Pre-
sumably these states are sufficiently rare that
they can not be seen by direct simulation. This
implies that split band arguments, while not strictly
applicable to this system, are in effect rigorous.

(viii) The numerical and analytic techniques used
in this work are generally applicable to any ran-
dom system. Results for other cases of interest
will be presented elsewhere.
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The desired susceptibility is then

x.t =&~~r& .

(A2)

Linear systems such as (A2) are most economi-
cally solved by factorization. ' Since N is sym-
metric, it can be transformed to the form

N= LDL (A4)

Where L, a lower triangular matrix, has ones on
the diagonal and only zero elements above the dia-
gonal, D is a diagonal matrix, and L is the trans-
pose of L. Solution of (A2) by back substitution in
two stages, using (A4),

L'/ r& = D-'/ 6&,

(A6a)

(A6b)

is straightforward, since the triangular form of
L implies that 5y= Py 5p = Jgp Lpga, , and so forth.

A second advantage of factorization over direct
calculation of N ' for our problem is the saving of
computer storage space. Essentially all of the
elements of N ' are nonzero. Thus to calculate
N ' for an n-by-n sample requires computing and

storing 2n quantities. For n= 64, more than
8&&10 numbers, an impossible amount, must be
stored. On the other hand, the matrix L can be
kept relatively sparse, and sparse matrix packages
exist which, in performing the factorization, will
store only the nonzero elements of L, and carry
out only those operations which produce nonzero
results. One such package has been described by
Gustavsons and by Woo et al. , and is available
commerically.

Factorization into the form (A4) can be viewed
as a process of successive elimination of variables
from the system of linear equations (A2). The
number of fill-ins, or elements of L generated de-
pends sensitivity on the order in which the variable
are eliminated. A natural strategy is to eliminate
spins by rows in the original sample. If the further'
simplification of free edge rather than periodic
boundary conditions is made, all interactions in

N will be contained within a band of width n about
the diagonal. Factorization into the form (A4)
then requires &n operations, and generates &n

nonzero elements of L. For n =64, these are of
order 8&&10 operations, and 1.3&& 10 storage
locations. Finally, back substitution requires
twice as many operations as there are nonzero
elements of L, or 3&&10 steps.

It has recently been shown that factorization in

O(n ) steps and generation of O(n inane) fill-ins is
both optimal' and feasible. ' By using George' s
nested dissection sequence for the five-point dif-
ference equation on a planar mesh (described in

the appendix of Woo et al. ~~), we were able to
factor the 64-by-64-site problem, with periodic
boundary conditions, in 2 & 10 steps, generating
7&10' elements of L. Generalizations of this
optimal ordering also exist to treat the matrices
which result from three dimensional problems.

It can be shown that the number of positive
eigenfrequencies of (8) less than a given real +
is equal to the number of negative eigenvalues of
any matrix D which results from a transformation
of N(w) into the form of (A4). Since D in this case
is diagonal, a count of its negative elements is suf-
ficient to determine the integrated density of
states, and from that, p(ur) as discussed in Sec. II.

Typical running times of the programs used,
for n=64, were 7. 5 sec to obtain the integrated
density of states at one energy, 10 sec for a
static susceptibility, and roughly 1 min to evaluate
y" (q, u&), using complex arithmetic, at 14 wave
vectors. All programs were run on an IBM 870/168,
in an interactive, paged environment.

Alben and Thorpe" have recently calculated
g "(q, &u) for Monte Carlo samples by integrating
forward in time the disturbance resulting from an
exciting field h'(q), using Eqs. (8), and then Fourier
transforming the result. The length of time over
which they must integrate is inversely proportional
to the energy resolution desired. The computing
effort associated with the methods used in this paper
is independent of resolution, which 'ih. Our 'case is
determined by the imaginary part added to' &. At
the energy resolution of 1.8 meV, typical of the
neutron scattering experiments, Alben and Thorpe's
procedure appears to be from three to ten times
faster than the exact methods. At the energy
resolutions which represent the limit of useful
data from the finite samples, i. e. , from five to
ten times the average spacing between eigenvalues,
the exact methods appear preferable.

APPENDIX B

In this appendix we give detailed expressions
for the effect of a single defect on the response
functions. For this purpose the explicit form of
the single defect t matrix is introduced. Exact
expressions for the magnetic elastic constants K,
g", y„and A in the limit of low defect concentra-
tion are developed. These expressions are valid
for bcc, simple cubic, simple square, and cen-
tered square antiferromagnets. Simple formulas
for the elastic constants at low defect concentra-
tion are obtained when the anisotropy energies are
much less than the exchange energy. Expressions
for the case of nonmagnetic defects are derived
from the same treatment, and presented.

