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ABSTRACT

DEFORMATIONS OF G2-STRUCTURES, STRING DUALITIES AND FLAT

HIGGS BUNDLES

Rodrigo de Menezes Barbosa

Tony Pantev, Advisor

We study M-theory compactifications on G2-orbifolds and their resolutions given

by total spaces of coassociative ALE-fibrations over a compact flat Riemannian 3-

manifold Q. The flatness condition allows an explicit description of the deformation

space of closed G2-structures, and hence also the moduli space of supersymmetric

vacua: it is modeled by flat sections of a bundle of Brieskorn-Grothendieck resolu-

tions over Q. Moreover, when instanton corrections are neglected, we also have an

explicit description of the moduli space for the dual type IIA string compactifica-

tion. The two moduli spaces are shown to be isomorphic for an important example

involving A1-singularities, and the result is conjectured to hold in generality. We

also discuss an interpretation of the IIA moduli space in terms of “flat Higgs bun-

dles” on Q and explain how it suggests a new approach to SYZ mirror symmetry,

while also providing a description of G2-structures in terms of B-branes. The net

result is two algebro-geometric descriptions of the moduli space of complexified G2-

structures MC
G2

: one as a character variety and a mirror description in terms of

a Hilbert scheme of points. Usual G2-deformations are parametrized by spectral
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covers of flat Higgs bundles.

We also discuss a few ongoing developments: p1q we propose a heterotic dual

to our main example, p2q we explain how the moduli space of flat Higgs bundles

fits into a family of moduli spaces of extended Bogomolnyi monopoles, and p3q we

introduce a natural variation of Hodge structures over MC
G2

, and conjecture this

space admits the structure of a complex integrable system.
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Chapter 1

Introduction

The main idea developed in this thesis is that a certain duality in String theory

admits a geometric realization relating deformations of G2-structures ϕ on a G2-

space M to deformations of flat connections on a “dual” Calabi-Yau manifold X.

This translates the original differential-geometric problem into a more tractable

deformation problem in algebraic geometry.

The duality works as follows: first one complexifies the moduli space of G2-

structures MG2 , obtaining a Kähler space MC
G2

. M-theory/IIA duality predicts

that if M admits a Up1q-action fixing an associative submanifold L, then MC
G2

must be isomorphic to the “IIA moduli space” MIIA of X :“ M{Up1q. This

moduli space parametrizes deformations of the complexified Kähler structure on X

and deformations of certain geometric objects called A-branes on X.

We focus on a local model where M is given by a fibration of ADE singularities
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over a 3-manifold Q. In this situation, the space of deformations of the complexified

G2-structure ϕC admits a special subspace given by fiberwise hyperkähler deforma-

tions. Classically, the duality states that such subspace is mapped to the moduli

space MIIA of A-branes wrapping the zero-section on X :“ T ˚Q. Thus, the prob-

lem becomes giving an appropriate mathematical description of A-branes. This

is obtained by performing a dimensional reduction of the supersymmetry condi-

tion on X down to its zero-section Q. The condition on X is the existence of a

Hermitian-Yang-Mills connection. We show that the dimensional reduction gives a

flat complex connection A on a vector bundle E Ñ Q. This translates deformations

of ϕC into deformations of A.

However, mathematically one is interested in deformations of ϕ, not ϕC. Thus,

an important problem is to identify exactly which deformations of A describe de-

formations of ϕ. There are two key ingredients in order to achieve this: the first is

the Corlette-Donaldson theorem, which in our setup implies (Theorem 5.1.8 below)

that the data pE,Aq is equivalent to (a generalization of) what we call a flat Higgs

bundle pE,A, θ, hq on Q. Here, h is a harmonic metric on E, which always exists

when A is sufficiently nice. Moreover, A “ A` θ, where A is a flat unitary connec-

tion (DAh “ 0) and θ is a flat Higgs field (DAθ “ 0, θ ^ θ “ 0, θ ` θ: “ 0). This

provides a canonical decomposition of the deformations of ϕC into real deformations

parametrized by A, and imaginary deformations parametrized by θ. The second in-

gredient is Theorem 5.3.1, the Spectral Correspondence for flat Higgs bundles : Higgs
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data pE,A, θ, hq can be translated into spectral data pSQ, L, a,rhq where SQ Ñ Q is

a finite branched cover, LÑ SQ is a line bundle and a is a flat Up1q-connection on

L (∇a
rh “ 0).

Having this setup in mind, we focus on G2-platyfolds, which we define as ADE-

bundles over a compact flat 3-manifold Q (such a Q is called a platycosm). There

are two reasons for this choice: the first one is that flat compact manifolds are

finite quotients of tori, so their character varieties (i.e., moduli space of flat connec-

tions) map to the character variety of a torus - also known as the moduli space of

commuting triples - a well-understood space. The second reason is that using the

flatness condition we are able to build a deformation family of closed G2-structures

parametrized exactly by the spectral covers of flat Higgs bundles.

There are 10 affine isomorphism classes of platycosms, and we prove that only

one of them allows G2-orbifolds fitting the framework of M-theory/IIA duality1.

This space is called the Hantzsche-Wendt manifold, and following convention we

denote it by G6. We analyze in detail the duality for the total space of an ADE-

fibration over G6 with McKay group Z2. In particular, we compute the character

variety CharpG6, SLp2,Cqq of G6 and we check that it agrees with the moduli space

MC
G2

associated to this specific G2-orbifold.

Chapters 2 3, 4 and 5 comprise the main body of the thesis. They are organized

as follows: we start chapter 2 with a discussion of flat geometry and the classification

1More precisely, we prove that only one such manifold allows a N “ 1 compactification.

3



of the platycosms; we then briefly discuss character varieties, a topic that will be

recurrent in the thesis. In chapter 3, we define ADE G2-platyfolds and define a

deformation family for closed G2-structures coming from hyperkähler deformations

of its fibers. This is the most technical (and arguably the most interesting) result

in this thesis. In the final sections we discuss N “ 1 compactifications and study

the calibrated submanifolds of G6ˆK C2{Γ, the Hantzsche-Wendt G2-platyfold first

considered in Acharya’s work [Ach98]. In chapter 4 we describe the type IIA Calabi-

Yau dual of thisG2-geometry in full detail: the SYZ fibration and special Lagrangian

deformations, and the character varieties describing the moduli space of A-branes.

In chapter 5 we define flat Higgs bundles over a three-manifold and establish a

spectral construction. This result ties the deformation problems from the previous

chapters together. In chapter 6 we propose a SYZ mirror for our IIA geometry and

describe its moduli space of B-branes as a Hilbert scheme of points. Finally, in

chapter 7 we explore a few future directions related to this work: in section 7.1 we

study the heterotic dual of our G2-geometry and its moduli space; section 7.3 relates

flat Higgs bundles to Kapustin-Witten systems; and section 7.2 studies a variation of

Hodge structure over MC
G2

inspired by the Hodge-theoretic formulation of conifold

transitions [DDP07], [DDP06] and the connection between Large N duality and the

G2-flop [AV01]. We also propose an approach to build a complex integrable system

over MC
G2

.

Notation: Throughout this thesis, we denote by π : E Ñ N a fiber bundle,
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fibration, or more generally a family of spaces over N ; and denote the total space

of the bundle or family simply by E. Gc is a complex semisimple Lie group, gc

is its Lie algebra, hc is a Cartan subalgebra, and W the Weyl group. We denote

by G the compact real form of Gc, and g, h are the associated compact real Lie

algebra and Cartan subalgebra. A connection on a G-bundle E Ñ N is an element

A P Ω1
NpAdGpEqq. We denote its horizontal distribution by HA Ă TE and the

covariant derivative by ∇A. Relative differential k-forms on E Ñ N are denoted by

ΩkpE{Nq. Unless stated otherwise, all manifolds we work with are connected and

without boundary. Whenever we speak of the fundamental group of a manifold,

we will assume a base-point has been fixed once and for all and we will suppress it

from the notation. Finally, we use two different notations for the fixed set of the

action of a group K on a space Y : either FixpKq or Y K , depending whether Y is

understood from context or not.

We assume the reader is familiar with the basics of G2-geometry. Standard

references for this subject are Joyce’s books [Joy00], [Joy07] and Hitchin’s paper

[Hit00]. Knowledge of the theory of Higgs bundles and spectral covers is desirable

but not entirely necessary. Good references on this topic are [Hit87], [Hit87a],

[Sim92], [Don95] [DM95], [Sch12].
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Chapter 2

Flat Riemannian geometry

2.1 Flat Riemannian manifolds

The G2-spaces we will study are total spaces of bundles over compact, flat Rie-

mannian 3-manifolds, so we start with a review of flat Riemannian geometry. The

results in this section are used heavily in the main body of the text. For a more

complete introduction, we refer to the books by Charlap [Cha86] and Szczepański

[Scz12].

Definition 2.1.1. Let IsopRnq :“ Opnq ˙ Rn be the group of rigid motions on Rn.

A subgroup π ď IsopRnq is called crystallographic if it is a discrete subgroup acting

on Rn such that Rn{π is compact. It is called torsion-free if the action is free.

Definition 2.1.2. A subgroup π ď IsopRnq is called Bieberbach if it acts properly

discontinuously on Rn in such a way that Rn{π is compact.
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The second definition is equivalent to Rn{π being a compact flat manifold. We

call such a space a Bieberbach manifold. Note that π is crystallographic if and only

if G :“ Rn{π is a compact flat orbifold (a Bieberbach space). It is clear that π is

Bieberbach if and only if it is a torsion-free crystallographic group.

Any crystallographic group π fits into a short exact sequence

0 Ñ Λ Ñ π Ñ H Ñ 1 (2.1.1)

where Hπ is a finite group we call the monodromy of π and Λ is a free abelian

H-module (– Zn as a group). So it is classified by an element ς of the group

cohomology H2pH,Λq. This description follows from a theorem of Zassenhaus: a

subgroup π ď IsopRnq is crystallographic if and only if it has a normal, maximal

abelian, free abelian subgroup Zn of finite index.

The most important result in this subject is Bieberbach’s theorem:

Theorem 2.1.3. (Bieberbach): Let π Ă IsopRnq be a crystallographic group, and

Qn :“ Rn{π the associated Bieberbach space. Let Tn be a flat n-torus.

1. The monodromy H is finite and the pure translations Λ :“ π X Rn of π form

a lattice.

Equivalently, there is a finite normal covering map Tn
Ñ Qn which is a local

isometry.

2. Every isomorphism between crystallographic subgroups of IsopRnq is given by

7



a conjugation in AffpRnq.

Equivalently, two Bieberbach spaces of the same dimension and with isomor-

phic fundamental groups are affinely isomorphic.

3. There are only finitely many isomorphism classes of crystallographic subgroups

of IsopRnq.

Equivalently, there are finitely many affine classes of Bieberbach spaces of

dimension n.

We note that part 3 essentially follows from the fact that number of exact

sequences 2.1.1 is bounded by the order of the finite group H2pH,Λq.

Remark 2.1.4. In the context of flat geometry, the terms “holonomy” and “mon-

odromy” are essentially interchangeable. Accordingly, we may write H as either Hπ

or HQn to emphasize that it is the monodromy group of π or the holonomy group

of the Bieberbach space Qn. This is consistent with standard terminology, as H

is the holonomy of the flat metric on Qn inducing the monodromy action on the

fundamental group π.

Clearly, Rn is the universal cover of Qn, and π1pQ
nq “ π. The first part of

Bieberbach’s theorem implies that the H-action on Λ – π1pT
n
q is induced from a

free H-action on Tn such that Q – Tn
{H. It is clear that Tn is also a Bieberbach

manifold, with trivial monodromy. For this reason, we call Tn the monodromy

cover of Qn. The existence of the monodromy cover strongly constrains the possible

8



holonomies of Bieberbach manifolds (see Proposition 2.1.7 for the classification in

three dimensions). This is in stark contrast with the theory for non-compact flat

Riemannian manifolds: it is a theorem of Auslander and Kuranishi that every finite

group is the holonomy group of some flat manifold.

We also have the following useful result:

Theorem 2.1.5. (Charlap, Hiss-Szczepańsky): Let π be a crystallographic group

fitting into the exact sequence

0 Ñ Λ Ñ π Ñ Hπ Ñ 1 (2.1.2)

Let ς P H2pHπ,Λq be the group cohomology element classifying 2.1.2. The fol-

lowing are equivalent:

1. π is a Bieberbach group

2. For any injection ι : Zp ãÑ Hπ, ι˚ς ‰ 0

3. For each q P Qn, the holonomy representation hq : Hπ Ñ TqQ
n is reducible

We refer to the components of the orthogonal representation of Hπ as isotypic

components.

2.1.1 Platycosms

Definition 2.1.6. A three-dimensional Bieberbach manifold is called a platycosm

[CR03].
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The name literally means “flat universe” and is based on the idea that such

spaces are alternative geometries to the (almost) flat three-space we live in.1

Proposition 2.1.7. There are 10 affine equivalence classes of platycosms, 6 of

which are orientable. They are classified by their holonomy groups as follows:

• G1 is the flat three-torus T, so the holonomy is trivial: HG1 “ t1u

• G2 with HG2 – Z2

• G3 with HG3 – Z3

• G4 with HG4 – Z4

• G5 with HG5 – Z6

• G6 with HG6 – Z2 ˆ Z2

We will follow this notation, except for G1 which we will just denote by T.

The space G6 will be particularly important for us. It is known in the literature

as the Hantzsche-Wendt manifold or the didicosm. Explicit descriptions for HG6

and ΛG6 are:

HG6 “

C

A “

»

—

—

—

—

—

—

–

1 0 0

0 ´1 0

0 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

–

´1 0 0

0 1 0

0 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

G

Ă SOp3q (2.1.3)

1See [AL14] for an analysis of the topology of our large-scale spatial universe using cosmic

microwave background radiation, and the suitability of platycosm models.
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ΛG6 “

C

`

A,

»

—

—

—

—

—

—

–

1{2

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˘

,
`

B,

»

—

—

—

—

—

—

–

0

1{2

1{2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˘

G

Ă SOp3q ˙ R3
“ Iso`pR3

q (2.1.4)

2.2 Character Varieties of Bieberbach groups

In this section we prove a result that will be used repeatedly in what follows. Let

G be any group. The exact sequence

1 Ñ Λ Ñ π
q
Ñ H Ñ 1

induces another sequence:

1 Ñ HompH,Gq Ñ Hompπ,Gq
r
Ñ HompΛ, Gq (2.2.1)

For any group A define the character variety CharpA,Gq to be the GIT quotient

of HompA,Gq by the conjugation action of G. We have induced maps of character

varieties:

CharpH,Gq Ñ Charpπ,Gq
r
Ñ CharpΛ, Gq (2.2.2)

For h P H let Ch denote the conjugation map by h, and let H act on HompΛ, Gq

by

hpρq “ ρ ˝ Ch̃ @h P H (2.2.3)
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where h̃ P π is such that qph̃q “ h. It is easy to see that if qph̃1q “ qph̃2q, then

because Λ is abelian, Ch̃1
“ Ch̃2

and hence the action is well-defined. Moreover, the

action descends to an action of H on CharpΛ, Gq in the obvious way.2 Let FixpHq

denote the subset of CharpΛ, Gq consisting of elements fixed by H. The next lemma

states that r
`

Charpπ,Gq
˘

“ FixpHq.

Lemma 2.2.1. Suppose ρ P HompΛ, Gq is such that ρ “ rpρ̃q “ ρ̃|Λ for ρ̃ P

Hompπ,Gq. Then rρs P FixpHq.

Conversely, if CGpρpΛqq “ 0 and rρs P FixpHq, then Drρ̃s P Charpπ,Gq such that

rprρ̃sq “ rρs.

Proof. Let h P H. Then:

hpρq “ hpρ̃|Λq

“ ρ̃ph̃q ˝ ρ̃|Λ ˝ ρ̃ph̃q
´1

“ Cρ̃ph̃qpρ̃|Λq

“ Cρ̃ph̃qpρq

hence hrρs “ rρs, i.e. rρs P FixpHq.

Conversely, hrρs “ rρs ùñ ρ ˝ Ch̃ “ Sh̃ρS
´1

h̃
for some Sh̃ P G. It is easy to see

that if a P Kerpqq, then S´1
a ρpaq P CGpρpΛqq. Hence Sa “ ρpaq. Define ρ̃ : π Ñ G

2Note that since it is an action by an outer conjugation of Λ, it descends non-trivially to the

quotient.
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by ρ̃pxq “ Sx, @x P π. Then clearly ρ̃|Kerpqq “ ρ and if x, y P π, the hypothesis on

the centralizer implies that Sxy “ SxSy, so ρ̃pxyq “ ρ̃pxqρ̃pyq. So ρ̃ P Hompπ,Gq

with rprρ̃sq “ rρs.

2.2.1 A-branes wrapping platycosms

Later on we will be interested in studying a certain space: the moduli space of A-

branes wrapping a platycosm Q. We will show these are classified by flat G-bundles

on Q, where G is a simply-connected Lie group. A choice of flat connection on a

G-vector bundle over Q corresponds to a point of the character variety/stack:

CharpQ,Gq :“ Hom
`

π1pQq, G
˘

M

CG (2.2.4)

where CG denotes the conjugation action in G. The quotient is more correctly taken

in the stacky sense, but to simplify matters we will restrict to the GIT quotient.

From the previous section, we know that this space is essentially determined by the

action of H on the character variety of the monodromy cover T.

We now describe the character varieties of tori up to dimension 3. Let T be a

maximal torus for G.

For S1 the problem is trivial: the generator of Z “ π1pS
1
q can be mapped

anywhere in G. Hence CharpS1, Gq “ G{CG – T {W .

For a two-torus T2, CharpT2, Gq is given by two commuting elements in G up
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to conjugation. Let g P G and h P CGpgq, the centralizer of g. It is known that,

for simply-connected G, the centralizer CGpgq is connected (Bott’s theorem), so

we can first conjugate g to T and then conjugate h to the torus of CGpgq, which

by connectedness is just T . The net result is that g and h can be simultaneously

conjugated to lie on the maximal torus T . The maximal tori are conjugated by

elements of the Weyl group W . Hence the character variety is:

CharpT2, Gq “ T ˆ T
L

W (2.2.5)

For a three-torus, CharpT3, Gq is now given by three commuting elements mod-

ulo conjugation. So now we need to determine all possible configurations of g, h, k P

G, with g P T and h, k P CGpgq, i.e., the moduli space of commuting triples. This

problem was solved by Borel, Friedman and Morgan [BFM02] and Kac and Smilga

[KS99], who showed that if the classification of commuting triples is essentially de-

termined by the fundamental group of the centralizers. Commuting triples pg, h, kq

whose semi-simple part of the centralizers is simply-connected can always be con-

jugated to the maximal torus, giving one of the components of the moduli space:

T ˆ T ˆ T LW (2.2.6)

However, there are also non-trivial commuting triples. This happens when G

has elements whose semisimple part of the centralizer has torsion. These extra

commuting triples produce new connected components in the character variety.
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Essentially, torsion in π1pCgpGqq occurs when the root system of h admits non-

trivial coroot integers. Each divisor of a coroot integer is called a level `, and each

` determines a subtorus T p`q of T given by the intersection of the kernels of the

roots whose coroot integers are not divisible by `. The torus T p`q has an associated

Weyl group WT p`q :“ NGpT p`qq{CGpT p`qq.

Each ` determines φp`q connected components for the character variety, where

φ is Euler’s totient function; each connected component is given by:

T p`q ˆ T p`q ˆ T p`q
M

WT p`q (2.2.7)

In particular, for G “ SLpn,Cq, the only allowed level is ` “ 1 and there are no

non-trivial commuting triples. Thus:

Char
`

T3, SLpn,Cq
˘

“
`

pC˚qn´1
˘3
M

Σn
(2.2.8)

and similarly:

Char
`

T3, SUpnq
˘

“
`

Up1qn´1
˘3
M

Σn
(2.2.9)
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Chapter 3

Deformations of G2-orbifolds

3.1 ADE G2-platyfolds

We start by fixing the following data:

1. Q is an oriented platycosm, δ its flat Levi-Civita connection and π :“ π1pQq

the associated Bieberbach group

2. V Ñ Q a rank one quaternionic vector bundle (i.e., the structure group is

Spp1q ď SLp2,Cq)

3. Γ a finite subgroup of Spp1q, and hence a fiberwise action of Γ on V

4. A flat quaternionic connection ∇ on V Ñ Q compatible with the Γ-action in

an appropriate sense (see remark below)

5. A flat volume form µ P Ω3pQ,Rq
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Remark 3.1.1. 1. A flat connection ∇ compatible with Γ is given by an action of

πˆΓ on rQˆH, where rQ is the universal cover of Q and Γ acts trivially on rQ.

Equivalently, we have an action of π on H commuting with the Γ-action. This

is the same as a representation of π on the centralizer CSpp1qpΓq ď Spp1q, i.e.,

the conjugacy class of an element of Hompπ,CSpp1qpΓqq. The trivial homomor-

phism gives rise to the trivial flat connection (i.e., with no monodromy).

2. This data fixes a “flat fiberwise quaternionic structure”, i.e., a tri-section

pI, J,Kq of AutHpVq Ñ Q such that ∇I “ ∇J “ ∇K “ 0.

In the language of Goldman’s geometric structures [Gol88], δ defines a torsion-

free pR3, Iso`pR3qq-structure on Q with graph TQ, and pV,∇q is the graph of a

pR4, Spp1qq-structure on Q. This last structure is then required to be compatible

with the group Γ. We will require these two geometric structures to interact in a

specific way when we discuss G2-deformations.

Definition 3.1.2. We call pΓ,∇q ADE data for V.

The first thing we need to determine is, for a fixed Γ, when does V admit non-

trivial ADE data, i.e., when Hompπ,CSpp1qpΓqq ‰ 0 modulo conjugation. This is a

compatibility condition between the topology ofQ and the Γ-compatible pR4, Spp1qq-

structure. We now show that its existence depends (up to one exception) only on

the ADE type of Γ.

Proposition 3.1.3. Nontrivial ADE data for V exists for all platycosms with cyclic

holonomy, and for G6 when Γ is of type An.

17



Proof. The centralizer depends on the ADE type of Γ. Here are the possibilities:

• Γ of type An: there are two subcases. If n “ 1, then Γ – Z2 and

CSpp1qpZ2q “ Spp1q (3.1.1)

If n ě 2, then Γ – Zn and Γ lies on a maximal torus T of Spp1q – SUp2q.

The centralizer is just the torus itself:

CSpp1qpZnq “ T – Up1q (3.1.2)

• Γ of type Dn for n ą 2, E6, E7 or E8: Then:

CSpp1qpΓq “ ZpSpp1qq – Z2 (3.1.3)

Note that HompZ3,Z2q – Z3
2, while HompZ3, Up1qq – Up1q3. It is also true that

HompZ3, Spp1qq – Up1q3, as one can always conjugate three commuting elements

to a maximal torus of Spp1q – SUp2q [BFM02] [KS99]. It follows that ADE data

exists for T “ G1 irrespectively of Γ. Now, for any group G, we obtain from 2.1.2

an exact sequence:

1 Ñ HompHπ, Gq Ñ Hompπ,Gq Ñ HompZ3, Gq (3.1.4)

Representations that are conjugate in G are considered isomorphic, so we are

interested in the image of r in:
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CharpHπ, Gq Ñ Charpπ,Gq
r
Ñ CharpZ3, Gq (3.1.5)

where CharpA,Gq :“ HompA,Gq{CG is the Character Variety of A and will be

studied in more detail in Chapter 4. What we need to know right now is that the

action of Hπ on Z3 induces an action on HompZ3, Gq that descends to CharpZ3, Gq.

From Lemma 2.2.1, the image of r is given by the fixed set of this action.

For platycosms with cyclic holonomy the monodromy action fixes a direction

in R3, which implies the descendant action on the character variety has non-trivial

fixed points. This implies that nontrivial ADE data can be chosen in those cases.

In the case when Q “ G6, simple inspection determines that the action of HG6

on R3 has no fixed points, so the previous argument does not apply. The argument

in this case requires a careful examination of Imprq in 3.1.5, which depends on the

ADE type of G. The proof that non-trivial An data (i.e., when G “ SLpn,Cq) can

be chosen for G6 will be a consequence of our computation of Charpπ1pG6q, SLpn,Cqq

in Chapter 4.

This has the following consequences for the structure of the bundle V:

• If Γ is of type A1, any flat connection on V is compatible with Γ.

If Γ is of type An for n ě 2, then the structure group reduces to Up1q ď Spp1q

and V – L‘ L´1, where L is a flat complex line bundle.
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• If Γ is of type Dn for n ě 3 or of types E6, E7 or E8, then V – L‘L, where L

is a flat complex line bundle such that Lb2 is the trivial complex line bundle.

Given data pQ,V,Γ,L,∇, I, J,K, µq as above, the quaternionic structure pI, J,Kq

determines a triple ω0 :“ pωI , ωJ , ωKq of fiberwise hyperkähler structures. The in-

tegrability condition implies that ∇ωI “ ∇ωJ “ ∇ωK “ 0. Our next goal is to

understand under which circumstances the data pQ,V,Γ,L,∇, I, J,K, µq induces

a closed G2-structure on V such that V Ñ Q is a coassociative fibration. We start

with some examples.

