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ABSTRACT

WEAK LENSING AND MODIFIED GRAVITY OF COSMIC STRUCTURE

Joseph Clampitt

Bhuvnesh Jain

We offer predictions of symmetron modified gravity in the neighborhood of realistic dark

matter halos. The predictions for the fifth force (FF) are obtained by solving the nonlinear

symmetron equation of motion in the spherical NFW approximation. We compare the three

major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such

dark matter sources, emphasizing the significant differences between them and highlighting

observational tests which exploit these differences. In addition to halos, we investigate

the behavior of the FF in voids in chameleon modified gravity models using the spherical

collapse method. The FF can be many times larger than the Newtonian force. This is very

different from the case in halos, where the FF is no more than 1/3 of gravity. Individual

voids in chameleon models grow larger by 10%. The number density is up to 2.5 times

larger in chameleon models. This difference is about 10 times larger than that in the halo

mass function. Turning to weak lensing data analysis, we search for the lensing signal of

massive filaments between 220,000 pairs of Luminous Red Galaxies (LRGs) from the Sloan

Digital Sky Survey. We use a nulling technique to remove the contribution of the LRG

halos, resulting in a 10-sigma detection of the filament lensing signal. We compare the

measurements with halo model predictions based on a calculation of 3-point halo-halo-mass

correlations. Comparing the "thick" halo model filament to a "thin" string of halos, thick

filaments larger than a Mpc in width are clearly preferred by the data. In addition to

filaments, dark matter voids should exhibit a weak lensing signal. We find voids in the

galaxy distribution using a novel algorithm, then perform a stacked shear measurement on

20,000 voids with radii between 15-40 Mpc/h and redshifts between 0.16-0.37. We detect

the characteristic radial shear signal of voids with a statistical significance that exceeds 13-

sigma. The mass profile corresponds to a fractional underdensity of about -0.4 inside the

void radius and a slow approach to the mean density.
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Chapter 1

Introduction

1.1 Modified Gravity

1.1.1 How and why does Modified Gravity replace Dark Energy?

The standard model of cosmology calls for a universe in which only a small fraction of the

matter and energy come from the standard baryonic material which makes up the stars and

galaxies that we observe directly. Under the assumption that Einstein’s theory of general

relativity (GR) is true at cosmological scales, it is necessary to postulate a component of the

universe known as dark energy, which is very successful at accounting for the observed ex-

pansion of space. This substance must currently make up ∼ 70% of the total matter/energy

of the universe in order to cause the observed rate of expansion. This is disconcerting,

but given GR, the cosmological constant is a convenient solution to the expanding universe

problem. The Einstein-Hilbert action of GR

S =
∫

d4x
√
−g
[

R

16πG
+ Lm

]
, (1.1)

can be varied with respect to the metric gµν , yielding Einstein’s equation

Rµν −
1
2
R gµν = 8πGTµν . (1.2)

1



1. INTRODUCTION

Including a cosmological constant is straightforward

S =
∫

d4x
√
−g
[

R

16πG
− Λ + Lm

]
, (1.3)

and it results in an additional term which causes the background expansion of the universe

Rµν −
1
2
R gµν = 8πG(Tµν − Λ gµν) . (1.4)

This modification is sufficient to explain the observed expansion of space.

However, the dearth of tests of GR on large scales leaves room for alternative explana-

tions: there are a number of ideas which seek to explain the expansion without dark energy

by modifying the fundamental equations of GR (12, 27, 56, 94). Hence, we call these Mod-

ified Gravity (MG) theories. For example, the Einstein-Hilbert action can be modified by

replacing the Ricci scalar R by some function of R,

S =
∫

d4x
√
−g̃
[
R+ f(R)

16πG
+ Lm

]
. (1.5)

One functional form is popular enough to be known as the f(R) theory (52)

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
. (1.6)

In the high-curvature limit (m2/R→ 0),

f(R) ≈ −c1

c2
m2 +

c1

c2
2

m2

(
m2

R

)n
, (1.7)

so that the first term acts as a cosmological constant. The second term has other observable

consequences which are sometimes called the “fifth force.” However, one of the challenges in

developing new models of gravity is the necessity for the theory to agree with GR on scales

within the solar system, where GR has been verified to high precision. Although the theory

may make different predictions on large scales, these differences must be minimized in the

presence of high density environments such as the Milky Way. This ability of a theory is

called its “screening” mechanism (56), due to the way it hides the fifth force in high density

environments.

2



1.1 Modified Gravity

1.1.2 Screening of the Fifth Force

Equation (1.6) can be rewritten in terms of a transformed metric gµν as

S =
∫

d4x
√
−g
[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+
∫

d4xLm[g̃] . (1.8)

This form makes explicit that while matter is minimally coupled to the metric g̃µν , the

action can be written so as to decouple an Einstein-Hilbert piece from a piece involving

kinetic and potential terms of a scalar field, φ. Thus gravity described with metric gµν plus

a scalar field is said to be in the “Einstein frame,” in contrast to the description in terms of

g̃µν and no additional scalar field which is called the “Jordan frame.” The Einstein frame is

intuitive in that the first term of Eq. (1.8) reproduces Einstein’s equation, Eq. (1.2). The

coupling function A(φ) relates the Jordan and Einstein frame metrics

g̃µν = gµνA
2(φ) . (1.9)

The Jordan frame energy-momentum tensor is the one that is conserved

∇̃µT̃µν = 0 , (1.10)

while in Einstein frame the conserved energy density is

ρ = A3(φ)ρ̃ . (1.11)

The details of the conformal transformation between Einstein and Jordan frames are de-

scribed in Carroll (11), beginning at Eq. (4.129). Note that since the scalar field φ also

participates in the gravitational interaction, particles do not follow geodesics of the Einstein

frame metric.

Consider static, spherically-symmetric solutions, where r is the radial coordinate. The

time-time component of Eq. (1.2) yields the Poisson equation,

∇2Φ(r) = 4πGρ(r) , (1.12)

3



1. INTRODUCTION

where Φ is the familiar Newtonian potential. The scalar field equation-of-motion (EOM)

also involves the Laplacian, here acting on the scalar φ,

∇2φ =
∂

∂φ
(V + ρA) ≡ ∂

∂φ
Veff , (1.13)

with boundary conditions
dφ

dr
|r=0 = 0, φ(r → 0) = φ0 . (1.14)

These equations are sufficient to solve for the radial profiles Φ(r) and φ(r). These profiles

then determine the forces according to

FN(r) = −∇Φ(r) (1.15)

and

Fφ(r) = −∇A(φ(r)) = −∂A
∂φ
∇φ(r) . (1.16)

The net force is the sum of the Newtonian and fifth forces

Ftotal = FN + Fφ . (1.17)

We now highlight two examples of screening: the symmetron (42) and chameleon (63)

mechanisms.

1.1.2.1 Symmetron Screening

The Symmetron (42) screening mechanism works by a quartic effective potential whose

minima change drastically when moving from high to low density regions:

Veff(φ) =
1
2

(
ρ

M2
s

− µ2

)
φ2 +

1
4
λφ4 . (1.18)

A plot of the potential is shown in Fig. 1.1. The sign of the quadratic term in the potential

determines how close the minimum is to φ = 0. At high densities (left panel), the sign is
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Figure 1.1: Shape of the symmetron effective potential in high density, ρ� ρ̄ (left panel), and
low density, ρ ∼ ρ̄ (right panel), environments. The x-axis shows the value of the scalar field in
units of its value φ0 at the cosmic mean density. The field seeks to sit at the local minimum of
the potential: when this corresponds to φ = 0 as in high density environments, the fifth force,
proportional to φ, is screened and GR is restored.

positive and there is a single minimum at φ = 0. For lower densities (right panel), however,

the quadratic term flips sign and the field prefers to sit closer to its cosmic mean value φ0.

The difference between these two minima of φ has drastic consequences for the resulting

forces. The coupling which produces such an effective potential is

A(φ) = 1 +
φ2

2M2
s

, (1.19)

with Eq. (1.16) giving the corresponding force

Fφ(r) = −∇(φ2/2M2
s ) = −φ(r)

Ms

∇φ(r)
Ms

. (1.20)

Since Fφ ∝ φ(r), the small value that φ reaches inside a dense object sets the fifth force to

zero. In the cosmic mean density, on the other hand, the field can couple to matter with

gravitational strength, causing a fifth force.

More details of the symmetron theory and parameters can be found in Chapter 2, as

well as detailed calculations of the screening in overdensities such as dark matter halos.
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1.1.2.2 Chameleon Screening

A second, related screening mechanism is that of the chameleon field (63, 64). An example

of a chameleon effective potential is given by, e.g., Li & Zhao (76),

Veff(φ) =
Λ

(1− e−φ/Mpl)α
+ ρeγφ/Mpl , (1.21)

with coupling

A(φ) = eγφ/MPl . (1.22)

Note that the chameleon effective potential shown in Fig. 1.2 is qualitatively similar to

the symmetron potential of Fig. 1.1. The minimum is very near φ = 0 for high density

environments, but moves towards larger φ values for lower densities. However, the coupling

is substantially different, resulting in a force

Fφ(r) = γeγφ/MPl
∇φ(r)
MPl

, (1.23)

such that small values of φ can still generate fifth forces, as long as the field is still changing

with r(|∇φ| > 0).

In order to understand chameleon screening, a distinction needs to be made between

the minimum of the effective potential at a given point in space, which is a local quantity,

and the value the field actually attains at that point. Call the local minima inside and

outside an object φin and φout, respectively. The actual value of the field is affected by the

local density, but also by the global solution obeying the field’s boundary conditions. The

right panel of Fig. 1.2 shows the preferred value of the field outside a high density object,

φout, and the left panel shows its preferred value at the center of the object, φin. In order

to reach the preferred minimum φin ∼ 0, the field has to pass through all intermediate

values between φout and φin. The details of this solution must be worked out case by case,

according to Eq. (3.28), but schematically, the question of whether φ actually reaches its

preferred minimum depends on the size of the object. A very dense but small object may
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Figure 1.2: Same as Fig. 1.1, but showing chameleon potentials. In a high density medium
the preferred minimum of the field is very near φ = 0 (left panel), and moves to larger field
values in less dense media (right panel). Since the chameleon force is proportional to ∇φ, and
not φ, this is not enough to say that high density objects are screened.

have a nonzero gradient of φ throughout, whereas a larger but less dense object could be

partially screened when at some radius r > 0, the field attains its minimum, φin, and stays

there all the way in to r = 0.

More details of this chameleon theory and parameters can be found in Chapter 3, as well

as detailed solutions for the case of screening in underdensities such as dark matter voids.

1.1.3 The fifth force in astrophysical environments

As we move towards connecting with observations, it is useful to build some intuition for

the effects of the fifth force. The following analogy with two of the other four forces,

electromagnetism and Newtonian gravity, is inspired by Hui et al. (53). Recall Coulomb’s

law for the force between two objects with charges q1 and q2,

FE =
1

4πε0
q1q2

r2
. (1.24)
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The force is proportional to the product of the charges of the two objects. In Newtonian

gravity the masses M1 and M2 play a similar role

Fg =
−GM1M2

r2
.

Likewise, two objects can be thought of as having their own 5th force “charges,” Q1 and

Q2. The new wrinkle is that the charge is no longer a property purely of the object itself,

but is dependent on the density of the larger-scale environment in which the object sits.

The fifth force, mediated by the scalar field φ is, schematically,

Fφ ∝
−GQ1(ρ1, ρenv)Q2(ρ2, ρenv)

r2
. (1.25)

The case of Qi → 0 is called screening. In this limit the predictions of the scalar tensor

theory correspond to those of GR. Note also that at large distances there is a significant

change in the range of the fifth force:

Fφ ∝
−GQ1(ρ1, ρenv)Q2(ρ2, ρenv)

r2
e−r/λ , (1.26)

where the Compton wavelength λ for the theories we consider is confined to be ∼ Mpc

(137). The exponential falloff is order unity for r . λ, but cuts the force off much faster

than gravity for r > λ.

Even at the level of this mnemonic, it is possible to distinguish potentially interesting

astrophysical and cosmological systems from those which are unlikely to exhibit the effects

of a fifth force. The criteria for an interesting system is that both the source of gravity with

charge Q1 and the “test particle” with charge Q2 are unscreened. Since Q is also affected

by the environment, this also requires looking for objects in low density environments. The

following table illustrates how difficult it is to find systems which exhibit the fifth force:
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Environment Source (Q1) test particle (Q2) Q1 ×Q2

galaxy cluster dwarf galaxy HI gas clouds 0
dark matter (particles or subhalos) 0

main sequence stars 0
cepheid stars 0

light 0
void dwarf galaxy HI gas clouds max

dark matter (particles or subhalos) max
main sequence stars 0

cepheid stars partial
light 0

Note that some tests which seem useful at first glance are actually red-herrings, due to the

degeneracy of the fifth force with the mass of the object. For example, puffy HI gas clouds

in a dwarf galaxy in a void would show the effect of enhanced forces, whereas comparable

gas clouds in a similar size dwarf galaxy in the neighborhood of a galaxy cluster would

move under Newtonian gravity. But given only the information that dwarfs in voids tend to

be heavier than those near clusters, it is not possible to distinguish whether these are two

separate populations both moving according to GR, or the same population with only some

members moving under the influence of the fifth force.

Nonetheless, there are a number of useful tests. For a dwarf galaxy in a void, the mass

obtained from the motion of HI gas clouds and that of main sequence stars should be different

(57, 134). Note that the schematic value of Q1×Q2 in the table depends on the value of the

theory parameters. The above values correspond to an f(R) theory in which the charge of

the milky way just reaches Q = 0, that is, |fR0| = 10−6 in the theory of Hu & Sawicki (52).

By comparison of the tight period-luminosity relation of Cepheids in different environments,

Jain et al. (58) were able to put even tighter constraints on this theory.

As will be touched on at the beginning of § 1.2, photons have no fifth force charge so

that gravitational lensing also provides a useful null test of the fifth force. This will be

an important detail in chapter 2, which shows predictions for tests comparing the mass of

galaxies obtained using dynamical tracers such as HI gas clouds and or small stars to those

9
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obtained using weak lensing. In addition, in chapter 3 we will consider the lowest density

environments available, cosmic voids, and predict the change in their size distribution given

a fifth force that increases the outward push on their constituent dark matter particles.

1.2 Weak Lensing

In addition to the familiar movement of massive bodies in a gravitational field, General

Relativity predicts that photons are deflected by gravity. The above discussion of fifth

forces applies to non-relativistic particles which follow time-like geodesics, not relativistic

particles following null geodesics. It can be shown that relativistic particles are immune to

the effects of the fifth force; the details of the argument summarized here can be found in

Padmanabhan (100), in Eqs. (4.68, 4.74) and the surrounding discussion. Padmanabhan

(100) argues by first taking the point of view, different from our definitions in § 1.1, that

the geodesic equation changes under conformal transformations. That is, all particles move

on the geodesics of both frames, and thus Einstein frame does not need a separate scalar

field and fifth force. Then, they show that while in general geodesics in one frame are not

geodesics in the other, null geodesics remain the same in both frames. It is a convenient

result: the Newtonian potential of GR is sufficient to calculate the deflection of light, from

which all weak lensing observables are derived.

Whether modifications to General Relativity are needed or not, gravitational lensing is

a useful probe of cosmic structure. Below we summarize some basic equations of weak grav-

itational lensing, including a brief discussion of how this technique can be used to measure

the masses of dark matter halos in the presence of statistical and systematic observational

errors.
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1.2 Weak Lensing

1.2.1 Lensing Geometry

Let Φ again be the Newtonian potential of a massive “lens,” such as a galaxy or dark matter.

It can be shown, e.g., in Carroll (11) Section 7.3, that the angle by which background light

is deflected by this lens is

~̂α =
2
c2

∫
~∇⊥Φ drlos , (1.27)

where ~∇⊥ is the gradient perpendicular to the velocity vector of the photon.

For a point source, the potential is given by

Φ(R, rlos) = − GM

(R2 + r2
los)

1/2
(1.28)

where R is the impact parameter and rlos parameterizes the path of the light, approximated

by the undeflected path. The deflection angle is then

α̂ =
4GM
c2R

(1.29)

A fuller picture of the relevant geometry is shown in Fig. 1.3: for this figure and the

following discussion, we mostly follow the conventions of Narayan & Bartelmann (91). The

impact parameter has a magnitude given by

R = DLθ , (1.30)

where θ is the observed angular distance between the lens and source (in radians) and DL

is the distance between the observer and the lens. Distances defined such that this arc-

length formula holds are termed “angular diameter distances.” Likewise, Ds and DLs are the

angular diameter distances from the observer to the source and from the lens to the source,

respectively. For more discussion of these and other distance measures used in cosmology,

see, e.g., Hogg (44).
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The observed source position ~θ is the angle on the sky at which the observer sees the

background source galaxy. The lensing deflection has obscured the true source position, ~β.

These two angles are related through the lens equation

~β = ~θ − ~α , (1.31)

where ~α is the “reduced” deflection angle. Since the triangle defined by the true source

position, angle ~̂α, and observed position shares a side with that defined by the true position,

angle ~α, and observed position, and both angles are small, they are related by

~α =
DLs

Ds

~̂α . (1.32)

1.2.2 Relating true and observed images

In order to use the shapes of background sources to learn something about the intervening

matter, we need to relate their true and observed images. This mapping is given by asking

how small changes in the observed position, ~θ, relate to small changes in the true position
~β:

∂βi
∂θj

=
∂

∂θj
(θi − αi) (1.33)

= δij −
∂αi
∂θj

(1.34)

≡ δij −
∂

∂θj

(
∂ψ

∂θi

)
(1.35)

where we have defined a lensing potential ψ whose gradient with respect to θ is the reduced

deflection angle,
~∇ψ ≡ ~α . (1.36)

The functional form of this lensing potential is then

ψ(~θ) =
2
c2

DLs

DLDs

∫
Φ(DL

~θ, rlos) drlos , (1.37)
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Figure 1.3: The trajectory of a photon moving near a massive object is deflected by an angle
α̂. The light was emitted by a source galaxy observed at an angle θ from the lens, but with
true position β. These angles are related by the angular diameter distances between observer,
lens, and source.
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as can be shown:

~∇θψ = DL
~∇Rψ (1.38)

=
DLs

Ds

2
c2

∫
~∇RΦ(~R, rlos) drlos (1.39)

=
DLs

Ds

~̂α . (1.40)

Linear combinations of derivatives of ψ describe the change in shape of background

source galaxies. One effect is magnification, an isotropic stretching of the galaxy light, but

we will focus on anisotropic stretching, or “shear.” In a Cartesian coordinate system, the

two components of shear are

γ1 =
1
2

(
∂2ψ

∂θ2
1

− ∂2ψ

∂θ2
2

)
(1.41)

γ2 =
∂2ψ

∂θ1∂θ2
. (1.42)

Gravitational lensing causes a shear of the background source which is tangential to the line

joining the lens and source. Shear in the tangential coordinate system relative to the above

Cartesian shears is

γt(~θ) = −γ1(~θ) cos (2φ)− γ2(~θ) sin (2φ) , (1.43)

where φ is the angle between the x-axis of the Cartesian coordinate system and the line

joining this particular lens-source pair. The cross-component,

γ×(~θ) = γ1(~θ) sin (2φ)− γ2(~θ) cos (2φ) , (1.44)

describes shears that are at 45◦ to the tangential line. This component is not generated grav-

itationally by single deflections, but can be generated by errors in the shape measurement

procedure. Thus it serves as a useful test of systematics.
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1.2.3 Lensing signal of dark matter halos

The excess surface density ∆Σ is a useful quantity, as it connects the direct observable γt(θ)

to the 3D density ρ(r). On one side, we have

∆Σ(R) = Σcr(DL, Ds) γt(R) , (1.45)

where the proportionality factor Σcr determines the strength of the lensing; this critical

surface density is given by

Σcr =
c2

4πG
Ds

DlDls
. (1.46)

And on the other side, the connection to the 3D density is

∆Σ = Σ̄(< R)− Σ(R) (1.47)

where the surface density is an integral over the 3D density,

Σ(R) =
∫ ∞
−∞

ρ(r =
√
χ2 +R2)dχ , (1.48)

and the average of the surface density inside projected radial distance R is

Σ̄(< R) =
∫ ∫

Σ(R′)d2R′∫ ∫
d2R′

=
2
R2

∫ R

0
Σ(R′)R′dR′ , (1.49)

for the case of a circularly symmetric mass distribution.

Motivated by N-body simulation results (92), we can take a density which follows the

NFW profile

ρ(r) =
4ρs

r/rs(1 + r/rs)2
, (1.50)

fully determined by two parameters, the scale radius rs and density ρs. An equivalent and

common parameter set is the halo mass, Mvir (with associated Rvir), and concentration,

c = Rvir/rs. The left panel of Fig. 1.4 shows the excess surface density for halos of mass
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Mvir = 1012, 1013, 1014M�/h: it is a strong function of halo mass. Coincidentally, the

peaked 3D density profile of dark matter halos results in a similar radial shape for the

lensing observable. In chapter 5, we will show that this is not the case for dark matter

voids.

1.2.4 Statistical and systematic errors

A model fitting approach can be used to obtain the mass and concentration by varying the

3D profile of Eq. (2.11) to produce the ∆Σ(R) profile best matched to the weak lensing

observable γt. However, this also requires an accurate uncertainty on measurements at each

radial bin. The dominant uncertainty at small scales is given by shape noise, the intrinsic

ellipticity of source galaxies. This ellipticity is indistinguishable from the lensing effect,

except for its random orientation, allowing a statistical measurement in which the random

noise, initially hundreds of times larger than the signal, is decreased below the level of the

gravitational shear by stacking many lens-source pairs. The noise is

σγt =

√
σ2

shape + σ2
m√

Npair

≈ 0.3√
Npair

(1.51)

per radial bin. The rms intrinsic ellipticity of 0.3 is beat down by the number of lens-source

pairs per bin,

Npair = Nlens ×Nsource

=

(
(Volume)

dn

dm

∣∣∣∣
zl

)
×
(
nsourceπ(R2

i −R2
i−1)

)
(1.52)

where Ri, Ri+1 label the bin edges, nsource is the surface density of background sources, and

dn/dm is the halo mass function. The uncertainty in the excess surface density

σ∆Σ = Σcrσγt (1.53)

depends also on the critical surface density.
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In order to give some sense of the S/N we reference a particular experiment. The Dark

Energy Survey (DES) will cover 5,000 square degrees of the southern sky to a limiting

magnitude of i < 24, several magnitudes deeper than current comparable surveys such as

Sloan Digital Sky Survey (SDSS). Given this limiting magnitude, DES should find all lenses

down to a halo mass Mhalo ∼ 1012M�/h in the redshift interval 0.2 < z < 0.4. We integrate

over the mass function between 11.8 < log10 (Mhalo × h/M�) < 12.2 and multiply by the

volume between 0.2 < z < 0.4 to obtain the number of lenses. For the sources we take an

effective source redshift of zs = 0.75, and source density of nsource = 10 per sq. arcmin to

obtain the number of sources, Nsource, in Eq. (1.52). In the right panel of Fig. 1.4 we show

the S/N ratio for these ∼ 1012M�/h size lenses (dot-dashed line). The result is also shown

for two orders of magnitude higher in halo mass, each time integrating the mass function

over an interval log10 (Mhalo)± 0.2 log10 (Mhalo).

