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Halos are biased tracers of the dark matter distribution. It is often assumed that the initial patches from

which halos formed are locally biased with respect to the initial fluctuation field, meaning that the halo-

patch fluctuation field can be written as a Taylor series in the dark matter density fluctuation field. If

quantities other than the local density influence halo formation, then this Lagrangian bias will generically

be nonlocal; the Taylor series must be performed with respect to these other variables as well. We illustrate

the effect with Monte Carlo simulations of a model in which halo formation depends on the local shear

(the quadrupole of perturbation theory) and provide an analytic model that provides a good description of

our results. Our model, which extends the excursion set approach to walks in more than one dimension,

works both when steps in the walk are uncorrelated, as well as when there are correlations between steps.

For walks with correlated steps, our model includes two distinct types of nonlocality: one is due to the fact

that the initial density profile around a patch which is destined to form a halo must fall sufficiently steeply

around it—this introduces k dependence to even the linear bias factor, but otherwise only affects the

monopole of the clustering signal. The other type of nonlocality is due to the surrounding shear field; this

affects the quadratic and higher-order bias factors and introduces an angular dependence to the clustering

signal. In both cases, our analysis shows that these nonlocal Lagrangian bias terms can be significant,

particularly for massive halos; they must be accounted for in, e.g., analyses of higher-order clustering in

Lagrangian or Eulerian space. Comparison of our predictions with measurements of the halo bispectrum

in simulations is encouraging. Although we illustrate these effects using halos, our analysis and

conclusions also apply to the other constituents of the cosmic web—filaments, sheets and voids.
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I. INTRODUCTION

The virialized halos that are identified in simulations of
gravitational clustering are biased tracers of the underlying
matter field. Typically, this bias is described in two ways,
either by relating the halo and mass fields at the time the
halos were identified (e.g., the present) or by identifying
the patches in the initial conditions that are destined
to form halos and describing the bias between these
patches and the initial mass fluctuation field [1]. These
are known as the Eulerian and Lagrangian bias, respec-
tively. In either case, the simplest models assume that this
bias is local, meaning that the biased field can be written as
a (deterministic) function of the mass field. However, the
nonlinearly evolved mass field is a nonlocal function of
the initial one, so Lagrangian and Eulerian bias cannot both
be local [2–4].

It has recently been noted that neither of the two best-
studied models of Lagrangian bias—peaks theory [5] and
the excursion set approach [6]—is local. This is because

both approaches predict that the abundance of biased trac-
ers (peaks or halos) should depend not just on the local
values of the overdensity field but on derivatives of the field
as well [7]. This gives rise to a rather specific form for
nonlocal bias, in which the bias is most naturally described
in Fourier space, where it is k dependent even at the linear
level [8–10]. The main goal of the present work is to
explore models in which the nonlocality of bias is qualita-
tively different, arising only at second order, and associated
with anisotropies in the initial field. This source of non-
locality is generic to models in which halos form from an
anisotropic collapse [11], for which there is considerable
evidence [12].
Section II describes the relation between Lagrangian and

Eulerian bias in nonlocal models, and Sec. III describes our
excursion set–based treatment of the origin of nonlocal
Lagrangian bias, providing an analytic description of the
effect. The technical problem, which is the subject of this
section, is to provide an accurate formula for the first
crossing distribution of a barrier by n-dimensional walks
with correlated steps; we use Monte Carlo simulations of
such walks to illustrate the accuracy of our analytic for-
mulas. Section IV compares our predictions with estimates
of the nonlocal halo bias term in numerical simulations of
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hierarchical clustering, and a final section summarizes our
findings.

II. NONLINEAR, NONLOCAL HALO BIAS
AND ITS EVOLUTION

The excursion set model of halo abundances and evolu-
tion assumes that it is possible to identify those patches in
the initial fluctuation field that are destined to form halos
by a later time (e.g., the present) [6]. In what follows, we
discuss why, in this case, halo bias is generally expected to
be nonlocal both in the initial conditions and at later times.

A. The spherical evolution model:
Local Lagrangian bias and evolution

The simplest implementations of this approach assume
that halos form from a spherical collapse. In this case, the
initial overdensity of a patch plays an important role in
determining whether or not it will form a halo [13]. Almost
all studies that incorporate the spherical collapse model
into the excursion set approach assume that the initial
overdensity is the only parameter that determines halo
formation (see Ref. [7] for a recent exception). As a result,
these studies find that halos are locally biased versions of
the initial density fluctuation field [1]. If the environment
of a halo is spherically symmetric, then it is natural to
expect the spherical model to describe both the evolution
of the patch that becomes a halo and the evolution of its
surrounding environment. Since the spherical evolution
model yields a local deterministic mapping between the
initial and evolved densities, the fact that halo bias was
local with respect to the initial density field means that
it remains local with respect to the evolved field. The
bias factors are different of course, but they are easily
calculated [14].

Schematically, if an initial volume V0 is overdense by
�0, then, in the excursion set approach, the halo over-
density (averaged over all such spheres) is

1þ �hðmj�0Þ � hNmj�0i
nðmÞV0

¼ 1þ X
k>0

bLk�
k
0

k!
; (1)

where the numerator is an average over all cells of volume
V0 and density �0, and nðmÞ in the denominator denotes the
number density of halos of mass m (i.e., the integral of the
numerator over all allowed values of �0). The right-hand
side is explicitly a function of �0 only, so the Lagrangian
bias is local. The Lagrangian bias factors associated with
the spherical model satisfy

�k
cb

L
k ¼ �k�1Hkþ1ð�Þ; where � � �c=�ðmÞ; (2)

and the Hn are (the probabilist’s) Hermite polynomials,
and �c is the critical density required for spherical col-
lapse. The Eulerian halo overdensity is defined similarly as

1þ �E
hðmjM;VÞ � hNmj�0ðM;VÞi

nðmÞV ¼ 1þ X
k>0

bk�
k

k!
: (3)

The Eulerian halo bias factors are obtained upon noting
that M= ��V � 1þ � and that the spherical model yields a
local monotonic relation between 1þ � and �0, so that
the expression above can be written as a series in �.
Specifically, the Eulerian bias factors in the spherical
collapse model are

b1 ¼ 1þ �2
1 � 1

�1

¼ 1þ bL1 (4)

b2 ¼ 8

21
bL1 þ bL2 (5)

b3 ¼ � 796

1323
bL1 �

13

7
bL2 þ bL3 ; (6)

etc. Note that the Eulerian bias bk depends on the
Lagrangian bias factors of equal and lower order, and the
overall structure is precisely that shown as the monopole
contribution to the bias in Ref. [3].
Accounting for the fact that the evolution of the environ-

ment will, in general, be nonlocal means that one simply
replaces the �0ð�Þ mapping with the nonlocal one. It is
straightforward to check that carrying this through, order
by order, yields the additional nonlocal bias terms given in
Refs. [3,15]. However, if halo bias is nonlocal even in
Lagrangian space, then this will provide additional contri-
butions to the Eulerian bias factors. To see the structure of
these terms, it is useful to consider models of halo for-
mation in which factors other than the initial overdensity
are important.

