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ABSTRACT 

DESMIN AND MICROTUBULES MAINTAIN NUCEAR SHAPE AND CHROMATIN 

ORGANIZATION IN THE ADULT CARDIOMYOCYTE 

Benjamin L. Prosser, Ph.D. 

Mechanical forces are transduced to nuclear responses via the linkers of the 

nucleoskeleton and cytoskeleton (LINC) complex, which couples the 

cytoskeleton to the nuclear lamina and associated chromatin. While disruption of 

the LINC complex can cause cardiomyopathy, the relevant interactions that 

bridge the nucleoskeleton to cytoskeleton are poorly understood in the 

cardiomyocyte, where cytoskeletal organization is divergent from that of other 

cell types. Furthermore, while microtubules and desmin intermediate filaments 

associate closely with cardiomyocyte nuclei, the importance of these interactions 

is unknown. Here, we sought to determine how cytoskeletal interactions with the 

LINC complex regulate nuclear homeostasis in the cardiomyocyte and health of 

the myocyte as a whole. 

To this end, we acutely disrupted the LINC complex, microtubules, actin, and 

intermediate filaments and assessed the consequences on nuclear morphology 

and genome organization in rat ventricular cardiomyocytes via a combination of 

super-resolution imaging, biophysical, and genomic approaches. We find that a 

balance of dynamic microtubules and desmin intermediate filaments is required 

to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. 

Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-

3, its binding partner in the LINC complex), polymerizing microtubules collapse 

the nucleus and drive infolding of the nuclear membrane. This results in DNA 

v 
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damage, a loss of genome organization, and broad transcriptional changes. The 

collapse in nuclear integrity is concomitant with compromised contractile function 

and may contribute to the pathophysiological changes observed in desmin-

related myopathies. 
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CHAPTER 1: INTRODUCTION AND METHODS 

Portions adapted from (78): Heffler, J., Shah, PP., Robison, P., Phyo, S., Veliz, 

K., Uchida, K., Bogush, A., Rhoades, J., Jain, R. and Prosser, BL. A Balance 

Between Intermediate Filaments and Microtubules Maintains Nuclear 

Architecture in the Cardiomyocyte. Circulation Research. 2019;126:e10-e26. doi: 

10.1161/CIRCRESAHA.119.315582Ci 

Cardiac myocytes generate the contractile force required to pump blood 

throughout the body. They experience cyclic stress and strain with each 

heartbeat, and alterations in these mechanical stressors can lead to 

cardiomyocyte hypertrophy and eventually heart failure.  

Over the past century, it has become more well-appreciated that there is a link 

between changes to the mechanical environment in the heart, pathological 

remolding on both the cellular and tissue level, and eventual heart disease and 

failure. Moreover, those remodeling changes themselves can serve as a 

feedback loop to further exacerbate pathological strain on the myocardium. For 

example, increased pressure that the heart has to pump against (pressure 

overload) induces cardiomyocytes to undergo concentric hypertrophy (parallel 

sarcomere growth or preferential growth in width). This, in addition to changes to 

the extracellular matrix such as increased fibrosis due to decreased collagen 

degradation by cardiac fibroblasts (1), is associated with thickening and stiffening 

of the heart walls. Conversely, an increase in cellular stretch is associated with 
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volume overload. This tends to cause eccentric hypertrophy (in series sarcomere 

growth or preferential growth in length) and thinning of the heart walls (2).  

While several force-dependent signaling cascades that regulate cardiomyocyte 

growth have been described (3), our understanding of how mechanical forces are 

sensed and transduced is still underdeveloped. Many different pathways need be 

considered when attempting to categorize how mechanical signals are translated 

into changes to gene transcription and eventually to overall heart health and 

disease. These include but aren’t limited to: 1) kinase modulation via integrin 

complexes, costameres, and cell-to-cell junctions such as through focal adhesion 

kinase (FAK) 2) membrane-tension inducing conformational changes to 

mechanosensitive ion channels (ex: TREK1) 3) tension on cytoskeletal elements 

that then in turns modulates actin-, microtubule- and intermediate filament-

associated kinase signaling pathways or ion channels (ex: TRPV4 and Piezo 

channels) and 4) tension transmission to the nucleus that directly modulates both 

lamin-bound chromatin and signaling proteins attached to the lamina and 5) 

regulation of miRNA via mechanical tension to the nucleus (4-5). 

The nucleus is thought to be a key integration site for many of signals whether 

via the aforementioned indirect activation of genes via kinase signaling pathways 

or directly by its physical connection to the cytoskeleton. Recent work, primarily 

conducted in non-muscle cells, has demonstrated that, alongside force-

dependent signaling cascades, mechanical forces can also be transmitted 

directly to the nucleus via the Linkers of the Nucleo- and Cytoskeleton (LINC) 

complex to modulate force-dependent gene expression. The LINC complex is 
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composed of the nuclear envelope spectrin repeat proteins (nesprins) 1-4 in the 

outer nuclear membrane and the Sad1p-UNC-84 (SUN) domain 1 and 2 proteins 

in the inner nuclear membrane. This complex anchors actin filaments, 

microtubules, and intermediate filaments to the nucleus. SUN proteins link to the 

nuclear lamina, which in turn directly binds chromatin in lamina-associated 

chromatin domains (LADs). Hence, the LINC complex forms a contiguous route 

for force transmission from the cytoskeleton to chromatin (4, 6). 

The nesprin proteins come not only in 4 genes but are also variably spliced, with 

nesprin-1 having at least 5 splice forms, nesprin-2 with at least 6, and nesprin-3 

with 2. For the purposes of this thesis, we will focus only on nesprins-1-3 as 

nesprin-4 is not expressed in the heart for rodents. For nesprin-1 and nesprin-2, 

only their unspliced, “giant” forms (“nesprin-1G” and “nesprin-2G” respectively) 

contain a calponin homology (CH) domain near the N-terminus, allowing it to bind 

to actin (7). Moreover, both nesprin-1 and -2 have been thought to associate with 

both kinesin and dynein to microtubules via domains closer to their C-terminus 

(8-9), allowing for many different interactions with these variably spliced proteins. 

Lastly, nesprin-3α has been shown to be the splice form of nesprin-3 that 

interacts with plectin and intermediate filaments. The purpose of nesprin-3β 

remains unclear (10-11).  

The SUN proteins, in contrast, exist in two isoforms (SUN1 and 2) and have had 

more study in their involvement in meiosis and the DNA damage response. 

SUNs are necessary for homologous recombination during meiosis and for 

repairs to double-stranded breaks. The LINC complex has also been associated 
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with its involvement in maintaining lamina and nuclear integrity by preventing 

weakening of the lamina and subsequent rupture (5,12). However, much of this 

work has been conducted in non-striated muscle. Thus, the precise cytoskeletal 

connections to the nucleus that are relevant to cardiomyocyte biology remain 

largely mysterious. This area of study is of clinical importance, as mutations in 

many cytoskeletal, LINC complex, and lamin proteins are associated with 

cardiomyopathy (13-15), and rodent studies demonstrate that loss of LINC 

proteins is sufficient to cause cardiomyopathy (16).  

This becomes a key area of study and question as the cytoskeleton of the adult 

cardiomyocyte is highly divergent of that from other cells in the body. The actin 

and myosin networks are organized into complex structures known as 

sarcomeres which provide the contractile force necessary to shorten the myocyte 

upon electrical stimulation. These sarcomeres are organized into myofilaments, 

connected to one another longitudinally via the z-disc which is composed of not 

only several structure components such as α-actinin and desmin but many 

mechanotransductive elements such as muscle LIM protein (MLP), calsarcin-1 

and melusin (17). Laterally, these myofilaments are coupled to one another via 

desmin and other intermediate filaments to create a highly coordinated and 

interconnected contractile machine. Moreover, these myofilaments are also 

physically coupled via microtubules, non-sarcomeric actin and intermediate 

filaments to the cell periphery and the surrounding extra cellular matrix (via 

costameres) and to different organelles (such as the nucleus and the 

mitochondria) (10-11, 18-20). Of note, alterations in the localization, post-
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translational modulation, expression, and degradation of the actomyosin, 

microtubule and intermediate filament are highly associated with heart health and 

disease. For example, desmin and detyrosinated microtubules are highly 

elevated in heart failure leading to a more viscous and stiffened myocardium 

while contractile machinery is down regulated (21). 

Desmin, the aforementioned coupler of myofilaments at the z-disc, is a type-III 

muscle-specific intermediate filament and is the predominant intermediate 

filament in muscle. Desmin forms a honeycomb-like scaffold that wraps around 

the sarcomere at the z-disc, coupling it to the sarcolemma, intercalated disk and 

various organelles including the mitochondria and the nucleus (22). Desmin is 

involved in transmitting strain through muscle (23), for the proper maintenance of 

mitochondrial morphology and function (18-20), and recent work suggests 

desmin may function as a signaling platform for mechanosensing (24). Mutations 

in desmin or desmin chaperones lead to “desminopathies,” (13, 25) a broad 

spectrum of muscle diseases that include myofibrillar myopathy, arrhythmogenic 

cardiomyopathy, and dilated cardiomyopathy (14), and both loss (26) and gain 

(27-29) of desmin function are sufficient to induce heart disease. With respect to 

its interactions with the nucleus, desmin remains understudied. As previously 

mentioned, desmin has been shown to be in close proximity to the nuclear 

envelope and to co-immunoprecipitated with plectin and nesprin-3 (10-11), but 

the importance of this interaction is unknown. 

Another important cytoskeletal connector, microtubules, has received much 

attention in the past 10 years on its role in regulating cardiomyocyte health. The 
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microtubule network runs primarily longitudinally down the length of the 

cardiomyocyte, nucleating from organizing centers peripheral to the nucleus. 

They serve as structural elements that buckle and bear load during 

cardiomyocyte contraction, (30), transportation networks for vesicles and mRNA 

(31), and are an important tension sensory network (32-33). The organization of 

this network is also hypothesized to be partially regulated by its interaction with 

desmin, the loss of which causes the network to become more vertically oriented 

and scattered (30).  

As both these cytoskeletal networks (desmin and microtubules) are critically 

important for a variety of homeostatic and sensory functions in the cell and are 

both physically coupled with the nucleus via the LINC complex, we sought to 

further the field’s understanding of their purpose in the adult cardiomyocyte with 

regard to nuclear homeostasis. Here we sought to determine how desmin, 

microtubules, and actin maintain nuclear morphology in this system. We utilized 

genetic and pharmacological tools to disrupt cytoskeletal interactions with the 

nucleus and interrogated structural and functional consequences using a 

combination of high-resolution microscopy, transcriptomic and genomic assays, 

and functional tests.  

Firstly, we found that desmin is required to maintain nuclear shape in a 

microtubule-dependent manner. Without desmin or its LINC binding partner 

nesprin-3, cardiomyocyte nuclei begin to shrink and deform, developing deep 

invaginations that go into the center of the nucleus. These folds are dependent 

on the presence of polymerizing microtubules and presumed to act through 
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nesprin-1/2. Moreover, we found that loss of desmin causes loss of chromatin 

organization particularly the attachments to the nuclear lamina. This loss of 

lamina associated domains (LADs) is associated with large-scale changes to the 

transcriptome with a third of detected transcripts having a significant change in 

level. These changes are also associated with loss of cardiomyocyte contractility. 

Secondly, we observed changes to the microtubule network with the loss of 

desmin. As mentioned previously, desmin is hypothesized to be an important 

anchor of microtubules to the z-disc and keep the microtubule network organized 

and reinforced. In the absence of desmin, there is a loss of both tyrosinated and 

detyrosinated microtubules. Moreover, the stereotyped buckling that occurs at 

the z-disc is lost and microtubules buckle at much longer wavelengths, 

inefficiently dispersing strain. Together these data imply a feedback loop 

between desmin and microtubule organization to not only maintain nuclear 

homeostasis but the organization of the whole cytoskeletal network. 

