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ABSTRACT

THE DETERMINANTS AND IMPLICATIONS OF FIRMS’ WORKFORCE

CONFIGURATION: THE CASE OF HOME HEALTH

Kunhee Kim

Guy David

A fundamental challenge for labor-intensive firms facing demand uncertainty is how to con-

figure their workforce to improve quality and performance. This dissertation investigates

determinants of firms’ workforce configuration, with a focus on the mix of temporary and

permanent nurses, and its implications on patient outcomes, a central measure of perfor-

mance in health care. This is a timely topic since many industries including health care

are increasingly using alternative work arrangements. This dissertation uses novel and rich

proprietary data from a large US freestanding home health company. The data provide

detailed information on both the consumption and production sides of home health care

delivery: utilization, referral sources, risk factors and health outcomes of patients as well as

nurses’ work logs and human resources characteristics. In Chapter 1, I investigate the effect

of firms’ labor mix on patient readmission, a main quality marker in post-acute care, using

exogenous variation in full-time nurses’ activeness in the patient’s neighborhood and unavail-

ability of nearest full-time nurses. I find that patients who received one standard-deviation

higher proportion of full-time nurse visits were 7 percent less likely to be readmitted. In

Chapter 2, I investigate the effect of reputation on firms’ labor mix strategy under demand

uncertainty. Firms face a trade-off in using temporary nurses: they provide flexibility in re-

sponding to demand fluctuations but may impede the establishment of reputation through

lower quality of service. I present and test a model of firm’s labor mix choices where the la-

bor mix dynamically shapes the market’s perception of the firm’s quality (i.e. reputation),

and the firm’s demand is in turn stochastically linked to its reputation. I find evidence

consistent with the model: firms with lower reputation, especially young firms, increased
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the percentage of full-time nurses with demand volatility. Young firms trade off short-term

profitability for long-term reputation gains. In Chapter 3, I investigate the effect of firms’

workforce assignment on readmission through care discontinuity or handoffs. Using exoge-

nous variation in workflow interruption caused by providers’ inactivity, I find handoffs to

increase the likelihood of readmission. One in four readmissions during home health would

be avoided if handoffs were eliminated.
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CHAPTER 1 : The Effect of Firms’ Labor Mix on Quality of Care

1.1. Introduction

An increasing number of firms in the US hire workers in alternative work arrangements,

defined as temporary help agency, on-call, contract company, and independently contracted

or freelancing workers (Katz and Krueger, 2016). Between 2005 and 2015, the percentage of

workers in those arrangements rose from 10.7 percent to 15.8 percent, and 94 percent of the

net employment growth in the US economy during this period is estimated to have occurred

in alternative work arrangements (Katz and Krueger, 2016). Health care, in particular, is

one of the fastest growing industry groups with a 53-percent growth in the percentage

of health care professionals in alternative work arrangements between 2005 and 2015 and

a 74-percent growth between 1995 and 2015 (Katz and Krueger, 2016).1 This trend of

an increasing use of workers in alternative arrangements in health care naturally raises the

question of whether using more of these workers has any impact on patient health outcomes,

a central measure of performance in health care.

Key problems in estimating the impact of using alternative work arrangements on health

outcomes are attribution and selective assignment. A multitude of other organizational

factors, such as facility resources or technology tools, simultaneously influence the patient

experience and health outcomes. Provider organizations with more resources may adopt

staffing practices—such as hiring more professionals in permanent work arrangements or

providing better work environments—that achieve favorable health outcomes (Aiken et al.,

2007). Moreover, providers may selectively assign patients to professionals in different work

arrangements: for example, relatively healthier patients are matched with professionals in

alternative work arrangements.

1The percentage of health care professionals in alternative work arrangements was 5.3 percent, 6 percent,
and 9.2 percent in 1995, 2005, and 2015, respectively. Health care professionals refers to workers in the
Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations groups, as defined
by the Bureau of Labor Services. The former group includes physicians and nurses while the latter includes
physician aides and nurse aides.
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In this chapter, I use a novel and rich dataset on home health and develop an empirical

framework that allows me to overcome these inference challenges. First, I use novel pro-

prietary data on home health care utilization in which patients are isolated in their homes

and thus their health outcomes are unlikely to be confounded by other facility resources.

Second, I use a plausibly exogenous variation in patient assignment to different types of

nurses using permanent nurses’ activeness in the patient’s area.

There are different work arrangements used for both permanent and temporary workforces,

respectively, in home health. Thus, to investigate whether permanent and temporary nurses

yield a systematically different patient outcome, I estimate whether receiving more care from

full-time nurses leads to a different likelihood of hospital readmission.

My identification strategy is to exploit the variation in full-time nurses’ activeness across

ZIP codes and care timings. When a patient happened to live in a ZIP code or start home

health care at a time that her firm used more full-time nurses, she would receive more

full-time nurse visits. The patient’s location and timing of care are potentially exogenous

with respect to the patient’s likelihood of readmission.

For this analysis, I use proprietary home health data and construct patient-episode level

data for a set of elderly patients who had a hospitalization prior to home health care during

the years 2012–2015. I use a two-stage least squares (2SLS) estimation using the instrumen-

tal variable discussed above. My findings are twofold. First, patients who lived in ZIP codes

where full-time nurses were more active at the start of care indeed had a higher proportion

of full-time nurse visits. Second, patients who received a higher proportion of full-time

nurse visits were less likely to be readmitted to a hospital. One-standard-deviation increase

in the proportion of full-time nurse visits (0.41)—equivalent to about two more full-time

nurse visits out of 6 in total—was associated with a 7-percent decrease in the likelihood of

readmission compared to the mean. This effect holds after controlling for patients’ under-

lying health characteristics, office-level demand and labor supply characteristics, patients’

ZIP code fixed effects, firm fixed effects, month fixed effects, and fixed effects related to the

2



timings of the start and end of care. Moreover, this estimated effect is conservative since

when full-time nurses were active, firms tended to have sicker patients by several severity

measures.

Previous literature has examined the effect of workers in alternative work arrangements on

performance but there is a lack of consensus (Bae et al., 2010; Xue et al., 2012; Lotti and

Viviano, 2012; Aiken et al., 2013; Figlio et al., 2015; Lasater et al., 2015; Hockenberry and

Becker, 2016; Lu and Lu, 2016). On the one hand, Figlio et al. (2015) find in the university

setting that students learned relatively more from contingent faculty in the first-term courses

after controlling for student fixed effects and next-class-taken fixed effects, compared to

tenure-track or tenured professors. In the hospital setting, Xue et al. (2012) and Aiken

et al. (2013) find no statistically significant difference in mortality in hospital units run by a

higher share of supplemental registered nurses (RNs). Aiken et al. (2007) similarly find that

supplemental nurses were not associated with poor patient outcomes after controlling for

the quality of work environments. Lasater et al. (2015) find a greater use of supplemental

RNs to have no statistically significant association with patient satisfactions measured by

whether patients would recommend their hospital. On the other hand, Hockenberry and

Becker (2016) find that 10 dimensions of patient satisfaction scores were lower in hospitals

with a higher proportion of contract nurse hours, even for patient satisfaction data coming

from the same source as Lasater et al. (2015). Bae et al. (2010) find the positive association

between the level of external temporary RN hours and several poor patient safety outcomes,

such as patient back injuries and falls, in hospitals. Pham et al. (2011) find that temporary

staff, including physicians and nurses, was associated with more harmful medication errors

in emergency departments. Lu and Lu (2016) also find greater service quality deficiency

citations in nursing homes employing greater RN contract hours as a proportion of total

resident days. Lotti and Viviano (2012) find that reforms incentivizing the use of permanent

labor were associated with higher total factor productivity in Italian manufacturing firms.

The principal contribution of this chapter is to overcome weaknesses in the prior literature

3



by accounting for the non-random matching of providers in different work arrangements with

patients. I demonstrate that accounting for this endogeneity is important as the OLS effects

of the proportion of full-time nurse visits are not statistically significant whereas the 2SLS

effects are statistically significant and greater in magnitude. To the best of my knowledge,

this chapter is the first to use an econometric method to overcome the inference problem.

Broadly, the chapter is related to the literature on the relationship between staffing and

quality (Needleman et al., 2011; Tong, 2011; Cook et al., 2012; Mark et al., 2013; Lin, 2014;

Matsudaira, 2014).

The remainder of this chapter is organized as follows. In Section 1.2, I provide brief back-

ground on home health care to provide necessary institutional details to understand my

empirical strategy. In Section 1.3, I describe the data and sample restriction rules. In Sec-

tion 1.4, I describe the key inference problems in estimating the effect of the proportion of

full-time nurse visits on patient readmission. In Section 1.5, I discuss the empirical strategy.

In Section 1.6, I present the estimation results. In Section 1.7, I conclude the chapter.

1.2. Background

Home health care, which is provided to homebound patients who need skilled nursing or

therapy services, is an important and rapidly growing segment of the post-acute care delivery

system. Home health care is composed of largely six service disciplines in which home health

firms demand labor: skilled nursing, home health or personal care aid, physical therapy,

speech-language pathology, occupational therapy, and medical social services.2 I provide a

detailed background on the home health care industry and the workforce distribution across

disciplines in Appendices A.1 and A.2, respectively, at the end of the dissertation.

In this chapter, I focus on the skilled nursing workforce—the combination of registered

nurses (RNs) and licensed practice nurses (LPNs)—since nurses provide the medical service

most relevant to potentially determining hospital readmissions and since their visits account

2Medicare covers only these six discipilnes.
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for the majority of overall home health visits. Thus, among the six service disciplines, home

health firms’ demand for skilled nurses is the highest and they maintain the largest capacity

of them each week.

Nurses are hired under largely two compensation schemes: salary with guaranteed work and

expected number of visits for each week and piece-rate pays with no guaranteed work and

visit-based hiring. Thus, one can think of salaried nurses as “permanent” and piece-rate

paid as “temporary” workers in this chapter. Under salary, nurses can be hired either on

a full-time, part-time with benefits, or part-time without benefits basis, or for managerial

or administrative positions. Full-time nurses are the primary salaried work arrangement,

comprising 40 percent of a firm’s workforce every week on average. Under piece-rate pay,

nurses can be hired either on an on-call basis directly by the firms or hired as contractors

through temporary help agencies. On-call nurses are the primary piece-rate paid work

arrangement, comprising more than 30 percent of a firm’s workforce every week on average.

1.2.1. Differences between Permanent and Temporary nurses: Descriptive Statistics

A lack of consensus in the previous literature on the effect of alternative work arrange-

ments on quality and performance may reflect the fact that the effect plausibly varies

across settings. However, theoretically there are opposing directions through which workers

in alternative work arrangements can affect performance. On the one hand, lower-quality

workers may be more likely to sort into alternative work arrangements if firms have lower

standards of hiring for those arrangements. Once employed by a firm, workers hired in

alternative work arrangements may also have shorter engagement with the firm and lack

opportunities to develop firm-specific skills (Broschak and Davis-Blake, 2006; Cuyper et al.,

2008) or receive support from colleagues (Witte and Nswall, 2003). Negative worker out-

comes for workers in alternative work arrangements, such as lower wages or lower benefits,

could reduce their morale and productivity (Harley, 1994; Hockenberry and Becker, 2016).

On the other hand, using workers in alternative work arrangements could have a positive

5



effect on performance if they provide supplementary labor to address a shortage or high

workload of regular workers. Flexible staffing strategies could offset the negative effects of

low staffing or high workload per worker which have been consistently noted by previous

literature (Aiken et al., 2010; Kuntz et al., 2014; Berry Jaeker and Tucker, 2016). Moreover,

to the extent that alternative work arrangements are used as a screening device or stepping

stones for more permanent positions, the former do not necessarily attract less competent

nurses (Booth et al., 2002). However, this case is unlikely in in my data since it is rare

for permanent nurses to be hired first in temporary work arrangements and for temporary

nurses to change into permanent positions.

Before examining the effect of the proportion of full-time nurse visits on patient readmission,

I explore whether full-time nurses are different from nurses hired in other work arrangements.

If there is no meaningful difference, there is no reason for firms to differentially treat them

and expect any difference in the quality of care. In Table 1, I report mean values of key

labor supply and pay characteristics of nurses in each work arrangement. I focus on the

comparison of full-time and on-call nurses, who represent the majority of salaried and piece-

rate paid workforce.

Full-time nurses had substantially higher workloads, as measured in terms of number of

visits. Panel A shows that conditional on providing at least one visit, full-time nurses

provided 22 visits per week on average compared to on-call nurses who provided 9 visits per

week. However, the average length of visits provided by full-time nurses was at 46 minutes

shorter by 4 minutes than that of on-call nurses. Reflecting the difference in workloads, full-

time nurses were paid slightly less than 3 times the total weekly pay of on-call nurses, as

shown in Panel B. However, on the per-visit rate, full-time nurses get paid less than on-call

nurses by $12 on average, which may be a compensating differential for benefits. Moreover,

full-time nurses’ average length of employment of 21 months was 5 months longer than that

of on-call nurses.3

3To obtain these statistics, I restricted to nurses who terminated their employment, where the termination
was defined as either permanently exiting the workforce or providing no visits for more than 90 consecutive
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Another qualitative difference between salaried and piece-rate paid nurses lies in the amount

of training and attendance of case review conferences. Data on these aspects are unavailable.

However, according to interviews with administrators in the company which provided me

with the data, salaried nurses must receive training at the start of employment and get

additional training regularly. They also spend more time in the firm offices and attend

conferences with other care team members to review patient cases. On the other hand,

piece-rate paid nurses are not obliged to receive training at the start of employment and

do not typically receive additional training afterwards. They also do not usually attend

conferences for case reviews.

Table 1 alone cannot entirely explain why a higher proportion of full-time nurse visits would

improve patient outcome (i.e. reduce hospital readmission). However, data suggest that full-

time nurses accumulate much more experience by providing more visits as well as staying

employed for longer. To the extent that the experience has a positive correlation with

performance—whether it is due to the vintage effect or selection (Murnane and Phillips,

1981) or learning by doing (David and Brachet, 2009)—full-time nurses may provide higher

quality of care.4 The same effect is predicted to the extent that full-time nurses develop

greater expertise and superior knowledge of firms’ culture and standards by spending more

time at firms’ offices and with colleagues. These forces, however, might be counterbalanced

with factors such as shorter visit lengths or higher workloads (Brachet et al., 2012), which

could produce a positive effect of proportion of full-time nurse visits on hospital readmission.

1.2.2. Firms’ Assignment of Temporary and Permanent Nurses to Patients

Why do some patients receive more full-time nurse visits than others? Before investigating

the impact of receiving more full-time nurse visits on readmission, I describe firms’ practice

of assigning nurses to patients, which drives the variation in the proportion of full-time nurse

days.
4Medoff and Abraham (1980) find no correlation between experience and relative rated performance

though they find a strong correlation between experience and relative earnings among managerial and pro-
fessional employees within the same grade level.
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visits across patients. Home health firms’ assignment of nurses to patients is based largely

on matching by distance as it involves mobile workforces.5 Since many nurses commute from

home directly to patients’ homes, firms try to assign to a patient the nurses who live close

by to her in order to minimize nurses’ travel time and costs. Travel time has the potential

to affect not only directly firms’ mileage payment to nurses but also indirectly employee

retention (Chapple, 2001) and labor supply (Gutiérrez-i Puigarnau and van Ommeren, 2010;

Gimenez-Nadal et al., 2011). This is despite the possibility that a nurse may incur one-time

costs of traveling to and from a remote area at the beginning and end of the day and mostly

travel short distances between different patients’ homes located near each other during the

day.

In my data, for a given patient, nurses who actually visited the patient lived closer to her

than other nurses who were active but did not visit her. Nurses who actually visited the

patient lived 11 miles away whereas those who did not visit her lived 14 miles away.6 The

mean difference of 3 miles within the patient is not only economically significant but also

statistically significant at the one percent level according to the paired t-test.

While matching of nurses with patients is largely based on distance, a majority of patient’s

care is provided by full-time nurses. On average, a patient receives 6 nurse visits in total.

Approximately 60 percent of them are provided by full-time nurses; 8 percent by part-time

with benefits nurses; 6 percent by part-time with benefits nurses; 17 percent by on-call

nurses; 0.3 percent by contractor nurses; and 8 percent by office or other nurses. Figure 1

shows the variation in the proportion of full-time nurse visits across patient episodes. A

large number of patients receive either zero or only full-time nurse visits. 24 percent of the

5The geography-based assignment of service providers to patients has been well noted in the home health
care settings as well as in other mobile workforce settings, such as police. The operations management
literature has long addressed this “districting” problem of how to partition a firm’s service market region
into a contiguous set of districts and assign workers to each district to minimize each worker’s travel distances
and equalize the workload across workers (Tavares-Pereira et al., 2007).

6To analyze this, for each patient, I divide nurses who were active during months of the patient’s care
into two groups by whether they actually visited her. Within the patient, I compute the mean distance
to the nurses in each group at the 5-digit ZIP-code level, the finest level of geography I can obtain for the
patients’ and nurses’ home addresses.
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patients receive zero full-time nurse visits, and 36 percent of patients receive only full-time

nurse visits. The remaining 40 percent receive a mix of full-time nurse and other nurse

visits, with the median proportion of full-time nurse visits being 0.75.

1.3. Data

I use rich and novel data from a large US for-profit freestanding home health provider

firm operating 106 autonomous offices in 18 states during January 2012 through August

2015.78 These data provide information for each patient including underlying risk factors

and outcomes at an unusual level of detail since the Center for Medicare and Medicaid

Services (CMS) requires each office to collect extensive demographic and health risks data

using the CMS’s Outcome and Assessment Information Set (OASIS) surveys.9 The patient

data contain a rich set of underlying health risks assessed at the beginning of each home

health admission and hospital readmission outcomes.10 I focus on hospital readmissions

as a key measure of quality of care since both hospitals and freestanding HHAs view it as

a key competitive differentiator among HHAs under the Hospital Readmissions Reduction

Program (HRRP) established by the Affordable Care Act (ACA) (Worth, 2014).

These data contain the entire home health visit records in each office showing all the inter-

actions between a patient and individual providers who served her. I match these visit-level

data with the human resources data containing the history of employment arrangements

for each provider to measure the proportion of visits provided by nurses in each work ar-

7These 18 states are Arizona, Colorado, Connecticut, Delaware, Florida, Hawaii, Massachusetts, Mary-
land, North Carolina, New Jersey, New Mexico, Ohio, Oklahoma, Pennsylvania, Rhode Island, Texas,
Virgina, and Vermont.

8This large set of independently run offices alleviates some concern about the generalizability of our
results to other HHAs even if they all belong to one company. During 2013, compared to a national sample
of freestanding agencies, home health offices in our sample tend to be larger, have a lower share of visits
provided for skilled nursing and instead have a higher share of visits provided for therapy, and have a
lower share of episodes provided to dual-eligible Medicare or Medicaid beneficiaries, which seem to be more
common characteristics of proprietary agencies (Cabin et al., 2014; MedPAC, 2016a).

9These patients include all the patients enrolled in both public and private versions of Medicare, Medicaid
and a small fraction of private insured patients for which their plans required the collection of OASIS data.

10The OASIS data actually contain two variables which I use to identify whether a patient had a hospital
readmission: whether patients had a hospitalization prior to home health care and hospitalization dates
during home health care.
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rangement during each patient’s care. Using these visit-level data, I can also construct the

firm-day level data showing office’s demand and labor supply conditions. I use this dataset

to construct the mean level of ongoing home health care episodes and active nurses, and

the mean proportion of nurses in each work arrangement during each patient’s care.

Finally, my data provide 5-digit ZIP code level home addresses for both patients and nurses.

It is rare to have home addresses for nurses in health care data, which offers a unique

opportunity to construct an instrument based on the distance between patient and nurse’s

homes as described in Section ??.

I construct the sample at the patient episode level, where an episode is defined as a 60-day

period of receiving home health services.11 Each patient episode is handled by a single

office. Since each office autonomously decides scheduling and staffing and is run as a profit

center, I regard each office as a separate “firm” in my empirical analysis. In my sample,

I exclude firms that are senior living offices whose primary clientele is residents of senior

living facilities since these firms pursue a different workforce configuration strategy than

firms that focus on home health care. I also exclude firms serving fewer than 50 episodes in

a ZIP code for stable estimation. Furthermore, I restrict to the set of patients who received

a single episode of home health care since patients receiving multiple episodes likely face

a different distribution of labor mix. I also exclude patients who received only one nurse

visit since they cannot experience a mix of nurses in different work arrangements. I exclude

outlier patients who received greater than 99th percentile (18) of the number of nurse visits

during care. Thus, my final sample used for the analysis contains 21,200 patient episodes

that live in 203 ZIP codes and are served by 39 firms operating in 10 states.

11This definition of a 60-day home health episode is based on the fact that the Center for Medicare and
Medicaid Services (CMS) pays a prospective payment rate for each episode to home health agencies for
“traditional Medicare” (Part A) enrollees, not privately insured Medicare enrollees. A patient can have
multiple episodes during a home health care admission.
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1.4. Inference Problem

Estimating the effect of the proportion of full-time nurse visits on patient readmission is

challenging for several reasons. The first and central problem is that firms’ assignment of

full-time nurses to patients may depend on patients’ severity. Sicker patients are more likely

to be assigned full-time nurses because those nurses can provide more continuous care or

have more experience due to longer tenure. Section 1.2.1 shows that full-time nurses work

more per week and work longer. To the extent that patients who are sicker in unobserved

dimensions have a higher proportion of full-time nurse visits, estimating an OLS effect of

such a proportion on the patient readmission would result in an upward bias and work

against finding a negative effect.

Indeed patients who received a higher proportion of full-time nurse visits appear to be sicker

according to many observed characteristics. Table 2 shows the mean values for several

patient characteristics for four different groups of patients based on the proportion of full-

time nurse visits: 1) zero; 2) greater than zero and less than median (0.75); 3) equal to or

greater than median and less than one; and 4) one. Overall, Group 1 patients who received

zero full-time nurse visits were most saliently healthier than Groups 2–4 of patients who

had at least one full-time nurse visit during care. Panel B shows that Group 1 had a low

risk for hospitalization: these patients had few past hospitalizations, did not show mental

decline, and took few medications. In Panel C, Group 1 was older but more likely to be

white and enrolled in Medicare Advantage, both of which have been shown to be associated

with better health (Kawachi et al., 2005; Brown et al., 2014). In Panel D, Group 1 had

a lower Charlson comorbidity index and was less likely to report severe overall status and

have severe pre-home health care conditions.

One can observe a similar gradient of severity across Groups 2–4. Groups 3–4 patients who

had at least 75 percent of full-time nurse visits appeared similar, and Group 3 was even

sicker than Group 4 on some measures. However, both of these groups tended to be sicker

than Group 2 in many characteristics. In our estimation framework, we control for all of

11



these observed patient severity characteristics. However, to the extent that these observed

characteristics are correlated with unobserved characteristics, such as dynamic progression

of severity during patient’s care, the effect of full-time nurse visits on patient readmission

cannot be identified. To address this problem, I use an instrument variables approach,

which I describe in detail in Section 1.5. This approach relies on activeness of full-time

nurses in the patient’s local area and the number of nearest full-time nurses who did not

visit the patient as an exogenous source of variation.

1.5. Empirical Strategy

To address the inference problem described in Section 1.4, I use an instrumental variables

method to estimate the labor mix on hospital readmission.12 I use the activeness of full-time

nurses in the patient’s ZIP code at the start of care, which yields a plausibly exogenous

variation in the labor mix. I describe this instrument in detail below.

1.5.1. Activeness of Full-Time Nurses

A single firm typically serves multiple ZIP codes, and naturally, there is a variation in the

activeness of full-time nurses across ZIP codes. If a new patient needing home health care

happens to live in a ZIP code where full-time nurses are originally active, then she would

receive a higher fraction of full-time nurse visits. Therefore, the activeness of full-time

nurses in the patient’s ZIP code must have a strong positive correlation with her fraction

of full-time nurse visits.

To construct the instrument variable measuring the activeness of full-time nurses for each

patient episode i, I use the share of total nurse visits in i’s ZIP code that are provided by

full-time nurses hired by i’s firm at i’s start of care. For each i, let fpiq, zpiq, and mpiq

denote the firm that serves her, the ZIP code she lives in, and the month of her start of home

health care, respectively. Define Pî as the set of patients other than patient i who have

the vector of these three characteristics pfpiq, zpiq, mpiqq, where the hat denotes omission.

12The description of my empirical analysis using the 2SLS estimation follows that done by Doyle Jr et al.
(2015).
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That is:

Pî :“ tj|j ‰ i, pfpjq, zpjq, mpjqq “ pfpiq, zpiq, mpiqqu.

Finally let vj,w be the number of nurse visits provided to each patient j P Pî by nurses in

work arrangement w. w can be one of the six arrangements: 1) full-time, 2) part-time with

benefits, 3) part-time without benefits, 4) on-call, 5) contractor, and 6) office/other. For

each i, the activeness of full-time nurses is then defined as

Activei “

ř

jPPî
vj,full´time

ř

w

ř

jPPî
vj,w

. (1.1)

I exclude the given patient episode i from this measure to avoid predicting the patient’s

fraction of full-time nurse visits using her own full-time nurses’ visits. This leave-out method

has been used in previous literature (Angrist Joshua and Pischke, 2009; Doyle Jr et al.,

2015).