B. The triaxial collapse model

In triaxial collapse models, e.g., Ref. [11], the evolution
of a patch is determined by more than just its internal
overdensity. The simplest of these models uses the fact
that at each position in the initial field, one may define the
deformation tensor, D, whose elements are the second
derivatives of the gravitational potential. The overdensity,
which is the only quantity that matters for the spherical
model, is the trace of this 3� 3 matrix. So the question
arises as to which (combinations) of the other elements of
this matrix matter?
To describe the shape of the gravitational potential, it is

common to introduce the ellipticity e and prolateness p,
defined from the eigenvalues �i (i ¼ 1, 2, 3) of rij�,

�0 � �1 þ �2 þ �3; e � �1 � �3

2�
; and

p � �1 þ �3 � 2�2

2�
:

(7)

This set of parameters is used in triaxial evolution models
of nonlinear structure formation [11,12]. However, because
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e and p are ratios of the eigenvalues, it is not obvious that
they are the best choice of parameters in a perturbative
analysis. In particular, one might have wondered if the
rotationally invariariant quantities,

I1 ¼ TrðDÞ ¼X
i

�i ¼ �0; (8)

I2 ¼ �1�2 þ �1�3 þ �2�3; (9)

I3 ¼ DetðDÞ ¼ Y
i

�i (10)

are more relevant. When expressed in terms of ð�0; e; pÞ,
these are

I2 ¼ �2
0

3
½1� ð3e2 þ p2Þ�;

I3 ¼ �3
0

27
ð1� 2pÞ½ð1þ pÞ2 � 9e2�:

(11)

Since the Ij do not depend on taking ratios of the eigen-

values, they, or other quantities built from them, have
considerable appeal. Indeed, G2 ¼ �2I2 and G3 ¼ 6I3
are the fundamental quantities in Ref. [3].

Another interesting combination is

�0 ¼ I1; q20 ¼ I21 � 3I2 ¼ �2
0ð3e2 þ p2Þ and

u30 ¼
2I31 � 9I1I2 þ 27I3

9
¼ 2�3

0pð9e2 � p2Þ
9

:

Despite the appearance of I1 ¼ �0 in their definition, q and
u are actually independent of �0. Moreover, they are
precisely the quantities that arise in a perturbative analysis
of the ellipsoidal collapse model; J1 and J2 of Ref. [16] are
our q20 and 9u30, respectively. A final combination that also

arises in triaxial collapse models is

v ¼ �1 � �2 and w ¼ �� 3�3; : (12)

where 0 � v � w and 0 � w � 1 [17]. Like q2 and u3, v
and w are also independent of �.

Notice that e, p, v, w, q20 and u30 all vanish for a

spherically symmetric perturbation (�1 ¼ �2 ¼ �3 ¼
�0=3). But in general, q0 follows a �2

5 distribution [18]

(they actually called it r; we have changed notation to
emphasize the fact that q20 is the quadrupole which arises

in perturbation theory analyses).

C. Nonlocality from evolution in such models

Whereas the spherical evolution model assumes that
halos are associated with regions where �0 > �c, triaxial
evolution models generically assume that �0 > �cðe; pÞ or
�cðq0; u0Þ; the critical density required for collapse de-
pends on the other elements of the deformation tensor.
Most work to date has treated the effect of ðe; pÞ approxi-
mately, by using appropriately defined average values to
estimate halo abundances [12] and how they correlate with

the large-scale environment [18]. In this approximation,
Lagrangian halo bias remains local, but the bias coeffi-
cients are modified compared to the spherical case. In
addition, halo bias at late times is also treated approxi-
mately, by assuming that the large-scale environment
evolves according to the spherical model. As a result,
Eulerian halo bias is also local (see Refs. [19,20] for
explicit expressions). If one keeps the local approximation
for Lagrangian bias, but accounts for the nonlocality of
nonlinear evolution of the dark matter, then this will again
yield the same structure for the nonlocal terms that was
described in Ref. [3] and shown to be robust beyond the
assumption of conserved tracers.
Before reconsidering the question of local Lagrangian

bias, it is worth noting that the nonlocality of nonlinear
evolution is part and parcel of the ellipsoidal collapse model.
This is because, in this model, the second- and third- order
approximations to the nonlinear density are given by [16]

�ð2Þ ¼ 17

21
�2
0 þ

4

21
q20; (13)

�ð3Þ ¼ 341

567
�3
0 þ

338

945
�0q

2
0 þ

92

441
u30: (14)

Comparison with Eqs. (34)–(36) of Ref. [3] shows that the

terms proportional to �2
0 and q20 in the expression for �ð2Þ

are essentially the same as their monopole Kð2Þ
1;l¼0 and

quadrupole Kð2Þ
1;l¼2 (also see Ref. [21]). Differences be-

tween this approximation and the exact dynamics appear

for �ð3Þ, where the monopole is the same asKð3Þ
1;l¼0, but the

quadrupole differs. In addition, there are differences com-
ing from nonlocal potentials that show up at third order
(see e.g., Eq. 107 in Ref. [3]) and dipole terms that correct
both second- and third-order expressions. This shows
explicitly that a self-consistent use of the triaxial evolution
model should yield a better description of halo bias. In
particular, if one uses this model for the mapping between
Lagrangian and Eulerian bias, then it makes sense to
reconsider the assumption that the bias is local in
Lagrangian space.

D. Nonlocal Lagrangian bias for triaxial collapse

Triaxial evolution models will give rise to nonlocal
Lagrangian bias if the parameters which determine �c,
e.g., ðq; uÞ or ðe; pÞ, couple to the large-scale environment.
To see that this is generic, consider a simple nonlocal
model in which halo abundances depend on the traceless
part of the initial shear field q0 as well as on the initial local
density �0 and that this arises because the critical density
required for collapse depends on the shear field. This
model is particularly simple because ð�0=�0Þ and
ðq0=�0Þ2 are independent, the former being drawn from a
Gaussian variate with unit variance and the latter from a
chi-squared distribution with five degrees of freedom [18].
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This simplifies the analysis required to estimate the nu-
merator and denominator of

1þ �hðmj�0; q
2
0Þ �

hNmj�0; q
2
0i

nðmÞV0

¼ 1þ bL1�0 þ bL2
�2
0

2
þ cL2

q20
2
þ � � � :

(15)

In general, notice that if we integrate over all values of q20
at a given �0, then this will yield

1þ �hðmj�0Þ � 1þ bL1�0 þ bL2
�2
0

2
þ cL2

hq20j�0i
2

þ � � � :
(16)

Since hq20j�0i ¼ hq20i does not depend on �0, nonzero

values of cL2 will make it appear as though the b0 compo-
nent differs from unity. And since hq20i ¼ �2

0, this offset

from unity will be vanishingly small on large scales.