The host (A) lattice parameters are denoted by
J~(=j„~), S~, hcoz 2@J~S„,g„, and m——~. The
defect (B) parameters are the spin Sa, the anisot-
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ropy frequency, u~, g value g~, and host-defect
exchange coupling, Jz(=ZAz). We also use u= Jz/
JA, p=Sz/SA, and

Po=N
2

CO ~
(o' —(o(q )'

q

~zr(q)
(d' —(o(q )2

(B1)

(B2)

The p- and d-wave components of the t matrix are
given by

t, = V (1 —H, V ) ', ups, (B2)

where V =((/& IVI(/& ), and H =(9& IHI(/& ), and
the I(/& ) are the symmetry adapted basis functions
defined in (32). In the same representation, the
s-wave t matrix is

t11 = @[&oz( — ) F1(&dz+ &dA (d)+ (dz &dA) /
(B4a,)
(B4b)t&;& = a~, (I ~+ r, )/2'/2~,

t,(;& = a~, ((2p- 1 —r, )/2'/2~,

t22 —K[(dz(1 —Ap) + I 0((d+ (dz+ (oA)] /2+ t

where
I'„= (&d„—(os) (1 —c/P) P„/(d z

and
& = &2+ (c(P 1) (&o ——&dz)/&dz

(B4c)

(B4d)

(B6)

+ [((o+ (d„+ (oz)/(o z] [(o„-(dz+ ((d„- (d) ((2 —1)

—(&dz- &d)(&2P-1)((dz+ &dA —&d)/&dz]Pp, (B6)

in agreement with Tonegawa.
In the presence of a low concentration of defects

we find that

x(q, )=x (q, )(1+-' ( + [I-r(q)]]'
x JA, (&o) [&d2 —(o(q )']+Ap((o)

+A (&d)[(d' —(d(q)') ]) (a7)
where

—2g 2/12z SN(a)A+ (oz[1 —y(q)]]
XA(q, (d) =

~V[ 2
( )2]

and A„(&o) = a„(&d)+ a„(- (d). We find

,( )=n6g( .. .)P, / '.
+ «g(|l.(~) If"&

I y.(~»«(B8a)
a() (&d) = (&I+ 6g) [(dz+ (o„—(oz y(q )]

+ 6g (n, ((d)
i
t"'

i g, ((d))/(&I

+ &7(p, (&d) it"'in, ((o))/0, (B8b)

a, ((o) = (n, ((o)
i

t"' in, (&d))/ff

+(&oA- (o+ &dz[1 —y(q)])2

~ g l(ttl(. (tt)&l'(~~s) . (»'&

where 6g=gz/gA —1, 1) = P(1+ 6g) —1, and the com-

ponents of the vectors appearing in Eqs. (B8) are

(n
I 1 =

I ns)1 = &d+ (d A+ (oz[1 —y(q )], (BQa)

«.l2=- ln )2=2'"r(q)(~ ~+~ [1 —y(&T))),
(BQb)
(BQc)&&.11 I4.)1 Pp(~+ ~ z+~A)/~Z,

(pi = —lg) = — ' P/ (BQd)

The general definition of y(q) is

r(q) = Z
6

To evaluate K(c) and A(c) we set g„=gz= 1,
&d =0, and take the limit q* =q —Q tending to zero,
so that, according to Eq. (61),

4pz S„X (Q+ q*, 0)- (2K+ Aq*2)/S„. (B10)

Using Eq. (B7) we find for q*=0,

1/2 (s)(2/S,„)Z'(c) = e(dA+ c(1, —2'/') f"'

—c(p- 1)6A(P0(1+ 6„), 2 1/2P ) f &s& I (B11)

Keeping only terms up to order 6A = &oA/(dz and

6z=(o, /(dz we find

ff-1 z A
p

z A) [(P + 1)p ~-1]dK K —K 6 —6

dc KA

(B12)

To evaluate A(c) we examine the terms of order
q* in X '(Q+q*, 0). Using Eqs. (B7) and (61) we
obtain

A(c) (~&

ba S„
= S(0@—2zct

0 1cz1/2(I 21/2)t(s& + cz1/2(0 1)t(s&

r(q) -1—ba'q', (B14)

as q tends to zero. Again, keeping only terms up
to order 6„and 6~, we find that

A — = —2z —2(6z —6A) p [(p- 1)P0

+(p= ~ ')l. (B15)