The quasi-experimental set up here is comparing two patients served by the same firm in

two different ways. The first comparison is cross-sectional—comparing two patients who

started home health care at the same month but lived in different ZIP codes. Here one

patient may have happened to live in a ZIP code area where full-time nurses were more

active than other nurses. The second comparison is cross-time—comparing two patients

who lived in the same ZIP code but started in different months. Here one patient may have

happened to start care when full-time nurses were more active.

I illustrate how these two variations in the activeness instrument explain the proportion of

full-time nurse visits in Table 3. Panel A shows that in ZIP codes where full-time nurses

were more active (i.e. above or equal to median), patients had 16 percentage points higher

proportion of full-time nurse visits even within the same firm-month pairs. The median

values are created for each firm-month pair using the patient’s start-of-care month. The

difference is statistically significant at the one percent level by the t-test of the equality of the

means. Panel B shows that when patients happened to start care in months during which
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full-time nurses were more active, they received 20 percentage points higher proportion of

full-time nurse visits within the same firm-ZIP code pairs. This difference is also statistically

significant at the one percent level.

1.5.2. Empirical Specifications

First, I model the first-stage relationships between the patient i’s proportion of full-time

nurse visits FTVi and the instrument variable Zi, Activei, at the patient episode level. For

each patient episode i who is served by firm fpiq, lives in ZIP code zpiq, and has her home

health care start in month mpiq and end in time period tpiq, her proportion of full-time

nurse visits FTVi is a function of the form:

FTVi “ α0 ` α1Zi ` γXi ` δfpiq ` ζzpiq ` ηmpiq ` θtpiq ` νi,fpiq,zpiq,mpiq,tpiq. (1.2)

The vector Xi includes observed patient characteristics including the number of nurse hand-

offs, total number of nurse visits, mean interval of nurse visits (i.e. mean number of days

between two consecutive nurse visits), a set of firm level service demand and labor demand

characteristics, a set of hospitalization risk controls, a set of demographic controls, and a

set of comorbidity controls. The set of firm level service demand and labor demand controls

includes mean of firm-day level variables capturing the caseload and labor supply conditions

in each firm across the patient’s home health days. The firm-day level variables include the

number of ongoing episodes, the number of active nurses, and the fraction of active piece-

rate nurses working in an firm-day cell. The set of hospitalization risk controls represents a

set of indicator variables associated with high risk of hospitalization, and includes history

of 2 or more falls in the past 12 months, 2 or more hospitalizations in the past 6 months, a

decline in mental, emotional, or behavioral status in the past 3 months, currently taking 5

or more medications, and others. The set of demographic controls includes six 5-year age

group dummies for ages ranging from 65-94 (age 95 or higher is an omitted group), gender,

race, insurance type, an indicator for having no informal care assistance available, and an
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indicator for living alone.13 The set of comorbidity controls includes a Charlson comor-

bidity index, indicators for overall health status, indicators for high-risk factors including

alcohol dependency, drug dependency, smoking, obesity, and indicators for conditions prior

to hospital stay within past 14 days including disruptive or socially inappropriate behav-

ior, impaired decision making, indwelling or suprapublic catheter, intractable pain, serious

memory loss and/or urinary incontinence.14 νi,fpiq,zpiq,mpiq,tpiq is an idiosyncratic error.

Controlling for the number of handoffs and total number of nurse visits in the regression

equation is important. Experiencing a mix of permanent and temporary labor during patient

care inevitably involves switching of providers or “handoffs,” which may independently affect

the patient outcome. Fewer handoffs mechanically lead to either one or zero proportion of

full-time nurse visits: this is illustrated in Table 2 with much smaller ratio of handoffs

to nurse visits for Groups 1 and 4, who received zero and 100 percent of full-time nurse

visits, respectively. In Chapter 3 of this dissertation, I find nurse handoffs—defined as being

visited by a different nurse than the last one—to substantially increase the probability of

readmission.15 In addition, sicker patients may receive more nurse visits, which affects the

proportion of full-time nurse visits and the likelihood of readmission.

I also include a set of fixed effects for firm, patient ZIP code, start-of-care month, and

end-of-care time period, where the time period refers to the day of week (6 dummies), week

of year (52 dummies), and year (4 dummies). Therefore, this estimation compares patients

in two ways, as explained above. First, it compares patients who were served by the same

firm, started care in the same month and ended home health care at the same time but lived

in different ZIP codes having a different level of activeness or preoccupied nearest full-time

13Insurance types include Medicare Advantage (MA) plans with a visit-based reimbursement, MA plans
with an episode-based reimbursement, and dual eligible with Medicaid enrollment (reference group is Medi-
care FFS).

14Indicators for overall health status include indicators for very bad (patient has serious progressive con-
ditions that could lead to death within a year), bad (patient is likely to remain in fragile health) and
temporarily bad (temporary facing high health risks).

15Although handoffs are found to be an important determinant of readmission in Chapter 3, I do not treat
it as an endogenous variable to be instrumented for in this specification. The reason is that my instrument
for the proportion of full-time nurses poorly capture the variation of handoffs. Since the causal effect of
handoffs is not of main interest in this chapter, I just control for it as an explanatory variable.
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nurses. Second, the regression compares patients who were served by the same firm, lived

in the same ZIP code, and ended home health care at the same time but had a different

level of activeness or preoccupied nearest full-time nurses at the start of care.

The main estimating model for the second-stage relationship between the proportion of

full-time nurse visits and patient readmission takes the form

Readmiti “ β0 ` β1FTVi ` γXi ` δfpiq ` ζzpiq ` ηmpiq ` θtpiq ` εi,fpiq,zpiq,mpiq,tpiq. (1.3)

where Readmiti is an indicator variable for hospital readmission of a patient episode i. I

compare the OLS estimation of equation 1.3 with its 2SLS estimation using the instruments

explained above. This comparison will show the importance of taking into account the non-

random assignment of full-time nurse visits in identifying the effect of labor mix on patient

readmission. I estimate a linear probability model.

1.5.3. Potential Limitations

There are potential concerns about the instruments. First, there could be unobserved ZIP

code-month level shocks that are correlated with the full-time nurses’ activeness and the

patient readmission. For example, do demographic changes such as a surge in the elderly

population in a given ZIP code-month pair affect both full-time nurses’ activeness and

patient readmission? A lack of availability of such high-frequency ZIP code level information

makes it hard to directly control for these relevant ZIP code-month level controls. However,

for example, if an elderly population grows in a ZIP code in a given month, the omitted

variable bias is expected to work against finding a negative effect of full-time nurse visits on

readmission. The reason is that full-time nurses would become more active due to increased

home health care demand while the readmission would be more likely among the elderly.

Second, firms may selectively admit patients into home health care based on the full-time

nurses’ activeness. To the extent that firms admit healthier patients into home health care

when full-time nurses were more active, I will likely overstate the negative effect of full-
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time nurse visits on patient readmission. To allay this concern, I investigate the balancing

of observed characteristics by whether the patient had high or low activeness of full-time

nurses. High values are marked by whether the activeness is above or equal to median.

Table 4 reports the mean values of regression controls for the two groups of patients. The

first row in Panel A shows that when full-time nurses are more active, patients’ proportion

of full-time nurse visits is higher, as expected. When patients had high activeness of full-

time nurses, they had nearly double the proportion of full-time nurse visits in column (2)

by 40 percentage points, compared to patients who had low activeness in column (1). The

hospital readmission rate is also greater for patients with high activeness of full-time nurses.

Simultaneously, the hospitalization risk factors in Panel C and comorbidity characteristics

in Panel E show that patients with high activeness of full-time nurses were indeed sicker.

On average, these patients had higher Charlson comorbidity index and higher likelihood of

having their overall status to remain in fragile health. Thus, I can refute the concern that

firms may selective admit healthier patients when full-time nurses are more active. It was

rather the opposite: firms tended to admit sicker patients when full-time nurses were more

active, which works against finding a negative effect of full-time nurse visits on readmission.

1.6. Results

1.6.1. First-Stage Results on the Proportion of Full-Time Nurse Visits

Table 5 shows the first-stage results on the relationship between the proportion of full-

time nurse visits and my instrument—full nurses’ activeness in the patient’s ZIP code—in

equation (1.2). Standard errors in these models are clustered at both the firm and patient

ZIP code levels.

In column (1), I begin by estimating the equation with fixed effects for each firm and ZIP

code, respectively, and end-of-care time fixed effects for the week of year, year, and day of

week. I also control for the number of nurse handoffs, total number of nurse visits, mean

interval of nurse visits and office-week level overall demand and labor supply characteristics.
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I incrementally control for more patient characteristics in columns (2)–(4).

There is a strong correlation between the patient’s proportion of full-time nurse visits and

my instrument, as shown by the statistically significant correlations at the one percent

level and large F-statistic values of around 300. In column (4) for the richest specification,

when full-time nurses were more active in the patient’s ZIP code during the start-of-care

month by one standard deviation (0.26), she received 16 percentage points or 26 percent

higher proportion of full-time nurse visits given the mean of 0.6.16 This would translate to

nearly one more full-time nurse visit during her care which involved six total nurse visits

on average.

1.6.2. Second-Stage Results on Patient Readmission

I begin with the OLS estimation of the effect of the proportion of full-time nurse visits

on patient readmission in equation (1.3). Panel A shows that the proportion of full-time

nurse visits is negatively correlated with an indicator for hospital readmission: patients

receiving a one-standard-deviation higher proportion of full-time nurse visits (0.41) were

0.4 percentage points or 2 percent less likely to be readmitted given the mean readmission

rate of 0.2. However, this effect is not statistically significant even at the 10 percent level

in all columns. This result reflects the upward bias I described in Section 1.4, which likely

occurs since sicker patients tended to have a higher proportion of full-time nurse visits.

Indeed, the coefficient decreases twofold from column (1) to (2), and threefold from column

(1) to (4). This pattern corroborates that sicker patients in terms of hospitalization risk

controls, demographic controls and comorbidity controls were systematically assigned a

higher proportion of full-time nurse visits while those patients were independently more

likely to be readmitted.

Panel B shows the 2SLS estimates using the first-stage results from Table 5. There is a

stronger negative correlation between the proportion of full-time nurse visits and hospital

16A 26-percent increase is obtained by multiplying the one standard deviation, 0.26, by the coefficient
estimate 0.608 and dividing by the mean proportion of full-time nurse visits 0.6 (with the final number
multipled by 100 for the percentage).
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readmission by almost four times. The effects are statistically significant at the ten per-

cent level once hospitalization risk, demographic, and comorbidity controls are included in

columns (2)–(4). The rise of statistical significance reflects, shown in Section 1.5.3, that

sicker patients were more likely to be admitted when full-time nurses were active—which

works against estimating a negative effect of full-time nurse visits on readmission. This

pattern also contributes to reducing the precision of the estimates. On the other hand,

the estimated effects of full-time nurse visits on readmission can be viewed as conservative.

From the richest specification in column (4), I find that patients having a one-standard-

deviation (0.41) higher proportion of full-time nurse visits or about 2 more full-time nurse

visits were 1.4 percentage points or 7 percent less likely to be readmitted.

1.7. Conclusion

Alternative work arrangements are becoming increasingly popular modes of labor contracts

in many industries due to the appeal of the flexibility and potential labor cost reductions.

Health care, a labor-intensive service industry facing demand uncertainty, particularly has

experienced one of the largest increases in the use of alternative work arrangements over the

past two decades. These arrangements might be particularly necessary for supplementing

labor supply in the presence of state regulations of the minimum nurse staffing levels and

staffing shortages (Tong, 2011; Cook et al., 2012; Mark et al., 2013; Lin, 2014; Matsudaira,

2014). Therefore, it is crucial to understand whether providers hired in traditional and

alternative work arrangements lead to any difference in the quality of care and performance.

However, estimating this hypothesis is challenging due to confounding factors and non-

random matching of patients and providers in particular work arrangements, as described

above. Home health care and the dataset I use provide an ideal opportunity to overcome

these challenges and investigate the effect of full-time nurse visits on patient readmission.

Home health is also an important market to study as it is one of the fastest growing sectors

of health care, and is a sector in which a large proportion of the workforce is hired in

alternative work arrangements.
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I find that patients receiving a higher proportion of full-time nurse visits were less likely to be

readmitted. This finding is obtained by exploiting an exogenous variation across ZIP codes

and care timings in the proportion of full-time nurse visits from full-time nurses’ activeness.

Moreover, this effect holds after controlling for patients’ underlying health characteristics,

office-level demand and labor supply characteristics, patients’ ZIP code fixed effects, firm

fixed effects, month fixed effects and fixed effects related to the timings of the start and end

of care.

My findings suggest that increasing the use of full-time nurses can improve the quality of

care. It will be a fruitful target for policymakers and providers to focus on understanding

the determinants of and reducing the gap in quality provided by nurses in different work

arrangements. Consequently, future work on the specific mechanisms underlying my find-

ing is critical. If experience were an important determinant of quality difference between

full-time nurses and others, it is crucial to investigate nurses’ learning curve, which also

has broader implication on the choice of work arrangements and the value of retention.

Furthermore, future work on the variation in the gap in quality of care among nurses in

different work arrangements across different firms is crucial. Organizational learning by

doing on the management and configuration of alternative work arrangements will provide

valuable insights.
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Figure 1: Variation in the Proportion of Full-Time Nurse Visits across Patient
Episodes
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Notes: The unit of observation is a patient episode. The vertical line denotes the median value, 0.75.
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Table 1: Labor Supply and Pay Characteristics of Nurses by Work Arrange-
ments

(1) (2) (3) (4) (5) (6)

Full-time

Part-time
with

benefits

Part-time
without
benefits On-call Contractor

Office/

Other

A. Labor supply characteristics per week
Number of visits 21.84 15.93 14.53 8.93 6.46 10.76
Number of days worked 4.95 4.51 4.35 3.45 2.27 3.40
Total time spent on visits (hours) 16.16 12.15 11.49 6.94 5.57 8.24
Mean visit length (hours) 0.77 0.79 0.80 0.84 0.87 0.85
Length of employment (months) 21.18 24.41 28.29 16.29 5.18 8.33

B. Pay characteristics
Pay scheme Salary Salary Salary Piece rate Piece rate Salary
Total weekly pay ($) 1,239.27 819.25 711.91 445.06
Per visit rate ($) 43.77 42.30 42.70 55.80

Notes. The first four variables in Panel A are obtained using weeks during which the nurses provided at
least one visit. The length of employment in Panel A is measured for nurses who terminated their employ-
ment, where the termination is defined as either permanently exiting the workforce or providing no visits
for more than 90 consecutive days. For the pay scheme in Panel B, salary is defined as a fixed amount of
pay for the specific expected number of visits per week, and piece rate as a fixed rate per visit. Salaried
nurses are eligible for benefits, except part-time nurses without benefits in column (3); piece-rate paid
ones are ineligible.
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Table 2: Patient Severity and the Proportion of Full-Time Nurse Visits

(1) (2) (3) (4)

Proportion of full-time nurse visits 0

Greater than 0
and less than

median

At least
median and
less than 1 1

A. Key endogenous determinants of the patient readmission
Proportion of full-time nurse visits 0.00 0.43 0.82 1.00
Ratio of handoffs to nurse visits 0.11 0.43 0.33 0.15
Number of nurse visits 5.61 5.92 7.20 5.42
Mean number of days between two consecutive visits 4.86 4.78 4.88 5.32

B. Hospitalization risk factors
Risk for hospitalization: History of 2+ falls 0.26 0.25 0.26 0.26
Risk for hospitalization: 2+ hospitalizations 0.35 0.40 0.43 0.40
Risk for hospitalization: Recent mental decline 0.06 0.07 0.07 0.08
Risk for hospitalization: Take 5+ medications 0.87 0.88 0.88 0.89
Risk for hospitalization: Other 0.07 0.11 0.08 0.10

C. Demographic characteristics
Age 79.24 78.39 78.82 78.92
Female 0.58 0.59 0.61 0.62
White 0.83 0.80 0.79 0.77
Enrolled in per-visit paying Medicare Advantage 0.22 0.17 0.16 0.17
Enrolled in per-episode paying Medicare Advantage 0.08 0.04 0.04 0.04
Dual eligible 0.00 0.01 0.01 0.01
No assistance available 0.02 0.02 0.02 0.02
Living alone 0.23 0.23 0.26 0.25

D. Comorbidity characteristics
Overall status having serious progressive conditions (Very bad) 0.02 0.03 0.04 0.04
Overall status likely to remain in fragile health (Bad) 0.27 0.29 0.30 0.32
Overall status temporarily facing high health risks (Less bad) 0.63 0.59 0.60 0.58
High risk factor: Alcohol dependency 0.03 0.02 0.02 0.03
High risk factor: Drug dependency 0.01 0.01 0.01 0.01
High risk factor: Heavy smoking 0.13 0.13 0.13 0.14
High risk factor: Obesity 0.17 0.19 0.18 0.16
Pre-home health condition: Disruptive behavior 0.01 0.01 0.01 0.01
Pre-home health condition: Impaired decision-making 0.12 0.15 0.14 0.17
Pre-home health condition: Indwelling/Suprapublic catheter 0.02 0.02 0.02 0.01
Pre-home health condition: Intractable pain 0.12 0.12 0.09 0.11
Pre-home health condition: Memory loss 0.10 0.10 0.10 0.12
Pre-home health condition: Urinary incontinence 0.27 0.29 0.30 0.31

E. Other characteristics
Length of care (in days) 24.42 25.14 31.05 25.36
Total number of unique nurses seen 1.46 2.82 2.65 1.58
Number of physical therapy visits 4.26 4.14 4.66 4.36
Number of occupational therapy visits 1.22 1.35 1.59 1.46
Number of speech therapy visits 0.22 0.27 0.32 0.30
Number of home health aide visits 0.60 0.66 0.83 0.59

Number of observations 4,975 4,927 3,672 7,626

Notes. The median proportion of full-time nurse visits is 0.75.
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Table 4: Balance of Covariates in the Patient Sample

(1) (2)
Full-time nurses’ activeness Low High

A. Key variables of interest
Proportion of full-time nurse visits 0.42 0.78
Indicator for hospital readmission 0.19 0.21

B. Care characteristics
Number of nurse handoffs 1.26 1.53
Number of nurse visits 5.96 5.82
Mean number of days between two consecutive visits 4.85 5.18

C. Hospitalization risk factors
Risk for hospitalization: History of 2+ falls 0.26 0.26
Risk for hospitalization: 2+ hospitalizations 0.37 0.41
Risk for hospitalization: Recent mental decline 0.07 0.07
Risk for hospitalization: Take 5+ medications 0.87 0.89
Risk for hospitalization: Other 0.09 0.10

D. Demographic characteristics
Age 79.14 78.58
Female 0.60 0.61
White 0.83 0.76
Enrolled in per-visit paying Medicare Advantage 0.20 0.16
Enrolled in per-episode paying Medicare Advantage 0.06 0.04
Dual eligible 0.00 0.01
No assistance available 0.02 0.02
Living alone 0.24 0.24

E. Comorbidity characteristics
Charlson Comorbidity Index 0.63 0.70
Overall status having serious progressive conditions (Very bad) 0.03 0.04
Overall status likely to remain in fragile health (Bad) 0.28 0.31
Overall status temporarily facing high health risks (Less bad) 0.61 0.58
High risk factor: Alcohol dependency 0.03 0.02
High risk factor: Drug dependency 0.01 0.01
High risk factor: Heavy smoking 0.13 0.14
High risk factor: Obesity 0.17 0.18
Pre-home health condition: Disruptive behavior 0.01 0.01
Pre-home health condition: Impaired decision-making 0.14 0.16
Pre-home health condition: Indwelling/Suprapublic catheter 0.02 0.02
Pre-home health condition: Intractable pain 0.11 0.12
Pre-home health condition: Memory loss 0.11 0.10
Pre-home health condition: Urinary incontinence 0.29 0.30

F. Firm characteristics
Mean daily number of episodes in the office 170.54 192.59
Mean daily number of active nurses in the office 21.60 22.00
Mean daily proportion of full-time nurses in the office 0.41 0.54

Number of observations 10,600 10,600

Notes. Mean values are reported. The “High” group of patients is defined as those whose
full-time nurses’ activeness is above or equal to median. The median thresholds used for
grouping patients is 0.66 for the full-time nurses’ activeness.
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Table 5: IV First-Stage Results: Effect of Full-time Nurses’ Activeness on the Proportion of
Full-Time Nurse Visits

Dep. var.: Proportion of full-time nurse visits
(1) (2) (3) (4)

Full-time nurses’ activity share 0.602*** 0.602*** 0.602*** 0.600***
(0.034) (0.035) (0.035) (0.035)

R-squared 0.32 0.32 0.33 0.33
F-statistic 307.20 301.83 299.66 301.47

Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes
Observations 21,200 21,200 21,200 21,200

Source. Authors’ proprietary data. Notes. The unit of observation is a patient episode.
In all columns, I control for the number of nurse handoffs, total number of nurse visits,
mean interval of nurse visits, mean of firm-day level demand and labor supply character-
istics during the patient’s episode; and firm fixed effects, patient’s ZIP code fixed effects,
fixed effects for day of week, week of year, and year of the last day of care, respectively.
Firm-ZIP code level clustered standard errors in parentheses. * p ă 0.1; ** p ă 0.05;
*** p ă 0.01.
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Table 6: Main Results: Effect of Proportion of Full-Time Nurse Visits on
Patient Readmission

Dep var: Indicator for hospital readmission
(1) (2) (3) (4)

A. OLS

Proportion of full-time nurse visits -0.003 -0.007 -0.007 -0.009
(0.013) (0.010) (0.010) (0.009)

R-squared 0.13 0.15 0.15 0.18

B. 2SLS

Proportion of full-time nurse visits -0.032 -0.036* -0.035* -0.035*
(0.021) (0.020) (0.020) (0.020)

R-squared 0.02 0.02 0.02 0.02

Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes
Observations 21,200 21,200 21,200 21,200

Source. Authors’ proprietary data. Notes. The unit of observation is a patient
episode. I use a a two-step efficient generalized method of moments (GMM) estimator.
In all columns, I control for the number of nurse handoffs, total number of nurse visits,
mean interval of nurse visits, mean of firm-day level demand and labor supply charac-
teristics during the patient’s episode; and firm fixed effects, patient’s ZIP code fixed
effects, fixed effects for day of week, week of year, and year of the last day of care, re-
spectively. Firm-ZIP code level clustered standard errors in parentheses. * p ă 0.1; **
p ă 0.05; *** p ă 0.01.
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CHAPTER 2 : The Effect of Reputation on Firms’ Labor Mix Strategy under De-

mand Uncertainty

2.1. Introduction

One of the fundamental challenges for labor-intensive service firms facing demand uncer-

tainty is how to configure their workforce to improve service quality and performance. In

particular, such firms must decide on a mix of temporary and permanent workers to deal

with fluctuations in demand. Existing economic literature has shown that firms rely more on

temporary workers when facing greater demand fluctuations due to either the opportunity

cost of keeping an idle workforce (Dixit and Pindyck, 1994; Foote and Folta, 2002; Lotti

and Viviano, 2012) or the cost associated with high turnover rate (Rebitzer and Taylor,

1991; Levin, 2002). However, this does not take into account that permanent and tempo-

rary workers may not be perfectly interchangeable in production. In particular, there is

evidence that permanent workers outperform temporary workers in terms of the quality of

service provided, as shown in Chapter 1 of this dissertation (Bae et al., 2010; Pham et al.,

2011; Lotti and Viviano, 2012; Lu and Lu, 2016). Thus, how firms configure their workforce

depends crucially on the following trade-off: temporary workers provide greater flexibility

in responding to fluctuation in demand but may impede the establishment of firm reputa-

tion through lower quality of service. Despite the salience of this trade-off—particularly to

younger firms, which face both greater demand fluctuations and a greater need to demon-

strate high quality to their clientele—its incorporation is largely absent from the existing

literature. This may be due to a paucity of high-frequency longitudinal data containing

firms’ labor configurations and patient demand allocation. In this chapter, using novel data

from the home health industry, I aim to fill this gap and paint a more complete picture of

service firms’ temporary labor strategy.

I present and test a simple model of firms’ labor mix choices, highlighting the role of reputa-

tion in determining how firms optimally balance the trade-off between responding to demand
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shocks and improving quality. Vast literature has shown the crucial role of reputation in

determining quality (Klein and Leffler, 1981; Carmichael, 1984; McMillan and Woodruff,

1999; Banerjee and Duflo, 2000; Baker et al., 2002; Macchiavello and Morjaria, 2015) and

demand (Navathe and David, 2009; Johnson, 2011) in the presence of non-enforceable con-

tracts. In service industries, demand is often non-contractible either due to the nature of

service provision, organizational structure or a regulatory ban. Thus, the perception of a

firm’s service quality, which forms a basis of the firm’s reputation, becomes an important de-

terminant of demand faced by the firm. Particularly in health care, provider firms compete

on quality since prices are often administered and consumers show little price sensitivity

due to generous health insurance. The competitive reallocation forces have been shown to

encourage providers to improve quality (Johnson, 2011; Chandra et al., 2016). Therefore,

reputation concerns are likely to prevail in health care and shape firms’ labor mix decisions

in the presence of trade-offs in using temporary workers.