Example 3.1.4. V “ C2 ˆT has a standard closed G2-structure:

ϕ “
3
ÿ

i“1

dxi ^ ωi ` dx123 (3.1.6)

for a choice of flat coordinates txiu on T3 and hyperkähler structure ω on C2.1 Here

and in what follows, we use the notation dx123 :“ dx1 ^ dx2 ^ dx3.

Note that because there is no monodromy, the local section dxi glues to a global

flat section, so the formula makes sense globally. We think of V as the total space

of the trivial flat vector bundle V Ñ T. It is easy to check that ϕ|C2 “ 0 and

‹ϕ|T3 “ 0, so the fibers C2 are coassociative and the zero-section T3 is associative.

In fact, this G2-structure is also torsion-free. Its associated metric is just the flat

metric, which of course has holonomy t1u Ă G2.

Up to a change of basis, ω is a SUp2q-triple, and since Γ ď SUp2q, ω can be

1More generally, ω can be a hypersymplectic structure - see defintion 3.1.12 below.
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taken to be Γ-invariant. Thus there is a well-defined G2-structure on the quotient

M “ C2{Γˆ T3 with the same properties.

Example 3.1.5. Consider C2 ˆ G6. Even though this is trivial as a smooth bundle,

there is monodromy from the flat metric connection δ, so we do not wish to consider

it as a trivial flat bundle; the formula

ϕ “
3
ÿ

i“1

dxi ^ ωi ` dx123 (3.1.7)

can still be written down, but only on local patches Uλ Ă G6 belonging to a flat

trivialization U “ tUλ;λ P Λu of TG6. The monodromy transformations for the

dxi’s on Uλλ1 :“ Uλ X Uλ1 are given by the action of HG6 given by the matrices

A,B,AB in 2.1.3. If the ωi’s are chosen such that K :“ HG6 acts by the inverses

A´1, B´1, pABq´1 on the local patches2, then the element:

η :“
3
ÿ

i“1

dxi ^ ωi (3.1.8)

glues to a global flat section. Obviously dx123 also glues globally, so together they

give a well-defined G2-structure.

The question is then: can such ωi’s be chosen? To induce the correct action,

one needs to pick a non-trivial flat bundle V :“ C2 ˆK G6. The index K refers

to the holonomy of the flat structure: i.e., we need to choose an element of ρ P

2For G6 the inverses actually coincide with the original matrices, but in general this is not the

case.
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Hompπ1pG6q, Spp1qq with ρpπ1pG6qq – K. The monodromy group K then acts on

the sheaf of triples of vertical 2-forms Ω2pC2q3 over G6. The inverse action above can

be written as pω1, ω2, ω3q ÞÑ p˘ω1,˘ω2,˘ω3q (where we have exactly 2 minus signs),

i.e. it is an action by hyperkähler rotations.3 The conclusion is then that once a

local hyperkähler triple is chosen, if one changes it by the appropriate hyperkähler

rotations on local patches, one gets a global closed G2-structure. In this case, one

can also check that the G2-structure is torsion-free, and the associated metric has

holonomy K Ă G2.

Example 3.1.6. This example first appeared in [Ach98]. Take V “ C2 ˆK G6 as in

the previous example and let Γ – Z2 ď Spp1q act on C2 in the natural way. It is

easy to see that this action is compatible with the K-action: this means that the

monodromy representation ρ of V is an element of Hompπ1pG6q, CSpp1qpZ2qq, which

is clear since CSpp1qpZ2q “ Spp1q. It follows that the previous example descends

to a closed, torsion-free G2-structure on M :“ V{Z2 “ C2{Z2 ˆK G6 and on the

resolution xM :“ ČC2{Z2ˆKG6. In this last space, the associated metric has holonomy

SUp2q ¸K Ă G2.

Note that if one takes Γ “ Zn, then CSpp1qpZnq “ Up1q does not contain K.

In this situation the singularity C2{Zn acquires non-trivial monodromy dictated by

rK,Zns Ă Spp1q.

Example 3.1.7. This example shows that picking the action on the hyperkähler triple

3Notice this would not work if we allowed non-orientable platycosms.
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to be given by the inverse monodromy matrices is not always the correct choice. Let

Q “ G3 and consider C2 ˆ G3. Choose again local flat 1-forms dx’s. The holonomy

HG3 – Z3 is generated by the matrix:

A “

»

—

—

—

—

—

—

–

1 0 0

0 ´1 1

0 ´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.1.9)

The correct action of HG3 on Ω2pC2q3 is not given by A´1, but by pA ˝ R3q
´1

where R3 is reflection on the xy-plane. In other words, the correct matrix is obtained

by reflecting the lower 2ˆ 2-block on its anti-diagonal:

pA ˝R3q
´1
“

»

—

—

—

—

—

—

–

1 0 0

0 0 1

0 ´1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.1.10)

Again this is just a hyperkähler rotation on local intersections, and as before

it defines a global flat 3-form η on V “ C2 ˆZ3 G3 such that η ` dx123 is a closed

G2-structure.

We can now do the same thing we did for the previous example: pick a finite

subgroup Γ – Zn ď Spp1q and note that CSpp1qpZnq “ Up1q always contains a

Z3. Hence the flat bundle V can be taken to be compatible with the Γ-action on

C2 and we get well-defined closed, torsion-free G2-structures on C2{Zn ˆZ3 G3 and

ČC2{Zn ˆZ3 G3. The metric on the last space has holonomy SUp2q ¸ Z3.
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Examples involving the platycosms G2,G4 and G5 are similar to the G3 example,

the only essential difference being that in the absence of Z3 factors in the mon-

odromy group, one can also work with singularities of types D and E. On the other

hand, this makes the G6 example much more interesting, and the main reason we

focus on it in further chapters: HG6 – K is the only platycosm holonomy group

such that SUp2q ¸ HQ cannot be conjugated to a subgroup of SUp3q Ă G2 (see

section 3.3). This feature implies that the manifold ĂM above, which has holonomy

SUp2q ¸K, defines an appropriate compactification for M -theory.

Assume one is given pV,∇q Ñ T a nontrivial flat bundle. Now there is no

monodromy coming from T, but the flat connection∇ has an associated monodromy

group H∇, which we assume is a finite subgroup of Spp1q. In this situation, one

needs to reverse the argument: the dxi’s are to be chosen to be compatible with the

ωi’s on a flat trivialization of V. This is because the hyperkähler condition imposes

that the ωi’s transform according to the action of H∇ on local patches. The action

is defined by a choice up to conjugation of element in Hompπ1pTq, CSpp1qpΓqq, which

can be seen [BFM02] as a choice of an element in Up1q3{Z2, possibly with restrictions

depending on Γ. In any case, the ωi’s transform via three commuting hyperkähler

rotations, and we just need to define local sections dxi’s on each patch that are

related via the inverse transformations on the intersections. This guarantees that

η is globally defined, and since everything happens in SOp3q, dx123 is also globally

defined.

24



In order to obtain the correct action on the dxi’s, one needs to define an ap-

propriate action of H∇ on T. Hence, we need to consider pV,∇q as a flat bundle

over the quotient space T{H∇. If the action of H∇ on T is taken to be free and

properly discontinuous, the quotient space must be one of the 10 platycosm. The

constraints on H∇ imposed by the classification 2.1.7 seems to be in contradiction

with our freedom in choosing H∇ to be any ADE subgroup. However, upon closer

inspection, one sees that the short exact sequence 2.1.1 is not unique; one can mod-

ify the lattice Λ, for example by modifying its period along one direction, as long

as one modifies the group Hπ accordingly.

Example 3.1.8. To illustrate this last point, start with the exact sequence for G6:

1 Ñ Z3
Ñ π1pG6q Ñ KÑ 1 (3.1.11)

Bieberbach’s first theorem says that G6 is a quotient of the three-torus T. This

is realized via the following (free) action of K “ xα, βy on T:

αpx1, x2, x3q “ p´x1,´x2 `
1

2
, x3 `

1

2
q

βpx1, x2, x3q “ px1 `
1

2
,´x2,´x3q

So G6 “ T{K. However, a second possible description is G6 “ T{D8, where

D8 – Z2 ¸K is the dihedral group with 8 elements. Let D8 “ xα
1, β1y. The action

is given by:
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α1px1, x2, x3q “ p´x1,´x2 `
3

4
, x3 `

1

2
q

β1px1, x2, x3q “ px1 `
1

4
,´x2 `

1

4
,´x3q

This provides a second short exact sequence for π1pG6q:

1 Ñ Λ Ñ π1pG6q Ñ D8 Ñ 1 (3.1.12)

where the lattice Λ is given by 2Z‘Z‘Z. Note that pβ1q2px1, x2, x3q “ px1`
1
2
, x2, x3q

is a translation by an order 2 element generating the center Z2 ď D8, and as such

it doesn’t contribute to the holonomy.

This new action is also compatible with Γ “ Z2, so the resulting closed, torsion-

free G2-structure descends to M “ V{Γ. The only difference between this example

and example 3.1.6 is that here there is an extra central Z2-symmetry acting on the

hyperkähler triple. This symmetry is not visible at the geometric level, but it has to

be remembered when using the string dualities explored in this paper. For example,

the symmetry defined by pβ1q2 gives rise to a so-called B-field on dual Calabi-Yau

spaces. Mathematically, this is given by a flat Z2-gerbe defined on these Calabi-

Yaus. We will leave a more detailed discussion on B-fields (and their relation to

monodromy of ADE singularities) for future work.

Example 3.1.9. Up to now, in all examples it was possible to write down a closed

G2-structure on V that descends to M . Now suppose V Ñ Q has a flat connection
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∇ with monodromy group H∇ acting by a representation ρ∇, and the platycosm

Q has a nontrivial holonomy representation ρQ : HQ Ñ SOp3q. Now both groups

of local sections need to be chosen in a compatible way. First, we need to pick a

common flat trivialization U for ∇ and δ. On local intersections, we need ρ∇pωq to

cancel out ρQpdxq. In general H∇ is isomorphic to a quotient of π1pQq, and even

if it happens that HQ ď H∇ and that the actions satisfy pρ∇q|HQ “ pρQq
´1, there

might still be other subgroups of H∇ that act non-trivially on ω, which will spoil

the gluing construction for η.

Thus, for a fixed Q, there are restrictions on which pV,∇q are allowed. If one

chooses ∇ such that the lattice subgroup Z3 ď π acts trivially, then H∇ “ HQ and

we just need to impose the inversion condition. However, not all platycosms will

admit flat bundles with this property; indeed, going back to the exact sequence

1 Ñ HompHQ, CSpp1qpΓqq Ñ Hompπ,CSpp1qpΓqq Ñ HompZ3, CSpp1qpΓqq

what we are looking for is a nontrivial element ρ P Hompπ,CSpp1qpΓqq that maps to

0, i.e., we need a nontrivial element of HompHQ, CSpp1qpΓqq. These do not exist if Q

is either G3 or G5 and Γ is of type Dn or E6,7,8. For the other platycosms, at least

one such element exists, since in this case all subgroups of HQ have even order and

one can pick the map sending all generators to ´1.

For type An, CSpp1qpΓq is big enough and one can always arrange such data for

any platycosm.
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We summarize these examples in the following:

Proposition 3.1.10. Suppose Q is a platycosm and Γ an ADE group such that

pQ,Γq R tpG3, DEq, pG5, DEqu. Then there is a nontrivial Γ-compatible quaternionic

flat bundle pV Ñ Q,∇q with a closed G2-structure ϕ0 that descends to a closed G2-

structure ϕ0 on M0 :“ V{Γ.

It is clear that M0 is the total space of a bundle of ADE-singularities of type

Γ over the platycosm Q. In particular, Q ãÑ M0 as the zero section and is a

codimension-four orbifold singularity in M . This inspires the following definition.

Definition 3.1.11. Given data as above, we say that M0 with its induced closed

G2-structure ϕ0 is an ADE G2-platyfold of type p∇,Γq.

We will often drop the reference to ∇ (and therefore to V) if it is implicit in the

discussion. ADE G2-platyfolds and their “string duals” will be the main subject of

this thesis.

Let p : M Ñ Q be the ADE G2-platyfold constructed above. There is an exact

sequence:

0 Ñ Kerpdpq Ñ TM
dp
Ñ TQÑ 0 (3.1.13)

where V :“ Kerpdpq is called the vertical bundle. A connection on M is equivalent

to a section s : TQ ãÑ TM , i.e., a splitting of the sequence; it defines a horizontal

distribution H “ spTQq Ă TM . This induces a splitting of the exterior derivative
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on M into d “ df ` dh ` FH, where df is a fiberwise differential, dh a horizontal

differential and FH is the curvature operator of H. In our situation, the connection

on M is induced from the flat connection ∇ on V, so F∇ “ 0.

In order to gain a better understanding of the integrability conditions on ϕ, it

is useful to work in a slightly more general setup. Most of the discussion in the rest

of this section follows [Don16] closely.

Definition 3.1.12. A hypersymplectic structure on an oriented four-manifold X is

a triple ω “ pω1, ω2, ω3q of symplectic forms such that at each point p P X, ωp spans

a maximal positive-definite subspace of Λ2pXq with respect to the wedge product.

In other words, ωi ^ ωj P ΓpX, Sym2
pXqq has positive determinant at every

point, and by rescaling the volume form one can take detpωi^ωjq “ 1 at all points.

Thus Gij :“ ωi ^ ωj is a Riemannian metric, and it is hyperkähler if and only if

ωi ^ ωj is a multiple of the identity.

Accordingly, we define a hypersymplectic element on pM Ñ Q,∇q to be an

element η P H˚ ‘ Λ2V ˚ such that at each point q, the linear map ηq : Hq Ñ Λ2V ˚q

injects Hq as a maximal positive subspace with respect to the wedge product.

We have the following theorems of Donaldson [Don16]:

Theorem 3.1.13. (Donaldson): A closed G2-structure on pM Ñ Q,Hq with coas-

sociative fibers and orientation compatible with those of M and Q is equivalent to

a choice of the following data:

• A hypersymplectic element η P H˚ ‘ Λ2V ˚ satisfying:
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dhη “ 0

dfη “ 0

• A tensor µ P Λ3H˚ satisfying:

dhµ “ 0

dfµ “ ´FHpηq

which is pointwise positive when seen as an element of Λ3T ˚Q – R.

Theorem 3.1.14. (Donaldson) A closed G2-structure as in Theorem 3.1.13 is

torsion-free if and only if the following holds:

dfγ “ ´FHν

dhγ “ 0

dfν “ 0

dhν “ 0

where γ and ν are determined from η and µ by:

γi ^ ηj “ δij
`

µ detpη ^ ηq
˘1{3

ν “ detpη ^ ηq1{3µ´2{3
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We refer to pH, η, µq as Donaldson data for a G2-structure on M . The G2 3-form

is given by ϕ “ η`µ, and its dual 4-form is ψ “ γ` ν. The equations for pH, η, µq

in Theorem 3.1.13 will be called Donaldson’s constraints for a closed G2-structure.

A third theorem of Donaldson will also be important:

Theorem 3.1.15. (Donaldson): Given a hyperkähler element η along the fibers of

M Ñ Q and a positive 3-form µ on Q, there is a unique connection H on M Ñ Q

such that pH, η, µq satisfies Donaldson’s constraints for a closed G2-structure on M .

It is clear now why our examples provided closed G2-structures: they were just

special cases of Donaldson data, in situations where the connection is flat. This

simplification gives an a posteriori reason to work with platycosms: while they

have plenty of flat connections, their character varieties are quite simple and can be

described explicitly. Deeper reasons will arise in the next section, where we will use

Donaldson’s theorems to study deformations of ADE G2-platyfolds via unfolding

of singularities; and in the next chapter, where the spectral data associated to a

deformation will be described explicitly.
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3.2 Deformation family for closed G2-structures

3.2.1 The Kronheimer family

Recall that we denote by gc a semi-simple complex Lie algebra, hc a Cartan subal-

gebra, and W the Weyl group. The compact real form of gc is denoted g, and h is

the associated real Cartan subalgebra.

We start this section by reviewing the construction of the Brieskorn-Grothendieck

versal deformation of the quotient singularity C2{Γ via Slodowy slices: let x be a

subregular nilpotent element of gc and complete it to a slp2,Cq-triple px, h, yq. De-

fine the Slodowy slice:

S “ x` zgcpyq Ă gc (3.2.1)

where zgcpyq is the centralizer of y, i.e. the kernel of the adjoint action of Gc on y.

Consider the GIT adjoint quotient gc Ñ gc{{Gc. Chevalley’s theorem says that

CrgcsGc – CrhcsW , so gc{{Gc – hc{W . Define Ψ : S Ñ hc{W to be the restriction

of gc Ñ hc{W to S.

Theorem 3.2.1. (Slodowy [Slo80]): The family Ψ has the following properties:

1. Ψ is a flat, surjective holomorphic map

2. Ψ´1p0q – C2{Γ

3. Given any other map Ψ1 : AÑ B satisfying properties 1 and 2 there is a map
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β : pB, bq Ñ phc{W, 0q such that Ψ1 “ β˚Ψ. The map β might not be unique,

but its derivative dβb is unique.4

4. Ψ is equivariant with respect to natural C˚-actions on S and hc{W

In other words, Ψ is the Brieskorn-Grothendieck C˚-miniversal deformation of

C2{Γ. Thus, the Slodowy slice is a geometric realization of the deformations of

C2{Γ inside the Lie algebra gc.

This embedding of S into gc comes with a symmetry group. Let C “ ZGcpxq X

ZGcpyq be the reductive centralizer (of x with respect to h).5 Its action on S

commutes with C˚, so there is an action of C˚ ˆC on S. The action of C restricts

to act on the fibers of Ψ (i.e., Ψ is C-invariant). The group C˚ ˆ C is called the

symmetry group of the Slodowy slice.

Lemma 3.2.2. C – C˚ for gc of type An, and C “ teu for types Dn and E6,7,8.

Proof. See Slodowy’s book [Slo80].

Kronheimer [Kro89a] constructed a deformation space for ALE-structures on

C2{Γ. He starts with pY k, I, J,Kq a certain flat simply-connected hyperkähler space

4This uniqueness at the infinitesimal level is known as miniversality. Any two miniversal

deformations of an ADE singularity are isomorphic, and their reduced Kodaira-Spencer map is an

isomorphism.
5The name is due to the fact that the identity component C0 is reductive, and the component

groups ZGcpxq{Z
0
Gc
pxq and C{C0 coincide.
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with a quaternionic action of G (i.e., G ď Sppkq), and constructs a hyperkähler

moment map:

µ “ pµ1, µ2, µ3q : Y k
Ñ R3

b g˚ (3.2.2)

such that for ξ P R3 b h˚ the hyperkähler quotient :

Sξ “ µ´1
pξq{G (3.2.3)

is well-defined and is also a hyperkähler space. In particular, it has a hyperkähler

triple pI, J,Kqξ induced from Y k.

One can then prove that if ξ P R3 b h, Sξ is an ALE space, and is non-singular

if and only if ξ R
Ť

υ R3 b Cυ, where Cυ is the hyperplane orthogonal to a root υ.

Kronheimer’s deformation family KÑ hc is constructed as follows: consider the

complexified moment map µc :“ µ2`iµ3 : Y k Ñ Cbg˚, where C “ pt0uˆR2, Iq, i.e.,

the complex structure I induces an identification R3 – R‘C given by pχ1, χ2, χ3q ÞÑ

pχ1, χ2 ` iχ3q. Then:

Sp0,χ2,χ3q “
`

µ´1
1 p0q X µ

´1
c pχ2 ` iχ3q

˘

{G (3.2.4)

is an affine variety with respect to the complex structure Ip0,χ2,χ3q. After passing to

a normalization, these spaces fit into the Kronheimer deformation family:

Θ : KÑ hc (3.2.5)
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which is a surjective flat holomorphic map with Θ´1p0q – C2{Γ.

Recall that Slodowy’s family Ψ : S Ñ hc{W is versal for C2{Γ, so Ψ must be

induced from it by pullback from a map between the parameter spaces. Kronheimer

proves that Θ is equivariant with respect to a C˚-action on K and weight 2 dilations

on hc. Due to Looijenga’s description of the period map for Ψ [Loo84], it follows

that Θ is induced from Ψ via pullback by the projection map pW : hc Ñ hc{W .

Definition 3.2.3. Fix non-zero χ2, χ3 P h. We say χ1 P h is generic if ξ “

pχ1, χ2, χ3q R R3 b Cυ for any root υ.

If χ1 is generic, the space Sξ is a nonsingular hyperkähler manifold, and there is

a resolution of singularities rξ : Sξ Ñ Sp0,χ2,χ3q. Therefore, any appropriate choice

of χ1 induces a simultaneous resolution6
rΘξ : rKξ Ñ hc of Θ (i.e., rΘξ “ Θ ˝ rξ).

We summarize Kronheimer’s results in the following:

Theorem 3.2.4. (Kronheimer): For every generic χ P h, there is a commutative

diagram:

6Tjurina [Tju70], building on previous work of Brieskorn [Bri68], proved that a flat holomorphic

map f : S Ñ T with two-dimensional fibers admitting at most finitely many rational double points

admits a local resolution of singularities: around any point t P T there is an open set U Ă T such

that the family f |f´1pUq admits a simultaneous resolution of all fibers, i.e. a commutative diagram

whose maps restricted to the fibers are resolutions of singularities. Kronheimer’s construction

gives the simultaneous resolution for the Brieskorn-Grothendieck C˚-miniversal deformation.
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ĂKχ K S

hc hc hc{W

rχ

rΘχ Θ Ψ

“ pW

satisfying the following properties:

1. rΘχ is a flat, surjective holomorphic map, with fibers diffeomorphic to the min-

imal resolution ĆC2{Γ of C2{Γ

2. rΘχ is a simultaneous resolution of Θ, i.e., rχ|Spχ,χ2,χ3q
is a resolution of sin-

gularities of Sp0,χ2,χ3q

3. rKχ inherits a C˚-action from Y k such that rΘχ is C˚-equivariant

Moreover, one can also prove:

Theorem 3.2.5. (Kronheimer [Kro89]): Given a (smooth) hyperkähler ALE space

S, there is a ξ “ pχ, χ2, χ3q with χ generic such that S – Sξ as hyperkähler mani-

folds.

3.2.2 A deformation family for hyperkähler structures

One should think of the base hc of the Kronheimer family rKχ as parametrizing

infinitesimal deformations of the holomorphic symplectic structure on ĆC2{Γ. The

reason is the following: let hą be the positive Weyl chamber. By the McKay corre-

spondence, hą is isomorphic to the Kähler cone of ĆC2{Γ, with tangent spaces h. A

choice of complex structure on ĆC2{Γ induces an isomorphism T phąqbC – hc, so the
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deformation parameter is a complexified Kähler class, which is in fact holomorphic

[HKLR87]

For our purposes, we need to make a clear distinction between deformations of a

holomorphic symplectic structure (HS) and deformations of a hyperkähler structure

(HK). The main point is that, even though Kronheimer’s construction produces all

HK ALE spaces, it does not fit them together in a family induced from the Slodowy

slice. In order to write diagram 3.2.4, one needs to fix a complex structure (say,

I) and an element χ P h. This fixes the HK-structure but does not account for all

deformations. However, we will need to work with the full HK family.

First we need to fix the complex structure. Let V be the adjoint representation

of SUp2q. In comparing rΘχ1 and rΘχ, they correspond to different choices of Kähler

classes for a fixed complex structure I inducing a linear isomorphism V – R ‘ C.

In other words, the complex structure is fixed once a choice of splitting V – R‘C

has been made. We write hV :“ hb V .

Under the McKay identification h – H2pSξ,Rq, for every fixed ξ “ pχ, χ2, χ3q,

one should think of the deformation parameter:

χ2 ` iχ3 P hcz
ď

υ root

Cb Cυ (3.2.6)

as a choice of cohomology class for a I-holomorphic symplectic form on the fiber

rΘ´1pχ2 ` iχ3q – Sξ.

This is where the distinction between the HS and HK structures on the fibers
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comes in. For each χ P h˝ :“ hz
Ť

Cυ, the family rΘχ provides a HS-deformation

of C2{Γ, meaning, a deformation of the singularity together with a two-form ωc P

Ω2prKχ{hcq that restricts to a a holomorphic symplectic form ωχ2`iχ3
c on every fiber,

varying holomorphically with χ2`iχ3 P hc. It is clear that for χ1 ‰ χ, the manifolds

rΘχ1 and rΘχ are isomorphic as holomorphic symplectic manifolds.

However, the associated hyperkähler manifolds are not the same. Indeed, the

following well-known proposition shows that a HK-structure is equivalent to a HS-

structure + a complex structure and a Kähler class:

Proposition 3.2.6. (Beauville): Let pS,Ωq be a holomorphic symplectic manifold

with a complex structure I and rωs P H1,1pSq a Kähler class. Then there is a unique

hyperkähler structure pI, J,Kq on S such that rωIs “ rωs and Ω “ ωJ ` iωK.

Proof. Follows from the Calabi-Yau theorem.

Therefore, we work with the pullback of Θ : K Ñ hc by the projection map

pI : hV Ñ hc. We denote this family by Ξ : QÑ hV . The fibers are Ξ´1pχ, χ2, χ3q “

Xp0,χ2,χ3q.

We now “glue” all families rKχ together and define a family rΞ : rQ Ñ hV and a

map r : rQÑ Q such that prΞ, rq|tχuˆhc “ prKχ, rχq.

