Towards a Secure and Verifiable Future Internet (Full Presentation)

Limin Jiaf Chen Chen* Sangeetha A. Jyothi*

* University of Pennsylvania

1. INTRODUCTION

In recent years, there have been strong interests in the
networking community in designing new Internet architec-
tures. One of the driving forces behind these “clean-slate”
designs is the need to address pressing security concerns of
the Internet. As a consequence, recent architectures, such as
SCION [8] and ICING (5], provide radically new architec-
tures that claim to provide stronger security guarantees. One
of the limitations of current proposals is that security claims
of these new designs lack formal security proofs — these pro-
tocols are evaluated primarily via experimental evaluations
and argued via informal reasoning.

In this paper, we outline our research agenda on program-
ming language support for implementing secure Internet pro-
tocols, and verifying the security properties of these imple-
mentations. Central to our work is the use of Secure Network
Datalog (SeNDLog) [9], a declarative networking [4] lan-
guage with cryptographic primitives. SeNDLog extends the
Network Datalog (NDLog) declarative networking language
with user-defined cryptographic functions.

Specifically, our project aims to achieve the following goals.

First, we plan to demonstrate that most existing secure Inter-
net routing architectures can be easily expressed in SeND-
Log. Second, to facilitate formal proofs of security, we are
developing a set of sound reasoning principles over SeND-
Log. Using these reasoning principles, we would be able to
extract proof obligations in the form of first-order logic for-
mulas given any SeNDLog program and the security proper-
ties in question.

2. CASE STUDY: INTERNET ROUTING

BGP assumes a network model in which routers are grouped

into various Autonomous Systems (AS) administrated by In-
ternet Server Provider (ISP). Individual ASes exchange route
advertisements with neighboring ASes using the path-vector
protocol. Since these route advertisements are not authen-
ticated, ASes can lie and advertise non-existent routes, or
claim to own destination addresses that they do not. These
faults may be a consequence of harmless misconfigurations,
or malicious activities, e.g. traffic hijacking or violations of
business agreements.

To address these problems, there have been a variety of
proposed mechanisms [2] that aim to improve the trustwor-
thiness of the route announcements. For example, Secure
BGP [3] and Secure-Origin BGP [7] use cryptographic func-
tions to sign routing information to prevent malicious routers
from altering the routing information.

3. SECURE PROTOCOLS IN SeNDLog

To demonstrate the key language features of SeNDLog,
we present a SeNDLog program that computes the reacha-

Wenchao Zhou*

T Carnegie Mellon University

Suyog Mapara® Boon Thau Loo*

bility of all pairs of nodes.

At S:
sl reachable(S,D) :- neighbor(s,D).
s2 S says reachable(Z,D)Q@Z :- neighbor(S,z),

W says reachable(S,D).

The rules s1 and s2 are located in the context of principal
s, and specify a distributed transitive closure computation,
where rule s1 computes all pairs of nodes reachable within a
single hop, and rule s2 expresses that “if z is a neighbor of s,
and w claims that s can reach b, then s will inform z about its
reachability to p”. The says primitive in the body of rule s2
specifies that the authenticity of the received reachable tu-
ple should be checked, ensuring that it originated from w. On
the other hand, the says primitive in the head specifies that
node s should digitally sign that tuple before sending it to z.
In the implementation, the says primitive corresponds to op-
erations of generating and checking digital signatures. The
location specifier ¢z in rule s2 indicates that the evaluation
result should be communicated to node z.

In the above program, each neighbor authenticates routes
received from immediate neighbors. The actual S-BGP and
s0-BGP can be encoded by extending this program to enable
the authentication (via signatures) of all subpaths within an
advertised path. Based on our experience in S-BGP and so-
BGP, we are in the process of making the following exten-
sions to SeNDLog:

User-defined cryptographic functions. Depending on the

security requirements, programmers can choose the crypto-
graphic functions that provide the right tradeoff between se-
curity guarantees and computational overhead.

Send and receive actions. The second extension is explicit

language constructs for send and receive actions. For send-
ing, we can use the existing location operator @. When the
location of the head differs from the location of the body, the
rule head is interpreted as a send action. Similarly, to truth-
fully model the adversary abilities, we further distinguish
between tuples that can be received from other nodes, and
tuples local to the node. We use b < wu to denote that tuple b
is received from the network. We allow programmers to de-
clare whether the tuple is private, or can be received from the
network. Nodes will not accept tuples sent over the network
if they are declared as private.

Rule ordering. In SeNDLog, when two rules can be fired,
one will be picked non-deterministically. However, rule or-
dering is essential for precisely capturing the transitions of
protocols steps. We are working on resolving rule ordering.

4. VERIFYING SeNDLog PROTOCOLS

Unlike traditional cryptographic protocols (e.g. authenti-
cation protocols) that typically involve a small finite number
of nodes, network protocols involve an arbitrarily large num-
ber of participants. Each router in the protocol may contain

local states, such as neighborhood and routing tables. The
correctness of the protocol as a whole depends on these lo-
cal states being maintained correctly. This suggests that one
should adopt inductive reasoning of invariants of the entire
execution history of the protocol, which is not commonly
seen in cryptographic protocols.