To build intuition for the role of reputation in determining firms’ labor mix choices, consider

the start-ups Munchery and Instacart, which provide on-demand grocery delivery service.

These start-ups initially used independently contracted drivers to perform all the tasks.

However, due to high turnover and quality deterioration, the firms completely eliminated or

diminished the role of temporary workers particularly in tasks that are likely to determine

the quality of service.1 These cases suggest that the importance of reputation building

among starting firms makes them prioritize providing higher quality over purely optimizing

cost and rely more on permanent workers.

Making this intuition more rigorous, my model posits that a firm’s labor mix influences the

market’s perception of the firm’s quality, and the firm’s demand is in turn stochastically

linked to its reputation for quality. Underlying this mechanism is a process of dynamic

reputation formation in which the market observes the firm’s quality signals and updates

the firm’s reputation. This model is built on Navathe and David (2009)’s model of physi-

1“A middle ground between contract worker and employee” by Noam Scheiber, New York Times, De-
cember 10, 2015.
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cians’ technology adoption behavior under reputation concerns but I extend the model to

a stochastic optimal control problem to incorporate demand uncertainty.

I explicitly model the trade-off involved in the labor mix choice. On the one hand, the

proportion of demand served by permanent workers increases quality signals, and thus

increases reputation. This key assumption is supported by my finding in Chapter 1 of

this dissertation. I find that patients receiving a higher proportion of full-time nurse visits

during care were less likely to be readmitted to a hospital. This evidence validates my model

assumption and validates my claim that firms are faced with a trade-off in using temporary

workers between flexibility and quality.

On the other hand, permanent workers reduce the firm’s expected short-term profitability

since the firm hires them before observing the demand realization. Therefore, the firm

optimally balances across time the long-term reputation gain from increasing the share of

permanent workers with the reduction in short-term profitability. The central predictions

of the model are that firms with lower reputation increase the share of permanent workers

in response to demand volatility to achieve long-term gain in reputation. In contrast, firms

with higher reputation decrease the share of permanent workers to reduce short-term profit

loss.

I test the predictions of the model using data from a large US home health provider operating

106 autonomous offices in 18 states during 2012-2015. Each office with its own director

having full authority on the labor configuration and management is treated as a separate

firm. The data contain the entire home health visit records in each firm showing all the

interactions between a patient and individual providers who served her, as well as human

resources characteristics such as providers’ employment arrangements and weekly pays.

Moreover, for each patient, the data contain referral sources, which allow me to track the

establishment of strong referral networks in each firm and use this as a proxy for the firm’s

reputation. I can measure reputation in various ways: the size of referral network, referral

dispersion, referral consistency, and referral share from each source. Combining these data,
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I construct weekly longitudinal data for each firm containing labor configuration, demand

environments, as well as measures of reputation.

In the cross-sectional analysis with firm fixed effects, I examine the relationship between

firms’ percentage of full-time nurses and demand volatility, and whether this relationship

varies with various measures of reputation. I find evidence consistent with both predictions

of my model. I find that firms with a lower reputation stock increased the percentage of

full-time nurses with demand volatility. Firms in the bottom third of the within-firm age-

specific distribution in terms of referral network size and referral consistency hired 0.2-0.3

more full-time nurse in the mean nursing workforce size of 21 nurses when demand volatility

increased by one standard deviation. In particular, young firms aged 0–12 months hired

0.5 to 1 more full-time nurses and hired 0.5 fewer contractor nurses given the mean total

workforce size of 13 nurses when demand volatility increased by one standard deviation.

Considering firms’ age as a proxy of reputation, this stronger correlation among the young

firms provides further support to my model. Moreover, this result was not confounded by

the size effect: it was only the large young firms that hired more full-time nurses when they

had a small referral network and low referral consistency. In contrast, I find the positive

association between the percentage of full-time nurses and demand volatility disappears

when firms’ reputation increased. These results suggest that low-reputation firms forgo

short-term profitability to achieve long-term reputation through quality improvement.

This chapter contributes novel empirical evidence that firms’ labor mix strategies crucially

depend on their reputation and provides a theoretical model to explain this. Although

traditional theory suggests that firms should decrease the share of permanent labor in the

face of increased demand volatility, my data indicate the opposite and counterintuitive story.

Less established firms such as starting firms rather increase the share of permanent workers

in response to demand volatility. This phenomenon cannot be explained if only demand

shocks are considered as a determinant of labor mix. I propose that this may be explained

by taking into consideration a firm’s concern for building reputation.
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This chapter is related to and builds upon several topics in the literature. Most closely

related is work studying the relationship between demand uncertainty and labor input

choices (Rebitzer and Taylor, 1991; Abraham and Taylor, 1996; Levin, 2002; Lotti and

Viviano, 2012) and more broadly work on input choice under uncertainty (Oi, 1961; Nadiri

and Rosen, 1973; Sandmo, 1971; Batra and Ullah, 1974; Hartman, 1976; Friedman and

Pauly, 1981; Guiso and Parigi, 1999; Baker et al., 2004). The chapter is also related to

literature on the role of reputation in determining firms’ quality or commitment to non-

enforceable contracts (Klein and Leffler, 1981; McMillan and Woodruff, 1999; Banerjee and

Duflo, 2000; Navathe and David, 2009; Johnson, 2011; Macchiavello and Morjaria, 2015).

The remainder of this chapter is organized as follows. In Section 2.2, I provide background

on home health care and the employment arrangements used by home health firms in the

data. In Section 2.3, I present a model of firms’ labor mix choices. In Section 2.4, I

describe the data and sample restriction rules. In Section 2.5, I describe the evolution of

firm’s demand volatility, labor mix, and reputation by firm age. In Section 2.6, I conduct

empirical analysis of the effect of reputation on firms’ labor mix and report results. In

Section 2.7, I discuss possible alternative explanations for my empirical results and conduct

robustness checks. In Section 2.8, I conclude the chapter.

2.2. Background on Home Health Care

Home health care, which is provided to homebound patients who need skilled nursing or

therapy services, is an important and rapidly growing segment of the post-acute care delivery

system. I provide more details on the home health care industry and home health care

professionals in Appendices A.1 and A.2, respectively, at the end of the dissertation.

Home health is an ideal setting to investigate the impact of reputation on firms’ labor

mix choices. It is labor intensive, less technology-dependent, and decentralized (David and

Polsky, 2014), as patients receive services in their homes, making it easier to attribute

patient outcomes to workforce configuration. Moreover, quality is a critical dimension
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on which firms compete since public insurance, i.e. Medicare, is a primary payer with

prospective payment and thus prices are administered (Gaynor et al., 2014). Furthermore,

referrals from other health care facilities are a primary source of new demand for home

health care firms. However, the federal Anti-Kickback Statute bans formally contracting

with referral sources for the number of referrals, thus elevating the importance of reputation

as a driver of firms’ demand volume. The statute also has the effect of making demand

inherently uncertain and consequently increasing the importance of temporary labor as a

source of labor supply.

In this chapter, I focus on the skilled nursing workforce—combination of registered nurses

(RNs) and licensed practice nurses (LPNs)—since nurses provide the most medically rel-

evant service that could potentially determine hospital readmissions and accounts for a

majority of the home health visits. Thus, home health firms have the largest demand for

skilled nurses and maintain the largest capacity of them each week.

2.3. Theory

Consider a risk-neutral home health firm and many risk-neutral referral sources (e.g., hos-

pitals) which can refer patients to the firm and determine the quantity of home health

demand Qt faced by the firm in periods t “ 0, 1, . . . . A firm hires workers mainly in two

work arrangements: salary (for permanent positions) and piece-rate pay (for temporary

positions). The difference lies in the fact that salaried workers are hired before observing

demand while piece-rate paid workers can be hired after observing demand.

The sequence of events is as follows. At the beginning of a period t, the firm’s reputation

for quality among referral sources is Rt.
2 The demand the firm faces is influenced by its

reputation, but remains stochastic overall. The firm must choose how many salaried workers

to hire in advance of observing the actual demand in period t. The market then views the

fraction of demand served by salaried workers as a quality signal and updates its judgment

2I assume the reputation in the initial period 0 to be some fixed value below the market average.
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of the firm’s reputation for the next period accordingly.

In a little more detail, let st and pt denote labor demand for salaried and piece-rate paid

workers, respectively. Assume that the units of labor demand are equal to the units of home

health demand for simplicity. The firm hires salaried workers st before observing demand

Qt. The firm hires piece-rate labor pt if demand exceeds salaried labor, i.e. Qt ą st.

Therefore,

Qt ě minpst, Qtq ` pt. (2.1)

The firm’s proportion of salaried labor st{Qt impacts the firm’s reputation in the next

period t` 1.

Denote the price per unit of demand by α. The price is constant since the primary payer of

home health services is Medicare FFS, which has a prospective payment system. Assume

that this marginal revenue α exceeds the marginal cost of serving demand, i.e. marginal cost

of labor for either type of workers. Then it is always profitable to serve all the demand that

arrives at the firm. Thus, the firm does not turn away any patients, and the constraint (2.1)

always holds with equality.3 Rearranging terms, this means the temporary labor demand

pt is given by

pt “ Qt ´minpst, Qtq (2.2)

“

$

’

’

&

’

’

%

0 if st ě Qt

Qt ´ st otherwise

(2.3)

To model how the firm’s reputation for quality is formed over time, suppose that its repu-

tation stock dynamically evolves as a combination of the history of reputation stocks and

new quality signals. Thus, I can write the next period’s reputation stock Rt`1 as a function

3I conjecture that relaxing this assumption of no turning away of patients would reinforce the model’s
predictions because low-reputation firms would also want to reduce turnaway probability in addition to
increasing the share of salaried labor.

34



of the current period’s reputation stock Rt and the current period’s quality signal ϕt.

Rt`1 “ fpRt, ϕtq (2.4)

where f 1 is positive with respect to each argument.

In this chapter, I focus on hospital readmission rate as the main quality signal. Hospitals

view readmissions as a critical measure of the home health firm’s quality since the Hospital

Readmissions Reduction Program (HRRP) instituted under the Affordable Care Act (ACA)

imposes financial penalties on hospitals with high readmission rates starting from fiscal year

2012. The HRRP has shown to be effective in reducing readmissions (Gupta, 2016). As

post-acute care entities can play a significant role in preventing avoidable readmissions,

hospitals prefer to refer to freestanding home health agencies that achieve lower hospital

readmissions (Worth, 2014). This referral preference would be reinforced by competitive

demand reallocation forces, which have been shown to work in hospital markets (Chandra

et al., 2016).

Labor mix is a crucial determinant of quality signals in health care, as shown by previous

literature which examines the impact of temporary nurses on patient outcomes (Bae et al.,

2010; Hockenberry and Becker, 2016; Lu and Lu, 2016). I also show in Chapter 1 of this

dissertation that in the home health, labor mix measured by the proportion of full-time

nurse visits increases hospital readmission. Therefore, built on this evidence, I make a

key assumption that a higher proportion of salaried workers improve high-quality signals.

Higher quality workers are more likely to command a permanent position, typically have

more experience, longer engagement with the firm and superior knowledge of its culture and

standards. On the other hand, permanent workers may have lower incentive to exert high

effort if they expect longer tenure in the firm (Rebitzer and Taylor, 1991) or have shorter

interaction with each patient due to higher workloads.

I model the link between the firm’s demand quantity and reputation. Suppose that the
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quantity of demand Qt is stochastically determined by reputation stock Rt:

Qt “ gpRtq (2.5)

where g1p¨q ą 0, implying that firms with greater reputation for quality receive higher

demand. This is a reasonable assumption since, with administered prices, firms compete on

non-price dimensions. It is standard to assume that the firm’s market share increases with

quality (Gaynor et al., 2014).

The firm’s objective is to maximize expected present discounted value of the profit subject

to the constraint (2.2):

VtpRtq “ max
tstu8t“0, tptu

8
t“0

E
ÿ

t

βtpαQtpRtq ´ cspstq ´ cppptqq (2.6)

subject to pt “ QtpRtq ´minpst, QtpRtqq. (2.7)

After plugging in the constraint (2.2) and rearranging terms, I obtain the following Bellman

equation:

VtpRtq “ max
st

Eπpst, Rtq ` βEV pRt`1q (2.8)

where

πpst, Rtq ” αQtpRtq ´ cspstq ´ cppQtpRtq ´minpst, QtpRtqqq.

In a general form, the expected profit for period t is given by

Eπpst, Rtq “ αQtpRtq ´ cspstq `

ż

QtpRtqąst

cppQtpRtq ´ stqdµpQtq (2.9)

where dµpQtq is a probability measure of Qt. To derive an analytic solution, assume that
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Qt is a stochastic function of Rt given by

QtpRtq “

$

’

’

&

’

’

%

Q̄t ” µRt ` σ
?
Rt with probability 1{2

¯
Qt ” µRt ´ σ

?
Rt with probability 1{2.

(2.10)

Thus, Qt is an iid random variable with mean µRt and standard deviation σ
?
Rt. This

functional form is chosen so that Qt has the property of the law of large numbers, i.e. as

Rt increases, the relative demand volatility—standard deviation divided by mean (known

as a coefficient of variation)—declines by the factor of
?
Rt.

Then the expected profit (2.9) can be rewritten as

Eπt “ αµRt ´ cspstq ´
1

2
cppµRt ` σ

a

Rt ´ stq. (2.11)

2.3.1. Baseline Case of No Reputation Concern

To consider the firm’s choice of salaried labor st in the baseline case of no reputation

building, suppose that there is no reputation and the firm wants to find st that maximizes

expected profit (2.11). With discrete stochastic demand, I have to consider each possible

region for optimal s˚t relative to possible values of Qt. To simplify the analysis, I assume

that marginal cost of piece-rate labor is higher than marginal cost of salaried labor. This

immediately restricts s˚t to lie between the two possible values of Qt for two reasons. First,

there is no reason for the firm to hire more salaried labor than the maximum possible

quantity of demand. Second, if s˚t ă
¯
Qt, the firm always has to hire piece-rate labor whose

marginal cost is greater by assumption. Moreover, this is a reasonable assumption since

temporary labor is less productive or lacks firm-specific skills due to shorter tenure, requiring

more training. The search cost for temporary labor is also likely higher. The first-order

condition is Eπ1tps˚t q “ 0, i.e.

c1spstq “
1

2
c1ppµRt ` σ

a

Rt ´ stq. (2.12)
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The condition (2.12) shows that the optimal st equates the marginal cost of salaried labor,

which is non-stochastic and thus known precisely, with the expected marginal cost of piece-

rate paid labor. If one hires more salaried labor, the expected marginal savings from not

having to hire more expensive piece-rate labor increases. However, at a sufficiently high st,

the marginal cost of maintaining a salaried labor capacity becomes high enough to exceed

the expected marginal cost of piece-rate labor.

How does demand volatility σ affect firms’ relative use of piece-rate labor? Without repu-

tation concern, the firm would only want to minimize the sum of expected labor costs for

salaried and piece-rate labor. Since the firm hires piece-rate labor only when the demand

turns out high, one can expect that an increase in the volatility σ may increase both salaried

as well as piece-rate labor. This is expected given that they serve all the demand. Therefore,

one should examine how the relative demand for piece-rate labor changes. Indeed I find

that the firm increases the relative use of piece-rate labor as demand volatility increases

unless the rate of increase in the marginal cost for that labor is too high relatively. This

result is shown in Proposition 1. The proof is found in Appendix 2.9.

Proposition 1. Suppose that there is no reputation consequence from firms’ labor mix

choice. Then when demand volatility increases, the firm’s share of piece-rate labor increases

under the assumption that piece-rate labor does not become “too expensive.”

2.3.2. Case of Reputation Concern

Now to understand the firms’ optimal labor mix under reputation concerns, I first model

the firm’s reputation formation. I assume that quality signals ϕt are determined by the

proportion of cases served by salaried nurses as follows:

ϕt ” ϕ

ˆ

st
Qt

˙

“
st
AQt

,
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where A is the market average of quality signals, which is the mean proportions of salaried

nurses in the market and thus lies between 0 and 1, inclusive. Furthermore, I assume the

formation of reputation in (2.4) follows the law of motion given by a Cobb-Douglas function

Rt`1 “ R1´γ
t

ˆ

st
AQt

˙γ

. (2.13)

A reputation value of 1 corresponds to the market average A in terms of quality signals.

I assume the firm’s initial reputation is below average, that is R0 ă 1. Furthermore, note

that Rt is bounded above by 1
A for all time. For Rt`1 is a weighted geometric average of Rt

and s{pAQq ď 1{A. So if Rt ď
1
A , then also Rt`1 ď

1
A . Since we assumed R0 ă 1, it follows

by induction that Rt ď
1
A for all t. This upper bound on reputation stock and consequently

also quantity of demand guarantees compactness of the state space and justifies the use of

stochastic Bellman theory.

(2.13) assumes that reputation in the next period is updated using a geometric mean of the

current period’s reputation and quality signals to allow for different weights placed on the

history of reputation and quality signals. The smaller the weight γ on quality signals, the

more “sticky” the firm’s reputation is: the overall history of reputation is weighted more

than just the quality signal from the last period.

Let β P p0, 1q be a discount factor. By solving the Bellman equation in (2.8), I obtain the

first-order condition given by

E
„

Bπt
Bst

` β
BRt`1

Bst
V 1pRt`1q



“ 0, (2.14)

and the envelope condition given by

V 1pRtq “ E
„

Bπt
BRt

` β
BRt`1

BRt
V 1pRt`1q



. (2.15)

Combining the first-order condition and the envelope condition and advancing one period
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forward, I obtain the Euler equation:

E
Bπt
Bst

“ βE
ˆ

BRt`1

Bst

˙„

E
ˆ

Bπt`1

Bst`1

˙

EpBRt`2{BRt`1q

EpBRt`2{Bst`1q
´ E

Bπt`1

BRt`1



(2.16)

The left-hand side of (2.16) represents the expected marginal profit from hiring one more

unit of salaried labor in period t:

E
Bπt
Bst

“ ´c1spstq `
1

2
c1ppµRt ` σ

a

Rt ´ stq ă 0. (2.17)

I assert that the sign of this expected marginal profit is negative for each t. It is not zero

when there is a reputation concern (i.e. right-hand side of (2.16) is nonzero). Moreover,

if it is positive, the firm always prefers to increase salaried labor because it increases both

the short-term profit and reputation, therefore facing no trade-off. Therefore, when there

is a reputation concern, increasing salaried labor reduces the firms’ short-term profit. Note

that this result can be compared with the case of having no reputation building where

Eπ1tps˚t q “ 0 is optimal.

On the right-hand side of (2.16), the factor

E
ˆ

BRt`1

Bst

˙

“
1

2

γ

A

ˆ

ARt
st

˙1´γ

pQ̄tpRtq
´γ `

¯
QtpRtq

´γq ą 0 (2.18)

is the reputation gain in the next period from increasing one unit of salaried labor in period

t. This scale is multiplied to the present discounted value of both future marginal profits

from increasing salaried labor (in the first term) and from increasing reputation (in the

second term) in the next period t ` 1 in the brackets. The first term in the brackets is a

product of two quantities: expected marginal profit per unit of increase in salaried labor in

the next period t` 1, and the marginal reputation gain two periods in the future t` 2 from

increasing t`1’s reputation relative to the gain from new quality signals in t`1. The ratio

measures a return on increasing salaried labor in t—how much the elevated base reputation
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stock contributes to the future reputation in period t` 2 relative to new quality signals.

The second term in the brackets on the right-hand side of (2.16) represents the expected

marginal profit in the next period from increased reputation:

E
Bπt`1

BRt`1
“ αµ´

1

2
c1ppµRt`1 ` σ

a

Rt`1 ´ st`1q

ˆ

µ`
σ

2
?
Rt`1

˙

(2.19)

Assume that parameters are set so that this expected derivative is positive, i.e. increasing

future reputation enhances future profit. Taken all together, (2.16) shows that the higher

expected marginal profit gains are from raising the reputation in the next period, the greater

the short-term profit loss the firm is willing to endure and the more salaried labor it is willing

to hire in the current period.

How do firms configure their labor mix in response to demand volatility when their reputa-

tions are at stake? As the firm’s reputation becomes high, the short-term marginal profit

loss from increasing salaried labor declines in (2.17). On the other hand, the marginal

profit gain from increased reputation when the firm hires one more unit of salaried labor

also seems to decline in (2.19). Therefore, for the firm with higher reputation, it may be

more profitable to decrease the relative use of salaried labor.

To pin down exactly the role of demand volatility σ and reputation Rt in (2.16), I differen-

tiate (2.16) with respect to σ and examine how it depends on Rt. Suppose that σ increases

by one unit in period t but not in the future periods. According to the timing of the model,

a change in σ in period t affects Qt and thus st, which consequently affects future reputation

Rt`1 and thus st`1; however, it does not affect Rt. I find that the above intuition holds:

the firm’s relative use of salaried labor decreases with demand volatility if the reputation is

higher. This result is shown in Proposition 2. The proof is found in Appendix 2.9. I find

the reason for this is that the rate of increase in marginal profit from increasing reputation

falls faster.
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Proposition 2. Firms decrease the share of salaried labor when demand volatility increases

if their reputation is higher. Conversely, the firm’s share of salaried labor increases with

demand volatility if the reputation is lower.

2.3.3. Summary

The model makes the following testable predictions:

(i) When firms’ reputation is lower, higher demand volatility decreases firms’ share of

piece-rate paid labor and increases firms’ share of salaried labor.

(ii) When firms’ reputation is higher, higher demand volatility increases firms’ share of

piece-rate paid labor and decreases firms’ share of salaried labor.

2.4. Data

My primary data source is rich proprietary data from a large US for-profit freestanding

home health provider firm operating 106 autonomous offices in 18 states, which contain

firms’ labor configuration and patients’ outcomes in each office at an unusual level of detail.4

Since each office autonomously decides scheduling and staffing and is run as a profit center,

it is regarded as a separate firm in the empirical analysis.5 The data cover years 2012–2015.

My data contain the entire home health visit records in each office showing all the interac-

tions between a patient and individual providers who served her. I match these visit-level

data with the human resources data containing the history of employment arrangements

for each provider. Thus, I can construct weekly panel data for firms showing demand and

labor supply characteristics at the firm-week level. On the demand side, I can observe the

4These 18 states are Arizona, Colorado, Connecticut, Delaware, Florida, Hawaii, Massachusetts, Mary-
land, North Carolina, New Jersey, New Mexico, Ohio, Oklahoma, Pennsylvania, Rhode Island, Texas,
Virgina, and Vermont.

5This large set of independently run offices alleviates some concern about the generalizability of our
results to other HHAs even if they all belong to one company. During 2013, compared to a national sample
of freestanding agencies, home health offices in our sample tend to be larger, have a lower share of visits
provided for skilled nursing and instead have a higher share of visits provided for therapy, and have a
lower share of episodes provided to dual-eligible Medicare or Medicaid beneficiaries, which seem to be more
common characteristics of proprietary agencies (Cabin et al., 2014; MedPAC, 2016a).
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number of ongoing episodes as well as construct the degree of demand volatility. An episode

is defined as a 60-day period of receiving home health services, as described in Section A.1.

On the labor demand side, I can measure the total number of active nurses in each work

arrangement and firms’ labor mix by computing the percentage of active nurses in each

work arrangement. I can also compute the employee turnover rate by using HR data that

contain employment start and termination dates for each worker. I define the turnover rate

as the ratio of the number of nurses who terminate employment to the total number of

nurses for each week.

Furthermore, my data provide referral sources for each patient, allowing me to track how

many referrals come from each referral source, such as a hospital, for each firm-week cell.

Using the referral source data, I compute various measures of reputation—defined as the

establishment of strong referral network—as described in detail in Section 2.5.

I use firm-level data which provide each firm’s address and start and end of business dates

where the end of business date is available only for closed firms. Using the address infor-

mation, I obtain the county of each firm by merging with external CMS data, such as the

Provider of Services files and Medicare Cost Reports data. I also construct each firm’s age

(in years) using its start of business date information.

Finally, I use Medicare claims data I obtained from a private consulting company for se-

lective years to obtain data on hospitals’ referral patterns and market-level demand. First,

I use 2012–2014 Medicare hospital claims data which identify the number of patients who

are being discharged from each hospital and being referred to home health care. I then

construct the total number of referrals to home health from each hospital in each week, and

link the information with my patient referral data. Thus, I can measure the share of home

health referrals coming from each hospital to each firm in my data every week. This referral

share is then used to construct one of the reputation measures, as described in Section 2.5.

Second, I use 2013–2014 Medicare home health claims data which provide the number of

home health episodes in each Medicare-certified home health agency on each week. This
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count is aggregated to the county-week level so that I can create the county-week level

demand volatility and market concentration index. These two variables are included as

additional covariates in robustness check specifications.

For the main analysis, I construct firm-week level data where a week is chosen as the time

unit of analysis because firms hire workers on a weekly basis. I use a period of weeks

spanning from April 23, 2012 to November 9, 2015, the last week for which I have personnel

data for the entire week.6 Importantly, I restrict to the sample of “new in town” firms that

had no previously existing branches in the firm’s county, the unit of local market.7 Since

the firms in my data belong to one company, firms may get more brand recognition in the

markets with previously existing branches. Furthermore, I restrict to firms that have been

around for at most 8 years to keep the sample reasonably well balanced and avoid having

too small sample size per firm.8 Thus, my final sample includes 50 “new in town” firms

in 15 states and contains 7,233 observations. 21 firms can be observed since their start of

business.