Proposition 3.2.7. There is a family of spaces rΞ : rQÑ hV and a diagram:

rQ S

hV hc{W

rΞ Ψ

pW ˝pI
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Each generic fiber rΞ´1pχ, χ2, χ3q is a hyperkähler deformation of ĆC2{Γ. More-

over, the hyperkähler triple on each fiber is induced from a relative triple ωunf P

`

Ω2p rQ{h˝V q
˘3

varying smoothly with h˝V .

The notation ωunf is meant to emphasize that this element induces HK-structures

on the unfoldings Sξ of the singularity C2{Γ.

Proof. By Kronheimer’s construction, the element pχ2, χ3q determines the class of

a I-holomorphic symplectic form ωχ2`iχ3
c on the fiber rΞ´1pχ, χ2, χ3q. The choice

of χ P h determines a Kähler class ωχ and hence a fixed hyperkähler structure.

Under the identification h – Thą, one can think of pχ, χ2, χ3q as a “tangent hy-

perkähler vector” on the Kähler cone of ĆC2{Γ. The global relative triple is defined

by ωunfpχ, χ2, χ3q “ pω
χ, ωχ2`iχ3

c q.

Note that
`

Ω2p rQ{h˝V q
˘3

is a locally constant sheaf on h˝V whose stalk at ξ is

Ω2pSξ,Rq, and ωunf is a locally flat section of this sheaf.

We end this section by fixing some notation for the family rΞ : rQ Ñ hV . The

trivial flat connection will be denoted by Hunf. We also define C˚-actions κf on rQ

and κb as follows: first recall there are C˚-actions ρf on K and ρb on hc making Θ

equivariant. We define
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κf pλq
`

χ, χc, x
˘

:“
`

|λ|2χ, ρf pχc, xq
˘

κbpλq
`

χ, χc
˘

:“
`

|λ|2χ, ρbpχcq
˘

@λ P C˚

Then clearly equivariance of Θ implies equivariance of rΞ. Notice also that the

definition ensures there is no proper C˚-invariant neighborhood of 0 in rQ. It follows

that ωunf is unique up to scale and that the period map of rΞ is pW ˝pI : hV Ñ hc{W .

3.2.3 Fibering hyperkähler deformations over a platycosm

Let pQ, δq be an oriented platycosm, and fix all data as in definition 3.1.11. Our

resulting M0 is then an ADE G2-platyfold of type Γ, with closed G2-structure ϕ0.

We write pη0, µ0,H0q for its associated Donaldson data; in particular, H0 is the

horizontal distribution associated to the connection ∇ on V, and hence is flat and

preserves the vertical hyperkähler structures. Let g be the compact Lie algebra

associated to Γ, h a Cartan subalgebra, and r :“ rankpgq “ dimphq.

In this section we will use our adaptation of Kronheimer’s construction (specifi-

cally Proposition 3.2.7) to build a family of hyperkähler deformations E parametrized

by Q. We will prove that flat sections of this family define 7-manifolds with a

closed G2-structure. Such manifolds appear as subspaces of what is essentially “the

Slodowy slice over E”. Moreover, the image of such sections can be embedded in

T ˚Q and admit an interpretation as “flat spectral covers” of Q. To explain what

these objects are, let hQ Ñ Q be the trivial flat bundle of Cartan subalgebras.
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Consider the flat bundles:

EW :“ totpphQ b T
˚Qq{W qÑQ

E :“ totphQ b T
˚QqÑQ (3.2.7)

which are 3pr ` 1q-dimensional real manifolds. We denote by δE the flat structure

induced by δ on E. There is a natural projection map E Ñ EW which is a |W |-to-1

cover with Galois group W . Suppose we have a section s : Q ãÑ EW . We call the

restriction EW |spQq Ñ Q the spectral cover of Q associated to s. Note that s can be

viewed as a multi-section of T ˚Q Ñ Q, which is the usual formulation of spectral

covers.

The fiber product:

Σs :“ E ˆEW Q (3.2.8)

is called the cameral cover of Q associated to s. It comes equipped with a natural

|W |-to-1 map Σs Ñ Q and an embedding Σs ãÑ E. Given Σs and these two maps,

one can recover the section s, and hence the spectral cover.

The spectral covers that will be of interest to us are a slight modification of this

example, where we replace E by a flat vector bundle E with the same fibers, but

transition functions “twisted” by V.

Our goal in this section is to prove the following result:
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Theorem 3.2.8. There is a rank 3r flat vector bundle t : E Ñ Q and a family

u : U Ñ E of complex surfaces, equipped with Donaldson data:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

η P Ω2pU{Eq b u˚Ω1pEq

µ P u˚Ω3pEq

H : u˚TE Ñ TU a connection

(3.2.9)

The family has the following properties:

1. U |0pQq –M0

2. pη ` µq|M0 “ ϕ0

3. U |t´1pqq – Q

where 0 : QÑ E denotes the zero-section.

Moreover, given a flat section s : Q Ñ E, let Ms :“ u´1pspQqq. Then the

restrictions pη|Ms , µ|Ms ,H|Msq satisfy Donaldson’s criteria, and hence define a closed

G2-structure ϕs :“ pη ` µq|Ms on Ms.

Corollary 3.2.9. Given an ADE G2-platyfold pM0, ϕ0q Ñ Q, there is a moduli

space of closed G2-deformations given by:

MG2pM0q :“ ΓflatpQ, Eq (3.2.10)

In other words, the deformations of pM0, ϕ0q are parametrized by flat spectral

covers of Q.
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The main ingredient to prove Theorem 3.2.8 will be, once E is constructed, to

pullback the modified Kronheimer family from last section to E . In order to do

that, we need a map E Ñ hV compatible with the flat structure on E . However, we

do not have such a map; indeed, notice that even in cases when t : E Ñ Q is trivial

as a smooth vector bundle - which happens exactly when pV,∇q is trivial -, it is not

trivial as a flat vector bundle: the metric connection δ has non-trivial monodromy

Hπ, and the same is true for the induced flat structure δE . To circumvent this issue,

we work over a flat trivialization of E , where such maps are available locally; then

we glue the pullback families together using the cocycle of V.

Another equivalent formulation would be to work with the pullback of E to the

universal cover rQ Ñ Q. In fact, we can do something simpler: we can work over

the monodromy cover of Q, i.e., the minimal cover where the monodromy action

is trivial. Due to Bieberbach’s theorem, the monodromy cover of a platycosm is

always a three-torus T. It is defined by a finite unramified covering map c : T Ñ Q

with Galois group Hπ. We then get a trivial flat bundle rE Ñ T, and we can choose

a flat trivialization where rE – Tˆ hV . This gives us a map:

κ : rE Ñ hV (3.2.11)

This is simpler than working in the universal cover because we only need to worry

about the action of Hπ, i.e. we can forget the lattice Z3 ď π. The drawback of this

approach is that one must be careful to choose Donaldson data Hπ-invariantly.
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We will break the proof of Theorem 3.2.8 into a few lemmas:

Lemma 3.2.10. There is a vector bundle t : E Ñ Q with rankpEq “ 3r and a family

u : U Ñ E of complex surfaces satisfying:

1. U |0pQq –M0

2. U |t´1pqq – Q

where 0 : QÑ E denotes the zero-section.

Proof. Let U :“ tUi; i P Iu be a trivializing flat cover of Q (i.e, δ|Ui has trivial

monodromy) which also trivializes pV,∇q Ñ Q. The argument essentially consists

of gluing together “locally constant” copies of Q Ñ hV over Ui using the cocycle

defining the vector bundle V. The proof in the holomorphic setup is due to Szendrői

[Sze04], and it follows through also in our flat setup. We reprodruce it here for

completeness.

Let ζV P H1pU, CΓq be the cocycle of transition functions of V Ñ Q. It is

valued in CΓ since V comes equipped with a compatible fiberwise Γ-action. Since

CΓ ď Spp1q, it acts on hV by rotating the hyperkähler classes, so we have a map

CΓ Ñ GLphV q. This induces:

ε : H1
pU, CΓq Ñ H1

pU, GLphV qq (3.2.12)

and since H1pU, GLphV qq – H1pQ,GLphV qq, the image εpζVq defines a rank r vector

bundle t : E Ñ Q. This bundle is trivialized by U, so we write E |Ui – Uiˆ hV . This
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gives us maps

ψi : E |Ui Ñ hV (3.2.13)

Note that the metric on Q gives an isomorphism T ˚Q – Λ2TQ, and this last

space is exactly the adjoint bundle of SUp2q. This allows us to write E |Ui – Uiˆhb

T ˚Ui. The global identification between the flat bundles E and hbT ˚Q is given by

the inversion condition: let ζT˚Q and ζE “ εpζVq be the cocycles of the respective

bundles. Let Ad|Hπ : Hπ Ñ SOpV q be the standard representation restricted

to Hπ Ă SOp3q. This gives AdHπpζT˚Qq P H
1pU, SOpV qq Ă H1pU, GLphV qq via

A P SOp3q ÞÑ 1b A P GLphb V q. Then ζE “ Ad|HπpζT˚Qq
´1.

Now consider the hyperkähler family Ξ : Q Ñ hV , which is itself a pullback of

the Kronheimer miniversal deformation Θ : K Ñ hc by a map p2 : hV Ñ hc. Let

Ui :“ pψi ˝ p2q
˚K. This gives, for every i P I, a family of complex surfaces:

ui : Ui Ñ Ui ˆ hV (3.2.14)

We now glue these families together over the Ui’s using the Čech cocycle ζV P

H1pU, CΓq. For this to make sense, we need to realize CΓ as a subgroup of AutpKq.

But this follows from CΓ ď AutpC2{Γq and the fact that this last group acts on K,

as K Ñ hc is miniversal. So we can think of ζV as an element of H1pU, AutpKqq.

Thus, the datum tpU, ζV, uiq; i P Iu provides us with a family of complex surfaces:
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u : U Ñ E (3.2.15)

and, by construction, U |t´1pqq – Q.

Now restrict u to the zero-section 0 : Q Ñ E . Being the zero-section means

that U |0pQq is glued by local pieces Ψ´1p0q ˆ Ui – C2{Γ ˆ Ui according to ζV, i.e.,

U |0pQq –M0.

We now have a diagram:

U

E

Q

u

q

t

(3.2.16)

Lemma 3.2.11. There are elements:

$

’

’

&

’

’

%

η P Ω2pU{Eq b u˚Ω1pEq

µ P u˚Ω3pEq
(3.2.17)

satisfying:

pη ` µq|M0 “ ϕ0 (3.2.18)

Proof. For each trivializing open set Ui, fix an oriented basis of flat local sections

 

σ˝1,i, σ
˝
2,i, σ

˝
3,i

(

Ă Ω1pUiq such that η0|Ui “ ωunfp0, 0, 0q b σ˝i . On intersections

Ui X Uj these sections glue according to the monodromy Hπ ď SOp3q of pQ, δq.
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Let ζT˚Q P H1pU, SOp3qq be the associated Čech cocycle. Due to the inversion

condition, ωunfp0, 0, 0q is glued over open sets according to ζ´1
T˚Q. Moreover, since

pQ, δq preserves an orientation, detpζT˚Qq “ 1 and σ˝1,i ^ σ
˝
2,i ^ σ

˝
3,i is a well-defined

global flat 3-form on Q, which we normalize to be equal to the given µ0. This form

pulls-back to a global flat element t˚µ0 P Ω3pEq. Define:

µ :“ pu´1t˚qµ0 P u
´1Ω3

pEq (3.2.19)

This is a global section of the sheaf u´1Ω3pEq on U . The notation u´1 means

that we take the subsheaf of the pullback whose sections are constant in the vertical

direction.

Now, for a P t1, 2, 3u, consider the pullbacks:

pωaqi :“ ψ˚i pωaqunf P Ω2
pUi{Eiq

pσaqi :“ u˚i t
˚
i σ
˝
a,i P u

˚
i Ω

1
pEiq (3.2.20)

where ti : Ei Ñ Ui is the obvious map.

Since the pσaqi’s are pullbacks of the σ˝a,i, they glue together over U according

to ζT˚Q. Since Ω2pUi{Eiq is glued over the Uij’s according to the Čech cocycle

εpζVq “ Ad|HπpζT˚Qq
´1, it follows that the element:

ηi :“
3
ÿ

a“1

pωaqi b pσaqi (3.2.21)

is such that ηi|Uij “ ηj|Uij so defines a global section:
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η P Ω2
pU{Eq b u˚Ω1

pEq (3.2.22)

Now consider pη`µq|M0 . For every i, pψi|M0q
˚ωunf is just the hyperkähler struc-

ture on the central fiber of the Slodowy slice, glued over Q according to ζV. Thus

it is clear that η|M0 “ η0 and µ|M0 “ µ0.

Lemma 3.2.12. Let s be a flat section of t : E Ñ Q and let Ms :“ u´1pspQqq.

Define πs :“ u|Ms : Ms Ñ spQq. There is a connection H on u : U Ñ E such that

H restricts to a flat connection Hs on πs.

Proof. What we want is to show there is a splitting:

0 T pU{Eq T pUq u˚T pEq 0

DH?

(3.2.23)

inducing a second splitting:

0 T pMs{spQqq T pMsq u˚T pspQqq 0

DHs?

(3.2.24)

and normalized to restrict at the zero section to:

0 T pM0{Qq T pM0q u˚T pQq 0

H0

(3.2.25)

To construct H, we claim that all we need to do is to define a partial connection

Hq on t, i.e., a splitting:
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0 T pU{Eq T pU{Qq u˚T pE{Qq 0

DHq?

(3.2.26)

To see why this is so, assume we have constructed Hq and consider the diagram:

0 T pU{Eq T pU{Qq u˚T pE{Qq 0

0 T pU{Eq T pUq u˚T pEq 0

q˚T pQq q˚T pQq 0

g1

“

g

ι

Hq

f 1 f

H δE

“

δE

(3.2.27)

Here δE is the flat connection on E Ñ Q. We want to define a section H of f .

Because δE splits the last vertical sequence, the section δE exists so we can define

H as the composition ι ˝Hq ˝ δE .

Now, notice that over each UiˆhV , we can find a copy of ThV Ă TUi. This is of

course just the trivial connection ψ˚i Hunf on Ui Ñ hV . We can glue these together

over the Ui’s using the cocycle of U to obtain a distribution Hq Ă TU . Note that by

construction, this distribution is vertical with respect to Q, that is, Hq Ă T pU{Qq.

So it defines a flat partial connection as desired.

Thus, we have defined a connection H on u. Now we show it restricts to a flat

connection Hs on πs. In fact, Hs will only depend on the vertical part Hq of H:

u˚T pspQqq Ă u˚HδE “ u˚t˚TQ “ q˚TQ ãÑ TU (3.2.28)
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Here the first containment is the flatness of s, while the last map is the connection

Hq. Since we are only looking over spQq Ă E , this actually produces a map into

TU |Ms . This gives the connection Hs. It is flat because both δE and Hq are.

Moreover, it is clear from the construction of Hq that H|0 “ H0.

Lemma 3.2.13. The restrictions pηs, µs,Hsq :“ pη|Ms , µ|Ms ,H|Msq satisfy Donald-

son’s criteria:

$

’

’

&

’

’

%

dfηs “ 0

dHsηs “ 0

$

’

’

&

’

’

%

dfµs “ 0

dHsµs “ 0

(3.2.29)

and hence define a closed G2-structure ϕs :“ ηs ` µs on Ms such that πs : Ms Ñ Q

is a coassociative fibration.

Proof. We have proved there is a natural connection H on q : U Ñ Q. This allows

us to define a horizontal differential :

dH : Ωk,l
pUq Ñ Ωk,l`1

pUq (3.2.30)

as follows: for horizontal elements, just apply q˚dQ. Consider a vertical element

v P Ωk,0pUq. It represents an element v1 P ΩkpUq. Then apply dUv
1 and project it

down to get to Ωk`1,0pUq. Define the result to be dHv. Then one proves that if a

different representative v2 P ΩkpUq is chosen, dUv
1´dUv

2 is a horizontal form, hence

is killed by the projection to Ωk`1,0pUq.

Thus H induces a decomposition, dU “ df ` dH ` FH. Since H is flat, we have
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FH “ 0.

It is enough to show that Donaldson’s criteria are met by the triple pη, µ,Hq,

and the result will follow by restriction to s.

The equations dHµ “ 0 “ dfν follow from the definitions of ν and µ. The

equations dfµ “ 0 and dHη “ 0 then follows from the fact that µ and η are closed.

We can now provide a good visualization of our family of 7-manifolds. Consider

the diagram:

F U Q

QˆH0
flatpQ, Eq E hV

H0
flatpQ, Eq Q

w:“τ˚u
f

u

q

Ξ

τ

π2

p2

t

(3.2.31)

Here, τ is the tautological map: τpq, sq :“ spqq and F is the pullback of U by τ .

From now on, we write B :“ H0
flatpQ, Eq.

Our family of interest is f : F Ñ B. For every section s P B, Ms “ f´1psq

is a 7-manifold given by an ALE-fibration over Q, with the fibration given by

πs :“ w|Ms : Ms Ñ Q. Notice that due to the nature of the map τ , different flat

sections pick different profiles of ALE-fibers. In particular, f´1p0q “M0.

One should think of pMs, ϕsq as a “flat hyperkähler deformation” of pM,ϕ0q.

This picture also provides us with an explicit model for the moduli space of such

G2-structures: it is just the base B, and it only depends on h and the flat structure
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δ on Q. We will study an explicit model in the next chapters, where g “ supnq and

Q is the Hantzsche-Wendt platycosm. Moreover, we will show that the sections s

have an interpretation as an analogue in flat geometry of spectral covers of Higgs

bundles.

Remark 3.2.14. Before we end this section, we would like to explain the connection

of this construction with a certain “partial topological twist”, which was introduced

in [Ach98] and discussed in detail in [BCHSN18]. The relevant condition here is

that the connection δ is metric. The metric on Q induces an isomorphism T ˚Q –

Λ2TQ, and this last space is the bundle of adjoint representations of SUp2q. The

condition identifies these two as flat bundles, so that locally flat 1-forms can be

naturally identified with locally flat adjoint sections. The partial topological twist

can then be described as follows: if one starts with a G2-manifold M fibered by

ALE spaces over Q, and global relative 2-cycles αi P H2pM{Q,Rq, then pairing

the G2-structure ϕ with the αi’s gives n 1-forms θi P Ω1pQq, each of which has

3 components θi “ pθ1
i , θ

2
i , θ

3
i q. On the other hand, at each ALE-fiber, we can

associate to pαiqq the three periods of the hyperkähler structure. This gives local

functions f iU : U Ă Q Ñ R3. Because V Ñ Q is flat, these functions can be glued

together to form global functions, up to monodromy of the flat connection. The

topological twist requires that the θi’s agree locally with the f i’s.

What we have argued here goes in the reverse direction: if one starts with the

condition, then the deformations of M0 given by flat sections admit natural closed
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G2-structures.

It would be interesting to give a more “invariant” description of this condition.

One idea would be to formulate it in Costello’s framework [Cos13]. We believe a

more geometric formulation would involve replacing the oriented affine structure on

Q by a “Z2-twisted oriented affine structure”, i.e., a pR3, Gq-structure on Q where

G fits into the exact sequence 1 Ñ R3 Ñ GÑ SUp2q Ñ 1 (the Z2 here refers to the

covering group of SUp2q Ñ SOp3q). This would possibly extend the construction

to a class of spaces slightly more general than the platycosms.

3.3 The Hantzsche-Wendt G2-platyfold

In section 3.1 we explained how to construct closed G2-structures on ADE G2-

platyfolds. The construction essentially relies on matching two monodromy actions,

one coming from the flat base, and another coming from a flat bundle. In partic-

ular, if one starts with a trivial flat bundle, there are no obstructions. In view

of the results of the previous section, it is natural to ask what is the deformation

space for these G2-structures. The construction of the deformation family simplifies

considerably when pV,∇q is trivial, so we will focus on this case.

In the next chapter, we will give a geometric interpretation for the flat sec-

tions parametrizing deformations of G2-structures in terms of certain “flat Higgs

bundles”. The interpretation comes from M-theory/IIA duality, which requires us

to study M-theory compactified on our G2-manifold. However, not all ADE G2-
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platyfolds define N “ 1 compactifications (as required by M-theory). Among the

examples we have discussed, 3.1.6 is the sole one that passes this test; hence, we

will use it as our main testing ground in studying the predictions of string dualities.

Definition 3.3.1. The ADE G2-platyfold M0 :“ C2{Γ ˆK G6 will be called the

Hantzsche-Wendt G2-platyfold of type Γ.

The reason why only M0 admits a sensible compactification is the following: M-

theory compactified on a G2-space M is a N “ 1 supersymmetric theory. Mathe-

matically, this means that the space of parallel spinor fields onM is one-dimensional.

If M is an ADE G2-platyfold over Q, then the holonomy of its Riemannian metric

is M is H “ SUp2q ¸HQ Ă G2. By the Berger-Wang classification of Riemannian

holonomies, the N “ 1 condition holds if and only if HQ is not conjugate to a

subgroup of SUp3q Ă G2.

The holonomies HQ of the orientable platycosms are classified by Theorem 2.1.3,

and they are all finite subgroups of SOp3q. From the classification of finite subgroups

of SOp3q, we see that the finite cyclic subgroups necessarily fix an axis in R3; this

automatically implies that in such cases, the holonomy can be conjugated to SUp3q.

The only remaining group HG6 – Z2 ˆ Z2 acts on R3 without fixing an axis (see

equation 2.1.3), and it cannot be conjugated to a subgroup of SUp3q.

Of course, one could go around this issue by making pV,∇q nontrivial. In fact,

as the examples in section 3.1 suggests, it is possible that the monodromy of ∇

can supply extra factors to the Riemannian holonomy group, and hence generate
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sensible M-theory compactifications based on the other platycosms. E.g., one could

take a flat bundle over T with monodromy one of the non-cyclic finite subgroups

of SOp3q; these are D2n, A4, S4 and A5. Another interesting question that we will

not touch here is determining whether a deformation of an ADE G2-platyfold can

acquire a metric with full holonomy G2.

3.4 Associative deformations of the zero-section

In this section we prove that the flat three-torus Q “ T3 is the only closed orientable

3-manifold that is non-rigid as an associative zero-section of an ADE G2-orbifold

M Ñ Q. As Proposition 3.4.1 below shows, the spinor bundle {SQ Ñ Q is a

trivial (smooth) bundle. Moreover, since Spinp3q “ SUp2q, {SQ is the bundle of

adjoint representations of SUp2q, i.e., it is exactly the (smooth) vector bundle V.

In particular, a choice of flat quaternionic connection ∇ and McKay group Γ induce

an ADE G2-orbifold M Ñ Q by M – {SQ{Γ. We will prove that the result for

V Ñ Q, and hence the same will hold for M . In particular, it will follow that G6 is

rigid as an associative submanifold of M0.

Remark: Every closed orientable 3-manifold Q is spin. This is because one can

prove there is a covering map QÑ S3 branched in the complement of an open ball

D3 Ď S3. But T ˚S3 is trivial, and the obstruction to extend a trivialization over

D3 lies in π2SOp3q “ 0.

The zero section Zp{SQq – Q is an example of an associative submanifold : this

55



means that ϕ|Q “ volQ (equivalently, ‹ϕ|Q “ 0). The deformation theory of asso-

ciative submanifolds of a G2-manifold is generally obstructed. Deformations of Q as

an associative submanifold of {SQ are given by sections of the normal bundle NQ{ {SQ

preserving the associativity condition. This normal bundle can be identified (see

McLean) with a bundle of twisted spinors, {SpQq bH E. Then the condition on the

section is that it is a harmonic twisted spinor. However, because we are working on

the total space of {SQ Ñ Q itself, there is no twist (E is trivial), so the associativity

condition on the section is just that it is a harmonic spinor. This is exactly what

happens in this case:

Proposition 3.4.1. Let Q be an orientable 3-manifold. Then {SQ is a trivial bundle.

Proof. {SQ is the vector bundle associated to the principal spin bundle SpinpQq Ñ Q

via the spinor representation. Let f : QÑ BSpinp3q be the classifying map. Then

{SQ is trivial ðñ f is null-homotopic. But BSpinp3q is the 3-connected cover7 of

BSOp3q, that is, π3pBSpinp3qq “ 0. Since dimQ “ 3, the result follows.

Remark 3.4.2. Orientable 3-manifolds are parallelizable, i.e., any map QÑ BSOpnq

is null-homotopic.

Finally, we notice that if Q is an orientable platycosm (hence the scalar curvature

vanishes), the Lichnerowicz-Weitzenböck formula for the Dirac operator shows that

7This is a nontrivial fact, and it actually holds for n ě 3. For lower n, BSpinpnq is only the

2-connected cover.
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harmonic spinors are parallel. Thus, if e.g. Q “ T is a flat 3-torus, any spin

structure has parallel spinors, and thus T is deformable as an associative in M “

{SpT 3q. In fact, this is the only non-rigid example:

Theorem 3.4.3. Let Q be a compact, connected three-manifold, and assume {SQ

admits a G2-structure. Then the associative Q Ă {SQ is non-rigid ðñ Q is the

flat three-torus.

Proof. As mentioned before, a deformation of Q is given by a parallel spinor ψ P

H0
flatpQ, {SQq. If ψ ‰ 0, then Q is known to be Ricci-flat, hence flat since dimQ “ 3.

This implies that i) Q is a Bieberbach manifold and ii) ψ is harmonic. But Pfäffle

showed ([Pfä00] Theorem 5.1) that the only flat spin manifold where the Dirac

operator has non-trivial kernel is the three-torus with its trivial spin structure.