Lastly, we were able to replicate many of these findings in cultured pseudo-

tissues and in vivo. We were able to show that even in neonatal rat ventricular 

myocytes and in mature, adult cardiac tissue, acute loss of desmin causes 

malformations in the nuclear lamina. In cultured cardiac syncytia, we were able to 

replicate the increase in the DNA-damage response and the dependency on 

polymerizing microtubules. Moreover, we were able to show in a non-viral-

mediated system that acute degradation of desmin protein causes similar 

phenotypes (nuclear malformation and lamina folding) to those we observe with 

adenoviral-mediated knockdown. 



8 
 

Taken as a whole, these data reinforce the integral nature of the non-sarcomeric 

cytoskeleton to the health and function of the adult cardiomyocyte, and further 

suggest a push-pull balance between microtubules and intermediate filaments 

that preserves nuclear homeostasis and cardiomyocyte function.  

 

METHODS 

Animals: Animal care and procedures were approved and performed in 

accordance with the standards set forth by the University of Pennsylvania 

Institutional Animal Care and Use Committee and the Guide for the Care and 

Use of Laboratory Animals published by the US National Institutes of Health. 

Inclusion criteria for this study for all but the neonatal studies required that the 

rats were adult (>8 weeks of age) male Sprague Dawley rats. Rats were 

excluded if they showed any sign of illness.  

 

Adult myocyte isolation and culturing: Primary adult ventricular myocytes were 

isolated from 8- to 12-week-old Sprague Dawley rats using Langendorff 

retrograde aortic perfusion with an enzymatic solution. Cardiomyocytes were 

then cultured for 24 to 72 hours depending on the experimental paradigm. For 

details of cardiomyocyte isolation and culture please see reference (30). A 

subset of cardiomyocytes were labeled with calcein-AM (Thermo Fisher Scientific 

C1430) and attached to Nunc 8 well chambered cover glasses (Thermo Fisher 

Scientific 155409PK) to track the morphology of individual cardiomyocytes with 
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viral transduction over 72 hours in culture. Cells were excluded from study if they 

were clearly dead, malformed/hypercontracted or displayed loss of membrane 

integrity.  

Neonatal myocyte isolation and culturing: Neonatal rat ventricular myocytes 

(NRVMs) were isolated from P1-P2 mice. Pups were anesthetized on ice, rapidly 

decapitated and their hearts were exercised and placed in chilled Hank’s 

Balanced Salt Solution (HBSS, Sigma 21-021-CM). Pooled hearts from a single 

litter were minced and digested in HBSS containing trypsin (Worthington 

LS003703) and benzonase (Sigma E1014-5KU). Cells were gently centrifuged, 

resuspended in serum-containing NRVM media (DMEM (Gibco 11965-084), 5% 

FBS, 12.5 mM HEPES (University of Pennsylvania Cell Center, 1M stock), 4 mM 

Aln-Gln (Sigma G8541-100ml) and 0.1 mg/ml primocin (InVivoGen ant-pm-1, 50 

mg/ml stock)) and pre-plated for 2 hours to remove a large portion of the cardiac 

fibroblast pool. Cells were counted and plated at 100-300,000 cells/cm (Bish 

Human Gene Therapy 2008). 

NRVMs were cultured primarily on nano-patterned surfaces to aid in their 

maturation and alignment (NanoSurface Biomedical glass coverslips (ANFS-

CS12), glass-bottom dishes (ANFS-0001) or PDMS Cytostretch Chamber (CS-

01444-PPA). These surfaces were coated with collagen to promote adhesion. 

Coating was performed by plasma cleaning surfaces followed by immediate 

incubation with 0.01% collagen (Sigma C8919-20ml, 0.1% stock in acetic acid) in 

PBS (Quality Biological 119-069-131) at 37 C overnight. Cells were allowed to 
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adhere to surfaces following pre-plating for 24-48 hrs post isolation and then 

switched to serum-free media (DMEM (Gibco 11965-084), 1% ITS (Gibco 51500-

056), 12.5 mM HEPES (University of Pennsylvania Cell Center, 1M stock), 4 mM 

Aln-Gln (Sigma G8541-100ml), 0.1 mg/ml primocin (InVivoGen ant-pm-1, 50 

mg/ml stock), 1 mg/ml BSA (Sigma A7906-100G)) where they were kept for 48-

72 hrs to synchronize the cell cycle, followed by treatments with either viruses 

(see below) or Lipofectamine 3000 (Invitrogen L3000-001).  

 

Pharmaceuticals: Colchicine (1 or 10 µM in DMSO, Sigma C9754), Latrunculin A 

(10 µM in DMSO, abcam ab144290), Y27632 (10 µM in DMSO, Sigma Y0503-

1MG), Y16 (Sigma SML0873-5MG), Nocodazole (0.5 µM Fisher Scientific 

AC358240100), and Taxol (10 µM). 

 

Virus generation and vectors: 

Desmin KD Adenovirus (AdV): Desmin KD AdV (AdV-U6-

GTCCTACACCTGCGAGATTG-76K- AAGCAGGAGATGATGGAAT-EF1a-

eBFP2) was generated and produced as previously described for the dual 

promotor (U6 and 76K) shTTL construct (30) with target shRNA sites listed 

above. eBFP2 was used as a transduction marker instead of mCherry.  

Desmin KD Adeno-associated virus: Plasmid used to generate desmin KD AdV 

with the same dual-promotor set-up was sent to the University of Pennsylvania’s 

vector core (pennvectorcore.med.upenn.edu) to generate AAV9-U6-
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GTCCTACACCTGCGAGATTG-76K-AAGCAGGAGATGATGGAAT-EF1a-

eBFP2, using viral production methods previously described (Bish Human Gene 

Therapy 2008). 

LaminB1-mCherry AdV: Mouse LaminB1 with C-terminal fused mCherry AdV 

was generated and produced using the same Gateway (ThermoFisher) system 

as described previously (30). 

Nesprin-3 KD AdV: nesprin-3 KD AdV was generated in a similar manner as 

above but directed toward single target sites under the U6 promotor in two 

separate viruses var1: GCTCCATCCTACAGACAAACA var2: 

GCTGCACAATGTGGACAATCA var3: GCCTGCTTGTTCAGCACAAGG. These 

sites were chosen as they are present in all splice forms of nesprin-3, but absent 

in nesprin-1 and nesprin-2. eBFP2 was used as a transduction marker.  

 

RT-qPCR: RNA was isolated from adult cardiomyocytes 48-hours post infection 

using RNAzol (Molecular Research Center RN190) following manufacturer’s 

protocol. cDNA was generated using synthesis kit (Takara Bio 6110A) and 

included protocol. Following cDNA synthesis, qPCR was performed using master 

mix (Integrated DNA Technologies 1055770) and primers nesprin-3 (Thermo 

Rn01518288_m1 SYNE3 FAM which detects the boundary between exons 17 

and 18 of Nesp-3 mRNA. This region is conserved in both Nesp-3 and Nesp-3 

splice forms and will detect both mRNAs.) and GAPDH (Thermo 

Rn01749022_g1 VIC) in biological triplicate and technical duplicate. Fold change 

(FC) was determined via 2(-ddCT) equation. 
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Western blot: Western blot was performed as described previously (30). The 

western blots in the supplement and with nesprin-3 were generated with a 

modified protocol whereby the western was developed with ECL instead of 

infrared-conjugated secondary antibodies. Nesprin-3 blotting was performed 

using 1:500 nesprin-3 antibody (abcam ab186751) overnight at 4 C in 5% milk in 

TBST. Antibody specificity was confirmed via knockdown of the specific proteins 

of interest and secondary only controls.  

Histone extraction: γH2AX western was performed on samples subjected to 

histone extraction to improve the signal to noise ratio of histone signals (Garcia 

Proteome Res 2008). Nuclear fraction enrichment was performed (NE-PER 

Nuclear and Cytoplasmic Extraction Thermo 78833) as per ThermoFisher 

protocol until cytoplasmic and nuclear extracts were separated. To extract 

histones, ~400 L of 0.4N/0.2M H2SO4 was added slowly to nuclear extracts 

while vortexing, to a final ratio of 5:1. Nuclei were then resuspended and 

incubated overnight on a rocking platform in the cold room. This suspension was 

then centrifuged at 21000xg and the supernatant was moved to a new tube. To 

this supernatant, chilled, 100 percent trichloroacetic acid was added at 25 

percent supernatant volume, incubated for 1 hour on ice and centrifuged at 

10000xg. The supernatant was then discarded, and the histone pellet was 

washed in 1 mL chilled acetone with 0.1 percent HCL without disturbing the 

pellet, before again centrifuging at 10000xg and discarding the supernatant. The 
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pellet was then washed in chilled 100 percent acetone, again without disturbing 

the pellet. The pellet was then air dried for 10 minutes at room temperature, 

resuspended in water, and incubated for 15 minutes at room temperature before 

centrifuging once more using a mini benchtop centrifuge for 1 minute. The 

supernatant was then blotted for histones and γH2AX. 

 

Immunofluorescence: All cells were fixed in pre-chilled 100% methanol for 8 

minutes at -20 C. Cells were washed 4x and blocked with Sea Block Blocking 

Buffer (abcam166951) for at least 1 hour followed by incubation with antibodies 

in the same buffer for 24-48 hours (see table below). Primary incubation was 

followed by washing 3x with Sea Block, and then incubation with appropriate 

secondaries (see table below) for 1 hour. Lastly, samples were incubated with 

Hoechst (1:1000 Sigma B2261-100MG) for 10 minutes then washed 4x in PBS 

(Quality Biological 119-069-131) and mounted using Prolong Diamond (Thermo 

P36961). 

Primary antibodies: Lamin A/C (1:1000 Abcam ab8984), Lamin B1 (1:1000 Santa 

Cruz sc-374015 or Abcam ab16048), Desmin (1:500 Invitrogen PA5-16705), 

Nesprin-1 (1:250 Abcam ab192234), Nesprin-2 and Nesprin-3 (Kindly provided 

by Gant Luxton), Alpha -Tubulin (1:250 Cell Signaling 3873S). Primary antibodies 

were validated either via previously described staining patterns or via disruptive 

agents (ex: knockdown of protein, destabilizing drugs, etc), as well as secondary-

only controls.  
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Secondary antibodies: Goat anti-mouse AF 488 (1:1000 Life Technologies 

A11001), Goat anti-rabbit AF 565 (1:1000 Life Technologies A11011). Secondary 

antibodies were validated by secondary-only staining. 

For directly conjugated antibodies, Lightning Link Rapid Atto565 (Innova 

Biosciences, 351-0030), Atto 488 (322-0010), and dylight 488 (350-0010) were 

used to create the direct conjugation.  

 

Imaging equipment and analysis: Confocal imaging was carried out on a Zeiss 

880 Airyscan confocal microscope operating on an Axiovert Z1 inverted 

microscope equipped with EC Plan-Neofluar 10x air 0.30 numerical aperture 

(NA), Plan-Apochromat 20x air 0.8 NA, Plan-Apochromat 40x oil 1.4 NA, C-

Apochromat 40x water 1.2 NA, and Plan-Apochromat 63x oil 1.4 NA 

objectives. Calcium and contractility measurements were perofmed on an 

Axiovert Z1 inverted microscope using C-Apochromat 40x water 1.2 NA 

objectives. Image analysis was performed using ZEN Black software for 

Airyscan processing, which involves signal integration from the 32 separate 

sub-resolution detectors in the Airyscan detector and subsequent 

deconvolution of this integrated signal. Image processing was performed using 

FIJI.  

Structure illuminated microscopy (SIM) was performed as previously described 

(21). 
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Microtubule imaging acquisition and analysis 

Buckling: Adult rat cardiomyocytes were isolated as previously described and 

infected with adenovirus carrying the microtubule-binding protein EMTB 

chimerically fused to 3 copies of GFP. The purpose of this construct was to label 

microtubules fluorescently for imaging. The cells were allowed 48 hours to 

express the construct. All cells chosen were those that contained sufficient 

brightness and contrast to observe microtubule elements and where the health of 

the myocyte was not compromised. To interrogate microtubule buckling 

amplitude and wavelength, cells were induced to contract at 1 Hz 25 V and 

imaged during the contraction. For analysis, a microtubule was located that could 

be followed during the contraction. The backbone was manually traced at rest 

and during its peak of contraction and the ROI was saved. The ROI was then 

analyzed using a macro that rotated so that the ROI had the peak of contraction 

90 degrees to the axis of contraction to protect from aliasing errors. The program 

then calculated the distance between the axis of the ROI and its peak and 

calculated the peak (amplitude) and the width (half wavelength).  