E. Nonlocal Eulerian bias for triaxial collapse models

Combining this nonlocal Lagrangian bias with Eq. (14)
for nonlocal gravitational evolution yields

1þ�E
hð�;q2Þ ¼ ð1þ�Þ

�
1þ bL1�0 þ bL2

�2
0

2
þ cL2

q20
2
þ �� �

�

¼ 1þ bL1�0 þ bL2
�2
0

2
þ cL2

q20
2
þ�þ bL1�0�

¼ 1þ�ðbL1 þ 1Þ þ�2

2
ð8bL1=21þ bL2 Þ

þ q20
2
ðcL2 � 8bL1=21Þ: (17)

Since, to lowest order, q20 ¼ q2, this makes the Eulerian

bias factors

b1 ¼ 1þ bL1 ; b2 ¼ bL2 þ
8

21
bL1 and

c2 ¼ cL2 �
8

21
bL1 :

(18)

Comparison with Eq. (6) shows that b1 and b2 are related to
the Lagrangian bias factors just as in the local spherical
collapse model; the nonlocality shows up as a nonzero
value of c2.

To make the connection to Ref. [3], we now express this
in terms of G2 ¼ ð2=3Þðq20 � �2

0Þ. This makes

1þ �hðmj�0;G2Þ ¼ 1þ bL1�0 þ ðbL2 þ ð4=3Þ�L
2 Þ
�2
0

2

þ �L
2G2 þ � � � ; (19)

where we have defined �2 � 3c2=4. Since G2 ¼ ð2=3Þ�
ðq20 � �2

0Þ, we have that hG2j�0i ¼ ð2=3Þðhq20i � �2
0Þ ¼

ð2=3Þð�2
0 � �2

0Þ ! �ð2=3Þ�2
0 on large scales. So,

1þ �hðmj�0Þ ¼ 1þ bL1�0 þ bL2
�2
0

2
þ ð4�L

2=3Þ
hq20i
2

. . .

(20)

Similarly,

1þ �E
hð�;G2Þ ¼ 1þ �ðbL1 þ 1Þ þ �2

2
ð8bL1=21þ bL2 Þ

þ �2 þ 3=2G2

2
ðcL2 � 8bL1=21Þ

¼ 1þ �ðbL1 þ 1Þ þ �2

2
ðbL2 þ 4�L

2=3Þ
þG2ð�L

2 � 2bL1=7Þ; (21)

making the Eulerian bias factors

b1 ¼ 1þ bL1 ; b2 ¼ 8

21
bL1 þ bL2 þ

4�2

3
and

�2 ¼ �L
2 �

2

7
bL1 :

(22)

If averaging the distribution of G2 at fixed � yields the
same as in Lagrangian space, i.e., hG2j�i ¼ �2�2=3 (and
we set �0 ! 0), then Eq. (21) implies that

1þ �hðmj�Þ ¼ 1þ b1�þ ðb2 � 4�2=3Þ�
2

2
þ � � � ; (23)

which is consistent with Eq. (117) of Ref. [3]. And, when
cL2 ¼ 0, then our �2 ¼ �2bL1=7, which is consistent with
Eq. (118) of Ref. [3].
In the next section we use the excursion set approach to

estimate the numerator and denominator of Eq. (15), i.e.,
hNmj�0; q

2
0i and nðmÞ. Expanding in a Taylor series yields

predictions for the bias factors bLn and c
L
n (or �

L
n) and hence

for the Eulerian bias factors.

F. Cross correlations

The expressions above imply that the Lagrangian space
cross correlation between halos and mass is

h�r½1þ�hðmj�0;q
2
0Þ�i

� bL1 h�r�0iþbL2
2
h�r�

2
0iþ

cL2
2
h�rq

2
0iþ

bL3
3!

h�r�
3
0iþ �� � :

(24)

where the average is over the joint distribution of �0 and q0
at one position, and of �0 at another position a distance r
away. This means that the term h�rq

2
0i should be thought of

as h�rhq20j�0ii, where the inner average is over values of q0
at fixed �0, and the other average is over all �r�0 pairs
separated by r. This shows that replacing �hðmj�0; q

2
0Þ by

�hðmj�0Þ, its mean value for given �0, before measuring
the cross correlation, should yield the same answer as
if one had included the full scatter. This explains the
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agreement between no-scatter and full-scatter measure-
ments presented in Fig. 1 of Ref. [15].

For Gaussian initial conditions, all terms of the form
h�r�

k
0i in the expression above can be written as

h�k
0h�rj�0ii ¼ h�kþ1

0 ih�r�0i=h�2
0i. Thus, the entire local

bias contribution is linearly proportional to �ðrÞ � h�r�0i
[22]. Of course, in the present example, q20 and �0 are

independent, so all terms of the form h�rq
2k
0 i vanish, mean-

ing there is no nonlocal contribution to the cross correla-
tion. On the other hand, the auto correlation will receive

contributions from terms of form h�2j
r q2k0 i. These will first

appear at order h�2
rq

2
0i and hq2rq20i; since they are of the

same order as h�2
r�

2
0i, they will also contribute to the

bispectrum.

III. NONLOCAL LAGRANGIAN BIAS IN
THE EXCURSION SET APPROACH

The analysis above is useful but otherwise empty for-
malism. The main goal of this section is to see if the
nonlocal bias factors are comparable in magnitude to the
usual ones, by estimating how they depend on halo mass
and time. We use the excursion set approach to do this.

In the excursion set approach, the abundance of objects
of massm is closely related to the distribution of scales Rm

on which the initial overdensity � > B for the first time,
where B � �c is a measure of how the ‘‘barrier’’ for
collapse differs from the value �c for the spherical evolu-
tion model. In triaxial collapse models, B is a function of e
and p [12], but in what follows, we will use a simpler
model in which B is a function of q2 [Eq. (12) shows q2 is a
particular combination of e and p]. We emphasize that the
logic that underlies our approach is not confined to this
choice; we have chosen this simple model because it
provides a particularly easy way to see the main effects
associated with nonspherical collapse.