This applies in particular to Q “ G6. This manifold inherits half of the spin

structures of T 3 under the pushforward by T 3 Ñ G6. Regardless of which one is

chosen, Proposition 3.4.1 implies that G6 ˆ C2 – {SG6
and hence by Theorem 3.4.3

the zero-section is rigid as an associative submanifold. We have proved:

Proposition 3.4.4. G6 is rigid as an associative submanifold of M0.

3.5 Coassociative deformations of the fibers

Coassociative submanifolds are four-dimensional submanifolds S of a G2-manifold

pM,ϕq such that ϕ|S “ 0 (equivalently, ‹ϕ|S “ volS). Coassociative deformations

57



are described by the following result of McLean:

Theorem 3.5.1. (McLean): Deformations of compact coassociatives submanifolds

S of a G2-manifold M are unobstructed, and the moduli space of coassociative de-

formations CS can be identified with an open set of H2
`pS,Rq. Hence CS is a smooth

manifold of dimension b2
`pSq.

Suppose M Ñ Q is a coassociative fibration by ALE-spaces S. Since S is

hyperkähler, H2
`pSq,Rq – R3 is identified with the adjoint representation. The

metric on Q gives T ˚Q – Λ2TQ, which is also the adjoint representation. Hence

TrSqsC – H2
`pSq,Rq – T ˚Q and hence Donaldson data can be also understood as

describing simultaneous coassociative deformations of all fibers.
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Chapter 4

Type IIA duals

4.1 M-theory/IIA duality

M-theory/IIA duality is a well-known symmetry of string/M-theory generalizing

Kaluza and Klein’s electrogravity unification. In our context, one can think of it

as a map between geometric structures on a G2-space M and a dual Calabi-Yau

manifold X. Additionally, in the presence of M2/D6-branes, the duality relates

a locus of ADE singularities of type Γ on M to a G-connection on a dual special

Lagrangian submanifold of X [Sen97] [AW01]. Here, G is the compact real Lie

group that is McKay dual to the finite ADE group Γ.

Physically, one imagines a two-cycle on the desingularization of M (a “M2-

brane”) being blown-down to a singularity of type Γ, and hence becoming massless1.

The dual description is given by a configuration of r “ rankpGq “D6-branes”, i.e.,

1The mass of a membrane is proportional to its area.
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complex line bundles with Up1q-connections on special Lagrangian submanifolds

of X, with open strings stretching between them. In the massless limit, the D6-

branes are smashed together on a single submanifold, with a distribution pattern

dictated by the Dynkin graph of Γ, and thus producing a rank r vector bundle with

a G-connection.

In this chapter we study the moduli spaces of IIA duals to singular M-theory

compactifications on ADE G2-orbifolds M Ñ Q. The M-theory moduli space2 MC
G2

is a “complexification” of the moduli space MG2 we studied in the first chap-

ter. The IIA picture is useful because, as we will show, the relevant moduli space

parametrizes certain “flat Higgs bundles” pE, θq on Q. Both E and θ depend non-

trivially on the G2-structure ϕ and its complexification data. In the next chapter,

we prove a spectral correspondence for pE, θq that allows us to “untwist” the Higgs

data and identifies MG2 ĂMC
G2

with the moduli of “flat spectral covers”, i.e., the

base of the Hitchin system for pE, θq. This gives an algebro-geometric interpretation

to the G2-deformations described in the previous chapter.

Remark 4.1.1. To be more precise, we will be studying the gauge-theoretic de-

scriptions of M-theory and IIA strings, which are sometimes refered in the physics

literature as the weakly-coupled limits. In this limit, the theories are described as

supersymmetric gauge theories in 11 and 10 dimensions, respectively. The type of

2For the physicist reader, we note that we consider M-theory with a vanishing cosmological

constant. If this requirement is dropped, the moduli space is enhanced to include the moduli of

all G-connections on M , where G is the gauge group.
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geometric structure arising in the compactification manifolds M and X are deter-

mined by dimensionally reducing the equation for a 11 or 10 dimensional parallel

spinor down to 7 or 6 dimensions. In the first case, one obtains stationary points

of the 7-dimensional Chern-Simons functional CSpϕCq :“
ş

M
ϕC ^ dϕC, which are

exactly the integrable complexified G2-structures. In the second case, one obtains

the Hermitian-Yang-Mills equations.

Suppose M Ñ Q is an ADE G2-orbifold (of type An for concreteness), endowed

with a Up1q-action by isometries with fixed set Q Ă M . In analogy with Kaluza-

Klein theory, we would like to define the space of orbits X :“ M{Up1q as the type

IIA dual of M . The orbit map d : M Ñ X maps Q homeomorphically to dpQq, so

by abuse of notation we also denote the latter by Q.3

The Calabi-Yau space X is called a IIA dual for M if it satisfies the following

[Ach00] [AW01]:

1. X :“M{Up1q as smooth spaces.

2. The complex structure J on X has a real structure such that Q is a totally

real special Lagrangian submanifold.

3. There are n D6-branes “wrapping” Q Ă X.

We note that the D6-branes in this setup fill the noncompact spacetime direction

3Note that dpQq is more precisely seen as a singular stratum of X, but we will not make explicit

use of this extra structure in what follows.
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R3,1. Hence, being 6` 1-dimensional objects, they must be supported on a 3-cycle.

The special Lagrangian requirement is part of the supersymmetry condition.

These conditions do not say anything about the Calabi-Yau metric on X, so it

is not clear how to construct it. If our X is near the large volume limit, the metric

should be semi-flat and thus must be determined from a condition on the Hessian

metric on the base B of the SYZ fibration of X. In the next section, we will provide

evidence that the condition should be that B can be identified with an open set of

an orbit in a moduli space of monopoles.

The IIA moduli space MIIA parametrizes the following objects:

1. Complex structures on X in which Q is totally real.

2. Complexified Kähler structures on X

3. A supersymmetric configuration of n D6-branes wrapped on Q.

Remark 4.1.2. For the local model X “ T ˚Q, once the metric on Q is fixed, there

is a unique complex structure on T ˚Q under which Q is totally real. This is the

complex structure that makes the semi-flat metric on T ˚Q a Calabi-Yau metric.

4.2 The Acharya-Pantev-Wijnholt system

We now analyze the supersymmetry condition for a configuration of n D6-branes

wrapping Q. If we work with any Calabi-Yau, the moduli space of such configura-

tions receive corrections from holomorphic disks bounded by the branes. However,
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if we assume X is near the large volume limit, such corrections are small and we

can replace X by the symplectic linearization T ˚Q. We will argue then that the

brane configuration is described by a triple pE,Ac, hq consisting of a rank n complex

vector bundle, a “stable” flat SLpn,Cq-connection Ac on Q, and a harmonic metric

h on E. The equation determining h is a moment map condition that selects a

prefered gauge orbit of Ac under complexified gauge transformations. In the next

section we will give an interpretation of this data by using Corlette’s theorem to

introduce a moduli space of “flat Higgs bundles” on Q.

Remark 4.2.1. It is known [Wit96] that a configuration of n D6-branes on a fixed

special Lagrangian Q is described by a SUpnq-connection on Q. In our setup, the

extra complexified directions parametrize Kähler deformations that keep Q special

Lagrangian.

The unbroken supersymmetry (BPS) condition for IIA string theory on T ˚Q

with n D6-branes is given by the Hermitian-Yang-Mills equations :

$

’

’

&

’

’

%

F2,0 “ 0

ΛF “ 0

(4.2.1)

Here F is the curvature of a SUpnq-connectionA on a holomorphic vector bundle

E over T ˚Q endowed with a hermitian metric, and Λ is the Lefschetz operator of

contraction by the Kähler form. Note that becauseA is hermitian, the first equation

implies F0,2 “ F2,0 “ 0.

It is known that the supersymmetry condition for one D6-brane wrapping Q is
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given by a flat connection on a complex line bundle over Q. This is a dimensional

reduction of a Up1q Hermitian-Yang-Mills connection on a line bundle over T ˚Q.

Thus, to find the condition on Q, we need to compute the dimensional reduction of

equations 4.2.1 down to Q.4

Since we are working on T ˚Q, choose local coordinates xj on Q and yj on the

fiber, j “ 1, 2, 3. The complex structure J adapted to the semi-flat metric is chosen

such that zj “ xj ` iyj are holomorphic coordinates (i.e., Q is totally real). Now,

the hermitian condition allows us to write A1,0
“ A0,1, and it follows that:

A1,0
j “ Aj ` iAj`3

A0,1
j “ Aj ´ iAj`3 (4.2.2)

Let us write A1,0 “
ř3
j“1Ajdxj ` iθjdyj. Assume that A and θ do not depend

on the fiber directions yj. It is clear that:

A :“
3
ÿ

j“1

Ajdxj (4.2.3)

becomes a well-defined supnq-valued one-form on Q. Moreover, because Q is special

Lagrangian, NQ{T˚Q – TQ so the a priori vertical supnq-valued one-form

4Another way to see this is by noting that the HYM equation describes a “spacetime filling

brane” on T˚Q, and the wrapping condition is obtained by performing three T-dualities along the

fiber directions.
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3
ÿ

j“1

θjdyj (4.2.4)

can be be dualized (via the metric) to a supnq-valued one-form θ. In this semi-flat

setup, the dualization map is the action of the complex structure J jkpdyjq “ ´dxk.

Let d “ B ` B. By assumption, BA “ Bθ “ 0. We have:

F2,0
“ BA1,0

`A1,0
^A1,0

“ BpA` iθq ` pA` iθq ^ pA` iθq (4.2.5)

and

F1,1
“ BA0,1

`A1,0
^A0,1 (4.2.6)

The first equation becomes:

FA “ θ ^ θ

DAθ “ 0 (4.2.7)

and the second equation is:

DA ‹ θ “ 0 (4.2.8)

where the “bundle Hodge star” on Ω1pAdpE |Qqq is a combination of the Hodge star

on the base Q and the Hodge star induced by the hermitian metric on E . One
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can also define the “adjoint” of DA by D:A :“ ‹DA‹ and write equation 4.2.8 as

D:Aθ “ 0.

We will refer to equations 4.2.7 and 4.2.8 as the Acharya-Pantev-Wijnholt sys-

tem, or APW for short. The reason we choose this name is that, as far as the

author is aware, the recognition that these equations describe the supersymmetric

gauge theory associated to a system of D6-branes wrapping a three-cycle appears

first in work of Acharya [Ach98], and the Higgs bundle/spectral cover interpreta-

tion, which we will discuss next, first appeared in the work of Pantev and Wijnholt

[PW11]. Recently, the system has been studied more carefully in [BCHSN18] and

[BCHLTZ18]. We note, however, that these equations have appeared long before (in

a different context) in the Mathematics literature in the works of Donaldson [Don87]

and Corlette [Cor88]. In fact, theorem 5.1.8 below establishes that solutions to these

equations are essentially described by the well-known Donaldson-Corlette theorem

5.1.7.

4.3 The Hantzsche-Wendt Calabi-Yau

4.3.1 SYZ fibration and special Lagrangian deformations

The celebrated SYZ Conjecture [SYZ96] is a geometric formulation of Mirror Sym-

metry. In its essence, it claims that mirror Calabi-Yau manifolds should admit

dual special Lagrangian torus fibrations. Here, “dual” means that a torus fiber
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Tb in a fibration g : Z Ñ B is the moduli spaces of flat Up1q-connections of the

corresponding fiber pTb in the dual fibration pZ Ñ B, and vice-versa.

This description, however, is only true generically: in practice, one has to allow

fibrations with “special fibers” along a singular locus ∆ Ă B. Such fibers can be

either singular limits, finite quotients or even “collapsed limits” of the smooth torus

fibers. There are local models for the SYZ fibrations over subsets of ∆, and these

admit a semi-flat Calabi-Yau metric [LYZ04]. For these metrics, the smooth fibers

are always special Lagrangian. The study of mirror symmetry for such Calabi-Yau

spaces is often called semi-flat Mirror Symmetry. In this approach, one builds the

Calabi-Yau structure on the mirror ĝ : Ẑ Ñ B by first dualizing the smooth part

of g : Z Ñ B, and then correcting the dual semi-flat structure on ĝ by “instanton

corrections” depending only on the structure of the singular locus ∆ of g.

In chapter 3, we proved that the Hantzsche-Wendt G2-platyfold M admits a

sensible M-theory compactification. In the previous section, we showed that the

classical approximation to M-theory/IIA duality leads to a description of the G2-

deformations of M in terms of A-branes on its IIA dual, the Hantzsche-Wendt

Calabi-Yau T ˚G6. In this section we study the SYZ-fibration structure of X :“

T ˚G6. We will define a torus fibration with total space X and will discuss how to

pick the correct semi-flat Calabi-Yau metric.

We first construct the fibration. Recall that we have the usual cotangent map

T ˚T Ñ T. This is in fact a trivial flat bundle - i.e., the metric connection has no
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monodromy. It follows that there is a canonical way of identifying all fibers: fix a

base point 0 P T and isomorphisms ix : T ˚xT – T ˚0 T, @x P T. Then there is a “fiber

projection map”:

f : T ˚T Ñ T ˚0 T

px, ξq ÞÑ ixpξq (4.3.1)

This induces a projection on the K-quotient:

T ˚T
L

K Ñ T ˚0 T
L

K (4.3.2)

where the K-action on T ˚T is just the usual action on the base T coupled with the

induced action on covectors.

We will need the following lemma:

Lemma 4.3.1. X – pT ˚Tq{K as smooth manifolds.

Proof. Recall that X :“ T ˚G6 “ T ˚pT{Kq. We can also give a different characteri-

zation of X as a K-space: X “ pT ˚Tq{rK, where rK is another copy of K acting the

usual way on T and trivially on the cotangent directions. The K and rK actions on

T ˚T commute so there is an isomorphism:

pT ˚Tq{K
M

rK – T ˚pT{Kq
M

K (4.3.3)

Call this space S. So we have two Galois coverings over S with Galois groups

K and rK:
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T ˚pT{Kq pT ˚Tq{K

S S
K rK

–

Because the actions involved are free, it is easy to check that π1pSq is an exten-

sion of Z3 by Kˆ rK. The fundamental groups of the covering spaces are extensions

of π1pTq by actions of K or rK. However, since the actions are identical on T, the

same is true on π1pTq, hence they are isomorphic extensions of π1pTq. This is, of

course, just the group π “ π1pG6q. The covering maps send π to two conjugate

index four subgroups of π1pSq, hence they define isomorphic covering maps, and in

particular diffeomorphic total spaces.

From the lemma, we get our desired fibration:

f : X Ñ T ˚0 T
L

K
looomooon

:“R3
Y

(4.3.4)

To check that this can be given a structure of special Lagrangian torus fibration,

we first identify T ˚0 T{K more carefully. Clearly T ˚0 T – R3 and each generator of

the K-action just inverts the signs in two of the three directions - i.e., K – HG6 acts

via the presentation 2.1.3. Hence, the base T ˚0 T{K can be identified with R3 with

a trident-shaped singularity along the three axes; we denote this singularity by Y

for obvious reasons.5 Each coordinate axis has isotropy Z2 - coming from the three

5Such a trident-shaped space will appear often throughout this work, so we adopt the following

convention: Y is the union the three axes in R3, and for a topological space A the notation YA

means three copies of A joined together at a point. The orbifold structure on these spaces in
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order two subgroups of K - while the origin has isotropy K. We denote this singular

space by R3
Y, and the discriminant locus ∆ by Y.

We now discuss the fibers:

• x R Y: f´1pxq is a smooth fiber isomorphic to T

• x P Y, x ‰ 0: f´1pxq is a reducible scheme6 G2pZ2q

• 0 P Y: f´1p0q is a reducible scheme G6pKq

The notation NA means that the R-scheme NpAq is topologically N and its sheaf

of functions is an extension of C8N by A. One should think of N as a subscheme of

NA whose normal vectors are parametrized by A.

We now discuss the Calabi-Yau structure on X inducing a special Lagrangian

structure on the fibration X Ñ R3
Y.

The space R3
Y is an example of a so-called Y-vertex [LYZ04]:

Theorem 4.3.2. (Loftin, Yau, Zaslow:) R3
YzY admits affine Hessian metrics solv-

ing the Monge-Ampère equation.

It follows that T ˚pR3
YzYq, and hence also Xzf´1pYq, admit semi-flat Calabi-

Yau metrics.

We assume the Calabi-Yau structure on X is near the large complex structure

limit point on the moduli space. In this limit, the volumes of the torus fibers are

different situations will either be specified separately or will be clear from context.
6Recall that G2 is the unique oriented platycosm with holonomy Z2, also known as dicosm.

70



small, and the Calabi-Yau metric is approximated by a semi-flat metric on the

fibration whose smooth fibers are special Lagrangian tori. Theorem 4.3.2 provides

many possible non-trivial semi-flat Calabi-Yau structures on X, and one of them is

IIA-dual to the G2-structure on the Hantzsche-Wendt G2-platyfold. We will now

give a heuristic argument on how the correct metric can be identified.

We first note that the structure of the singular fibers of X is suspiciously similar

to the configuration space of SUp2q A-branes on the IIA dual C_ of a Z2-quotient of

the G2-cone CpSUp3q{Up1q2q [AW01], 3.7 (II). In fact, there is an obvious relation

between X and C_: SOp3q acts on X by isometries on each SYZ fiber, and on

SUp3q{Up1q2 by left multiplication. The orbit space for the first action is R3
Y; for

the second action, it is a certain one point compactification7 R3
Y Y t8u. This last

space can also be described as the Grassmanian Op3q{Op1q3 of triples of oriented

lines in R3; a second, more useful description, is that R3
Y Y t8u is the orbit of the

Atiyah-Hitchin moduli space for two distinct SUp2q-monopoles of charge 2.

We conjecture that C_ is the large volume limit point of X. One idea to prove

this is to show that there is a Gromov-Hausdorff collapse of X collapsing the smooth

fibers and the most singular fiber G6 to points, while the other singular fibers G2

collapse to the flat 2-dimensional orbifold D2p2, 2; q known as the half-pillowcase

[BDP17]. The intuition is that when the singular fibers become large, this provides

exactly three copies of R3 touching at a point, each with multiplicity 2. If this is

7This is not the usual one-point compactification; the basis around 8 has to be reduced to not

intersect the singular rays.
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true, one expects that there is a G2-deformation connecting their M-theory duals;

i.e., that ČC2{Z2 ˆK G6 admits a metric degeneration to CpSUp3q{Up1q2q{Z2.

We will come back to this conjecture at the end of this section, after we discuss

flat deformations. We will also give more context for it in Chapter 6, where we

will prove that the mirror pX admits a “smoothing” given by the moduli space of

SOp4,Cq-flat Higgs bundles on the central fiber G6.8

Going back to the fibration f : X Ñ R3
Y, the special Lagrangian structure on

the fibers can be understood from the proof of McLean’s theorem:

Theorem 4.3.3. (McLean): Deformations of compact special Lagrangian subman-

ifolds S of a Calabi-Yau manifold X are unobstructed, and the moduli space L is

smooth of dimension b1pSq.

Proof. Each normal field n on S defines by contraction a 1-form ιpnqω and a 2-form

ιpnqImpΘq. These are well-defined because ω|S “ ImpΘq|S “ 0. Moreover one can

prove:

ιpnqω “ ´ ˚ ιpnqImpΘq (4.3.5)

The deformation of S associated to n is determined by the exponential map

expn : S Ñ X by Sn :“ expnpSq. Sn is special Lagrangian if and only if ω|Sn “

8We expect that, if the conjecture is true, the correct metric to choose on R3
Y in order to define

the semi-flat Calabi-Yau structure on X should be the decompactification of the homogeneous

metric on the generic orbit of the Atiyah-Hitchin moduli space of centered SUp2q-monopoles of

charge 2. The author is not aware if this is a Hessian metric, though.
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ImpΘq|Sn “ 0 if and only if exp˚ ω|S “ exp˚ ImpΘq|S “ 0. In other words, the local

moduli space LS is given by f´1
S p0q, where:

fS : U Ď ΓpNS{Xq Ñ Ω1
S ‘ Ω2

S

n ÞÑ pexp˚n ω|S, exp˚ ImpΘq|Sq

The tangent space to L is given by kerpdfSp0qq which after a computation using

Lie derivatives reduces to:

dιpnqω “ 0 (4.3.6)

dιpnqImpΘq “ 0 (4.3.7)

Because of 4.3.5, Sn is special Lagrangian if and only if ιpnqω is harmonic. The

Hodge theorem now shows that TrSsL – H1pSq.

It follows that the moduli space of special Lagrangian deformations of the

smooth torus fibers of f : X Ñ R3
Y is isomorphic to the complement of the discrim-

inant locus R3
YzY.

Recall that G6 embeds in X as the zero-section of T ˚G6 Ñ G6. This copy of G6 is

special Lagrangian with respect to the standard flat metric on T ˚G6 Ñ G6. Assume

it is also special Lagrangian with respect to the Calabi-Yau structure on X Ñ R3
Y.

If this is the case, then:

Corollary 4.3.4. G6 is rigid as a special Lagrangian in X Ñ R3
Y.
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Proof. The homology of G6 is pZ,Z4 ‘ Z4, 0,Zq. Since G6 is orientable, the result

follows from Poincaré duality and Theorem 4.3.3.

Now we will argue that flat deformations of G6 ãÑ X are related to special

Lagrangian deformations of the fibers of X Ñ R3
Y. Consider G6 as a compact flat

manifold. The Teichmüller space of flat deformations is given by [BDP17]:

TpG6q –

ˆ

R˚
M

t˘1u

˙3

– pRą0q
3 (4.3.8)

The moduli space of (isometry classes of) flat metrics is:

MflatpG6q – TpG6q{Nπ (4.3.9)

with Nπ “ hpNpπqq, where Npπq is the normalizer of π in AffpR3q and

h : AffpR3
q Ñ GLp3,Rq

pA, vq ÞÑ A (4.3.10)

is the holonomy projection map.

We are interested in computing the moduli space of flat oriented metrics, i.e.,

we do not admit orientation-reversal symmetries. So we need to describe the

orientation-preserving piece N`pπq ď Npπq and then its image hpN`pπqq. The

idea is to identify this last group as a subgroup of the group of affinities AffpG6q,

i.e., the affine automorphisms of R3 that descend to G6 – R3{π. The reader who
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dislikes short exact sequences is encouraged to skip this computation. We start by

proving a lemma:

Lemma 4.3.5. The group of affinities AffpG6q is an extension of Z2 by Outpπq.

Proof. For any flat compact manifold G, the DiffpGq-action on the loop space LpGq

induces, by the Dehn-Nielsen-Baer theorem for flat manifolds, an isomorphism be-

tween Outpπ1pGqq and the Mapping Class Group MpGq :“ DiffpGq{Diff`pGq. More-

over, AffpGq{Aff`pGq – Outpπ1pGqq (Theorem 6.1 of [Cha86]).

Now, Aff`pGq is isomorphic to Iso`pGq, the orientation-preserving isometries of

the flat metric [KN63], hence it is a torus pS1
qb1pGq. Since b1pG6q “ 0, it follows that

Aff`pG6q – Z2.

The group Outpπq fits into an exact sequence:

1 Ñ pZ2q
3
Ñ Outpπq Ñ S3 ˆ Z2 Ñ 1 (4.3.11)

and the group Npπq fits into another exact sequence:

1 Ñ π Ñ Npπq Ñ Outpπq Ñ 1 (4.3.12)

The last Z2 factor in 4.3.11 is an orientation-reversal (it acts as ´13ˆ3). So we

consider the subgroup Out`pπq ď Outpπq. This fits into the exact sequence:

1 Ñ pZ2q
3
Ñ Out`pπq Ñ S3 Ñ 1 (4.3.13)
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and is in fact the wreath product, i.e., the semi-direct product W :“ pZ2q
3 ¸ S3

induced from the permutation action. Thus the desired group is an extension:

1 Ñ π Ñ N`
pπq Ñ W Ñ 1 (4.3.14)

Now, we compute hpN`pπqq. This is isomorphic to N`pπq{Kerph|N`pπqq. We

look at W and π separately:

• π: recall that this is a crystallographic group and fits into an exact sequence:

1 Ñ Λπ Ñ π Ñ Hπ Ñ 1 (4.3.15)

where Λπ – Z3 acts as translations and Hπ – K acts as usual (reflects two of

the three coordinates).

• W : the factor pZ2q
3 acts as translations on R3, so its action on π is killed by h.

The S3 factor just permutes the coordinates on R3, and it acts on K – π{Λπ

by permutting the three non-trivial elements.

It follows that:

hpN`
pπqq – K¸ S3 (4.3.16)

Therefore the moduli space looks like:

MflatpG6q – pRą0q
3
M

K¸ S3
(4.3.17)
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Note that this has a striking similarity to the moduli space of special Lagrangian

deformations MsLag – R3
YzY of the smooth fibers of X: in fact, formula 4.3.17

implies that Mflat is a quotient of MsLag by the action of S3 on R3 that permuttes

the coordinates. We conjecture the reason is the following:

Conjecture 4.3.6. A deformation of the semi-flat Calabi-Yau metric on f : X Ñ

R3
Y preserving the special Lagrangian fibration induces a flat deformation of the

central fiber f´1p0q – G6. If a special Lagrangian deformation is induced from a

symmetry of the singular set Y, then the flat structure on G6 is unchanged.