Immunofluorescence coverage analysis: Cells were fixed and stained as 

described above. We used an ImageJ to determine the fractional area coverage 

of desmin and microtubules in in the region of the cardiomyocyte within the 

boundary of the cell excluding the nucleus. Briefly, an ImageJ macro was written 

to allow for the automated calculation of tyrosinated, detyrosinated and desmin 

coverage from immunofluorescence images of the cardiomyocyte and the union 
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of the detyrosinated and tyrosinated masks were used to determine the total 

tubulin coverage. 

Nuclear dimension measurements: Nuclear dimensions were taken on live 

cardiomyocytes stained with Hoechst (10 ug/ml for 5 min) or DRAQ5 (5 µM for 5 

min). For manual measurements (Fig 1 and 4), length, width and height were 

pulled based an approximation of the long and short axes of an ellipse (i.e., fit 

through the center of the nucleus rather than the longest measurements). Length 

is defined as the axis parallel to the contractile/long axis of the cell. Width is 

defined as the short axis in the xy plane of the cell (transverse axis) 

perpendicular to length. Height is defined as the short axis in z, which is 

measured from confocal z-sections and measurement of the zy or zx plane. 

Volume was determined by a fit to an ellipsoid. Later, 2D measurements were 

performed via automated particle analysis (Fig 3 and 6). In brief, automated 

detection was done in FIJI whereby cells loaded with Hoechst or DRAQ5 were 

imaged at 20x magnification with both 2.5 µm z-step and tile-scan, taking a bird’s 

eye view of the field of cells. Image was subjected to a median filter (2 pixel), 

manual thresholding of the nuclear signal, and automated particle analysis to 

determine size parameters. Nuclei from dead cells were excluded.  

Measurements of calcium transients and contractility: Adult cardiomyocytes were 

loaded with the calcium-sensitive dye Fluo-3-AM (1 M) and electrically stimulated 

at 1 Hz to simultaneously measure changes in the intracellular calcium transient 
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and the degree of cell shortening, as described previously using Ionoptix 

equipment with small changes (30). Here, cells were illuminated with broad 

wavelength light via an X-Cite 120 PC Lamp (EXFO) and Fluo-3 emitted light 

was filtered through a band pass 535 +/- 20nm emission filter and detected via a 

PMT400 photomultiplier sub-system.  Simultaneous measurements of sarcomere 

length were performed as described previously.  

RNA-seq: Cardiomyocytes were isolated and concentrated from adult rat hearts 

as indicated above and split into separate wells as replicates for treatment 

conditions. After treatment, whole RNA was isolated using RNAzol (Molecular 

Research Center RN 190) following their standard protocol and snap frozen 

using liquid nitrogen. Samples were sequenced at Genewiz using Illumina HiSeq 

2 x 150 bp after polyA selection. RNA-seq reads were aligned to rat rn6 genome 

and then gene counts were obtained with STAR (34) using Ensembl Rn6 gene 

annotation file. Raw counts were transformed to counts per million(CPM) using 

cpm function with TMM method as implemented in EdgeR (version 3.8.6) (35). 

Genes with less than 1 CPM in less than 25% of the samples were removed from 

the analysis. Limma (version 3.4) (36) was used to log2CPM transform the data 

and test for differential expression. Workflow is similar to limma manual section 

9.3.  Lmfit function was used to fit a linear model. Contrasts were added with the 

contrasts.fit function. Finally, differential expression calculation was performed 

via eBayes function. All were performed with default settings. TopTable function 

with n=Inf and p.value=1 parameters was used to output the results of each 

contrast. The default multiple correction method for TopTable function is 
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Benjamini and Hochberg (“BH”) method (37). Genes with log2FC >=|1| and an 

adjusted p-value <0.05 were deemed differentially expressed. Gene Ontology 

analysis of gene lists was performed using PANTHER(version 14) (38) web-

based tool using default settings.  

 

CHiP-seq: LaminB ChIP and subsequent library preparation was performed from 

control and desmin KD adult rat ventricular myocytes using 2 ug antibody (Lamin 

B: Abcam, Ab16048) as previously described (39). After preparation of libraries 

and quantization of ChIP and input DNA, sequencing was performed using an 

Illumina NextSeq500 machine (vII; 75bp single end sequencing). 75bp Illumina 

single end reads were trimmed using Trimmomatic (version 0.32) (40) and 

aligned with bwa (version 0.7.17-r1188) (41) (aln -q 5 -l 32 -k 2) to the Rn6 

genome. PCR duplicates were removed with Picard (version 2.9.0) 

(http://broadinstitute.github.io/picard) (VALIDATION_STRINGENCY=LENIENT 

ASSUME_SORTED=true REMOVE_DUPLICATES=true), multi-mapping reads 

and reads with a MAPQ score of < 30 were removed using samtools (version 

1.7) (42) (-F 1804 -q 30). Three biological replicates of input and paired LB ChIP-

seq were sequenced. The number of uniquely mapped read in each replicate pair 

(ChIP; input) are as follows: Control replicate 1: 14,696,080; 26,176,914, Control 

replicate 2: 18,204,976; 25,875,923, Control replicate 3: 7,288,192, 11,883,588, 

desmin KD replicate 1: 130,203; 15,207,304, desmin KD replicate 2: 8,184,660; 

21,269,720, desmin KD replicate 3: 128,266, 99,713,838. Spearman correlation 

coefficients of occupancy across chr1 were calculated between replicates. 
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Replicate bam files were used as input into Deeptools (version 3.0.2) (43) 

bamCoverage and converted to bigwig format (--normalizeUsing RPGC --

effectiveGenomeSize 2729860805 - bs 10 -e 200). These bigwig files were then 

input into Deeptools multiBigwigSummary using default settings and region 

limited to chr1. Resulting data matrix was input into Deeptools plotHeatmap. 

After confirming high correlation among input and LB ChIP-seq replicates from 

control samples, replicate bam files for each treatment were merged. Control LB 

ChIP and Input replicate libraries were sampled to approximately even depth 

using samtools. Control LB and Input merged bam files were sampled to ~40 

million reads. desmin KD LB and Input bam files were set to ~8 million reads due 

to low sequencing depth of desmin KD LB. Merged Input normalized coverage 

tracks for Control and desmin KD treatments were generated using Deeptools 

bamCompare(--normalizeUsing RPGC --effectiveGenomeSize 2729860805 - bs 

10 -e 200) resulting in control lamB and desmin D lamB tracks and are 

composed of sequencing data from all replicates. To call LADs, merged bam files 

were converted to bed format using bedtools(version 2.27.1) (44) bamtobed and 

extended to 200bp using bedtools slop. Bed files were then input to epic (version 

0.2.9) (45), and ran with window 600, gap 4, fdr <0.05, rn6 genome and -fs 200 

parameters. Resulting peaks within 50kb were merged using bedtools merge, 

and all peaks <50kb were removed. Control LADs and the Rn6 ENSEMBL gtf file 

were input to bedtools intersect to identify all features that are contained in LADs, 

with a minimum of 1bp of any exon/CDS in a LAD. 
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Electron microscopy: Isolated cardiomyocytes were fixed using 5% 

glutaraldehyde in 0.2M cacodylate buffer (pH 7.2, EMS 11654) overnight and 

stored for up to 1 week. Samples were then subjected to triplicate washout of 

glutaraldehyde, 40-minute staining with 4% osmium tetroxide and washout with 

DI water. Following two additional washes in sodium acetate buffer (pH 4.2, EMS 

11482-42), samples were stained for 2 hours with 8% uranyl acetate.  

Dehydration was accomplished by 10-minute washes in 70, 95 and 100% 

ethanol, followed by duplicate 1-hour washes in 100% acetone. Sample was 

infiltrated with 1:1 EPON acetone mix for 1 hour, then myocytes were selected 

and arranged in a thin layer on film. Vacuum removal of acetone for 10 minutes, 

followed by overnight polymerization in an oven resulted in a dense coplanar raft 

of myocytes which were embedded into an EPON plug and cut into ~70 nm 

sections using a diamond knife. These sections were collected on copper grids 

(EMS G200H-Cu) briefly heated to promote adherence and then stained using a 

modified formulation of Sato lead solution (46). TEM images of nuclei were 

collected on JEOL 1010 through the University of Pennsylvania Electron 

Microscopy Resource Lab at 7500x for overall morphology, then at 30000x and 

75000x to confirm membrane details.  

Nuclear outlines were traced on 7500x images, using higher mag images to 

confirm the path of the double membrane. Structures where no such membrane 

was apparent were excluded from the analysis, and regions obscured by the grid 

or fractures in the sample section were traversed by the shortest straight line. 

Several desmin knockdown treated nuclei were fully bisected in the plane of the 
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section. These fragments were traced separately, then combined into a single 

unit. The convex hull of the nuclear membrane traces was calculated using FIJI 

and tortuosity calculated as the ratio of the perimeter of the membrane trace to 

the perimeter of the hull. Distance maps of the convex hull and membrane traces 

were also calculated in FIJI and used to measure the depth of membranous 

infolds and segment the interior of the nuclei into depth-coded shells for density 

measurements. Membranous infolds less than 70nm in depth from the convex 

hull were excluded from analysis. For the purposes of density measurements, the 

minimum and maximum values from selected regions within the nucleus were 

used for normalization to compensate for heterogeneity in staining. 

Representative images shown in the manuscript were selected due to their 

staining quality and to best describe the average phenotype displayed (i.e. not 

the top/bottom 10 percent of samples).  

 

Whole animal studies: Male and female P4/P5 Sprague Dawley rats were 

injected either subcutaneously behind the neck or pericardially with either 2.4e10 

gc/g of AAV9-shDesmin-BFP (pups were between 8-10 g each) or saline. Rats 

were allowed to age to adulthood (~5/6 weeks) and blood/tissues were harvested 

(heart, quad, diaphragm, liver). There were no overt changes in behavior or body 

weight noted in the experimental rats when compared to their littermates 

regardless of sex or delivery method. As both pericardial and subcutaneous 

injection methods gave similar levels of desmin knockdown and changes in 

nuclear morphology, data was pooled for analysis. Nuclear morphology also 
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changed similarly in male and female rats upon desmin depletion. Inclusion 

criteria for these rats required that they be from the same litter, alive/healthy and 

from the Sprague Dawley strain. Animals with obvious health issues at the time 

of injection were excluded from this study. Animals were randomized into either 

treatment or control groups and were assigned numbers that the researcher was 

blind to until the end of the study.  

Statistics: Statistical analysis was performed using OriginPro (Version 9 and 

2018). Statistical tests and information on biologic and technical replicates can 

be found in the figure legend; unless otherwise noted, “N” indicates the number 

of rat hearts used for independent experiments, while “n” indicates the number of 

cardiomyocytes or nuclei analyzed.  Each adult cardiomyocyte is cultured in 

isolation from its neighbors (Fig. 1D) and exhibits unique and independent 

cytoarchitecture and nuclear morphology, as well as variable levels of viral 

transduction and target depletion upon shRNA delivery. As such each adult 

cardiomyocyte is treated as an independent biological sample, and experimental 

observations are always replicated on multiple cell isolations from individual rats. 

For box plots, the mean line is shown, with whiskers denoting 1 standard 

deviation (SD) from the mean.  For statistical significance, * = p<0.05, ** = 

p<0.01, *** = p<0.001 vs. control;  # = p<0.05, ## = p<0.01, ### = p<0.001 vs. 

desmin or nesprin-3 depletion, unless otherwise specified in the figure legend. 

Statistical tests for each comparison are denoted in the figure legends. Unless 

otherwise specified, normality was tested using a K-squared goodness-of-fit test. 
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CHAPTER 2: DESMIN AND MICROTUBULES MAINTAIN NUCLEAR 

STRUCTURE AND GENOME ORGANIZATION 

Portions adapted from (78): Heffler, J., Shah, PP., Robison, P., Phyo, S., Veliz, 

K., Uchida, K., Bogush, A., Rhoades, J., Jain, R. and Prosser, BL. A Balance 

Between Intermediate Filaments and Microtubules Maintains Nuclear 

Architecture in the Cardiomyocyte. Circulation Research. 2019;126:e10-e26. doi: 

10.1161/CIRCRESAHA.119.315582Ci 

 

Modulation of the cytoskeleton alters nuclear morphology.  