However, these S/N estimates are extremely optimistic in that there are other factors

which increase the variance significantly, and can even systematically bias the signal. De-

termining lens and source galaxy redshifts using only the five DES filters results in large

uncertainty in the line-of-sight distance to these galaxies. That uncertainty translates into

increased scatter and possibly bias through the scaling of γt to ∆Σ based on the redshift

dependence of Σcr. In addition, these line-of-sight distance errors may affect distance as-

sumptions and therefore luminosity determination, leading to error in the halo sizes in the

stacked measurement. However, even with true redshift information, there is an intrinsic

mass-luminosity scatter in the way galaxies occupy dark matter halos. This scatter, whether

intrinsic or due to photometric redshifts, makes it more difficult to interpret the halo masses

obtained from the tangential shear profiles.

A number of other effects are worth mentioning. For example, lens variance such as

scatter in the concentration-mass relation will affect small scales more strongly than large

scales. At the image level of estimating source galaxy ellipticities, issues such as deblending

and sky subtraction can bias the estimates. Intrinsic alignments of satellite galaxies with
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Figure 1.4: Signal-to-noise ratio for M = 1014, 1013, and 1012M�/h halos. Based on an
estimate of the DES magnitude limit, we expect to find all halos of these masses within redshifts
of 0.2 and 0.4; this redshift range, along with the DES survey area of 5000 sq. deg., gives the
volume needed to estimate the number of stacked lenses. The effective lens and source redshifts
are zl = 0.3 and zs = 0.75, while source density is 10 per sq. arcmin.

centrals have been measured; these can bias galaxy-galaxy lensing if some supposed back-

ground sources are actually satellites of the lens galaxy. Assuming the brightest galaxy in

a cluster or group is at the center of the dark matter halo can also lead to decreased signal,

since stacking tangential shears around some point other than the center smooths out the

observed profile. The NFW profile used above is motivated by dark matter simulations, but

baryons in the form of stars and gas also contribute to the total mass and therefore lensing

profile. Finally, uncertain cosmology can also cause some error due to the dependence of

distances on dark energy parameters.

These systematics and others have been considered by, e.g., Mandelbaum et al. (78) and

Sheldon et al. (118), which obtain masses of dark matter halos using SDSS data. In chapter

4 we move away from the simpler, spherically-symmetric lensing signal of halos to measure
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1.2 Weak Lensing

lensing from dark matter filaments in SDSS. However, the above basics of weak lensing data

analysis, such as accounting for statistical and systematic errors, are still very relevant. And

finally, in chapter 5 we measure the minute gravitational lensing signal of voids in SDSS, in

the process developing a new void finder optimized for lensing purposes.
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Chapter 2

Halo Scale Predictions of Symmetron
Modified Gravity

2.1 Introduction

The observed acceleration in the expansion of the universe can arise from a dark energy

component or from a departure of gravity from general relativity (GR) on cosmological

scales. One way to distinguish between the two possibilities is to consider the growth of

perturbations. For modified gravity (MG) theories, the relation of the expansion history

to the growth of perturbations is specific to every model. In the quasi-static, Newtonian

linear regime, several authors have parameterized the growth of perturbations with g(k, z) ≡
G/GN and η(k, z) ≡ ψ/φ (e.g. (55, 142)).

Laboratory and solar system constraints (see (138) and references therein) require any

viable MG theory to have some mechanism by which it mimics the predictions of GR within

Milky Way-size halos. Such “screening” mechanisms (see (56) for a review) generally de-

termine the deviations from GR based on the local density: in high density environments

the scalar force is suppressed, while in low density environments it can be of approximately

gravitational strength. Two such mechanisms have been extensively studied in the literature:
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the chameleon screening (63) of f(R) theories (12, 52, 96) and Vainshtein screening (133) of

higher dimensional (e.g., Dvali-Gabadadze-Porrati (DGP) gravity (27)) and Galileon mod-

els (94). Recent work has included detailed simulations which are necessary because of the

nonlinearity inherent in how GR is recovered inside the Milky Way (14, 113).

In this work we explore the symmetron model of (42) (see also (99) and (107)), which

exploits a novel screening mechanism similar in part to chameleon screening but with key

differences. The symmetron has a vacuum expectation value (VEV) that is large in low

density environments and small in high density environments. Symmetron screening then

relies on a coupling to matter that is proportional to the VEV, thus suppressing the scalar

force in high density environments. Recent work has focused on symmetron cosmology,

including the evolution of the symmetron field through various cosmological epochs (43), as

well as its effect on linear (5) and nonlinear (25) structure formation.

Tests of gravity on linear scales have some limitations. The g, η parameterization is only

valid on scales smaller than the superhorizon regime and larger than the nonlinear regime.

At high redshift there is a different problem: since MG models recover GR at high redshift

for consistency with CMB and Nucleosynthesis observations, effects of enhanced forces are

manifested only at late times. Thus, even if observations are made late enough to be within

the MG era, the signal has had limited time to accumulate.

In this study we consider tests on scales within and outside virial radii of dark matter

halos modeled with the Navarro-Frenk-White (NFW) (92) profile. In this regime the pre-

dicted deviations due modified gravity can be significantly larger than in the linear regime

(measurement errors and systematic uncertainties need to be taken into account but will

not be considered here). As highlighted by (53) and (57), astrophysical tests in this regime

can provide effective tests of chameleon theories. We will calculate the predicted deviations

for symmetron theories.

In § II we describe the symmetron theory and our method for calculating modified forces

around NFW halos. § III contains our isolated halo results as well as a comparison of the
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various screening mechanisms. In § IV we model and show results for forces on test particles

in two-body host-satellite systems. We conclude in §V.

2.2 Force profiles of NFW halos

2.2.1 Symmetron theory

In the Einstein frame we can describe the gravitational forces as GR with an additional “fifth

force,” mediated by the symmetron field, φ. For GR we have the usual Poisson equation:

∇2ΨN = 4πGρ, leading to

|FN| =
dΨN

dr
=
GM(< r)

r2
. (2.1)

The symmetron equation of motion in the presence of non-relativistic matter (42) is

2φ =
∂V

∂φ
+ ρ

∂A

∂φ
≡ ∂

∂φ
Veff , (2.2)

where

V (φ) = −1
2
µ2φ2 +

1
4
λφ4 , (2.3)

and

A(φ) = 1 +
φ2

2M2
s

+ O

(
φ4

M4
s

)
. (2.4)

Note that the relevant field range is φ�Ms, such that any O(φ4/M4
s ) terms in A(φ) can be

consistently neglected. The potential V (φ) comprises the most general renormalizable form

invariant under the Z2 symmetry φ→ −φ. The coupling to matter ∼ φ2/M2
s is the leading

such coupling compatible with the symmetry. The model involves two mass scales, µ and

Ms, and one positive dimensionless coupling λ. The mass term is tachyonic, so that the Z2

symmetry φ→ −φ is spontaneously broken. The effective potential of eq. (2.2) is

Veff(φ) =
1
2

(
ρ

M2
s

− µ2

)
φ2 +

1
4
λφ4 . (2.5)
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2.2 Force profiles of NFW halos

Whether the quadratic term is negative or not, and hence whether the Z2 symmetry is

spontaneously broken or not, depends on the local matter density.

The screening mechanism works roughly as follows: in vacuum or in large voids, where

ρ ' 0, the potential breaks reflection symmetry spontaneously, and the scalar acquires a

VEV |φ| = φ0 ≡ µ/
√
λ; in regions of high density, such that ρ > M2

s µ
2, the effective potential

no longer breaks the symmetry, and the VEV goes to zero. Meanwhile, to lowest order the

symmetron-matter coupling is ∼ ρφ2/M2
s . Fluctuations δφ around the local background

value φVEV, which would be detected by local experiments, couple to density as

∼ φVEV

M2
s

δφ ρ . (2.6)

In particular, the coupling is proportional to the local VEV. In high-density environments

where the symmetry is restored, the VEV should be near zero and fluctuations of φ do not

couple to matter. In less dense environments, where ρ < M2
s µ

2 and the symmetry is broken,

the coupling turns on.

For a static-spherically symmetric source, eq. (2.2) becomes

d2φ

dr2
= −2

r

dφ
dr

+
(

ρ

M2
s

− µ2

)
φ+ λφ3 . (2.7)

We set the parameters as in (42): Ms = 10−3MPl satisfies solar system constraints while still

allowing for order unity deviations elsewhere. Also, µ =
√
ρc/Ms and λ = (µ/φ0)2, where ρc

is the average cosmological density today and φ0 is the background value of the field. Note

that these parameter choices correspond to µ ∼ Mpc−1, constraining symmetron effects to

∼ Mpc distances.

As in (43), the symmetron-mediated force Fφ relative to the Newtonian force FN between

two test masses in vacuum is set by the symmetry-breaking value φ0:

Fφ
FN

= 2M2
Pl

(
d lnA

dφ

∣∣∣∣
φ0

)2

' 2
(
φ0MPl

M2
s

)2

. (2.8)
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2. SYMMETRON GRAVITY IN HALOS

If the scalar-mediated force is to be comparable to gravity in vacuum, then we must impose

φ0/M
2
s ∼ 1/MPl, that is,

φ0 ≡
µ√
λ

= g
M2

s

MPl
, (2.9)

where g ∼ O(1). To be precise, it follows from eq. (2.8) that g measures the strength of the

scalar force in vacuum relative to gravity: Fφ = 2g2FN. For comparison to f(R) and DGP

theories, for which the fifth force is at most 1/3 FN, we will set g = 1/
√

6; otherwise we

choose g = 1, which is still consistent with solar system tests, as shown in (42). Note that

eq. (2.8) has no dependence on the test bodies involved. Extended mass distributions affect

the scalar and Newtonian forces differently so that solving for the Newtonian potential and

scalar field profile is required in order to evaluate the ratio. The ratio of forces on a test

mass in the neighborhood of such an extended distribution is

Fφ
FN

=
(φ/Ms)(∇φ/Ms)

∇ΨN
. (2.10)

2.2.2 NFW halos

We consider gravitational forces in the neighborhood of NFW halos (92), whose density

profiles are a good fit to those of stacked simulated halos. The (untruncated) density is

ρNFW(r) =
4ρs

r
rs

(
1 + r

rs

)2 , (2.11)

where ρs and rs are parameters that depend on halo mass (see below). We define the mass

M300 of each halo as that enclosed within the virial radius, R300. This is the radius at which

the average density enclosed is 300 times the critical density ρc. The concentration connects

the virial radius to the scale radius, c = R300/rs. We take it to be a function of halo mass,

c = 9
(

M300

3.2× 1012M�/h

)−0.13

, (2.12)
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2.2 Force profiles of NFW halos

as found in (8). The mass and concentration definitions are chosen to allow comparison of

our results with the chameleon model of (115). We note that the profile itself will change

somewhat with the modified forces.

The mass enclosed within radius r is

M(< r) = M300
F (c r/R300)

F (c)
, (2.13)

where F (x) = ln (1 + x)− x/(1 + x). We use eq. (2.13) in (2.1) to solve for the Newtonian

force. In order to obtain the symmetron profile, it is useful to define a dimensionless scalar

field, ψ ≡ φ/φ0 whose equation of motion follows from eq. (3.28):

d2ψ

dr2
= −2

r

dψ
dr

+
(

ρ

M2
s

− µ2

)
ψ + µ2ψ3 . (2.14)

We obtain the radial profile by substituting eq. (2.11) in (2.14) with boundary conditions

dψ

dr

∣∣∣∣
r=0

= 0, ψ(r →∞) = 1 . (2.15)

We use a shooting algorithm to solve this nonlinear equation, tuning the boundary condition

ψ(r = 0) such that the field stays within 1% of ψ = 1 at large r for at least 25 virial radii.

Note that Eqs. (2.14), (2.15) depend only on the theory parameters µ and Ms; they are

independent of φ0 and λ. The only effect of changing φ0 is to set the overall amplitude of

the symmetron profile and therefore the amplitude of the ratio of forces.

For comparison to the work of (42) and as a check of our numerical solutions, we also

solve for the force deviation in the case of a top-hat density profile

ρtop−hat(r) =

{
ρ0, r < Rvir

0, r > Rvir ,
(2.16)

where ρ0 = 300ρc. For the top-hat profile, specifying the mass and density fixes R300. To

obtain an analytic solution, we approximate the symmetron equation of motion as quadratic
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Figure 2.1: Force deviation Fφ/FN for a top-hat density profile of total mass 1013M� cal-
culated numerically (dashed line) and analytically (dotted line). We find similar agreement
between the two methods throughout the mass range 1010 − 2× 1014M�.
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2.3 Results for isolated halos

around the appropriate minimum inside and outside the object (see (42) for details) resulting

in

φin(r) = A
R

r
sinh

(
r

√
ρ

Ms
− µ2

)
φout(r) = B

R

r
e−
√

2µr + φ0 , (2.17)

and solve for A and B by matching at the boundary. The exact solution is obtained using

our shooting algorithm as in the NFW case. Figure 2.1 shows the equivalence of these

methods for a top-hat mass 1013M�. We find similar agreement between the two methods

throughout the mass range 1010 − 2× 1014M�.

We can define γvir as an average of the force deviation over the virial radius of a halo

(see (115) for details). This quantity can be determined from both theory and observations.

From the theory we have calculated

γvir =
∫
r3ρ(r) FN(1 + Fφ/FN) dr∫

r3ρ(r) FN dr
, (2.18)

where the integral is over the virial radius R300. This is straightforward to compare to

observations, which yield

γvir = (M300,dyn/M300)5/3 , (2.19)

where M300,dyn is a dynamical mass, and M300 is the “true” or lensing mass.

As will be seen later, the deviation from GR is significant out to ∼ 10 times the virial

radius. Therefore we define a second average γ̄d exactly as in eq. (2.18), except the integrals

are taken over distances d = 0.5, 1, 4, and 10 R300.

2.3 Results for isolated halos

Figure 2.2 shows the force deviation Fφ/FN on a test particle given by eq. (2.10) in the

neighborhood of isolated NFW halos of various masses. Also pictured are the deviations
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Figure 2.2: Ratio Fφ/FN of the symmetron mediated force to the GR force for halos of different
masses with field symmetry breaking value φ0 = M2

s /MPl (i.e. g = 1). The halos are modeled
with NFW (solid line) and spherical tophat (dashed line) profiles. Note that the ratio is plotted
vs. radius in units of each halo’s virial radius, R300. The background compton wavelength,
λφ ≈ 1 Mpc (vertical dotted line) gives a sense of the physical distance.
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ḡ d

d=0.5 R300

d=1.0 R300

d=4.0 R300

d=10.0 R300

f(R)  max

Figure 2.3: (left panel): Averaged force deviation, γvir, as a function of “true” or lensing mass
for different values of the symmetry breaking field value, φ0 = gM2

s /MPl. (right panel): A
modified averaged force deviation for the smallest field value g = 1/

√
6. The average is taken

over a distance d from the center of the halo, with d = 0.5, 1, 4, and 10 R300 from bottom. On
both panels, the horizontal dotted line at 4/3 shows the maximum average for f(R) modified
gravity.
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Figure 2.4: (left panel): Here we plot γφ ≡ 1+Fφ/FN for comparison with γf(R) in (115). Solid
curves are from our symmetron model with φ0 = M2

s /
√

6MPl. Dashed curves are from normal
branch DGP with crossover radius rc = 500 Mpc, rc = 3100 Mpc, and self-accelerating DGP,
from top to bottom. (right panel): Reproduced from (115). Force deviation for Hu-Sawicki
f(R) around NFW halos. Arrows denote the radius where the chameleon thin-shell condition
is first met. See (115) for details of the DGP and f(R) models. We see that the three types of
screening predict distinct transitions in Fφ/FN with respect to both radius and mass (see text
for details).
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2.3 Results for isolated halos

for constant density spheres of the same mass. We plot using the symmetron vacuum value

φ0 = M2
s /MPl, but as argued in section 2.2, letting φ0 → gφ0 simply shifts these curves down

by a factor g2. For all but the smallest halos (1010M�), the two profiles give significantly

different results all the way out to the virial radius R300.

In the left panel of figure 2.3, we plot γvir given by eq. (2.18) for three values of the

symmetron vacuum value: φ0 = gM2
s /MPl with g = 1, 1/

√
3, 1/
√

6. Setting g = 1/
√

6

fixes the max deviation at 4/3 as in f(R) and DGP theories. Equation (2.18) implies

Mdyn,300 = γ
3/5
vir M300 so that the symmetron theory predicts, e.g., the dynamical mass of a

1011M� halo to be 50%, 25%, or 10% greater than the lensing mass for the three pictured

values of g.

The right panel of figure 2.3 shows the same average taken out to larger radii d×R300,

corresponding to 0.5, 1, 4, and 10 times the halo’s virial radius. Although the peak deviations

in figure 2.2 are at approximately 7 R300, the weighting by density in the integral of eq. (2.18)

results in a relatively small increase in γvir with d for a given halo.

In figures 2.4 we collect results for screening in the symmetron, DGP, and chameleon

theories. The DGP and chameleon results are from (115). The left panel overlays our sym-

metron results (setting g = 1/
√

6) with three DGP models exhibiting Vainshtein screening.

These are normal branch DGP with crossover radius rc = 500 Mpc, rc = 3000 Mpc, and

self-accelerating DGP. The right panel of figure 2.4 shows chameleon screening in the f(R)

model of (52) with field cosmological value |fR0| = 10−5. We refer the reader to (115) for

further details of these theories.

The “thin-shell” effect (63) of the chameleon, in which only a thin shell at the edge

of a screened object contributes to the fifth force, is evident in the rapid rise of the force

deviations from zero to their peak at r ≈ 2R300. In contrast, partially screened halos in

the symmetron model show nonzero deviations at smaller radii that increase all the way to

∼ 7R300 before declining back to zero (see figure 2.2 for the large r behavior). DGP models
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2. SYMMETRON GRAVITY IN HALOS

also show nonzero deviations that increase beyond 2R300, eventually approaching a constant

value.

The transition of the force deviations with halo mass also shows promise for distinguish-

ing between the three screening mechanisms. For concreteness, consider the deviations at

the virial radius R300. For the chameleon background field value |fR0| = 10−5 (10−6), a

1016M� (1015M�) halo shows no deviation while a 1013M� (1012M�) halo exhibits the

maximum allowable deviation of 4/3. All smaller halos will likewise show a 4/3 deviation.

In contrast, the symmetron 2 × 1014M� halo is completely screened at R300 while the de-

viation is only maximized at 4/3 for dwarfs of mass . 109M�. Thus, the degeneracy in

the deviation exhibited between smaller halos in the chameleon model is not present in the

symmetron. Furthermore, DGP models show no dependence on halo mass. These argu-

ments imply that probes of modified forces spanning the mass range 109 − 1014M� would

be effective at distinguishing between all three types of screening.

Simulations of f(R) (114, 143) and symmetron (25) gravity show little evidence for large

changes in halo concentration. However, the simulations of (2) show that for some models of

interacting dark energy with a scalar fifth force, halo concentrations can be up to a factor of

two larger or smaller than for comparable halos in ΛCDM. Furthermore, none of the above

simulations resolve halos smaller than ∼ 1012M�, for which the fifth force is most likely

to cause a change in the density profile. We therefore conclude our study of single-halo

solutions by considering the changes in Fφ/FN resulting from concentrations cmin ≡ c / 2

and cmax ≡ 2 c, where c is our fiducial concentration given by Eq. (2.12).

The results for a 1011M� halo are shown in figure 2.5. This particular halo mass shows

our largest changes in Fφ, reaching ±20%FN relative to our fiducial concentration model

in the innermost parts of the halo (r ≈ 0.01R300). However, even for this most extreme

example the deviations fall to the few % level by ∼ 0.2R300. While smaller halos show

slightly lesser changes with concentration, we find that for masses ≥ 1012M� the increase

or decrease is at most ≈ 5%FN.
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Figure 2.5: Force deviation Fφ/FN for three different halo concentrations: our fiducial choice
c given by Eq. (2.12) (solid line), a maximum variation cmax = 2c (dashed), and a minimum
variation cmin = c / 2 (dotted). Although we have used extreme changes in the concentration
and plotted the deviations for the halo most susceptible to such changes (1011M�), the difference
in Fφ is less than 10%FN for most of the extent of the halo.
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Figure 2.6: We average the host density in spherical shells about the satellite’s center. The pa-
rameter d is the center-to-center distance between the halos, r is the standard radial coordinate,
θ is the azimuthal angle, and u2 = d2 + r2 − 2dr cos θ.

2.4 Host-satellite effects

2.4.1 Model

We now consider the force deviation that would be experienced by a test mass in the neigh-

borhood of a satellite halo which is itself blanket screened by a nearby host. We model host

and satellite with NFW profiles as before, determined by Eqs. (2.11), (2.12). To preserve

spherical symmetry, we approximate the host profile by averaging its density in spherical
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shells around the satellite location. See figure 2.6. Thus, for the average host profile we have

〈ρh〉(r) =
1

4π

∫
dΩ ρhost(u(r, d, θ))

=
1
2

∫ π

0
dθ sin θ

4ρs
u
rs

(1 + u
rs

)2

=


4ρsr3s /d

(d+rs)2−r2 , 0 ≤ r ≤ d
4ρ0,sr3s /r

(r+rs)2−d2 , d ≤ r ,
(2.20)

where u2 = d2 + r2 − 2dr cos θ, d is the center-to-center distance between the halos, and θ

is the azimuthal angle. Averaging the satellite density ρsat around its own center leaves its

own NFW profile unchanged. We insert the total density

ρ = ρsat + 〈ρh〉 (2.21)

in eq. (2.14) with the boundary conditions (2.15), yielding the radial symmetron profile.