In the above we only consider deformations that do not lead to Gromov-Hausdorff

collapse of the fibers. If this happens, the conjecture should be modified to allow

a flat collapse of G6. It is proved in [BDP17] that the only affine class of flat col-

lapse of G6 is a two-dimensional flat orbifold known as RPp2, 2; q - the quotient of a

four-punctured S2 by the antipodal map.

We finish this section by pointing out a very interesting fact: hpNAffpR3qpπqq is the

group of symmetries of the Borromean rings R (see Figure 4.4), and hpN`

AffpR3q
pπqq

the group of symmetries preserving a framing. The connection with our picture

is a consequence of the following beautiful result of Zimmerman [Zim90]: R is

the branching locus of a 2-fold covering map b : G6 Ñ S3 and hpN`

AffpR3q
pπqq is

given exactly by AffpG6q{Galpbq (where Galpbq – S3 is generated by the three maps

permutting the sheets). Thus, the symmetries of R must encode the structure of

flat deformations of G6, and assuming Conjecture 4.3.6 is true, also of MsLagpXq.
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Figure 4.1: Borromean rings LATEX

LATEX code by Dan Drake, available at http://math.kaist.ac.kr/„drake (colors were changed).

R. H. Fox proved that a branched covering is uniquely determined by its restric-

tion to the unramified locus. Therefore, equivalence classes of n-sheeted branched

coverings c : AÑ pB,Lq are in one-to-one correspondence with equivalence classes

of monodromy representations ρ P Hompπ1pAzc
´1pLqq, Snq. In our situation, the

monodromy of b around each of the three components of R is given by the permu-

tation exchanging the two sheets. These correspond to the three copies of Z2 ď S3.

These, of course, generate the whole S3, which is also the symmetry group of R3
Y.
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4.4 Envisioning a G2-conifold transition

We now close the circle of ideas from the previous section and give a precise conjec-

ture regarding the relationship between the geometric structures discussed. Let

M p2, 2q denote the generic orbit of the Atiyah-Hitchin moduli space of SUp2q

monopoles of charge 2. Moreover, in this section we write HG6 instead of K to

make the connection with G6 explicit. We compile a few facts:

1. M p2, 2q – SOp3q{HG6 . Moreover, HG6 is the Borel subgroup of SOp3q, and the

associated complete real flag F satisfies π1pFq “ Q8, the quaternion group.

Since F is closed and oriented, it is a homology sphere, and is in fact the

quotient S3
{Q8. In particular, it is a spherical space in the sense of Thurston.

2. The base R3
Y of the SYZ fibration on T ˚G6 is a decompactification of SOp3q{HG6 .

3. SOp3q{HG6 is also the orbit space of the SOp3q-action by left multiplication

on the nearly-Kähler space SUp3q{Up1q2.

4. The metric cone CpSUp3q{Up1q2q admits a G2-structure.

5. The Hantzsche-Wendt space G6 is a double cover of S3 branched over the

Borromean rings R.

6. The complete real flag F is a double cover of S3 branched over three fully

linked unknots [AW01].
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We now imagine that we start with R on S3 and take a limit where the three

links touch at a single point, which we call a vertex. We then resolve this singularity

by deforming the links to be fully linked. At the level of the SYZ fibration, this

corresponds to deforming the fiber G6 creating enhanced monodromy at a point

(there is now 8 sheets coming together at the vertex). This monodromy persists in

the resolution, which is F . However, we have made a transition from a flat 3-cycle

to a non-flat one (F can not be flat as its fundamental group is finite). At the level

of G2-geometry, we arrive at the following:

Conjecture 4.4.1. (G2-conifold transition): There exists a rank 2 complex vector

bundle EF Ñ F such that

1. EF has a metric with holonomy contained in G2

2. There is a metric degeneration:

C2
{Z2 ˆK G6 ù CpSUp3q{Up1q2q{Z2 L99 EF (4.4.1)

that exchanges the flat 3-cycle G6 by the spherical 3-cycle F .
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Figure 4.2: Left: Borromean rings. Right: Three fully linked unknots.
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Chapter 5

Flat Higgs Bundles and A-branes

5.1 Flat Higgs bundles

We start this chapter by introducing the notion of flat Higgs bundles, which are

special solutions to the Acharya-Pantev-Wijnholt system 4.2 adapted to platycosms.

We will relate it to the character varieties of Bieberbach group of 2.2 using Corlette’s

theorem.

We are interested in studying Higgs bundles over Bieberbach manifolds. To

simplify notation, we will make no distinction between δ and the induced flat con-

nections on other tensor bundles over Q, and will denote all of them by δ. The same

will hold for a connection A on a vector bundle over Q and its associated bundles.

Moreover, given a flat bundle pE,Aq, we denote its local system of flat sections

by EA to distinguish it from the smooth bundle E. For example, TδQ denotes the
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sheaves of flat vector fields on Q. We note that even though these sheaves have the

same fibers as their smooth counterparts, their stalks contain only flat sections. We

will also use the notation Ω1
δpQq for the sections of T ˚δ Q.

Remark 5.1.1. All constructions in this chapter are valid in the larger realm of

flat affine manifolds - i.e., smooth manifolds with a flat connection on the tangent

bundle which is not necessarily compatible with a metric. However, we restrict the

discussion to Bieberbach manifolds in order to connect directly with the previous

chapters.

We recall the following fact: given a smooth manifold N , let E Ñ N be a

complex vector bundle with a hermitian metric h. Then h induces an isomorphism

E – E˚. If one is given a hermitian connection A on pE, hq, then the covariant

derivative ∇A : ΓpEq Ñ Ω1pEq has an h-adjoint ∇˚A “ ∇A. This gives another

operator ∇:A : ΓpEq Ñ Ω1pEq given by ∇:A :“ σ ˝ ∇A ˝ σ, where σ is complex

conjugation.

Definition 5.1.2. A smooth GLpr,Cq-Higgs bundle on a smooth manifold Q is

a tuple pE, h,A, θq consisting of a complex rank r vector bundle E Ñ Q with a

hermitian metric h, a unitary flat connection A P Ω1pEndpEqq, and a real C8Q -linear

bundle map θ : ΓpEq Ñ ΓpE b T ˚Qq satisfying the condition:

• θ ^ θ “ 0

We will say that pE, h,A, θq is a flat Higgs bundle if, furthermore, the following

flatness conditions are satisfied:
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• ∇Aθ “ 0

• ∇:Aθ “ 0

Flat Higgs bundles are special solutions of the Acharya-Pantev-Wijnholt equa-

tions 4.2.7 4.2.8. Those equations should be thought of as analogues of Hitchin’s

equations in the category of flat smooth vector bundles.

Remark 5.1.3. The reality condition on the Higgs field θ P Ω1pEndpEqq means that

θ “ θ. The dual Higgs field θ can be seen as a map θ : T pQqbE Ñ E, and therefore

it induces an action of the tensor algebra T ‚pT pQqq on E. The condition θ^ θ “ 0

means that this action descends to an action of the symmetric algebra S‚pT pQqq

on E.

Notice that a smooth Higgs bundle is flat if and only if the Higgs field θ belongs

to the local system EndApEq b T
˚Q. If we are given a Riemannian metric δ on Q,

there is another local system structure on EndpEq b T ˚Q given by the connection

Abδ. This is a connection that preserves the full metric on the bundle, unlike A. It

follows from the product formula for tensor product connections that A-flat Higgs

bundles and Ab δ-flat Higgs bundles are equivalent if and only if θ takes values in

T ˚δ Q, i.e., in flat 1-forms on Q. This is a natural condition when working with flat

Riemannian manifolds such as platycosms.

Definition 5.1.4. Let pQ, δq be a flat Riemannian manifold. A flat Higgs bundle

on pQ, δq is a flat Higgs bundle pE, h,A, θq on Q such that θ P Ω1
δpEndApEqq :“

ΓpT ˚δ Qb EndApEqq.
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Define the hermitian Hodge-star operator ‹h on basic elements of Ω1pEndpEqq

by ‹hpAb αq “ Ab ‹α and extended by linearity.

Lemma 5.1.5. pE, h,A, θq is a flat Higgs bundle on pQ, δq if and only if:

∇Abδθ “ 0

∇Abδp‹hθq “ 0 (5.1.1)

Proof. Follows from the discussion above and the formula:

∇:Abδ “ ‹h ˝∇Abδ ˝ ‹h (5.1.2)

The following table compares Higgs bundles in the holomorphic and flat worlds:

Holomorphic Flat

pX, Bq Kähler manifold pQ, δq flat Riemannian manifold

Ω1,0 ãÑ Ω1pXq Ω1
δ ãÑ Ω1pQq

pE, BE : E Ñ E b Ω0,1q holomorphic bundle pE, h,∇A : E Ñ E b Ω1
δq hermitian flat bundle

φ : E Ñ E b Ω1,0 θ : E Ñ E b Ω1
δ

φ^ φ “ 0, B
2

E “ 0, BEφ “ 0 (F-terms) θ ^ θ “ 0, ∇2
A “ 0, ∇Aθ “ 0 (F-terms)

BEφ
: “ 0 (D-term) ∇:Aθ “ 0 (D-term)

Remark 5.1.6. When solving Hitchin’s equations for (holomorphic) Higgs bundles,

there are two different perspectives: in the holomorphic perspective, one fixes a

hermitian metric and solves for a connection and a Higgs field, with the holomorphic
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structure coming from the p0, 1q part of the connection; in the hermitian perspective,

we fix a holomorphic structure on the bundle and solve Hitchin’s equations for a

hermitian metric and a Higgs field, with respect to the unitary Chern connection.

As we are fixing the flat structure on Q, our current formulation of flat Higgs bundles

is closer to the latter. However, one notices that this duality also works in our case;

this is clear from the Acharya-Pantev-Wijnholt equations, and is reminiscent from

our discussion on ADE G2-platyfolds in the first chapter, when there was a similar

duality between flat structures on the base and on the fibers.

To explain the meaning of the D-term, recall the following important result

[Don87], [Cor88]:

Theorem 5.1.7. (Corlette, Donaldson): Let Gc be a semisimple algebraic group and

K a maximal compact subgroup. Let pQ, gq be a compact Riemannian manifold with

fundamental group π, and let p rQ, rgq be its universal cover. Fix a homomorphism

ρ : π Ñ Gc and let h : rQ Ñ Gc{K be a ρ-equivariant map. Then the following are

equivalent:

1. h : rQÑ Gc
L

K is a harmonic map of Riemannian manifolds

2. The Zariski closure of ρpπq is a reductive subgroup of Gc (i.e., ρ is semisimple)

Moreover, if ρ is irreducible, the harmonic map is unique.

In the language of flat bundles, the theorem says that the gauge orbit of a flat,

stable Gc-connection has a unique harmonic metric. We will now explain this more
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carefully, as this is one of the crucial points of the theory. The reader familiar with

harmonic metrics is encouraged to skip the next paragraphs.

This theorem is a manifestation of a deep relationship between algebraic and

symplectic geometry, relating stability of orbits of Gc-actions to zeros of moment

maps. In its simplest form, this is expressed by the Kempf-Ness theorem [KN79]:

let V be a complex vector space and ρ : Gc Ñ GLpV,Cq a representation. Then a

Gc-orbit Gcv is stable ô Gcv has maximal dimension and contains a shortest vector

v0. On the symplectic side, one picks a hermitian form h on V endows V with a

symplectic structure ω, and there is an induced action of the compact subgroup

K Ă Gc preserving this form. The data ph, ω,Kq gives a moment map µ, and

µpv0q “ 0 ô v0 is the shortest vector in Gcv.

The Corlette-Donaldson theorem is an infinite-dimensional analogue of this re-

sult. The dictionary goes as follows: V is replaced by a flat Gc-bundle E Ñ pQ, gq,

ρ is now the monodromy representation of a flat connection D, and Gc is replaced

by the group of Gc-gauge transformations Gc. The algebraic point of view now

says that D is irreducible ô one can find in its orbit GcpDq a “shortest” metric -

i.e., harmonic. The symplectic point of view sheds more light in the harmonicity

condition: once one picks any hermitian metric h on the bundle, h and g together

induce a Kähler metric ω on the space of connections Ω1pQ,AdpEqq. The group of

unitary gauge transformations Gh preserves ω. Write D “ A` θ, where A preserves

ω and θ is hermitian. The associated moment map is µ “ ∇:Aθ, and its vanishing

87



is equivalent to a harmonic metric. Thus, a solution to the D-term is a harmonic

metric.

The reason for the name “harmonic” is the following: a metric on pE,Dq Ñ Q

is a choice of inner product at every fiber, compatible with the flat structure D.

The pullback of pE,Dq to rQ is a trivial flat bundle, and the same is true for the

bundle of metrics, which is rQˆ SLpn,Cq{SUpnq. A metric on pE,Dq Ñ Q is then

just a π-equivariant section s of this bundle, and we say the metric is harmonic if

s is a harmonic map, where the symmetric space S :“ SLpn,Cq{SUpnq is given

its canonical Riemannian structure. Now, Corlette’s proof of theorem 5.1.7 [Cor88]

shows that, in terms of the section s, one can write θ “ ds and ∇A “ s˚∇S , where

∇S is the Levi-Civita connection of S . Thus the harmonicity condition is exactly

what one expects:

∇:Aθ “ ‹s
˚∇S ‹ dpsq “ 0 (5.1.3)

where the trivial flat connection d can be thought as the Levi-Civita connection for

the flat metric on rQ.

We note also that Proposition 2.2 of [Cor88] shows that the vanishing of the

D-term is equivalent to minimizing ||θ||2L2 . Thus, harmonic metrics are those such

that the decomposition D “ A ` θ gives the shortest Higgs field. This completes

the analogy with the Kempf-Ness theorem.

In the holomorphic category, Simpson [Sim92] used theorem 5.1.7 to show that a
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harmonic metric on a holomorphic bundle over a Kähler manifold gives a holomor-

phic Higgs bundle. We will show an analogous result in the flat world: a harmonic

metric on a flat bundle over a compact Riemannian manifold Q is given by a solution

to the APW system. One would expect, moreover, that when Q is a Bieberbach

manifold, such solutions are given by flat Higgs bundles (however, see the discussion

below).

We say pE,Dq is a flat reductive bundle if D has reductive monodromy.1 The

following is the analogue of Simpson’s theorem on the flat category:

Theorem 5.1.8. For a compact Riemannian manifold Q, there is a bijection be-

tween the following data:

Flat reductive bundles pE,Dq ÐÑ Solutions pE, h,A, θq of the APW system

Proof. Suppose first we are given a flat reductive bundle pE,Dq on Q. Pick a her-

mitian metric g on E. Then there is a unique C8-linear θ P Ω1
δpEndpEqq satisfying

θ “ θ (i.e., θ is real with respect to g) and such that ∇A “ ∇D ´ θ satisfies:

∇Ag “ 0 (5.1.4)

The Corlette-Donaldson theorem says there is a π-equivariant harmonic map

h : rQÑ SLpn,Cq{SUpnq associated to p∇A, θq. The harmonicity condition is

1More precisely, if the Zariski closure of the image of the monodromy representation is a

reductive subgroup of Gc.
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∇:Aθ “ 0 (5.1.5)

where conjugation is taken with respect to h. Together, equations 5.1.4 and 5.1.5

imply that ∇Aθ “ 0. Therefore, ∇2
A ´ θ ^ θ “ ∇2

D “ 0, and pE, h,A, θq a solution

of the Acharya-Pantev-Wijnholt system.

For the converse, start with a solution of APW pE, h,A, θq and let ∇D “ ∇A`θ.

Then:

∇2
D “ p∇A ` θq ˝ p∇A ` θq

“ ∇2
A `∇A ˝ θ ` θ ˝∇A ` θ ^ θ

“ ∇2
A `∇Aθ ` θ ^ θ

“ 0

It remains to show that D has reductive monodromy. Let ρD and ρA be the

monodromy representations of D and A, respectively. Then ρDpπq Ď ρCApπq. But

A is unitary, hence ρApπq Ď Upnq is compact. Thus ρCApπq is reductive and so is

ρDpπq.

Remark: One can define an appropriate notion of morphism for flat Higgs

bundles. Then the bijection extendeds to an equivalence between the subcategory

of local systems with reductive monodromy and the category of flat Higgs bundles.

We omit the proof since we only care about moduli spaces of objects here.
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One could ask what happens to Theorem 5.1.8 when pQ, δq is a Bieberbach

manifold. In view of the results of Chapter 3, it seems reasonable to expect that

all solutions of the Acharya-Pantev-Wijnholt system on pQ, δq are given by flat

Higgs bundles (i.e., FA “ θ ^ θ “ 0). For the SLp2,Cq case, this conjecture

holds if and only if the following is true: given a harmonic map f : pR3, dR3q Ñ

pH3, dH3q, where dR3 is the flat metric and dH3 is the constant curvature ´1 metric,

then the pullback f˚∇dH3 of the Levi-Civita connection of dH3 is a flat connection.

The author sees no reason why this result should be true. This is related to the

question of whether there exist “exotic” G2-deformations of ADE G2-platyfolds -

i.e., deformations that do not preserve the coassociative fibration structure, and

hence not obtainable through Donaldson data and unfolding of ADE singularities.

5.2 The moduli space of A-branes on G6

We now return to our main example, the Hantzsche-Wendt Calabi-Yau X “ T ˚G6.

Proposition 5.1.8 shows that a configuration of n A-branes wrapping G6 is given by

specifying a reductive flat SLpn,Cq-connection on a vector bundle over G6. Hence,

MIIApG6q is the character variety CharpG6, SLpn,Cqq. In what follows, Xn denotes

the data of the Calabi-Yau space X together with n A-branes wrapping G6. That

is, Xn is the orbifold T ˚G6{Zn with a Zn-singularity at G6. Here, Zn Ă SOp3q acts

on each fiber via the fundamental representation.

We let π be again the Hantzsche-Wendt group, with 1 Ñ Z3 Ñ π Ñ K Ñ 1,
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where K – Z2 ˆ Z2. From section 2.2.1, we know that the character variety of the

three-torus T is given by:

CharpZ3, SLpn,Cqq – pC˚q3n´3
{Σn “

3
ź

i“1

`

pC˚qn´1
{Σn

˘

(5.2.1)

where Σn acts by permutations on pC˚qn´1 – tz1z2 . . . zn “ 1u Ă pC˚qn.

In section 2.2, we determined that there is a map r : Charpπ, SLpn,Cqq Ñ

CharpZ3, SLpn,Cqq. Moreover, there is a K-action on this last space, given in

terms of the presentation 5.2.1 by

pi, jqrpz1, z2, z3qs “ rpz
i
1, z

j
2, z

ij
3 qs (5.2.2)

where i, j P t˘1u.

The main result in section 2.2 was that Imprq is contained in FixpKq. The

image determines Charpπ, SLpn,Cqq possibly up to a finite cover given by non-

trivial representations of K mapping to the same element of Hompπ, SLpn,Cqq.

When n “ 2 it is easy to describe FixpKq. Let α “ p1,´1q. Then:

Fixpαq “ rp˘1,C˚,C˚qs Y rpC˚,˘1,˘1qs “ pC2
qz2,z3 Y Cz1 (5.2.3)

Notice that the first factor is contributed by ´1 P Z2 and the second by 1 P Z2.

We can play a similar game for the other two non-trivial elements of K. Hence:

FixpKq “
č

pi,j,kqPxp1,2,3qy

`

pC2
qzi,zj Y Czk

˘

“ Cz1 Y Cz2 Y Cz3 (5.2.4)
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Thus FixpKq is a bouquet of three complex lines touching at a point. The

image Imprq can be computed directly from a presentation of π to show that r

is in fact surjective; essentially, this is because an element in the bouquet, say

pa, 0, 0q, is a representation which is non-trivial only at a single generator, so will

be automatically a representation of π. Thus:

Char0
pπ, SLp2,Cqq – YC :“ Cz1 Y Cz2 Y Cz3 (5.2.5)

We recall that the notation YC means that the space looks like a trident of

C’s touching at the origin. The “real version” Y of YC has appeared before as the

discriminant locus of the SYZ fibration f : X Ñ R3
Y. The space YC will also appear

again in section 6.3 when we discuss the moduli space of B-branes in the mirror pX.

Remark 5.2.1. Formula 5.2.5 only computes the connected component of the trivial

representation. Up to conjugation, there are also 3 other non-trivial representations

of K that map to the trivial representation of π.

Now here is the important point: we can actually use this to verify M-theory/IIA

duality - i.e., the equivalence between the moduli space of vacua in the two theories

- in this case. Recall that the M-theory dual of X2 is the Hantzsche-Wendt G2-

platyfold M “ C2{Z2 ˆK G6. From the discussion in Chapter 3, we have that:

MG2pMq “ H0
flatpG6, X2 b up1qq (5.2.6)

So we need to find the flat sections of the orbifold X2. These are given by
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elements in Ω1
δpG6q fixed by the monodromy HG6 – K. Recall that the fixed set of

the monodromy action of K on T ˚q G6 – R3 is the trivalent vertex Y Ă R3. If we now

complexify this moduli space by adding C-fields (parametrized by their holonomies,

which takes values in Up1q), we also obtain a trident of C’s touching at a point. We

have established:

Theorem 5.2.2. (Physical version): The moduli space of M-theory vacua on M is

homeomorphic to the moduli space of two A-branes wrapping the zero-section of X.

(Mathematical version): The moduli space of complexified G2-structures on the

Hantzsche-Wendt G2-platyfold C2{Z2ˆKG6 is homeomorphic to the SLp2,Cq-character

variety of the Hantzsche-Wendt Calabi-Yau T ˚G6:

MC
G2
pMq –MIIApXq (5.2.7)

Remark 5.2.3. We mentioned before that there are three other connected compo-

nents of Charpπ, SLp2,Cqq given by three isolated points. They correspond up to

conjugation to the three representations of K that map to 0 P Hompπ, SLp2,Cqq.

Under duality, supposedly these three points correspond to rigid G2-structures on

M , or at least G2-structures that do not admit deformations preserving the struc-

ture of a coassociative fibration.

The M-theory moduli space for this particular example could have been com-

puted without referring to the results of chapter 3, as we now explain. This com-

putation first appeared on Joyce’s book [Joy00], pages 317-319. The possible ways
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to smooth the singularity C2{Z2 is to either resolve it with a blow-up or deform it.

There are two families of deformations, given by

 

pz1, z2, z3, εq; z
2
1 ` z

2
2 ` z

2
3 “ ε

(

Ă C3
ˆ Rą0

 

pz1, z2, z3, εq; z
2
1 ` z

2
2 ` z

2
3 “ ε

(

Ă C3
ˆ Ră0 (5.2.8)

Moreover, the resolved family is parametrized by the volume of the blown-up

P1. So we once again have a trivalent vertex Y, which we again complexify. The

result follows now because once we have resolved one fiber C2{Z2, the hyperkähler

structure in all other fibers are fixed up to volume, since each Kähler class lies in

up1q, and flatness of the vertical section ω fixes the volumes once and for all.

The description of the moduli space as a character variety allows us to go beyond

and generalize the computation to include more branes. For higher n, we would

need a generalization of formula 5.2.4 characterizing Imprq.

Remark 5.2.4. We will address this last point, however we must warn the reader

that the content of this remark is not rigorously developed, and is included just in

order to suggest how the computation should go in the general case. We get back

to the main track on Proposition 5.2.5.

We conjecture the following formula for FixpKq (which should allow us to char-

acterize Imprq in general):

FixpKq –
ď

K,K1ďK

ˆ

`

T 3
M

K
˘Σn

X
`

T 3
M

K 1
˘Σn

˙

(5.2.9)
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where the union is over distinct proper subgroups of K.

For n “ 2 a simple calculation shows that the intersecting factors are perpen-

dicular C2’s, resulting in an union of three C’s as in formula 5.2.4. Hence, formula

5.2.9 is correct for n “ 2.

We will illustrate the computation of FixpKq for n “ 3 using formula 5.2.9.

Already in this case, the computation becomes considerably more intricate. For

each α P K let Fixpαq denote the fixed set of α acting on pC˚q3n´3 (i.e., before

taking the quotient by Σn). The formula for the fixed set modulo Σn, FixpKq, is

then:

FixpKq “
č

αPK

ď

σPΣn

σpFixpαqq (5.2.10)

Fortunately, the calculation is slightly simpler than it looks like, as elements

in the same conjugacy class behave very similarly. For a fixed element of K, say

α “ p1,´1q, we get the following contributions:

• Type I: these come from the trivial permutation:

r˘1, pC˚q2y1,y2
,˘1s “ Sym3

ppC˚q2y3“1{y1y2
q

• Type II: these come from 2-cycles, as follows: let ε be a generator of µ3, the

group of 3rd roots of unity, and E :“ tpεi, εi, εiq; i “ 0, 1, 2u. Then:

– rC˚
x1“x

´1
2

,C˚y1“y2
,C˚

z1“z
´1
2

s “ Sym3
pXx1,x2q ˆ Eˆ Sym3

pXz1,z2q
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– rC˚
x1“x

´1
3

,C˚y1“y3
,C˚

z1“z
´1
3

s “ Sym3
pXx1,x3q ˆ Eˆ Sym3

pXz1,z3q

– rC˚
x2“x

´1
3

,C˚y2“y3
,C˚

z2“z
´1
3

s “ Sym3
pXx2,x3q ˆ Eˆ Sym3

pXz2,z3q

where we are using the notation:

Sym3
pXai,ajq :“ Spec

`

Cra˘1
1 , a˘1

2 , a˘1
3 s

Σ3{paiaj, a
´1
k aiajq

˘

is the Σ3-quotient of the space X “ C˚ai Y C˚aj consisting of two copies of C˚

touching at a point.