The particular model we will study has

BðqÞ ¼ �c

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=q2c

q �
; (25)

where qc is a characteristic scale for the effects associated
with the shear. Note that nonzero q always yields B> �c, a
property that will play an important role in what follows.
Equation (25) is motivated by setting p ¼ 0 in Eq. (3) of
Ref. [12]. Figure 1 shows that this, with q2c � 8�2

c, pro-
vides a reasonably good (but by no means perfect) descrip-
tion of the actual initial (Lagrangian) overdensities in
patches that collapsed to form halos by z ¼ 0 in the
GIF2 simulations of Ref. [23]. (The methods for measuring
the protohalo overdensities and q values are described
in detail in Ref. [23].) If we use �h to denote the over-
density within a protohalo, then the figure actually shows
½�h � BðqÞ�=�ðmÞ as a function of halo mass m for two
choices of qc (halo mass has been scaled to �ðmÞ=�c,
where �2ðmÞ is the variance in the initial fluctuation field

with smoothed on scale R ¼ ð3m=4	 ��Þ1=3, so �ðmÞ
decreases as m increases).
If �h were equal to BðqÞ for each halo, then �h � BðqÞ

would be identically zero with no scatter. In fact, although
the mean of h�h � Bi � 0, there is substantial scatter
around the median value, indicating that �h is determined
by quantities other than q as well. The scatter is larger at
smaller masses, but much of this mass dependence is
removed by scaling the overdensities by �ðmÞ. The fact
that h�h � Bi=� � 0 indicates that the scaling with
q captures much of the physics. E.g., the mean of
ð�h � �cÞ=� is � 0:2�c (see Fig. 7 in Ref. [23]), so
including q dependence does matter. The fact that there
remains a weak trend with � indicates that the actual
scaling is not quite proportional to q. But, since our main
goal is to illustrate the sense of the nonlocal effects induced
by effects other than the density, such as the shear, we will
continue to use the simple model of Eq. (25).
The dependence of B on qmeans that we must construct

a list of �i and qi, which exhibits the correct correlations
between steps, and then find the smallest m (largest
smoothing scale) for which �m > BðqmÞ. (We have
deliberately used m as the index for the smoothing scale,
since this scale is monotonically related to the inverse
of the mass.) This is straightforward to address using
Monte Carlo methods [6,18], but, as we describe below,
it turns out to be possible to write down rather accurate
analytic approximations to the main results. We will first
consider the case in which the steps in the walks are

FIG. 1 (color online). Difference between the actual overden-
sity �h within a protohalo in the GIF2 simulations of Ref. [23]
and the expected overdensity given the value of the shear field
[i.e., BðqÞ of Eq. (25)], shown as a function of halo mass, for two
choices of the critical value qc (smaller qc means the shear
matters more). Masses have been scaled to �ðmÞ=�c (large
masses are on the left), and the overdensity difference has
been scaled by �ðmÞ, as this removes most of the mass depen-
dence of the scatter around the median relation.
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uncorrelated, before describing the modifications that
come from accounting for correlations.

A. Universality associated with uncorrelated steps

While the Appendix describes a more careful analytic
calculation for walks with correlated steps, we have found
that the substantially simpler analysis outlined by Sheth and
Tormen [18] actually provides a rather good approximation
to the results for walks with uncorrelated steps and yields
considerable insight. This analysis replaces q2 with its mean
value �2. This means that BðqÞ ! Bð�Þ, and so the first
crossing distribution associated with the six-dimensional
walk (one for � and 5 for q2) should be well approximated
by that for the one-dimensional condition � > Bð�2Þ.
Reasonably accurate models for the first crossing distribution
of suchmoving barriers are given in Ref. [18]. In particular, if

BðqÞ ¼ �c

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=q2c

q �
! �c

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=q2c

q �
; (26)

then the first crossing distribution is well approximated by

�fð�Þ � 2

�
�þ 1=4ffiffiffiffiffiffiffiffiffiffiffiffiffi

q2c=�
2
c

p �
e�ð�þ

ffiffiffiffiffiffiffiffiffi
�2
c=q

2
c

p
Þ2=2ffiffiffiffiffiffiffi

2	
p ; where

� � �c=�: (27)

In this model, the ratio �c=qc is a measure of the strength
of the nonlocal effects; these disappear in the limit
�c=qc ! 0.

For similar reasons, the first crossing distribution
for walks which start from some nonzero � ¼ �0 and

q2 ¼ q20 should be well approximated by that for one-

dimensional walks that must cross

BðqÞ ! �c½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ q20Þ=q2c

q
� � �0: (28)

The term in the square root follows from the same logic as
for the unconditioned walks; i.e., one replaces the depen-
dence on q2 by a dependence on the mean value hq2jq0i,
where the constraint q0 means that q is now drawn from a
noncentral chi-squared distribution (with five degrees of
freedom). This shows that the constraint enters with a plus
rather than a minus sign.
Therefore, the local bias parameters are given by the

usual derivatives with respect to �c, whereas the nonlocal
bias parameter is slightly more involved. In particular, the
result of using this barrier when estimating the first cross-
ing distribution, expanding to lowest order in �0 and q20,
dividing by the distribution associated with ð�0; q0Þ ¼
ð0; 0Þ and subtracting one, yields:

�cb
L
1 ¼ �2 � 1þ �

qc=�c

þ 1

1þ 4�qc=�c

;

�2
cb

L
2 ¼ �H3ð�Þ þ �3

qc=�c

þ 2�2

1þ 4�qc=�c

� �2
cc

L
2 ;

(29)

and

�2
cc

L
2 ¼� �2

ðqc=�cÞ2
�
1þ�ðqc=�cÞ� 9ðqc=�cÞ2

1þð128=35Þ�qc=�c

�
:

(30)

FIG. 2 (color online). Excursion set description of the nonlocal Lagrangian bias which results from the local shear affecting the
collapse threshold (Eq. (25) with q2c ¼ 8�2

c). Left: Distribution of first crossing scales for unconditioned walks, walks which began
from �0=�c ¼ 0:2 but q0 ¼ 0, and walks which began from ðq0=qcÞ2 ¼ 0:4 but �0 ¼ 0 (locii traced by symbols which are in the
middle, highest and lowest at lnðyÞ ¼ 2). Dotted curves show the Press-Schechter and Sheth-Tormen distributions, and solid curve
shows our Eq. (27) which follows from approximating the collapse barrier following Eq. (26). Right: Associated large scale bias
factors; dotted curves show our predictions [Eqs. (29) and (30)].