2.5. Evolution of Firm’s Demand Volatility, Reputation and Labor Mix: Descriptive

Facts

To understand the role of firm reputation in determining firms’ labor mix strategy, I begin

with analyzing how the firms’ reputation as well as demand environments change by firm

age. Firm age is itself a source of reputation (Banerjee and Duflo, 2000) as well as its proxy.

Thus, how each key variable changes with firm’s age facilitates our understanding of how

the relationship between labor mix and demand volatility changes with reputation.

I measure firms’ reputation in several ways that represent the establishment of a strong

6The first few weeks in 2012 are dropped out since I construct many variables using the rolling mean or
rolling standard deviation.

7To avoid counting firms that opened only just before a firm opened as incumbent, I define incumbent
firms as having been around for at least 6 months at the time of a firm’s opening.

8The number of firms that have been in business for more than 8 years substantially declines, and these
firms are smaller in size even compared to new firms on average. Thus, these firms do not serve as a good
control group when comparing with new firms.
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patient referral network, as referrals are the primary way of generating new demand. Par-

ticularly, I focus on the size of a referral network, and dispersion, consistency, and share of

referrals from hospitals. Hospitals are the largest referral source to home health agencies in

my data; hospital referrals account for 30% of new admissions a week on average.

For each firm i and week t, I create the following four measures of reputation Repit. Higher

value of reputation represents establishment of a stronger referral network. First, I measure

the size of a referral network by counting the number of unique hospital referral sources

that have referred to the firm i over the past 4 weeks including the current week, t´3, ..., t.

Second, I measure the dispersion of referrals, which equals minus 1 times the Herfindahl-

Hirschman index (HHI) of referrals among hospital referral sources over the previous 4

weeks. Thus, the higher and closer to zero the dispersion measure is, the more dispersed

referrals are. The more dispersed referral network represents a stronger network since a

firm does not depend on only a small set of hospitals to make referrals when the timing of

patient’s hospital discharge is idiosyncratic.

Third, I measure the consistency of referrals by computing the proportion of weeks a given

hospital j has referred to the home health firm i repeatedly in the previous 4 weeks. I

aggregate this firm-week-hospital level measure to the firm-week level by taking a weighted

average. For the hospital weight ωijt, I use the share of total hospital referrals received by i

over the past 4 weeks that come from each hospital j, assigning higher weights to hospitals

that have referred relatively more to the firm recently.

Fourth, I measure the firm’s share of referrals in each hospital, which represents the firm’s

importance as a referral partner to the hospitals. I compute the share of total Medicare

patients being discharged from a hospital j to home health over the past 4 weeks that are

referred to the home health firm i. This measures each firm i’s relative importance as a

referral partner to the hospital. Similar to the consistency measure above, I take a weighted

average of this firm-week-hospital level measure using the same weights ωijt.
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Figure 2 plots each of the four reputation measures for each firm-week against the firm age

in years. The central line plots fitted values from a locally weighted regression (from the

loess method) of each of the reputation measures on the continuous firm age values, and the

outer lines plot point-wise confidence intervals. By all measures except the referral share,

firms developed a stronger referral network of hospitals as they aged.9 In Panel 2a, new

firms received referrals from 3 different hospitals. However, over the course of their first 9

years, their network consistently grew and it included more than 10 different hospitals at

age 8-9. As the network expanded, the dispersion of referrals naturally grew, as shown in

Panel 2b. In Panel 2c, the referral consistency from the same hospital consistently grew as

firms aged. The same hospital increasingly referred back to a firm with the probability of

60% when the firm is 8-9 years old, compared to 30% when the firm was new. However,

the referral consistency did not rise further than 60% and leveled out after the age 3. In

Panel 2d, the referral share from a hospital declined as firms aged. Hospitals decreased the

share of home health agency referrals to the firms in my data as firms aged by nearly 10

percentage points when firms were 4 years old. This pattern is surprising as all the above

three measures showed that the firms’ reputation increased with firm age. However, the

degree of decline is small compared to other measures of reputation.

As firms’ reputation grew as they aged, how did their demand environments, and conse-

quently their labor mix, change? Figure 3 shows that firms grew bigger and faced lower

demand volatility as they aged. This is not surprising given that firms developed a stronger

referral network as they aged, as shown in Figure 2. I measure demand in Panel 3a by the

number of home health cases (i.e. 60-day episodes) served by the firm on a given week,

which includes both new patients and patients whose care is extended for additional home

health care. To measure the degree of demand volatility in Panel 3b, I use a type of volatil-

ity measure that is frequently used in the finance literature (Ferson, 2013). I first compute

9The reputation growth of firms shown in Figure 2 is comparable to other similar firm growth patterns
noted in previous literature (Dunne et al., 1989; Haltiwanger et al., 1999; Oi and Idson, 1999; Brown and
Medoff, 2003). The firm age has been found to be positively associated with firm productivity (Haltiwanger
et al., 1999) and the likelihood of survival (Dunne et al., 1989). There are mixed results on the relationship
between firm age and wage (Oi and Idson, 1999; Brown and Medoff, 2003).
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the log ratio of the aforementioned demand for the current week to demand for the previous

week, which approximates the week-to-week percentage change in demand volume. Then I

take a standard deviation of these weekly log ratios over the past 4 weeks.1011 Even within

each firm age year bin, there is a wider variation in demand volatility for younger firms

than for older firms, as shown in Panel 3c. This figure shows the boxplot of mean demand

volatility for each firm in each age year bin. Even if each data point is an aggregated mean

for each firm in each age bin, the interquartile range (IQR) is greatest at firm age 0-12

months, and substantially declines once the firm reaches age 3.

How did firms’ labor mix change as they aged? Figure 4 shows the weekly percentage of

nurses hired in each arrangement by firm age.12 For the sake of clarity, I grouped firm age

into 4 different bins: 0-12 months old, 12-24 months old, 24-48 months old, and 48 or more

months old (corresponding to firm age year 0, 1, 2-3, and 4 or more, respectively, in the

previous figures). Older firms concentrated more on full-time and on-call nurses instead of

using part-time, contract or office/other nurses. In particular, firms increased the percentage

of nurses in full-time positions—the primary arrangement used for permanent employees—

by nearly twofold from nearly 19% to 39%, when they were 4 or more years old compared to

their inception. At the same time, they slightly decreased the percentage of on-call nurses—

the primary arrangement used for temporary employees—from 43% to 36%. The labor mix

is obviously endogenously determined by the demand size and volatility. Therefore, the

increase in full-time nurses and decrease in on-call nurses with firm age coincide with an

increase in demand volume and a decrease in demand volatility shown in Figure 3.13

10When I use the window of 8 weeks, the values of demand fluctuations show little change.
11My measure of demand volatility is likely understated since I use an endogenous measure of demand—

the number of home health cases chosen by each firm—rather than an exogenous measure of demand such
as the actual number of home health cases that arrived at the firm, some of which could be rejected. The
volume of rejected cases might also vary across firm age.

12This proportion measure of labor inputs using stocks rather than service flows or rate of utilization is
preferred in this context since service flows for workers are fixed in advance (for example, salaried workers
are expected to provide the pre-specified number of visits on each week), or workers’ visit allocation across
days are shaped by patients’ needs and workers’ availability rather than firms’ decisions. Service flows may
be preferred for measuring labor inputs if, for example, one wants to precisely measure firms’ productivity
conditional on operating (Braguinsky et al., 2015).

13It is the change in the correlation between demand volatility and labor mix that I aim to estimate, not
the level of labor mix.
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However, firms’ labor mix is more instantly determined by the time-varying demand envi-

ronments, especially since firms can instantly vary the number of temporary nurses they

hire. Therefore, the aggregate level of labor mix in Figure 4 fails to capture how firms’

labor mix changes in response to demand volatility and whether the responses vary by firm

age. Thus, in Figure 5, I examine how the slopes from the regression of the percentage

of full-time nurses on demand volatility vary by firm age bin. Although firms of all ages

decreased the percentage of full-time nurses as demand volatility increased (i.e. the sign of

slopes is all negative), the slope is smallest for youngest firms aged 0-12 months in absolute

value. Then the slope becomes steeper as firms age until they are 4 years old. However,

the slope increases (in absolute values) stop once firms reach age 4 or more: these oldest

firms behave more like the youngest firms in their labor mix responses. This reversal can

be explained by low levels of demand volatility or the leveling out in determinants of the

labor mix, such as the strength of referral network, demand size, and demand volatility.

The analysis above shows that firms’ labor mix responses to demand volatility systematically

varied by firm age, a proxy of firm reputation. In particular, firms of all ages decreased the

percentage of full-time nurses with demand volatility but the extent of decrease was smaller

among younger firms. However, is the systematic difference across firm ages in the relation-

ships between the percentage of full-time nurses and demand volatility actually driven by

firms’ reputation among referral sources? The extent to which young firms can downsize

the full-time workforce in response to higher demand volatility might be more limited for

different reasons. For example, there might be a minimum necessary number of full-time

nurses for the business operation, such as if firms need full-time nurses with good knowledge

of designing care plans and documenting cases, or to manage temporary nurses. Then young

firms that are small would respond to demand volatility by decreasing the percentage of

full-time nurses by a smaller amount, as shown in Figure 5. Moreover, as shown in previous

figures, not only the measures of reputation but also demand environments substantially

changed as firms aged. Therefore, for a rigorous test of the model’s predictions, in the next

section, I present and estimate an econometric model controlling for other covariates that
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determine firms’ labor mix.

2.6. Empirical Analysis

2.6.1. Empirical Specification

Using the main specification below, I investigate how firms’ reputation among the referral

sources is related to firms’ labor mix responses to demand volatility. I look at changes in the

percentage of full-time nurses within a firm in response to an increase in demand volatility,

and use interaction terms between demand volatility and measures of firm reputation. The

estimating equations are of the form

yit “ β ` γ ¨DVit `DVit ¨Rep1it ¨ θ `Rep1it ¨ δ ` αi ` µt `X1it ¨ η ` εit, (2.20)

where yit is the percentage of active full-time nurses in firm i on week t. The key right-

hand-side variables are a measure of demand volatility, DVit, and interaction of the demand

volatility with a vector of different reputation measures, Repit, as described in Section 2.5.

Since I want to look at changes within firms, I include firm fixed effects αi, which allow

me to control for potential geography-specific market or legislative factors and differences

in time-constant management styles across firms. I also include week-year fixed effects µt

to control for any industry-wide shifts in or seasonal effects on the labor mix. In the vector

Xit, I include other firm-week level covariates, such as 7 indicators for firm age year bins

(omitted category is the indicator for the firm’s first year) or log firm age, log of total

demand volume, log of total active nursing workforce size, and the turnover rate among

full-time nurses.14

To facilitate the interpretation of interaction term coefficients, I nonparametrically estimate

the equation (2.20) using two quantile indicator variables for having 33-66th percentile

(“high”) values or 66-100th percentile (“very high”) values of each reputation measure

14The turnover rate is measured by a ratio of the number of full-time nurses leaving the workforce to the
total number of active nurses for each firm-week.
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(omitted category is the lowest quantile for smallest values). For each reputation measure,

I use quantile cutoffs based on the firm-specific distribution of all weeks within each one-year

firm age bin.15 The coefficients θ are identified from changes in the correlation between the

labor mix and demand volatility during weeks when a firm has particularly high reputation

given the firm age, compared to weeks when a firm has low reputation. The coefficients

θ will reflect how the correlations between the percentage of full-time nurses and demand

volatility change when each of different measures of reputation increases to “high” or “very

high” values. The key coefficient γ of our interest will reflect the correlation between

the percentage of full-time nurses and demand volatility when firms have low values of

reputation by all measures.

In Table 7, I provide summary statistics for the variables included in the regression.

2.6.2. Results on the Effects of Reputation on Firms’ Labor Mix Responses to Demand

Volatility

I investigate whether firms’ labor mix strategy in response to demand volatility systemat-

ically changes by their reputation among referral sources. Table 8 shows the results from

estimating the within-firm specification in (2.20) while controlling for a different combina-

tion of four reputation measures described in Section 2.5: 1) referral network size (i.e. the

total number of hospital referral sources); 2) dispersion of referrals; 3) referral consistency;

and 4) referral share (i.e. mean share of total home health referrals from each hospital).

Since the referral share data are available only for the years 2012–2014, specifications includ-

ing this reputation measure are estimated on this subsample. I begin with including only

one reputation measure at a time and include additional reputation measures to examine

whether firms respond differently to a change in different measures of reputation.

Table 8 shows consistently that firms’ percentage of full-time nurses was different when they

had low and high levels of reputation. When firms were in the bottom third of reputation

15I create different cutoffs for each firm age bin to adjust for different ranges in the reputation measures
across firm ages, as shown in Figure 2, and allow for comparing the effects of reputation across firms of
similar tenure.
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levels in the firm age-year specific distribution by any measures, they had a higher per-

centage of full-time nurses when demand volatility increased. In the first row, the positive

association between the percentage of full-time nurses and demand volatility is statistically

significant at the 5 percent level in all columns except columns (2) and (5). The correla-

tion tends to be particularly stronger when more than one reputation measure is included,

suggesting that different measures of reputation add up to each other in determining the

overall level of reputation from the firms’ perspective. Including a referral share using the

subsample period of 2012–2014 also yields stronger correlation. For example, when firms

had only a small referral network, the coefficient on demand volatility is 20.89 in column

(1). But when firms had both small referral network and low referral consistency in column

(6), the coefficient on demand volatility increases to 27.55. The coefficient declines slightly

to 25.47 when firms also had low referral dispersion on top of these two variables in col-

umn (11) but rises again to 33.97 when firms also received a low referral share in column

(13). The magnitudes implied by the coefficients are small, however, since demand volatility

ranges from 0 to around 1. Firms with low reputation by all measures hired about 0.8-1.4

percentage-point or 2-4 percent more full-time nurses when demand volatility increased by

one standard deviation (0.04).16 This is translated to 0.2 to 0.3 more full-time nurse in an

average firm that hired 21 nurses per week in total.

On the other hand, firms had a lower percentage of full-time nurses when reputation in-

creased by any one of the measures, as shown by the negative coefficients on interaction

terms. The negative coefficients on interaction terms are usually statistically significant

only when reputation was higher in terms of referral network size and referral consistency,

and are more likely to be significant for the top quantile indicators for each of the repu-

tation measures. When firms had a top third size of referral network in the firm age-year

specific distribution in column (1), the positive association between the percentage of full-

time nurses and demand volatility is canceled out. When firms had a very large referral

162-4 percent increase is obtained by multiplying the estimated coefficients by the standard deviation of
demand volatility, 0.04, times 100, divided by the mean percentage of full-time nurses, 34 percent.
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network but had low referral consistency and received a low referral share in column (13),

the percentage of full-time nurses was 2 percent higher when demand volatility increased by

one standard deviation, as opposed to 4 percent higher when firms also had a small referral

network. However, the positive association is canceled out again when firms had both a

very large network and very high referral consistency even though firms still received a low

referral share.

The main results from the above show that firms with lower reputation than expected for

those in the firm age-year hired more full-time nurses in response to higher demand volatility

than firms with higher reputation. However, did younger firms behave differently from older

firms? Figure 2 shows that reputation increased with firm age. Do the results in Table 8

hold regardless of firm age and levels of reputation? The theory in Section 2.3 predicts that

firms with lower levels of reputation—i.e. younger firms—increase the percentage of full-

time nurses by even more than firms with higher levels of reputation. To investigate this,

I separately estimate the equation (2.20) for firms in different age bins. I divide firm-week

observations into three groups by firm age: 1) firms aged 0–12 months; 2) firms aged 12–48

months; and 3) firms aged 48 or more months. I replace the firm age year indicators with a

continuous log firm age variable. Findings in Table 8 suggest that referral network size and

referral consistency are measures of reputation to which firms were most sensitive. Thus,

I focus on the specifications with these two measures of reputation in the next analyses.

The full sample also ensures a large sample size for statistical power while the results were

qualitatively similar, and yields rather conservative estimates.

In Table 9, it is only the youngest firms aged 0–12 months in columns (1)–(3) that had

statistically significant positive associations between the percentage of full-time nurses and

demand volatility when firms had a small referral network and low referral consistency.

When demand volatility increased by one standard deviation (0.08), young firms with a

small referral network had a 4 percentage-point or 17 percent higher percentage of full-time

nurses compared to the mean percentage of full-time nurses at 25.62 percent according to
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column (1). From column (2), young firms with low referral consistency had a 6 percentage-

point or 23 percent higher percentage of full-time nurses. From column (3), young firms

with both small referral network and low referral consistency also had a 6 percentage-point

or 24 percent higher percentage of full-time nurses. These results suggest having around

0.5-1 more full-time nurses given the mean total workforce size of 13 nurses among these

young firms.

For older firms aged 12–48 months or more than 48 months, they had positive associa-

tions between the percentage of full-time nurses and demand volatility when having the

bottom third of a reputation distribution. However, these associations are not statistically

significant at the 10 percent level.

Moreover, it is only the youngest firms aged 0–12 months that had a statistically significant

negative interaction term with a reputation measure, and the significant association appears

only when the reputation is measured by referral consistency in columns (2) and (3). Column

(2) shows that when young firms had high referral consistency, they had a 6 percent higher

percentage of full-time nurses, as opposed to 23 percent, when demand volatility increased

by one standard deviation. When young firms had very high referral consistency, they even

had a slightly lower percentage of full-time nurses by 0.7 percent when demand volatility

increased by one standard deviation. In comparison, results for older firms show that

interaction coefficients have opposite signs and also are not precisely estimated even though

the sample sizes are greater. Reputation may not be the most important driver of firms’

labor mix responses for these older firms. Thus, findings in Table 8 are primarily driven by

young firms in my data, which reinforce my model’s predictions.

How did firms adjust their nursing workforce hired in other employment arrangements be-

yond full-time nurses? Since the percentage of nurses in each work arrangement sums up to

100 percent, an increase in the percentage of full-time nurses must accompany a decrease in

the percentage of other nurses when firms had low reputation. However, which other work

arrangement did firms adjust the most when they had low reputation? Did they differen-
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tially treat directly hired on-call nurses and independently contracted nurses? I investigate

firms’ heterogeneous responses to demand volatility across work arrangements. I estimate

the equation (2.20) among the youngest firms aged 0–12 months using the percentage of ac-

tive nurses hired in each arrangement as the dependent variable. For reputation measures,

I include both referral network size and referral consistency.

In Table 10, I present columns in a descending order of organizational attachment of the

arrangements (except the “Office/Other” category in column (6) representing office or other

employees whose primary duty is not to visit patients). Column (1) reports the same results

as in column (3) of Table 9 for full-time nurses while columns (2)–(6) show the results for

nurses hired in part-time with benefits, part-time without benefits, on-call, independent

contractor, and office/other categories. In the first row, firms in the bottom third of both

reputation distributions during the first year had a lower percentage of nurses in all positions

except in full-time positions. However, the only statistically significant negative association

appears for independently contracted nurses, who have the least organizational attachment,

in column (5). When having both small referral network and low referral consistency, young

firms had a 4 percentage-point or 28% lower percentage of contractor nurses when demand

volatility increased by one standard deviation. This translates to hiring 0.5 fewer contractor

nurses.

Other statistically significant labor mix responses are using more part-time nurses with

benefits when firms had higher referral consistency despite having a small referral network;

however, firms used fewer part-time nurses when having a very large referral network if they

had low referral consistency. Moreover, firms used fewer office/other nurses when having

a larger referral network if they had low referral consistency. These results suggest that

firms did not view part-time nurses with benefits or office nurses as substitutes for full-time

nurses. Furthermore, firms appear more sensitive to referral consistency as a measure of

reputation, as indicated earlier.
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2.7. Alternative Explanations and Robustness Checks

2.7.1. Refuting the Alternative Explanation by Firm Size

The above findings are consistent with my model’s predictions that reputation changes

firms’ labor mix responses to demand volatility. Firms with lower reputation had a higher

percentage of full-time nurses when demand volatility increased. However, firms with higher

reputation had either no change in or even a lower percentage of full-time nurses when

demand volatility increased. These results are driven by youngest firms aged 0–12 months

which also had the lowest reputation by any measures. Furthermore, low-reputation firms

simultaneously decreased the percentage of contractor nurses with demand volatility.

However, there is a potential concern that the effect of reputation found above could be

driven by other factors. A plausible confounding factor is the firm size. Section 2.5 showed

that younger firms not only had lower reputation but also were smaller on average. Smaller

young firms may expect to grow in the future more rapidly. There could be unobserved

information about their formation of relationships with more referral sources, which I cannot

control for. If so, firms with lower reputation could be the small ones with greater expected

growth which, simultaneously, would increase the percentage of full-time nurses. Moreover,

smaller firms plausibly incur higher costs of attracting temporary nurses. They face higher

demand volatility, which could create more unstable work schedules for temporary nurses.

Smaller firms also may be capacity constrained and have a shortage of human resources staff

who play an important role in recruiting temporary workers. If these were the cases, then

young firms could respond to demand volatility by increasing full-time or other permanent

nurses purely due to a smaller size. I control for contemporaneous demand and nursing

workforce sizes on the right-hand side when estimating (2.20). However, to the extent that

firms have unobserved information on the demand growth forecast and hiring costs, the

coefficients γ on demand volatility and θ on the interaction terms could be contaminated

by the omitted variable bias.
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To disentangle the role of reputation among referral sources from the effect of firm size, I

indirectly test whether the effects of reputation among young firms in Table 9 are driven by

small young firms or large young firms. If it is large young firms that drive the results, then

I can rule out the alternative explanation by the firm size. In Table 11 I report the results

from estimating (2.20) separately for small and large young firms in each firm age group

shown in Table 9. Large firms are defined as those in each firm age year bin having their

mean total demand volume during the age year above the median.17 I include the referral

network size and referral consistency as reputation measures.

In the first row, it is only the young large firms aged 0–12 months in column (2) that had a

positive association between the percentage of full-time nurses and demand volatility when

firms had both small referral network and low referral consistency. While the coefficient is

positive for both small and large young firms, it nearly doubles in size and is statistically

significant only for large young firms. When large young firms had both small referral

network and low referral consistency, they had a 4 percentage-point or 14 percent higher

percentage of full-time nurses when demand volatility increased by one standard deviation

(0.05), compared to the mean percentage of full-time nurses at 27 percent. This translates

to 0.6 more full-time nurses given the mean nursing workforce size of 16 nurses in these

firms. However, when these firms had larger referral network or higher referral consistency,

the association between the percentage of full-time nurses and demand volatility is posi-

tive and negative, respectively, and not statistically significant at the 10% level. Thus, it

appears that large young firms increased the percentage of full-time nurses with demand

volatility, regardless of their reputation levels. In summary, columns (1) and (2) show that

the reputation effects I am capturing for young firms are not driven by the firm size effects.

Similarly, I examine whether small and large firms among older firms behaved differently

from each other in columns (3)–(6). Although I do not find any statistically significant

effects among old firms in Table 9, the effects might differ by the firm size. The oldest

17I define whether a firm is large separately for each firm age year bin since firms’ size varies by age. Thus,
one firm can be large in one age year and small in another age year.
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firms, aged 48 or more months, seem to respond to demand volatility differently according

to the size of referral network in columns (5) and (6) but these interaction terms are only

weakly statistically significant.

2.7.2. Falsificateion Test by Comparing with “Not New in Town” Firms

I provide further evidence that firms’ reputation among referral sources determines their

labor mix responses to demand volatility by conducting a falsification test. In this test, I

compare “new in town” firms, which have been my main sample for preceding analysis, with

“not new in town” firms, defined as those that had previously existing branches in thecounty,

the unit of a local market.18 I expect to find no effects of reputation among “not new in

town” firms since they would be less sensitive to the levels of reputation among referral

sources. They can get more brand recognition through previously established branch firms

and be more likely to be receive referrals even without improving quality (i.e. “piggybacking

effect”). This effect would lead to a particularly salient difference in firms’ labor mix when

firms have low reputation. “Not new in town” firms would not necessarily have to increase

the percentage of full-time nurses with demand volatility.

This falsification test might be ineffective to the extent that low-reputation firms in mar-

kets with previously existing branch firms try to internalize the reputation externality (i.e.

“reputation externality” effect) (Jin and Leslie, 2009). “Not new in town” firms may be

more concerned about keeping up the high quality level if the consequence of low quality

signals is transmitted to the other firms in the same market. This concern will be greater

in markets with more existing branch firms. If this effect prevails, “not new in town” firms

could behave just like “new in town” firms.

To empirically test for the piggybacking effect and reputation externality effect, I reestimate

(2.20) using the sample of all “not new in town” firms and report results in column (1) of

18It is possible to use different units of markets at different scopes—Hospital Referral Regions (HRRs),
which define larger market areas, and Hospital Service Areas (HSAs), which define smaller market areas
than counties. However, an HRR is too large, leaving too few firms that are new in the area. On the other
hand, an HSA is too small and a firm’s set of patients are usually contained in multiple HSAs, rendering it
inappropriate as a local market for referrals from hospitals.
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Table 12. I no longer find that firms had a statistically significant positive association

between the percentage of full-time nurses with demand volatility when having a small

referral network and low referral consistency. This contrasts with a statistically significantly

positive association found among “new in town” firms in column (6) of Table 8. The

statistically insignificant estimate supports the hypothesis of the piggybacking effect: “not

new in town” firms do not have to adjust their labor mix to improve quality despite low

reputation levels because there are non-quality channels through which to grow referral

networks.