We outline our initial thoughts on verification of SeND-
Log programs. Concurrently, we are encoding S-BGP and
s0-BGP protocols in m-calculus, and verifying shallow prop-
erties within the ProVerif [1] tool. Interestingly, ProVerif’s
translation of 7-calculus specifications to horn clauses bears
resemblances to our SeNDLog programs, suggesting the po-
tential of unifying the two approaches in the near future.

4.1 Formal Semantic Models

Routing protocols written in SeNDLog specify transition
systems, where a system state is typically composed of the
local state of each node, and transitions between states are
triggered by events. We can specify the properties of the be-
haviors of these transition systems in terms of the properties
of the execution traces generated by these systems.

We write prog to denote a SeNDLog program, and ¥ to
denote system state. Each state Y is composed of a set of
events, written I/, waiting to be processed, and the local state
s of each node: ¥ = (E, Sy1, - - Suk). We index each local
state by the name of the node. For instance s,, is the state for
node u. Both E and s, are a set of predicates.

A one-step transition of a program prog is represented as
E,s ™4 FE' s, where the program prog is triggered by
events F, transits from state s to s’, and generates events
E’. Routing protocols often involve programs running on
several nodes concurrently. We write P to denote the set of
programs in the system (P = {prog,,,--- ,prog,,}). We

write ¥ — ¥ to denote the one step transition of the sys-
tem. The system takes a step if a program prog,,; takes a
step. Given the specifications of the routing protocols, the

behavior of one run of the protocols can be captured in terms

of the trace generated: ¥ N TR N Y, - - -. Note that

some of the programs in P may be malicious.

One challenge is to correctly interpret SeNDLog programs
in terms of execution traces. The most natural semantics for
SeNDLog will be the fixed-point semantics: the set of facts
that a SeNDLog program can derive. However, the facts
contain not only logical facts, but also events such as send-
ing and receiving tuples. The simple fixed point view is too
coarse-grained. To this end, we plan to build on prior work
on developing low-level semantics for NDLog [6], and ex-
tend it to support SeNDLog features.

4.2 Identifying and Specifying Properties
Unlike cryptographic protocols, which have been well stud-
ied, there is little formal account of the security properties of
the Internet routing architectures. We hope to identify these
properties, and state them formally in logic so that they can
be used as standard properties to check on new designs.
Linear Temporal Logic (LTL) can concisely specify prop-
erties of execution traces of transition systems. One property

of a secure routing protocol is that for any route announced

by an honest router (routers that run the unaltered protocol),

the first node originates this path should be the owner of the

announced prefix. The logical formula is presented below.

O means that ¢ has to be true in all states of the trace.

O(Vp.Yu.send (v,p) A honest (v) A (p = concat (p/, [u, d]))
D owns (u, d)

It is well know that LTL can be translated to first-order
logic by augmenting predicates with an additional time argu-
ment indicating when the predicate is true. In our reasoning,
we actually use first-order logic directly.

4.3 Reasoning about SeNDLog Programs

We do not know the code that malicious routers run. There-
fore, given a routing protocol written in SeNDLog, we need
to reason about its properties in the presence of unknown
adversaries. Fortunately, the capabilities of the adversary is
known, and these capabilities can be specified as axioms.

We plan to develop a set of reasoning principals for SeND-
Log programs. One promising idea is to directly generate
first-order logic formulas describing the behavior of the pro-
gram. For instance, given a rule of the form

VE.h(Z) :- b1(Y1), - - - bn(Yn)- its behavior is captured by
the following formula:

Vvt h(Z,t) D (y13t).01(y1,t)) Ath <t) V.-
V (Fyn 3, bn (Yn, t,) A, < t).
(We augment each tuple with an additional time field.)

Given the formulas that encode the program’s behavior,
the axioms about adversary capabilities, and the security prop-
erties of interest, we can then try to use a first-order logic
theorem prover to discharge the proof obligation. One draw-
back of such an approach is that we are not specifying that
the derivation is triggered by the freshest values of the tu-
ples. That is a property of the derivation, which is hard to
express in pure logical form. We are currently looking into
encoding the freshness information as axioms as well.

Acknowledgements. This work is funded in part by NSF
grants 11S-0812270 and CNS-1117052.

S. REFERENCES

[1] Bruno Blanchet and Ben Smyth. ProVerif 1.86: Automatic cryptographic
protocol verifier, user manual and tutorial.
http://www.proverif.ens.fr/manual.pdf.

[2] Matthew Caesar and Jennifer Rexford. BGP Routing Policies in ISP Networks.

In IEEE Network Magazine, special issue on Interdomain Routing. 2005.

Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure border

gateway protocol (S-BGP). In IEEE Journal on Selected Areas in

Communications, 18:103-116, 2000.

[4] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative networking. In Communications of the ACM, 2009.

[5] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazieres, Michael
Miller, and Arun Seehra. Verifying and enforcing network paths with ICING. In
CoNEXT, 2011.

[6] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining
distributed logic programs incrementally. In PPDP, 2011.

[7]1 Russ White. Securing BGP through secure origin BGP (so-BGP). The Internet
Protocol Journal, 6(3):15-22, 2003.

[8] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,
and David G. Andersen. Scion: Scalability, control, and isolation on
next-generation networks. In Oakland S&P, 2011.

[9] Wenchao Zhou, Yun Mao, Boon Thau Loo, and Martin Abadi. Unified
Declarative Platform for Secure Networked Information Systems. In /CDE,
2009.

3