The cytoarchitecture and proximity of cytoskeletal elements to the nucleus differs 

in mature cardiomyocytes from that of non-muscle cells. While non-sarcomeric 

actin is present in the cardiomyocyte (47), actin stress fibers or TAN lines have 

not been observed in mature cardiomyocytes. In contrast, both desmin and 

microtubules exist in close proximity to the cardiomyocyte nucleus (30, 48). 

Structured illumination microscopy (SIM) images (Figure 1A) demonstrate 

microtubules running predominantly along the long axis of the cardiomyocyte and 

forming a cage around the nucleus, which resides in the interior of the myocyte. 

Desmin intermediate filaments run predominantly along the short axis of the 

cardiomyocyte at the level of the sarcomeric z-disc and form lateral connections 

at the nuclear membrane (Figure 1A). To assess if any of these components 

(actin, desmin, microtubules) are important for regulating baseline nuclear 

morphology, we used pharmacological and genetic tools to disrupt each of these 

individually and assessed nuclear dimensions in primary, adult, terminally 
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differentiated rat ventricular cardiomyocytes. Inhibition of actomyosin tension with 

ROCK/Rho inhibitors (Y16 and Y27632), which often leads to nuclear rounding in 

non-muscle cells (49-50), had no effect on baseline nuclear morphology (Figure 

1B-C). Depolymerization of actin with latrunculin A (Lat A, 10 µM for 24hrs) mildly 

increased nuclear width, with no significant differences detected in length, height, 

or volume (Figure 1C).  

In contrast, disruption of the microtubule network via colchicine (Figure 1C, 

Colch, 1 µM for 24hrs) caused an increase in nuclear length, consistent with 

previous descriptions of microtubules providing compressive force on the nucleus 

(51). This increase in length was met with a corresponding decrease in height 

and width and a modest decrease in nuclear volume. In non-muscle cells, 

microtubule depolymerization can activate RhoA signaling to increase 

actomyosin-dependent compression on the nucleus (52). To determine if 

activated RhoA caused the nuclear elongation we observed with microtubule 

depolymerization, we inhibited RhoA with Y27632 and again treated cells with 

colchicine. We observed no prevention of the colchicine-dependent changes to 

nuclear morphology (Figure 1C, lower middle panel), indicating that Rho 

signaling was unlikely causing the compression we observed, and instead 

implicating a direct compressive force applied to the nucleus by microtubules. 

To assess the role of intermediate filaments, we developed genetic tools to 

acutely knockdown desmin. We generated shRNAs against desmin (“desmin 

KD”), introduced them into adenovirus, and transduced adult rat cardiomyocytes 

in vitro. After 48 hours, approximately 50-75 percent of desmin protein was 
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depleted (Supplemental Figure 1A). Desmin RNA was reduced ~20 fold and was 

comfortably the most downregulated gene in the transcriptome (as shown later in 

Figure 9). To our surprise, acute desmin depletion led to a ~50 percent decrease 

in nuclear volume, predominantly driven by a decrease in nuclear height and 

width (Figure 1B-C). Taken together, this data suggests desmin maintains 

nuclear size, perhaps via tension applied along the short axis of the nucleus, 

while microtubules provide compression along the long axis, and non-sarcomeric 

actin plays a minimal basal role. 

Importantly, these changes in nuclear size were independent of any change in 

cell size upon desmin or microtubule manipulation. Under our culture conditions, 

cardiomyocytes are stable morphologically and functionally for at least 72 hours, 

and only rod-shaped (aspect ratio >3:1) myocytes with preserved membrane 

morphology (striations) are used for analysis. Cardiomyocyte length, width, or 

viability were unchanged by the addition of adenovirus encoding a scramble 

construct or desmin shRNA (Figure 1D), and colchicine treatment similarly had 

no effect on myocyte size (Supplemental Figure 1B). Thus, desmin depletion 

causes a specific nuclear involution within a static cell frame.  

Acute desmin depletion causes nuclear infolding and chromatin compaction. 

We next evaluated this nuclear involution more closely by examining nuclear 

architecture using super-resolution imaging and electron microscopy. First, we 

performed immunofluorescence on the intermediate filaments that compose the 

nuclear lamina: lamin A/C and lamin B1. Desmin depleted cells showed severe 
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lamina wrinkling and infolding (Figure 2A), which was present in greater than 95 

percent of nuclei observed (lower panel, Figure 2B) as assessed by our blinded 

scoring system (upper panel, Figure 2B). To characterize lamina infolding in live 

cells, we developed an adenovirus encoding lamin B1-mCherry and co-

transduced the virus with either scrambled or desmin KD constructs. At 

approximately 30 hours post-transduction with shRNA, we performed 10 hr time 

lapse imaging of infected cardiomyocyte nuclei (Figure 2C, Online Movie 1 and 

2). In desmin-depleted cardiomyocytes, discrete sections of the lamina appear to 

fold inward as the nucleus itself progressively collapses over several hours (white 

arrows, Figure 2C). To further assess the nature of the folds, we performed 

electron microscopy (Figure 2D). In desmin-depleted cardiomyocytes, infolds ran 

deep into the nucleus and were accompanied by the double-membrane nuclear 

envelope (see high magnification inset on the right-hand side). Quantification of 

EM images (see Online Movie 3 and 4) revealed a four-fold increase in the 

infolded area in desmin KD cells (Fig 2E, top). Additionally, while electron-dense 

heterochromatin was typically restricted to the nuclear periphery and nucleolus in 

scramble cells (Figure 2D), we observed a considerable extension of the 

electron-dense chromatin layer – interpreted as heterochromatin - deep into the 

nuclear interior with desmin depletion (Figure 2D-E). This may reflect chromatin 

compaction as a result of nuclear involution, or a proliferation of heterochromatin.  

 

Depletion of nesprin-3 phenocopies the nuclear involution seen upon desmin 

depletion.  
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We next conducted studies to explore potential mechanisms of desmin’s 

protection of nuclear morphology. Multiple interactions between desmin and the 

nucleus have been proposed: nesprin-3, encoded by SYNE3, binds to plectin 

(53-54), which binds to intermediate filaments including desmin (Figure 2F) (53, 

55), but LINC-independent interactions between desmin and the nucleus have 

also been suggested (55). We hypothesized that if desmin interacted with the 

nucleus via nesprin-3, then depletion of nesprin-3 would phenocopy desmin KD 

and cause nuclear involution. We generated three shRNA constructs targeted 

against different regions of nesprin-3 (“nesp-3 KD”, Supplemental Figure 2A).  

After 48hrs of adenoviral transduction all three shRNA variants robustly reduced 

nesprin-3 protein expression by ~80-90 percent, and we confirmed transcript 

knockdown via RT-qPCR and western blot (Figure 2F, Supplemental Figure 2B-

C). Indeed, all three nesprin-3 KD variants drove a similar nuclear collapse and 

severe lamina infolding as we observed upon desmin depletion (Figure 2G and 

Supplemental Figure 3 A-B), consistent with desmin interacting with the nucleus 

via nesprin-3 to protect against involution.  

 

Nuclear infolding is driven by dynamic microtubules.  

We next sought to determine the cause of nuclear involution. Microtubules can 

provide compressive forces on nuclei (Fig. 1B-C), and previous work has 

mapped multiple interactions between microtubules and nesprins-1/2 in muscle 

cells (8, 56). As we also noted that microtubules were often present at sites of 

nuclear infolding (Figure 3A), we hypothesized that lamina infolding may be 
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driven by microtubules compressing the nucleus, which is exacerbated in the 

absence of desmin/nesprin-3. To test this hypothesis, we treated desmin and 

nesprin-3 KD cardiomyocytes with colchicine to depolymerize microtubules prior 

to the onset of overt nuclear infolding (see design schematic in Figure 3B and 

effect of colchicine on microtubules in Figure 3C). Despite confirmation that 

shRNA-mediated KD was not disrupted by colchicine treatment (Supplemental 

Figure 2D-E), nuclear infolding and involution was largely prevented when 

microtubules were depolymerized in desmin or nesprin-3 KD cardiomyocytes 

(Figure 3D). This result was confirmed for each of the 3 nesprin-3 shRNA 

variants (Supplemental Figure 3A-B).   

Treatment with Latrunculin A did not prevent infold formation (Supplemental Fig 

4B), and treatment with colchicine after the folds had formed (Supplemental Fig 

4C) did not reverse the infolding phenotype, suggesting that folds are 

microtubule specific and, once formed, are not readily reversible. Further, neither 

desmin depletion nor colchicine treatment altered the expression of lamin A/C or 

lamin B1 (Supplemental Figure 4C), suggesting that a changing composition of 

the nuclear lamina is unlikely to explain nuclear infolding (or prevention thereof). 

We also sought visual confirmation of microtubule-dependent nuclear infolding. 

To this end, we triple-transduced cells with lamin B1-mCherry, EMTB-3xGFP (to 

demarcate microtubules), and scramble or desmin KD adenovirus. We observed 

concurrent formation of lamina infolds with microtubule protrusion into desmin KD 

nuclei, but no such infolding in scramble nuclei, despite the presence of the 

perinuclear microtubule cage (Online Movies 5-6).  
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These visual observations suggested that growing, dynamic microtubules are 

driving nuclear infolding upon loss of desmin/nesprin-3 tethering to the nucleus. 

To further test this hypothesis, and to control for off-target consequences of 

gross microtubule loss upon colchicine treatment, we performed additional 

experiments with the microtubule-targeting drugs taxol and nocodazole. 

Nocodazole (at low concentrations) sequesters free tubulin to selectively reduce 

dynamic microtubule populations, while largely preserving stable, long-lasting 

microtubules. In contrast, taxol stabilizes and polymerizes microtubules, but also 

eventually reduces microtubule dynamicity by forcing tubulin into the polymerized 

pool. The different effects of these three pharmacologic agents on cardiac 

microtubules can be visualized in Figure 3C. Strikingly, both taxol and 

nocodazole conferred robust protection from nuclear infolding in desmin-KD 

cardiomyocytes, despite the remaining presence of a stable cage of microtubules 

encircling the nucleus, as seen in Figure 3E. This suggests that it is the dynamic 

growth of microtubules – and not the density of the network per se – that 

underlies nuclear involution upon desmin depletion.   

If nuclear involution requires microtubule interaction with nesprins-1/2, then 

disrupting this interaction should also prevent nuclear involution. Acute depletion 

of the genes encoding nesprins-1/2 is challenging due to their large size and high 

degree of splicing. As an alternative approach, we generated adenovirus over-

expressing a dominant-negative KASH peptide (DN-KASH), which disrupts the 

interaction between nesprins and SUN proteins (6) to disrupt all cytoskeletal-

LINC interactions (Supplemental Figure 5A). Consistent with previous reports (6), 
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we confirmed that the typical perinuclear ring localization of nesprins-1, -2, and -3 

was disrupted upon DN-KASH expression (Supplemental Figure 5B-C). If 

involution requires microtubule interaction with nesprins-1/2 (9), involution should 

be prevented by DN-KASH (even in the absence of desmin or nesprin-3. 

Alternatively, if involution does not occur through nesprins-1/2, then DN-KASH 

should itself cause involution due to the disruption of nesprin-3 and desmin. We 

found that DN-KASH did not cause involution, but instead nuclei expanded in all 

axes and increased in volume (Supplemental Figure 5D-E). Moreover, the 

nuclear lamina did not display infolding, and in fact was even less distorted than 

control nuclei (Supplemental Figure 5E, IF on left and grading on right). Further, 

nuclear infolding caused by either desmin or nesprin-3 depletion was largely 

prevented by co-expression of DN-KASH (Supplemental Figure 5F). Together, 

these results implicate a model where microtubules interacting with nesprin-1 

and/or -2 drive nuclear infolding, which is normally resisted by desmin and 

nesprin-3. However, given the reliance on the DN-KASH construct, additional 

experiments will be required to precisely define any interactions between 

microtubules and the various splice forms of nesprins-1 and -2.  