Although “not new in town” firms can piggyback on previously existing firms’ reputation

and do not have to shift their labor mix towards full-time nurses, there can also be a

reputation externality effect. Did low-reputation firms in markets with more incumbent

branch firms want to keep up the quality level so as not to tarnish the reputation of the

others and internalize the reputation externality? To assess this possibility, I estimate the

equation separately for firms in markets with only one previously existing firm and firms

in markets with two to four previously existing firms. The results are presented in columns

(2) and (3), respectively. Comparing the coefficients on the main effect of demand volatility

in the first rows of columns (2) and (3) provides evidence for the reputation externality

effect. In column (3), firms in markets with two or more existing firms had a statistically

significantly higher percentage of full-time nurses with demand volatility when having a

small referral network and low referral consistency. In contrast, in column (2), when firms

had only one existing firm with no pressure to internalize the reputation externality, they

had a smaller and statistically insignificant, positive association.

2.7.3. Robustness Checks

To check for robustness, I control for two additional variables incrementally, motivated by

two potential hypotheses. First, I control for the time-varying local market-level demand

fluctuations where market is defined to be the firm’s county. Second, I control for the time-

varying local home health market share concentration measured by the HHI at the county
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level.

The first control is motivated by the potential channel through which market-level fluctua-

tions in demand affect firms’ labor mix choice. Suppose that demand shocks are positively

correlated across home health agencies in the market at a given time. With a positive

cross-sectional correlation in demand, if the market gets a positive demand shock, a surge

in demand for temporary workers at the same time would make it hard for each firm to

hire them if the supply of temporary workers in the local labor market is inelastic. Thus,

a market-level demand shock could simultaneously shift firms’ labor mix towards hiring

more full-time workers. I use Medicare claims data for years 2013–2014 to construct the

county-week level demand volatility in the same method as I measure the firm-week level

demand volatility.

The second control is included since home health market competitiveness could influence

firms’ labor mix through the effect on relative bargaining power of employers in the local

labor market and thus on wages. In more concentrated home health markets, employers have

greater monopsony power in the home health labor market, being able to set a lower wage

rate than firms in more competitive labor markets (Manning, 2003; Matsudaira, 2014).19

To measure local home health market concentration, I construct the HHI using the share of

total episodes served by each Medicare-certified home health agency in each county-week

cell.

In Table 13 I report results after estimating (2.20) including all possible combinations of

referral network size and referral consistency as reputation measures. I restrict to the

subsample period of 2013–2014 for which I have the market level demand volatility and

concentration level available. With this subsample, the coefficients are less precisely esti-

mated even if I control for the same set of covariates in columns (1), (4), and (7) as in

previous tables. The main effect of demand volatility is no longer statistically significant

19Home health provider firms’ monopsony power can be also influenced by the competitiveness of other
markets, such as hospitals, if skilled nurses’ main employment setting is not the home health care industry.
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except in columns (1)–(3) when firms had a small referral network. However, it is reassuring

that the results change little once additional controls—market-level demand volatility and

market concentration—are included.

2.8. Conclusion

This chapter demonstrates that firms’ reputation is an important determinant of labor

mix in the face of demand fluctuations. I find that firms with lower reputation, especially

younger firms, employ larger percentages of full-time nurses. This suggests that firms forgo

short-term profitability in order to achieve long-term reputation through improvements in

service quality. This hypothesis is further supported by evidence from Chapter 1 that

patients visited by a higher proportion of full-time nurses were less likely to have a hospital

readmission.

These observations have important implications for both industry and policy. First, for

industry, this chapter shows that starting firms strategically adjust their labor mix in order

to grow their reputation for quality and increase their referral base. Whether this is optimal

for businesses and society would require a further examination of the endogenous increases

in referral volume and improvement quality as a result of the firms’ behaviors. This will

be a fruitful avenue for future research. Second, although the home health market has

been widely viewed as having low barriers to entry due to low capital requirements, this

chapter points to a new barrier to entry since starting firms have to employ a higher share

of permanent labor than more established firms.
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Figure 2: Measures of Reputation by Firm Age

(a) Size of referral network (b) Dispersion of referrals

(c) Consistency of referrals (d) Share of referrals from each hospital

Notes: In each panel, the lines plot fitted values, along with point-wise 95-percent confidence intervals, of
locally weighted regressions (using R’s ggplot command with a geom smooth option) of each reputation
measure on firm age in years at the firm-week level. The size of referral network in Panel (a) is measured
by the number of unique hospital referral sources that has referred to a home health firm in the past 4
weeks, including the current week. The dispersion of referrals in Panel (b) is measured by minus 1 times
the Herfindahl-Hirschman index (HHI) of referrals in the past 4 weeks. The consistency of referrals in Panel
(c) is measured by the percentage of weeks referred by the same hospital referral source in the past 4 weeks.
The share of referrals from each hospital in Panel (d) is measured by the percentage of home health referrals
from a hospital made to the firm, aggregated across hospitals.
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Figure 3: Demand Size and Volatility by Firm Age

(a) Demand size (b) Demand volatility

(c) Variation in demand volatility
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Figure 4: Labor Mix by Firm Age Bin
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Figure 5: Relationship between Demand Volatility and Percentage of Full-
Time Nurses by Firm Age
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Table 10: Effects of Reputation on Firms’ Labor Mix Responses to Demand Volatility among
Young Firms Aged 0–12 Months

Dep var: Percentage of active nurses in each arrangement

Full-time

Part-time
with

benefits

Part-time
without
benefits On-call Contractor

Office/

Other
(1) (2) (3) (4) (5) (6)

Demand volatility (DV) 76.68*** -10.85 -0.73 -15.77 -45.37*** -3.96
(15.81) (9.29) (2.12) (19.96) (13.68) (15.18)

Interaction with referral network size
DV X Large referral network -9.38 -17.37 -0.29 43.47 25.64 -42.08**

(37.48) (11.60) (4.66) (26.15) (18.15) (16.55)
DV X Very large referral network -7.67 -23.58** 1.43 34.83 29.16 -34.18**

(37.37) (9.09) (5.20) (27.86) (18.28) (14.97)
Interaction with referral consistency

DV X High referral consistency -50.72 20.22* -0.83 -24.59 23.01 32.91
(32.58) (9.91) (3.06) (32.41) (16.92) (24.72)

DV X Very high referral consistency -70.38* 34.45*** -0.89 -10.99 4.38 43.42*
(34.57) (11.24) (4.24) (27.15) (24.67) (21.02)

Observations 639 639 639 639 639 639
R-squared 0.44 0.40 0.52 0.45 0.44 0.34
Mean dependent variable 25.62 7.59 1.33 40.25 13.04 12.17
Office fixed effects Y Y Y Y Y Y
Week-year fixed effects Y Y Y Y Y Y

Notes. In all specifications, I control for log of firm age, log of total demand volume, log of total active
nursing workforce size, and the turnover rate among full-time nurses. In columns (1) and (2), I use the
full sample period of 2012–2015. In columns (3) and (4), I use the sub-sample period of 2012–2014 due to
limited data availability for the new reputation measure introduced in these columns. Firm-level clustered
standard errors in parentheses. *** pă0.01, ** pă0.05, * pă0.1.
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Table 11: Effects of Reputation on Firms’ Labor Mix Responses to Demand
Volatility by Firm Age and Firm Size

Dep var: Percentage of active full-time nurses
Firm age 0-12 months 12-48 months 48+ months

Firm size Small Large Small Large Small Large
(1) (2) (3) (4) (5) (6)

Demand volatility (DV) 41.18 77.06** -4.93 20.39 14.11 13.93
(34.12) (25.73) (23.34) (20.31) (20.49) (14.25)

Interaction with referral network size
DV X Large referral network -72.37 26.27 4.11 -13.14 -15.08 -42.47*

(55.00) (69.39) (18.34) (27.75) (24.22) (23.19)
DV X Very large referral network -58.83 21.44 13.57 41.38 -36.00* -29.54

(60.20) (53.80) (21.46) (27.53) (18.07) (31.69)
Interaction with referral consistency

DV X High referral consistency 17.12 -90.54 -1.43 -3.50 -13.98 11.18
(42.28) (55.26) (16.38) (21.86) (19.63) (10.17)

DV X Very high referral consistency 44.47 -81.16 -3.74 0.61 -8.53 -20.50
(59.39) (59.32) (18.27) (24.38) (19.53) (19.57)

Observations 181 458 1,780 1,949 1,320 1,545
R-squared 0.92 0.40 0.44 0.29 0.54 0.39
Number of firms 9 12 22 23 22 18
Mean dependent variable 22.09 27.01 22.89 38.32 33.06 44.12
Office fixed effects Y Y Y Y Y Y
Week-year fixed effects Y Y Y Y Y Y

Notes. In all specifications, I control for log of firm age, log of total demand volume, log of total active
nursing workforce size, and the turnover rate among full-time nurses. Firm-level clustered standard errors
in parentheses. *** pă0.01, ** pă0.05, * pă0.1.
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Table 12: Effects of Reputation on Firms’ Labor Mix Responses to Demand Volatility among
“Not New in Town” Firms

Dep var: Percentage of active full-time nurses
(1) (2) (3)
All 1 Existing firm 2+ Existing firms

Demand volatility (DV) 34.64 19.62 55.87**
(19.47) (25.94) (12.93)

Interaction with referral network size
DV X Large referral network -26.95* -18.57 -10.43

(12.49) (12.49) (5.12)
DV X Very large referral network 3.46 49.06** -18.86

(22.49) (15.32) (19.51)
Interaction with referral consistency

DV X High referral consistency -22.39* -15.22 -17.75
(12.47) (23.46) (21.87)

DV X Very high referral consistency -31.20* -28.74 2.13
(15.00) (25.00) (27.92)

Observations 1,595 1,248 347
R-squared 0.41 0.44 0.85
Number of firms 13 9 4
Mean dependent variable 38.91 39.21 37.82
Office fixed effects Y Y Y
Week-year fixed effects Y Y Y

Notes. In all specifications, I control for 7 indicators for firm age year bins (omitted category is the indi-
cator for the firm’s first year), log of total demand volume, log of total active nursing workforce size, and
the turnover rate among full-time nurses. Firm-level clustered standard errors in parentheses. *** pă0.01,
** pă0.05, * pă0.1.

70



T
a
b
le

1
3
:

R
ob

u
st

n
es

s
C

h
ec

k
w

it
h

M
a
rk

et
C

o
n

d
it

io
n

C
o
n
tr

o
ls

:
E

ff
ec

ts
o
f

R
ep

u
ta

ti
o
n

o
n

F
ir

m
s’

L
a
b

o
r

M
ix

R
es

p
o
n

se
s

to
D

em
an

d
V

ol
at

il
it

y

D
ep

v
a
r:

P
er

ce
n
ta

g
e

o
f

a
ct

iv
e

fu
ll
-t

im
e

n
u

rs
es

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

D
em

a
n

d
v
o
la

ti
li
ty

(D
V

)
2
5
.0

3
*

2
5
.1

2
*

2
4
.4

9
*

1
5
.9

1
1
5
.7

0
1
5
.4

6
2
3
.0

7
2
2
.7

6
2
2
.0

2
(1

2
.6

2
)

(1
2
.5

2
)

(1
2
.3

6
)

(1
2
.4

9
)

(1
2
.5

0
)

(1
2
.1

5
)

(1
5
.3

7
)

(1
5
.3

8
)

(1
5
.0

7
)

In
te

ra
ct

io
n

w
it

h
re

fe
rr

a
l

n
et

w
o
rk

si
ze

D
V

X
L

a
rg

e
re

fe
rr

a
l

n
et

w
o
rk

-2
4
.3

7
*

-2
3
.8

3
*

-2
2
.5

1
*

-2
4
.6

8
*

-2
4
.1

9
*

-2
2
.8

7
*

(1
2
.5

2
)

(1
2
.5

4
)

(1
2
.7

1
)

(1
2
.7

3
)

(1
2
.7

8
)

(1
2
.9

8
)

D
V

X
V

er
y

la
rg

e
re

fe
rr

a
l

n
et

w
o
rk

-4
.9

9
-4

.9
2

-3
.8

3
-5

.4
8

-5
.5

9
-4

.5
4

(1
6
.2

3
)

(1
6
.3

0
)

(1
6
.1

1
)

(1
5
.1

5
)

(1
5
.2

7
)

(1
5
.1

6
)

In
te

ra
ct

io
n

w
it

h
re

fe
rr

a
l

co
n

si
st

en
cy

D
V

X
H

ig
h

re
fe

rr
a
l

co
n

si
st

en
cy

2
.2

6
3
.1

1
3
.3

4
3
.1

1
3
.9

5
4
.0

0
(1

1
.8

7
)

(1
1
.9

7
)

(1
1
.8

5
)

(1
1
.1

0
)

(1
1
.2

0
)

(1
1
.1

6
)

D
V

X
V

er
y

h
ig

h
re

fe
rr

a
l

co
n

si
st

en
cy

5
.4

0
6
.3

3
6
.7

9
5
.7

6
6
.6

8
7
.0

7
(1

4
.6

0
)

(1
4
.6

0
)

(1
4
.4

5
)

(1
3
.3

8
)

(1
3
.3

8
)

(1
3
.3

0
)

O
b

se
rv

a
ti

o
n

s
3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

3
,3

4
4

R
-s

q
u

a
re

d
0
.4

0
0
.4

0
0
.4

1
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

1
M

ea
n

d
ep

en
d

en
t

v
a
ri

a
b

le
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
3
3
.0

6
M

a
rk

et
le

v
el

d
em

a
n

d
v
o
la

ti
li
ty

Y
Y

Y
Y

Y
Y

H
o
m

e
h

ea
lt

h
m

a
rk

et
co

m
p

et
it

io
n

Y
Y

Y
O

ffi
ce

fi
x
ed

eff
ec

ts
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
ee

k
-y

ea
r

fi
x
ed

eff
ec

ts
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
o
te
s.

In
a
ll

sp
ec

ifi
ca

ti
o
n
s,

I
co

n
tr

o
l

fo
r

7
in

d
ic

a
to

rs
fo

r
fi
rm

a
g
e

y
ea

r
b
in

s
(o

m
it

te
d

ca
te

g
o
ry

is
th

e
in

d
ic

a
to

r
fo

r
th

e
fi
rm

’s
fi
rs

t
y
ea

r)
,

lo
g

o
f

to
ta

l
d
e-

m
a
n
d

v
o
lu

m
e,

lo
g

o
f

to
ta

l
a
ct

iv
e

n
u
rs

in
g

w
o
rk

fo
rc

e
si

ze
,

a
n
d

th
e

tu
rn

ov
er

ra
te

a
m

o
n
g

fu
ll
-t

im
e

n
u
rs

es
.

I
u
se

th
e

su
b
-s

a
m

p
le

p
er

io
d

o
f

2
0
1
3
–
2
0
1
4

d
u
e

to
li
m

it
ed

d
a
ta

av
a
il
a
b
il
it

y
o
n

th
e

m
a
rk

et
-l

ev
el

co
n
tr

o
ls

.
F

ir
m

-l
ev

el
cl

u
st

er
ed

st
a
n
d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

.
*
*
*

p
ă

0
.0

1
,

*
*

p
ă

0
.0

5
,

*
p

ă
0
.1

.

71



2.9. Appendix: Proofs

Proof. (Proposition 1) I examine the effect of σ on p˚ relative to the effect of σ on s˚. By
total differentiation of (2.12), I obtain

Bs˚t
Bσ

“

1
2c
2
ppp

˚
t q
?
Rt

c2sps
˚
t q `

1
2c
2
ppp

˚
t q

(2.21)

Bp˚t
Bσ

“
a

Rt ´
Bs˚t
Bσ

“
c2sps

˚
t q
?
Rt

c2sps
˚
t q `

1
2c
2
ppp

˚
t q
. (2.22)

Thus, when demand volatility σ increases, p˚ increases faster than s˚ if

Bp˚t
Bσ
Bs˚t
Bσ

“
c2sps

˚
t q

1
2c
2
ppp

˚
t q
ą 1 or 2c2sps

˚
t q ą c2ppp

˚
t q. (2.23)

(2.23) shows that the firm increases piece-rate labor more than salaried labor in response
to higher demand volatility unless the difference in the rates of increase in marginal costs
of the two types of labor is very large. In this example, the rate of increase in the marginal
cost of piece-rate labor has to be less than twice the rate of increase in the marginal cost
of salaried labor by the construction of the stochastic distribution of demand.

Proof. (Proposition 2) To simplify the analysis, I plug in (2.13) for the ratio on the right-
hand side of (2.16) and obtain

M ”
EpBRt`2{BRt`1q

EpBRt`2{Bst`1q
“

1´ γ

γ

st`1

Rt`1
ą 0. (2.24)

I plug in (2.24) when differentiating the equation (2.16).

Furthermore, I assume convex labor cost functions as follows,

cspstq “
1

2
ax2 and cppxq “

1

2
bx2, (2.25)

where a ă b is assumed since temporary labor is less productive or lacks firm-specific skills,
requiring more training.

The derivative of the LHS of (2.16) with respect to σ is

E
d

dσ
π1tpstq “ Eπ2t pstq

dst
dσ

. (2.26)

The derivative of the first term before the brackets on the RHS of (2.16) with respect to σ
is

E
d

dσ
R1t`1pstq “ ER2t`1pstq

ˆ

dst
dσ
`
dQt
dσ

˙

“ ER2t`1pstq
dst
dσ

(2.27)
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since EdQt

dσ “ 0. Let B denote the terms in the brackets on the RHS of (2.16):

B “ E
ˆ

Bπt`1

Bst`1

˙

EpBRt`2{BRt`1q

EpBRt`2{Bst`1q
´ E

Bπt`1

BRt`1
. (2.28)

After plugging (2.24) into (2.28), I obtain the derivative of B with respect to σ:

dB

dσ
“ ps1t`1pσq `R

1
t`1pσqqrπ

2
t`1pst`1qM ´ π2t`1pRt`1qs

` E
Bπt`1

Bst`1

ˆ

R1t`1pσq

Rt`1
M `

1´ γ

γ

s1t`1pσq

Rt`1

˙

.
(2.29)

It follows from (2.13) that

R1t`1pσq “
γ

st
Rt`1s

1
tpσq. (2.30)

Using the results from (2.26), (2.27), (2.29), (2.30), total differentiation of (2.16) is given
by

Eπ2t pstq
dst
dσ

“ β

„

ER2t`1pstq

ˆ

dst
dσ

˙

B ` E
BRt`1

Bst

dB

dσ



(2.31)

which can be rewritten, using (2.29), as

s1tpσq ”
dst
dσ

“

βs1t`1pσq

„

ER1t`1pstqK `
1´γ
γ

Eπ1t`1pst`1q

Rt`1



Eπ2t pstq ´ β
„

ER2t`1pstq `
γ
st
Rt`1ER1t`1pstqK `

γ
st
Eπ1t`1pst`1qM

 (2.32)

where
K “ Eπ2t`1pst`1qM ´ π2t`1pRt`1q. (2.33)

I show that the sign of s1tpσq depends on Rt. Since the expression is rather unwieldy, I
switch now to more heuristic arguments to determine the sign. First, I assume that s1tpσq
and s1t`1pσq have the same sign. Second, in the numerator, I know from (2.17) and (2.18)
that ER1t`1pstq ą 0 and Eπ1t`1pst`1q ă 0, respectively. Moreover, p1 ´ γq{γ, Rt`1 ą 0. To
determine the sign of K, note that

Eπ2t`1pst`1q “ ´c
2
spst`1q ´

1

2
c2ppµRt`1 ` σ

a

Rt`1 ´ st`1q ă 0, (2.34)
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and

π2t`1pRt`1q “ ´
1

2

„

c2ppµRt`1 ` σ
a

Rt`1 ´ st`1q

ˆ

µ`
σ

2
?
Rt`1

˙2

´ c1ppµRt`1 ` σ
a

Rt`1 ´ st`1q
σ

4R3{2



“ ´
b

2

„

µ2 `
σ

4
?
Rt`1

p3µ´
st`1

Rt`1
q



ă 0.

(2.35)

Both results following from the convexity of the cost functions assumed in (2.25) and under
the reasonable assumption that 3µRt`1 ą st`1. Since M ą 0 from (2.24), there are con-
flicting signs in K; the sign of K depends on Rt`1. The fact that the second derivatives of
cost functions are constants by construction implies that the first term of K in (2.33) be-
comes less negative when Rt`1 gets large, since M ą 0 gets smaller while Eπ2t`1pst`1q ă 0
is constant. However, when Rt`1 gets large, the second term ´π2t`1pRt`1q ą 0 of K in
(2.33) increases in magnitude. Therefore, K becomes positive as Rt`1 increases. More-
over, the second term in the brackets of the numerator in (2.32) becomes less negative as
Rt`1 increases. Therefore, the numerator becomes positive when the firm’s reputation is
sufficiently high.

Now in the denominator, note that

ER2t`1pstq “
1

2

γ

A
p1´ γq

ˆ

ARt`1

st

˙´γ

p´s´2
t q ă 0,

and as Rt`1 gets large, this quantity gets less negative since it declines in absolute magni-
tude. Furthermore, the sum of the second and last term becomes positive when the firm’s
reputation Rt`1 is sufficiently high using the same argument as above. Therefore, the de-
nominator becomes negative when the firm has higher reputation. Taken together, the sign
of s1tpσq becomes negative as the firm’s reputation increases.

It is not necessary to separately examine the effect of σ on the share of salaried labor in this
case. Recall that the firm hires piece-rate labor in my model only when the high value of
demand is realized. Since that value increases as σ increases, and the firms always choose
to serve all demand, a reduction in salaried labor must be matched by a corresponding
increase of piece-rate labor.

To prove the converse—that the firm’s share of salaried labor increases with demand volatil-
ity if the reputation is lower—one can use the same proof as above except now hypothesizing
lower values of reputation Rt`1.
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CHAPTER 3 : The Effect of Workforce Assignment on Performance

3.1. Introduction

Workforce allocation and scheduling are routinely designed to achieve multiple organiza-

tional goals, with efficiency typically viewed as the leading objective.1 Efficient workforce

assignment entails the matching of task and talent (Garicano and Santos, 2004), manage-

ment of planned and unplanned absences (Ehrenberg, 1970; Allen, 1983), exigency and

geographical optimization, and responsiveness to demand shocks (Hamermesh and Pfann,

1996). Beyond efficiency, workforce allocation goals may include rewarding seniority, pro-

moting workforce equity, and enabling effective learning and synergy (Mas and Moretti,

2009). These goals potentially compromise short-term efficiency but at the same time raise

employee satisfaction and reduce costly turnover. Another set of objectives is linked with

the use of workforce assignment to achieve higher quality. While often in conflict with cost

minimization goals, higher quality may be rewarded directly through higher willingness to

pay and indirectly through increased reputation.

Hospitals and health care systems implement strategies to improve the quality of care for all

patients through focusing on patient safety, reducing medical errors, establishing evidence-

based guidelines, and lowering the rate of unnecessary and preventable intervention (Kozak

et al., 2001; Makary and Daniel, 2016). In fact, ensuring continuity of care within and

across care settings is identified as a pillar of quality improvement (Richardson et al., 2001).2

Continuity of care across settings involves, by definition, a multi-professional pathway that

emphasizes the need for care coordination. On the other hand, continuity of care within

a setting is achieved by workforce allocation, and in particular a continuous relationship

between a patient and a single health care professional who is the sole source of care and

information for the patient.

1This chapter is coauthored by Guy David.
2Continuity of care has also been shown to reduce utilization and costs of care (Raddish et al., 1999),

such as by reducing the number of emergency department visits and shortening the length of hospital stays
(Wasson et al., 1984).

75



However, the achievement of continuity of care requires costly deployment of resources. En-

suring smooth transitions in care and effective transmission of information between providers

likely imposes massive constraints that interfere with the goal of optimizing scheduling to

minimize workforce turnover and contractual disruptions. Thus, efficient workforce assign-

ment may lead to reductions in quality of care through compromised care continuity. Using

a novel data set from a large multi-state freestanding home health agency, this chapter

quantifies the effect of within-setting care discontinuity caused by workforce assignment on

hospital readmissions, a common quality of care marker.

Spending due to unplanned hospital readmissions was estimated at $17.4-$25 billion annu-

ally, which would translate to 16-22% of the total Medicare spending on inpatient hospital

services (Pricewaterhouse Coopers’ Health Research Institute, 2008; Jencks et al., 2009).