The Newtonian force is given by integrating the profile eq. (2.20) in spherical shells to find

the enclosed mass (see appendix A). We note that this averaged density profile will slightly

overestimate (underestimate) the force deviation Fφ/FN on the side of the satellite nearer

to (farther from) the host.

Figure 2.7 shows the density profile of a cluster-size (2 × 1014M�) host modeled by

eq. (2.20), an NFW satellite, and their sum, for two host-satellite separation d = 1 and

2 Rhost. In the inner parts of the satellite its own NFW profile dominates the total density,

while the host profile is a slowly increasing function of r. At r ∼ Rsat the averaged host

density becomes the dominant component. After the cusp, which occurs at the host center

we see the host density rapidly transitions to the NFW ρ ∝ 1/r3 power law. The pictured

density profile is qualitatively similar for all relevant satellite and host masses.

2.4.2 Results

The cluster’s screening effect on the satellite is evident in figure 2.8. At low radii the force

deviation Fφ/FN for the total density profile has a similar slope to that of the isolated
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Figure 2.7: Host-satellite density profile as a function of radius in units of the satellite’s virial
radius, centered at the satellite’s location. Pictured are the NFW satellite profile (dotted), aver-
aged host profile given by eq. (2.20) (dot-dashed), and the sum of host and satellite components
(solid). The latter two curves are shown for host-satellite separation d = 1Rhost (thick lines)
and d = 2Rhost (thin lines). In each case, the cusp in the total profile is located at the separation
distance d. This plot assumes Msat = 1012M� and Mhost = 2 × 1014, although the profile is
qualitatively similar for all relevant satellite and host masses. The host density becomes the
dominant component at r ∼ Rsat.
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Figure 2.8: Force deviation Fφ/FN for the total density profile of eq. (2.21) (solid lines). This
is the deviation that would be experienced by a test mass in the neighborhood of a satellite
halo which is itself blanket screened by a nearby host (Mhost = 2 × 1014M�). The deviation
is shown for two values of the host-satellite separation d: thick solid lines for d = 1Rhost and
thin solid lines for d = 2Rhost. Also shown are Fφ/FN for isolated halos with mass equal to the
satellite (dotted) and host (thin and thick dot-dashed). The environmental screening from the
host brings the modified forces of the satellite below 10%, therefore nearly unobservable in each
case. Figure 2.9 shows larger deviations for lower host masses.
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Figure 2.9: Force deviation Fφ/FN for the total density profile of eq. (2.21) (solid lines), using
smaller host masses than in figure 2.8. This is the deviation that would be experienced by a
test mass in the neighborhood of a satellite halo which is itself (partially) blanket screened by a
nearby host. The deviation is shown for two values of the host-satellite separation d: thick solid
lines for d = 1Rhost and thin solid lines for d = 2Rhost. For comparison, the dotted line plots
the deviation for an isolated satellite: the difference between dotted and solid lines indicate the
additional screening due to the nearby host. In each case, the host significantly decreases the
force deviations of the satellite, but to a level that is still potentially observable.
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satellite profile, but with an amplitude decreased below the observationally interesting level

of ∼ 1%. In each panel there is a sharp transition of the solid line at the distance d (i.e.,

location of the cusp in figure 2.7) separating the host and satellite. Here the force ratio for

the total density profile is closely approximated by that of the host alone. At very large

radii, all three curves fall off rapidly, as the symmetron force decays exponentially due to

its finite compton wavelength. The environmental screening from the host brings the force

deviation of the satellite below the level of observations for each case. Note that for this

and the following two-halo calculations, we set φ0 = M2
s /MPl.

In order to see the partial screening of a satellite, it is necessary to consider smaller

hosts. Figure 2.9 shows the force deviation Fφ/FN for the same range of satellite masses

and host satellite separations as in figure 2.8, but with host masses of 1013 and 1012M�.

For Msat < Mhost, including the host at 2 Rhost decreases the fifth force by 50-150% relative

to gravity, and halving the separation to 1 Rhost brings a further decrease of 5-10%. For

example, an isolated 1011M� has Fφ ≈ 150%FN at its virial radius, while if a 1012M� halo

is 2 or 1 virial radii away, this deviation is cut down to 60%FN or 45%FN, respectively. See

appendix B for calculations of the modified forces at the satellite virial radius as a continuous

function of d.

A few comments on the validity of the approximate host profile of eq. (2.20) and the

results of Figs. 2.8, 2.9 are in order here. Since the NFW profile of the host does not change

much across the diameter of the smaller satellite, we expect the force deviation predictions

to be accurate in the regime r . Rsat. Here our spherically symmetric approximation

should slightly overestimate the deviation on the side of the satellite nearer the host, while

underestimating the deviation on the far side. For r � d the offset between host and satellite

is negligible, so that eq. (2.20) approaches the NFW density profile eq. (2.11). Thus, our

approximation captures well the small and large r behavior of the exact host-satellite system.

In the intermediate regime r ∼ d we note that the screening will vary widely between the

near and far sides of the satellite. On the side nearer the host we should observe thorough
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blanket screening, while on the far side screening from the host may well be negligible,

depending on the separation d. However, given that dynamical tracers of the satellite mass

(such as stars, HI gas, and satellite galaxies) are generally confined to r . Rsat, our model

describes well the observationally relevant range.

2.5 Discussion

We have presented predictions for the modified forces of symmetron gravity around dark

matter halos, modeling the halo density with the NFW profile. For a large range of halo

masses 1010 − 1013M� we find order unity deviations from GR at distances 1 − 7 R300

from the halo center, while the dwarf-size halos of 1010 − 1011M� exhibit large deviations

throughout (figure 2.2).

We have also shown an average of this deviation given by the quantity γvir suggested

by (115); our theoretical calculations of γvir (figure 2.3) are simply related to observables

by Eqs. (2.18) and (2.19). We find & 20% differences over the mass range 1010 − 1013M�,

indicating that observations of dynamical and lensing masses of galaxies are a promising

way to constrain parameters of the theory.

Furthermore, γvir is necessary to test the mass function of the theory. Reference (25) ob-

tains the mass function from symmetron N-body simulations by counting halos as a function

of their true or lensing mass. However, observations more commonly yield the dynamical

mass of virialized structures; a means of converting between the two is therefore essential to

constrain the theory using the mass function.

We have gathered predictions for symmetron, chameleon, and Vainshtein screening in

the neighborhood of NFW haloes in order to find ways to distinguish between classes of MG

models in realistic astrophysical situations. We find significant differences among the three

screening mechanisms, including
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• In contrast to the chameleon, the lack of a distinct thin-shell radius for the symmetron

results in a nonzero deviation at small radii even for partially screened halos. Since

visible tracers of galaxies are often well within the virial radius, the tests of (53, 57)

are more easily applied to test symmetron screening.

• At a given radius, the chameleon deviations change rapidly with mass and therefore

reach their maximum of 4/3 quickly. The symmetron exhibits more gradual changes

in the deviation, while DGP models have no dependence on halo mass.

We note that there is an approximation involved in using the NFW profile: although this

profile is a good fit to stacked halo densities in GR simulations, it is possible that the profile

itself will change with the modified forces. However, the symmetron N-body simulations

of (25) are able to resolve halos of mass & 5 × 1012M�; for these larger halos we have

compared our results for the symmetron field and find them qualitatively consistent with

the N-body simulations. (Note that (25) defines a parameter zSSB related to µ and Ms (see

(25) for details) and focus on zSSB = 2.0. We have checked our results with theirs using this

same value for zSSB, but our standard choice of parameters corresponds to zSSB ≈ 0.5, for

which the theory predicts relatively lesser deviations from GR. Thus, consistency with the

simulations for the larger value of zSSB is actually a more stringent test than consistency for

our choice of parameters.)

This work has not considered two other screening mechanisms that have recently been

discovered: the environmentally dependent dilaton (7, 24) and k-mouflage (1). However,

k-mouflage screening has been shown to be similar to Vainshtein (i.e., independent of halo

mass), and due to the similar dependence of the derivative of the coupling (∂A/∂φ ∝ φ)

in symmetron and dilaton models, the dilaton screening may exhibit similarities to the

symmetron.

We have also shown results for screening of satellite halos by larger neighboring hosts.

We have approximated the host density by averaging its NFW profile in spherical shells
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2. SYMMETRON GRAVITY IN HALOS

about the satellite: the resulting profile is shown in eq. (2.20) and figure 2.7. We found that

the environmental screening effect from a 2×1014M� cluster is sufficient to reduce deviations

from GR well below the level of 1% for smaller halos located within twice the host virial

radius (figure 2.8). However, figure 2.9 shows that for smaller hosts of mass 1012 − 1013M�

the force deviations around the satellite are decreased (relative to the isolated case) but still

potentially observable. One caveat to this method should be mentioned: in reality, adding a

second halo breaks the spherical symmetry of our system. Thus we expect that our results

for two-body systems slightly underestimate (overestimate) the screening on the side of the

halo nearer to (farther from) the second halo.

We comment briefly on the possibility of analytical solutions for two-body systems in

symmetron modified gravity. There has been some success in finding approximate analytical

solutions of two-body systems in chameleon theories. In (87) the thin shell effect is used to

find solutions for uniform density spheres in a variety of configurations. Furthermore, (109)

expands these solutions to include an NFW host halo and test body (point mass) satellites

of Msat ≤ 1010M�. However, these results do not straightforwardly translate to symmetron

gravity: the thin-shell effect of the chameleon allows a clean division into 3 regions in the

neighborhood of an object with a thin shell (inside the shell, the thin shell itself, and outside

the shell); in contrast, the symmetron transitions more smoothly within screened objects

(see figure 2.4), making such a partitioning much more difficult.

42



Chapter 3

Voids in Modified Gravity: Excursion
Set Predictions

3.1 Introduction

Models of modified gravity (MG) are introduced to explain the observed accelerating cosmic

expansion, without invoking a cosmological constant in the Einstein equation. Scalar-tensor

gravity theories are among those that are well received recently. In these theories, the

scalar field is coupled to matter, triggering an extra fifth force which leads to an universal

enhancement of gravity. The enhanced gravity violates existing robust tests of general

relativity (GR) in the solar system, so that only theories with a screening mechanism to

suppress the fifth force in high density regions are observationally viable (e.g. 63). Gravity is

therefore back to GR in the early universe, as well as in the vicinity of virilized objects where

the local density is sufficiently high. MG models like chameleon gravity can therefore pass

the tests of current constraints from the solar system (63). Nevertheless, structure formation

in these models should be somewhat different from that of the standard Λ-cold-dark-matter

(ΛCDM, where Λ represents the cosmological constant) paradigm. In low density regions of

the universe, the fifth force is weakly or not suppressed, so that dark matter and ordinary
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3. VOID ABUNDANCE IN MG

matter will feel this extra force and hence evolve differently from the GR case. Qualitatively,

one may expect structure to form earlier in MG than in GR with the help of enhanced

gravity. Indeed, halos are found to be more massive and more abundant in simulations of

f(R) gravity (74) as compared to GR at the same epoch. Similarly, voids appear to be larger

and emptier in MG. These qualitative results seem to point in the same direction as some

recent observational facts, which have been shown to be in tension with a ΛCDM universe.

Firstly, some galaxy clusters detected using X-ray and lensing techniques at high redshift

are found to be too massive and have formed too early (e.g. 30, 45, 50, 60). The probability

of the existence of those massive clusters in ΛCDM is prohibitively small, but see Harrison &

Coles (38), Hotchkiss (46), Hoyle et al. (51), Waizmann et al. (135, 136). Introducing non-

Gaussianity can ease this tension, but the fNL parameter required to fit the data is usually

too high, which is in tension with other observational constrains like the cosmic microwave

background (CMB). Secondly, the detected integrated Sachs Wolfe (ISW) (111) signal from

the stacking of 4-deg2-size regions of the CMB corresponding to the SDSS super clusters

and super voids is found to be 2 − 3σ higher than estimations from simulations (35, 102).

This tension with the ΛCDM paradigm is perhaps more than 3−σ as suggested in Nadathur

et al. (89). Accounting for non-linear ISW effect by using simulations of full-sky ISW maps

from (9), the tension remains nearly unchanged (32). Similar conclusions are found by

independent study of (39). If one assumes that the expansion history of the universe is

given by the concordance ΛCDM model, then one plausible explanation of this discrepancy

is that the abundance of structure in the real Universe may be greater than expected, i.e.,

there might be more clusters and super clusters, and voids might have grown larger and

deeper. This explanation seems to coincide with the first tension mentioned above. Again,

one could perhaps use this data to constrain non-Gaussianity, and find a large fNL, but an

alternative solution might be to modify gravity.

In this work, we explore the difference of structure formation in GR and chameleon

models of MG. Using the spherical collapse model and excursion set theory (4), we investigate
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3.2 The Chameleon Theory

individual void properties and the void volume distribution function in these two models.

We also compare the relative merits of distinguishing between GR and MG using voids or

halos; predictions for the latter have been addressed by Li & Efstathiou (72).

One common way to distinguish MG from GR is by looking at the difference between

the lensing mass and dynamical mass of halos (15, 31, 67, 115, 144? ). The chameleon

model studied here predicts that such a difference is at most 1/3 between the screened

and unscreened cases. At present, it is still very difficult to have mass estimates of halos

which achieve this level of accuracy, partly due to the difficulty of looking for unscreened

objects. To realize the 1/3 difference, such objects must be both small, so that they are

not self-screened, and located in low density environments, so as not to be screened by

the environment. Voids, however, are usually very low in density so that the fifth force is

unscreened inside. Furthermore, we show that the strength of the fifth force may be relatively

stronger than that of Newtonian gravity in voids. This may lead to a larger difference of

void properties from GR than that of halos.

The outline of this paper is as following: In section 3.2, we give a brief summary of the

coupled scalar field gravity, of which the chameleon model is an example. In section 3.3, we

solve the scalar field profile for voids in this model and highlight interesting differences of

the fifth force to Newtonian gravity in voids. In section 3.4, we extend the spherical collapse

model to solve for the evolution of shells in voids in this model and identify the best regimes

to distinguish this model from GR. Section 4.2 presents the first crossing barrier for voids,

and incorporates the moving barrier and environmental dependence of void formation to the

excursion set theory to calculate a void volume distribution function. We summarize our

results and consider possible ways to test MG in voids in section 3.6.

3.2 The Chameleon Theory

This section lays down the theoretical framework for investigating the effects of a coupled

scalar field in cosmology. We shall present the relevant general field equations in § 3.2.1,
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and then specify the models analyzed in this paper in § 3.2.2.

3.2.1 Cosmology with a Coupled Scalar Field

The equations presented in this subsection can be found in Li & Barrow (71), Li & Zhao

(75, 76), and are presented here only to make this work self-contained.

We start from a Lagrangian density

L =
1
2
[
M2

PlR−∇aφ∇aφ
]

+ V (φ)− C(φ)(LDM + LS), (3.1)

in which R is the Ricci scalar; the reduced Planck mass is MPl = 1/
√

8πG with G being the

gravitational constant; and LDM and LS are respectively the Lagrangian densities for dark

matter and standard model fields. φ is the scalar field and V (φ) its potential; the coupling

function C(φ) characterises the coupling between φ and matter. Given the functional forms

for V (φ) and C(φ), a coupled scalar field model is then fully specified.

Varying the total action with respect to the metric gab, we obtain the following expression

for the total energy momentum tensor in this model:

Tab = ∇aφ∇bφ− gab
[

1
2
∇c∇cφ− V (φ)

]
+ C(φ)(TDM

ab + T S
ab), (3.2)

where TDM
ab and T S

ab are the energy momentum tensors for (uncoupled) dark matter and

standard model fields. The existence of the scalar field and its coupling change the form

of the energy momentum tensor, leading to potential changes in the background cosmology

and structure formation.

The coupling to a scalar field produces a direct interaction (fifth force) between matter

particles due to the exchange of scalar quanta. This is best illustrated by the geodesic

equation for dark matter particles

d2r
dt2

= −~∇Φ−
Cφ(φ)
C(φ)

~∇φ, (3.3)
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where r is the position vector, t the (physical) time, Φ the Newtonian potential and ~∇ is the

spatial derivative; Cφ ≡ dC/dφ. The second term on the right hand side is the fifth force,

with potential lnC(φ).

To solve the above two equations we need to know both the time evolution and the

spatial distribution of φ, i.e. we need the solutions to the scalar field equation of motion

(EOM)

∇a∇aφ+
dV(φ)

dφ
+ ρ

dC(φ)
dφ

= 0, (3.4)

where ρ = ρDM + ρb, the sum of dark and baryonic matter densities. Equivalently

∇a∇aφ+
dVeff(φ)

dφ
= 0, (3.5)

where we have defined

Veff(φ) = V (φ) + ρC(φ). (3.6)

The background evolution of φ can be solved easily given the present-day value of ρ since

ρ ∝ a−3. We can then divide φ into two parts, φ = φ̄+ δφ, where φ̄ is the background value

and δφ is its (not necessarily small nor linear) perturbation, and subtract the background

part of the scalar field equation of motion from the full equation to obtain the equation

of motion for δφ. In the quasi-static limit in which we can neglect time derivatives of δφ

as compared with its spatial derivatives (which turns out to be a good approximation on

galactic and cluster scales), we find

~∇2δφ =
dC(φ)

dφ
ρ− dC(φ̄)

dφ̄
ρ̄+

dV(φ)
dφ

− dV(φ̄)
dφ̄

, (3.7)

where ρ̄ is the background matter density.

The computation of the scalar field φ using the above equation then completes the

computation of the source term for the Poisson equation

~∇2Φ =
1

2M2
Pl

[ρtot + 3ptot]

=
1

2M2
Pl

[ρC(φ)− 2V (φ)] , (3.8)
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where we have neglected the kinetic energy of the scalar field because it is always very small

for the model studied here.

3.2.2 Specification of Model

As mentioned above, to fully fix a model we need to specify the functional forms of V (φ)

and C(φ). Here we will use the models investigated by (70, 75, 76), with

C(φ) = exp(γφ/MPl), (3.9)

and

V (φ) =
ρΛ

[1− exp (−φ/MPl)]
α . (3.10)

In the above ρΛ is a parameter of mass dimension four and is of order the present dark energy

density (φ plays the role of dark energy in this model). γ, α are dimensionless parameters

controlling the strength of the coupling and the steepness of the potential respectively.

We choose α � 1 and γ > 0 as in Li & Zhao (75, 76), which ensure that Veff(φ) has a

global minimum close to φ = 0 and that d2Veff(φ)/dφ2 ≡ m2
φ at this minimum is very large

in high density regions. There are two consequences of these choices of model parameters:

(1) φ is trapped close to zero throughout cosmic history so that V (φ) ∼ ρΛ behaves as a

cosmological constant; (2) the fifth force is strongly suppressed in high density regions where

φ acquires a large mass, m2
φ � H2 (H is the Hubble expansion rate), and thus the fifth

force cannot propagate far. The suppression of the fifth force is even stronger at early times,

and thus its influence on structure formation occurs mainly at late times. The environment-

dependent behaviour of the scalar field was first investigated by Khoury & Weltman (63),

and is often referred to as the ‘chameleon effect’.
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3.3 Static underdensity solutions

3.3 Static underdensity solutions

The radial profile of a chameleon-type scalar field has been studied in detail for spherical

overdensities, in which cases a simple analytical formula for the fifth force has been derived

(63) and shown to agree well with the numerical simulations (74). We know from these

previous studies that, depending on its size and environment, a spherical overdensity could

develop a thin shell which is a region of fast change of φ(r) with respect to r, and approxi-

mately only the matter contained in this shell contributes to the fifth force on a particle at

the edge of the overdensity. If the shell is thin the fifth force is much weaker than gravity

(the latter coming from all mass contained in the overdensity), while if its thickness becomes

comparable to the radius of the overdensity, the fifth force approaches a constant ratio to

gravity. For our fiducial model this ratio is 2γ2 and we choose the coupling γ such that

2γ2 = 1/3, so that the maximum deviations from GR match those of f(R) models.

Unfortunately, no analytical approximation for the fifth force is known for the case of

underdensities. It is our task in this section to study φ(r) in underdensities and the fifth

force which results. We will see that the maximum ratio of 2γ2 = 1/3 will no longer apply

in this case: in voids the fifth force can have much stronger effects than gravity.

3.3.1 Voids in Newtonian Gravity

Consider a spherically-symmetric underdensity defined by radius r and inner and outer

densities, ρin and ρout, such that ρin < ρout. First we review the forces around such voids in

Newtonian gravity. Since C(φ) ≈ 1, the first term on the right-hand side of Eq. (3.8) can

be integrated once to give the force per unit test mass

FN(χ) = −GM(< χ)
χ2

(3.11)

where

M(< χ) = 4π
∫ χ

0
dχ′ χ′2ρ0(χ′) . (3.12)
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We are interested in the simplest model of a void, with top-hat density profile

ρ0(χ) =
{
ρin for χ ≤ r
ρout for χ > r

. (3.13)

(We use the notation r for the void radius and χ for the radial coordinate for the sake of

continuity with later sections of the paper.) The resulting force on the mass shell at r is

FN(r) = −4πG
3

ρinr (3.14)

= − ρinr

6M2
Pl

. (3.15)

Only mass within the radius r contributes to the force on it – test masses inside completely

empty voids where ρin = 0 feel no force since the pull from all the mass elements outside the

void cancel perfectly. This is a standard, although counter-intuitive, result of Newtonian

gravity. If ρin is nonzero, the force on the shell is equal to that of a point particle of mass

M(< χ) which is located at χ = 0, and the force is attractive.

Similarly, since V (φ) ≈ ρΛ, the second term on the right-hand side of Eq. (3.8) gives the

effective force due to the scalar field potential (or equivalently, the cosmological constant),

FΛ(r) =
ρΛr

3M2
Pl

. (3.16)

This contributes an effective repulsive force at late cosmological times, which we call the

dark energy force in this paper.

3.3.2 Voids in Chameleon Theories

The total force on a test particle is the sum of the Newtonian force, effective force from the

dark energy, and the scalar-mediated fifth force. We will see that the fifth force is always

repulsive in voids, in the sense that the force on a test mass pushes it away from the center

of the void, towards the nearest wall; it aids the dark energy in emptying the void of matter.
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The second term on the right-hand side of Eq. (3.3) gives the fifth force, which for our

choice of C(φ) in Eq. (3.9) is

F5(χ) = −γ d
dχ

(φ/MPl) . (3.17)

We define the ratio of fifth to Newtonian forces as

η ≡ F5

FN
=

6γMPl

rρin

dφ
dχ

∣∣∣∣
χ=r

, (3.18)

which is constrained to be η ≤ 2γ2 for overdensities. Thus the problem of finding the force

deviations on a test particle in the void has been reduced to obtaining the scalar field profile

φ(χ). Before solving Eq. (3.5) to obtain the profile, we note some properties of this scalar

field model which will simplify the solution.