Desmin depletion leads to DNA damage. 

Given the gross disruption of nuclear morphology upon desmin depletion, we 

sought to determine if this was associated with DNA damage. γH2AX, an 

indicator of double-stranded DNA breaks, dramatically increased upon desmin 

depletion. This DNA-damage was significantly prevented by microtubule 
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depolymerization, as quantified via both immunofluorescence and western blot 

(Figure 4A-C). The shape change that occurred upon desmin KD was also 

rescued with colchicine treatment (Figure 4B). We noted that several desmin KD 

nuclei with preserved size and morphology after colchicine treatment still had 

elevated levels of γH2AX, suggesting that the DNA damage observed in this 

model did not require involution. However, there was a strong positive correlation 

between nuclear collapse and increased DNA damage, as the γH2AX signal 

increased exponentially with a decrease in nuclear size in desmin depleted 

myocytes (Figure 4D, left). No such correlation was seen in scramble nuclei 

(Figure 4D, right). Taken together, these data are consistent with a model where 

desmin-nesprin-3 tethering of the nucleus protects it from microtubule-dependent 

infolding, collapse, and DNA damage.  

DN-KASH causes DNA damage. 

As previously noted, we observed that even normally shaped and unwrinkled 

nuclei showed an elevation in γH2AX with colchicine and desmin KD co-

treatment. We hypothesized this was due to baseline connections between the 

cytoskeletal and LINC network being an important regulatory network for the 

DNA-damage response in adult cardiomyocytes. To begin testing this, we 

hypothesized that DN-KASH ought to phenocopy the elevation in γH2AX signal 

we had seen with desmin KD and microtubule disruption. Indeed, as shown by IF 

and quantified (Figure 5A-B), treatment with DN KASH alone does elevate 

γH2AX. We next hypothesized that if this increase in γH2AX was caused by 
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sarcomeric tension in the cell, treatment with blebbistatin would reduce the about 

of DNA damage we were observing. Treatment with blebbistatin caused a trend 

toward a lower overall signal intensity but this was not significant. Additionally, 

we noted that the number of γH2AX particles detected was unchanged, implying 

the different in signal intensity was more intense γH2AX puncta versus more 

puncta (Figure 5A-B). 

Desmin depletion disrupts nuclear homeostasis in vivo and in situ. 

As the forces imposed on cardiomyocyte nuclei will differ in beating tissue 

compared to isolated cardiomyocytes, we next used two approaches to 

investigate desmin’s nuclear protection in situ. Per the original characterizations 

by Milner et al. and Li et al., desmin knock-out mice exhibit severe defects in 

myocardial architecture and cardiomyopathy (26, 57), making it difficult to 

interpret any nuclear phenotype (58) as primary to the loss of desmin or 

secondary to disease pathology. We thus sought to deplete desmin in a minority 

of cardiomyocytes in vivo, which was accomplished via the generation and 

transduction of a low-dose of AAV9 encoding shRNA against desmin. We 

injected both male and female P4/5 rats with AAV9-shDesmin-BFP (KD) or saline 

(sham) at a viral dosage that achieved 30.1 +/- 4.8% transduction efficiency of 

cardiomyocytes. After 5 weeks, we extracted the hearts from these rats and 

performed tissue sectioning and immunofluorescence imaging. As expected, we 

observed desmin expression only in cardiac myocytes, and KD hearts 

demonstrated mild tissue disorganization. Fortuitously, most cardiomyocytes 
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could be identified as either clearly positive or clearly negative for desmin 

immuno-reactivity (Figure 6A-B). We thus compared nuclei in desmin-negative 

myocytes to two controls: myocyte nuclei from sham-injected hearts, and from 

internal, tissue-matched desmin-positive controls. Using cTNT labeling to identify 

cardiomyocyte nuclei, nuclei were traced to obtain size parameters, and scored 

blindly by two independent observers to quantify morphology defects. Upon 

desmin depletion, nuclei were shorter, rounder, and had significantly more 

morphological defects (Figure 6B-C). In KD hearts, cardiomyocytes still 

containing desmin had nuclei that were morphologically more like their sham 

counterparts than their desmin-depleted neighbors (Figure 6B-C), supporting a 

primary role of desmin in maintaining nuclear architecture in vivo.  

Due to practical limitations of organ level experiments, we also sought to 

establish a parallel, more flexible platform to interrogate the interplay between 

microtubules and intermediate filaments in loaded, beating cardiac syncytia. To 

this end we co-cultured neonatal rat ventricular myocytes (NRVMs) and cardiac 

fibroblasts on aligned, nano-patterned substrates that promote tissue maturation 

and syncytial formation (Figure 7A, upper panel). Within 48hrs of plating on 

patterned substrates, the tissue is robustly aligned along the pattern axis and 

exhibits improved maturation compared to un-patterned cells. This is 

demonstrated by improved myofibril alignment, uniaxial beating, and, importantly, 

cytoarchitecture reminiscent of mature cardiac tissue (Figure 7A, lower panels). 

Of note, the organization of desmin into a striated, transverse structure is 

strongly promoted by tissue patterning. Three days post-plating tissues were 
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infected with adenovirus encoding either control shRNA or shRNA targeted 

toward desmin and nuclear phenotypes were assessed. Upon desmin KD, α-

actinin organization was still evident but slightly misaligned, and transverse 

desmin filaments were no longer observed (Figure 7B).  Despite the modest 

change in sarcomeric architecture, nuclear morphology was significantly 

compromised (Figure 7C). As in unloaded adult myocytes, desmin KD drove 

involution and infolding of nuclei in beating NRVM syncytia, as well as a robust 

increase in DNA damage. Colchicine treatment to depolymerize microtubules 

reduced DNA damage and fully protected from the morphological abnormalities 

induced by desmin depletion (Figure 7C-D). Together with the above, this data 

indicates that desmin protects against microtubule-dependent disruption of 

nuclear homeostasis in situ.  

 

Acute reduction in desmin via dTAG degron causes nuclear involution in mice. 

One phenotype of note when performing the AAV9 experiments discussed above 

was that normal, control virus elicited inflammatory and hypertrophic response, 

required a large amount of virus which was practically expensive, while also not 

providing us with 100 percent protein reduction. Because of these limitations, we 

sought a method of acutely reducing desmin that 1) would not allow for 

compensatory changes to other intermediate filaments and 2) would completely 

reduce the protein in the heart. To these ends, we began a collaboration with the 

Grey lab that had been perfecting a protein degradation system to acutely 

eliminate specific proteins of interest from a cell.  
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The dTAG system works by chimerically fusing a protein of interest to a FKBPF36V 

and knocking this chimeric allele into the endogenous locus of a mouse using 

CRISPR. In the absence of the heterobifunctional degrader (dTAGv1 or BNN), 

this chimeric allele functions normally. Once added, BNN causes recruitment of 

the E3 ubiquitin ligase (VHL, CRBN) to the BET bromodomain of the FKBP, 

causing subsequent ubiquitination and rapid degradation of the protein (59-60).  

We received confirmation that the construct worked (genotyping gel not shown) 

and bred the mice to have homozygous knock-ins of the mutant allele. After 22 

hours at 500 nM BNN, we were able to observe nearly 99 percent reduction in 

desmin-FKBPF36V protein levels (Figure 8A). 

Next, we sought to do immunofluorescence to determine if 1) loss of desmin 

could be observed via IF and 2) if acute reduction of desmin-FKBPF36V would 

result in misshapen nuclei. Indeed, we observed a trend toward rounded, more 

wrinkled nuclei after desmin-FKBP degradation; however, the blinded grading 

failed to reach significance due to low sample size (Figure 8B-C). 

While these data are incomplete, we are hoping to repeat these experiments and 

move toward a whole-animal study of the effect of acute desmin reduction in the 

heart.  
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CHAPTER 3: FUNCTIONAL CONSEQUENCES OF ACUTE DESMIN 

DEPLETION 

Portions adapted from (78): Heffler, J., Shah, PP., Robison, P., Phyo, S., Veliz, 

K., Uchida, K., Bogush, A., Rhoades, J., Jain, R. and Prosser, BL. A Balance 

Between Intermediate Filaments and Microtubules Maintains Nuclear 

Architecture in the Cardiomyocyte. Circulation Research. 2019;126:e10-e26. doi: 

10.1161/CIRCRESAHA.119.315582Ci 

 

Desmin depletion drives large-scale changes to gene expression and 

compromises lamina-associated chromatin. 

As DNA damage is a well-established response to a loss of genome-organization 

(61-63), we next assessed the genomic and transcriptomic consequences of 

desmin depletion. RNA sequencing revealed many differentially expressed genes 

between scramble and desmin KD cardiomyocytes (Figure 9A), with 

approximately 20% of the genome differentially regulated following desmin 

depletion (at a cutoff of > 2-fold change, adj. p-value <0.05). Fortuitously, desmin 

KD did not significantly affect the expression of any of the Nesprin or SUN 

isoforms detected in cardiomyocytes, simplifying the interpretation of 

experiments manipulating the LINC complex. Bioinformatic analysis of these 

differentially expressed genes indicated that the most significantly altered gene 

ontology (GO) groups encoded transcripts involved in ion handling, contractility 

and mitochondrial function and metabolism, functional groups previously noted to 

be altered with misregulation of desmin. Moreover, acute desmin depletion 
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produced a genetic signature highly associated with cardiac dysfunction, 

hypertrophy, and dilated cardiomyopathy (Figure 9B), consistent with known 

phenotypes caused by desmin mutations.  

Given the disruption of lamina architecture (Figure 2), we hypothesized that the 

desmin-dependent loss of genome organization may arise from disruption of 

lamina-associated chromatin domains. We thus assessed LADs by performing 

lamin B chromatin immunoprecipitation followed by sequencing (LB ChIP-seq). 

We first confirmed our ability to specifically ChIP lamin B from rat cardiomyocytes 

(Supplemental Figure 6A). We then performed LB ChIP-seq from three 

independent pools of scramble-treated cardiomyocytes. After confirming high 

correlation between the input and ChIP replicates (Supplemental Figure 6B), we 

merged replicate data, input normalized LB ChIP-seq data, and defined LADs 

using an unbiased algorithm (64) (Figure 9C, Supplemental Figure 6C). Like 

LADs in cardiomyocytes and other cell types from different model species (39, 

45, 65-66), rat cardiomyocyte LADs encompass approximately 40 percent of the 

genome and house 7561 genes and features (Supplemental Figure 6C). 

We further confirmed lamin B expression and our ability to ChIP lamin B in 

desmin-depleted cells (Supplemental Figure 6B); however, LB-ChIP in desmin-

depleted cells resulted in only a fraction of enriched chromatin compared to 

scramble control, despite normal levels of LaminB1. Thus, three biological LB 

ChIP-seq replicates resulted in fewer than 8.6M uniquely mapping reads, 

compared to over 40M for the control samples using the same amount of starting 

material for ChIP. This suggests that desmin-depletion compromises normal 
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chromatin enrichment to lamin B. Given the low number of reads, it was not 

feasible to define LADs in KD cardiomyocytes; however, we note that the input-

normalized LB ChIP-seq reads from desmin-KD cells are localized in LAD 

regions (as defined in scramble cardiomyocytes; Figure 9C – compare bottom vs. 

top tracks), further supporting the hypothesis that LAD structure and LaminB1-

chromatin interactions are compromised upon desmin depletion.  

Finally, we determined the impact of the potential “LAD loss” on gene 

transcription. Genes in LADs are preferentially transcriptionally repressed 

compared to those not in LADs (45); consistently, we observed that genes found 

in control cardiomyocyte LADs tended to be up-regulated when “lost” from LADs 

upon desmin KD, while genes not found in LADs were significantly more likely to 

be down-regulated upon desmin depletion (Figure 9D-E). Together, this data 

indicates that acute loss of desmin rapidly compromises genome organization in 

the cardiomyocyte, with broad consequences on the cardiac transcriptome. 