The national all-cause potentially preventable readmission rates for this population was

11% in 2014 (MedPAC, 2016b). Starting in October 2012, the Center for Medicare and

Medicaid Services (CMS) lowered its payment to hospitals with excess readmissions over

the national average by up to 3%.3 Facing financial penalties, hospitals use management

strategies and modifications to their organizational structure to prevent hospital readmis-

sions. For example, hospitals vertically integrated with post-acute care providers such as

home health agencies (HHAs) to improve post-discharge care coordination, as increased

reliance on home health has been shown to be associated with a reduction in hospital read-

missions (Polsky et al., 2014).4 Moreover, hospitals rely on post-acute care entities to reduce

avoidable readmissions (Naylor et al., 2012). Once patients are discharged from hospitals,

post-acute care providers monitor and treat still frail patients over an extended period of

time.5 Thus, post-acute care providers can impact the frequency of hospital readmissions

3The amount of reduction in payment was up to 1 percent in FY 2013, the first year of the HRRP, and
up to 2 percent in FY 2014.

4Naylor et al. (1999) discuss hospitals that instituted programs to provide patient education before
discharge, increased patient follow-up, and expanded the use of health information technology to track
readmissions and integrate care across settings; Kim et al. (2015) show that admitting ER patients to the
Intensive Care Units could substantially reduce hospital readmissions, and therefore suggest implementing
admission criteria based on objective measures of patient risk as well as physicians’ discretionary information
as a promising way to decrease hospital readmissions.

5In the case of home health care, the default length of an episode is 60 days for Medicare patients.
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by implementing workforce assignment strategies that promote care continuity.

We focus on home health care as it is an important and rapidly growing segment of the

health care delivery system. Over the past decade, payment for home health services more

than doubled (MedPAC, 2016a). This rapid growth may be attributed to its appeal to

patients who prefer to recover at home, providers who prefer to shorten hospitalization

lengths, and insurers who benefit from cheaper care at home than care in brick-and-mortar

institutions. Home health care is recognized as a partial substitute for institutional long-

term care (Guo et al., 2015). The importance of home health care has also increased with

the rise of enhanced care coordination and shared savings models such as Accountable Care

Organizations or Bundled Payments for Care Improvement (Sood et al., 2011).

Studying the intricacies of home health care provision and its impact on hospital read-

missions is timely and important. Before the ACA, there was no competitive pressure for

HHAs and no financial incentives to reduce readmissions, with three in ten post-acute home

health stays resulting in a hospital readmission among Medicare patients (MedPAC, 2014).6

However, with readmission penalties and the emphasis on population health management,

home health has become a way to allow for continuity of care outside of the hospital and

effectively manage the patient health to prevent unnecessary readmissions. Freestanding

agencies often view the ability to mitigate hospital readmission as a key competitive differ-

entiator in contracting with hospitals (Worth, 2014). Therefore, it is important to uncover

potential mechanisms that lead to better care continuity and patient outcomes.

In this chapter, we use novel data containing over 43,000 home health patient episodes and

spanning 89 autonomously run home health offices in 16 states. The data provide detailed

information, which includes visit logs for all Medicare patients, work logs and human re-

sources data for all home health providers, as well as all patient demographic and health

risks collected as part of the Outcome and Assessment Information Set (OASIS) required by

6This figure could also be attributed to the fact that patients being discharged to home health care tend
to be sicker and at a higher risk of hospital readmissions that those being discharged to home.
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the CMS. In addition, our data are linked with individual patients’ hospital readmissions.

We measure care discontinuity by handoffs between skilled nurses over a patient’s episode

of care, which are immediately affected by offices’ workforce allocation decisions.7 We esti-

mate a plausibly causal effect of provider handoffs on hospital readmissions using day-to-day

human resources data on providers’ absence, assignment to an alternative office, and job

termination to instrument for handoffs. Unplanned employee absences in the US health care

and social assistance sector consumed 1.9% of all scheduled work hours in 2016 (Bureau

of Labor Statistics, 2017). To uncover the mechanisms underlying the effect of handoffs,

we also examine whether the probability of readmission is affected by the frequency and

sequencing of handoffs.

Estimating the effect of handoffs in home health care on the probability of readmissions

raises endogeneity concerns. While we observe a great deal of patient characteristics as

well as labor supply conditions, the data do not provide us with the actual care plan for

each patient’s episode of care. The care plan is plausibly linked to unobserved patient

severity and hence to the risk of hospital readmissions. As we discuss in the chapter, it

is challenging to determine the sign of the omitted variable bias caused by unobserved

patient characteristics. To address this endogeneity problem, we use detailed provider-

day level data on nurses’ availability to instrument for both handoffs and the probability

of receiving a visit. The instrument exploits the fact that skilled nurses’ absence affects

rehospitalization only through its effect on care discontinuity either through missed visits

or handoffs. In addition, and as explained in greater detail in our methods section, we

control for the dynamic changes in patients’ health status during a home health episode by

limiting the variation in our data to reflect the number of days since the last nurse visit;

the mean interval of days between two consecutive nurse visits; the passage of time from

the beginning of the episode; the relationship stock with various nurses during the episode;

as well as supply and demand characteristics at the nurse and office level. Together with

the patient’s initial health assessment, these controls help mitigating potential confounding

7Skilled nurses refer to registered nurses (RNs) or licensed practical nurses (LPNs).
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effects.

Using the cross-sectional variation, we find that patients experiencing nurse handoffs are

19% more likely to be readmitted to a hospital. This estimate more than doubles in magni-

tude when using the instrumental variables approach. Our results are robust to controlling

for days since last visit as well as a rich set of patients’ health risk, demographic, and co-

morbidity factors, office fixed effects, time fixed effects, and home health day fixed effects.

Controlling for home health day fixed effects is especially important because the probabili-

ties of hospital readmissions and handoffs rapidly decline over the course of a home health

episode.

To explore potential mechanisms underlying this effect, we analyze finer partitions of hand-

offs by frequency and sequencing. We find the effect of first handoffs to have the strongest

effect on increasing the likelihood of hospital readmissions, with the second and third hand-

offs having effects that are smaller in magnitude. The effect of having four or more handoffs

is no longer statistically significant. Our finding that initial handoffs are more impactful

than subsequent ones, controlling for elements of the patient episode dynamics, suggests

that to effectively reducing hospital readmissions, it is important to ensure provider conti-

nuity throughout the entire episode of care.

A number of potential mechanisms may account for the effect of provider handoffs on hos-

pital readmissions. First, information transmission between providers involved in a handoff

may be incomplete and lead to potentially inappropriate care (Riesenberg et al., 2009).

Second, holding the number of visits constant, handoffs lower the time spent with each in-

dividual provider, and hence depreciates the relationship stock built between providers and

patients, which has been shown to improve patient outcomes (Saultz and Lochner, 2005).

Third, repeated visits enhance the development of patient-specific knowledge, which has

limited applicability to other patients. Therefore, patients experiencing a handoff lose ac-

cess to providers most familiar with their case. For example, previous literature emphasizes

the development of firm- or patient-specific skills among cardiac surgeons and radiologists,
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which are associated with a reduction in patient mortality rates (Huckman and Pisano,

2006). The three channels above serve as theoretical underpinning for our findings of a

positive link between provider handoffs and hospital readmissions.

In summary, this chapter provides the first set of results linking care discontinuity in a

post-acute care setting to increased risk of hospital readmissions. To date, most of the

literature on care continuity has focused on transitions of care across settings, especially

on care transitions from hospitals to post-acute care facilities (Naylor et al., 1999). Work

on continuity of care within a setting has focused almost exclusively on patient handoffs

in shift-based environments, which are shown to be associated with low quality of care

marked by slowdown in service delivery, medical and surgical errors, malpractice cases with

communication problems, and (potentially preventable) adverse patient outcomes (Laine

et al., 1993; Petersen et al., 1994; Riesenberg et al., 2009). However, the external validity

of results in a shift-based environment may be weak when considering non-shift based

environments, such as home health. Shift-based handoffs are inevitable due to a trade-off

between the length of a shift and the number of handoffs. When physician or nurse shifts are

lengthened, a patient is more likely to see the same provider during the course of treatment.

At the same time, a longer shift would increase provider fatigue and the risk of making

mistakes, especially, towards the end of long shifts (Brachet et al., 2012). In contrast, in

home health care, handoffs are largely avoidable through coordinated scheduling given that

providers typically visit patients with several days in between. In our data, 38% of patients

are seen consistently by a single nurse throughout their episode of care. Hence, zero handoffs

are frequent in a non-shift based environment. At the same time, prioritizing continuity of

care may be costly in that it may come at the expense of flexibility in scheduling, employee

satisfaction, and ultimately retention.

Quantifying the effect of discontinuous home health care has important implications for the

use of workforce assignment in improving quality of care, and provides a currency to assess

the importance of prioritizing care continuity over other goals typically achieved through
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schedule architecture. Previous literature has focused almost exclusively on shift-based

provider handoffs in large healthcare facilities. Moreover, the literature has focused mostly

on nurse staffing levels rather than assignment structure among the workforce strategies

used by health care delivery organizations (Aiken et al., 2002; Bae et al., 2010; Needleman

et al., 2011; Cook et al., 2012; Lin, 2014; Lu and Lu, 2016; Hockenberry and Becker, 2016).

The outline of the article is as follows. In Section 3.2, we describe the data and present

our measures of care discontinuity. In Section 3.3, we discuss our identification strategy. In

Section 3.4, we discuss our baseline empirical results as well as our IV estimation results. In

Section 3.4.3, we explore the sequencing of handoffs in explaining the relationships between

handoffs and the rehospitalization outcome. Section 3.5 concludes the chapter.

3.2. Data

3.2.1. Data and Summary Statistics

This chapter uses a novel and rich data set of home health visits, patient health status

assessment, and provider work logs as well as indicators for patient hospital readmissions.

We obtained data on all home health stays for Medicare patients from a large for-profit

freestanding home health company, which provides home health care services in 89 offices

in 16 states.89 Since each office autonomously decides scheduling and staffing and is run as

a profit center, we can regard each office as a separate hiring and contracting unit in our

empirical analysis. This large set of independently run offices alleviates some concern about

the generalizability of our results to other HHAs even if they all belong to one company.10

8These offices are located in 16 states: Arizona, Colorado, Connecticut, Delaware, Florida, Hawaii,
Massachusetts, Maryland, North Carolina, New Jersey, New Mexico, Oklahoma, Pennsylvania, Rhode Island,
Virginia, Vermont.

9David et al. (2013) show that in vertically integrated HHAs owned by hospitals, post-acute care patients
are admitted to HHAs in earlier stages of recovery without a significant difference in readmission rates.

10During 2013, compared to a national sample of freestanding agencies, home health offices in our sample
tend to be larger, have a lower share of visits provided for skilled nursing and instead have a higher share
of visits provided for therapy, and have a lower share of episodes provided to dual-eligible Medicare or
Medicaid beneficiaries, which seem to be more common characteristics of proprietary agencies (Cabin et al.,
2014; MedPAC, 2016a). However, home health offices in our data provide a similar total number of visits
per episode and serve a similar age group on average.
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Our sample period covers 44 months between January 2012 and August 2015, for which we

have full patient, worker, and office data.

Our main outcome is hospital readmission, which is an important marker of quality and

can potentially lead to financial penalties for hospitals. Rehospitalizations among patients

receiving home health is common. Our analysis focuses on Medicare patients, who comprise

a majority of home health patients and have a high probability of hospital readmissions.11

Furthermore, our analysis focuses on care discontinuity for skilled nursing because most

visits are for skilled nursing care and it provides most medically relevant service that could

potentially determine the likelihood of hospitalization (Russell et al., 2011).12

Our patient data are provided at the patient visit level as well as the patient episode-

admission level.13 To construct our patient-day level data, we merge the patient episode

level data with the visit level data. Home health episodes can end by either a discharge or

a hospitalization. The exact dates of these end points for each episode are obtained from

the home health admission level OASIS data. These data also provide a rich set of health

risk factors.

We also obtained human resources data containing work logs for all providers’ visits. We

merge the patient-day level data with provider-day level work log data to identify hand-

offs and link them with hospital readmissions. Separately, we also use the provider-day

level work logs to construct instruments of providers’ inactivity statuses, as described in

Section 3.3.4.

Finally, we construct office-day level data spanning all 89 offices. This data set tracks

ongoing episodes and all nurses in each office providing services on each day. This is then

11In the data, on average, 69% of home health episodes in each month are paid for by Medicare (including
all Medicare FFS, private Medicare Advantage, and Medicare Part B) either as a primary or secondary payer
across 93 offices and months during the sample period. Nationally, Medicare patients had 29% readmission
rates among post-hospital home health stays (MedPAC, 2014).

12In addition to nurses, there are typically additional providers who visit patients during a home health
episode. Those include home health aides, physical therapists, speech-language pathologists, occupational
therapists, and medical social services workers.

13Medicare FFS pays a prospective payment for each 60-day episode. For patients requiring more care,
episodes may be extended by another 60 days during a given home health admission.
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merged with the patient-day level data to provide office-level demand and supply conditions.

To construct our final patient-day level sample for analyses, we exclude patients who had

multiple subsequent home health episodes as these home health stays may have different pat-

terns of visit schedules and provider handoffs.14 Since our measure of care discontinuity—

handoffs—occur across visits, we exclude episodes consisting of a single visit. Finally, we

restrict to home health episodes with a prior hospitalization in the past 14 days.15 Our

final sample includes 43,740 unique home health episodes and 1,031,904 patient days under

home health.

Table 14 reports the summary statistics at different levels of aggregation: Panel A at the

office-day level; Panel B at the patient-episode level; and Panel C at the patient episode-

day level. In our sample, 16.6% of episodes involve a hospital readmission, and most of

the readmissions occur within 30 days of hospital discharge.16 The average home health

episode in our sample involved 6 nurse visits over a period of 33 days, with 87% of home

health episodes involving between 3 and 12 nurse visits.

Figure 6 presents the number of ongoing episodes and number of readmissions occurring

by home health day. It suggests that both the probabilities of being under home health

care and readmission decline with home health days. Thus, we control for day of home

health fixed effects as well as the number of visits and days since last visit to examine

the effect of discontinuous care on the probability of rehospitalization across patients with

identical number of visits, spacing of visits, and episode length. We discuss this further in

Section 3.3.1.

14More precisely, enrolling patients into subsequent episodes has been shown to exhibit a degree of strategic
behavior. For example, after the introduction of the home health prospective payment system in 2000,
agencies increased the number of episodes per patient (Kim and Norton, 2015).

15Home health admissions preceded by a hospital stay account for 35.5% of all Medicare home health
admissions in our sample.

16Another outcome reported in the OASIS survey is death at home. We do not use it as an outcome
because it is rare. Out of more than one million patient-days, death occurs at a rate of 0.18%.
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3.2.2. Measuring Care Discontinuity: Provider Handoffs

We focus on the notion of provider handoffs to measure care discontinuity. Many studies

on care discontinuity focused on shift-based settings in which there is a salient trade-off

between the length of shifts and quality of care (Laine et al., 1993; Petersen et al., 1994;

Riesenberg et al., 2009; Brachet et al., 2012). By making the shifts longer, you can provide

more continuous care but this comes at the expense of providers’ fatigue towards the end of

the shifts. In contrast, in home health care settings, handoffs can plausibly be eliminated

since 24/7 coverage is rare and visits are typically provided with several days in between. In

our sample, the average number of days between visits is 5. Thus, continuous home health

care can be naturally conceptualized as seeing the same provider repeatedly, and discontin-

uous care as a break in it—a provider handoff. Handoffs can also capture a disruption in

important aspects of care continuity—uninterrupted service delivery and trusting relation-

ship between service provider and client or caregiver—emphasized by the key stakeholders

in the home health industry (Woodward et al., 2004).

For the estimation, we define a “handoff state” as a series of days, beginning on the day

a visit by a different skilled nurse occurs and ending on one day before the day that the

same skilled nurse visits again (i.e. when continuity of care is restored). Put differently, for

each patient i and day t, an indicator of having a nurse handoff equals 1 if i’s last nurse is

different from the nurse who cared for i in the preceding visit; and 0 otherwise.17 Under

this definition of handoffs, only 38% of patient episodes experience no handoff during the

episode of care, with the remaining 62% of patient episodes having at least on handoff.

Figure 7 tracks additional variants of handoffs across the home health episode’s length.

Figure 7 links home health day with the fraction of patient episodes with at least one, two,

three or four handoffs. By the 10th home health day, the fraction of episodes with at last

17Under this definition of handoffs, a patient could be in a handoff state even on days she has no nurse
visit if those days follow a visit during which an actual handoff occurred. We choose this definition because
we view that a patient is “at risk” of being readmitted to a hospital after a handoff occurs. Our results are
robust to restricting the sample only to visit days (results are available upon request).
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one handoff is 54%, 18% with at least two handoffs, 4% with at least three handoffs, and

1% with at least four handoffs. In comparison, by the 30th home health day, the fraction of

episodes with at least one handoff is 64%, 39% with at least two handoffs, 21% with at least

three handoffs, and 11% with at least four handoffs. Similarly, Figure 8 shows the fraction

of patient-days with nurse handoffs conditional on having a nurse visit. Again, handoffs are

substantially more likely to occur early in the home health episode and then sharply decline

with more home health days.

3.3. Empirical Strategy

3.3.1. Baseline Specification

We estimate linear probability models with the following specification:

Readmitikt “ α` βHikt ` γVikt ` δ1Xikt ` δ2Pik ` δ3Wkt ` δ4Dt ` θk ` εikt (3.1)

where Readmitikt is an indicator variable for whether patient i served by office k is readmit-

ted to a hospital on day t; Hikt is an indicator variable for handoffs described in Section 3.2.2;

Vikt is an indicator variable for having a nurse visit; Xikt is a vector of patient-office-day

level variables; Pik is a vector of patient-office-level variables; Wkt is a vector of office-day

level variables; Dt is a day-level variables; θk is office fixed effects.

Whether a patient is readmitted to a hospital may depend on the progression of her severity

over the course of home health care, making it important to control for dynamic changes in

the patient’s daily health status. Beyond an initial assessment in the first visit, home health

agencies do not systematically measure and collect data on the patient’s health status in

subsequent visits. Therefore, we cannot directly control for the dynamic changes in patients’

health. However, we use a number of dynamic proxies of patients’ real-time health status.

First, we control for whether a patient has a nurse visit on a given day, Vikt, as a sicker

patient is more likely to have a nurse visit. Second, we control for the number of days since

last visit by a nurse in the vector Xikt together with the patient-level mean interval of days
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between consecutive nurse visits in the vector Pik. The variation in the number of days

since last nurse visit holding constant the expected frequency of visits during the episode

could capture dynamic shifts in the patient’s severity since a nurse’s additional visit only

after a short period of time may suggest that the patient has gotten sicker on that day.

Third, for similar reasons, we include in the vector Xikt of patient-office-day level variables

the number of days since last visit by any provider since the greater the gap between any

home health visits, the more likely a patient is to have a readmission controlling for the

average frequency of nurse visits. Fourth, we control for the cumulative number of nurse

visits provided to control for the effect of dynamic care intensity.18

In the vector Pik of patient level variables, we also include the following three groups of

variables to adjust for underlying health risks of patients. First, a set of indicator variables

associated with high risk of hospitalization, including history of 2 or more falls in the past

12 months, 2 or more hospitalizations in the past 6 months, a decline in mental, emotional,

or behavioral status in the past 3 months, currently taking 5 or more medications, and

others. Second, a set of indicator variables for patient demographics: age dummies for each

age 66-94 and age 95 or higher (reference group is age 65), gender, race, insurance type,

an indicator for having no informal care assistance available, and an indicator for living

alone.19 Third, a set of indicator variables for comorbidity factors, including indicators

for 17 Charlson comorbidity index factors, indicators for overall health status, indicators

for high-risk factors including alcohol dependency, drug dependency, smoking, obesity, and

indicators for conditions prior to hospital stay within past 14 days including disruptive

or socially inappropriate behavior, impaired decision making, indwelling or suprapublic

18Additional potentially relevant variables to include in the vector Xikt are the cumulative number of
unique nurses the patient has seen by home health day t and the number of times each nurse has seen the
patient. These variables capture an aspect of care disruption that is potentially more meaningful for patients
experiencing a large number of handoffs. For example, a patient experiencing six handoffs may be cared
for by six different nurses, or may experience multiple handoffs between the same two nurses. Our results
are robust and even stronger when controlling for these two additional variables (these results are available
upon request).

19Insurance types include Medicare Advantage (MA) plans with a visit-based reimbursement, MA plans
with an episode-based reimbursement, and dual eligible with Medicaid enrollment (reference group is Medi-
care FFS).
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catheter, intractable pain, serious memory loss and/or urinary incontinence.20

In the vector Wkt of office-day level variables, we include the number of ongoing episodes

and the number of skilled nurses working in the office-day to control for the time-variant

caseload and labor supply conditions in each office.

The vector Dt includes indicators for each home health day, indicators for each day of

week, and indicators for each month-year. The home health day fixed effects absorb any

unobserved fixed characteristics of home health care depending on the timing within an

episode, as illustrated in Figures 6, 7, and 8. We also control for month-year pairs as

well as day of week indicators to control for any time-specific component of the variation

in the likelihood of readmission such as lower probability of readmission in months with

major holidays or weekends. The office fixed effects θk absorb time-invariant office-specific

or geographic differences in hospital readmissions, for example, through different hospital

policies or state regulations concerning patient readmissions, such as states with Certificate-

of-Need (CON) laws imposing home health entry restriction (Polsky et al., 2014). Our

estimates of the effects of handoffs would be based on the difference in the readmission

rates between patients who experience a nurse handoff and those who do not on the same

home health day, same month-year, day of week as well as in the same office after controlling

for other observed characteristics discussed above.

3.3.2. Identification Challenges

Indicator variables for experiencing a handoff and having a nurse visit are endogenous due to

the non-random provision of continuous care and nurse visits. To provide a plausibly causal

estimate of the effect of handoffs on hospital readmissions, we need to use an exogenous

measure of handoffs. To understand the identification strategy, rewrite the equation (3.1)

in a more general form where the readmission outcome Readmitikt is a function of hand-

offs Hikt; an indicator variable for having a nurse visit scheduled Vikt; other observable

20Indicators for overall health status include indicators for very bad (patient has serious progressive con-
ditions that could lead to death within a year), bad (patient is likely to remain in fragile health) and
temporarily bad (temporary facing high health risks).
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patient characteristics at the patient-office-day level Xikt; observable patient characteristics

at the patient-office level Pik; office characteristics at the office-day level Wkt; time fixed ef-

fects Dt; unobservable patient characteristics on each day Uikt;and unobserved idiosyncratic

component εikt uncorrelated with Hikt, Vikt, Xikt, Pik, Wkt, Dt or Uikt:

Readmitikt “ fpHikt, Vikt, Xikt, Pik,Wkt, Dt, Uikt, εiktq. (3.2)

The identification assumption is that the likelihood of handoff varies only with observable

patient characteristics and office- or provider-side daily characteristics, and is uncorrelated

with unobservable patients’ daily severity, i.e.

rHikt, Vikt|Xikt, Pik,Wkt, Dts K Uikt.

Even though we control for a large number of patient, nurse, office and day characteristics as

we described in Section 3.3.1, we lack clear documentation of the care plan for each patient-

episode of care. Consequently, we use an indicator variable for actual nurse visits, V̂ikt, as

opposed to planned ones, Vikt. However, whether a visit is actually provided is plausibly

linked with unobserved patient severity and hence with the risk of hospital readmissions,

thus resulting in rHikt, V̂ikt|Xikt, Pik,Wkt, Dts M Uikt.

Put differently, it is difficult to determine the sign of the bias that omitting important patient

characteristics will produce in the link between handoffs and hospital readmissions. The
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reason is that unobserved severity is potentially linked with handoffs and readmissions both

directly and indirectly through care intensity. The direct link suggests that sicker patients

are both more likely to experience adverse outcomes leading to hospital readmissions and

less likely to experience handoffs since offices may try to provide more continuous care.

The indirect link is mediated by care intensity, that is, sicker patients will receive more

frequent visits during their episode of care. Higher care intensity lowers the risk of hospital

readmission but raises the likelihood of scheduling conflicts leading to handoffs. While

the direct link suggests fewer handoffs and higher likelihood of hospital readmissions, the

indirect link suggests the exact opposite.

3.3.3. Identification Strategies

As a first step to alleviate some of these concerns, we control for a rich set of patient-day

variables that serve as a proxy for dynamic changes in unobserved patient-day level severity,

as we explain in Section 3.3.1. These variables include the indicator for having a nurse visit

and the number of days since last visit by a nurse or any other provider holding constant

the mean frequency of nurse visits. To further address the potential threat of endogeneity,

we use detailed provider-day level data on breaks in nurses’ availability to instrument for

both handoffs and the probability of receiving a visit. The likelihood of having a nurse visit

is also endogenous as only the actual visits provided are observed and whether a patient

receives a nurse visit is correlated with unobservable daily severity level. The instrument

exploits the fact that skilled nurses’ absences for various periods of time and reasons affect

hospital readmission only through their effects on care discontinuity, that is either through

missed visits or handoffs.

Call the vector of nurse availability breaks measures Bikt. Suppose that assumptions hold

that (1) Bikt is strongly correlated with the endogenous variables Hikt and V̂ikt; (2) Bikt is

orthogonal to Uikt conditional on other vectors; and (3) the observable vectors are separable

from the last two unobserved vectors in fp¨q in equation (3.2). We can identify the causal

effect of provider handoffs on the likelihood of readmissions by estimating the system of
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equation (3.2) and

Hikt “ gpBikt, Xikt, Pik,Wkt, Dt, Uikt, ηiktq (3.3)

V̂ikt “ hpBikt, Xikt, Pik,Wkt, Dt, Uikt, νiktq (3.4)

using the generalized method of moments, with the instrument moment condition

E
„

!