At fixed density ρ0, our theory has an effective potential

Veff(φ) =
Λ

[1− exp (−φ/MPl)]
α + ρ0 exp(γφ/MPl). (3.19)

Call φ0 the field value which minimizes this potential for the given density. Using the facts

that α � 1 and φ0/MPl � 1 (Sec. 3.2.2), we set ∂Veff/∂φ = 0 and expand in the small

parameter φ0/MPl to find

φ0/MPl =
α

γ

ρΛ

ρ0
. (3.20)

If m0 is the mass of small fluctuations about this minimum, then

m2
0 =

∂2Veff

∂φ2
=

(γρ0)2

αM2
PlρΛ

(3.21)

so that the associated Compton wavelength λ0 ≡ m−1
0 and the field value at the minimum

are related by

φ0 =
√
αρΛλ0 . (3.22)

The above analytic relations between the density and associated field value and compton

wavelength, namely 1/ρ0 ∝ φ0 ∝ λ0, are not a general feature of scalar-tensor theories of
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gravity, nor even of chameleon models. For example, in the f(R) model of Hu & Sawicki (52),

the relation between these three quantities has no closed form solution. While these analytic

relations are useful in themselves, we now show how they can be used to decrease the void

parameter space from three to two variables, while simultaneously removing dependence on

the theory parameters α and γ.

Naively, any top-hat void of radius r and density ρin in a uniform background density

ρout is dependent on three length scales: r, λin, and λout. However we show that since

φ/MPl � 1, the Planck scale drops out of the equation of motion, giving us the freedom

to rescale the solution by one of these lengths. This reduces the problem to two non-trivial

degrees of freedom. The equation of motion Eq. (3.5) is given by

d2φ

dχ2
+

2
χ

dφ
dχ

= −α ρΛ
√
κe−

√
κφ

(1− e−
√
κφ)α+1

+ ρ0(χ) γ
√
κ eγ

√
κφ , (3.23)

where ρ0(χ) is again the top-hat profile of Eq. (3.13). Expanding to lowest order in φ/MPl

and using α� 1 we have

d2φ

dχ2
+

2
χ

dφ
dχ

= αρΛ

(
1

φ0(χ)
− 1
φ

)
(3.24)

=
αρΛ

φout

(
φout

φ0(χ)
− φout

φ

)
. (3.25)

Defining the dimensionless field ψ ≡ φ/φout and using (3.22) yields

d2ψ

dχ2
+

2
χ

dψ
dχ

=
1
λ2

out

(
φout

φ0(χ)
− 1
ψ

)
. (3.26)

Then defining a dimensionless radial coordinate τ ≡ χ/λout, the equation further simplifies

to
d2ψ

dτ2
+

2
τ

dψ
dτ

=
φout

φ0(τ)
− 1
ψ
. (3.27)

Now, from the three length scales we can form two ratios r/λout and λout/λin (note that for

voids we must have 0 ≤ λout/λin < 1) and recast the EOM in terms of these. The problem
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is then reduced to solution of the differential equation

d2ψ

dτ2
+

2
τ

dψ
dτ

+
1
ψ

=
{
λout/λin for τ ≤ r/λout

1 for τ > r/λout
(3.28)

with boundary conditions

dψ
dτ

∣∣∣∣
τ=0

= 0, ψ(τ →∞) = 1 . (3.29)

Rewriting Eq. (3.18) in terms of the new variables and using ρΛ = ΩΛρc, we find

η(r) = 6γ
√
αΩΛ

Ωm

MPl
√
ρ̄m

rρin

dψ
dτ

∣∣∣∣
τ=r/λout

, (3.30)

where ρ̄m is the background matter density today.

Before describing the resulting solutions of the scalar field and fifth force for realistic

underdensities, we make some comments about the relevance of Eq. (3.28) for our results in

Sections 3.4 and 4.2. Since there is no known analytical approximation for φ in underdensi-

ties, as there is in the overdense case, it will be necessary to solve numerically the EOM at

each time step for an expanding void in Sec. 3.4. Furthermore, in order to obtain the void-

formation barriers of Sec. 4.2, we must calculate the trajectories of many such expanding

voids of different initial sizes and densities. While a top-hat underdensity intrinsically has

three degrees of freedom, ρin, ρout, and r, we have shown that two ratios formed from these

quantities are sufficient to solve the EOM. Thus, the most difficult numerical challenge of

Sections 3.4 and 4.2 can be overcome with a single two-dimensional table of dψ/dτ values,

where the derivative is evaluated at the border of the void. Furthermore, our recasting of

Eq. (3.23) as Eq. (3.28) has no explicite dependence on the theory parameters α and γ.

Thus, this same 2-D table serves to calculate the void-formation barriers under variations

in α and γ, as in Sec. 3.5.6.
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Figure 3.1: Left panel: Radial profile of the scalar field in a spherical top-hat underdensity
for fixed values of ρin = 0.2 ρ̄m, ρout = ρ̄m and different radii r. Center panel: The same, but
for fixed values of ρout = ρ̄m, r = 20 Mpc/h and different inner densities ρin. Right panel: The
same, but for fixed values of r = 20 Mpc/h, ρin = 0.2 ρ̄m and different outer densities ρout.
Note that the horizontal axis is scaled with respect to void radius r, so χ/r = 1 is the edge
of the spherical underdensity; also we evaluate the cosmic mean density at the present day,
ρ̄m(z) = ρ̄m(0).
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3.3.3 Radial Profile of the Scalar Field

Now we consider the results for the radial profile of the scalar field in various underdensities,

paying special attention to the value of the derivative at the void border. The left panel of

Fig. 3.1 shows the dependence on void radius, r. If r is small, then the underdensity can be

considered as a small perturbation on the environment and the scalar field value inside is

very close to its value at the boundary. As r increases, however, there is increasing space for

φ to evolve away from the exterior value (here φout ≈ 0.8× 10−5MPl) as χ/r decreases, and

therefore the scalar comes closer to reaching the value which minimizes the interior effective

potential. Since φin(out) ∝ 1/ρin(out) and ρout/ρin = 5 in the figure, we know φin = 5φout

and see that even 160 Mpc/h is not enough space for the scalar field to attain its minimum

at the center of the void.

Fig. 3.1 shows the dependence of the scalar field profile φ(r) on interior density ρin in

the central panel, assuming an exterior density equal to the cosmic mean. Here the field

does not experience much change between the outside and inside of the void, growing by

only 25% in the most extreme case, ρin = 0.1 ρ̄m. As a result, the derivative of the scalar,

and therefore the fifth force, at the void border χ/r = 1 must be small. However, we will

see that in order to get a full picture of the forces involved it is necessary to consider the

gravitational force and dark energy force as well. For this void the magnitude of the fifth

force is about twice as large as Newtonian gravity, so that even this slowly varying φ profile

results in a force that is stronger than FN.

Finally, the dependence on ρout is shown in the right panel of Fig. 3.1. The variations

here appear more drastic, since only in this panel is the limiting value φout changed from

one curve to another. With fixed interior density, a denser environment for the void results

in a larger change in the scalar and correspondingly higher derivative dφ/dχ. Note also that

due to Birkhoff’s theorem, changes in ρout do not affect the gravitational force inside the

void, nor is the dark energy force is affected. So only from this panel can we infer directly

that larger gradients of φ imply greater deviations from GR.
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There are some interesting differences from the overdense case. Consider an overdensity

and underdensity each embedded in the same environmental density ρ′out, with corresponding

minimum φ′out. For the overdensity, we know φ decreases from φ′out as we move towards the

center; however by the shape of the effective potential Eq. (3.19), φ is strictly positive, so

0 < φ′in < φ′out. The maximum change is therefore ∆φ = φ′out, no matter how great is the

interior density. In contrast, for the underdensity, φ increases from φ′out as we move towards

the center so that ∆φ has no such bound: ρin can be infinitely small in principle. For

concreteness consider the lowest curve on the right panel of Fig. 3.1: here φ′out = 10−6MPl

so that for an overdensity ∆φ < 10−6MPl, while for the pictured underdensity we see

∆φ ≥ 4 × 10−6MPl. Since the fifth force is proportional to the derivative of φ at the void

border, we expect this lack of upper bound on ∆φ for underdensities to show itself in the

force. We turn our attention next to these results.

3.3.4 The Fifth Force

In the top panels of Fig. 3.2 we show the force deviation η = F5/FN with variations in the

three physical parameters which define a void, r, ρin, and ρout. The first interesting feature

is that η is always negative. The fifth force in voids is repulsive, always pointing at the

opposite direction of normal gravity. This is the direct consequence of the scalar field profile

we have shown in Fig. 3.1, whose slope is always negative at the edge of the underdensity.

Intuitively, this repulsion occurs due to the Yukawa potential (e−χ/λ/χ) of the scalar: at

distances of the order of the Compton wavelength, the potential falls off more strongly than

1/χ. Mass elements on the far wall of a large void are unable to cancel the pull of the near

wall. Furthermore, even if ρin is nonzero, the integrated mass inside the shell is unable to

compete with the denser nearby wall, and the force is again repulsive.

Secondly, as we anticipated in Sec. 3.3.3, the unboundedness of the field, along with the

result of Eq. (3.15) that FN vanishes as ρin → 0 or r → 0, leads to deviations which do not

share the bound of |η| ≤ 2γ2. Thus the relative strength of the fifth force can be much larger
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Figure 3.2: Top-left panel: Variations of the force deviation η with underdensity radius, r.
The exterior density is fixed to the cosmic mean today, ρout = ρ̄m. Various values of interior
density ρin are shown, with ρin decreasing from top to bottom. Top-center panel: The same, but
for continuous variations of ρin, fixed ρout = ρ̄m and various values of radius r, with r decreasing
from top to bottom. Top-right panel: The same, but for continuous variations of ρout, fixed
ρin = 0.1 ρ̄m, and various values of radius r, with r decreasing from top to bottom. Note that in
all the panels, we evaluate the cosmic mean density at redshift one, ρ̄m(z) = ρ̄m(1). Bottom-left,
-middle and -right panels are the same as the top-left, -middle and -right panels, but showing
the fractional difference of the total force between MG and GR theories, F5/(FN+FΛ).
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3. VOID ABUNDANCE IN MG

than Newtonian gravity, as seen in all top panels of Fig. 3.2. Even for common voids with

ratio of densities ρin/ρout = 0.2 we can have |η| ≈ 1/3, already reaching the upper bound

for overdensities. If the ratio decreases to the percent level, then η ∼ −2 for the smallest

voids.

The left panel of Figs. 3.1 and top-left panel of Fig. 3.2 both show variations with respect

to void radius r. Comparing these, we see that while the change in φ and therefore the fifth

force increases with void radius, the deviation η gets smaller. Thus we infer that FN increases

more quickly than F5 in these cases due to the increasing mass enclosed within the larger

void radius.

In contrast, comparing the middle panel of Figs. 3.1 and top-middle panel of 3.2 shows

that under variations in ρin the changes in the fifth force dominate the dependence of η.

The net effect of decreasing the interior density is to strengthen the fifth force relative to

gravity.

The variations of ρout in the top-right panel of Fig. 3.2 leave FN unaffected, so here

changes in η straightforwardly reflect changes in F5. We can unify the results of varying

ρout and ρin by noting that increasing the density contrast ρout/ρin generally increases the

deviation from GR.

In principle this unboundedness of the force ratio η in underdensities looks very promising

for distinguishing between GR and chameleon models. However, at late times when ρ̄m and

ρΛ are comparable, the repulsive dark energy force can dominate over Newtonian gravity

where the density is low. FΛ is common in both GR and MG models but negligible for halos

where the local density is much greater than the cosmic mean. The evolution of voids in

MG models are therefore affected by F5, FΛ and FN .

Bottom panels of Fig. 3.2 show the fractional difference of total force between MG and

GR, F5/(FN+FΛ). Comparing them with the top panels, we find the following: A.) like η,

the fractional difference decreases with radius (bottom-left) and increases with ρout(bottom-

right). This is because the additional FΛ term is just a constant at a certain epoch. B.)
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3.4 Evolving individual void

F5/(FN+FΛ) can be positive or negative, depending on the relative amplitude of FN and

FΛ. The transition occurs at ρin = 2ρΛ when FN is canceled out by FΛ, and the evolution

of the system is only governed by F5. Note that the sign switch in F5/(FN+FΛ) is no more

than an indicator for the switch of the relative strength between FN and FΛ. The forces FΛ

and F5 are always repulsive, and act to accelerate the expansion of void. C.) When ρin is

close to 2ρΛ, the fractional difference can be very large.

In summary, if we track the evolution of a spherical underdensity with the radius of r, in

the early universe it is dominated by FN , the amplitude of which decreases with ρin. Later,

the repulsive dark energy force FΛ from the background scalar field emerges to cancel part

of FN , and it helps to accelerate the expansion of void shells. In the mean time, F5 appears

from the coupling of the scalar field with mass, and is also repulsive in voids. As the void

keeps emptying itself, F5 becomes larger and FΛ also grows with time as ΩΛ increases. The

amplitude of the positive FN+FΛ keeps decreasing until ρin = 2ρΛ, then FN + FΛ switches

sign and the amplitude starts increasing. F5 should also keep increasing with time as ρin

decreases faster than its environment density, which makes the density contrast inside and

and outside the void grow larger. Overall, F5 should help to accelerate the expansion of

void. In the next section, we will quantify this effect.

3.4 Evolving individual void

With the solution of the fifth force in underdense regions, we can apply it to solve the

equations that govern the evolution of a spherical underdensity in a given environment

specified by its density. We will explore how the evolution of voids or underdense regions

are affected by the fifth force.
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3. VOID ABUNDANCE IN MG

3.4.1 Evolution of Environment

We have shown in the previous section that the profile of the scalar field and hence the

fifth force depends on the local density as well as the density of its environment. This is

one distinct feature of chameleon models. We therefore need to follow the evolution of the

environment properly in order to calculate the fifth force. The environmental dependence in

chameleon models has been discussed by Li & Efstathiou (72) and Li & Lam (73) for halos.

We shall adopt the same idea of taking the environment as a spherical region with radius

much larger than the underdensity in consideration. The exact choice of the environment

size will be specified where it is used later for the void statistics (Sec. 3.5.3). Note that for

the purposes of single-shell evolution which we describe in this section, the environment is

completely specified by its density relative to the cosmic mean.

To track the non-linear evolution of the environment, we denote its physical radius at

time t by r(t), its initial comoving radius by R, and define q(t) ≡ a(t)R. The evolution

equation for r(t) is

r̈

r
= − 1

6M2
Pl

(ρ− 2ρΛ) , (3.31)

where ρ ≡ 3M/4πr3 is the matter density in the spherical region of the environment and

the constant ρΛ ≈ V (φ) is the effective dark energy density. Note that Eq. (3.31) assumes

that the environment is unaffected by the fifth force. We make this approximation since

the environments are very large in size and therefore the effects of the fifth force on them

are minimal. Let us define y(t) ≡ r(t)/q(t) and change the time variable to N ≡ ln(a);

derivatives with respect to N are denoted by y′ = dy/dN . By using Eq. (3.31), q(t) ∝ a(t)

and the Friedman equation H2/H2
0 = Ωma

−3 + ΩΛ, we find

y′′ +
[
2− 3

2
Ωm(N)

]
y′ +

Ωm(N)
2

(
y−3 − 1

)
y = 0, (3.32)

which is a non-linear equation, where Ωm(N) ≡ Ωme
−3N/(Ωme

−3N + ΩΛ), and ΩΛ(N) ≡
ΩΛ/(Ωme

−3N + ΩΛ).
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3.4 Evolving individual void

At very early times we must have y ≈ 1 and so can write y = 1 + ε with |ε| � 1.

Substituting this into Eq. (3.32) to get the linearised evolution equation for ε, we find that

ε ∝ D+, in which D+ is the linear growth factor governed by the equation

D′′+ +
[
2− 3

2
Ωm(N)

]
D′+ −

3
2

Ωm(N)D+ = 0, (3.33)

and the proportionality coefficient can be found using mass conservation: y3(1 + δi) = 1⇒

ε = −δi/3 ∝ D+ (here δi is the linear density perturbation at the initial time). As a result,

the initial conditions for y are y(ai) = 1− δi/3 and y′(ai) = −δi/3.

Eqs. (3.32, 3.33), associated with their corresponding initial conditions, completely de-

termine the necessary dynamics in the ΛCDM model used for the environment shell. In

what follows we shall use yenv to denote the y for the environment, in contrast to that for

the underdensity, which we shall denote by yv. We will reserve r for the physical radius of

the underdensity, matching the notation of Sec. 3.3.

3.4.2 Evolution of Underdensity

The only difference between the evolution of an underdensity and that of its environment is

the effect of the fifth force. To calculate the fifth force at each time-step we use a spherical

top-hat profile,

ρ(χ) =
{
ρv for χ ≤ r
ρenv for χ > r

. (3.34)

We assume there is no shell crossing, so that to study the evolution we only need to under-

stand the motion of the shell at the edge. Note that this is not strictly true: for a model

different than ours, Martino & Sheth (80) have shown that modified gravity can cause an

initially top-hat underdensity to have a slight density gradient near the edge. We find a sim-

ilar effect, but it is quite small and it is beyond the scope of this paper to self-consistently

track the deviations of the density profile from the top-hat.
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3. VOID ABUNDANCE IN MG

Denoting the density inside the underdensity by ρv and using mass conservation, we can

show that

ρvr
3 =

(
ρ̄ma

−3
)

(aR)3

ρv = ρ̄m (ayv)−3 , (3.35)

where ρ̄m is the background matter density today. Similarly, the matter density in the

environment, ρenv, can be expressed in terms of yenv as

ρenv = ρ̄m (ayenv)−3 . (3.36)

Using these relations we can rewrite Eqs. (3.15) and (3.17) in terms of the variables yv and

yenv, yielding

FN =
1

6M2
Pl

ρ̄m (ayv)−2R

=
1
2

Ωm (H0R) (ayv)−2H0, (3.37)

F5 = γ
d (φ/MPl)

dχ

∣∣∣
χ=r

=
√

3αΩΛγH0
dψ
dτ

∣∣∣
τ=r/λout

, (3.38)

where

r/λout =
√

3
αΩΛ

ayv (ayenv)−3 γΩmH0R , (3.39)

and ψ and τ are defined as in Sec. 3.3. The fifth-force-to-gravity ratio is then

η =

√
3αΩΛγ

dψ
dτ

∣∣∣
τ=r/λout

1
2Ωm (H0R) (ayv)−2 , (3.40)

and the evolution equation of the underdensity becomes

r̈

r
= − 1

6M2
Pl

[ρv(1 + η)− 2ρΛ] . (3.41)
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Rewriting using yv we obtain

y′′v +
[
2− 3

2
Ωm(N)

]
y′v +

Ωm(N)
2

[y−3
v (1 + η)− 1]yv = 0 . (3.42)

Note that we absorb all the difference between GR and MG in η in the above equation,

which is the same quantity we have shown in the top panels of Fig. 3.2. Equations (3.32,

3.33, 3.40, 3.42) form a set of coupled nonlinear differential equations, which govern the

evolution of an underdensity in a given environment.

We can now solve the above equations to track the evolution of a spherical top-hat void.

We compare results in our chameleon model and in ΛCDM in Fig. 3.3; both start from the

same underdense regions δsc = −2.76, where δsc (shell-crossing) is the initial density contrast

of the void region extrapolated to today. This setting of the initial condition corresponds

to voids that would have just shell-crossed today in the ΛCDM universe (121). The mean

nonlinear density contrast of those underdense regions today is δ = −0.8, so that even

without the fifth force these are already fairly empty voids.

The difference between the two models in the void expansion history depends on the

initial comoving sizes of voids R as well as their environment, quantified by δenv, the initial

environment density perturbation linearly extrapolated to today. Voids in denser environ-

ments show a larger difference between GR and MG. This is due to the greater density

contrast realized by an underdensity in a very overdense environment. As seen in Figs. 3.1

and 3.2, such contrasts in density cause a large change in the scalar field, which in turn

results in a stronger fifth force.

In all cases, voids in MG expand faster and grow larger than their counterparts in

ΛCDM. The comoving void radius would have grown by a factor of 1.7 at shell-crossing in

GR. However in MG, Fig. 3.3 shows the same underdensity would have grown by a factor of

∼ 2 for voids with R ∼ 3 Mpc/h in dense environments. The difference between GR and MG

is at ∼ 10% level, and smaller for less dense environments. For larger voids the difference

becomes smaller, e.g., for R ∼100 Mpc/h it is at the sub-percent level. Although the absolute
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Figure 3.3: Top row: Radius r of an expanding underdensity in units of its initial comoving
radius R, as a function of scale factor a. Center row: Fractional difference between the radii
of such underdensities with identical initial conditions, expanding with and without the fifth
force. Bottom row: Fractional difference in the velocity. Columns show various values of
initial comoving radius, R = 1, 3, 10 and 30 Mpc/h, from left to right. All panels have an initial
underdensity, linearly extrapolated to today, of δ = −2.76: these are objects which in a universe
with no fifth force would have just reached the epoch of shell-crossing today. Various values of
the exterior density are shown, with δenv decreasing from top to bottom. The largest deviations
from GR occur for voids expanding within a larger overdense region.
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value of the fifth force is smaller for small voids (left panel of Fig. 3.1), the gravitational

force is correspondingly smaller due to the decreased integrated mass. As shown in Fig. 3.2,

the net effect is that the instantaneous ratio between the two is larger (more negative) for

smaller voids. The void size yv or r at any given time shows the integrated effects of nonzero

η from all previous times. Thus the radii of smaller voids have expanded more beyond their

ΛCDM counterparts, which themselves have expanded much more than the background.

While the size of voids shows the cumulative effect of gravity, the expansion velocity of

each shell responds more sensitively to any change of gravity at a given time. The bottom

panels of Fig. 3.3 shows the fractional difference of the expansion velocity of shells in GR

and MG. Indeed, the differences in velocity are larger than the differences in sizes. For voids

of R ∼ 3 Mpc/h, the expansion velocity can be 10% to 30% faster in MG in over-dense

environments. By R ∼ 30 Mpc/h, the difference has dropped to a few percent in this model.