• Type III: these come from 3-cycles. They contribute with points given by

r˘1, ekπi{3,˘1s, all of which are contained in the sets from the 2-cycles.

The final answer is then given by intersecting types I and II contributions from

different elements of K. We get a union of all Sym3
pXai,ajq. To simplify matters,

denote Sx “
Ť

Sym3
pXxi,xjq and similarly for the other variables. Then

Imprq “ Sx Y Sy Y Sz (5.2.11)

Notice that the analogue of Sym3
pXai,ajq in the n “ 2 case would be Sym2

pC˚q – C,

and there would be just one of it. Hence when taking the union over the 3 variables

we recover the previous result.

It is natural to conjecture that for general n, FixpKq looks like a Y-shaped join

of three copies of
Ť

Symn
pX q for some complicated scheme X .

However, it is clear that the combinatorial complexity of the problem increases

rapidly. Basically, for each element of K, we need to calculate the contributions
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of each cycle type and weigh it with the cardinality of the conjugacy class. Then

we need to calculate the intersection of the contributions of the three nontrivial

elements of K.

The complications associated with the computations in the previous remark led

us to develop a different approach towards computing the character variety. This

approach will turn out to have a remarkable connection to the mirror symmetry

story to be developed in the next chapter. The key point is the following result:

Proposition 5.2.5. Let T be a maximal torus for SLpn,Cq, and W :“ NpT q{T –

Σn acting on NpT q by conjugation. Let C “ tz1z2 . . . zn “ 1u Ď
`

pC˚q3
˘n

. Let K

act on C by restriction from pC˚q3n, and Σn act on C{K by restriction from the

permutation action on
`

pC˚q3{K
˘n

. Then the following holds:

ˆ

T {Σn

˙3
O

K –
`

C{K
˘

M

Σn

Proof. Let t “ pt1, t2, t3q P T
3. Let σ P W and α “ p´1, 1,´1q P K. Then:
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α ˝ σptq “ α
`

σt1σ
´1, σt2σ

´1, σt3σ
´1
˘

“
`

pσt1σ
´1
q
´1, σt2σ

´1, pσt3σ
´1
q
´1
˘

“
`

σt´1
1 σ´1, σt2σ

´1, σt´1
3 σ´1

˘

“ σ
`

t´1
1 , t2, t

´1
3

˘

“ σ ˝ αptq

This shows that pT {W q3{K – pT {Kq3{W . To finish, we show that pT {Kq3 –

C{K. Write ti “ pt1i , . . . , t
n
i q with tni “ ´pt1i ` . . . ` tn´1

i q. The key idea is that

t can be seen both as an element of pT {Kq3 via t “ pt1, t2, t3q and of C{K via

t “
´

t
1
, . . . , t

n
¯

. Then:

αpt1, t2, t3q “
`

t´1
1 , t2, t

´1
3

˘

“
`

p´t11, . . . ,´t
n
1 q, pt

1
2, . . . , t

n
2 q, p´t

1
3, . . . ,´t

n
3 q
˘

–
`

p´t11, t
1
2,´t

1
3q, . . . , p´t

n
1 , t

n
2 ,´t

n
3 q
˘

“ α
`

pt11, t
1
2, t

1
3q, . . . , pt

n
1 , t

n
2 , t

n
3 q
˘

This means that the actions coincide, hence the orbit spaces are the same.

Notice that2 C can be identified with pC˚q3n´3, so we can write more schemati-

cally:

2This is only true if we ignore the degree grading on the function field, i.e., the fact that we

are quotienting by a degree n´ 1 variable.
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ˆ

pC˚qn´1{Σn

˙3
O

K –

ˆ

pC˚q3{K
˙n´1

O

Σn
(5.2.12)

Also note that:

pC{Kq
M

Σn
ãÑ Symn

`

pC˚q3{K
˘

For a quasiprojective variety X and G a finite subgroup of automorphisms, the

quotient X{G is also a quasiprojective variety. In particular, Symn
pXq is quasipro-

jective. Recall there is a Hilbert-Chow morphism

HilbnpXq Ñ Symn
pXq (5.2.13)

where the Hilbert scheme of n points HilbnpXq is a reduced scheme parametrizing

length n subschemes of X. The morphism sends a length n subscheme to its support

cycle in X.

Now, Imprq consists of those points fixed by the K-action. Thus, we are not

interested in all orbits of K, but only those consisting of single points. Under the

above isomorphism, these correspond to K-orbits fixed by the Σn-action. That is,

we are interested in length n subschemes supported at a point of rpC˚q3{Ks, i.e.,

the punctual Hilbert scheme PHilbnprpC˚q3{Ksq. So we expect 5.2.12 to restrict to

an isomorphism:

ˆ

ppC˚qn´1
{Σnq

3

˙K

Ø PHilbnprpC˚q3{Ksq (5.2.14)
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The space on the LHS is just Char0
pG6, SLpn,Cqq. In the next section, we

will show that is not exactly an isomorphism, but that indeed the two spaces are

very similar. For example, we will show that for n “ 2 the RHS is a certain

“projectivization” of the LHS3. Moreover, in the next chapter we argue in favor of

relation 5.2 by constructing the Calabi-Yau mirror X_ of X and showing that its

moduli space of mirror B-branes is:

MIIB – PHilbnprpC˚q3{Ksq (5.2.15)

Thus, formula 5.2 is merely expressing the expected mirror relation:

MIIApXq –MIIBp pXq (5.2.16)

See Chapter 6 for more on this.

Remark 5.2.6. This result can be generalized to other complex simple Lie groups

by using the explicit description of the moduli space of commuting triples by Borel,

Friedman and Morgan [BFM02]. In general, this moduli space has multiple compo-

nents and in each one of them, one needs to work with the maximal tori and Weyl

group adapted to the centralizer of the commuting triple.

3Intuitively, it seems that the Hilbert scheme “does not see” the rigidity of the three isolated

representations, and instead they appear as points at infinity that compactify the three legs of YC

forming a trident of P1’s.
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5.3 Flat Spectral Correspondence

In this section we prove Theorem 5.3.7, a spectral correspondence for flat Higgs bun-

dles. This is a bijection between flat Higgs bundles pE, h,A, θq on Q and objects we

call “flat spectral data”. The reason this reformulation is useful is the following: in

chapter 4, we proved that M-theory/IIA duality establishes an equivalence between

the moduli space MC
G2

of complexified G2-structures ϕC on an ALE G2-orbifold

M Ñ Q and the moduli of solutions to the Acharya-Pantev-Wijnholt system.

The hermitian metric solving this system is necessarily harmonic, so the Corlette-

Donaldson theorem and Theorem 5.1.8 imply that solutions are parametrized by

the moduli of flat Higgs bundles pE, h,A, θq on Q. However, the dependence of flat

Higgs data on ϕC “ ϕ` iC is not compatible with the real structureMG2 ĂMC
G2

.

The spectral data fixes this situation: the flat spectral cover rQÑ Q depends solely

on ϕ, i.e. deformations of ϕ are completely recovered from flat deformations of

rQ Ñ Q. This is in agreement with the main result of chapter 3. The advantage

of this new point of view is that now the spectral covers have a clear geometric

interpretation in terms of eigenvalues of the Higgs field, allowing us to produce

G2-deformations concretely.

We start with a basic example. Let V be a complex vector space of dimension

n and φ P EndpV q. If φ is diagonalizable, it can be reconstructed by giving its

eigenvalues tλ1, . . . λnu, the decomposition of V into φ-eigenlines V “ L1‘ . . .‘Ln

and a matching map m : Li ÞÑ λi. We refer to pλ, Lq as the spectral data associated
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to pV, φq.

Let pipφq be the coefficient of λn´i in the expansion of detpλ1 ´ φq P Crts.

Consider the map:

f :EndpV q´́´́ ´́ÑCn (5.3.1)

φ ÞÝÑ pp1pφq, . . . , pnpφqq (5.3.2)

Then it is clear that the eigenvalues tλ1, . . . λnu of φ depends only on hpφq. The

map f is a prototype of the Hitchin map 5.3.8 defined below.

Now, let Q be a manifold, and E Ñ Q a rank n complex vector bundle. Suppose

φ P ΓpQ,EndpEqq. Then to each φq : Eq Ñ Eq we can associate its spectral data

pλq, Lqq. We think of φ as a “twisted family” of endomorphisms parametrized by

Q.

As pλq, Lqq varies over Q, it defines:

• a subvariety of Qˆ C:

rQ “ tpq, λq;λ is an eigenvalue of φqu

“
 

pq, λq; detpλ1Eq ´ φqq “ 0
(

called the spectral cover of Q associated to φ. It comes equipped with a

generically n : 1 covering map π : rQÑ Q.
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– If φ is generic - i.e., diagonalizable with distinct eigenvalues at every

point - then π is unramified. The same is true if φ is regular, i.e., has

one eigenvalue per Jordan block at every point.

– If φ admits more than one eigenline per eigenvalue, then its ramification

locus is given by:

∆π “ tq P Q|φq has a multiple eigenvalueu

• A spectral line bundle:

m : LÑ rQ (5.3.3)

defined as follows: consider the matching maps mq : pLqqi Ñ pλqqi. Then

L “ \qPQ,ipLqqi and m|Lq “ mq.

We write Higgs for the category of rank n Higgs bundles pE, φq with φ generic.

Let Spec be the category whose objects are pairs pπ,Lq where π : rQ Ñ Q is an

unramified n-sheeted covering map, and LÑ rQ is a complex line bundle.

Theorem 5.3.1. Spectral Correspondence - Classical Version: There is an equiv-

alence of categories:

Higgs ´́´́ ´́Ñ Spec

pE, φq´́ ´́ ´́ ´́ ´́ Ñp rQ,Lq (5.3.4)
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Proof. The above discussion explains how to obtain spectral data from Higgs data.

Conversely, given p rQ,Lq, Higgs data is obtained by E “ π˚L and φ “ π˚τ , where

the tautological section τ : rQÑ EndpLq is defined as τpq, λq “ λ1L.

We omit the proof of the equivalence for morphisms, as it is not essential for

our purposes.

Remark 5.3.2. If φ is regular, then the pushforward of the spectral line bundle by

m will not recover E: one needs to pushforward the whole generalized eigenspace

associated to an eigenline; i.e., one needs to consider a more general sheaf L1 Ñ rQ

such that on the locus ∆φ Ď Q where φq is non-generic, L1q,λq jumps in rank and

is given by the λq-Jordan block of φq. Such a locus is codimension two in Q. In

particular, when Q is a 3-manifold, ∆φ is a graph in Q. We will have more to say

about this further on.

Theorem 5.3.1 is the most raw form of the spectral correspondence. One can

also consider more general notions of Higgs bundles: one can “twist” φ by requiring

its coefficients to be valued in a sheaf of commutative groups F over Q, and also

require φ to satisfy some constraint (e.g., being compatible with fixed geometric

structures on Q or E). In this situation, the spectral data must be suplemented

with additional structure in order to reconstruct pE, φq. We will be interested in

the case F “ Ω1
Q with constraints given by the axioms 5.1.2 for a flat Higgs bundle.
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Definition 5.3.3. Let pE, h,∇, θq be a flat Higgs bundle over Q. The Spectral

Cover associated to θ is the subvariety Sθ Ă T ˚Q defined by:

Sθ “
 

pq, sqq; detpsq b 1Eq ´ θqq “ 0
(

(5.3.5)

Definition 5.3.4. Flat Spectral Data - unramified case: Let pE, h,A, θq be a rank

n flat Higgs bundle over a compact flat 3-manifold pQ, δq. Assume θ is generic. We

define flat spectral data to be:

1. A n-sheeted, unramified covering map π : Sθ Ñ Q given by the characteristic

polynomial of θ.

2. A line bundle LÑ Sθ determined by the eigenlines of θq

3. A hermitian metric rh on L determined by h

4. A hermitian flat connection rA on L determined by A

5. A Lagrangian embedding ` : Sθ Ñ T ˚Q satisfying Impd`q Ă Hδ.

Remark 5.3.5. The last condition admits a second interpretation: we view ` as a

Lagrangian section of the pull-back bundle π˚T ˚Q Ñ Sθ and take its covariant

derivative with respect to the pullback π˚δ of the flat connection δ on T ˚Q Ñ Q.

Then the condition is that ∇π˚δ` “ 0. If one is interested in non-flat Q, the

condition Impd`q Ă Hδ is simply dropped. As we will see below, the flat spectral

correspondence works for any compact Riemannian manifold Q.
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Definition 5.3.6. Flat Spectral Data - totally ramified case: With the same nota-

tion as before, suppose θ is central - i.e., diagonalizable with all eigenvalues equal.

Then its flat spectral data is as before, except that L is replaced by a rank n complex

vector bundle E Ñ Sθ. Moreover, note that π is now totally ramified.

We now come to the main result of this section. Let FlatHiggs be the set of

flat Higgs bundles pE, h,A, θq over a compact Riemannian Q and FlatSpec the set

of flat spectral data pπ,L,rh, rA, `q on Q.

Theorem 5.3.7. (Spectral Correspondence for flat Higgs bundles [PW11]) There

is an equivalence:

FlatHiggsÐÑ FlatSpec (5.3.6)

where flat Higgs bundles are taken to be either unramified or totally ramified, and

the spectral data is chosen appropriately for each case.

Proof. Given a flat Higgs bundle pE, h,A, θq, we already know how to construct

π : Sθ Ñ Q, ` : Sθ Ñ T ˚Q and L Ñ Sθ. The metric and flat connection are just

given by pullback: rh :“ π˚h and rA :“ π˚A, so the compatibility condition ∇Ã
rh “ 0

is preserved.

Now, use the hamonicity condition on h : rQ Ñ G{K to identify θ “ dh. The

condition ∇Aθ “ dθ`A^θ “ 0 can be written as equations for the r components of

θ under the identification, where r “ rankpGq. Since ∇2
A “ 0, we can locally gauge
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away A, so that that the equations become dθ “ 0. Let pxi, yiq be coordinates in

T ˚Q such that ω “
ř

dyi^dxi and dualize θ “
ř

θipxqdxi via the semi-flat metric on

T ˚Q to obtain θ1 “
ř

θipxqdyi. The embedding given by `pq, sqq “ detpsqb1E´θqq

is Lagrangian if and only if:

ω|`pQq “
3
ÿ

i“1

dθ1 ^ dxi “
3
ÿ

i“1

dpθidxiq “ dθ “ 0 (5.3.7)

Conversely, given spectral data pπ,L,rh, rA, `q, one constructs E and θ as usual,

and h “ π˚rh, A “ π˚ rA are well-defined because π is a local isometry. The spectral

data also guarantees that the components of θ are simultaneously diagonalizable,

hence θ ^ θ “ 0. The conditions ∇2
A “ 0 and ∇Ah “ 0 follow from the same

conditions for prh, rAq. Finally, the condition∇Aθ “ 0 is obtained simply by reversing

the above argument for the section ` to be Lagrangian.

Definition 5.3.8. The Hitchin map is defined by:

H : FlatHiggs Ñ
n
à

i“1

ΓpQ, pT ˚δ Qq
bi
q

pE, h,A, θq ÞÑ pp1pθq, . . . , pnpθqq

We will make a careful study of the properties of this map in future work.

For now, we observe two differences from the holomorphic category: one, H is

not surjective in general; and two, even when restricted to its image, H will not
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define an integrable system structure, at least not in the usual sense. The reason

is, character varieties of compact three-manifolds are in general not symplectic;

however, they admit canonical p´1q-shifted symplectic structures [PTVV11], so they

are symplectic in this derived sense. Thus, assuming a non-abelian Hodge theorem

holds in the flat setup, one would expect that the moduli space of flat Higgs bundles

inherits the p´1q-shifted symplectic structure, and hope that H defines a notion of

integrable system compatible with this structure.

In the next chapter, we will study the Hitchin map H in a specific example related

to the mirror of the Hatzsche-Wendt Calabi-Yau X. In that example, we will see

that H is essentially a smooth model of the SYZ fibration mirror to f : X Ñ R3
Y.
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Chapter 6

SYZ Mirrors

6.1 The Hantzsche-Wendt mirror

Recall from Chapter 4 that the manifold X :“ T ˚G6 admits a torus fibration:

f : X Ñ R3
Y (6.1.1)

where R3
Y :“ R3{K is an orbifold of R3 with singular locus along the three coordinate

axes. Recall also that Theorem 4.3.2 implies that X Ñ R3
Y admits a semi-flat

Calabi-Yau metric, and hence the smooth fibers are special Lagrangian tori.

Restricting f to the smooth locus S :“ R3
YzY, the SYZ Mirror Symmetry

Conjecture [SYZ96] predicts that the mirror Calabi-Yau space of Xzf´1pYq is the

total space pX of the dual torus fibration over S, with its semi-flat metric. To include

singular fibers in the conjecture, one needs to modify the complex structure on pX
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by “instanton corrections” coming from holomorphic disks bounded by the singular

fibers of X. The precise way in which the corrections must be included is one of

the delicate points in Mirror Symmetry.

For some special types of singular fibrations, one can construct the mirror rather

effortlessly; e.g., if a T-fibration is R-simple in the sense of Gross [Gro98] [Gro99],

then one can prove that the dual fibration has mirror Hodge numbers. Unfortu-

nately, a necessary condition for a fibration to be R-simple is that the fibers must

be irreducible, which is not the case for the singular fibers of X Ñ R3
Y.

However, the smooth special Lagrangian fibration1 d : T ˚T Ñ R3 is R-simple.

Lemma 4.3.5 identifies the SYZ fibration for the Hantzsche-Wendt Calabi-Yau X as

a K-quotient of d. We propose that the mirror pX should be obtained as a suitable

K-quotient of the dual fibration d̂. This dual fibration is given by:

pd : pC˚q3 Ñ R3 (6.1.2)

using again the identification of a fixed fiber of pC˚q3 – TT with R3. The fibers

are given by dual tori pT, which parametrize Up1q local systems on T. Hence the

proposed K-action on pC˚q3 is given by the usual action 2.1.3 on R3 and pullback

of local systems on pT. Introducing coordinates z1, z2, z3 on pC˚q3, the action is

described by:

1Here for simplicity we identify a fixed fiber of T˚T Ñ T with R3 and use the flat structure

to identify all other fibers with the fixed one.
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αpz1, z2, z3q “ pz1, z
´1
2 , z´1

3 q

βpz1, z2, z3q “ pz
´1
1 , z2, z

´1
3 q

where K “ xα, βy.

Therefore, our proposed mirror is the complex smooth orbifold:

pX :“

„

pC˚q3
M

K


(6.1.3)

with a special Lagrangian torus fibration:

pf : pX Ñ R3
Y (6.1.4)

In the next section, we explain how SYZ transforms A-branes into B-branes.

6.2 Mirror B-branes

In previous chapters we studied the moduli space of complexifiedG2-structuresMC
G2

on a Hantzsche-Wendt G2-platyfold of type An. We identified it with the moduli

space of n A-branes “wrapped” on the zero-section G6 of the flat Calabi-Yau space

T ˚G6 Ñ G6. We also proved this same space has a different Calabi-Yau structure,

where G6 appears as the (multiplicity four) central fiber of a special Lagrangian

torus fibration f : T ˚G6 Ñ R3
Y. One can think of this second structure as a “large
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volume limit”, which for our purposes means that it represents a point in the moduli

space of Calabi-Yau structures on X :“ T ˚G6 where Mirror Symmetry applies.

We are interested in understanding how Mirror Symmetry acts on A-branes.

The A-brane structure on a smooth torus fiber Tb is given by:

• An embedding as a special Lagrangian fiber Tb ãÑ X

• A hermitian line bundle LÑ Tb

• A flat unitary connection A on L

Intuitively, the SYZ mirror transformation maps the data pTb,L, Aq simply to the

local system pL, Aq, seen as a point pT in the mirror torus fiber T̂ . More precisely,

the mirror map is given by the Fourier-Mukai functor FM of Arinkin-Polishchuk

[AP98] and Leung, Yau and Zaslow [LYZ02], and the image is a skyscraper sheaf

FpT at the point. This is a coherent sheaf on pX, hence an element of the category

of B-branes DbpX̂q.

Our considerations in Chapter 4 led us to define the data of “n A-branes wrapped

on Tb” as:

• An embedding as a special Lagrangian fiber Tb ãÑ X

• A rank n complex vector bundle E Ñ Tb

• A flat complex connection A on E
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It is then natural to extend the SYZ mirror map to map “n A-branes supported

at Tb” to “n B-branes supported at pTb”. That is, the n B-branes are described by

a (possibly unreduced) scheme
řn
i“1 pi supported at pTb, or more precisely, by the

direct sum sheaf
Àn

i“1Fpi . In terms of the Fourier-Mukai functor, this says that

FM maps complex flat connections on Tb Ă X to length n subschemes supported

at pTb Ă X̂.

Since the central fiber of f is not singular in the usual sense (it is a reducible

scheme consisting of four coincident copies of G6, each of which is smooth), we

assume the same result holds. Then mirror symmetry for branes predicts an iden-

tification:

Charpπ, SLpn,Cqq – HilbnYp pXq (6.2.1)

where HilbnYp pXq is the Hilbert scheme of n points supported at the fiber over the

vertex of Y. It parametrizes length n subschemes of pX supported at that fiber, so

it is exactly the moduli space of n B-branes we seek to describe.

Since pX is an orbifold, our goal will be to build a smooth auxiliary space whose

Hilbert scheme coincides with that of pX. This is accomplished by choosing an

appropriate crepant resolution of pX. Note that, since our moduli space parametrizes

stable B-branes2, different crepant resolutions may give different answers.

2The stability condition on the A-side is the requirement that the monodromy of the local

system is irreducible.
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6.2.1 The Bridgeland-King-Reid crepant resolution

Let Y be an algebraic space where a finite group G of automorphisms acts. Consider

the orbit space Y {G. The space of G-clusters rY :“ G´HilbpY q is defined as follows:

consider the induced action of G on Hilb|G|pY q, and let FixpGq be the subscheme

of fixed points. Then rY is the closure of the set of free orbits in FixpGq. For this

reason, rY is also known in the literature as the Hilbert scheme of G-orbits. A more

thorough discussion of this space can be found in [Blu11].

The derived McKay correspondence says that rY is a crepant resolution of rY {Gs,

and moreover, there is an equivalence of categories [Bri07]:

DprY q – DGpY q (6.2.2)

between the derived category of coherent sheaves on rY and the G-equivariant co-

herent sheaves on Y . In particular, since by definition DprY {Gsq :“ DGpY q - where

rY {Gs is the stack of G-orbits - the equivalence, when restricted to sheaves gener-

ated by skyscraper sheaves implies:

HilbnprY q – HilbnprY {Gsq (6.2.3)

Thus rY :“ K´HilbppC˚q3q is a rather natural candidate for a “geometric” model

of X_ “ rpC˚q3{Ks. However, one can readily see that this crepant resolution is not

the right one: in fact, HilbnYprY q does not match the character variety of G6 even for

low n.
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At this point, there are two possible routes. The most natural one would be to

choose a Bridgeland stability condition and restrict the Hilbert scheme to contain

only stable coherent sheaves. The second route, which is the one we will pursue

here, is to produce a different crepant resolution. Although more convoluted, the

reason we choose this second approach is that it not only gives the correct answer

(at least for n “ 2), but it will also elucidate how the Fourier-Mukai transform

connects with our previous discussion of flat Higgs bundles and spectral covers.

6.3 The spectral mirror

We now introduce a “crepant resolution” of pX and show it is a good geometric

model for the mirror, in the sense that its moduli space of two B-branes matches

MApXq “ CharpG6, SLp2,Cqq. We conjecture that the result holds for all n.

The reason we use

To construct this space we use a combination of SYZ and the flat spectral

construction. For this reason we call it the spectral mirror, and denote it qX. The

purpose of this section is twofold: first, we motivate the following definition:

Definition 6.3.1. Let MSOp4,Cq
Higgs denote the moduli space of flat SOp4,Cq-Higgs

bundles on G6. The spectral mirror of X is the subspace qX :“MK
Higgs of MSOp4,Cq

Higgs

consisting of Higgs bundles whose spectral cover has Galois group isomorphic to K.

In order for this to be useful, we need to prove that qX admits a SYZ fibration
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qf : qX Ñ R3
Y that agrees with pf outside the discriminant locus Y. This is the

content of Proposition 6.3.3 below.

We then prove the following result:

Theorem 6.3.2. There is a map:

Charpπ, SLp2,Cqq Ñ PHilb2
Yp

qXq (6.3.1)

which is a homeomorphism when restricted to

Char0
pπ, SLp2,Cqq “ Charpπ, SLp2,Cqqz tp1, p2, p3u

It follows that the moduli space of two coincident A-branes on X is (almost)

homeomorphic to the moduli space of two coincident B-branes on pX.

Given the special Lagrangian fibration f : X Ñ R3
Y and a smooth fiber Tb, SYZ

predicts that the smooth fibers pTb of pf : pX Ñ R3
Y (i.e., b P R3

YzY) parametrize

Up1q-local systems on Tb. Thus, we write the points of pTb as pLb, abq.