Readmitikt ´ fpHikt, V̂ikt, Xikt, Pik,Wkt, Dtq

)

Bikt



“ 0 (3.5)

where ηikt and νikt in equations (3.3) and (3.4), respectively, are idiosyncratic error terms

for Hikt and V̂ikt uncorrelated with εikt and Uikt.

3.3.4. Breaks in Provider Availability

For the instrument set Bikt we use breaks in nurse availability on each day as a source of

exogenous variation in the likelihood of having a nurse handoff and having a nurse visit.

By merging the provider-day level data with the patient-day level data, we track whether

the nurse seen by patient i in the last visit is unavailable to serve i today. The last nurse

can be assigned to one of six mutually exclusive states in each office k on each day t: (1)

Active—visiting patients in i’s home office k; (2) Short absence—not providing visits in any

office for 1 to 6 consecutive days; (3) Medium absence—not providing visits in any office

for 7 to 14 consecutive days; (4) Long absence—not providing visits in any office for 15 to

90 consecutive days; (5) Assigned to other office—providing visits exclusively in a different

office; and (6) Attrition—not providing visits in any office for 91 or more consecutive days,

or having the employment contract terminated (due to either quit or layoff) according to

HR records.2122 The instrument vector Bikt includes the above absence indicator variables

(2)-(6) with “Active” the omitted category.

21We made a judicious choice of this definition of medium absence. We run a robustness check on our
main results using an alternative definition of medium absence–not providing visits in any office for 6 to 20
consecutive days–and find very similar results in Table 25 in Appendix 3.6.4.

22Since home health visits entail mobility as a nature of work, a provider is not constrained to work for
only one office and can visit patients in different offices.
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For the validity of the instrument set Bikt, we require that CorrpBikt, rHikt, V̂ikts
1q ‰ 0 and

Bikt K Uikt. For the former, it is intuitive that handoffs and missing a visit will be more likely

to occur on day t if the nurse who visited the patient in the last visit is unavailable to visit

her again on that day. Table 16 presents the distribution of the number of patient episode-

day observations as well as the likelihood of having a nurse handoff, a nurse visit, and a

hospital readmission for each availability category.23 In 65% of patient-day observations, the

last nurse who visited a patient is available for the same office. As expected, the probability

of handoff is lowest at 21% in this subsample compared to all other states corresponding

to providers’ unavailability. Handoffs occur in 60-70% of patient-day observations in which

the nurse who visited the patient in a preceding visit is either on medium or long absence.

Similarly, when the last nurse who visited the patient in a preceding visit is unavailable,

the patient is less likely to have a nurse visit. The probability of having a nurse visit is

approximately 10% or smaller when the last nurse is unavailable while the same probability

is 27% when the last nurse is around working at the same office. This comparison suggests

a strong correlation between nurses’ unavailability and handoffs. Consistent with this, we

find first-stage results to be quite strong, as shown later in Table 18.

As for the exclusion restriction, we rely on the notion that nurse inactivity is uncorrelated

with unobserved daily patient health conditions or any other unobserved nurse-day level

or office-day level characteristics. Such correlation would imply that absence by nurses

is linked with their patients’ likelihood of readmission. To assess these possibilities, we

discuss several ways in which the exclusion restriction condition could be violated and show

evidence alleviating those concerns.

First, a potential concern may be that nurses are more likely to become inactive when their

patients’ health changes. In particular, nurses with patients who are getting progressively

sicker may experience burnout and desire a day off. To assess such potential scenarios,

Figure 9 plots three key measures of patients’ severity by number of days prior to nurse

23We provide the same table using an alternative definition of absence categories in Table 24 in Ap-
pendix 3.6.4.
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inactivity for the stock of patients under the nurse’s supervision. These measures are

Charlson comorbidity index, overall status likely to remain fragile, and taking 5 or more

medications, as reported in the initial OASIS assessment conducted for each patient.24 For

this exercise, we define each nurse’s set of patients on each day as those who are currently

or last visited by the nurse and who are not handed off to another nurse, rehospitalized, or

discharged on that day. We separately report these measures against the number of days

prior to inactivity by whether the inactivity is short absence (i.e. not providing any visits

for 1-2 consecutive days), medium absence (i.e. not providing any visits for 3-14 consecutive

days), and long absence/attrition (i.e. not providing any visits for 15 or more consecutive

days or exiting the workforce). The variation in severity measures is driven by compositional

changes in types of patients under a nurse’s care. Figure 9 shows that there is little variation

in patients’ severity leading up to nurse inactivity, and if anything, most plots show a slight

decline in measures in the day or two leading to absence, suggesting that nurses are more

likely to take days off when their patient base is stable. Furthermore, these trends indicate

that as nurses approach a period of inactivity, they do not selectively discharge healthier

patients and subsequently raise the severity mix of the remaining patients under their care.

Second, there is a concern than nurses’ burnout from working extended hours and seeing

many patients per day may induce them to become inactive, and at the same time, fatigue

and burnout may adversely affect patient outcomes (Aiken et al., 2002). Figure 10 plots

the number of patient visits per day as a function of days prior to inactivity. We find that

nurses’ workload consistently declines before a period of inactivity, with 6 to 7 patient visits

per day more than a week prior to inactivity and less than 3 patient visits per day in the

three days leading to absence.

Finally, nurses might be more likely to be absent during high-workload days while high

workload, combined with more absences, could result in higher readmissions if quality of

care was deteriorated. For example, Green et al. (2013) found that hospital nurses antic-

24We find these measures to be top predictors of rehospitalization. We report the correlations between
each of these variables and the indicator for rehospitalization in Table 23 in Appendix 3.6.3.
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ipated high-workload days and strategically elected to take time off from work on those

days.25 However, we find no evidence of increases in office-level daily caseload, arrival of

new patients, or number of nurse visits immediately following the onset of absence. Fig-

ure 11 plots three office-day level measures: the total number of active patients (i.e. the

stock of ongoing episodes), the number of new (admitted) patients, and the total number

of nurse visits. These measures are plotted in the 10 days leading to a nurse absence and

the 10 days following the onset of a nurse absence. We find no evidence of an increase in

the office stock of episodes prior to absence.

Not surprisingly, absence reduces offices’ capacity for taking on new cases by about 30% in

the first two days following the onset of absence, although by the third day office are back

to pre-absence levels. Similarly, the total number of nurse visits falls following absence.

These findings strengthen the case for our instrument. Absence does not affect the stock of

episodes, but reduces the number of visits, hence fewer patients are visited due to absence

and those who are visited are likely to experience a handoff. Contrary to Green et al. (2013)

we find that nurses are inactive when office-level workload is stable, number of daily visits

is lower and fewer patients discharged from hospitals are seen for the first time by the office.

In summary, we expect nurse absence in a given day to be positively correlated with the

likelihood of handoffs and negatively correlated with the likelihood of visits, but presumably

uncorrelated with other factors influencing the likelihood of hospital readmissions. To the

extent that different lengths and types of absence provide an exogenous source of variation

in the likelihood of handoffs, changes in hospital readmissions should not be driven by nurse

absences.

25Workload in a hospital is likely unrelated to nurse staffing, that is, patients are not turned down by
hospitals due to temporary fluctuation in nurse staffing. On the other hand, absence in home health is likely
to affect the agency’s ability to take on new patients and meet the care plan for existing patients. This
suggests that the anticipated caseload may be systematically higher than the realized one.
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3.4. Results on the Effects of Handoffs on the Likelihood of Rehospitalization

3.4.1. Baseline Results from the Cross-Sectional Estimation

Table 17 shows the baseline coefficient estimates on the handoff state indicator from our

cross-sectional analysis using four specifications representing different degrees of model sat-

uration, incrementally introducing additional patient level controls. In all columns, we

control for the indicator for having a nurse visit Vikt and variables in the patient-day level

vector Xikt, office-day level vector Wkt, day level time fixed effects vector Dt, and office

fixed effects θk, as described in Section 3.3.1. In Columns (2)-(4), we incrementally control

for the hospitalization risk, demographic, and comorbidity factors, respectively, whose de-

tailed description is provided above. In all these columns, the reference category is the case

of experiencing no handoffs. All reported standard errors allow for arbitrary correlation

among patient-day observations within the same office.

We find that within home health day, patients experiencing nurse handoffs are 0.17 per-

centage points or 24% more likely to have hospital readmissions in all specifications. When

restricting to 30-day rehospitalizations, the basis for hospital readmission penalties, the

effects of nurse handoffs are slightly lower at 21% increase (see Appendix 3.6.1). For ro-

bustness, we also estimate the effects using a fixed effect conditional logit estimation to

account for the binary nature of our dependent variable. These results are reported in

Appendix 3.6.2.

3.4.2. Results from the Instrumental Variables (IV) estimation

Table 18 reports IV estimation results from using the vector of instruments we discuss in

Section 3.3.4.26 We estimate a two-stage least square (2SLS) using a two-step efficient

generalized method of moments (GMM) estimator. Panels A and B report the first-stage

results for the indicator variables for having a nurse handoff and for a nurse visit, re-

26Table 25 in Appendix 3.6.4 shows the IV estimation results using an alternative definition of medium
absence, as explained in Section 3.3.4.
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spectively. We find the vector of instrumental variables to be a strong predictor of both

endogenous variables regardless of specification. The first-stage F-statistic values are large

(above 537 for handoffs and above 213 for visits ). In Panel A, not surprisingly, each one of

the instruments has a statistically significant positive association with handoffs, with longer

absence periods (medium, long and permanent absence) resulting in a greater likelihood of

handoffs. Similarly, in Panel B, each instrumental variable is negatively associated with the

probability of the patient receiving a nurse visit, although the difference in the magnitude

of the coefficient estimates is smaller. Panel C reports the second-stage results regress-

ing hospital readmission per-patient-episode-day on the predicted likelihood of handoff and

the predicted likelihood of a visit. We find handoffs to raise hospital readmissions, with a

statistically significantly coefficient of that is more than twice in magnitude compared to

our cross-sectional findings–54% versus 24%. There is no statistically significant residual

effect of having a skilled nursing visit on the probability of hospital readmission. Panel C

reports the p-values for the Sargan-Hansen J-statistic values of 0.4-0.5, which suggests that

we cannot reject the null hypothesis that the instrument set is exogenous.

3.4.3. Decomposition of the Effect of Handoffs

To explore a potential mechanism behind the overall effect of handoffs on the likelihood

of hospital readmissions we find in Section 3.4, we decompose the effect by the frequency

and sequencing of handoffs. Patients who experience more handoffs within the same time

window may be more likely to become at risk of rehospitalization because the potential

harm from provider switches is magnified. Nevertheless, the sequence of handoffs may

matter. For example, the first handoff may have a weak effect on rehospitalization but

when a critical mass of handoffs takes place, the patient’s risk of rehospitalization could

increase, suggesting a convex relationship between the handoff number and readmissions.

Conversely, it may be the case that the first handoff is the most important one, suggesting a

concave relationship between the handoff number and the risk of readmissions. This could

happen, for example, if offices are more likely to provide discontinuous care to relatively
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healthier patients.

In Table 19, we report the coefficient estimates of interaction terms between the handoff

indicator and four frequency indicators for the first, second, third, or fourth and beyond

handoffs. Since we include home health day fixed-effects, we are separately comparing

patients who experienced their first, second, third or fourth handoff states to those who

were not in a handoff state (omitted category) on the same home health day. We find

that experiencing one to three handoffs all have a statistically significant effect on the

likelihood of readmission. The first handoff is associated with a 35% increase in hospital

readmission, the second handoff a 18% increase and the third a 16% increase. The effect

of experiencing a fourth handoff and beyond is not statistically significantly different from

patients experiencing no handoffs. These results suggest a concave relationship between

the frequency of handoffs and the likelihood of readmission, with a decreasing adverse

marginal effect of handoffs. It appears that healthier patients tend to get less continuous

care and experience more handoffs. Note that this finding is not mechanically driven by

sicker patients receiving more visits and having more handoff chances on the same home

health day since we control for the cumulative number of nurse visits on each day.

3.5. Conclusion

Greater continuity and coordination of care are an important mechanism in preventing

hospital readmissions (Naylor et al., 1999), and post-acute care providers can achieve it

through workforce assignment strategies prioritizing care continuity. However, there is

little research on the role of workforce assignment affecting care continuity post-discharge.

This chapter takes a first step in filling this gap by examining the plausibly causal effect of

discontinuity of post-acute care caused by provider switches on hospital readmissions using

a novel data set from a large multi-state freestanding home health agency.

Our findings highlight the importance of care continuity prioritization through worker as-

signment in improving a key competitive performance metric desirable to many health care

96



systems—reduction in hospital readmissions. Studying the elderly Medicare population,

we find handoffs to increase hospital readmissions by 54% when instrumenting for handoffs

using breaks in availability of previously assigned nurses. A calibration exercise suggests

that one in four hospital readmissions during a home health episode would be avoided if

nurse handoffs were completely eliminated. Furthermore, we find that patients experienc-

ing handoffs for the first time are more likely to have a hospital readmission relative to

those experiencing such handoffs for the second and third time. Our results suggest that

preventing handoffs altogether would be an effective way to reduce the likelihood of hos-

pital readmissions. These findings have important implications for scheduling strategies,

contracting priorities and regulatory oversight.
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Figure 6: The Number of Ongoing Episodes and Readmissions by Home
Health Day
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Notes: Most first skilled nurse visits and rarely second skilled nurse visits occur within the first 5 days,
leading to most patients experiencing no handoffs and dropping out from the sample in this region. Thus,
we exclude the first five days of home health care in this plot.
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Figure 7: Fraction of Patient Episodes with at Least One, Two, Three, or Four
Handoffs by Home Health Day
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Figure 8: Fraction of Patient-Days with Nurse Handoffs Conditional on Hav-
ing a Nurse Visit

Notes: Most first skilled nurse visits and rarely second skilled nurse visits occur within the first 5 days,
leading to most patients experiencing no handoffs and dropping out from the sample in this region. Thus,
we exclude the first five days of home health care in this plot.
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Figure 9: Measures of Patient Severity Preceding the Nurse’s Inactivity

(a) Charlson comorbidity score

(b) Overall status

(c) Taking multiple medications

Notes: Mean values are plotted. The inactivity categories are defined as follows: (1) Short absence—not
providing visits in any office for 1 to 2 consecutive days; (2) Medium absence—not providing visits in any
office for 3 to 14 consecutive days; (3) Long absence/Attrition—not providing visits in any office for 15 or
more consecutive days, or not providing visits in any office for 91 or more consecutive days or exiting the
workforce (due to either quit or layoff) according to HR records. The sample used for this figure includes
all patients who receive home health care.
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Figure 10: Daily Workload of Nurses Preceding the Nurse’s Inactivity

Notes: Mean values are plotted. The inactivity refers to any lengths of absence (i.e. not providing visits
temporarily) and attrition (i.e. not providing visits permanently). The sample used for this figure includes
all patients who receive home health care.
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Figure 11: Daily Office Caseload Before and After the Nurse’s Inactivity

(a) Daily number of ongoing episodes

(b) Daily number of new episodes

(c) Daily number of nurse visits

Notes: Mean values are plotted. The inactivity refers to any lengths of absence (i.e. not providing visits
temporarily). The sample used for this figure includes all patients who receive home health care.
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Table 14: Sample Summary Statistics for the Sample Period 2012–2015

Variables Mean Std Dev

A. Office-day-level variables (Number of observations = 92,676)
Number of ongoing episodes 113.098 68.345
Number of active nurses 14.596 10.908

B. Patient episode-level variables (Number of observations = 43,740)
Hospital readmission 0.166 0.372
Hospital readmission within 30 days of hospital discharge 0.130 0.337
Death 0.003 0.053
Length of episode (in days) 32.672 16.268
Number of nurse visits 5.791 3.067
Number of nurse handoffs 1.327 1.600
Mean number of days between nurse visits 5.251 2.948
Age 78.961 8.423
Female 0.598 0.490
White 0.820 0.384
Living alone 0.234 0.423
No assistance available 0.017 0.131
Enrolled in per-visit paying Medicare Advantage 0.190 0.393
Enrolled in per-episode paying Medicare Advantage 0.062 0.242
Dual eligible 0.006 0.078
Risk for hospitalization: History of 2+ falls 0.255 0.436
Risk for hospitalization: 2+ hospitalizations 0.372 0.483
Risk for hospitalization: Recent decline in Mental 0.068 0.251
Risk for hospitalization: Take 5+ medications 0.872 0.334
Risk for hospitalization: Other 0.091 0.288
Acute myocardial infarction (AMI) 0.022 0.148
Congestive heart failure (CHF) 0.130 0.336
Peripheral vascular disease (PVD) 0.016 0.125
Cerebrovascular disease (CEVD) 0.051 0.220
Dementia 0.007 0.084
Chronic pulmonary disease (COPD) 0.104 0.305
Rheumatic disease 0.001 0.030
Peptic ulcer disease 0.003 0.055
Mild liver disease 0.004 0.065
Diabetes 0.017 0.129
Diabetes + Complications 0.009 0.096
Hemiplegia or paraplegia (HP/PAPL) 0.002 0.048
Renal disease 0.029 0.169
Cancer 0.070 0.255
Moderate/severe liver disease 0.002 0.045
Metastatic cancer 0.008 0.089
AIDS/HIV 0.000 0.011
Overall status: (Very bad) Progressive conditions 0.033 0.179
Overall status: (Bad) Remain in fragile health 0.274 0.446
Overall status: Temporarily facing high health risks 0.615 0.487
High risk factor: Alcohol dependency 0.024 0.154
High risk factor: Drug dependency 0.007 0.083
High risk factor: Heavy smoking 0.133 0.340
High risk factor: Obesity 0.163 0.369
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Table 14 – Continued

Mean Std Dev

Pre-HHC condition: Disruptive behavior 0.010 0.102
Pre-HHC condition: Impaired decision-making 0.149 0.356
Pre-HHC condition: Indwelling/Suprapublic catheter 0.018 0.134
Pre-HHC condition: Intractable pain 0.113 0.317
Pre-HHC condition: Memory loss 0.104 0.306
Pre-HHC condition: Urinary incontinence 0.305 0.460

C. Patient episode-day-level variables (Number of observations = 1,031,904)
Hospital readmission 0.007 0.084
Hospital readmission within 30 days of hospital discharge 0.006 0.074
Handoff 0.265 0.441
First handoff 0.116 0.320
Second handoff 0.073 0.260
Third handoff 0.038 0.190
Fourth+ handoff 0.038 0.192
Handoff from salaried to salaried 0.084 0.278
Handoff from salaried to piece-rate 0.024 0.152
Handoff from piece-rate to piece-rate 0.006 0.074
Handoff from piece-rate to salaried 0.021 0.142
Have a nurse visit 0.203 0.402
Number of days since last nurse visit 4.957 5.232
Number of days since last visit by any provider 2.742 2.771
Cumulative number of nurse visits provided 4.758 2.629
Number of times the current/latest nurse has previously seen the patient 2.544 2.400
Cumulative number of unique nurses the patient has seen 1.863 0.911
Home health day 20.479 12.849
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Table 15: Distribution of the Number of Unique Nurses in Each Episode

Number of unique nurses Number of episodes Percent

1 16,705 38.19
2 16,918 38.68
3 7,150 16.35
4 2,148 4.91
5 603 1.38
6 155 0.35
7 40 0.09
8 18 0.04
9 3 0.01

43,740 100.00

Notes. The sample excludes episodes with only 1 nurse visit
or more than 20 nurse visits provided, and episodes with
more than 15 nurse handoffs.
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Table 16: Distribution of Patient-Day Observations and the Likelihood of
Nurse Handoff, Nurse Visit, and Readmission by the Availability of Nurse Who
Visited a Patient in the Last Visit

N Obs % Obs % Handoff % Have a nurse visit % Readmission

Active 670,621 64.99 20.63 27.37 0.77
Short absence (1-6 days) 290,098 28.11 31.07 6.20 0.56
Medium absence (7-14 days) 32,232 3.12 62.45 11.94 0.67
Long absence (15+ days) 13,834 1.34 73.28 11.41 0.71
Assigned to other office 13,415 1.30 49.30 11.20 0.83
Attrition 11,704 1.13 65.02 9.28 0.67

Total 1,031,904 100.00

Notes. In the entire sample of patient-day observations, the percentage of handoff is 26.46%; the percent-
age of having a nurse visit is 20.31%; the percentage of readmission is 0.71%.
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Table 17: OLS: Patients Experiencing a Handoff Are More Likely to Be Re-
hospitalized

Dep Var: Indicator for being rehospitalized
(1) (2) (3) (4)

Handoff 0.0017*** 0.0017*** 0.0017*** 0.0017***
(0.0002) (0.0002) (0.0002) (0.0002)

R-squared 0.0067 0.0072 0.0073 0.0081
Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. This table presents linear probability models examining whether patients experiencing a handoff are more
likely to be rehospitalized. An observation is a patient episode-day. Robust standard errors allowing for arbitrary
correlation among episode-days in the same office in parentheses. In all panels and all columns, we control for the
indicator for having a nurse visit, cumulative number of nurse visits provided, mean interval of days between two
consecutive visits during the episode, number of days since last nurse visit, number of days since last visit by any
provider; number of ongoing episodes in the office-day, number of nurses working in the office-day; and office fixed
effects, day of week fixed effects, month-year of the day fixed effects, and home health day fixed effects. In columns
(2)-(4), hospitalization risk controls include dummies for the risk factors for hospitalization: history of 2+ falls in
the past 12 months; 2+ hospitalizations in the past 6 months; decline in mental, emotional, or behavioral status in
the past 3 months, currently taking 5+ medications, and others. In columns (3)-(4), demographic controls include
age dummies for each age 66-94 and age 95+ (reference group: age=65); female; white; insurance type–Medicare
Advantage (MA) plan with a visit-based reimbursement, MA plan with an episode-based reimbursement, dual eligi-
ble with Medicaid enrollment (reference group: Medicare FFS); dummy for having no assistance available; dummy
for living alone. In column (4), comorbidity controls include dummies for 17 Charlson comorbidity index factors;
dummies overall status–very bad (patient has serious progressive conditions that could lead to death within a year),
bad (patient is likely to remain in fragile health); and temporarily bad (temporary facing high health risks); dum-
mies for high-risk factors–alcohol dependency, drug dependency, smoking, obesity–and dummies for conditions prior
to hospital stay within past 14 days–disruptive or socially inappropriate behavior, impaired decision making, in-
dwelling or suprapublic catheter, intractable pain, serious memory loss, urinary incontinence. *significant at 10%;
**significant at 5%; ***significant at 1%.
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Table 18: GMM 2SLS: Experiencing Handoffs Increases the Likelihood of
Readmission

(1) (2) (3) (4)

A. First stage - Handoff
Short absence 0.1327*** 0.1327*** 0.1326*** 0.1326***

(0.0063) (0.0063) (0.0063) (0.0063)
Medium absence 0.4117*** 0.4117*** 0.4115*** 0.4112***

(0.0101) (0.0101) (0.0101) (0.0100)
Long absence 0.5301*** 0.5303*** 0.5298*** 0.5294***

(0.0121) (0.0121) (0.0122) (0.0121)
Other office 0.3003*** 0.3003*** 0.3001*** 0.3001***

(0.0206) (0.0206) (0.0206) (0.0206)
Attrition 0.4583*** 0.4585*** 0.4590*** 0.4587***

(0.0156) (0.0157) (0.0156) (0.0157)
R-squared 0.174 0.174 0.174 0.175
F-statistic 538.100 537.186 537.086 540.415

B. First stage - Have a nurse visit
Short absence -0.1105*** -0.1106*** -0.1106*** -0.1106***

(0.0047) (0.0047) (0.0047) (0.0047)
Medium absence -0.0956*** -0.0956*** -0.0956*** -0.0956***

(0.0032) (0.0032) (0.0032) (0.0032)
Long absence -0.0934*** -0.0934*** -0.0935*** -0.0934***

(0.0048) (0.0049) (0.0048) (0.0048)
Other office -0.1321*** -0.1322*** -0.1320*** -0.1320***

(0.0071) (0.0072) (0.0072) (0.0072)
Attrition -0.0784*** -0.0783*** -0.0783*** -0.0778***

(0.0041) (0.0041) (0.0042) (0.0042)
R-squared 0.244 0.244 0.245 0.245
F-statistic 220.406 218.998 215.463 213.609

C. Second stage - Rehospitalization
Handoff 0.0036*** 0.0037*** 0.0039*** 0.0038***

(0.0011) (0.0011) (0.0011) (0.0011)
Have a nurse visit 0.0036 0.0037 0.0039 0.0039

(0.0027) (0.0027) (0.0027) (0.0026)
R-squared 0.004 0.005 0.005 0.006
J-statistic p-value 0.503 0.419 0.405 0.437

Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. Linear probability models are estimated, using a two-step efficient generalized method of moments (GMM)
estimator. Panels A and B show the first-stage results of an IV regression, and Panel C show the second-stage re-
sults. We instrument the indicator variables for nurse handoffs and for nurse visits with the following 5 instruments:
(1) Active–visiting patients in the patient’s home office; (2) Short absence–not providing visits in any office for 1
to 6 consecutive days; (3) Medium absence–not providing visits in any office for 7 to 14 consecutive days; (4) Long
absence–not providing visits in any office for 15 or more consecutive days; (5) Assigned to other office–providing
visits exclusively in a different office; and (6) Attrition–day post labor termination for nurse according to HR
records. An observation is a patient episode-day. Robust standard errors allowing for arbitrary correlation within
the same office in parentheses. In all specifications, we control for the cumulative number of nurse visits provided,
mean interval of days between two consecutive visits, number of days since last nurse visit, number of days since
last visit by any provider; number of ongoing episodes in the office-day, number of nurses working in the office-day;
and office fixed effects, day of week fixed effects, month-year of the day fixed effects, and home health day fixed ef-
fects. Columns (2)-(4) additionally control for hospitalization risk controls, demographic controls, and comorbidity
controls, respectively. *significant at 10%; **significant at 5%; ***significant at 1%.
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Table 19: OLS: The Effects of Handoffs Varies by the Frequency and Sequenc-
ing of Handoffs

Dep Var: Indicator for being rehospitalized
(1) (2) (3) (4)

First handoff 0.0026*** 0.0026*** 0.0026*** 0.0025***
(0.0004) (0.0004) (0.0004) (0.0004)

Second handoff 0.0013*** 0.0013*** 0.0013*** 0.0013***
(0.0003) (0.0003) (0.0003) (0.0003)

Third handoff 0.0013*** 0.0012*** 0.0012*** 0.0012***
(0.0004) (0.0004) (0.0004) (0.0004)

Fourth+ handoff 0.0008 0.0008 0.0008* 0.0007
(0.0005) (0.0005) (0.0005) (0.0005)

R-squared 0.0067 0.0072 0.0073 0.0082

Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. This table presents linear probability models examining whether the effect on the probability of rehospital-
ization differs by the frequency and sequencing of handoff. An observation is a patient episode-day. Robust stan-
dard errors allowing for arbitrary correlation among episode-days in the same office in parentheses. In all panels
and all columns, we control for the indicator for having a nurse visit, cumulative number of nurse visits provided,
mean interval of days between two consecutive visits during the episode, number of days since last nurse visit, num-
ber of days since last visit by any provider; number of ongoing episodes in the office-day, number of nurses working
in the office-day; and office fixed effects, day of week fixed effects, month-year of the day fixed effects, and home
health day fixed effects. In columns (2)-(4), hospitalization risk controls include dummies for the risk factors for
hospitalization: history of 2+ falls in the past 12 months; 2+ hospitalizations in the past 6 months; decline in men-
tal, emotional, or behavioral status in the past 3 months, currently taking 5+ medications, and others. In columns
(3)-(4), demographic controls include age dummies for each age 66-94 and age 95+ (reference group: age=65); fe-
male; white; insurance type–Medicare Advantage (MA) plan with a visit-based reimbursement, MA plan with an
episode-based reimbursement, dual eligible with Medicaid enrollment (reference group: Medicare FFS); dummy for
having no assistance available; dummy for living alone. In column (4), comorbidity controls include dummies for
17 Charlson comorbidity index factors; dummies overall status–very bad (patient has serious progressive conditions
that could lead to death within a year), bad (patient is likely to remain in fragile health); and temporarily bad
(temporary facing high health risks); dummies for high-risk factors–alcohol dependency, drug dependency, smoking,
obesity–and dummies for conditions prior to hospital stay within past 14 days–disruptive or socially inappropriate
behavior, impaired decision making, indwelling or suprapublic catheter, intractable pain, serious memory loss, uri-
nary incontinence. *significant at 10%; **significant at 5%; ***significant at 1%.
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3.6. Appendix

3.6.1. Analysis Using the 30-Day Readmission Outcome

We report the OLS and 2SLS results estimated using the indicator for rehospitalization
within 30 days of hospital discharge in Tables 20 and 21, respectively. We find that the
coefficient estimates remain similar, albeit slightly lower in the OLS estimation result and
higher in the IV estimation result. The similar size in estimates is not surprising since
Table 14 shows that most of the hospital readmission occurs within 30 days of hospital
discharge. The IV estimates in Table 21 imply that experiencing a handoff increases the
probability of readmission by 0.42–0.47 percentage points (70–78%). The higher percentage
changes in this result result from a lower 30-day readmission rate (13%) than the all-time
readmission rate (17%).
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Table 20: OLS: Patients Experiencing a Handoff Are More Likely to Be Re-
hospitalized within 30 Days of Hospital Discharge

Dep Var: Indicator for being rehospitalized
(1) (2) (3) (4)

Handoff 0.0015*** 0.0015*** 0.0015*** 0.0015***
(0.0002) (0.0002) (0.0002) (0.0002)

R-squared 0.0074 0.0079 0.0080 0.0088
Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. This table presents linear probability models examining whether patients experiencing a handoff are more
likely to be rehospitalized within 30 days of hospital discharge. An observation is a patient episode-day. Robust
standard errors allowing for arbitrary correlation among episode-days in the same office in parentheses. In all panels
and all columns, we control for the indicator for having a nurse visit, cumulative number of nurse visits provided,
mean interval of days between two consecutive visits during the episode, number of days since last nurse visit, num-
ber of days since last visit by any provider; number of ongoing episodes in the office-day, number of nurses working
in the office-day; and office fixed effects, day of week fixed effects, month-year of the day fixed effects, and home
health day fixed effects. In columns (2)-(4), hospitalization risk controls include dummies for the risk factors for
hospitalization: history of 2+ falls in the past 12 months; 2+ hospitalizations in the past 6 months; decline in men-
tal, emotional, or behavioral status in the past 3 months, currently taking 5+ medications, and others. In columns
(3)-(4), demographic controls include age dummies for each age 66-94 and age 95+ (reference group: age=65); fe-
male; white; insurance type–Medicare Advantage (MA) plan with a visit-based reimbursement, MA plan with an
episode-based reimbursement, dual eligible with Medicaid enrollment (reference group: Medicare FFS); dummy for
having no assistance available; dummy for living alone. In column (4), comorbidity controls include dummies for
17 Charlson comorbidity index factors; dummies overall status–very bad (patient has serious progressive conditions
that could lead to death within a year), bad (patient is likely to remain in fragile health); and temporarily bad
(temporary facing high health risks); dummies for high-risk factors–alcohol dependency, drug dependency, smoking,
obesity–and dummies for conditions prior to hospital stay within past 14 days–disruptive or socially inappropriate
behavior, impaired decision making, indwelling or suprapublic catheter, intractable pain, serious memory loss, uri-
nary incontinence. *significant at 10%; **significant at 5%; ***significant at 1%.
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Table 21: GMM 2SLS: Experiencing Handoffs Increases the Likelihood of
Readmission within 30 Days of Hospital Discharge

(1) (2) (3) (4)

A. First stage - Handoff
Short absence 0.0879*** 0.0879*** 0.0879*** 0.0880***

(0.0047) (0.0047) (0.0047) (0.0047)
Medium absence 0.2707*** 0.2707*** 0.2706*** 0.2706***

(0.0076) (0.0076) (0.0075) (0.0075)
Long absence 0.3462*** 0.3463*** 0.3462*** 0.3460***

(0.0104) (0.0104) (0.0104) (0.0104)
Other office 0.2112*** 0.2113*** 0.2111*** 0.2112***

(0.0143) (0.0143) (0.0144) (0.0143)
Attrition 0.2763*** 0.2764*** 0.2767*** 0.2767***

(0.0118) (0.0118) (0.0118) (0.0117)
R-squared 0.430 0.430 0.430 0.430
F-statistic 389.119 389.243 393.149 395.680

B. First stage - Have a nurse visit
Short absence -0.1115*** -0.1116*** -0.1116*** -0.1116***

(0.0047) (0.0047) (0.0047) (0.0048)
Medium absence -0.0981*** -0.0982*** -0.0981*** -0.0982***

(0.0033) (0.0033) (0.0033) (0.0033)
Long absence -0.0972*** -0.0972*** -0.0973*** -0.0973***

(0.0050) (0.0050) (0.0050) (0.0050)
Other office -0.1344*** -0.1345*** -0.1343*** -0.1343***

(0.0071) (0.0071) (0.0071) (0.0071)
Attrition -0.0816*** -0.0814*** -0.0815*** -0.0810***

(0.0041) (0.0042) (0.0042) (0.0042)
R-squared 0.245 0.245 0.245 0.245
F-statistic 222.072 220.780 216.391 214.325

C. Second stage - 30-day rehospitalization
Handoff 0.0042*** 0.0044*** 0.0046*** 0.0047***

(0.0016) (0.0016) (0.0016) (0.0016)
Have a nurse visit 0.0044* 0.0046* 0.0047* 0.0047*

(0.0026) (0.0026) (0.0026) (0.0026)
R-squared 0.004 0.004 0.004 0.005
J-statistic p-value 0.744 0.669 0.650 0.742

Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. Linear probability models are estimated, using a two-step efficient generalized method of moments (GMM)
estimator. Panels A and B show the first-stage results of an IV regression, and Panel C show the second-stage re-
sults. We instrument the indicator variables for nurse handoffs and for nurse visits with the following 5 instruments:
(1) Active–visiting patients in the patient’s home office; (2) Short absence–not providing visits in any office for 1
to 6 consecutive days; (3) Medium absence–not providing visits in any office for 7 to 14 consecutive days; (4) Long
absence–not providing visits in any office for 15 or more consecutive days; (5) Assigned to other office–providing
visits exclusively in a different office; and (6) Attrition–day post labor termination for nurse according to HR
records. An observation is a patient episode-day. Robust standard errors allowing for arbitrary correlation within
the same office in parentheses. In all specifications, we control for the cumulative number of nurse visits provided,
mean interval of days between two consecutive visits, number of days since last nurse visit, number of days since
last visit by any provider; number of ongoing episodes in the office-day, number of nurses working in the office-day;
and office fixed effects, day of week fixed effects, month-year of the day fixed effects, and home health day fixed ef-
fects. Columns (2)-(4) additionally control for hospitalization risk controls, demographic controls, and comorbidity
controls, respectively. *significant at 10%; **significant at 5%; ***significant at 1%.
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3.6.2. Results from the Conditional Logit Model Estimation

For robustness check, we also estimate a fixed effect conditional logit model to account
for the binary nature of our dependent variable. Table 22 reports average marginal effects
estimated using the fixed effect conditional logit estimation results. These average marginal
effects are even stronger than implied by the OLS and IV estimates.

Table 22: Logit: Patients Experiencing a Handoff Are More Likely to Be
Rehospitalized

Dep Var: Indicator for being rehospitalized
(1) (2) (3) (4)

Handoff 0.227*** 0.225*** 0.226*** 0.216***
(0.0281) (0.0280) (0.0279) (0.0282)

Log likelihood -35842.873 -35580.826 -35534.201 -35183.389
Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. This table presents average marginal effects estimated using the fixed effect conditional logit estimation
results. An observation is a patient episode-day. Robust standard errors allowing for arbitrary correlation among
episode-days in the same office in parentheses. In all panels and all columns, we control for the indicator for hav-
ing a nurse visit, cumulative number of nurse visits provided, mean interval of days between two consecutive visits
during the episode, number of days since last nurse visit, number of days since last visit by any provider; number of
ongoing episodes in the office-day, number of nurses working in the office-day; and office fixed effects, day of week
fixed effects, month-year of the day fixed effects, and home health day fixed effects. In columns (2)-(4), hospitaliza-
tion risk controls include dummies for the risk factors for hospitalization: history of 2+ falls in the past 12 months;
2+ hospitalizations in the past 6 months; decline in mental, emotional, or behavioral status in the past 3 months,
currently taking 5+ medications, and others. In columns (3)-(4), demographic controls include age dummies for
each age 66-94 and age 95+ (reference group: age=65); female; white; insurance type–Medicare Advantage (MA)
plan with a visit-based reimbursement, MA plan with an episode-based reimbursement, dual eligible with Medicaid
enrollment (reference group: Medicare FFS); dummy for having no assistance available; dummy for living alone.
In column (4), comorbidity controls include dummies for 17 Charlson comorbidity index factors; dummies overall
status–very bad (patient has serious progressive conditions that could lead to death within a year), bad (patient is
likely to remain in fragile health); and temporarily bad (temporary facing high health risks); dummies for high-risk
factors–alcohol dependency, drug dependency, smoking, obesity–and dummies for conditions prior to hospital stay
within past 14 days–disruptive or socially inappropriate behavior, impaired decision making, indwelling or supra-
public catheter, intractable pain, serious memory loss, urinary incontinence. *significant at 10%; **significant at
5%; ***significant at 1%.
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3.6.3. Correlation of Selected Measures of Patients’ Severity and Rehospitalization

Table 23 presents coefficient estimates on three selected measures of patients’ severity—
indicators for each category of Charlson comorbidity index, overall status likely to remain
fragile, and taking 5 or more medications—obtained from estimating the model in Column
(4) of Table 17. We find that reported severity measures are statistically significant and
strong predictors of the likelihood of readmission, even stronger than handoff.
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Table 23: Key Measures of Patients’ Severity as Predictors of the Likelihood of
Readmission

Dep Var: Indicator for being rehospitalized

Handoff 0.0017***
(0.0002)

A. 17 Components of the Charlson Comorbidity Index
Acute myocardial infarction (AMI) 0.0001

(0.0007)
Congestive heart failure (CHF) 0.0028***

(0.0003)
Peripheral vascular disease (PVD) 0.0026***

(0.0009)
Cerebrovascular disease (CEVD) 0.0008**

(0.0003)
Dementia 0.0018*

(0.0011)
Chronic pulmonary disease (COPD) 0.0023***

(0.0004)
Rheumatic disease 0.0008

(0.0025)
Peptic ulcer disease 0.0052**

(0.0020)
Mild liver disease 0.0016

(0.0016)
Diabetes 0.0014**

(0.0007)
Diabetes + Complications 0.0057***

(0.0013)
Hemiplegia or paraplegia (HP/PAPL) 0.0002

(0.0017)
Renal disease 0.0032***

(0.0007)
Cancer 0.0041***

(0.0005)
Moderate/severe liver disease 0.0067***

(0.0024)
Metastatic cancer 0.0045***

(0.0015)
AIDS/HIV 0.0107

(0.0115)

B. Overall Status
Likely to remain in fragile health 0.0034***

(0.0004)

C. Risk for Hospitalization
Take 5 or more medications 0.0005*

(0.0003)
R-squared 0.0081
Observations 1,031,904

Notes. An observation is a patient episode-day. Robust standard errors allowing for ar-
bitrary correlation among episode-days in the same office in parentheses. *significant at
10%; **significant at 5%; ***significant at 1%.
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3.6.4. Robustness Check Using an Alternative Definition of Breaks in Nurses’ Availability

In this appendix, we run a robustness check on our main IV results using an alternative
definition of medium absence. We define medium absence as not providing visits in any
office for 6 to 20 consecutive days, and accordingly, short absence for 1 to 5 consecutive
days and long absence for 21 or more consecutive days.

Table 24 presents the distribution of the number of patient episode-day observations as well
as the likelihood of having a provider handoff, a nurse visit, and a hospital readmission for
each newly defined availability category. The distributions of observations and probabili-
ties of handoffs, nurse visits, and readmissions change little when we use a wider window
of time for medium absence. A noticeable difference is an increase in the probabilities of
handoffs and readmissions when a provider is having a long absence under the new defini-
tion. However, qualitatively, the relative orders of these numbers remain the same across
the categories. Therefore, we obtain very similar first-stage and second-stage estimates in
Table 25 to those in Table 18. In Panels A and B for the first-stage results, each of providers’
unavailability status seems to be a stronger predictor of patients’ handoffs and a slightly
weaker predictor of patients’ receiving nurse visits. However, the F-statistic values are still
significantly large. In Panel C, in Column (4), we find a tiny decrease in the magnitude of
the effect of experiencing a handoff at 0.37 percentage points or 53% on the likelihood of
rehospitalization.

117



Table 24: Distribution of Patient-Day Observations and the Likelihood of
Nurse Handoff, Nurse Visit, and Readmission by the Availability of Nurse Who
Visited a Patient in the Last Visit

N Obs % Obs % Handoff % Have a nurse visit % Readmission

Active 670,621 64.99 20.63 27.37 0.77
Short absence (1-5 days) 280,872 27.22 29.95 5.94 0.55
Medium absence (6-20 days) 47,559 4.61 63.72 12.22 0.70
Long absence (21+ days) 7,733 0.75 77.42 11.95 0.72
Assigned to other office 13,415 1.30 49.30 11.20 0.83
Attrition 11,704 1.13 65.02 9.28 0.67

Total 1,031,904 100.00

Notes. In the entire sample of patient-day observations, the percentage of handoff is 26.46%; the percent-
age of having a nurse visit is 20.31%; the percentage of readmission is 0.71%.
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Table 25: GMM 2SLS: Experiencing Handoffs Increases the Likelihood of
Readmission

(1) (2) (3) (4)

A. First stage - Handoff
Short absence 0.1190*** 0.1190*** 0.1190*** 0.1190***

(0.0061) (0.0061) (0.0061) (0.0060)
Medium absence 0.4232*** 0.4232*** 0.4231*** 0.4227***

(0.0101) (0.0101) (0.0101) (0.0101)
Long absence 0.5573*** 0.5574*** 0.5568*** 0.5568***

(0.0190) (0.0190) (0.0191) (0.0190)
Other office 0.2995*** 0.2996*** 0.2993*** 0.2994***

(0.0206) (0.0206) (0.0206) (0.0206)
Attrition 0.4571*** 0.4574*** 0.4578*** 0.4575***

(0.0156) (0.0156) (0.0156) (0.0156)
R-squared 0.178 0.178 0.178 0.179
F-statistic 439.211 439.030 440.619 442.788

B. First stage - Have a nurse visit
Short absence -0.1111*** -0.1112*** -0.1112*** -0.1112***

(0.0048) (0.0048) (0.0048) (0.0048)
Medium absence -0.0956*** -0.0957*** -0.0957*** -0.0957***

(0.0032) (0.0032) (0.0033) (0.0033)
Long absence -0.0945*** -0.0945*** -0.0944*** -0.0943***

(0.0046) (0.0046) (0.0046) (0.0046)
Other office -0.1321*** -0.1322*** -0.1320*** -0.1320***

(0.0071) (0.0072) (0.0072) (0.0072)
Attrition -0.0785*** -0.0783*** -0.0783*** -0.0779***

(0.0041) (0.0041) (0.0042) (0.0042)
R-squared 0.244 0.244 0.245 0.245
F-statistic 234.768 232.472 230.006 226.544

C. Second stage - Rehospitalization
Handoff 0.0035*** 0.0036*** 0.0037*** 0.0037***

(0.0009) (0.0009) (0.0009) (0.0009)
Have a nurse visit 0.0036 0.0038 0.0039 0.0040

(0.0025) (0.0025) (0.0025) (0.0024)
R-squared 0.004 0.005 0.005 0.006
J-statistic p-value 0.626 0.571 0.547 0.617

Observations 1,031,904 1,031,904 1,031,904 1,031,904
Hospitalization risk controls . Yes Yes Yes
Demographic controls . . Yes Yes
Comorbidity controls . . . Yes

Notes. This table presents linear probability models examining whether patients experiencing a hand-off are more
likely to be rehospitalized, using a two-step efficient generalized method of moments (GMM) estimator. Panels A
and B show the first-stage results of an IV regression, and Panel C show the second-stage results. We instrument
the indicator variables for skilled nurse handoffs and for having a nurse visit with the following 5 instruments: (1)
Active–visiting patients in the patient’s home office; (2) Short absence–not providing visits in any office for 1 to
4 consecutive days; (3) Medium absence–not providing visits in any office for 6 to 20 consecutive days; (4) Long
absence–not providing visits in any office for 21 or more consecutive days; (5) Assigned to other office–providing
visits exclusively in a different office; and (6) Attrition–day post labor termination for nurse (due to either quit or
layoff) according to HR records. An observation is a patient episode-day. Robust standard errors allowing for ar-
bitrary correlation among episode-days in the same office in parentheses. In all columns, regressions include mean
interval of days between two consecutive visits during the episode, number of days since last nurse visit for the pa-
tient, number of days since last visit by any provider for the patient; number of ongoing episodes in the office-day,
number of nurses working in the office-day; office fixed effects, day of week fixed effects, month-year of the day fixed
effects, home health day fixed effects; and hospitalization risk controls, demographic controls, and comorbidity con-
trols. *significant at 10%; **significant at 5%; ***significant at 1%.
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APPENDIX

A.1. Home Health Care Industry

Home health care, which is provided to homebound patients who need skilled nursing or

therapy services, is an important and rapidly growing segment of the post-acute care delivery

system. The number of home health agencies (HHAs), which are the major providers of

home health care, had grown from 9,291 to 12,461 by 34% between 2007 and 2014 while

Medicare fee-for-service (FFS) spending on HHAs has increased from $22.8 billion to $29.1

billion by 28% during the same period (MedPAC, 2016b). Moreover, between 2006 and

2014, home health care had the highest growth of 3.1% as a destination for all Medicare

fee-for-service (FFS) patients who were discharged from an acute care hospital (MedPAC,

2016b).

This rapid growth may be attributed to its appeal to patients who prefer to recover at

home, providers who prefer to shorten hospitalization lengths, and insurers who benefit

from cheaper care at home than care in brick-and-mortar institutions. A demographic

change from aging population and technological advancement allowing for the care delivery

at home—including greater curative capacity of drugs which can be easily administered

at home and evolution of medical and telecommunications devices facilitating mobility of

care delivery—also contribute to the growth of home health care. Not surprisingly, the

number of Medicare FFS home health care users has grown by 36% and FFS spending for

home health care has risen by 108% during 2000–2014 (MedPAC, 2016a). The importance

of home health care has also increased with the rise of enhanced care coordination and

shared savings models such as Accountable Care Organizations or Bundled Payments for

Care Improvement as well as financial incentives to prevent hospital readmissions, known

as the Hospital Readmissions Reduction Program, under the Affordable Care Act (David

and Kim, 2017).

For the source of payment, health insurance, and particularly Medicare, are primary payers
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for home health care. 88% of the national home health expenditures in freestanding HHAs

are paid for by health insurance, 9% by out-of-pocket payments, and 3% by other third-

party payers and programs (MedPAC, 2016a).1 Within health insurance, Medicare is the

largest payer, paying for 42% of the national home health care expenditures while Medicaid

and private health insurance pay for 36% and 22%, respectively (MedPAC, 2016b). In our

data, Medicare is an even more dominant source of payment, accounting for 69% of episodes

in each month in my data. Medicare fee-for-service (FFS) makes prospective payment on

the basis of a national standardized 60-day episode payment rate that is adjusted for the

applicable case-mix and wage indices (Federal Register, 2014). A home health admission

can comprise multiple episodes with renewal of another 60-day episode for patients requiring

more home health care.2 Since Medicare FFS is a dominant payer, I measure the quantity

of demand provided by firms using the number of 60-day episodes, as I will elaborate in

Section 2.4. Moreover, I assume a fixed price in my model in Section 2.3.

A.2. Home Health Care Workforce

There are six home health service disciplines covered by Medicare: skilled nursing (SN),

home health aide (HH), physical therapy (PT), speech-language pathology (ST), occupa-

tional therapy (OT), and medical social services (MSW). In Table 26, I report the summary

statistics of the number of workers firms employ each week for each of these disciplines and

two additional disciplines they provide service for, fitness specialists (FS) and registered

dietitians (RD). Each week, firms hire 13 skilled nurses—either registered nurses (RNs) or

licensed practice nurses (LPNs), though mostly RNs—on average, and for the largest num-

ber of weeks compared to other disciplines. Firms hire 11 physical therapists on each week

on average and for nearly as many weeks as skilled nurses. The payment rate is increased

when the episode involves a higher number of therapy visits, leading to high employment of

1HHAs can largely be either freestanding (85% of all HHAs as of 2014) or hospital-based (MedPAC,
2016b).

2In comparison, most private Medicare Advantage (MA) plans make payment on the basis of per-visit
rate with different cost sharing according to plans. In the data, 25% of MA episodes are paid for on the
60-day episode basis, and 75% on the per-visit basis.
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physical therapists in HHAs. However, for other therapy disciplines, such as occupational

therapy and speech-language pathology, firms hire 5 and 2 workers per week on average.

These smaller numbers reflect lower demand for these services. Firms hire 4 home health

aides each week on average but not for as many weeks.

Table 26: Summary Statistics on the Number of Workers in Each Home Health Service Disci-
pline

Discipline N Mean Standard Deviation

Discipline N Mean SD
Skilled nursing (SN) 108,416 12.66 6.19
Physical therapy (PT) 90,820 10.82 4.9
Occupational therapy (OT) 41,046 5.39 2.89
Home health aide (Aide) 24,746 3.66 2.73
Fitness specialist (FS) 411 3.09 1.45
Speech-language pathology (ST) 16,683 2.34 1.34
Medical social services (MSW) 10,728 1.4 0.63
Registered dietitian (RD) 1,451 1.16 0.42

Notes. The unit of observation is a firm-week observation. A single person
may be counted multiple times if they have multiple disciplines in the same
firm-week. However, these cases are rare, accounting for less than 1% of ob-
servations.
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