SHETH, CHAN, AND SCOCCIMARRO PHYSICAL REVIEW D 87, 083002 (2013)

083002-6



Figure 2 shows that this works rather well. The plot
shows results for q2c=�

2
c ¼ 8, which Fig. 1 suggests is close

to realistic, but we have checked that it works well for a
wide range of qc=�c. The panel on the left shows the
distribution of first crossing scales estimated from 64000
walks: black, red and magenta are for walks which start
from ð�0=�c; q

2
0=�

2
cÞ ¼ ð0; 0Þ, (0.2, 0) and (0, 0.4), respec-

tively. The first represents the unconditional distribution,
whereas the second and third were chosen to isolate the
effect of a large-scale overdensity and (quadrupole) shear,
respectively. Notice that the model predicts more massive
halos in regions with positive �0, but fewer in regions with
nonzero q0. This is a direct consequence of assuming that
the barrier height is an increasing rather than decreasing
function of q2; i.e., when � � 1 then Eq. (28) becomes
B=� ! �ð1þ q0=qc � �0=�cÞ. In the opposite limit,
� 	 ð�c=qcÞ=ðq0=qcÞ, B=� ! �þ ð�c=qcÞ � �0=�; for
sufficiently low mass halos, only �0 matters.

The solid curve shows Eq. (27); it describes the uncondi-
tional distribution (i.e., black symbols) well. The dotted
curves show the Press-Schechter and Sheth-Tormen (ST)
distributions; for ST, we have set a ¼ 1 (rather than 0.7).
Since the shape of the ST curve provides a good descrip-
tion of real halos, the good match between the solid and ST
indicates that, for this choice of qc=�c, the shape of the
halo mass function is like that in data. In turn, this suggests
that our model should yield realistic estimates of the sign
and amplitude of nonlocal effects. For example, this match
indicates that the trend to have more massive halos in
regions with positive �0, but fewer in regions with nonzero
q20, is realistic.

The panel on the right shows the ratio of the
environment-dependent distributions to the unconditional
one, scaled by ð�0=�cÞ and ðq0=qcÞ2, respectively. The
dotted curves show �cb

L
1 and �2

cc
L
2 of Eqs. (29) and (30);

they describe the measurements rather well, suggesting
that our analytic treatment, which accounts for the stochas-
ticity in the barrier distribution by ignoring it following
Ref. [18], has captured the essence of the problem. We
show elsewhere how to modify this trick for dealing with
stochasticity so that it also works for other barrier shapes.
Note in particular that our analysis indicates the magnitude
of cL2 can be comparable to that of bL1 , so the Eulerian

nonlocal bias parameter c2 ¼ cL2 � 8bL1=21 can be sub-

stantial, particularly when � � 1 (the most massive halos).

B. Departures from universality from
correlations between steps

The analysis above was based on walks with uncorre-
lated steps. These correspond to smoothing the initial
Gaussian field with a filter which is sharp in k-space.
Smoothing with filters which are more localized in real
space (e.g., a spherical TopHat) will result in walks with
correlated steps; because such smoothing filters are intui-
tively closer to the physics of collapse, predictions which

are based on correlated steps are expected to be more
realistic (see Refs. [10,12,24] for why this is not the full
story).
In what follows, we will show that accounting for such

correlations turns out to be relatively simple and has some
important consequences. The analysis is simplified for two
reasons: � and q2 are independent whatever the smoothing
filter, and the argument about transforming the six-
dimensional walk problem to an effective one-dimensional
barrier should work even if steps are correlated. Recently,
accurate models for the first crossing of moving barriers by
walks with correlated steps have become available [7]
[their Eq. (5)], so combining these for the square-root
barrier problem that is relevant here yields

�fð�Þ � �e�ð�þ
ffiffiffiffiffiffiffiffiffi
�2
c=q

2
c

p
Þ2=2ffiffiffiffiffiffiffi

2	
p

�
1� erfcð��= ffiffiffi

2
p Þ

2
þ e��2�2=2ffiffiffiffiffiffiffi

2	
p

��

�

where � � �c

�
and �2 � h�0�i2

h�02ih�2i ; (31)

where �0 � d�=d�2. For �CDM, �2 � 1=3.
The Appendix contrasts this with the approximation

suggested in Ref. [7], in which the first crossing distribu-
tion should be thought of as averaging the distribution for
fixed q over the distribution of q. At large � � 1 both
approximations predict a factor of 2 fewer objects than the
solution for uncorrelated steps; this difference decreases as
� decreases until sufficiently small � 	 ð1=4Þ=ðqc=�cÞ,
when the �-dependent factor begins to dominate. Since
�
 0:1 is below the regime of most cosmological interest,
and it is also in the limit where the analytic approximation
of Ref. [7] is expected to break down anyway, we will
restrict attention to larger �. In this regime the first crossing
distribution will differ only slightly from that for uncorre-
lated steps, so we expect to find similar bias factors with
the following caveats.
First, since � depends on the shape of the power spec-

trum, we expect plots of, e.g., c2 versus b1 to no longer be
universal, but to depend on PðkÞ. However, because � is
defined by a ratio, changes to the overall normalization of
PðkÞ will cancel out. Second, the bias factors bn become k
dependent because of the correlation with the curvature
term �0 [7]. If qwere correlated with �0, then c2 would also
become k dependent. However, q is independent of �0, and,
in any case, in what follows we will restrict attention to the
scales on which the k dependence can be ignored.
For walks with correlated steps that are constrained to

pass through ð�0; q0Þ on scale S0, the first crossing distri-
bution can be derived similarly to when the walks started
from (0, 0) on scale S0 ¼ 0. The analog of Eq. (28)
becomes

BðqÞ!�c

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sþðS�=S0Þ2ðq20�S0Þ�=q2c

q �
�ðS�=S0Þ�0;

where
S�
S0

�h��0i
h�2

0i
: (32)
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When � � 1 and S0 ! 0 then B ! �½1þ ðS�=S0Þ�
ðq0=qc � �0=�cÞ�: except for the factor of S�=S0, this
is the same shift as for walks with uncorrelated steps
[compare Eq. (28)], so we generically expect the same
qualitative trends with environment.

Expanding the analog of Eq. (31) in powers of �0 and q0,
and taking the S0 ! 0 limit yields

�cb
L
1 ¼ �2�1þ �

qc=�c

þAð��Þ;

�2
cb

L
2 ¼ �H3ð�Þþ2�H2ð�Þ

qc=�c

þ �2

ðqc=�cÞ2
þð�2�2þ2ÞAð��Þ;

(33)

and

�2
cc

L
2 ¼ � �2

ðqc=�cÞ2
�
1þ �ðqc=�cÞ � 2ðqc=�cÞ

�

�

� 2�

qc=�c

Að��Þ; (34)

where we have defined

AðxÞ �
�
1þ 1þ erfðx= ffiffiffi

2
p Þ

2

x
ffiffiffiffiffiffiffi
2	

p

e�x2=2

��1
: (35)

The Appendix describes the large-scale bias associated
with Eq. (A4).