Now assume pLb, abq is a deformation of a local system pL0, a0q on one of the

irreducible components of f´1p0q i.e., a copy of G6. I.e., we imagine that if we

connect b to 0 by a smooth path not crossing Y, each fiber f´1pb1q is endowed with

a local system pLb1 , ab1q such that pLb1 , ab1q ù pL0, a0q as b1 Ñ 0. So we are given:

1. A four-sheeted unramified normal covering g : Tb Ñ G6 with Galois group

GalpTb{G6q – K

2. A line bundle Lb Ñ Tb
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3. A flat Up1q-connection ab on Lb

4. A Lagrangian embedding Tb ãÑ X – T ˚G6 given by the inclusion as a SYZ

fiber.

In other words, a local system on a smooth fiber is exactly the data of a flat

spectral cover of G6 without the harmonicity condition. By the flat spectral corre-

spondence, this is equivalent to the Higgs data on G6; i.e., we are given:

1. A rank 4 complex vector bundle F Ñ G6

2. A flat unitary connection A on F

3. A flat Higgs bundle θ P Ω1pG6, EndpF qq

Moreover the condition that GalpTb{G6q – K imposes a further restriction on θ,

which we now explain.

Let p : T ˚G6 Ñ G6 be the cotangent projection. Recall that in the proof of

5.3.1, θ “ g˚pτ |Tbq, where τ : T ˚δ G6 Ñ p˚Ω1
δpG6q is the tautological section. The flat

spectral cover is:

Tb “ tdetpτ1´ p˚θq “ 0u Ă p˚Ω1
δpG6q (6.3.2)

From now on we drop the pullback by p from our notation in order to make it

less cumbersome.

The sheets of the flat spectral cover have symmetry K, the dihedral group with

four elements. Note that K is the Weyl group of SOp4q, so our θ takes values in
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sop4,Cq. We can prove this explicitly: since the spectral cover has Galois group K,

it follows that at each q, the eigenvalues of θq are arranged in the shape of a square

in C (i.e., a regular 4-gon). We write them as:

Eigθ “ tλ, iλ,´λ,´iλu Ă Ω1
δpG6q b C (6.3.3)

Since the cover is unramified, one necessarily has λ ‰ 0. Moreover, without loss

of generality we can take λ P R.3

We have from 6.3.3 that Trpθq “ 0, so it is not surprising that θ preserves a

metric h on E. With respect to a local frame that diagonalizes θ, it takes the form:

h “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 A 0

0 0 0 B

A 0 0 0

0 B 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.3.4)

for non-vanishing functions A,B : G6 Ñ C. Thus θ P Ω1
δpG6, soCphqq.

It is also clear from 6.3.3 that Trpθ2q “ 0: if we expand the formula for the

characteristic polynomial, we have:

3Although it is possible that all eigenvalues have non-zero imaginary part, the choice of com-

plexification of the sheaf Ω1
δpG6q is immaterial; we could have chosen one such that λ P R, or, as

we did here, we can pick the global one Ω1
δpG6q b C and choose a section of real structures such

that λ P R.

119



detpτ ´ θq “ τ 4
` detpθq (6.3.5)

In general, a basis for the invariant polynomials on sop2n,Cq is given by com-

binations of powers of Tr and the Pffafian pn “
?

det P Symn
psop2n,Cqq. In our

situation, only p2pθq is non-vanishing.

LetMSOp4,Cq
Higgs be the moduli space of flat SOp4,Cq-Higgs bundles over G6, and let

MK
Higgs ĂM

SOp4,Cq
Higgs be the subspace consisting of flat Higgs bundles whose spectral

covers have Galois group K. The above discussion implies that the Hitchin map

restricts to:

H :MK
Higgs Ñ H0

pG6, Sym2
δpT

˚G6qq

pE, h,A, θq Ñ p2pθq

and note that the base is locally isomorphic to R6.

We have shown that MK
Higgs solves the deformation problem, but to show it is

the correct geometric model for the mirror we need to endow it with the structure

of a SYZ fibration mirror to π : X Ñ R3
Y. Let B “ ImpH q.

Proposition 6.3.3. The Hitchin map H : MK
Higgs Ñ B agrees with pf : pX Ñ R3

Y

outside the discriminant locus Y.

Proof. We need to show two things: that B – R3
Y and that H ´1pbq – pTb for

b P BzY.
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We start with a local discussion. See Sym2
pR3q – R6 as the symmetric matrices

in EndRpR3,R3q – R9. The image of H cuts out an algebraic subspace of R6.

Suppose λ “ pλ1, λ2, λ3q. Then the expression for B is:

p2pθq “

¨

˚

˚

˚

˚

˚

˚

˝

λ2
1dxb dx λ1λ2dxb dy λ1λ3dxb dz

λ1λ2dxb dy λ2
2dy b dy λ2λ3dy b dz

λ1λ3dxb dz λ2λ3dy b dz λ2
3dz b dz

˛

‹

‹

‹

‹

‹

‹

‚

(6.3.6)

which is of dimension 3.

Changing coordinates (wj “ λ2
j , uj “ λj`1λj`2) we see that locally, ImpH q is

the intersection of three quadrics in R6:

ImpH q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

u2
1 “ w2w3

u2
2 “ w1w3

u2
3 “ w1w2

(6.3.7)

It is clear that by adding the three equations in 6.3.7 and defining t “ w1w2 `

w1w3 ` w2w3 ě 0 we get:

u2
1 ` u

2
2 ` u

2
3 “ t (6.3.8)

=a cone over S2, which is topologically R3. Conversely, start from 6.3.8 and define

t1, t2, t3 by:
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$

’

’

&

’

’

%

t2{t1 “ u2
1{u

2
2 :“ s

t3{t1 “ u2
1{u

2
3 :“ v

(6.3.9)

Then:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

t2 “ st1

t3 “ vt1

t1t2 ` t1t3 ` t2t3 “ t

(6.3.10)

from which it follows that ps` v ` svqt21 “ t, and only the positive t1 is a solution.

Hence, we get a unique triple pt1, t2, t3q.

Now, to get a global description of ImpH q, we need to include the action of

K on Sym2
δpT

˚G6q. The group K acts at each cross-section of the cone 6.3.8 by

switching two elements in tw1, w2, w3u, and the action has stabilizers precisely on

the three coordinate axes of R3
pu2

1,u
2
2,u

2
3q

. Hence, ImpH q is a cone over the sphere

with three Z2-orbifold points S2
pu1,u2,u3q

, i.e.:

ImpH q – R3
Y (6.3.11)

is the Y-vertex, as expected. Note that the tip of the cone is taken to be a fixed

point of the action, i.e. it is a K-orbifold point.

Now consider the fibers H ´1pbq. By definition, the spectral cover Tb only

depends on a point b in the base of the Hitchin map. By the flat spectral corre-

spondence, the fiber H ´1pbq parametrizes the remaining flat spectral data pL,rh, rAq,
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i.e., Up1q-local systems on Tb. Therefore, H ´1pbq – pTb.

This finishes the discussion motivating Definition 6.3.1. We now proceed to

prove Theorem 6.3.2.

We use Theorem 5.1.8 to translate the computation of MSOp4,Cq
Higgs to finding the

moduli of flat SOp4,Cq-connections. I.e., we need to compute Char0
pG6, SOp4,Cqq.

One way to do it is to repeat the method of section 5.2 and find its image in:

Char0
pZ3, SOp4,Cqq – pC˚q2 ˆ pC˚q2 ˆ pC˚q2

M

Z2 ˆ Z2
(6.3.12)

We emphasize that the Z2 ˆ Z2 in this formula has nothing to do with K; it is

just the Weyl group of SOp4,Cq. The action is diagonal and one generator permutes

the two C˚’s, while the other inverts them simultaneously. So Char0
pZ3, SOp4,Cqq

looks like C2 ˆ C2 ˆ C2 “ C6.

There is also a K-action on this space induced from the monodromy represen-

tation. It acts as follows: write each C2 “ Ci,1 ˆ Ci,2 for i “ 1, 2, 3. Then for fixed

j P t1, 2u, K acts on C1,j ˆ C2,j ˆ C3,j by the usual monodromy action. Moreover,

Char0
pG6, SOp4,Cqq lies in FixpKq, which is just YC ˆYC. One can check exactly

as we did in section 5.2 that the image covers the whole FixpKq, so:

Char0
pG6, SOp4,Cqq – YC ˆYC (6.3.13)

In order to compute the Hilbert scheme PHilb2
YpYC ˆYCq, we need to look at
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the subset of YCˆYC whose points are fixed by the action of the permutation group

Σ2 – Z2. This is just given by the diagonal YC Ă YC ˆYC. When we quotient by

permutations, we get a space rYC{Σ2s which is a copy of YC consisting purely of

Σ2-orbifold points. The restriction of the Hilbert-Chow morphism gives:

PHilb2
pYC ˆYCq|YC “ Hilb2

pYCq Ñ rYC{Σ2s (6.3.14)

a resolution of singularities, which in this case consists simply of two coincident

copies of YC.

Topologically, Hilb2
pYCq looks like a P1-bundle over YCz t0u with a trident of

P1’s over 0, which we denote YP1 for obvious reasons. Hence:

PHilb2
YpYC ˆYCq

homeo.
– YP1 “ PChar0

pG6, SLp2,Cqq (6.3.15)

and this establishes Theorem 6.3.2.

Thus, we have proved that the moduli space of two D6 A-branes wrapping G6

in X is homeomorphic to the moduli space of two coincident D3 B-branes on pX.

These spaces are topologically YC, which is a complexified version of the space of

singular orbits of the moduli space of two SUp2q Atiyah-Hitchin monopoles. This

is as to be expected, as our D-branes are monopoles with gauge group SLp2,Cq.
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6.3.1 A different method to compute Char0
pG6, SOp4,Cqq

To end this section, we sketch a different argument to compute Char0
pG6, SOp4,Cqq.

Recall that Spinp4q – SUp2q ˆ SUp2q, and SUp2q – ImpHq. Under these iso-

morphisms, the two-fold universal covering homomorphism Spinp4q Ñ SOp4q is

interpreted as multiplication of imaginary quaternions. After complexifying, the

“quaternionic version” of the complex universal covering homomorphism Spinp4,Cq Ñ

SOp4,Cq is κ : SLp2,Cq ˆ SLp2,Cq Ñ SOp4,Cq.

Here is an explicit description of κ: let SLp2,Cq ˆ SLp2,Cq act on C2 b C2 by

matrix multiplication. This action preserves the following pairing:

xub v, w b ty “ detpub w˚q detpv b t˚q (6.3.16)

The pairing is symmetric and non-degenerate, hence the desired map is

κ :

¨

˚

˚

˝

¨

˚

˚

˝

a1 a2

´a2 a1

˛

‹

‹

‚

,

¨

˚

˚

˝

a3 a4

´a4 a3

˛

‹

‹

‚

˛

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 a2 0 0

´a2 a1 0 0

0 0 a3 a4

0 0 ´a4 a3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.3.17)

and it satisfies Impκq Ă SOpx´,´yq.

Consider the exact sequence:

1 Ñ Z2 Ñ SLp2,Cq ˆ SLp2,Cq κ
Ñ SOp4,Cq Ñ 1 (6.3.18)
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where Z2 ãÑ SLp2,Cq ˆ SLp2,Cq is the diagonal embedding. This induces:

1 Ñ Hompπ,Z2q Ñ Hompπ, SLp2,Cqq2 κ
Ñ Hompπ, SOp4,Cqq (6.3.19)

where we recall that π :“ π1pG6q. Now, unless we know the map κ precisely, there

is not much else that can be done. For the sake of argument, assume for a moment

that it is surjective (we will explain in a moment the meaning of this condition). If

this is the case, then combined with the fact that Hompπ,Z2q – K, we have:

Hompπ, SOp4,Cqq – Hompπ, SLp2,Cqq2{K (6.3.20)

so the character variety is essentially:

Charpπ, SOp4,Cqq – Hompπ, SLp2,Cq2q
M

K¸ SOp4,Cq (6.3.21)

i.e., it is a quotient of Charpπ, SLp2,Cq2q by permutations Σ2 – Z2. Thus:

Charpπ, SOp4,Cqq – Sym2

ˆ

Charpπ, SLp2,Cqq
˙

(6.3.22)

We have established before that Charpπ, SLp2,Cqq is a union of a trident of

complex lines YC and three isolated points4, Thus:

Char0
pπ, SOp4,Cqq – Sym2

pYCq (6.3.23)

4Recall the isolated points parametrize certain rigid G2-structures.
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which is topologically just YC ˆYC.

Given the accordance with the previous computation, one must conclude that

the map κ above is indeed surjective. We now discuss the geometric meaning of this

condition. Recall that we introduced in Chapter 2 the notion of geometric structures

in the sense of Goldman [Gol88]. Here, we are dealing with a SOp4,Cq-structure

over G6. We want to determine when representations ρ : πpG6q Ñ SOp4,Cq can be

lifted to representations rρ : π1pG6q Ñ SLp2,Cq2 into the universal cover SLp2,Cq2

of SOp4,Cq. Indeed, such a lift is equivalent to surjectivity of κ.

In [Cul86] a condition is determined for such a lift to exist. In fact, the result

applies to any covering space, not just the universal cover. The condition can be

described as follows: consider SOp4q Ă SOp4,Cq a maximal compact subgroup. We

see the representation ρ as the holonomy of a SOp4,Cq{SOp4q-structure on G6. One

way this can be defined is via an immersion of the universal cover ĂG6 – R3 into

P :“ SOp4,Cq{SOp4q. We have a natural SOp4q-bundle over P , namely, SOp4,Cq,

which can then be pulled-back by the immersion to give a SOp4q-bundle E over

R3. This bundle is of course trivial. Moreover, it has a properly discontinuous

action of π1pG6q taking fibers to fibers, and the quotient F :“ E{π1pG6q defines a

SOp4q-bundle over G6. Culler proves that if F has a section, then ρ lifts to any

covering group of SOp4,Cq. It is not clear to the author how the existence of flat

SOp4,Cq-Higgs fields on G6 is related to the existence of such section, but given the

results discussed, presumably a relationship should exist.
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6.4 A new proposal for SYZ

The SYZ conjecture proposes to construct the mirror as a dual special Lagrangian

fibration where the mirror fibers are moduli spaces of Up1q-local systems of the

original fibers (i.e., dual tori).

The computations in the last section suggest a new geometric construction of

SYZ mirrors, which should prove useful at least whenever there are natural covering

maps from the smooth fibers to a singular fiber. We write it as a conjecture:

Conjecture 6.4.1. Let X be a non-compact threefold endowed with a special La-

grangian torus fibration f : X Ñ B with generic smooth fiber T and a semi-flat

Calabi-Yau metric. Fix a point 0 P B such that F0 :“ f´1p0q is a singular fiber.

Assume there is a covering map T Ñ F0 with finite Galois group Γ ď SUp2q, and

let GΓ be the complex semisimple Lie group McKay-dual to Γ.

Consider the Hitchin map H :MGΓ
Higgs Ñ B. Then the mirror special Lagrangian

fibration pf : pX Ñ B has a crepant resolution given by:

H |
qX : qX Ñ H p qXq (6.4.1)

where qX :“ MΓ
Higgs Ă M

GΓ
Higgs, the spectral mirror of X, is the locus of flat Higgs

bundles whose spectral cover has Galois group Γ.

Moreover, by Theorem 5.1.7, qX is a moduli space of GΓ-configurations of A-

branes wrapping F0 Ă X.
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Chapter 7

Future Directions

7.1 Heterotic duals

It is well-known that M-theory on a K3 surface is dual to E8ˆE8-heterotic strings

on T3. The duality is expected to hold when the two sides are appropriately fibered

over a 3-manifold Q.

On the M-theory side, the theory is compactified on a G2-manifold M , and the

bundle M Ñ Q is required to be a coassociative K3 fibration. The moduli space

MC
G2

of the theory parametrizes complexified G2-structures on M . In previous

chapters we described the “hyperkähler sector”1 of MC
G2

explicitly for ADE G2-

platyfolds.

On the heterotic side, we compactify the theory on a Calabi-Yau manifold X.

The moduli space MHet is parametrized by a choice of special Lagrangian torus

1I.e., the G2-structures coming from hyperkähler deformations of the fibers.
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fibration X Ñ Q and a choice of flat bundle Eq for each special Lagrangian fiber

Tq – T3. The bundles Eq are called the “gauge bundles” of the theory. In general,

the hyperkähler sector on the M-theory side will be mapped to a nontrivial subspace

S Ď MHet - i.e., neither the special Lagrangian fibration nor the family of gauge

bundles are constant on S.

However, there is a suitable limit on M where the setup simplifies: this is when

the K3 fibers degenerate into two “half-K3” surfaces 1
2
K31 and 1

2
K32 connected

by a “long neck” isomorphic to T 3 ˆ r0, 1s [Mor02] [BSN17]. Recall that a generic

K3 surface fibers elliptically over P1 with 24 singular fibers. If z is the coordinate

on P1, the fibration can be described by y2 “ x3 ` fpzqx` gpzq where f and g are

polynomials with degpfq ď 8, degpgq ď 12. The singular fibers are located at the

discriminant locus ∆ “ t4f 3pzq ` 27g2pzq “ 0u. The half-K3 surface is a rational

elliptic surface that fibers over P1 with 12 singular fibers (generically). The limit is

then a metric deformation of the Ricci-flat metric on K3 in which the long neck is

created, separating the two sets of 12 singular fibers.

Now, remove from a half-K3 a smooth T2-fiber. Chen and Chen [CC16] prove

that the resulting space is biholomorphic to the Tian-Yau ALH-space [TY90]. The

ALH-spaces are non-compact hyperkähler manifolds very similar to the ALE-spaces

we worked with in Chapter 3, the main difference being that the hyperkähler met-

ric is asymptotic to R ˆ T3
{Z2, as opposed to C2{Γ. ALH spaces also satisfy a

Torelli-type classification theorem: any ALH-space is diffeomorphic to the minimal
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resolution Z of RˆT3
{Z2, and any ALH hyperkähler structure comes from a choice

of hyperkähler structure on Z. The main result regarding ALH-spaces in [CC16] is

that one can glue two such spaces with a T3
ˆ r0, 1s in between to produce a K3

surface. For further reference, we note that the moduli space of hyperkähler metrics

on Z is 33-dimensional.

From the point of view of the heterotic side of the duality, the 1
2
K3 limit is

interesting because it corresponds to a regime in which the volume of the special

Lagrangian torus fibers T3 of X Ñ Q is large and the duality data “decouples”:

the monodromies of the K3-lattice in the neck are matched with the SYZ fibration

data X Ñ Q, and the Ricci-flat metric on the two 1
2
K3’s is matched with the flat

E8 ˆ E8-bundle on T3 [BSN17]. One can think of each 1
2
K3 as producing a flat

E8-bundle.

It is not hard to prove that the moduli of Ricci-flat metrics on a 1
2
K3 is the

same as the moduli of flat E8-bundles on T3 [Mor02]; they are both 24-dimensional

real tori, and the proof that it is the same torus essentially boils down to a Mayer-

Vietoris argument to determine the 1
2
K3-lattice and its intersection form. Now, if we

introduce an ADE singularity C2{Γ of type G in the half-K3, then locally around it,

deformations of the Ricci-flat metric are given by deformations of the hyperkähler

structure of the ALE C2{Γ. This introduces dimphcq extra parameters. On the

heterotic side, this induces a reduction of the structure group of the gauge bundle

to CE8pGq. It can also be seen as a choice of flat G-connection whose holonomy
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commutes with the gauge connection. When we fiber this over a 3-manifold Q,

we expect the hyperkähler sector of the G2-deformations to match “families of flat

G-connections on T 3” over Q.

We now proceed to prove this last assertion rigorously when Q is a platycosm.

Throughout this section we work over the smooth locus of the fibration X Ñ Q.

For each Tq, a choice of flat G-bundle corresponds to a point of the character

variety

CharpTq, Gq :“ Hompπ1pTqq, Gq{CG (7.1.1)

We would like to argue that a choice of heterotic modulus is a certain section of

a flat bundle:

CharpTq, Gq E

Q

We first construct the flat bundle structure, and then argue what kind of section

we want.

First, recall that X is taken to be a special Lagrangian torus fibration over the

flat manifold Q. It is natural to require the fibration to be compatible with the

fixed flat structure on Q. We interpret this as requiring that X Ñ Q is induced

from a δ-flat family of lattices Λq Ă T ˚q Q by X – T ˚Q{Λ, where Λ “
Ť

qPQ Λq In

particular, the structure group of X Ñ Q is taken to be the isometry group of Λ,

i.e., AffpΛq. In particular, X Ñ Q is not a vector bundle.
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The group AffpΛq fits into an exact sequence:

1 Ñ pS1
q
3
Ñ AffpΛq ÑMpR3

{Λq Ñ 1 (7.1.2)

whereMpR3{Λq – SLp3,Zq is the mapping class group of the three-torus T – R3{Λ.

Now, the action of AffpΛq on T descends to an action of MpTq on π1pTq. This

is because translations act trivially on homotopy classes, and MpTq – Out`pTq.

This action dualizes to an action on HompT, Gq, and the new action is well-defined

on conjugacy classes; hence it descends to CharpTq, Gq. This gives E the structure

of a SLp3,Zq-bundle over Q.

To define a flat connection on E Ñ Q, we first define one on X Ñ Q. We have

the flat connection δ on T ˚Q Ñ Q. Since Λ is taken to be δ-flat, δ induces a flat

connection on X Ñ Q. Using the short exact sequence above, one can induce a flat

connection on a π1pTq-bundle, which can then be dualized to a flat connection on

E Ñ Q, as desired.

We are interested in describing the flat sections of E , i.e., the moduli space is:

H0
flatpQ, Eq (7.1.3)

A flat section can be determined by solving the parallel transport equation: we

fix a fiber Eq and s0 P Eq and require ∇s “ 0, spqq “ s0. Then s is determined at

any other fiber Ep by lifting a path from q to p to its unique horizontal lift. This

gives a multivalued map from horizontal lifts to a fiber. The map is multivalued
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because the horizontal lift is only unique modulo monodromy: different points in a

fiber can give rise to the same flat section, and such points are related by the action

of the monodromy group M∇, which should be thought as a global symmetry.

However, when restricted to flat sections of E , the map becomes single-valued

and also a bijection. The flat sections are exactly the lifts that are fixed by the

monodromy. Hence the moduli space can be described as:

MHet “ H0
flatpQ, EqM∇ (7.1.4)

Equivalently, MHet can be obtained by taking the fiberwise quotient of E by

M∇. The resulting bundle is the holonomy bundle H∇ associated to pE ,∇q. It has

a natural flat connection induced from ∇. The moduli space is:

MHet – H0
flatpQ,H∇q (7.1.5)

Under the correspondence between flat sections and fiber, we get a more useful

description:

MHet – CharpT3, GqM∇ (7.1.6)

But notice this is exactly the answer we got for the moduli space of classical

A-branes in the type IIA picture! We have proved the following:

Theorem 7.1.1. Let M Ñ Q be a platycosm ADE G2-orbifold of type G. Let MA

be the moduli space of classical A-branes on its type IIA dual T ˚Q (i.e., flat G-
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connections on Q), and let MHet be the moduli space of its heterotic dual X Ñ Q,

parametrizing flat families of flat bundles on the sLag tori Xq. Then:

MA –MHet – CharpT3, GqM∇ (7.1.7)

In particular, for G “ SLpn,Cq these moduli spaces are:

ˆ

pC˚q3n´3
M

Sn

˙M∇

(7.1.8)

These have been computed for Q “ T 3 and the Hantzsche-Wendt manifold G6

in a previous section.

7.2 G2 Intermediate Jacobian and Variation of

Hodge Structures

Let M be a compact oriented G2-manifold, and let ‹ denote the usual Hodge star

operator induced from the G2-metric. We will use the notation Hk
A :“ HkpM,Aq.

The moduli space of G2-structures on M is an open set inside H3pM,Rq and is

denoted byMG2 . We callMC
G2

its “complexification”, which is a Lagrangian torus

fibration overMG2 admitting a natural Lorentzian Kähler metric [KL07]. Let f be

the Kähler potential for this metric.

Consider the two real tori:
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J1 “ pH
3 ‘H4qR

M

p1` ‹qH3
R ‘ p1´ ‹qH

3
Z
– H4

R

M

‹H3
Z

(7.2.1)

J2 “ pH
4 ‘H3qR

M

p1` ‹qH4
R ‘ p1´ ‹qH

4
Z
– H3

R

M

‹H4
Z

(7.2.2)

Unlike the intermediate Jacobians of a compact Kähler manifold2, these tori can

be odd dimensional.

In this section we will study “complexifications” of these tori. The main point

is that in such a situation one can use techniques of Hodge theory. The goal is to

determine if the complex tori can be assembled into a family with the structure of

a complex integrable system.

7.2.1 Complex Tori

There are three complex tori that can be constructed from J1 and J2. The first two

are:

J 1 “ J1 ˆ J1 – H4
C

M

‹H3
Z ‘ ‹H

3
Z

(7.2.3)

J2 “ J2 ˆ J2 – H3
C

M

‹H4
Z ‘ ‹H

4
Z

(7.2.4)

endowed with the obvious complex structures.

2The Hodge decomposition implies that odd Betti numbers of compact Kähler manifolds are

even.
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Let J be the torus defined by:

J “ J1 ˆ J2 – pH
3 ‘H4qR

M

‹H4
Z ‘ ‹H

3
Z

(7.2.5)

Proposition 7.2.1. J 1 and J2 are dual complex tori, while J is self-dual.

Proof. This is a simple application of Poincaré duality.