Our results suggest that perhaps the best way to look for modified gravity is to find

voids in overdense environments, especially small voids, where we expect the difference from

GR is maximized. Those voids should be emptier due to the relatively strong repulsive fifth

force and faster expansion of the shells. Moreover, the difference in redshift space could be

more prominent due to the even larger difference in the velocity field. We propose that the

clustering analysis of tracers of small voids in redshift space could be a powerful test of GR.

Predictions for this test from N -body simulations will be presented in a separate paper.

3.5 Void definition and statistics

Having success in following the evolution of a single shell, we can now look for a common

definition of voids for GR and MG. Then we will compare the population of voids in both

GR and MG statistically by generalizing the excursion set approach (4). But first we will

lay down briefly the essential idea of the excursion set theory; more details can be found in

Appendix C.
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3.5.1 Excursion Set Theory

Assume that the initial local density perturbation filtered at a given scale R, δ(x,R) follows a

Gaussian distribution, and that there is no correlation of δ(x,R) between different filter sizes

(for correlated δ, see Musso & Sheth (88)). Then we know A.) the distribution can be fully

described by its variance S, and B.) when varying the filter size R to R−dR or equivalently

in hierarchical models, S → S+dS, the increment of δ(x,R) is independent from its previous

value and should also follow a Gaussian distribution with the variance of dS. Thus, δ(x, S)

is just a Brownian motion with ‘time’ variable S. In the spherical collapse model, if a local

density exceeds a certain barrier δc, then it will collapse and form a virialized halo with all

the mass M ′ enclosed within R′ by some given time. In the (S, δ)-plane, if we start the walk

from the origin, walks that cross δc for the first time at S′ = σ2(M ′) correspond to such

objects. Walks which cross first at smaller values of S form higher mass halos. Therefore,

the fraction of mass that has collapsed and formed halos heavier than M ′ is the fraction

of random walks δ(x, S) that have crossed the barrier δc at S < S′. Alternatively, one can

calculate the fraction of mass that is incorporated in halos at a given range of halo mass

[M , M + dM ], or equivalently, [S, S + dS] at a given redshift z:

f(S, z)dS =
1√
2πS

D+(0)δc
D+(z)S

exp
[
−
D2

+(0)δ2
c

2D2
+(z)S

]
dS, (3.43)

where f(S, z) the first-crossing distribution of the Brownian motion to the barrierD+(0)δc/D+(z),

and D+ is the linear growth factor. The first crossing distribution essentially gives the halo

mass function (see Appendix C). There is equal chance for a random walk to go negative in

δ. Thus, once an appropriate first-crossing barrier for voids, δv, is given, one can also find

the void size distribution function by the same method.

66
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3.5.2 First crossing barrier for void

For halos, the first crossing barrier δc is usually defined as the linearly extrapolated initial

overdensity at the time of collapse, i.e., when the mass shells reach zero radius. This time

can be calculated using the spherical collapse model. Naively one can find the shell-crossing

barrier for voids in a similar way. The shell at the radius of r of a perturbed spherical

underdense region will expand faster than the shell at r′ = r + ∆r, as the enclosed mass

within the border shell is smaller. Shell-crossing for underdense regions occurs when the two

shells collide. This occurs at the present day for underdense regions with δsc = −2.76 (the

density contrast at the initial condition extrapolated to today) for the concordance ΛCDM

model. Like δc, δsc depends on Ωm and is independent of smoothing scale. Moreover, the

underdense region at shell-crossing happens to be very empty, i.e., its nonlinear underdensity

is δ = −0.8. Therefore, δ = −0.8 serves nicely as an empirical definition of voids.

In modified gravity, however, the situation is more complicated. First, the shell-crossing

barrier can depend on the environment, simply because the fifth force and hence the expan-

sion history of shells depends on the environment. Therefore, one may expect voids (likewise

halos (72)) to form differently depending on the environment. Second, even for the same

environment, the population of voids may also be different from ΛCDM, due to the size

dependence of the force which leads to scale dependence of the barrier.

In chameleon models, the fifth force does speed up the expansion of voids (as seen in

Fig. 3.3), but the shell-crossing time usually occurs later than in ΛCDM with the same

initial conditions. This is because the effect of the fifth force on the relative accelerations

of neighboring shells is in the opposite direction from gravity. For −1 < η < 0 the fifth

force opposes but does not overcome gravity, so that the pull of inner shells on outer ones is

reduced, making the critical density for shell crossing in chameleon models harder to reach.

If an observer is riding on the boundary shell, then all the nearby shells move closer with

time, but more slowly than shells feeling only standard gravity. Furthermore, for some initial

density perturbations, the shell crossing does not happen at all.
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3. VOID ABUNDANCE IN MG

Since the epoch of shell crossing can be unreasonably late or undefined for these models,

it is easier to use empirical criteria for void formation. We choose δ = −0.8 as a common

criteria for the following reasons, A.) it correspond to the first-crossing barrier in ΛCDM,

making it easy to compare with results from ΛCDM; B.) Voids with δ = −0.8 are indeed very

empty, and can be defined by the same way in simulations and observations, thus enabling

one to make direct comparisons. For example, in Hoyle & Vogeley (48) and Sutter et al.

(125) they use similar threshold to define voids in the 2dFGRS and SDSS galaxy samples.

Pan et al. (101) also find voids from SDSS7 having similar density contrast, δ < −0.85 at

the edges.

Thus, we use the requirement that the nonlinear density constrast today is δ = −0.8,

along with Eqs. (3.32, 3.33, 3.40, 3.42), to solve for the initial underdensity as a function

of scale S and environment δenv. The resulting void-formation barrier is shown in Fig. 3.4.

Unlike ΛCDM where the crossing barrier is flat, barriers in chameleon models are scale

dependent. In general, barriers in chameleon models are lower (less negative). Smaller voids

have shallower barriers to reach in order to form due to the fact that the fifth force in smaller

voids is relatively stronger (see Fig. 3.3), which makes them to expand faster. In other words,

for reaching the same δ = −0.8 today, the necessary initial density contrast for smaller voids

is smaller (less negative). The crossing barriers keep decreasing (becoming less negative)

and steepening with the increase of S. This is very different from the collapsing barrier for

halos in the same model, where they are leveling off at S ∼ 5 (72). This difference is a direct

result of the fifth force strength upper bound of 2γ2, which only applies to overdensities.

Fixing void size, the barrier is lower (less negative) and steeper for denser environment,

where the difference from the flat barrier in ΛCDM is also larger. Therefore the difference

of void population with ΛCDM should be more prominent in such regions. This environ-

mental dependence of crossing barrier is the opposite for halos, where the collapsing barriers

are higher (more positive), and closer to the ΛCDM barrier for denser environment (72).

Qualitatively, these two opposite pictures in voids and halos can be understood by the same

68



3.5 Void definition and statistics

10-2 10-1 100 101

S

3.0

2.5

2.0

1.5

1.0

0.5

0.0

δ v

α=10−6

2γ2 =1/3

δenv=1.6

δenv=0.8

δenv=0.0

δenv=−0.8

δenv=−1.6

δenv=−2.4

Figure 3.4: The linearly-extrapolated void formation barriers for various environments as a
function of scale, S = σ2(M). Environment densities decrease from δenv = 1.6 to δenv = −2.4
from top to bottom. The dashed line shows the constant ΛCDM barrier, δv = −2.76 which
results from the same void-formation criteria of nonlinear density δ = −0.8.

reasoning, i.e., for voids or halos of the same mass given ρin (the mean density in the void

or halo region), the strength of the fifth force is larger for larger differences between ρin and

the background density outside the perturbed region, ρout. For voids ρin < ρout, a larger

ρout means |ρout − ρin| is larger and hence a larger fifth force, while for halos ρin > ρout, a

larger ρout means |ρout − ρin| is smaller therefore a smaller fifth force.

3.5.3 Moving environment approximation

In calculating the void barriers in the previous section, the environment was specified only

by its linear density perturbation, δenv. In order to derive the first-crossing distributions

and other void statistics it is necessary also to specify an environment length scale.
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In treating spherical collapse in chameleon models, Li & Efstathiou (72) used an envi-

ronment scale of 8 Mpc/h for halos of every size. Such a fixed-environment scale works well

for halos, since the range of interesting virial radii is fairly small, ∼ 0.1−1 Mpc/h. Further-

more, since throughout collapse the proto-halo is always shrinking, there is little worry of

its size becoming comparable to the environment scale. On the other hand, the interesting

void sizes we are considering range from ∼ 1− 30 Mpc/h, and each will expand beyond its

initial comoving radius by a factor 1.7 at formation. Thus we need to consider the definition

of the environment more carefully.

First, the scale of the environment should at least be larger than the final size of the

void. Secondly, it should also be large enough so that the scalar field in the environment

has space to settle to its minimum. This is to guarantee that the boundary condition

Eq. (3.29) for the scalar field profile equation holds. Third, it cannot be too large because

this would simply mean using a value very close to the cosmological density ρ̄m for all void

environments. Bearing these considerations in mind, we introduce a moving environment

approximation, in which the initial environment scale is a function of the initial void scale,

specifically Renv = 5R.

We notice that in the moving environment approximation, the expanding void shell and

collapsing environment shell may cross for voids in very overdense environments. Therefore

we also calculate the first-crossing distributions with a large fixed-environment scale of

Renv = 75 Mpc/h, so that the environment shell begins its collapse much farther from

the void shell. The difference between the two approximations is less than 10% for the void

scales of observational interest, i.e., those ∼ 1 Mpc/h and larger; details of the comparison

can be found in Appendix D. It follows that the results for choices of Renv > 5R are also

less than 10%, since such environment scales are between our fiducial choice Renv = 5R

and the fixed environment scale. This level of difference, as we will see later, is negligible

compared to the difference between GR and MG that we are considering. Thus, our main

conclusions are insensitive to the definition of environment.

70



3.5 Void definition and statistics

3.5.4 Conditional first-crossing distributions

3.5.4.1 Unconditional First Crossing of a Moving Barrier

The distribution of the first crossing of a general barrier by a Brownian motion has no

analytic solutions except for some simple barriers, e.g., flat (4) and linear (119, 120). Un-

fortunately neither of these is a good approximation to our barriers in Fig. 3.4. As a result,

we follow (140) and numerically compute this distribution. We briefly review their method

for completeness.

Denote the unconditional probability that a Brownian motion starting off at zero hits

the barrier b(S) > 0 for the first time in [S, S+ dS] by f(S)dS. Then, f(S), the probability

density, satisfies the following integral equation

f(S) = g(S) +
∫ S

0
dS′f(S′)h(S, S′), (3.44)

in which

g(S) ≡
[
b

S
− 2

db
dS

]
P (b, S) ,

h(S, S′) ≡
[
2

db
dS
− b− b′

S − S′

]
P (b− b′, S − S′), (3.45)

where for brevity we have suppressed the S-dependence of b(S) and used b′ ≡ b(S′) and

P (δ, S)dδ =
1√
2πS

exp
[
− δ

2

2S

]
dδ. (3.46)

Equation (3.44) can be solved numerically on an equally-spaced mesh in S: Si = i∆S with

i = 0, 1, · · · , N and ∆S = S/N . The solution is (140)

f0 = g0 = 0,

f1 = (1−∆1,1)−1g1, (3.47)

fi>1 = (1−∆1,1)−1

gi +
i−1∑
j=1

fj(∆i,j + ∆i,j+1)

 ,
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where we have used fi = f(Si) and similarly for gi to lighten the notation, and defined

∆i,j ≡
∆S
2
h

(
Si, Sj −

∆S
2

)
. (3.48)

We have checked that our numerical solution matches the analytic solution for the flat-barrier

crossing problem.

3.5.4.2 Conditional First Crossing of a Moving Barrier

The unconditional first crossing distribution, which relates directly to the void size distribu-

tion function in the ΛCDM model, is not particularly interesting in the chameleon model.

This is because spherical underdensities in different environments will follow different evo-

lution paths. If it is in the environment specified by (Senv, δenv), then (Senv, δenv) should

be the starting point of the Brownian motion trajectory. In other words, we actually re-

quire the distribution conditional on the trajectory passing δenv at S = Senv; we write this

first-crossing distribution as f(S, δv(S, δenv) | Senv, δenv), showing explicitly the δenv depen-

dence of δv. The numerical algorithm to calculate the conditional first crossing probability

is a simple generalization of the one used above to compute the unconditional first crossing

probability (104) and is not presented in detail here.

Note that the preceding algorithm assumes the barrier b(S) > 0, while our void-formation

barriers are strictly negative. However, if solving the problem by a Monte Carlo method

we could note that the resulting first-crossing distribution is invariant under reflecting the

Gaussian random walks about δ = 0 (since each step of each walk is equally likely to move

to higher or lower δ). Thus, we can solve the distributions for our negative barriers by using

b(S) = |δv(S)| in the above algorithm.

Furthermore, the preceding algorithm describes the calculation of the first-crossing prob-

ability for the fixed-environment approximation, in which a single starting point (Senv, δenv)

for a given barrier δv(S, δenv) is sufficient. To implement the moving environment approx-

imation we calculate a new first-crossing distribution for each underdensity scale S, where
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the walk starts at Senv(Renv) and Renv = 5R(S) as described in Sec. 3.5.3. Our final result

for the conditional first-crossing probability is then f(S, δv(S, δenv) | Senv(S), δenv), where

the dependence of Senv on S is written explicitly.

In the special case where the barrier is flat, δv(S, δenv) = δsc, f(S, δv(S, δenv) | Senv(S), δenv)

is known analytically as

f =
|δsc − δenv|√

2π (S − Senv)3/2
exp

[
−(δsc − δenv)2

2 (S − Senv)

]
, (3.49)

where again Senv = Senv(S), so that in the next section we compare first-crossing distribu-

tions for GR and MG both calculated using the same moving environment scale.

3.5.4.3 Results

Figure 3.5 shows the first-crossing distribution of voids in different environments. In general,

we find all voids today with radii Rf & 1 Mpc/h are more numerous in chameleon models,

for all environments. This difference from ΛCDM is larger for overdense environments. This

is a consequence of previous results of this paper, namely that the fifth force is relatively

stronger for denser environments.

Next, consider fixing the environment density. In this case, the fractional difference of

the number density between chameleon models and GR tends to be greater for larger voids

(larger ν ≡ δ2
sc/S or smaller S), as indicated by the increase of ∆f/f with ν in the figure.

For example, in the environment of δenv = 0.8, voids with Rf = 5 Mpc/h may be 2 to 3

times more common than those in ΛCDM, and 10 times more for Rf = 25 Mpc/h. This

difference may seem surprisingly large, but such a case may be too rare to be observed. If

one smooths the initial density field with a filter size much greater than R = 15 Mpc/h

(corresponding to Rf = 25 Mpc/h), the probability distribution of the overdensity will be a

narrow Gaussian with zero mean. The chance of having a linearly-extrapolated δenv = 0.8

should be very low; the odds of such an environment developing voids of Rf = 25 Mpc/h or

larger with δ = −0.8 will be even less. Therefore, it might be difficult to find large voids in
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Figure 3.5: Left: First crossing distribution functions for different environments as indicated
by δenv. Solid lines are in chameleon cosmology with our fiducial model parameters. The top
x-axis labels the corresponding final void radius when the density contrast of a void reaches
δ = −0.8. In bottom x-axis, δsc = −2.76 is the shell-crossing barrier for voids in ΛCDM, and
S = σ2(M) is the variance of a spherical top-hat region. Right: Fractional differences of the
first crossing distributions between GR and chameleon cosmology for different environments.
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very overdense environments, where the predicted difference between models is expected to

be larger. In reality, most large-scale environments are very close to the cosmic mean, i.e.,

δenv ∼ 0. In this case, the difference between models indicated by ∆f/f is less extreme but

still very significant, being ≈ 100% for Rf = 5 Mpc/h and ≈ 300% for Rf = 25 Mpc/h.

We shall see in the next subsection that this difference is indeed close to the case where the

average over all environments is taken.

The environmental dependence of model differences in the conditional first crossing dis-

tribution of voids is just the opposite as that for halos for reasons we have explained in

Sec. 3.5.2. The halo mass function (72) is found to differ more from its ΛCDM counterpart

in underdense environments.

The fact that ∆f/f is larger for larger voids might seem counter-intuitive, as we have

shown that the relative strength of the fifth force is smaller for larger voids, hence the

difference in their expansion velocities and sizes today are relatively smaller. However,

the difference in the number density of voids is also related to the shape of the void size

distribution function. Consider that f is a very steep function of ν when ν is large. A small

increment in Rf or ν can therefore lead to a relatively large change in f .

In principle, if fMG is larger than fGR for large voids, the opposite should be true for

small voids, namely the abundance of small voids will be lower in chameleon models. This

is expected from the normalization of the first-crossing probability. Picturing this in the

excursion set theory, in chameleon theories Brownian motions are likely to cross the barrier

at a slightly earlier ‘time’, i.e. small S, corresponding to large voids. Correspondingly, the

probability of a Brownian motion to survive for longer and cross the barrier at large S is

reduced – voids of smaller sizes are (relatively) rarer than in ΛCDM. Therefore, the solid

and dashed lines in Fig. 3.5 will cross each other at some small ν that is not plotted, namely

the abundance of small voids can be lower in chameleon models. In fact, such a crossing

point is also expected for halos, which has been shown to be at S . 10 for the environments

under consideration (72). For voids, the crossing points are found to appear at much larger
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S. This is likely due to the halo barriers leveling off at S ∼ 5, while the void barriers

continue to steepen towards larger S.

In real observations, one needs to have tracers like galaxies or galaxy clusters to define

void walls. If the size of the void is comparable to that of the tracers, then the walls will

be lumpy. Voids with radii comparable or smaller than the typical size of virialized objects

are therefore not well defined and of little interest. We do not show results deeply into this

regime. In the range of empirical interest, we only see the lines of fMG and fGR crossing

each other for the case of δenv = −2.4 at R ∼ 1 Mpc/h, which should be a rare situation.

Thus, for denser environments we always expect to find more voids in chameleon models at

all empirically meaningful sizes.

The environmental dependence of the differences between models may provide useful

guidelines for testing gravity. In overdense environments, one may want to look at the

statistics of large voids as the difference with ΛCDM may be larger, while in underdense

regions, the difference in halo population may be larger therefore halo number densities

may be more interesting to analyze. We summarize these two cases as void-in-cloud and

cloud-in-void. However, both of these two cases are relatively uncommon to find in the real

universe so that the statistics may be poor. In this case, using most of the observed volume

could provide better constraints since the sample of voids and halos would be larger. It

is therefore interesting to determine the overall difference between models once we average

over all different environments.

3.5.5 Environment-averaged first-crossing

To get the average first crossing distribution of the moving barrier, we must integrate over all

environments. The distribution of δenv, denoted as q(δenv, δc, Senv), in which δc is the critical

overdensity for spherical collapse in the ΛCDM model, is simply the probability that the

Brownian motion passes δenv at Senv and never exceeds δc for S < Senv (because otherwise
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the environment itself has collapsed already). This has been derived by (4):

q(δenv, δc, Senv) =
1√

2πSenv
exp

[
− δ2

env

2Senv

]
− 1√

2πSenv
exp

[
−(δenv − 2δc)

2

2Senv

]
, (3.50)

for δenv ≤ δc and 0 otherwise. Again, we have Senv = Senv(S), so that the distribution q

changes for each void size. For smaller smoothing length (larger Senv), the pdf of δenv is

wider so that the very overdense and very underdense environments are more likely to be

sampled.

Then the environment-averaged first crossing distribution will be

favg(S) =
∫ δc

−∞
q × f(S, δv(S, δenv) | Senv(S), δenv) dδenv. (3.51)

The environment-averaged first-crossing distribution and void volume function are related

by
dn
dV

dV =
ρ̄m
M
favg(S)

∣∣∣∣ dSdV

∣∣∣∣ dV , (3.52)

where V is the final volume of the void given by

V =
M

ρ̄m
× (1.71)3 . (3.53)

The factor of 1.713 results from our void formation criteria of nonlinear density δ = −0.8.

By mass conservation, such an underdensity which was originally at the cosmic mean has

grown to 1.71 times its initial comoving radius.

The left and right panels of Fig. 3.6 show the environment-averaged first-crossing distri-

bution and the corresponding void volume function, respectively. Comparing the environment-

averaged void distribution functions between our fiducial chameleon model and ΛCDM, we

find the fractional difference in the number density of voids between the two models increases

with void size. At Rf ∼ 25, one may expect to find 2 to 3 times more voids in chameleon
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Figure 3.6: Left panel: Compares the averaged first crossing distribution functions between
chameleon model (solid line) and GR (dashed line). The fractional difference is shown in the
bottom panel. Right panel: Void volume distribution functions and their fractional difference.
The difference in the number density of voids between the two models increases monotonically
with void size.
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models, and such a difference will keep increasing for larger voids. This level of difference in

the void population is much greater than that in halos, where the difference of mass function

is found to be no more than 20% (72): a factor of 10 times smaller difference. The boost

of probability for having large voids in chameleon models has interesting implications for

observation, thus serving as a powerful test of gravity theories. Given a finite survey vol-

ume, one can simply count the number of voids greater than a certain radius, e.g., Rf > 25

Mpc/h to find out the number density of them and then compare it with different models.

3.5.6 Theory Variations

Up to this point, we have only shown results for our fiducial chameleon theory, with param-

eters α = 10−6 and 2γ2 = 1/3. Figure 3.7 shows the effect of varying these two parameters

on the volume function, dn/dV . Focusing on the leftmost panels we see the models with

2γ2 = 1/3, which correspond most closely to the f(R) class of theories. In moving from

α = 10−5 to 10−7 the fractional difference changes by a factor∼ 3 for small voids (V = 7×102

(Mpc/h)3) and by ∼ 25 for voids two orders of magnitude larger (V = 7× 104 (Mpc/h)3).

A direct comparison of this chameleon theory with f(R) models is not possible, but

comparing the compton wavelengths can give some idea of the differences. For the f(R)

model of Hu & Sawicki (52), the compton wavelength in the background density today is

∼ 3 Mpc/h for |fR0| ∼ 10−6. Our fiducial model has a longer compton wavelength: for

2γ2 = 1/3 we have λ ∼ 2
√

108α. Thus for α = 10−6, λ ∼ 20 Mpc/h.