Figure 3 compares these predictions with Monte Carlo,
showing that the model works rather well. Following
Ref. [9], we estimate the bias factors in the Monte Carlos
using cross correlations. Namely, we estimate

b1 ¼ hsfðsj�0Þð�0=
ffiffiffiffiffi
S0

p Þi
hsfðsÞi ffiffiffiffiffi

S0
p ðS�=S0Þ ; b2 ¼ hsfðsj�0Þð�2

0=S0 � 1Þi
hsfðsÞiS0ðS�=S0Þ2

;

c2 ¼ hsfðsj�0Þðr20=hr20i� 1Þi
hsfðsÞiVarðr20=hr20iÞhr20iðS�=S0Þ2

; (36)

where the angle brackets denote sums over walks which
first cross at s, Varðr20=hr20iÞ denotes the variance of r20=hr20i
on scale S0, and the factors of S�=S0 must be included
when making estimates in this way for reasons given in
Ref. [25]. We present results for S0 ¼ 0:09, for which
S�=S0 � 1:45.
The analysis above shows that, as was the case for

uncorrelated steps, b1, b2 and c2 are all expected to depend
on �. However, there is now an additional dependence on
the parameter �. As a result, for walks with uncorrelated
steps, there is a predicted relationship between c2 and b1,
which is expected to be independent of the underlying
cosmological parameters or power spectrum. Correlations
between steps introduce departures from this universality,
so it is interesting to quantify this dependence. Figure 4
shows that the predicted departures are small. Thus, our
analysis indicates that our main finding—that the Eulerian
nonlocal bias parameter c2 ¼ cL2 � 8bL1=21 can be sub-
stantial for the most massive halos—is robust to changes
in the power spectrum.

IV. COMPARISON WITH N-BODY SIMULATIONS

We now compare the predicted nonlocality of
Lagrangian halo bias with bispectrum-based measure-
ments of nonlocal bias from the Lagrangian spatial

FIG. 3 (color online). Comparison of excursion set predictions for the first crossing distribution (left) and associated nonlocal
Lagrangian bias factors (right) for a flat �CDM cosmological model, when correlations between steps have been included in the
analysis. Panel on the left shows results for walks with uncorrelated steps (labeled sharp-k), and for walks in which correlations arise
from TopHat smoothing. The corresponding first crossing distributions are well described by Eqs. (27) and (31), respectively (solid
lines). (The curve showing Eq. (A4) is almost indistinguishable from that for (31), so we have not bothered to show it.) We have only
shown the bias factors for the TopHat smoothing filter; they are well described by the solid lines which show Eqs. (33) and (34).
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distribution of protohalos in numerical simulations of hier-
archical clustering. For this purpose, we use seven Carmen
realizations of the LasDamas simulations (11203 particles,
in a box of size 1000 Mpc=h). The cosmology is a flat
scale-invariant �CDM model with �m ¼ 0:25, �� ¼
0:75, and �8 ¼ 0:8. The initial particle displacements are
implemented using second-order Lagrangian perturbation
theory at initial redshift z ¼ 49.

The halos are identified using the friends-of-friends
algorithm with linking length of 0.156 of the mean inter-
particle separation. We consider halos with at least 20
particles and focus on halos at two redshifts, z ¼ 0:97
and z ¼ 0, respectively. At each redshift we further divide
the halos into two groups, adjusting the boundary of the
mass bins so that each group has the same number density
and hence similar shot noise properties.

To quantify nonlocality of bias in Lagrangian space, we
construct Lagrangian protohalos, by tracing back to the
initial conditions the particles belonging to the Eulerian
halos at z ¼ 0 and z ¼ 0:97. We then use these protohalo
patches to compute the cross bispectrum with the dark
matter density field at the initial conditions (z ¼ 49) as
in Ref. [3]. We include dark matter Fourier modes up to
kdmmax ¼ 0:25 h=Mpc, where the rms density fluctuation
variance is 0.026, and thus tree-level perturbation theory
suffices. As for the halo Fourier modes we only include up
to khmax ¼ 0:1 h=Mpc, a limitation imposed by the scale
where Lagrangian halo bias (as measured from the ratio of
the halo-mass cross power spectrum to that of the mass)
starts to show significant scale dependence. The nonlocal-
ity of bias manifests itself as an additional dependence of
the bispectrum on triangle shape, which then allows us to

estimate its magnitude, together with the magnitude of
quadratic bias term b2 and the linear bias parameter b1.
The latter (estimated from the cross bispectrum) is in very
good agreement with the linear bias measured from the
cross power spectrum at the scales we include in the
analysis. This represents a nontrivial consistency check:
the nonlocal Lagrangian bias terms were necessary to
obtain this agreement. See Ref. [3] for further details of
this bispectrum analysis technique.
Figure 5 presents the results, shown in terms of the

Eulerian nonlocal bias parameter �2 ¼ 3c2=4 ¼ ð3=4Þ�
ðcL2 � 8bL1=21Þ. Clearly, there are statistically significant
deviations from the local Eulerian bias model (horizontal
dotted line). At high masses, there are significant devia-
tions from the local Lagrangian bias model (dashed line) as
well. Upper and lower solid curves show the excursion set
predictions for walks with uncorrelated and correlated

steps (we set qc ¼
ffiffiffi
8

p
�c). The correlated steps prediction,

in particular, reproduces the measured trends reasonably

well. Setting qc ¼
ffiffiffi
4

p
�c rather than our fiducial value offfiffiffi

8
p

�c (see Fig. 1 for why this is also acceptable) yields
slightly better agreement. This supports the view that the
model developed in the previous sections, despite its sim-
plicity, is a fairly accurate estimate of the physics which
leads to nonlocal bias effects.

FIG. 4. Dependence of excursion set prediction for the relation
between cL2 and bL1 on the shape of the power spectrum. Solid

and dashed lines are for correlated steps with �2 ¼ 1=3 (similar
to TopHat smoothing of a �CDM power spectrum) and 2=3,
respectively; dotted line is for uncorrelated steps and is inde-
pendent of PðkÞ.

FIG. 5 (color online). Comparison of the predicted relation
between c2 ¼ cL2 � 8bL1=21 and the Eulerian linear bias factor

b1 with the one estimated from bispectrum measurements of
Lagrangian protohalos in N-body simulations (symbols). Solid
lines show the predictions of the uncorrelated (top) and corre-
lated (bottom) steps model; dotted and dashed lines show the
local Eulerian and local Lagrangian bias models, c2 ¼ 0 and
cL2 ¼ 0, respectively.
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A more detailed comparison with simulations will be
presented elsewhere, e.g., one might imagine leaving �c

and qc to be free parameters when fitting Eqs. (27) and/or
(31) to the halo abundances in simulations, and then using
these best-fit values to predict the measurements shown
in Fig. 5.