Acute Desmin Depletion Disrupts Excitation-Contraction Coupling 

Given the marked genomic and transcriptomic changes, particularly in genes 

involved in calcium handling and contractility, we next assessed excitation-

contraction (EC) coupling and cell shortening in desmin KD myocytes. As desmin 

may regulate EC coupling through a variety of mechanisms, we also interrogated 

these metrics in nesprin-3 depleted cells to better isolate an effect of disrupting 

the desmin-nesprin3 axis. Cardiomyocytes depleted of either desmin or nesprin-3 

displayed altered calcium transients (Figure 10A) and contractility (Figure 10C) 
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upon electrical stimulation. Consistent with the differential expression of multiple 

transcripts integral to the maintenance of a normal calcium transient (e.g., 

serca2a, ryr2, pln), desmin KD myocytes demonstrated briefer cytosolic calcium 

transients, with a faster decay of the calcium transient, and this was 

accompanied by briefer contractions and less cell shortening (Figure 10A-D, red). 

Nesprin-3 depleted myocytes exhibited similar changes to calcium handling and 

contractility (Figure 10A-D, blue), suggesting that at least part of desmin’s 

regulation of EC coupling likely arises from its role at the nucleus. Together, 

these data demonstrate significant and rapid alterations in cardiomyocyte 

function with acute disruption of desmin or nesprin-3, suggesting that cytoskeletal 

coupling to the LINC complex helps maintain normal EC coupling. 

 

Acute Desmin Depletion Alters Cellular Stiffness and Microtubule Buckling 

Previous work from the Prosser lab has shown that post-translational 

modification of α-tubulin via the cleavage of the C-terminal tyrosine 

(“detyrosination” or “dTyr”) is an important factor for regulating the stiffness of the 

cardiomyocyte (21, 30). This process has been hypothesized to occur via a 

linkage between these dTyr microtubules and the intermediate filament desmin at 

the z-disc. This interaction creates an increase in viscosity during contraction in 

the cardiomyocyte by inducing microtubule buckling (30). While the previous 

paper sought to explore the microtubule-modification side of this hypothesis, we 

continued to look at the z-disc/desmin side to see if the knockdown of desmin 
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could also phenocopy the changes to buckling and viscosity we had previously 

observed with changes to dTyr microtubules.  

Upon desmin reduction, cardiomyocytes show a significant decrease in viscosity, 

as indicated by the change in primarily the fast indentation regime as measured 

by atomic force microscopy (AFM) (Figure 11A-B). This change in viscosity is 

also associated with changes to the buckling properties of the microtubules. 

While the microtubules in desmin KD cardiomyocytes do still buckle, they tend to 

buckle a wavelength much higher than that of contracted sarcomere (1.9 µm vs 

1.5-1.7 µm) (Figure 12A-B). Moreover, data from another member of the lab has 

shown that microtubules in desmin KD cardiomyocytes tend to pause less 

frequently at the z-disc and have a greater incidence of catastrophe on the z-disc 

than they would otherwise (67) implying a loss of a stabilizing connection at that 

site. 

Lastly, we sought to characterize the relative amounts of dTyr versus Tyr 

microtubules after desmin KD. We observed that for both dTyr and Tyr 

microtubules, the fractional area covered was decreased, implying a loss in the 

overall microtubule network (Figure 13A-B), which is consistent with the 

hypothesis that desmin serves as a stabilizing structure to the microtubule 

network.  

How desmin specifically causes changes to the microtubule network is unclear; 

however, we can speculate from these data that there is feedback between the 

desmin intermediate filament and microtubule networks that affect cell stiffness, 

microtubule stability and overall homeostasis. 
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CHAPTER 4: DISCUSSION AND FUTURE DIRECTIONS 

Portions adapted from (78): Heffler, J., Shah, PP., Robison, P., Phyo, S., Veliz, 

K., Uchida, K., Bogush, A., Rhoades, J., Jain, R. and Prosser, BL. A Balance 

Between Intermediate Filaments and Microtubules Maintains Nuclear 

Architecture in the Cardiomyocyte. Circulation Research. 2019;126:e10-e26. doi: 

10.1161/CIRCRESAHA.119.315582Ci 

From this work we conclude that the intermediate filament desmin preserves 

nuclear homeostasis in cardiac muscle cells via its interactions with the LINC 

complex. Desmin and microtubules form a filamentous meshwork around the 

cardiomyocyte nucleus, largely consisting of axial microtubules and transverse 

intermediate filaments. Here we find that they maintain nuclear shape and size 

and help preserve the architecture of the nuclear lamina and its associated 

chromatin-interacting domains. Acute depletion of desmin causes rapid nuclear 

involution, infolding of the nuclear envelope and lamina, and DNA damage that 

are driven by dynamic microtubules. Desmin depletion drives the loss of 

chromatin enrichment at the nuclear lamina and large transcriptomic changes 

that are concomitant with impaired cardiomyocyte function. Intriguingly, loss of 

nesprin connections to the cytoskeleton appear to be sufficient to increase DNA 

damage levels as measured by γH2AX with a possible tie to sarcomeric tension. 

Many of these findings can be seen in not only isolated, individual 

cardiomyocytes but also pseudo tissue platforms, AAV9-mediated in vivo 

knockdown and now also in desmin-FKBPF36V-forced degradation. Lastly, we 
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have shown that desmin has an important role in the regulation of the 

microtubule network and post-translational modification persistence. This 

translates to an overall less stiff cardiomyocyte and a reduction in overall 

microtubule coverage. Taken together, we can conclude that desmin has a 

previously overlooked role in nucleus structure and homeostasis and overall 

health of the cardiomyocyte. 

Multiple, non-exclusive mechanisms may underlie the desmin and microtubule-

mediated maintenance of nuclear integrity. First, our data support a model where 

desmin and microtubules maintain a force-balance on the cardiomyocyte 

nucleus. Desmin, via attachments to the myofilaments and the nucleus (via 

nesprin-3), may provide resting tension on the nucleus, resisting compressive 

loads. Microtubules, on the other hand, compress and contain the nucleus in a 

cage-like structure, and connect to the outer nuclear membrane via nesprin-1 

and/or -2. Upon acute loss of desmin, this force-balance is disrupted, allowing 

dynamic microtubules to drive infolding of the nuclear envelope. Alternatively, 

desmin may function as a scaffold to protect the cardiomyocyte nucleus from 

aberrant microtubule compression. Desmin is required for proper microtubule 

network organization (30), and under normal conditions desmin may sequester 

microtubules or guide microtubule growth peripheral to the nucleus, mitigating 

microtubule compression. A third hypothesis involves the activation of signaling 

cascades that may structurally weaken the nucleus upon release of desmin. 

Cytoskeletal tension on the nucleus can stiffen the nuclear lamina both via 

increasing levels of lamin A/C (68) and via emerin-dependent signaling cascades 
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(69). Release of desmin or desmin-LINC tension may soften the lamina (70), thus 

allowing microtubule-dependent forces to more readily involute the nucleus. In 

the future, direct measurements of the magnitude and directionality of forces 

imposed on the cardiomyocyte nucleus using discrete force sensors may help 

discriminate between these models, although they likely are not independent. 

More work is needed to establish the precise molecular mechanism by which 

microtubules interact with the outer nuclear membrane and the LINC complex, 

and whether this interaction is direct or requires specific microtubule associated 

proteins to drive nuclear infolding.   

The situation is further complicated in the mechanical environment of 

cardiomyocytes in situ, which experience a complex mix of compression, strain, 

torsion, and shear. In both in situ and in vitro experiments, we observed 

decreased nuclear length and increased nuclear morphology defects upon 

desmin depletion. Yet in vivo we observed rounding of desmin-depleted nuclei, a 

phenotype not consistently observed in isolated cardiomyocytes. This could arise 

from several contextual differences, such as continuous stretch and contraction 

in vivo leading to the rounding of nuclei lacking attachment to the desmin network 

or the increased time lacking desmin in these hearts. 

The differential effects of acute and chronic desmin depletion are also worth 

consideration. It is unclear if disruption of desmin (or nesprins) is compensated 

for over time or during development. While germline desmin knockout (KO) mice 

have been reported to have altered nuclear morphology in skeletal (71) and 

cardiac muscle (20), underlying mechanisms were not determined, and whether 
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this was a direct or indirect consequence of the loss of desmin remained unclear. 

Our data provide a novel, direct mechanism for desmin’s nuclear protection. 

Desmin KO mice display muscle weakness, exercise intolerance (Shah Biophys 

J 2004) and prominent alterations to their transcriptome, particularly in relation to 

metabolic and mitochondrial gene (19-20, 72), and desmin depleted or mutant 

zebrafish exhibit defective EC coupling and contractility in skeletal and cardiac 

muscle (73-74). Intriguingly, we see differential regulation of a variety of 

metabolic, calcium handling and contractility-associated genes within 48hrs of 

desmin depletion in adult mammalian cardiomyocytes, and disruption of nesprin-

3 produces similar contractile defects. While whole-animal phenotypes are likely 

multi-factorial due to desmin’s promiscuous interactions, disrupting its 

association with the nucleus should be considered as a potential driver of diverse 

phenotypic consequences seen upon desmin loss or gain of function.  

While several mutations in nesprins-1 and -2 are associated with 

cardiomyopathy, we are unaware of myopathy-related mutations in nesprin-3. 

Nesprin-3 KO mice are viable (57), but cardiac phenotypes have not been 

explored and warrant further study, particularly upon application of mechanical 

stress. It is also worth noting that nesprin isoforms may compensate for one 

another during development, as supported by mouse models of nesprin ablation 

(16). 

Considerable remodeling of both the desmin and microtubule networks occur in 

human heart failure (21, 75). Desmin protein levels are increased 3-5-fold, and 

desmin is phosphorylated, cleaved and aggregated (27-28). Microtubules also 
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proliferate and are highly stabilized and detyrosinated, particularly those enriched 

around the cardiomyocyte nucleus. Future work should interrogate how this 

cytoskeletal proliferation and post-translational modification affects the 

relationship between desmin, microtubules and nucleus, and whether this may 

contribute to altered genome organization and pathology in heart failure. Of note, 

disruption of lamin A/C, which also causes cardiomyopathy, leads to 

disorganization of desmin filaments at the nucleus (76). Together with our work, 

this indicates bi-directional interactions between the desmin and microtubule 

networks as well as their combinatorial interaction with the overall nucleoskeletal 

network and how these complex interactions are required to preserve nuclear 

integrity in the heart.    

Cytoskeletal attachments to the nucleus have received considerable attention in 

recent years as potential sites of mechanotransduction. While much of the work 

has focused on the coupling of actomyosin stress fibers to the nucleus, little is 

known regarding the roles of microtubules and intermediate filaments and their 

interactions with the nucleoskeleton. Microtubule-LINC interactions are required 

for nuclear positioning in skeletal muscle (8-9), where desmin also plays a role 

(77), yet the regulation of nuclear mechanotransduction is unexplored. Given 

their intriguing ability to modulate lamina-associated chromatin, future studies 

should explore whether microtubules and intermediate filaments are involved in 

cardiomyocyte mechanosensing and response or merely provide structural 

reinforcement. Our data suggest that the basal connections between the nesprin 

and SUN proteins are required to keep the DNA-damage response low, 



46 
 

presumably via maintenance of chromatin organization. Further work will need to 

determine exactly how this occurs and what proteins are required to mediate this 

signaling.  