As it is also interesting to put constraints on the coupling 2γ2 (e.g., (? )), we show such

variations in the center and right panels of Fig. 3.7. As we expect, for fixed α the deviations

are much larger for stronger couplings. Again the largest, rarest voids are most sensitive to

these changes due to the steepness of the volume function there: for α = 10−5 the deviation

of the volume function from the GR result grows by a factor of 10 in moving from 2γ2 = 1/3

to 2γ2 = 1.
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The comparison to results for the excursion-set mass function highlights the promise of

using voids to constrain modified gravity. Consider the case in Fig. 3.7 with the smallest

deviations from GR, α = 10−7 and 2γ2 = 1/3. The fractional difference in the volume

function is 30-60% over at least two decades in void volume. The deviation of the mass

function predicted by this model peaks at 5% for halo masses ∼ 1013M�/h, falling quickly

for smaller and larger halos (72). Thus, if the difference between models is integrated over

the entire range of halo and void number densities, the total constraining power of the

void statistics will be much greater. This larger difference in the void statistics is a result

of several effects: A.) the upper bound in the ratio of gravity and the fifth force does not

apply to underdensities and B.) the crossing point of GR and MG first-crossing distributions

expected due to the normalization of the distribution occurs for voids which are too small

to be empirically relevant. Thus, the MG void volume function shows large deviations at all

void sizes.

In Appendix E we discuss the effect of varying α and γ on the conditional first-crossing

distributions, i.e., before the environment averaging is carried out.

3.6 Discussion

We have explored the physics of the fifth force in voids for chameleon models and applied it to

understand the impact on void properties. In scalar-tensor theories, such as chameleon MG,

the smooth part of the scalar field is the source of the cosmological constant, known to act

like a repulsive force. This is common in both a ΛCDM universe and a chameleon universe.

The coupling of the scalar field to mass density causes an additional spatial fluctuation of

gravity, i.e., the fifth force. This is the only difference for void evolution between chameleon

and ΛCDM models. The evolution of voids in MG is affected by the Newtonian force, the

dark energy force and the fifth force.

The following interesting features are found in comparison to a ΛCDM universe, some

of which may be used to test gravity in laboratory experiments and observational data, or
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Figure 3.7: Left panels: The void differential volume function for our chameleon model with
2γ2 = 1/3 (solid lines) compared to GR (dashed). Various values of α are shown, ranging over
10−5, 10−6, and 10−7, from top to bottom. The lower panel shows the fractional difference from
the GR result. Center panels: The same, but for coupling 2γ2 = 1/2. Right panels: The same,
but for coupling 2γ2 = 1. Even for α = 10−7, 2γ2 = 1/3 where the deviation is weakest, it is
above 30% for all empirically interesting void sizes.
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to guide more precise predictions from cosmological N -body simulations.

1.) The fifth force in voids is a type of ‘anti-gravity’. It points outwards from the cen-

ter of the void, opposite to the direction of normal gravity. This is because the slope of the

scalar field profile is negative in voids.

2.) In principle, the amplitude of the fifth force can be very large in voids. In halos,

its magnitude can be no more than 2γ2 (1/3 in our fiducial model) of normal gravity. Due

to the breakdown of Birkhoff’s theorem, the scalar field profile and hence the fifth force are

functions of the matter density inside and outside the void region, as well as its size.

This property leads us to suggest a possible laboratory test of gravity using a vacuum

chamber. To create a chamber inside of which the fifth force is dominant, it should have a

thick chamber wall made of high density material. This is to enlarge the density contrast

between the chamber interior and the wall so that fifth force strength is maximized. The

wall needs to be thick to have enough space for the scalar field to reach its minimum in

the wall. Walls of the chamber and test particles (detectors) in the chamber should feel the

fifth force pushing outwards, but very little gravity (as long as the chamber is close to real

vacuum). In the neighborhood of the earth, the background density is non-zero. There is

dark matter from the Milky Way halo, and maybe some baryonic dust; these two should

contribute a haze of mass density inside any vacuum chamber. This may set the limit for

the density contrast and the amplitude of the fifth force. Furthermore, although the ratio

F5/FN may be large in this case, we know that FN is quite small in the chamber, so that the

large ratio does not necessarily imply a large fifth force. The effect of the dark energy force

also needs to be accounted for. We leave the quantitative investigation of this experiment

to future work.

3.) Driven by the additional fifth force, individual voids expand faster and grow larger
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than their ΛCDM counterparts. The fractional difference in void radius and expansion

velocity is larger for small voids in overdense environment (void-in-cloud), at the level of

. 10% and 20 − 30% respectively, for voids of a few Mpc/h. For the same reason, voids

of the same size should be emptier in chameleon models. This leads to interesting obser-

vational consequences. A.) In redshift space, due to the faster expansion of voids, a small

void-in-cloud may be more elongated along the line-of-sight due to redshift space distortion.

B.) Void profiles may be steeper as voids empty themselves more quickly, as has been shown

in Martino & Sheth (80). We plan to investigate both of the above by stacking voids in

simulations. Recent work has shown that the lensing signal from stacked voids in future

surveys will provide information on their radial profile (65). This may provide a complimen-

tary probe to void statistics for distinguishing between gravity models.

4.) For individual voids, the largest difference between GR and MG is found in void-in-cloud

systems, while for voids statistics, the large voids differ more. The fractional difference in

the number density of voids increases with size and is ∼10 times larger than the correspond-

ing difference for halos. The chance of having voids with δ ∼ −0.8 with R ∼ 25 Mpc/h is

2.5 times larger than in ΛCDM. A conceptually simple observational test would be to count

the number of very large halos in a volume limited sample, and find out the probability for

that count to occur within different gravity models.

In fact, the detection of the CMB Cold Spot in the WMAP data, if interpreted as the

ISW signal, has already imposed a constraint on this probability. The size of the void in

the large-scale structure needed to generate the size and amplitude of the Cold Spot is

estimated to be at the order of 100 Mpc/h in radius, which may not be consistent with a

ΛCDM universe (e.g. 9, 23, 54, 82, 110). Similarly, the detected ISW signal from the stacking

of 4-deg2-size regions of the CMB corresponding to the SDSS super clusters and super voids

is found to be 2−3σ higher than that expected in a ΛCDM universe (35, 102). Recent work

has shown that the abundance of the largest voids in ΛCDM simulations may be too small
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to match observations (130). All of these discrepancies, if confirmed, seem to indicate that

very large structures in the universe are perhaps larger and more abundant than expected

in a ΛCDM universe. The fact that the abundance of large voids in modify gravity can be

much greater than in ΛCDM suggest that modify gravity can somewhat release the tension

imposed by those observations, but precise quantitative predictions are beyond the reach of

the spherical collapse model and excursion set theory.

Intriguingly, there are also observations suggesting that galaxies are less common in low

density regions than expected in the standard cosmology (e.g. 131). The Local Void (within

the radius of 1-8 Mpc from the center of the local group) also seems far too empty based

on the galaxy number density (e.g. 105, 106, 131), but see Tinker & Conroy (132) for a

different view. There is also an unexpected presence of large galaxies on the outskirts of

the Local Void (106). “These problems would be eased if structure grew more rapidly than

in the standard theory, more completely emptying the Local Void and piling up matter on

its outskirts” (106). Voids in chameleon models seem to coincide qualitatively with these

observations. However, the complexity of galaxy formation, especially its dependence on

environment, is a hard barrier to overcome before any conclusive results can be drawn.

We note that our results for void statistics should be qualitatively similar in other mod-

els with chameleon screening, such as f(R) (52). Furthermore, while symmetron (42, 43)

and environmentally-dependent dilaton (7, 24) theories rely on conceptually different mech-

anisms to screen the fifth force, the qualitative picture of Fig. 3.1 is unchanged. The

minimum of the symmetron and dilaton fields will again be higher inside an underdensity

than outside, thus leading to a repulsive fifth force which will aid the dark energy in speeding

up void growth.

Caveats:
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3.6 Discussion

Throughout the paper, we employ the spherical collapse model and excursion set theory

for studying the evolution of individual voids and their distribution functions. However:

1. Voids in the real universe are not perfectly spherical. (e.g. 116).

2. The excursion set theory for voids may not be able to match precisely voids found

from simulation or observation. There are obvious reasons for this:. A.) It has been noticed

that the total volume of voids given by this model exceeds that of the universe (121). This

is certainly not physical. One obvious reason is that some ‘voids’ may be embedded in

overdense regions whose density reaches the collapsing barrier. This is the void-in-cloud

problem, which is more acute for small voids. Accounting for it can resolved the problem

to some extent, but not fully (103, 121). Another reason is that there is an underlying

assumption that voids can expand forever, which is also unphysical. The expanding walls

of voids will certainly meet their neighbors and cross each other. This is probably more

complicated to fix and is beyond the scope of this paper.

3. Our results are for voids in the dark matter distribution, whereas observed voids must

be defined with respect to galaxies. The excursion set theory of the void population has

been extended to these more empirically relevant voids by Furlanetto & Piran (33).

In this paper, we are mostly comparing the difference between two models rather than the

accuracy of each model itself. Thus, these well-known limitations of the basic excursion set

theory of voids may affect MG and ΛCDM in roughly the same way, leaving the difference

mostly unaffected. We therefore neglect these problems, and leave the calibration of the

theory to simulation for future work.
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Chapter 4

Detection of Stacked Filament
Lensing Between SDSS Luminous
Red Galaxies

4.1 Introduction

One of the most striking features of N-body simulations is the network of filaments into which

dark matter particles arrange themselves. Some attempts to quantify this network have been

made (13, 124). Other work has attempted to study the largest filaments, those between

close pairs of large dark matter halos (18). Such filaments are likely the easiest to identify in

data, e.g., Zhang et al. (141) look for overdensities in the galaxy distribution between close

pairs of galaxy clusters. However, since filaments include both dark and luminous matter,

weak lensing techniques are useful to understand the entire structure: Dietrich et al. (26)

and Jauzac et al. (59) both identify single filaments by focusing on a weak lensing analysis

of individual cluster pairs.

In this study we measure the weak lensing signal of filaments between stacked Luminous

Red Galaxy (LRG) pairs in Sloan Digital Sky Survey (SDSS) data. The mass distribu-
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tion and therefore weak lensing shear in the neighborhood of LRG pairs is dominated by

the massive halos themselves. Methods which aim at filament detection, e.g., Maturi &

Merten (83), may have large degeneracy with the signal from these nearby halos. In the

face of this degeneracy, we construct an estimator of the lensing signal which removes the

shear due to these halos, assuming only that they are spherically symmetric. We will show

that this technique is sufficient to obtain a detection, and some physical implications on

filament size and shape can be extracted by comparison to filament models. Systematic

errors which are expected to be spherically symmetric with respect to the halos, such as

intrinsic alignments, are nulled simultaneously.

Other work has attempted to estimate the feasibility of weak lensing stacked filament

detection. Maturi & Merten (83) make optimistic choices for survey parameters and find

that ∼ 2 − 4σ detections are possible for single clusters but state that their method has

difficulties in application to stacked filament detection. In another study (84) use lens and

source redshifts that make their lensing strength a factor of 2 greater than ours, and a

galaxy number density at least a factor of 30 higher. The lower mass limit of their stacked

clusters is M200 = 4 × 1014M�/h, much larger than the dark matter halos associated with

our LRGs. With these parameters, they estimate that ∼ 20 cluster pairs are necessary to

obtain a detection. We have ∼ 200, 000 pairs of LRG halos, and have been able to obtain a

detection without new ground or space data.

Filaments can also be characterized using the language of higher-order correlations. In

this case, one would describe the filament as the part of the matter-matter-matter three point

function in the neighborhood of the halos forming a cluster pair. A detection of the halo-halo-

matter 3-point function around such cluster pairs was made using the Red Cluster Survey

(122). More recently Simon et al. (123) used CFHTLens survey to measure the galaxy-

galaxy-shear correlation function and attempted to measure the average mass distribution

around galaxies. This measurement was done by subtracting off the two point contribution

of the lensing signal. As these authors discovered, the three-point signal peaks at the cluster
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4. FILAMENT LENSING

locations. However, for our purposes of identifying filaments, such a location of the three

point function’s peak makes the technique of two-point subtraction unsatisfactory. Just

as our nulling estimator removes two-point contributions which are spherically symmetric

about the halo centers, it also removes any three-point contribution which is centered on

these points.

The outline of this paper is as follows: section 4.2 describes the basic nulling technique

for removing spherically symmetric components, as well as an additional subtraction for

removing constant biases in the shear catalog. In section 4.3 the LRG pair catalog and

background source shear catalog used in this work are described. Section 4.4 contains

a derivation of the halo model’s expected filament signal, which arises due to the three-

halo term. In addition we describe an alternative thin-filament model. In section 4.5 we

present our main results, including the results of the filament measurement, null tests,

and comparison of the halo model prediction to the data. Finally, section 4.6 discusses

the implications of our results, and summarizes what we have learned about dark matter

filaments.

Throughout this work we use cosmological parameters Ωm = 0.3, ΩΛ = 0.7, and σ8 =

0.83.

4.2 Measurement Technique

In this section, we describe the nulling technique for spherically symmetric components,

which includes most of the two-point signal and the peak of the three-point signal. We also

describe an additional subtraction which removes contributions from constant shear biases.

4.2.1 Nulling spherical components

We bin the data in such a way as to null the shear signal from any spherically symmetric

source at the location of either member of the halo pair. To first order, such halos are
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p4

p3

p2

p1

h1 h2

γ1		<	0

γ1		>	0

γ2		>	0	
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Figure 4.1: Combining data in points p1-p4, the average shear signal from spherical halos h1
and h2 is zero. The point “p2” is the counter point of “p1” with respect to halo “h1”, while the
points “p3” and “p4” are the counterparts of p2 and p1 with respect to halo “h2”, respectively.
This nulling method only works when all shears are measured relative to the fixed Cartesian
coordinate system on the sky (as indicated at bottom right). Our convention for the sign of the
two shear components is given by the γ1 and γ2 whiskers.

expected to follow a spherically-symmetric NFW density distribution (92) when stacked.

However our technique is not dependent on the precise shape of the halo profile, only on its

spherical symmetry. We note that halo anisotropy which is preferentially aligned with the

inter-pair direction would not be nulled by the following procedure, but its small contribution

is treated in Appendix F.

First consider just one spherically symmetric halo, h1, as pictured in Fig. 4.1. Pick any

point p1 nearby. Draw another point p2 which is (i) 90 degrees away from p1 with respect

to the halo, and (ii) at the same distance from the halo as p1. The tangential shears γt
from these points add, while the cross component γ× is zero. This is the standard galaxy-
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4. FILAMENT LENSING

galaxy lensing measurement. But if the shear components at p1 and p2 are measured with

respect to a fixed coordinate system on the sky, they average out to zero. We denote the

shear components relative to this fixed Cartesian coordinate system γ1 and γ2. As shown in

Fig. 4.1, we choose this coordinate system such that γ1 < 0 is perpendicular to the x-axis,

and γ1 > 0 is parallel.

Now add a second halo, h2. We need to null the h2 shear signal in both p1 and p2

as well. To do so, rotate both points by 90 degrees about h2 to make points p3 and p4.

By construction, the average γ1 and γ2 shear signal measured at these four points has no

contribution from a spherical halo at h2. Furthermore, one can check that rotating p3 by

90 degrees about h1 brings it into p4, so that this set of four points is null with respect to

both halos. Again note that we are summing the Cartesian components of the four shears.

Such sets of four points are the building blocks for a number of possible binning schemes

which attempt to null the spherically-symmetric halo signal. Note that any set of bins

which exploit this property will necessarily mix scales relative to the hypothesized filament.

However, since the most likely location for an inter-halo filament is on the line connecting

the halo pair, we choose bins which will minimize this mixing of scales. The background

shears are separated into bands that run parallel or perpendicular to the filament direction:

these are marked as the “Signal region” on the left side of Fig. 4.2. The first two such bins are

numbered on the figure. This binning scheme also exploits the expected symmetries about

the center of the filament, in both horizontal and vertical directions. To verify that a bin

does indeed fulfill the conditions for nulling the spherical signal mentioned above, imagine

rotating the part of the bin above the Rpair line about either halo, and see that it goes into

the same colored bin in the region below the line. Note also that each background source

is counted twice due to the overlap between different bins. This means a naive shape noise

accounting of errors would underestimate the noise by a factor
√

2.

In what follows, we describe our measurement procedures of filament lensing. Following

the method in Mandelbaum et al. (79), we use, as the lensing observable, the stacked surface
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mass density field at the pixel (x, y) in the region around each LRG pair (see Fig. 4.2),

estimated from the measured shapes of background galaxies as

∆Σk(x, y; zL) =

∑
j

[
wj

(〈
Σ−1

crit

〉
j

(zL)
)−1

γk(~xj)
]

∑
j wj

, (4.1)

where the summation
∑

j runs over all the background galaxies in the pixel (x, y), around

all the LRG pairs, the indices k = 1, 2 denote the two components of shear, and the weight

for the j-th galaxy is given by

wj =

[〈
Σ−1

crit

〉
j

(zL)
]2

σ2
shape + σ2

meas,j

. (4.2)

We use σshape = 0.32 for the typical intrinsic ellipticities and σmeas,j denotes measurement

noise on each background galaxy. Again notice that, when computing the average shear field,

we use the same coordinate system for each LRG pair: taking one LRG at the coordinate

origin and taking the x-axis to along the line connecting two LRGs as pictured in Fig. 4.1.〈
Σ−1

crit

〉
j
is the lensing critical density for the j-th source galaxy, computed by taking into

account the photometric redshift uncertainty:

〈
Σ−1

crit

〉
j

(zL) =
∫ ∞

0
dzsΣ−1

crit(zL, zs)Pj(zs), (4.3)

where zL is the redshift of the LRG pair and Pj(zs) is the probability distribution of photo-

metric redshift for the j-th galaxy. Note that Σ−1
crit(zL, zs) is computed as a function of lens

and source redshifts for the assumed cosmology as

Σ−1
crit(zL, zs) =

c2

4πG
DA(zs)

DA(zL)DA(zL, zs)
(4.4)

and we set Σ−1
crit(zL, zs) = 0 for zs < zL in the computation.
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To increase statistics, we will measure the stacked weak lensing signal of filaments as

a function of distance R from the line connecting the two LRGs, rather than the two-

dimensional mass distribution (see Fig. 4.2). Based on our nulling method in Fig. 4.1, each

“p1” point at distance R has its counterparts with coordinate values

p1(x,R)→ {p2(R,−x),p3(1− x, 1−R),p4(1−R, x− 1)} , (4.5)

where we set the first LRG position “h1” as the coordinate center (x, y) = (0, 0), and we

have used the units of Rpair = 1 for convenience. Hence we employ the following estimator

of filament lensing signal for the a-th distance bin, Ra, in the signal region of Fig. 4.2:

∆̂Σ
signal

k (Ra) ≡
∑

xb;0<xb<0.5

[∆Σk(xb, Ra) + ∆Σk(Ra,−xb)

+∆Σk(1− xb, 1−Ra) + ∆Σk(1−Ra, xb − 1)

+∆Σk(xb,−Ra) + ∆Σk(Ra, xb)

+∆Σk(1− xb, Ra − 1) + ∆Σk(1−Ra, 1− xb)] , (4.6)

where ∆Σk(x, y) denotes the k-th component of projected mass density at the position (x, y)

(see Eq. 5.3, but note that the sum in the denominator of Eq. 5.3 runs over all lens-source

pairs in the bin when plugged into Eq. 4.6 or 4.7); the summation is over the x-axis bins,

and the summation range is confined to 0 < xb < 0.5 in order to avoid a double counting

of the same background galaxies in the different quads of points p1, . . . , p4. Note however

that the above binning does put each galaxy in two different bins. The third and fourth

lines of Eq. (4.6) exploit the symmetry about the line joining the LRG pair, by letting

∆Σk(x, y) → ∆Σk(x,−y). Putting each galaxy in two bins in this way does add to our

covariance between bins, but even so there is a gain in information. This is because when a

galaxy is put in, say, bin 1 it is averaged together with a different set of galaxies compared

to when it is placed in bin 2.
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4.2 Measurement Technique

Figure 4.2: The lensing measurement (cross-component null test) is performed by combining
all background shears’ γ1 (γ2) components in bins, such as the pictured bins 1 and 2. We call the
region including the LRG pairs the “Signal” region, where we expect the filament exists along
the line connecting the two LRGs denoted by bold points. We also use the regions surrounding
the Signal region, called “Systematic” regions, in order to estimate a possible coherent spurious
shear signal. We will estimate the filament lensing signal by subtracting the shear signal of
Systematic regions from the shear of the Signal region, as described in the text. (Note that the
left and top Systematic regions of Eq. (4.7) are not pictured.)
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4.2.2 Systematic and halo ellipticity subtraction

The standard g-g lensing measurement of tangential shears about halos is immune to some

effects which are worrisome for our method. Constant spurious shear on scales larger than

the halo automatically cancels out in such tangential shear measurements. The logic is very

similar to that used above to null the spherically-symmetric signal: a constant shear which is

present at two points rotated by 90 degrees about the halo relative to each other is cancelled

when those two points are averaged in a single bin.

Since we are not measuring the tangential shear γt relative to some center, another way

of mitigating spurious constant shears is needed. We do this by repeating the measurement

in the “Systematic region” surrounding the Signal region, as pictured on the right and lower

sides of Fig. 4.2. Note that we use, but do not picture, identical systematic regions on the

left and top of the Signal region. The layout of these systematic regions was chosen such

that they also null the spherically symmetric signal from both halos.

Similarly to the estimator for the signal region (Eq. 4.6), we can define the estimator for

the systematic regions as

∆̂Σ
sys.

k (Ra) ≡
∑

xb;0<xb<1

[∆Σk(1 + xb, Ra) + ∆Σk(1 +Ra, xb)

+∆Σk(2− xb, 1−Ra) + ∆Σk(2−Ra, 1− xb)

+∆Σk(xb, 1 +Ra) + ∆Σk(Ra, 1 + xb)

+∆Σk(1− xb, 2−Ra) + ∆Σk(1−Ra, 2− xb)

+∆Σk(xb − 1, Ra) + ∆Σk(Ra − 1, xb) (4.7)

+∆Σk(−xb, 1−Ra) + ∆Σk(−Ra, 1− xb)

+ repeat all terms with ∆Σk(x, y)→ ∆Σk(x,−y)]

where we again set the “h1” (first LRG) position as the coordinate center. The first and

second lines on the r.h.s. denote the average shear in the right-side region from the LRG
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pair (see Fig. 4.2), where we measure “fake” filament signal as a function of distance Ra
from the line connecting the “h2” position (1, 0) and the point (2, 0). Lines three and four

denote the average in the upper-side region. The fifth and sixth lines denote the average in

the left-side region, where we measure the signal as a function of distance Ra from the line

connecting the (−1, 0) and the “h1” position (0, 0).