V. DISCUSSION

If halo bias is nonlocal in Lagrangian space [Eq. (15)],
then this will add nonlocality in Eulerian space bias
[Eq. (18)]. We provided an explicit calculation of this
effect, in which halo formation depends on the initial local
density �0 and shear field q20.

In the excursion set approach, the problem of estimating
halo abundances reduces to solving for the first crossing
distribution of a suitably chosen barrier [Eq. (25)] by
6-dimensional random walks. In particular, we argued
that a barrier which is linear in q0 should provide a good
first approximation to the physics of halo collapse (Fig. 1).
And we provided a simple but accurate analytic approxi-
mation for the first crossing distribution for the case in
which walks have uncorrelated steps [Eq. (27)]; the ap-
proximation follows from treating the full six-dimensional
problem as an effective one-dimensional one [Eq. (26)].

Predictions for halo bias come from studying walks
which do not start from the origin. We argued that the
associated first crossing distribution is best thought of in
terms of a shifted barrier [Eq. (28)], from which it is
straightforward to derive formulas for halo bias formulas
[Eqs. (29) and (30)]. These formulas, which quantify
how the large-scale density and shear fields affect halo
abundances as a function of mass and time, are quite
accurate (Fig. 2).

For walks with correlated steps, the predicted first cross-
ing distributions and bias formulas can be written in units
in which they are universal (independent of power spec-
trum and cosmology). We argued that this universality
should be weakly broken if steps are correlated (Fig. 4).
In this case, too, we provided analytic approximations for
the unconditional first crossing distribution [Eq. (31)] and
halo bias factors [Eqs. (33) and (34)], which were quite
accurate (Fig. 3). Our results indicate that nonlocal bias
effects, as quantified by the parameter c2 ¼ cL2 � 8bL1=21
of Eq. (18), can be substantial for the most massive halos.

Our analysis is easily extended to describe the more
complicated case in which the barrier �c depends on
ðe; pÞ of Eq. (7) rather than simply q2. This is because
�cðe; pÞ is a function of the combination e� and p� [12],
and, like q2, these combinations are actually independent
of � [18]. Alternative parametrizations of this [17] have
�cðv;wÞ, where v and w [defined in Eq. (12)] are also
independent of �. This means that the analog of Eq. (A4),
in which one averages over a distribution of first crossing
distributions, remains a good approximation.

In addition, the idea that one can map the six-
dimensional walk problem to a one-dimensional moving
barrier problem should continue to hold when �cðe; pÞ or
�cðv;wÞ rather than �cðqÞ, so the analog of Eq. (31) should
also provide a reasonable approximation. Therefore, we
believe our analysis should be applicable to other parame-
trizations or models of the effects of nonlocality. Indeed,
our analysis should also apply to cases where one places
conditions on the eigenvalues of the deformation tensor
(e.g., all three have the same sign), rather than the combi-
nations e, p, or v, w. In this respect, it provides the basis
for modeling not just halos, but the abundance and spatial
distribution of superclusters, filaments, sheets and voids as
well. In particular, our analysis predicts that all of these
constituents of the cosmic web should exhibit nonlocal bias
effects; it will be interesting to see if such effects are
discovered in simulations.
In our analysis of nonlocal halo bias, we assumed that

the effect of the large-scale environment was to affect the
distribution of � and q on smaller scales, but not the shape
of the collapse barrier. If the halo formation process de-
pends on the surrounding environment, as the analysis in
Ref. [26] suggests, then this will provide an additional
contribution to nonlocal bias. It is straightforward to in-
clude such an effect in our treatment of conditional
n-dimensional walks, but our current expressions do not
do so.
We stated at the start that the nonlocal effects which are

the subject of this paper, and which enter at the quadratic
level (q2, e�, etc.), are qualitatively different from those
which enter even at the linear level and contribute
k-dependent terms to the bias. In principle, both effects
are present in our correlated walks calculation—the latter
arise from the dependence of the first crossing distribution
on the derivative of the initial density field [7,9], rather than
on the anisotropic distribution of the mass. Since our main
goal was to illustrate the effects of q2, etc., we ignored these
other terms, but a more complete model would include
them. Separating these terms from one another should be
possible, since the terms which depend on derivatives of the
field will only contribute to the monopole of the bias. This
is the subject of work in progress.
A first comparison with numerical simulations (Fig. 5)

showed that our model is fairly accurate at describing the
magnitude of nonlocal Lagrangian bias, in particular after
accounting for correlations between steps. A more detailed
comparison with simulations may require merging the
formalism here with the additional requirement that one
is interested in special positions (such as peaks), rather
than random positions in the field. As noted in Ref. [10],
the formalism of Ref. [7] on which our analysis is based
allows the inclusion of this requirement with no additional
conceptual complications; for peaks in a Gaussian field,
this is particularly straightforward, because the distribution
of the shear field around such peaks is known [27].
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Our analysis also suggests that a fruitful extension of the
peaks model to smaller masses than that on which it
usually breaks down is to look for peaks in the field defined

by �� ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=q2c

p
.
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APPENDIX: ANALYTIC ESTIMATE
OF NONLOCAL LAGRANGIAN BIAS

For barriers of the form �c þ q�c=qc, Eq. (13) of
Ref. [7] yields a simple estimate of the first crossing
distribution,

�fð�Þ �
�
1� erfcð��= ffiffiffi

2
p Þ

2
þ �e��2�2=2ffiffiffiffiffiffiffi

2	
p

��

�

�
Z

d�p5ð�Þ e
�ð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2

c=q
2
c

p
Þ2=2ffiffiffiffiffiffiffi

2	
p ; (A1)

where

p5ð�Þd� � d�2

�2

�
5�2

2

�
5=2 e�5�2=2

�ð5=2Þ ; with � � q=�:

(A2)

The integral can be written in terms of the parabolic

cylinder function Uða; zÞ with a ¼ 9=2 and z ¼
ð1þ 5q2c=�

2
cÞ�1=2, which, in turn, can be written in terms

of derivatives of ez
2=2erfcðz= ffiffiffi

2
p Þ. The integral equals

2
e��2=2ffiffiffiffiffiffiffi

2	
p

�
5=2

�2
c=q

2
c þ 5

�
5=2 4!