Given dual complex tori T and T̂ , a non-degenerate line bundle L onX defines an

isogeny ψL of degree detpc1pLqq by the formula ψLpxq “ t˚xLbL
´1, where tx : T Ñ T

is translation by x [Deb99]. As a consequence, every non-degenerate line bundle L1

on J 1 defines an isogeny ψL1 : J 1 Ñ J2 of degree detpc1pL
1qq. Similarly, a line bundle

L on J defines a self-isogeny ψL : J Ñ J of degree detpc1pLqq. There are Poincaré

line bundles P 1 Ñ J 1 ˆ J2 and P Ñ J ˆ J .

We will focus on J as opposed to J 1 or J2, but we note that all results that

follow have analogous versions for the other tori. We also remark that the lattices

defining all three tori depend on the G2-structure ϕ through ‹.

We have not yet fixed an isomorphism pH3 ‘ H4qR – Cb3 , and the statements

about J only make sense once one is fixed. Consider the map:

I : pH3
‘H4

qR Ñ pH3
‘H4

qR

pη, θq ÞÑ p‹θ,´ ‹ ηq

Since ‹2 “ 1, this is a complex structure. Notice that it differs from those of
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J 1 and J2 in that it “sees” the G2-structure on M even at the level of Cb3 , via the

Hodge star ‹.

From now on we use the notation HA :“ pH3 ‘ H4qA. When we go to the

complexification HC :“ HR b C, the i-eigenspace of I is p1 ` i‹qHR. Therefore I

coincides with the obvious complex structure on H given by the operator i‹ - whose

i-eigenspace is V :“ p1` ‹qHC. Therefore:

J – HC
L

V ‘ ‹HZ (7.2.6)

HC has a complex conjugation given by σ : HC Ñ HC, σpη, θq “ pi ‹ θ,´i ‹ ηq.

It is easy to check that σ2 “ id and σ ˝ I “ ´I ˝ σ. Complex conjugation of vector

spaces will be taken with respect to σ. It is easy to see that V “ p1 ´ ‹qHC. Note

also that V ‘ V “ HC.

Lemma 7.2.2. The map I induces a complex structure on J .

Proof. All we need to show is that the map descends to a map on the tangent bundle

TRJ , which is real-isomorphic to the quotient HC{V – V . Suppose pη, θq “ pµ, νq `

pα, ‹αq. Then Ipη´µ, θ´νq “ Ipα, ‹αq “ pi‹α, ‹pi‹αqq P V , so Ipη, θq “ Ipµ, νq.

The complex structure I depends on the choice ofG2-structure onM through the

Hodge star ‹.3 Moreover, I is completely determined by any of its period matrices.

Also notice that H1pJ,Cq – TCJ – T 1,0 ‘ T 0,1, using the complex structure I.

These are the eigenspaces associated to i and ´i, so H1pJ,Cq – V ‘ V .

3The G2-structure ϕ determines a G2-metric gϕ, which in turn determines ‹.
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Remark: The definition of the complex torus J is inspired by the Lazzeri

Intermediate Jacobian of a compact oriented Riemannian manifold of dimension

2p2k ` 1q [BL99]. However, the Lazzeri Jacobian is an abelian variety, and as we

will se below this is not true for J .

We define a weight 1 Hodge structure on HJ :“ H1pJ,Zq by:

HJ “ F 1HJ ‘ F 1HJ (7.2.7)

where F 1HJ :“ V and F 1HJ “ V . This makes sense since TRJ – V and TCJ – HC

(non-canonically). Define F 0HJ “ F 0HJ “ HJ , so F 1HJ “ H1,0
J and F 1HJ “ H0,1

J .

Consider the bilinear form:

Q : HJ ˆHJ Ñ Z

Qppη1, θ1q, pη2, θ2qq “

ż

M

η1 ^ θ2 ´

ż

M

η2 ^ θ1 (7.2.8)

Lemma 7.2.3. Q is a skew-symmetric form with the following properties:

1. QpH1,0
J , H1,0

J q “ 0 “ QpH0,1
J , H0,1

J q

2. hppη1, θ1q, pη2, θ2qq :“ iQppη1, θ1q, pη2, θ2qq is a semi-Riemannian Kähler met-

ric.

Proof. 1q For H1,0
J :

Qppη, ‹ηq, pν, ‹νqq “

ż

M

η ^ ‹ν ´

ż

M

ν ^ ‹η “ 0
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by definition of ‹. Similarly for H0,1
J .

2q We use the definition of σ to show:

hppη1, θ1q, pη2, θ2qq “

ż

M

η1 ^ ‹η2 `

ż

M

‹θ2 ^ θ1

which is an extension of the L2-metric on MG2 to MC
G2

. It is clearly symmetric

and non-degenerate. In fact, it is the Lorentzian Kähler metric on MC
G2

described

by Karigiannis and Leung in [KL07].

Corollary 7.2.4. pHZ, HC, Qq defines a polarized Hodge structure of weight 1.

The polarized Hodge structure descends to J :

Lemma 7.2.5. h is a polarization on J .

Proof. See [Bec18] Lemma 3.

Proposition 7.2.6. The polarized complex torus pJ, hq is not an abelian variety.

Proof. This is a consequence of Lemma 7.2.5 and part 2 of Lemma 7.2.3, which

shows that h has index 1.

We now generalize this picture to a family of complex tori π : J Ñ B, where

B Ď MC
G2

is an open set and each fiber JϕC is the polarized Jacobian for the

complexified G2-structure ϕC P B. There is a locally constant sheaf HZ :“ R1π˚Z

over B whose stalk at each ϕC is H1pJϕC ,Zq. The polarizations determine a map

Q : HZ bHZ Ñ Z. Associated to this local system there is a holomorphic bundle
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H :“ HZbOB and a flat holomorphic connection ∇, the Gauss-Manin connection.

Griffiths transversality shows that the subbundle F1 with fibers F 1H1pJϕC ,Cq is

holomorphic. We have proved the following:

Theorem 7.2.7. The data pHZ,F1, Qq defines a polarized variation of Hodge struc-

tures of weight 1.

Given this result, we would like to know under which condition on the VHS,

a C8 locally trivial family of tori π : J Ñ B admits a structure of complex inte-

grable system, i.e., an analytically locally trivial structure on π with a compatible

Poisson structure under which π is a Lagrangian fibration4. If we do not impose

the analyticity condition, then there are no obstructions: any C8 fibration can be

given local action-angle coordinates, which in turn define a Poisson structure.

One way to approach this problem is to produce a Seiberg-Witten differential.

However, this is a rather strong condition, as it implies that the total space is

an exact symplectic space. One can always find a Seiberg-Witten 1-form in the

relative universal cover to J Ñ B, and its differential will be a symplectic form

that descends to the base, even though the Seiberg-Witten form only does so locally.

This is an interesting computation. but we will approach the problem differently.

What we need is the cubic condition of Donagi and Markman [DM95]: in its

local form, it states that given the classifying map q : J Ñ Cb3,1, where Cb3,1 is

the moduli space of polarized complex tori of dimension b3 and index 1, and given

4Note that this is weaker than an algebraic integrable system. See [Bec18], Definition 3.
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an isomorphism τ : V˚ Ñ TB, where V is the vertical bundle of J , we need the

composition

dq ˝ τ : V˚ Ñ Sym2
pVq (7.2.9)

- which is an element of ΓpV b Sym2
pVqq - to be given by a cubic c P ΓpSym3

pVqq.

Moreover, Donagi and Markman prove a global cubic condition: if there is a

holomorphic function F : B Ñ C such that q “ B2F
BziBzj

then J Ñ B is a Lagrangian

fibration with cubic given by B3F
BziBzjBzk

.

Therefore, our problem reduces to finding a natural holomorphic function on

MC
G2

: by the global cubic condition this will automatically fix the Lagrangian

structure and the classifying map of the family of tori.

Karigiannis-Leung [KL07], Grigorian-Yau [GY08] proved there is a natural cubic

form on MG2 , called the Yukawa coupling. It is given by a real-analytic function:

fpϕq “
3

7

ż

M

ϕ^ ‹ϕ “ 3

ż

M

dvolϕ (7.2.10)

It can be extended to a complex function on B that is constant along the fibers

of J . However, this extension is not holomorphic, hence not fit for our purposes.

Instead, we work near a smooth point inMG2 and fix an open set U ĎMG2 where

f can be extended in a power series. Recall that MG2 is an open set in H3pM,Rq,

so dimR U “ b3.

Let f |U : U Ñ R, and let W Ď Cb3 be the domain of holomorphy of f . Let
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f : W Ñ C be the extension of f to a holomorphic function. We need to show the

following:

Conjecture 7.2.8. f descends to a holomorphic function F : B Ñ C. In other

words, f is ‹H3
Z-periodic on the imaginary directions.

The idea for the proof is to show that F is basically obtained by modifying

formula 7.2.10 by redefining ϕ to include the holonomies of the C-field. It would

be interesting to prove the conjecture above as it would tie up the Lagrangian

structures on J ÑMC
G2

and MC
G2
ÑMG2 .

Another path to produce a periodic holomorphic function onMC
G2

is the follow-

ing. Fix a class γ P p‹H4pM,Zqq˚. Over MC
G2

, this defines a locally flat section of

integration cycles. The idea is to define local functions Fi : Ui Ă B Ñ C over a

trivializing cover for the flat sheaf by:

Fipϕ` iCq “

ż

γpUiq

exppϕ` iCq (7.2.11)

and then glue them together to a global holomorphic function F : B Ñ C.

Recall that ϕC :“ ϕ` iC is the natural holomorphic coordinate onMC
G2

, so F is

holomorphic. Hence if F can be constructed, it will have all the desired properties:

it is holomorphic and periodic in the imaginary directions, hence well-defined on

MC
G2

. So it can be taken as a holomorphic potential F :MC
G2
Ñ C giving J ÑMC

G2

the structure of a complex integrable system.
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7.2.2 Concerning special Kähler structures

An interesting question is whether one can have non-trivial G2-manifolds such that

the Kähler metric on MC
G2

admits an adapted special Kähler structure, that is, a

flat torsion-free symplectic connection ∇ satisfying d∇I “ 0. The reason this is

plausible is that MC
G2

already comes equipped with the following structures:

Lemma 7.2.9. There is a flat torsion-free connection ∇ on TMC
G2

satisfying the

following conditions:

• the Kähler metric is the Hessian of a Kähler potential with respect to a ∇-flat

holomorphic coordinate system.

• there is a holomorphic cubic form Y P H0pMC
G2
, Sym3

pT ˚MC
G2
qq which deter-

mines the Christoffel symbols of ∇ (see the definition of the tensor B below).

Proof. See [GY08], equations 6.36 and 6.37. Basically ∇ is an extension to TMC
G2

of the covariant derivative on the canonical real line bundle Lϕ ÑMC
G2

defined by

equation 6.32 in [GY08].

However, this is not enough to produce a special-Kähler structure. We need

further compatibility conditions between Y , ∇ and the Kähler structure. More

precisely: let B P Ω1,0pMC
G2
,EndRTMC

G2
q be defined by:

Y “ ´ωpπ1,0, rB, π1,0
sq (7.2.12)

The first condition is that
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∇ “ D `B (7.2.13)

where D is the Levi-Civita connection for the Kähler metric. This is shown in

[GY08], equation 6.36 (in that paper, B is denoted by ANMQ, and Y by AMNQ).

However, there are further conditions:

dDB “ 0

FD `
 

B ^B
(

“ 0 (7.2.14)

Here, t¨, ¨u is the wedge-anti-commutator. Formula 6.22 in [GY08] shows the

second condition is not true in general, but it is possible that only the second term

survives for some specific topological types of G2-manifolds. Essentially, the issue is

that Y depends on the G2-structure ϕ, while FD depends on the fourth derivative of

the Kähler potential, which depends on ‹ϕ. This issue does not arise in the moduli

space of Calabi-Yau manifolds, as both structures come from the holomorphic 3-

form.5

The cotangent bundle of a special Kähler manifold is automatically hyperkähler,

and a flat cotangent lattice Λ defines an algebraic integrable system pT ˚MC
G2
q{Λ Ñ

MC
G2

with a family of polarizations making the fibers into abelian varieties. For

this reason, such integrable systems are more special than those discussed in the

previous section, so it would be interesting to determine which topological types of

G2-manifolds admit this extra structure on the moduli space MC
G2

.

5I thank Sergey Grigorian for explaining this point to me.
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7.3 Kapustin-Witten systems and flat Higgs bun-

dles

In this section we change gears in order to discuss flat Higgs bundles in the context

of a larger theory: Kapustin-Witten systems on a four-manifold.

We show that flat Higgs bundles describe an invariant subspace of a natural

map on the moduli space of solutions of the Kapustin-Witten equations. More gen-

erally, we argue that the moduli space of a family of extended Bogomolny theories

parametrized by a parameter q P S1 can be given the structure of a S1-bundle over

the moduli space of solutions to the Acharya-Pantev-Wijnholt system.

Let M “ Q ˆ R be an oriented Riemannian four-manifold, A a connection

on a G-bundle on E Ñ M , F its curvature, and Φ P Ω1pAdpEqq. Consider the

Kapustin-Witten equations [KW06]:

pF ´ Φ^ Φ` qDAΦq` “ 0

pF ´ Φ^ Φ´ q´1DAΦq´ “ 0

DA ‹M Φ “ 0 (7.3.1)

where for a two-form α, α˘ denotes its selfdual and anti-selfdual components, ‹M

is the Hodge star operator on M and q P R.

We refer to 7.3.1 as the KWq system and q is called a twisting parameter. In

[GW11], Gaiotto and Witten study the dimensional reduction of the KW1 system
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down to two dimensions, and show the moduli space of solutions provides knot

invariants. In section 7 below I will sketch an approach to relate the discussion on

this section to [GW11] and also the work of Aganagic and Vafa [AV01].

The KWq system is a deformation of the Hermitian-Yang-Mills equations. We

proved in section 4 that the APW system is a dimensional reduction of HYM.

Hence APW is also a dimensional reduction of KWq. The precise way in which this

happens is given by the following lemma:

Lemma 7.3.1. Let pQ : M Ñ Q be the projection to Q. The, for q ‰ ˘i, the

pullback of connections by pQ defines an injective map ι :MAPW pQq ãÑMKWqpMq

Proof. Start from 7.3.1 and perform dimensional reduction, assuming moreover that

A “ π˚A and Φ “ π˚φ (i.e., A0 “ φ0 “ 0). Let’s see what happens with the first

equation: let G “ F ´ Φ^ Φ` qDAΦ. Then the equation is:

G “ ´ ‹M G (7.3.2)

But G has no dt components, and ‹MG has only components with a dt, so they

must both vanish. Thus we get:

F ´ Φ^ Φ` qDAΦ “ 0 (7.3.3)

Now note that everything is pulled-back from Q. So:

F ´ φ^ φ` qDAφ “ 0 (7.3.4)
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An analogous argument holds for the other two equations. We get:

F ´ φ^ φ` qDAφ “ 0

F ´ φ^ φ´ q´1DAφ “ 0

DA ‹ φ “ 0 (7.3.5)

If q ‰ ˘i, the first and second equations combined imply that DAφ “ 0. There-

fore we obtain the flat Higgs bundles equations.

So far this is hardly interesting, as it is well-known that most of the solutions

to KWq are flat connections. The interesting idea comes when we compare the

dimensionally reduced KWq for different values of q. For q “ 1, we get equations

10.35 in [KW06]:

F ´ rφ, φs “ ‹

ˆ

DAφ0 ´ rA0, φs

˙

DAφ “ ‹

ˆ

DAA0 ` rφ0, φs

˙

DA ‹ φ “ ‹rA0, φ0s (7.3.6)

We now perform the dimensional reduction of the KW0 system. The equations

are:

pF ´ Φ^ Φq` “ 0

pDAΦq´ “ 0
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DA ‹ Φ “ 0 (7.3.7)

Let t be a coordinate on R, tx1, x2, x3u coordinates on Q and write A “ A0dt`

Aidx
i, Φ “ φ0dt` φidx

i.6 We write A “ Aidx
i and φ “ φidx

i and think of these as

a connection and a Higgs field on Q, respectively. Let F be the curvature of A.

We assume the matrices do not depend on t. The first equation in 7.3.7 becomes

a set of three equations:

Fij ´ rφi, φjs “ p´1qk
ˆ

DkA0 ` rφ0, φks

˙

pi ă j, i ‰ k ‰ jq (7.3.8)

These can be rewritten using the Hodge star ‹ on Q:

F ´ rφ, φs “ ‹

ˆ

DAA0 ` rφ0, φs

˙

(7.3.9)

(Notice that A0 and φ0 are just matrix-valued functions on Q, so DAA0 and rφ0, φs

are matrix-valued one-forms on Q, and are mapped to matrix-valued two-forms by

‹).

Next, the second equation in 7.3.7 becomes:

DAiφj “ rA0, φks ´DAkφ0 pi ă j, i ‰ k ‰ jq (7.3.10)

which can be put together as:

‹DAφ “ rA0, φs ´DAφ0 (7.3.11)

6In this section we use the Einstein summation convention for upper and lower indices.
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Finally, the last equation in 7.3.7 is equivalent to:

rA0, φ0sdtdx
1dx2dx3

` p´1qiDAiφi “ 0 (7.3.12)

which can be rewritten as:

DA ‹ φ “ ‹rA0, φ0s (7.3.13)

Putting all together we get the following set of equations:

F ´ rφ, φs “ ‹

ˆ

DAA0 ` rφ0, φs

˙

DAφ “ ‹

ˆ

´DAφ0 ` rA0, φs

˙

DA ‹ φ “ ‹rA0, φ0s (7.3.14)

for a G-connection A on E Ñ Q with curvature F , an element φ P Ω1pQ,AdpEqq

and two fields A0, φ0 P Ω0pQ,AdpEqq. Notice we used the fact that ‹2 “ 1.

When φ0 “ A0 “ 0 both sets of equations 7.3.6 and 7.3.14 reduce to:

F ´ φ^ φ “ 0

DAφ “ 0

DA ‹ φ “ 0 (7.3.15)

which are exactly the Acharya-Pantev-Wijnholt (APW) equations.
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Let KW1 denote the space of solutions to 7.3.6 and KW0 the space of solutions

to 7.3.14. There is an “anti-involution”:

KW0 Ñ KW1

pA0, φ0q Ñ pφ10,´A
1
0q (7.3.16)

that matches the APW subspaces of KW1 and KW0. These subspaces parametrize

the same objects, so we do not distinguish them.

In fact, one can perform the dimensional reduction for general parameter q,

and from the general formula one can see that q defines a S1-action on KW :“

\qPS1KWq leaving APW invariant. More precisely, if one considers the family over

APW whose fiber over pA, φ, hq is pq, A0pqq, φ0pqqq, then S1 acts by rotation on the

fibers.

The relationship between KW and APW seems more surprising when one con-

siders the analogy with instantons on four-manifolds. If 7.3.1 is analogous to the

anti-selfduality equations on M , then 7.3.14 correspond to the Bogomolny equations

on Q and 7.3.15 are analogous to the rather boring solutions given by flat connec-

tions on Q. Of course, in the classical situation one works with a real gauge group,

while in the present case APW systems are actually equivalent to flat complex

connections. Hence the analogy is stronger than it seems at first.

This raises a few interesting questions:

1. Does the family KW Ñ APW admits more interesting geometric structures,
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such as a natural connection?

2. In [PW11] Pantev and Wijnholt introduced a Morse-Novikov complex count-

ing solutions to 7.3.15. In [Wit12], Witten argues that counting certain solu-

tions to 7.3.1 should give rise to Khovanov homology. Can the Morse-Novikov

homology be realized as a subcomplex, and if so, what kind of knot invariants

does it give rise to?

In general, we expect that APW is some sort of “invariant subspace” for a flow

of time-independent solutions KWq Ñ KWr. In other words, if (2) holds, the

Morse-Novikov complex should be an invariant subspace for the differentials

computing Khovanov homology.

7.4 Other directions

1. G2-metrics: The most immediate extension of this work is to identify subfam-

ilies of the deformation family of closed G2-structures constructed in Chapter

3 that correspond to G2-metrics. In other words, we would like to know which

fibers of the deformation family have the property that its induced closed G2-

structure is also torsion-free. For a given s P B “ ΓflatpQ, Eq, this is equivalent

to the harmonicity of a certain Donaldson section Ds : QÑ H2pMs{spQq,Rq

of the flat bundle H2pMs{spQq,Rq over Q [Don16]. This section is deter-

mined by the condition that the cohomology class of the hyperkähler ele-
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ment ηs is given by the derivative of Ds. An equivalent way to formulate

the condition is that the image DspQq must be a maximal submanifold of

H2pMs{spQq,Rq – h_ with respect to the Killing form (see Donaldson’s orig-

inal work [Don16] and the recent work of Li [Li18] for more on maximal

submanifolds). In our setup, we would like to reformulate this as a condition

on the section s determining the flat spectral cover.

2. Flat collapse: As we have explained, the sLag torus fibration T ˚G6 Ñ R3{K

is singular over the Y-vertex. The singular fibers are given by dicosms G2 over

the three positive rays of the Y and a Hantzsche-Wendt space G6 over the ori-

gin. We have argued that the results of [LYZ04] imply that the total space

admit a semi-flat Calabi-Yau metric. However, this is just a first approxi-

mation to the correct dual to M - presumably, instanton corrections should

deform this geometry. Now, recent work of Bettiol, Derdzinski and Piccione

[BDP17] classifies all flat deformations of the platycosms. These spaces can

undergo quite interesting Gromov-Hausdorff collapse.

One can raise the question whether instanton corrections to the semi-flat met-

ric can induce collapse on the Y-fibers. Although the generic torus fibers can

only undergo rather trivial collapses, the other platycosms admit interest-

ing features. The following example suggests that such collapse can contain

nontrivial information on the quantum nature of the IIA/heterotic duality:

Consider G6 seen as the central fiber in the above. The moduli space of flat
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deformations of G6 is – R3
`, and collapsed limits correspond to collapses of

the isotypic components of the orthogonal representation of M∇. For G6,

M∇ “ K and there are three isotypic components. As explained in [BDP17],

collapse in each of the three directions produces a flat 2-orbifold RP2p2, 2; q,

which is a Z2-quotient of T2
{Z2, the SUp2q-character variety of a two-torus.

This seems to suggest that the dual heterotic picture is corrected to include

a singular T2
{Z2-fiber. Meanwhile, the remaining exceptional fibers over the

Y-vertex are G2’s, which can collapse to either a S1, a Klein bottle or another

Z2-quotient of T2
{Z2, the flat 2-orbifold known as the half pillowcase, usually

denoted D2p2, 2; q.

3. Kovalev-Lefschetz fibrations factoring through ramified covers: A

theorem of Hilden-Montesinos [Mon74] says that every closed orientable 3-

manifold is a 3-fold branched cover over S3 with branched set over a knot K.

The proof gives an explicit choice of K for a given 3-manifold Q. One could

use this to relate Kovalev-Lefschetz fibrations over a general Q to ramified

Kovalev-Lefschetz fibrations over S3. This should allow one to study G2-flops

for general Q using the ideas of [AV01] on flops for pS3, Kq.

One can also easily determine the knots associated to the platycosms. For

example, working with 3-fold covers, KpG6q is the figure-eight knot [Zim90]. If

one would rather work with 2-fold covers, as in Donaldson’s theory of branched

harmonic maps [Don18], then the correct link to use for G6 are the Borromean
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rings.

4. The role of gerbes/B-fields: The SYZ Mirror Symmetry picture we de-

scribed was under the condition of zero B-field. One might wonder how is the

situation modified in the presence of a B-field B ‰ 0, and furthermore, what

is the extra structure on the G2-side giving rise to B.

There is a nice geometric answer in our context: such B-fields are geometrically

H{tpHq-gerbes on the Calabi-Yau geometries, where tpHq is the translation

subgroup of H. In the G2-geometry, the extra structure is an isogeny of

tori rT – T{tpHq. This suggests that from the point of view of M -theory,

the B-field is simply an artifact of the freedom in choosing finite subgroups

of SOp3q that are not Bieberbach groups, but extensions of such groups by

affine translations.

5. Codimension 7 singularities from degenerate spectral covers: An im-

portant open problem in G2-geometry is building manifolds of holonomy G2

with point-like singularities beyond the conically singular cases. The corre-

spondence between integrable G2-structures and flat spectral covers suggest

a new approach to this problem. In analogy with Hitchin systems on curves,

one should expect a spectral correspondence relating flat Higgs bundles with

non-generic Higgs fields to spectral covers ramifying over a link in Q. If one

takes S3 and a link L Ă S3 such that Q Ñ pS3, Lq is a n-sheeted branched

cover, one can interpret Q as part of ramified flat spectral data for a flat Higgs
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bundle on pS3, Lq, non-generic over L. E.g., one can take Q “ G6 and L the

Borromean rings, in which case n “ 2. Over each strand one has a regular

SUp2q-Higgs field (i.e., a 2 ˆ 2-matrix which is a single Jordan block). One

can take a limit in which L degenerates to a bouquet S1
\ S1

\ S1. In that

situation, the Higgs field collapses over the central point to the 0-matrix (it

becomes irregular - a multiple of the identity - and the only possible eigenvalue

in sup2q is 0). So over the singular point we have an element of the nilpotent

cone. However, the associated G2-geometry does not come from a smoothing

of C2{Z2.
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[Blu11] M. Blume, Construction of G-Hilbert schemes, Math. Nachr. 284 (2011),

953-959.

[BFM02] A. Borel, R. Friedman, J. Morgan, Almost commuting elements in com-

pact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747.
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