Finally, to obtain X and X( we use (B7) with
q= ~=0. Taking gA=g~ =1, we obtain y" to ordei
5A and 5~:

—.( p- 1)(P,(1+ 6A), —""P1)t"'
2 /

+ e(s- ()z't' tt„(t, ()+ ()„), —z't'p
I t"'((),

(B13)
where b depends upon the lattice under considera-
tion through the relation
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(X") ~ " = —2(p —1)2(Pa+1)+2p(1 —o)/n —45„(p- o. ')(p-1)Pa
+ o,

~ (5z —5„)f( P - 1)[Pa —(1 —a/) (1+Pa)] —s [1+ (1 —o P) (3+ 4Pa)] ]
+ [5z(P- a, ~)+ Pa(P5z —5„)][2P/n —2P(P- 1) —1 —P-2Pa(1 —P)s] . (B16)

By including the terms involving 5g in Eq. (B7),
we can calculate (X,) 'dX~/dc. Since 5g-o. 1 is
small, we neglect further corrections of orde.
5„or 5~, and obtain

(X,)
'

d, '=(X") 'dX" +2P&g(1 —P, 5g —(2+6@)

x[(P- 1) Po+P —e' ]] . (B17)

The numerical results for low concentrations of
Mn in RbzNiF4 are found using Po= —2. 156, n
=0.281, (gz/(hz=0. 0009, (o„/(hz=0. 0084, V~/R(uz
= —', (1 —oP) =0.0746, and 8&uzH~=1. 403:

APPENDIX C

We wish to evaluate the averaged odd-order
moments of X "(q, +) and its components X "z(q, &u)

as defined in (18), (20), (86), and (87), where n,
P refer to types of atoms. We will present formu-
las for projected moments M" z(q ) defined such
that

d~(~~)"X"(q, ~) =2 2~-&z S-S~M".~(q) ~' V7r at~ 8
(cl)

Two cases have been treated:

K-' —= 1.05[(KM„/K„,) 1],

A —= —0.827,z dA

dc

( ss) 1 X 18 p
dC

( )' ~=134

(B18a)

(B18b)

(B18c)

(B18d)

&(q)=(g gt s s~~zg/v)

x(q~P oWoP~~q), (C2)

(c3)

M'. (q) =(g.g,s.s, v', x/v)-'

x (q~ P oWoWoWoPB~q),

where Iq) was defined in (19).
First we separate W into its diagonal and off-

diagonal parts,

Likewise, for small concentrations of Ni inaMnhost,
we use Po= —2. 361, @=3. 563, Id„/hz= 0. 0046,
&oz/&uz-— 0.0427, V&/h&uz ———0. 106, and hmzP~
= 1.423:

W;,.= 5;~d;+ zo;),

where

d& ——2 PZ;sss,

(C4)

(c5)

K' —= 0.97 [(K„,/KM„) —1], (B19a) w;;=2J), (s;S)) ~ (C6)

A —=0.691,
dc

SS

( ss)-1 X p 4p
dc

(B19b)

(B19c)

(B19d)

y dA 2zt
dC

(B2Oa)

dK
dC

(B20b)

„)g dX" 4+ 5„+Pp(1 y 5„)(5„+2)2

da (5„+2)[1+5„(l+5„)P, ]
(B2Oc)

To treat nonmagnetic impurities, we set n = P
=0 and take the limit co~- ~. The results are

and we shall neglect anisotropy terms && in (C5).
M z(q) is readily found to be

M 8(q ) = Isa 2z (J's s S ) S „—2z Z(q )d' ~, (c7)

(oWoWoWa), , = [1]-[2]—[3]
—[4] [5]-[6].[71,

where

(c8)

where in this appendix ( ) will be used to denote a
configuration average of the free indices p, or p

(used below) over the types of atoms present.
Evaluation of Ms 8(q ) is also straightforward,

but lengthy. We first expand the the polynomial
(oWoWaWa), &, collect terms containing 3, 2, 1,
or no d's, establish the sign of the product of o's
in each term, and distinguish those cases in which
repeated site indexes will affect the configuration
average. We obtain

For 5„=0, these results agree with previous work
of Kumar.