In sum, our data indicate that desmin and microtubules form a dense, 

interconnected network that surrounds the cardiomyocyte nucleus, and, when 

balanced, maintains nuclear homeostasis. Disruption of endogenous desmin 

increases the susceptibility of cardiomyocyte nuclei to microtubule-dependent 

collapse, a loss of genome architecture and DNA damage, and this disruption of 

nuclear homeostasis is associated with impaired cardiomyocyte function. This 

work provides mechanistic insight into the role of desmin intermediate filaments 

and suggests that improper regulation of nuclear integrity may contribute to 

pathology in desmin-related diseases.   
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Graphical Abstract: Desmin and microtubules work in concert to maintain nuclear 

homeostasis and chromatin organization. Desmin (light green filaments) attached to the 

nucleus via plectin (dark green linker) and nesprin-3 (light blue linker). Due to desmin’s 

attachments to the intermediate filament, myofilament, and microtubule network, this connection 

links the nucleus to the surrounding cytoskeleton. Moreover, desmin itself and through binding 

partners, associates with diverse cellular structures such as the mitochondria, intercalated disc, z-

disc, costameres and sarcolemma, attaching the nucleus directly to these components. We 

hypothesize this attachment provides a robust tension on the nucleus, providing structural 

integrity to the lamina and maintaining homeostatic signal transduction via the LINC attachment 

to the lamina. Complimentarily, the microtubules (gold), attach to nesprin-1/2 (pink linker). This 

perinuclear location serves as a nucleation site and likely an important post-transcriptional, post-

export site for mRNA. In the absence of the desmin-nesprin-3 axis, microtubule growth around 

the nucleus causes deformation. This causes malformations in the nuclear lamina, disruption of 

chromatin (red and blue DNA structure) and its organization, and loss of nuclear homeostasis. 
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Figure 1: Acute desmin depletion causes involution of cardiomyocyte nuclei. A, Structured 

illumination microscopy (SIM) image showing the close association between microtubules 
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(yellow), desmin (magenta), and the nucleus (blue). Right shows zoom merge from dotted box. 

Scale bar =1 µm. B, Representative Hoechst-stained live adult rat CM nuclei. C, Nuclear size 

parameters represented by percent change from time-matched control mean. Dimethyl sulfoxide 

(DMSO; Y27632): N=3 hearts, n=68 nuclei; Y27632 (10 µmol/L 24 h): N=3, n=69; Y16 (10 µmol/L 

24 h): N=3, n=66; DMSO (LatA): N=3, n=58; LatA (10 µmol/L 24 h): N=3, n=56; DMSO 

(colchicine [colch]): N=3, n=82; colch (1 µmol/L for 24 h): N=3, n=81; Y27632 (10 µmol/L 24 h) + 

colch (1 µmol/L 24 h): N=3, n=67; scramble (48 h): N=3, n=85, Desmin knockdown (KD; 48 h): 

N=3, n=98. Statistical significance determined via 1-way ANOVA with post hoc Bonferroni 

correction. D, Transmitted light images (left) of identical cardiomyocytes at different time points in 

culture; quantification (right) of cardiomyocyte length and width over time in culture. No virus 

N=2, n=157, scram N=2, n=138, desmin KD N=2, n=128. Data presented as mean±1 SD. For 

statistical significance, *P<0.05, **P<0.01, ***P<0.001 vs control 
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Supplemental Figure 1: Desmin knockdown does not affect cell size. A, Quantification 

(right) of the western (left) blotting for desmin (red) and GAPDH (green). B, Cell length (left), 

width (center) and area (right) of cells treated for 24hrs with either DMSO or Colchicine (1 µM). 

Cells were loaded with calcein red-orange and cell parameters were detected using thresholding 

and particle analysis. For all box plots, the middle line represents the mean, and the whiskers 

indicate 1 SD from the mean. For statistical significance, *P<0.05, **P<0.01, ***P<0.001 vs 

control. 
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Figure 2: Acute desmin or nesprin (nuclear envelope spectrin repeat protein)-3 depletion 

causes lamina infolding. A, Representative lamin A/C (upper) or lamin B1 (lower) 
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immunostaining in cardiomyocyte nuclei upon scramble or desmin knockdown (KD). Scale=1 

µm. B, Grading scale developed to assess the severity of lamina defects. Upper shows examples 

of 1 or nearly perfect nuclei (≤1-fold or malformation), 2 or nuclei with mild defects (2- to 3-folds or 

malformations), and 3 or highly disrupted lamina architecture (3+ folds or 

malformations). Lower shows the result of blinded grading as represented by percent nuclei. 

Control (48 h scramble): N=3, n=68. Desmin KD (48 h): N=3, n=85. Statistical significance 

determined using χ2 test. C, Time-lapse images of cardiomyocytes coinfected with lamin B1-

mCherry and scramble (left) or desmin KD (right) starting at ≈30 h post-infection. White arrows 

emphasize discrete regions of lamina infolding. D, Electron microscopy representative images of 

nuclei from longitudinal sections of either scramble (top) or desmin KD (middle and bottom) 

cardiomyocytes. The right shows higher magnification images of the boxed regions at left. Left: 

scale =2 µm. Right: scale = 200 nm. E, Upper shows quantification of the fraction of infolded 

area per nucleus. Lower shows quantification of the proliferation of electron-dense material 

(interpreted as heterochromatin) and its distance dependence tangential to the nuclear envelope. 

Gray bar on the left denotes the uncertainty in the precise location of the inner nuclear membrane 

due to the resolution limit. scramble: N=2, n=18. Desmin KD: N=2, n=23. Statistical significance 

determined using 2-sided t test. Line graph represents the mean with whiskers representing the 

SE. F, Top, cartoon schematic of the cardiomyocyte linkers of the nucleoskeleton and 

cytoskeleton (LINC) complex. Bottom, Western blot showing nesprin-3 KD in response to 

shRNA-mediated KD using variant 1. Quantification can be found in Online Figure IIB. G, 

Immunofluorescence (left) of Hoechst and lamin B1 in CM nuclei 48 h after infection with 

scramble or shNesprin-3 variant 1. Scale =1 µm. Nuclear grading (right) of nesprin-3 KD nuclei. 

scramble: N=2, n=39. Nesprin-3 KD: N=2, n=31. Statistical significance determined via χ2 test. 

For statistical significance, *P<0.05, **P<0.01, ***P<0.001 vs control. 
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Supplemental Figure 2: Multiple nesprin-3 shRNA variants are able decrease nesprin-3 

levels. A, Schematic of shRNA targeting sites on SYNE3, the gene encoding nesprin-3. B, 
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Western blot (upper) and quantification (lower) confirming robust nesprin-3 depletion by three 

separate oligos. Statistical significance determined by two-way ANOVA with Bonferroni 

correction. C, Fraction remaining nesprin-3 mRNA (2-ddCt), determined via qRT-PCR after 

shRNA-mediated KD using variant 1. Primers detecting nesprin-3 lie between exons 17 and 18 

and will detect both splice forms of nesprin-3. Statistical significance determined using two-sided 

t-test. D, Western blot (upper) and quantification (lower) confirming robust nesprin3 depletion is 

unaltered upon colchicine treatment from experiment. 

described in Fig 3B. Statistical significance determined by two-way ANOVA with Bonferroni 

correction. E, Western blot (upper) and quantification (lower) confirming robust desmin depletion 

is unaltered upon colchicine treatment from experiment described in Fig 3B. Statistical 

significance determined by two-way ANOVA with Bonferroni correction. For all box plots, the 

middle line represents the mean, and the whiskers indicate 1 SD from the mean. 
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Supplemental Figure 3: Multiple nesprin-3 shRNA variants cause nuclear infolding in a 

microtubule-dependent manner.  A, Immunofluorescence of nuclei treated with the different 

nesprin-3 shRNA variants showing DNA (Hoechst), a-tubulin (magenta) and lamin B1 (orange). 

Nuclear involution and lamina infolding that are rescued with colchicine. Scale bar = 2 μm. B, 

Blinded nuclear grading of nuclei from Supp Fig 2D. shScrambled (48 hrs) + DMSO: N=2 rats, 

n=19 nuclei. shScrambled (48 hrs) + Colch (10 μM 30 hrs): N=2, n=20. shNesp3 var1 (48 hrs) + 

DMSO: N=2, n=22. shNesp3 var1 (48 hrs) + Colch (10 μM 30 hrs): N=2, n=21. shNesp3 var2 (48 

hrs) + DMSO: N=2, n=23. shNesp3 var2 (48 hrs) + Colch (10 μM 30 hrs): N=2, n=23. shNesp3 

var3 (48 hrs) + DMSO: N=2, n=22. shNesp3 var3 (48 hrs) + Colch (10 μM 30 hrs): N=2, n=20. *= 

p-value vs shScrambled + DMSO. #= vs shNesp3 + DMSO. Statistical significance determined



70 
 

via chi-square. For statistical significance, * = p<0.05, ** = p<0.01, *** = p<0.001 vs. control; # = 

p<0.05, ## = p<0.01, ### = p<0.001 vs. desmin KD + DMSO or nesprin KD + DMSO. 

 

 



71 
 

 

Figure 3: Disrupting dynamic microtubules prevents nuclear defects arising from desmin 

or nesprin (nuclear envelope spectrin repeat protein)-3 depletion. A, Representative image 
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of desmin knockdown (KD) nucleus displaying microtubules present in nuclear infolds (white 

arrows). Scale =2 µm. B, Experimental schematic for microtubule and desmin disruption. C, 

Representative images of microtubules in cardiomyocytes following treatment with microtubule-

targeting drugs. D, Representative images (left) of nuclei from experiment depicted in B. Scale 

bar is 1 µm. Blinded nuclear grading (right) of nuclei. scramble + dimethyl sulfoxide (DMSO): 

N=2, n=38. Desmin KD + DMSO: N=2, n=28. Desmin KD + colchicine (colch; 10 µmol/L): N=2, 

n=42. Nesprin-3 KD + DMSO: N=2, n=39. Nesprin-3 KD + colch (10 µmol/L): N=2, n=40. 

Statistical significance determined via χ2 test. E, Representative images (left) and nuclear 

grading (right) from experiment depicted in B. Scale bar is 2 µm. Scramble + DMSO: N=2, n=21. 

Scramble + nocodazole (0.5 μmol/L): N=2, n=22. Scramble + taxol (10 µmol/L): N=2, n= 24. 

Desmin KD + DMSO: N=2, n=24. Desmin KD + nocodazole (0.5 µmol/L): N=2, n=22. Desmin KD 

+ taxol (10 µmol/L): N=2, n=22. Statistical significance determined via χ2 test. For statistical

significance, *P<0.05, **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs 

desmin KD + DMSO or nesprin-3 KD + DMSO. 
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Supplemental Figure 4: Nuclear infolding is irreversible but is not associated with changes 

to Lamin A/B1/C levels. A, Western blot showing desmin (red) and GAPDH (green). Cells were 

treated with either shScrambled or Des KD AdV and either DMSO or Colchicine. B, Blinded 

nuclear grading of desmin KD- and LatA-treated nuclei. LatA treatment was timed to disrupt actin 
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prior to infold formation. shScrambled (48 hrs) + DMSO: N=3 rats, n=38 nuclei. shScrambled (48 

hrs) + LatA (10 μM 24hrs): N=1, n=7. Desmin KD (48 hrs) + DMSO: N=1, n=20. Desmin KD (48 

hrs) + LatA (10 μM 24hrs): N=1, n=20. *= p-value vs shScrambled + DMSO. #= vs Desmin KD + 

LatA. Statistical significance determined via One-Way ANOVA with Bonferroni correction. C, 

Blinded nuclear grading of desmin KD- and colchicine-treated nuclei. Colch treatment was timed 

to disrupt microtubules after infold information. D, Representative western blot showing Lamin 

A/C, Lamin B1, and Histone 3 (H3), and blot quantification, normalized to H3. Each data point 

represents one biological repeat. For all box plots, the middle line represents the mean, and the 

whiskers indicate 1 SD from the mean. For statistical significance, * = p<0.05, ** = p<0.01, *** = 

p<0.001 vs. control. 
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Supplemental Figure 5: DN-KASH causes nuclear swelling, rescues desmin and nesprin-3 

KD. Disrupting the LINC complex prevents nuclear involution. A, Cartoon schematic of the 

cardiomyocyte LINC complex and effect of DN-KASH. B, Schematic of different nesprin-1 splice 

forms and binding sites of nesprin-1 and nesprin-2G antibodies. C, Immunofluorescence of 
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nesprins 1-3 in null or DN-KASH expressing cardiomyocytes. Scale = 1 μm. D, Nuclear size 

parameters presented as percent change from paired control mean. Null: N= 3, n= 65. DN KASH: 

N= 3, n= 107. E, Immunofluorescence (left) of Hoechst, nesprin-1 and laminB1 in either null or 

DN-KASH expressing cardiomyocytes. Scale = 1 μm. Blinded nuclear grading (right) of DN-

KASH nuclei. Null: N= 3, n= 64. DN KASH: N= 3, n= 58. Statistical significance determined via 