Hence our estimator of the filament lensing is

∆Σfil
k (Ra) =

∑
all LRG pairs

[
∆̂Σ

signal

k (Ra)− ∆̂Σ
sys.

k (Ra)
]

(4.8)

Note that using these regions automatically assures that our systematic regions will have

the same distribution in redshift z, pair separation Rpair, and pair orientation angle as the

halo pairs themselves.

The nulling technique and systematic subtraction have the extra benefit of mostly re-

moving contributions from halo ellipticity, expected to point along the line joining the LRG

pair. The ellipticity-direction cross-correlation of Lee et al. (69) has shown that simulated

dark matter halos tend to point towards other halos in their vicinity. While the intrinsic

alignment of LRGs has been measured at a less significant level, the smallness of the in-

trinsic alignment of the galaxy ellipticity is more likely due to misalignment of the light

and mass profiles (98), rather than the lack of alignment between neighboring massive ha-

los. But if we let the virial radii of these halos be ∆ ≤ 1 Mpc/h and the pair separation

be Rpair ≥ 6 Mpc/h, then the ratio of these ∆/Rpair is a small quantity, and we show in

Appendix F that contributions to the signal are highly suppressed as this ratio gets smaller.

4.2.3 Jackknife Realizations

We perform the measurement and all null tests by first dividing up the survey area of 8,000

sq. deg. into 32 approximately equal area regions, as shown in Fig. 4.3. We then measure

each quantity multiple times with each region omitted in turn to make N = 32 jackknife
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realizations. The covariance of the measurement (97) is given by

C[∆Σfil
i ,∆Σfil

j ] =
(N − 1)
N

×
N∑
k=1

[
(∆Σfil

i )k −∆Σfil
i

] [
(∆Σfil

j )k −∆Σfil
j

]
(4.9)

where the mean value is

∆Σfil
i =

1
N

N∑
k=1

(∆Σfil
i )k , (4.10)

and (∆Σfil
i )k denotes the measurement from the k-th realization and the i-th spatial bin.

The covariance is measured for both components of shear; for clarity we do not denote the

separate components in Eqs. 5.7 and 5.8.

4.3 Data

4.3.1 Pair catalog

We use the SDSS DR7-Full LRG catalog of Kazin et al. (62), which contains 105,831 LRGs

between 0.16 < z < 0.47. The sky coverage is approximately 8,000 sq. deg. The pair

catalog is constructed by choosing each LRG in turn, and finding all neighboring LRGs

within a cylinder of physical (or proper) radius 18 Mpc/h and physical line-of-sight distance

±6 Mpc/h. The redshift distribution of our pairs is in the left panel of Fig. 4.4. The

distribution in line-of-sight distance differences between the pair members is roughly uniform,

as shown in the bottom right panel of Fig. 4.4. The cut-off of ∆rlos < 6 Mpc/h corresponds

roughly to a redshift separation of ∆z < 0.004 between pairs. Note that this line-of-sight

separation assumes the LRG velocity is only due to Hubble flow; in other words, the redshift

difference can arise from the difference of line-of-sight peculiar velocities (∆v = 1200km/s

for ∆rlos = 6 Mpc/h) even if the two LRGs are in the same distance. This is the so-called
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Figure 4.3: The SDSS footprint covered by our LRG catalog and background source galaxies.
The total area is approximately 8,000 square degrees. We divide the area into 33 jackknife
regions as pictured, repeating the measurement 33 times with each region omitted once, giving
an estimate of the covariance matrix.
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redshift space distortion (RSD), and we will discuss the effect of RSD on our weak lensing

measurements.

We obtain ∼ 220, 000 pairs with the separation cutoffs given above: since each LRG

can be a member of multiple pairs, this is about twice the number of objects as in the

original LRG catalog. With Rpair defined to be the physical projected separation between

the LRGs, for pairs between 6 Mpc/h < Rpair < 18 Mpc/h we have a distribution P (Rpair)

which grows very slightly with Rpair (Fig. 4.4, top right panel). The virial radii of these

halos are ∼ 0.5− 1.0 Mpc/h, so our selection of objects with Rpair ≥ 6 Mpc/h ensures that

these LRGs live in different dark matter halos. We have checked that the measurement is

insensitive to the choice of physical vs. comoving distances.

In Fig. 4.5 we show the stacked shear whiskers for the smallest Rpair bin; each lens-source

pair is optimally weighted as in Eqs. (5.3) and (5.4), and we convert back to γ by assuming

fiducial redshifts zL = 0.25 and zs = 0.4. The tangential shear signal around each member

of the LRG pair is clearly visible. The nearest whisker to each LRG has magnitude ≈ 0.003.

Note that due to the large distance between whiskers (0.1Rpair ∼ 1 Mpc/h) even the closest

ones to each halo are far from the center at ∼ Rvir/2. The dominance of the LRG halos

in these fields motivates our use of the nulling scheme to isolate the relatively tiny filament

lensing signal.

4.3.2 Background source catalog

The shear catalog is composed of 34.5 million sources, and is nearly identical to that used in

Sheldon et al. (117). The source redshift distribution is shown in the left panel of Fig.and is

obtained by stacking the posterior probability distribution of photometric redshift for each

source, P (zs). While the peak of this source catalog is approximately at the same redshift as

the peak of our LRG pairs, z ∼ 0.35, the source distribution has a substantial tail extending

out to higher redshifts. For further details of the shear catalog, see Sheldon et al. (117).

98



4.3 Data

6 8 10 12 14 16 18
RPair

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
(R

P
a
ir
)

6 4 2 0 2 4 6

∆rlos

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
(∆
r l
os
)

0.0 0.2 0.4 0.6 0.8 1.0
z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P (zL )

P (zs )

Figure 4.4: (left panel): The redshift distribution of LRG pairs used as lenses (solid line)
and background sources (dashed line). (top right panel): The distribution of physical distances
in the plane of the sky between the two members of each galaxy pair. The number of pairs
rises very slowly with increasing distance. (lower right panel): The distribution of differences
in line-of-sight distance for our LRG pairs. Note that a correction for RSD does not enter in
these distances.
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Figure 4.5: The stacked shear field for our smallest separation bin, 6 Mpc/h < Rpair <

10 Mpc/h, obtained by stacking the background galaxy ellipticities in the same Cartesian
coordinate system around each LRG pair region (see Fig. 4.1 and Eq. 5.3). The tangential
shear signal of the LRG halos is clearly visible at the location of the blue dots. The green box
pictures the Signal region of Fig. 4.2. We seek to measure the small lensing signal of filaments
in these fields dominated by massive halos.
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4.4 Theory: Thick- and thin-filament models

We compare the measurement to the following two models, which generally predict “thick”

or “thin” filaments, respectively:

• the three-point halo model prediction using the halo-halo-matter bispectrum based on

the perturbation theory of structure formation;

• a one-dimensional string of less massive NFW halos (a collection of NFW halos along

the 1D filament).

4.4.1 Thick-filament from the halo model

Here we use the halo model (22, 129) to make a prediction for the size and shape of filaments

between LRG pairs. We first obtain the projected mass density map around the pair of halos,

based on the halo-halo-matter three-point correlation function, and then Fourier-transform

the mass map to compute the shear field in order to compare with the measurements.

4.4.1.1 Surface Density Map from three-point correlations

We are interested in the three-point correlation among halos at ~θ1, ~θ2 and κ at ~θ3,

ζhhκ ≡ 〈δh(~θ1) δh(~θ2) κ(~θ3)〉 , (4.11)

where the 2D halo overdensity δh and convergence field κ can be written in terms of the

matter overdensity δm as follows

δh =
∫

dχ p(χ) δ(3D)
h (χ) =

∫
dχ p(χ) b δm(χ) (4.12)

and

κ =
∫

dχΣ−1
cr (χ, χs) ρ̄m,0 δm(χ) , (4.13)
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with χs taken to be a fixed source plane. Here the halo bias b ∼ 2 for the large host halos

of LRGs, and p(χ) is the line-of-sight probability distribution of our LRG halos.

Under the flat-sky approximation, the projected correlation function ζhhκ is given in

terms of the 3D matter three-point correlation function as

ζhhκ(θ1, θ2, θ3) =
∫

dχ1dχ2dχ3 p1(χ1)p2(χ2) (4.14)

×Σ−1
cr (χ3, χs)ρ̄m,0b

2〈δm(χ1
~θ1) δm(χ2

~θ2) δm(χ3
~θ3)〉,

with

〈δm(χ1
~θ1) δm(χ2

~θ2) δm(χ3
~θ3)〉

=
∫

d3~kAd3~kBd3~kC

(2π)3(2π)3(2π)3
BPT

mmm(~kA,~kB,~kC)

×(2π)3δ3
D(~kA + ~kB + ~kC) ei(~kA·~x1+~kB·~x2+~kC·~x3), (4.15)

where ~xi ≡ χi~θi. We choose the line-of-sight LRG distributions to closely follow the measure-

ment method. Since the measurement involves one LRG at essentially known line-of-sight

comoving distance χ, we set the first distribution p1 to a delta function. The second LRG

also has known redshift, which is fixed to be nearby the first LRG, but has some finite width

due to the uncertainty of RSD. Thus we use the following distributions for the two LRGs:

p1(χ1) = δD(χ1 − χ) (4.16)

p2(χ2) =
1√
2πσ

e−(χ1−χ2)/(2σ2) , (4.17)

where σ denotes the line-of-sight width of the distribution of the second LRG around the

first.

Since we are interested in weak lensing due to filaments that arises from the matter dis-

tribution in the weakly nonlinear regime, we employ perturbation theory (3, 34) to compute

102



4.4 Theory: Thick- and thin-filament models

the matter bispectrum:

BPT
mmm(kA, kB,−kAB) = P (kAB)×{[
10
7
−
(
kA

kAB
+
kBµ

kAB

)(
3
7
kA

kAB
+
kAB

kA
− 4

7
kBµ

kAB

)]
P (kA)

+
[

10
7
−
(
kB

kAB
+
kAµ

kAB

)(
3
7
kB

kAB
+
kAB

kB
− 4

7
kAµ

kAB

)]
P (kB)

}
+
[

10
7

+ µ

(
kA

kB
+
kB

kA

)
+

4
7
µ2

]
P (kA)P (kB) , (4.18)

where µ ≡ cosφ (see Fig. 4.6), kAB =
√
k2

A + k2
B + 2kAkBµ, and P (k) is the linear matter

power spectrum.

Employing Limber’s approximation sets χ3 ≈ χ2 ≈ χ1, and the three-point function can

be simplified as

ζhhκ =
∫

dχ3 p1(χ3) p2(χ3) Σ−1
cr (χ3, χs) ρ̄m,0b

2

×
∫

d2~kAd2~kB

(2π)2(2π)2
BPT

mmm(kA, kB,−kAB)

×eiχ3[~kA·(~θ1−~θ3)+~kB·(~θ2−~θ3)] , (4.19)

where kA ≡ |~kA|, and the vectors ~kA,~kB are now two-dimensional, lying in the plane of the

sky. The line-of-sight LRG distributions are now

p1(χ3) = δD(χ3 − χ) (4.20)

p2(χ3) =
1√
2πσ

e−(χ3−χ3)/(2σ2) =
1√
2πσ

(4.21)

The delta function p1(χ3) thus removes the last χ integral, leaving

ζhhκ =
Σ−1

cr (χ, χs)√
2πσ

ρ̄m,0b
2

∫
d2~kAd2~kB

(2π)2(2π)2

×BPT
mmm(kA, kB,−kAB)eiχ[~kA·(~θ1−~θ3)+~kB·(~θ2−~θ3)] , (4.22)
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θψ-θ

ϕ
R1

R2

kB
kA

Figure 4.6: LRGs are located at ~R1 and ~R2, while the matter point of interest is at the origin.
We integrate over the magnitude of the wavevectors, kA and kB, the angle between them φ, and
the angle ψ between ~kA and ~R1.

with again, ~kAB ≡ ~kA + ~kB.

Choose the shear point to be at the origin, ~θ3 = 0, and use comoving distances in the

lens plane, Ri = χθi, as in Fig. 4.6. Then the two d2~k integrals can be written in terms of

the magnitude of the wavevectors kA and kB, the angle between them φ, and the angle ψ

between ~kA and ~R1:∫
d2~kad2~kb =

∫ ∞
0

dkAkA

∫ ∞
0

dkBkB

∫ 2π

0
dφ
∫ 2π

0
dψ .

In terms of these variables, the argument of the exponential is proportional to

χ[~kA · ~θ1 + ~kB · ~θ2] = kAR1 cosψ + kBR2 cos (ψ + φ− θ)

= α cosψ + β sinψ , (4.23)

where

α ≡ kAR1 + kBR2 cos (φ− θ) ,

β ≡ kBR2 sin (φ− θ) .

Then the three-point function can be rewritten as

ζhhκ =
Σ−1

cr (χ, χs)√
2πσ

ρ̄m,0b
2 1
(2π)4

∫ ∞
0

dkA

∫ ∞
0

dkB

∫ 2π

0
dφ

×kAkBB
PT
mmm(kA, kB,−kAB) Iψ(α, β), (4.24)
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where

Iψ(α, β) ≡
∫ 2π

0
dψ ei(α cosψ+β sinψ) .

It can be shown that this integral is a Bessel function of the first kind,

Iψ = 2πJ0(
√
α2 + β2) ,

so that

ζhhκ =
Σ−1

cr (χ, χs)√
2πσ

ρ̄m,0b
2 1
(2π)3

∫ ∞
0

dkA

∫ ∞
0

dkB

∫ 2π

0
dφ

×kAkBB
PT
mmm(kA, kB,−kAB) J0(

√
α2 + β2), (4.25)

where J0(x) is the zero-th order Bessel function.

As can be seen from Eq. (4.25), the line-of-sight spread of the second LRG around the

first, parametrized by σ, causes a dilution of the three-point correlation function; the wider

spread reduces the amplitude due to the projection of different-direction structures. On

the other hand, using a wider spread gives a larger sample of paired LRGs reducing the

statistical noise. Hence the net signal-to-noise ratio is determined by a trade-off of these

competing effects, as we will explicitly study below.

Although the LRGs of each pair are selected by the difference of their redshifts (see

§ 4.3.1), the line-of-sight spread σ is statistically given by a sum of the redshift difference

and the RSD effect:

σ =
√

(∆rlos)2 + σ2
RSD (4.26)

where ∆rlos is the rms separation inferred from the redshift difference of LRG pairs, ∆rlos '
∆z/H(zLRG), and σRSD is the width due to RSD. For our fiducial choice of LRG pair

selection, we employ ∆rlos ≤ 6 Mpc/h. However, the RSD is not a direct observable, and

causes an uncertainty in the model prediction. The RSD has two contributions: bulk motions

of halos in large-scale structure and virial motions of LRG within its host halo, where the

latter is the so-called Finger-of-God (FoG) effect. The RSD due to halo bulk motions is
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estimated as σ ∼ 4 Mpc/h from N -body simulations of the ΛCDM model (e.g., 95). For the

virial motion contribution, recently (41) used the DR7 LRG catalog to measure the g-g weak

lensing and clustering measurements in order to study the FoG. For multiple LRG systems,

which are massive halos (with ∼ 1014M�/h and b ∼ 3) hosting multiple LRGs inside, the

FoG effect is estimated as σ ∼ 9 Mpc/h for LRGs at z ' 0.35. For other LRGs residing in

less massive host halos, the virial motions are smaller.

Summing up these effects, the line-of-sight spread of LRGs in the pairs can be as large as

σ ∼ 10 Mpc/h. However, since the majority (above 90%) of the LRGs are only single-LRG

systems, for which σRSD ∼ 6, our best estimate is σ ∼ 8 Mpc/h. However, for any reasonable

estimate of the RSD effect, the amplitude of the theory prediction is significantly larger than

our measurement from the data. With the choice of σ = 8 Mpc/h, the magnitude of the

offset is a factor of 10 (see § 4.5). This requires further investigation with simulated lensing

maps on which the measurement procedure is applied. In all plots involving the halo model

prediction, we scale the amplitude to match the data.

In Fig. 4.7, we show the perturbation theory prediction for the kappa maps around

hypothetical halo pairs hosting LRGs, for various choices of Rpair. In these figures, we

employ b = 2 for linear bias of LRGs, and zL = 0.25 and zs = 0.4 for LRG redshift and

source redshift, respectively. As described above, the amplitude is scaled to match the data.

4.4.1.2 Shear Map

To compare the two, we bin the prediction in the same way as the data. We begin by

transforming the predicted kappa maps into shear maps. Due to symmetry, the resulting

map of the cross-component γ2, when binned in the same way as our data, gives identically

zero signal. This provides one of our null tests. However, in order to visualize the shear

map resulting from the three-point function, we go ahead and calculate the shear map for

both γ1 and γ2.
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Figure 4.7: Here we plot the halo model prediction for the surface mass density contributed
by the three point function in the neighborhood of LRG pairs (positions marked by “×”). The
amplitude is a strong function of Rpair, with the peak density dropping by about an order of
magnitude from Rpair = 6 Mpc/h to Rpair = 18 Mpc/h. However, the shape is roughly the same
for all pair separations. Note that spatial scales are plotted in units of Rpair. The amplitudes
of this and all other theory plots are scaled to match the data. Note that, for this plot, we did
not include the mass contribution from LRG halos, so the mass distribution is purely from the
perturbation theory of the halo-halo-matter correlation function.
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The shear and convergence fields are related in Fourier space by

γ̃1(~l) = κ̃(~l) cos 2φ~l (4.27)

γ̃2(~l) = κ̃(~l) sin 2φ~l , (4.28)

where φ~l is the angle between the wavevector ~l and the x-axis of the coordinate system. We

zero-pad the ζhhκ map out to a spatial scale 5 times larger than the map itself. This ensures

that there is no spurious shear due to the periodic boundaries assumed in an FFT. After

zero padding, we perform the FFT, then apply Eqs. (4.27, 4.28), and finally carry out the

inverse FFT.

Note that for close pairs, such as in the top left panel of Fig. 4.7, the surface density

is still significant at the edge of the pictured region. If such a map is zero-padded and the

above process is applied to obtain γ maps, they will contain spurious shear due to the steep

fall in density at the beginning of the zero-pad region. We find that the FFT converges for

Rpair ≥ 6 Mpc/h as long as the ζhhκ map is calculated out to ±16Rpair from the center of

the line joining the pair of halos. We also check convergence of the FFT as a function of

resolution, and find that spacing between grid points of 0.1Rpair is sufficient.

An example of the resulting whisker plot is shown in Fig. 4.8, for Rpair = 10 Mpc/h.

The largest magnitude shears of γ1 ∼ −0.001 lie between the two peaks of the three-point

function. At radial distances beyond 0.5Rpair from the line connecting two halos, the shear

direction is parallel to the line (γ1 > 0 for our definition as given in Fig. 4.1), as expected in

the thin filament. Moving closer to the midpoint of the halos, the shear vanishes at about

0.5Rpair, and the direction then becomes flipped, now perpendicular to the connecting line

(γ1 < 0), which looks like “tangential shear” with respect to each halo. However, the width

of the perpendicular shear region is about 0.5Rpair ∼ 5 Mpc/h, wider than the virial

radius of the halos. Hence we call this model the “thick-filament” model. These features are

from the perturbation theory matter bispectrum, thus reflecting the nature of large-scale

structure in the weakly nonlinear regime. The shear pattern is qualitatively the same for
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4.4 Theory: Thick- and thin-filament models

other Rpair values, being well described by a decreasing amplitude for larger Rpair. The

green box outlines the Signal region of Fig. 4.2.

4.4.1.3 Averaging over Rpair, zL and zs distributions

The PT 3pt function has a trivial redshift dependence according to the linear growth rate,

∝ D4
lin(zL). Therefore we only have to do the time-consuming kA, kB and φ integrals in

Eq. (4.25) once for some arbitrary redshift values (here zL = 0.25, zs = 0.40).

The measurement is of ∆Σfil
1 and to this point we are still working with the dimensionless

ζhhκ. We should rather compare the data with ζhhκΣcrit,eff ; therefore we next obtain the

effective lensing strength from the data. It is simply

Σcrit,eff =
∫

dzL p(zL)
∫

dzs p(zs) Σcrit(zL, zs) , (4.29)

a redshift weighting over the lens and source redshift distributions shown in Fig. 4.4.

TheRpair distribution within a given bin is essentially flat (see Fig. 4.4). The combination

of different Rpair predictions is therefore easily modeled by a geometric factor accounting for

the relative number of source galaxies which enter the measurement for each pair separation.

This difference in area sampled by each pair goes as R2
pair, so the prediction for a given bin

is

〈ζhhκΣcrit〉Rpair =

∫ Rmax

Rmin
dRpairR

2
pairζhhκΣcrit∫ Rmax

Rmin
dRpairR2

pair

. (4.30)

We apply this weighting when comparing data and theory in § 4.5.

The last step in obtaining predictions for our binning scheme (Fig. 4.2) involves generat-

ing random points within the pictured area to imitate source galaxies. Then we interpolate

over the γ1 grid as pictured in Fig. 4.8 to obtain the shear for each random point. Finally,

the shears are binned together in the same way as the data.
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Figure 4.8: An example of the halo model shear map prediction for LRGs separated by
Rpair = 10 Mpc/h. Starting at the filament midpoint and moving on a line perpendicular to the
filament, we see γ1 transition from a large negative amplitude, to a smaller positive amplitude
after passing through zero at ∼ 0.5Rpair. The shear maps of other Rpair values are qualitatively
similar. The green rectangle shows the Signal region of Fig. 4.2. Two rows of the innermost
whiskers have been removed for clarity. Note that the amplitude of the whiskers is scaled to
match the data. After this scaling, the shear values are of order 0.1%, with scale shown in the
upper right corner.
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4.4.2 Thin-filament model

Here we consider a “string of halos” as an independent model from the halo model. For

this simple model, we use a 1D line of NFW halos as in Maturi & Merten (83). The shear

induced by an NFW profile has an exact solution given by Wright & Brainerd (139):

∆ΣNFW = rs δc ρc g(x) (4.31)

where g(x) is given by

g(x) =


g< for x < 1

(10/3) + 4 ln (1/2) for x = 1
g> for x > 1

, (4.32)

with

g<(x) =
8 arctanh

√
(1− x)/(1 + x)

x2
√

1− x2
+

4
x2

ln (x/2)

− 2
x2 − 1

+
4 arctanh

√
(1− x)/(1 + x)

(x2 − 1)
√

(1− x2)
(4.33)

g>(x) =
8 arctan

√
(x− 1)/(1 + x)

x2
√
x2 − 1

+
4
x2

ln (x/2)

− 2
x2 − 1

+
4 arctan

√
(x− 1)/(1 + x)

(x2 − 1)3/2
. (4.34)

The model has just two parameters: Mfil, the total mass in the string of halos, and Nfil,

the number of halos in the string. Each halo is given a mass Mhalo = Mfil/Nfil, and different

halos are equally-spaced along the string between two LRGs. We use Mfil = 2× 1014M�/h

and Nfil = 20, so that the mass per halo is 1013M�/h. However, we have checked that the

prediction is not very sensitive to the choice of Nfil. To generate predictions for this model,

we calculate the shear profile at any given point by adding up the contribution for each halo

in the string, with each halo’s contribution calculated according to Eq. (4.31). The overall
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shear amplitude depends on the total mass Mfil. This model generally predicts the shear

pattern that is parallel to the string (i.e. γ1 > 0), at the distance R >∼ 1 Mpc/h. Hence we

call this the “thin-filament” model.