[1]=d;5,J,
[2]= w, ~(d', —d, d, + d',),

(C9a)

(C9b)
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[3]= Q w, ,w, ~(d; —d, + d,)(1 —5;;), (C9c) [I]= 2 w a.war wry(1 —5ag)(I 5 r) ~

kv l
(C9g)

[4]= 5;;g w; (2d; —d ),

[5]= w', , ,

[6]= Q w;, [w', ,(I —5„)+w2J, (1 —5;,)],

(C9d)

(C9e)

(CQf)

The contributions of Eqs. (C9) to M'z(q) are
tabulated below, in a form which is valid for a 3D
simple cubic antiferromagnet (z =6), as well as for
the 2D square case (z =4). Again we write

M' (q ) = [1]—[2]—[3]—[4] [5] —[6] [7], (Clo)

in which

[1]=8zx 5 zS ~[(J~ Ss )+3(z —1)(J ~ S~)(JN~S~) + (z —1)(z 2)(J' ~S~) ]

[2]= 8zy(q)x xs J' &{Jz &(Sz„—S S~+ S&) + (z —1)J~&[S~(2(J»S~) —(J~~S~))+ S&(2(J„~S~)—(J»S~))]

p (z —1)[(J' „S~)+( J~z S~~ )—(z —1)(J ~ S ) (J'8~ S~ ) + (z —2)((J' „S~) + (Jg~ S~ ) )]],
[3]= 8z [zy(q ) —1]x x [(O' S (S —S ) J „)+ (J,S,(S, —S )J,', )

+ (z —1)(J' S„Jq )((Z S ) + (JBS )) '—(z —2)(J' ~ S~ J~„S„J»)]
[4]=8zx 5 z[(J'3 S (2S —S ))+2(z —1)(J S~)(J S~) —(z —1)(J ~ S~ J~,S„)],
[5]= 8z y(q )x~ xa J~~ S Sz,

[6]= 8z (z —1)y(q )x xz J'
z (( O' S, ) S + ( Zz, S, ) S8),

[I]=8zy(q)[z'y(q)' —2z+ll(J. ,S.J..S.Jvs& ~

and y(q) is defined in general as

y(q) = — e"'.
6

(Cl la)

(Cl lb)

(C1lc)

(Cl ld)

(Cl le)

(Clif)

(Ciig)

(C12)

N*=
]

K D /

(Dl)

where D' is a diagonal matrix with elements (dM,

APPENDIX D

In this section we evaluate Im(N* '), as re-
quired in Eq. (96) to determine the dynamic sus-
ceptibility in the four-sublattice approximation.
We write N* in block form as four 2&2 sub-
matrices:

+ o~) and (d„,+o&u). The elements of the sym-
metric matrix K are given by (95). We can factor
N* into

1 0 D' 0 1 1 D'K
N+=(

I K/D I ) (0 D —(K/D )K/ (0 1 )
(D2)

Using the fact that if L is a matrix with zeroes every-
where on the diagonal and above, (1 —L)(1+L) =1,
we can write

O ~( 1 0~

[D —(K/D+)K] / (- K/D' 1f

If we restrict attention to positive frequencies,
Im(D') ' =0, and evaluation of X '(q, ~) reduces,
upon averaging over the two sublattices, to the
2x 2 problem:

(q (d) = Q g g8 p, z(S Sgx xz)

x Im $ [1 —(1/D ')K] [D —(K/D ')K]

x [1—K/D') ]. g . (D4)

We denote the coefficients of D —(K/D')K as
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Cg —C2

D —(K/D ')K=
—C2 C3

where

Cq=d„—ar —a (d„+ tu) —b (ds+ ~) ~,

Cz= ah(d„+ &o) + bc(de~ ~) ',
C3= de —~ —b (d„+ (o) ' —c2(de+ (u) ~,

(»)

(D8)

and a, b, c, the components of the off-diagonal
matrix K, are

a=2zr(q)xA~AA SA

b =2zy(Q) O'As(xAxsSA Ss)

c = 2zr(Q ) xs&» Ss ~

Using these definitions, the components of
(, ~ g (dA+ (d)(de+ (d) 5(&d —QPg)
2p) Im& 2 22(o, ((o, —(o,)

(D9)

x AA
= xA gA p s SA Imh [C3 —2 (aC~+ bCz)/(dA+ +)

+ (a C, +2abC~+ bzC, )/(dA+ (o) ],
XAB X BA gAgB +B(xAxB A B)

I ™If. 2

—(aCz+ bC~)/(dA+ v) —(bC3+ cCz)/(ds+ u)

+ [abC, + (b + ac) Cz+ bcC, ] /(d„+ ~)(de+ &o)],

X»=xs gs psSslmh [C~ —2(bCz+ cC,)/(dJ3+ &o)

+ (b C~+2bcCz+ c C~)/(de+ &u) ], (D8)

and when 6, the determinant of D —(K/D')K is
evaluated at ~, , a root of the secular equation (97),
it gives
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