�ð5=2Þ e
z2=4Uð9=2; zÞ

¼ e��2=2ffiffiffiffiffiffiffi
2	

p �ð1=2Þ
�ð5=2Þ

�
5=2

�2
c=q

2
c þ 5

�
5=2 d4½ez2=2erfcðz= ffiffiffi

2
p Þ�

dz4
;

(A3)

where z ¼ ð1þ 5q2c=�
2
cÞ�1=2. Thus,

�fð�Þ ¼ �e��2=2ffiffiffiffiffiffiffi
2	

p
�
1� erfcð��= ffiffiffi

2
p Þ

2
þ e��2�2=2ffiffiffiffiffiffiffi

2	
p

��

�

� ð5=2Þ5=2
�ð5=2Þ ½C1ð�Þ � C2ð�Þ�;

where C1 ¼
� ð��c=qcÞ4
ð5þ ð�c=qcÞ2Þ4

þ 6ð��c=qcÞ2
ð5þ ð�c=qcÞ2Þ3

þ 3

ð5þ ð�c=qcÞ2Þ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	

5þ ð�c=qcÞ2
s

erfcðyÞey2=2

C2 ¼ 5
2ð��c=qcÞ

ð5þ ð�c=qcÞ2Þ3
þ 2ð��c=qcÞ3

ð5þ ð�c=qcÞ2Þ4
: (A4)

Although this expression is not particularly illuminating,
we have included it because the peak background split bias
factors are easily estimated from the fact that

dm½ez2=4Uða; zÞ�
dzm

¼ ð�1Þmð1=2þ aÞmez2=4Uðaþm; zÞ:
(A5)

More insight comes from approximating the integral
over � in Eq. (A4) with the value of the integrand at its
mean value h�i ¼ 1. This yields Eq. (31) in the main text.
A little algebra shows that this particularly simple and
intuitive approximation should be quite accurate when
qc=�c � 1. Figure 6 shows that this is indeed the case,
although Eq. (A4) is accurate over a wider range of qc=�c.

FIG. 6 (color online). Dependence of excursion set prediction
for the first crossing distribution of the barrier �cð1þ q=qcÞ by
six-dimensional walks, on qc. Solid curves show Eq. (A4), and
dashed curves show the approximation Eq. (31). Curve labeled
MS shows the qc ! 1 limit, and dotted curve labeled BCEK
shows this limit for one-dimensional walks with uncorrelated
steps. For the walks with correlated steps, the underlying power
spectrum is �CDM, and the correlations are due to smoothing
with a real space TopHat.
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To estimate the large-scale bias, for comparison with the
peak background split estimate, we must first estimate the
first crossing distribution for walks which pass through
ð�; QÞ on some S � s. Then the Lagrangian bias factors
are given by expanding

1þ �hðmj�; QÞ � fðmj�; QÞ
fðmÞ ; (A6)

in powers of � and Q. This shows that one generally
expects halo abundances and hence Lagrangian bias to
depend on Q as well as �.

The effect of the constraint is to modify the distribution
of ð�; qÞ but not the barrier (this is actually an assump-
tion—in principle, the shape of the barrier could depend on
the large-scale environment, in which case this would
provide an additional environmental effect), so the calcu-
lation is actually rather similar to that for unconstrained
walks. The independence of q and � on all scales means
that the conditional distribution, given the values �, Q on
some other scale (in what follows, we will assume this
other scale is larger), factorizes

pð�0; �; qj�; QÞ ¼ p5ðqjQÞgð�0j�;�Þgð�j�Þ; (A7)

where

gð�j�Þ ¼ exp�ð���
ffiffiffiffiffiffi
s=S

p
�Þ2=2sð1��2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	sð1� �2Þp with

�2 ¼ h��i2
h�2ih�2i ¼

h��i2
sS

(A8)

and p5ðrjRÞ is a noncentral chi-squared distribution,

p5ðqjQÞdq ¼ d��p5ð��Þe�
5�2Q2

2Sð1��2Þ

�
�
1þX1

j¼1

�
5�2ðQ2=SÞ
2ð1� �2Þ

5�2
�

2

�
j �ð5=2Þ
�ð5=2þ jÞ

�
;

where �2
� � q2=�2

1� �2
: (A9)

Notice that this is simply a �2
5 distribution for ��, when

Q ¼ 0. In general, the integral over �� can again bewritten

in terms of parabolic cylinder functions. But, to lowest
order in Q,

p5ðqjQÞdq ¼ d��p5ð��Þ
�
1� ð1� �2

�Þ 5ð�
2Q2=SÞ

2ð1� �2Þ
�
;

where �2
� � q2=�2

1� �2
: (A10)

This is most easily understood by thinking of the non-
central chi-squared distribution as a Poisson mixture of
central chi-squared distributions of ever higher order and
keeping only the lowest two terms. Note that, for a sharp k
filter, �2 ¼ h�2i=h�2i ¼ S=s, making �2R2=S ¼ R2=s
in the expression above. However, we are interested in
the general case, for which it is convenient to define
S� � h��i, making �2R2=S ¼ ðS�=SÞ2ðR2=sÞ.

p5ðqjQÞdq ¼ d��p5ð��Þe�
5�2Q2

2Sð1��2Þ

"X1
j¼0

�
5�2ðQ2=SÞ
2ð1� �2Þ

�
j

� �ð5=2Þ
�ð5=2þ jÞ

Xj
i¼0

j

i

 !
xiyj�i

#

¼ d��p5ð��Þe�
5�2Q2

2Sð1��2Þ

"X1
i¼0

�
5�2ðQ2=SÞx
2ð1� �2Þ

�
i

�X1
j�i

�
5�2ðQ2=SÞy
2ð1� �2Þ

�
j�i �ð5=2Þ

�ð5=2þ jÞ

� j!

ðj� iÞ!i!

 !#
: (A11)

If we define

�� ¼ �� �
ffiffiffiffiffiffiffiffi
s=S

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sð1� �2Þp ! �� �
ffiffiffiffiffiffiffiffi
s=S

p
�ffiffiffiffiffi

2s
p (A12)

on large scales, then

�fð�j�;QÞ���

�
1�erfcð���=

ffiffiffi
2

p Þ
2

þ e��2�2
�
=2ffiffiffiffiffiffiffi

2	
p

���

�

�
Z
dqp5ðqjQÞe

�ð��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�2

c=q
2
c

p
Þ2=2ffiffiffiffiffiffiffi

2	
p : (A13)

The purely local contributions to the bias come from con-
sidering the ratio fð�j�; Q ¼ 0Þ=fð�Þ in the S ! 0 limit.
These correspond to replacing � ! �� in Eq. (A4). In
addition, the expression above shows that if the barrier
does not depend on q, then �fð�j�; QÞ does not depend on
Q; nonlocal effects on the bias are entirely due to depen-
dence of the collapse barrier on q.
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