Chi-squared test. F, Immunofluorescence (left) of LaminB1 in myocytes co-transduced with 

Scramble/Des KD/Nesp-3 KD and Null/DN-KASH encoding adenoviruses. Nuclear grading (right) 

of DN-KASH rescue experiments. Scram + null: N=4, n=63; scram + DNKASH: N=4, n=67; des 

KD + null: N=2, n=33; des KD + DNKASH: N=2, n=35; nesp3KD+null: N=2, n=34; 

nesp3KD+DNKASH: N=2, n=31. Statistical significance determined via Chi-squared test. For 

statistical significance, * = p<0.05, ** = p<0.01, *** = p<0.001 vs. control; # = p<0.05, ## = p<0.01, 

### = p<0.001 vs. desmin KD + null or nesprin-3 KD + null. 
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Figure 4: Desmin knockdown (KD) causes DNA damage that is partially prevented by 

microtubule depolymerization. A, Representative immunofluorescence images of γH2AX, an 

indicator of DNA damage and repair. B, γH2AX intensity, nuclear length, width, and area 

measured from immunofluorescence imaging. Scrambled (48 h) + dimethyl sulfoxide (DMSO): 

N=2, n=226. Desmin KD (48 h) + DMSO N=2, n=128. Scrambled (48 h) + colchicine (colch; 10 

µmol/L 32 h): N=2, n=157. Desmin KD (48 h) + colch (10 µmol/L 32 h): N=2, n=160. C, Western 

blot (left) and quantification (right) for γH2AX (green) and H3 (red, loading control). Treatment 

conditions are identical as above. Repeat lanes in each group are 5 and 7 µL of lysate, and the 

quantification always pulled from the average of 5 and 7 µL of lysate and normalized to H3. Data 

are from 3 independent rat CM isolations. H3 is unaltered with either desmin KD or colch 

treatment (data not shown). Statistical significance determined via 2-way ANOVA with post hoc 

Bonferroni. D, Correlation between γH2AX and nuclear area from the same experiments. γH2AX 

signal was plotted on a logarithmic axis to demonstrate the exponential relationship between 

nuclear area and DNA damage, and so that the distribution of scramble data could be visualized 

on the same scale. Log10 transformed data for desmin KD + colch group was fit to linear 

regression analysis, with the Pearson correlation coefficient listed and P value indicating that 

slope is significantly different than zero. For statistical significance, *P<0.05, **P<0.01, 

***P<0.001 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs desmin KD + DMSO or nesprin 

(nuclear envelope spectrin repeat protein)-3 KD + DMSO. 
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Figure 5: DN KASH causes elevated γH2AX in adult rat cardiomyocytes. A, Left, Normalized 

to shScr DMSO control signal intensity average. DN KASH and 5µM blebbistatin were incubated 

for 72 hrs. Right, γH2AX particle counts. Particle number was determined via blinded 

thresholding and particle analysis. ShScr + DMSO: N= 3 rats, n= 27 nuclei. ShScr + Blebb: N= 3, 

n= 33. DN KASH + DMSO: N= 3, n= 31.  DN KASH + Blebb: N= 3, n= 36. Statistical analysis was 

conducted using a two-way ANOVA with Bonferroni correction. * represents p-values vs shScr 

DMSO and # represents p-values vs DN KASH DMSO. B, Representative images showing the 

increase in γH2AX with DN KASH and the trend toward signal reduction with blebbistatin. 
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Figure 6: Desmin knockdown (KD) causes nuclear malformation in vivo. A, Sham (left) or 

desmin KD (right) rat left ventricular sections stained with desmin (orange) and DAPI (4′,6-

diamidino-2-phenylindole; blue). The extranuclear blue signal is background fluorescence in the 

DAPI channel. Green and red arrows point to desmin-positive and desmin-negative 

cardiomyocyte nuclei, respectively. Scale =10 µm. Cardiomyocyte nuclei were distinguished from 

nonmyocyte nuclei via cTNT (cardiac troponin T) counterstaining (not shown). B, Zoomed-in 

images of representative desmin-positive and desmin-negative nuclei in tissue. Scale =1 µm. C, 

Nuclear length (left), roundness (middle), and nuclear grading (right) of nuclei in tissue. 

*compared to sham, #compared to desmin+ cardiomyocytes. Sham: N=6 hearts, n=188 nuclei. 

Desmin KD (desmin+): N=4, n=75. Desmin KD (desmin−): N=4, n=100. Statistical significance 

determined via 1-way ANOVA with post hoc Bonferroni correction for length and roundness and 
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via χ2 test for blinded scoring. For statistical significance, *P<0.05, **P<0.01, ***P<0.001; 

#P<0.05, ##P<0.01, ###P<0.001. 
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Figure 7: Desmin protects from microtubule-dependent nuclear disruption in beating 

cardiac syncytia. A, Top, experimental design for nanopatterning cardiac syncytia. Bottom, 

immunostaining of a-actinin, desmin, and tubulin in unpatterned (left) and patterned (right) 

neonatal rat ventricular myocyte (NRVM) syncytia. Scale =10 µm. B, Immunostaining of patterned 

NRVM syncytia in scramble or desmin knockdown (KD) infected cultures. Transverse desmin 
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filaments are no longer evident upon desmin KD. C, Representative field of NRVM nuclei in 

nanopatterned syncytia immunostained for lamin B1 and γH2AX (top) and 4× zoom in of 

representative nuclei (bottom inset). D, Quantification of nuclear dimensions and γH2AX intensity 

in NRVM nuclei from nanopatterned syncytia. Scram: N=3 NRVM isolations, n=419 nuclei. 

Desmin KD: N=3, n=388. Scramble + colchicine (colch): N=3, n=357. Desmin KD + colch: N=3, 

n= 260. α-actinin (not shown) was used to distinguish myocytes from nonmyocytes. Statistical 

significance determined via 2-way ANOVA with post hoc Bonferroni comparison. For statistical 

significance, *P<0.05, **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs 

desmin KD + dimethyl sulfoxide (DMSO). 
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Figure 8: dTAG Desmin degron system causes efficient desmin degradation and nuclear 

abnormalities. A, Western blot showing an adult male homozygous knock-in mouse with 

desmin-FKBPF36V (red) and GAPDH (green). Cells were treated post isolation with either DMSO 

or 500 nM dTAGv1 (BNN). BNN causes the desmin chimera to be targeted for degradation with 

98 percent of the protein level gone by 22 hrs. B, Left, Quantification of the immunofluorescence 

shown in C. Desmin intensity was determined by blinding the images and picking 3 regions of 

interest then averaging per cell (each dot is the average for 1 cell). Right, Blinded grading of 

image set as previously described. 0hr: N= 1 rat, n= 12 nuclei. 6hr + DMSO: N= 1, n= 10. 6 hr + 

500 nM BNN: N= 1, n= 10. 22 hr + DMSO: N= 1, n= 11. 22 hr + 500 nM BNN: N= 1, n= 12. * 
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refers to p-values compared vs 0 hr control, # refers to p-values vs 22 hr DMSO. C, 

Representative images showing the changes to the nuclear shape with decreasing desmin and 

the decrease in desmin striations over time with BNN. The remaining sign at 22 hr + BNN 

appears to be localized to the intercalated disc, the most desmin-rich structure in the 

cardiomyocyte.  
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Figure 9: Desmin knockdown (KD) results in large-scale changes to gene expression and 

compromises lamina-bound chromatin. A, RNAseq was performed on scramble/null and 

desmin KD cardiomyocytes. Volcano plot showing differentially expressed genes on desmin 

depletion compared with scramble. Genes were considered significantly different with a log2 fold 
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change ≥|1|and false discovery rate of 0.05. Red indicates upregulated transcripts, while blue 

indicates downregulated transcripts. B, Gene Ontology (GO) Analysis of differentially expressed 

genes via ToppGene, showing the most significantly altered groups of genes on desmin 

depletion, as well as associated phenotypes or diseases associated with the desmin KD 

transcriptome (blue and red titles do not indicate directionality of gene expression). C, 

Representative lamin B chromatin immunoprecipitation (ChIP)-seq track from entire chromosome 

10 (rn6). Lamina-associated domains (LADs) are labeled with black boxes immediately above 

track. Area in red box is magnified in bottom track (1–18 894 761 bp of chromosome 10). D, 

Stacked bar chart indicating percentage of genes which changed expression on desmin KD (log2 

fold change ≥|1| and adjusted P<0.05), categorized as whether they resided inside or outside a 

LAD in control conditions. Number of genes indicated in bar chart. The distribution of upregulated 

and downregulated genes in and out of LADs is significantly different as determined via χ2 

comparison (χ2 statistic =32.2). E, PantherDB GO analysis of the 93 genes which resided in 

LADs in control cells and were upregulated on desmin depletion. 

 

 

 



88 

Supplemental Figure 6: Lamin-B1 ChIP immunoprecipitation (IP) and sequencing are both 

functional. A, LaminB1 ChIP-western in indicated conditions. B, Spearman correlation 

coefficients comparing occupancy between replicates of either input or LB ChIP-seq from control 

samples on chr1. C, Indicated statistics upon merging three replicates and then identifying EPIC-

based lamin-associated domains (LADs) from control sample. 
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Figure 10: Excitation-contraction coupling is similarly altered upon acute desmin or 

nesprin (nuclear envelope spectrin repeat protein)-3 depletion. A, Left, change in cytosolic 

calcium (F/F0) and right, amplitude-normalized F/F0 time course of Fluo-3 loaded adult rat 

cardiomyocytes electrically stimulated at 1 Hz. B, Quantification of [Ca2+]i transient amplitude 

(left), rise time (middle), and decay τ (right). Scramble: N=3, n=52 cells. Desmin knockdown 

(KD): N=3, n=45 cells. Nesprin-3 KD: N=3, n=45 cells. C, Left, average contractility trace 

(sarcomere shortening) and right, amplitude-normalized shortening of the identical adult rat 

cardiomyocytes from experiment in A. D, Quantification of contractile amplitudes (left) shortening 

time (middle) and relaxation τ (right). Statistical significance determined via 1-way ANOVA with 

Bonferroni correction. For statistical significance, *P<0.05, **P<0.01, ***P<0.001 vs control. 

 

 



90 

Figure 11: Desmin KD decreases the viscoelasticity of adult cardiomyocytes. Left, the 

elastic modulus (Pa) measured over different indentation rates. Des KD/shDes shows a trend in a 

decreasing stiffness over all indentation rates. Right, however, Des KD shows a significantly 

lower stiffness at the highest indentation rates. These data suggest that desmin KD preferentially 

decreases viscoelasticity over elastic behavior. Control: N= 5 rats, n= 52 cells. Des KD: N= 5, n= 

51. P value shown indicates vs rate-dependent control. Statistical analysis was performed by

doing a two-way ANOVA with Bonferroni correction. 
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Figure 12: Desmin KD causes microtubules to contract with longer wavelengths. A, Left, 

Proportion of buckles measured showing a right-ward shift in the distribution in response to 

desmin KD. This is significant because the adult rat cardiomyocyte tends to contract to 1.5-1.7 

µm. This is also the observed wavelength of normal microtubule buckles as shown by the black 

distribution. The right-ward shift indicates a loss of rigid attachment of microtubules to the z-disc. 

Right, the same data but presented as a difference in proportion to highlight the change in 

distributions at 1 (1.5 µm) or 2 (3 µm) contracted sarcomere lengths. Control, contracted: N= 5 

rats, n= 624 wavelengths. Des KD, contracted: N= 5, n=544. B, Representative images of 

microtubule buckling with either control or desmin KD. Small red arrows have been added to 

allow readers to easily track the same microtubule between images. 
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Figure 13: Desmin KD reduces tyrosinated microtubules. A, Representative images showing 

the decrease in desmin (cyan), detyrosinated (dTyr, orange) and tyrosinated (Tyr, magenta) 

microtubules in adult rat cardiomyocytes with desmin KD. B, Quantification of the percent cell 

coverage of dTyr, Tyr (left) and desmin (right). Scram: N= 2 rats, n= 32 cells. Des KD: N= 2, n= 

25. Statistical analysis was performed using two-sample t-test.