4.5 Results

We have detected at 10σ a stacked filament lensing signal by comparing the measurement

to the null hypothesis that there is no excess mass extending between the LRGs. Under

that hypothesis, we expect a lensing signal consistent with zero. The null has an expected

chi-square of

〈χ2〉 = N − n±
√

2N + 2n = 18± 6 (4.35)

where N = 18 is the number of bins and n = 0 the number of model parameters. To

validate our detection, we first show four separate null tests which are consistent with the

null hypothesis, before moving on to show the measurement itself and comparison to theory.

For all null tests, we repeat the measurement of our Eq. (4.8) estimator for ∆Σfil
1 using

the same jackknife regions. The difference is that rather than using close LRG pairs to

define the measurement regions of Fig. 4.2, we choose the “pair center,” Rpair, and angle

of the Cartesian coordinate system on the sky φ in such a way that the result should be

consistent with the null hypothesis of no excess mass lying along the center of the Fig. 4.2

Signal region. The summary of all chi-square results for our null tests and the measurement

itself is shown in Table 4.1.

4.5.1 Null tests: Unpaired LRG, Separated pairs, and Cross-component

Our first three null tests pass straightforwardly. First, the unpaired LRG test involves

removing one LRG of the pair. In other words, we use the entire catalog of LRGs, assign

each one a random Rpair and orientation angle, then calculate ∆Σfil
1 as if it has a partner

LRG at that Rpair and angle. While we expect many LRGs to have filaments, the random
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Null hypothesis 〈χ2〉 = 18± 6

χ2 significance
Separated pair test 19.5 0.2 σ
Unpaired LRG test 19.8 0.3 σ
Cross-component 16.3 0.3 σ
Random points (larger errors) 37.3 (23.6) 3.2 (0.9) σ
LRG pair (larger errors) 89.7 (78.0) 12.0 (10.0) σ

Table 4.1: Summary of the chi-square results for the filament lensing measurement. In paren-
theses we show the χ2 and significance results after accounting for systematic errors. All null
tests are passed, and the measurement shows a 10σ deviation from the null hypothesis.

orientations used in this test should stack individual filaments such that the final mass

distribution is isotropic, and thus nulled by our procedure. The result is shown in Fig. 4.9

(red triangles), and with a χ2 = 19.8 is consistent with zero. The detection significance of

0.3σ shown in Table 4.1 is calculated as

significance =
χ2 − 〈χ2〉null

σnull
=

19.8− 18
6

= 0.3σ , (4.36)

and is well under 1σ.

The separated pair test involves using two LRGs at the “h1” and “h2” positions of Fig. 4.1,

but with line-of-sight separation 100 Mpc/h < ∆rlos < 120 Mpc/h. The 3D distance of

such pairs is so large that we expect no excess mass to build up between them. For the

lens redshift zL, we use the average of the two LRG redshifts. The result is shown in

Fig. 4.9 (green diamonds) and is consistent with zero, with χ2 = 19.5 and significance 0.2σ.

Furthermore, this test shows that the spherically symmetric shear signal from both LRGs

in the measurement is truly nulled, as claimed.

As in tangential shear measurements, where the cross-component of shear rotated by 45◦

has no first-order contribution from gravitational lensing, our cross-component (the ∆Σfil
2
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component of Eq. 4.8) has no contribution from a filament. This statement holds as long

as the stacked mass distribution around the LRG pairs has reflection symmetry about the

line joining the pairs. For such a mass distribution, in the Cartesian coordinate system of

Fig. 4.1, γ2(y) = −γ2(−y). Since background sources at y are always put in the same bin

with sources at −y, (see Fig. 4.2), ∆Σfil
2 = 0 on average. This is what we find in Fig. 4.10,

where the magenta triangles show the result of this null test. The χ2 = 16.3 for a significance

of 0.3σ, consistent with the null hypothesis.

4.5.2 Null test: Random points

Finally, for the random points test, we repeat the measurement on ∼ 10 times as many

random points with the same distribution in φ, z, and Rpair as the pair catalog. The result

shown in Fig. 4.9 (blue circles) has a small magnitude ∼ 0.1M�h/pc2, but with a χ2 = 37.3

it is 3.2σ inconsistent with zero. We assume that this inconsistency is the result of some

unknown systematic error(s) in the measurement. We account for this systematic error by

adding to each error bar a constant σsyst = 0.039M�h/pc2; this is smaller than the jackknife

error on any individual bin of the random points measurement, and corresponds on average

to an increase of 36% on each error bar. (In other words, we assume that this systematic acts

only on the diagonal of the covariance matrix, and so we add σ2
syst to each diagonal element

of the covariance matrix.) The total error on any given bin i becomes
√
σ2
i,JK + σ2

i,syst,

yielding a χ2 = 23.6 for the random points test, within 1σ of the null hypothesis.

4.5.3 Measurement

Now we turn to the filament measurement itself, using LRG pairs which are likely to have

excess mass in between. Our initial measurement with covariance directly from the jackknife

realizations yields a χ2 = 89.7 and corresponding significance 12.0σ. However, we need to

take account of the fact that the random points measurement was inconsistent with zero until

the errors were increased to account for unknown systematics. Thus, we add in quadrature
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Figure 4.9: The results of three null tests (labelled in the legend) for our closest set of pairs
(left panel) and more widely separated pairs (middle and right panels). The unpaired LRG test
and separated pair test are both consistent with the null hypothesis, showing that our estimator
does null the spherically symmetric signal from the LRG halos.

the same constant σsyst = 0.039M�h/pc2 to the measurement error bars. This addition

made the random points test consistent with zero, but since the magnitude of the error

bars on the measurement itself is much larger, this constant diagonal error only increases

the uncertainty on each data point by < 2%. The resulting χ2 is then 78.0, decreasing the

detection significance to 10.0σ, still a robust detection of filament lensing. The black circles

of Fig. 4.10 show the measurement with these larger error bars.

Note that in addition to the measurement of Fig. 4.10 using the estimator of Eq. (4.8),

we have repeated the measurement using only Eq. (4.6). Some signal is still present in

this case without the systematic region subtraction, but the significance of the detection is

somewhat less without this subtraction.

In Fig. 4.11 we show the normalized covariance matrix of ∆Σfil
1 , rij ≡ Cij/

√
CiiCjj . Most

off-diagonal elements are near zero, with a scattered few of magnitude rij ∼ 0.5. The highest

covariance with rij > 0.5 is found in the top right corner of the matrix, corresponding to pairs

with 14 Mpc/h < Rpair < 18 Mpc/h. For comparison, we also show the cross-component

∆Σfil
2 covariance.
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Figure 4.10: Same as Fig. 4.9, but showing the cross-component null test ∆Σfil
2 (purple points)

and measurement ∆Σfil
1 (black points). The cross-component is consistent with zero, while the

measurement deviates by 10σ. We compare the measurement to two theoretical models, the
halo model (solid blue line) and NFW string (dashed blue), both of which have an amplitude
adjusted to match the measurement. The shape of the halo model prediction is supported by
the data, while the NFW string is clearly ruled out.

4.5.4 Comparison to theory

In Fig. 4.10 we compare the halo-model and thin-filament models to the data. With a sign-

flip relative to the data, the thin-filament model (blue dashed line) is difficult to support, but

the thicker filament predicted by a halo model calculation (blue solid line) is more accurate.

For the halo model, our best estimate of the contribution from redshift space distortions

(with a dispersion of σRSD = 5 Mpc/h) is σ = 8 Mpc/h. Even with this dilution of the

signal, we need to scale the halo model amplitude down by a factor of ten to match the

data. Thus, the combination of bias in the measurement, dilution of the signal, and error

in the halo model prediction leads to a large offset between theory and measurement. As

for the NFW string prediction, the magnitude is controlled by the total filament mass, Mfil.

For this plot, it was adjusted to Mfil = 2× 1014M�/h, giving a magnitude roughly equal to

the halo model prediction. (Although clearly the shape is still wrong.)
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Figure 4.11: (left panel): The normalized covariance matrix of ∆Σfil
1 . The pairs separated

by the largest distance of 14 Mpc/h < Rpair < 18 Mpc/h (top right corner of ri,j) show the
strongest correlations between bins. (right panel): The same, but for ∆Σfil

2 . We use the full
covariance matrices when calculating the significance of the deviation from the null hypothesis
for the measurement and each null test.
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We calculate the average mass and density in the region between the halos using the halo

model mass maps of Fig. 4.7. However, note that these results should be taken with caution,

as again the amplitude has been scaled to match the measurement. The result is shown as

a function of Rpair in Fig. 4.12. The different curves show the results for different choices

of ymax, the maximum distance which we include in the average. The averaging along the

x-axis includes all mass which is both between the two halos, and at least 1 Mpc/h from

either halo center. In other words, we do not count mass that would be within either halos’

virial radius in the estimate of the filament mass.

4.6 Discussion

We have presented a technique for the statistical measurement of properties of dark matter

filaments between LRG halos separated by ∼ 10Mpc. We use an empirical approach to

cancel out the contribution of spherical halos and constant shear patterns in the data. The

residual shear patterns are attributed to filamentary structures and the mass and thickness

of the filament are estimated. We find the data prefer thick filaments that contain at least

twice as much mass as the halos that set at their end points.

There are several approximations and sources of error in our analysis.

• The stacking of hundreds of thousands of LRG pairs leads to a smearing of the mass

distribution. This means that we cannot make definitive statements about the typical

filament structures in the universe, in particular the limits we obtain on the thickness

of the filament only apply to the stacked profile.

• The binning scheme we use to null out the contribution of spherical halos and other

considerations mixes scales. It also preserves the signal only from perfect cylindrical

symmetry. So even genuine structures beyond spherical mass distributions are nulled

out.
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Figure 4.12: Estimates of the mass density (upper panel) and the enclosed mass (lower) in
the filament, using the best-fit halo model predictions to the measurements in Fig. 4.10. To
estimate these quantities, we integrate the projected mass density over the rectangular area that
is defined by the separation distance of paired LRGs outside their virial radii (x-axis) and the
distance from the line connecting the two LRGs (ymax denoted by the legend). The estimated
volume in the top panel is taken to be a cylinder of radius ymax, with four choices indicated
in the legend. With density contrasts ρ/ρ̄m ∼ 10, the component of matter we measure falls
between the regimes of high density halos and the low density linear regime.
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• Errors in shear estimates from the intrinsic ellipticities of background galaxies dom-

inate the statistical error in our measurement. The other major source of statistical

error is the variations in the mass distribution between different LRG pairs – this

cannot be quantified from the data, so we intend to study it with simulations.

• The calibration of the shear, which relies on a correction for the smearing due to

the PSF, introduces a redshift dependent bias that propagates to the filament mass

estimate. Uncertainties in the photometric redshifts of background galaxies have a

similar effect.

• Redshift space distortions: the line of sight separation of the LRG’s is uncertain owing

to their relative peculiar velocity. We have attempted to account for it in our discussion

above.

• The inevitable contamination of the LRG sample with other galaxies and stars leads

to a dilution of the signal. This should be controlled to better than the 10% level.

• Finally, the theoretical model is based on halo-halo-mass correlations in the halo model.

This model is known to have limitations, with the amplitude being consistent with

N-body simulations only at the 30% level. In particular, the halo model tends to

overestimate the clustering amplitude over a range of 1-10Mpc, the transition regime

between the weakly and strongly nonlinear regimes. The regime also involves theoret-

ical approximations such as the linear halo bias assumption.

In future work several improvements can be made that address nearly all the above

points. In addition forward modeling of the measurement can be done using simulations

and the halo model, so that comparisons can be made without use of our nulling technique.

Such an approach may allow for more detailed tests of the halo model and of filamentary

properties, though care will need to be exercised to distinguish systematic errors. Finally, an
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obvious complement to our study is to compare the mass distribution inferred from lensing

shears with the distribution of foreground galaxies and hot gas.
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Chapter 5

Lensing Measurements of the Mass
Distribution in SDSS Voids

5.1 Introduction

The first measurement of lensing from stacked galaxies was observed almost twenty years

ago by Brainerd et al. (6). Since then, applications of this technique to the Sloan Digital Sky

Survey (SDSS) have made stacked galaxy lensing an indispensable measure of galaxy halo

masses, e.g., Mandelbaum et al. (77) and Sheldon et al. (117). More recently, in Clampitt

et al. (17), we measured the stacked lensing signal of filaments connecting neighboring

Luminous Red Galaxies (LRGs). In that work, we made a significant detection of a filament

lensing signal, and thus were able to study the thickness and mass density of filaments. With

the goal of obtaining a the analogous measurement for voids, we construct a void catalog

from holes in the LRG distribution of SDSS, measure the void tangential shear profile, and

constrain their density profiles.

There are many void finders in the literature, all differing in implementation and the

resulting set of voids found. Colberg et al. (19) makes a comparison of 13 algorithms. In

recent years, methods involving a Voronoi tessellation coupled with a watershed transform
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have become popular (68, 93, 108). These methods have also been successfully applied to

data, yielding void catalogs from surveys such as SDSS (125). A lensing analysis of the

Sutter et al. (125) catalog was carried out by Melchior et al. (85). However, despite careful

attention to details of the shear measurement, the small number of voids in the catalog was

likely a factor in the marginal detection significance.

Recent work has studied in more detail the properties of dark matter voids in simulations.

Hamaus et al. (37) found that previous fits to simulation density profiles were too simple and

provide fitting formulae with parameters that can be adapted to voids with a range of sizes.

Sutter et al. (127) and Sutter et al. (128) have worked to connect the theory of voids found

in the dark matter to those found in galaxies by using Halo Occupation Distribution models

to mimic realistic surveys. Excursion set work has focused on providing semi-analytical

models of void abundances (103, 121), as well as connecting these models to void counts

from simulations (61).

Once void catalogs are constructed, they have numerous other applications. Hoyle et al.

(49) used a different void finder (47, 101) to study the photometric properties of void galaxies.

They find that void galaxies are bluer than those in higher density environments, but do

not vary much within the void itself. Cosmological probes such as the Alcock-Paczynski test

(68, 126) and void-galaxy correlations (36) have been proposed. Finally, voids also provide

a sensitive test of some modified gravity theories (16, 74).

Section 2 describes our basic void-finding algorithm, as well as our cuts to select a

subsample useful for lensing. Section 3 explains our weak lensing measurement, null tests,

and expected signal-to-noise. Section 4 presents our results on void density profiles, including

both a fitted model and model-independent statements. Finally, Section 5 summarizes our

results, caveats, and directions for future work.
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5. VOID LENSING

Figure 5.1: Slice thickness of 50 Mpc/h, corresponding to voids with line of sight size radius
sv = 25 Mpc/h. The black points show pixels containing LRGs in this slice. This is an
intermediate redshift (z ∼ 0.25) slice with intermediate volume and 2D LRG density. The
colored circles and diamonds show the output of our void finder for various iteration levels, as
marked in the legend. Note that not all objects found at this stage remain in the final catalog.
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5.2 Void finding

5.2 Void finding

For lensing purposes, the two numbers output by a void finder that matter most are the void

center location and radius on the sky. The center is needed for the stacked tangential shear

measurement, and the radius so that the background sources for each void in the stack can

be placed in the appropriate bin relative to that void’s edge.

5.2.1 Algorithm

5.2.1.1 Redshift slices

We use the SDSS DR7-Full LRG catalog of Kazin et al. (62), which contains ∼ 66, 500 LRGs

between 0.16 < z < 0.37, a roughly volume limited part of the sample. The sky coverage is

approximately 7,500 sq. deg. The problem with using the deeper magnitude-limited sample

is that too many false voids will be found, i.e., voids which are due to gaps in LRG coverage

rather than real density minima. These false voids would dilute the lensing signal when

stacked.

We begin by cutting the volume probed by LRGs into slices of comoving thickness 2sv

in the line-of-sight direction. For a slice centered at rlos, we assign (i) rlos as the center

for all candidate voids found within that slice, and (ii) sv as the radius in the line-of-sight

direction. That these values are reasonable estimates for the void location and size will be

verified later (Fig. 5.4). We use values of sv between 10 Mpc/h and 50 Mpc/h; as described

in § 5.2.2.4, for any void found in multiple slices we use the largest slice size to assign sv.

We show an example of the LRG distribution within a slice in Fig. 5.1 at z ∼ 0.25 and with

thickness 2sv = 50 Mpc/h. The black points show all LRGs in the slice.

5.2.1.2 2D hole-finding algorithm

The next step is to select the holes in that slice. Our algorithm is as follows:

1. Pixelize the redshift slice using a fine HEALpix grid with nside=256.
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Figure 5.2: (left panels): The 2D LRG density within the void slices, stacked over all candidate
voids found at the given iteration level of the algorithm. The void candidates with smallest
transverse size show a prominent ridge: we take the angular scale of the ridge maximum as
the void radius θv. (right panel): The blue points show the LRG ridge locations identified in
the left panels as a function of iteration level. This relationship is clearly linear, allowing us to
extrapolate the solid line beyond level = 8 where the LRG ridge vanishes.
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2. Define the set of pixels containing LRGs as L1. To define Li for i > 1, take the set of

pixels which touch at least one of the Li−1 pixels on a side or corner (each pixel has

8 possible neighbors) and add this set of neighbors to Li−1 to obtain Li.

3. Call the set of pixels in the survey area U . Define the set of empty pixels as the set

difference P1 = U − L1.

4. Divide P1 into N sets of disconnected pixels, P1,j where j ∈ {1, ..., N}. Two sets of

pixels are disconnected from each other if they share no pixels and no neighboring

pixels.

5. Define Nth as the threshold number of pixels required for a void candidate. Any of

the P1,j with Nth or fewer pixels are removed from P1 and a void candidate with RA,

DEC given by the average RA, DEC of those pixels is recorded. Define P ′1 as the set

of pixels which are part of any disconnected set with Nth + 1 or greater pixels. We use

Nth = 23, but the results are not very sensitive to this number: if any set of pixels go

from above the threshold to vanishing between iteration levels, we also count those as

a void candidate.

6. Now define P2 = P ′1 − L2. To recap, P2 contains all pixels which are are at least 2

pixels away from an LRG, and were not already counted as part of a void candidate

in step (v).

7. Steps (iv) - (vi) are repeated using P2, finding more void candidates and giving P3.

This process continues until no more pixels remain in Pi′ for some i′.

The centers of the resulting void candidates for one slice are plotted as the colored points

in Fig. 5.1. For each void candidate, we keep track of the iteration level at which it was

identified, i.e., if found in set Pi that object has an iteration level of i. Different colors and

symbols indicate different iteration levels. For example, the green circles were all identified
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during the third iteration level. The two purple diamonds in Fig. 5.1 were identified much

later, at level 11. The number of objects found at various iterations of the algorithm is

shown in the top left panel of Fig. 5.3. The number drops quickly with iteration level.

5.2.1.3 Assigning radii to different iterations

Before cuts can be made on the properties of the candidate voids, we need to assign to each a

comoving radius on the sky. The void-finding algorithm naturally works in angular space, so

we begin by mapping each iteration level at which a void was found to a specific angle. This

is done empirically by binning the 2D LRG density around the candidate void centers for

each iteration level, and taking the maximum of the LRG density ridge as the typical angle

for that iteration. The LRG ridge around all voids from a given level is shown for four levels

in Fig. 5.2. If the angle of the peak is plotted as a function of iteration level, as in the right

panel of Fig. 5.2, the points all lie on a line, θv/deg = 0.32× (level) + 0.24. Above iteration

level 8, the ridge becomes smeared out and the linear relationship has more scatter. However,

since each level removes one more layer of pixels around the LRGs, the slope calibrated using

the lower iterations can be extrapolated to the higher ones. Note also that the number of

objects falls off quickly with iteration level (Fig. 5.3) so that any inaccuracies beyond level

8 are of diminishing importance. Thus, we use this linear relationship to assign θv for all

the void candidates. This angle is then converted to comoving distance according to

Rv = rlos θv , (5.1)

where again rlos is the comoving distance to the void center.

5.2.2 Cleaning the catalog

Having found a large set of candidate voids numbering ∼ 68, 000 objects, we next remove

those which are not likely to be legitimate large scale structures. These include chance
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alignments of LRGs in the projection, fake voids due to the survey masks and edges, double

holes joined by thin “necks,” and multiple detections of the same holes.

5.2.2.1 Cutting out chance projections

Objects with line-of-sight and transverse sizes which are very different in magnitude are

likely to be chance alignments of holes in the sparse LRG sample. Thus we remove these

with the requirement

sv/3 < Rv < 3sv . (5.2)

The vertical lines on the top center panel of Fig. 5.3 display this cut.

5.2.2.2 Random point density

An unusually high number of candidate voids will be found at the survey edges and in

regions where the LRG coverage is incomplete due to masking. In order to remove such

spurious voids, we use the LRG random catalog from Kazin et al. (62), which has ∼ 16

times as many objects as real LRGs. For each void candidate, we find the density of random

points inside its angular radius θv. The histogram of densities is shown in the lower left

panel of Fig. 5.3. The distribution is tightly peaked at 150 points/deg2, with the densest

voids having up to 200 points/deg2. On the low-density end, there is a long tail stretching

all the way to zero due to fake voids formed from unobserved regions. We remove the few

hundred objects with density less than 100 points/deg2 in this tail.

5.2.2.3 Distance between pixels within a void

Recall that each candidate void was selected when a group of disconnected pixels fell below

a pixel count threshold (§ 5.2.1.2). The arrangement of these remaining pixels tells us

something about the nearby LRGs: if they are roughly circular around the void candidate

center, then all pixels will be relatively close to that center. At the other extreme, the pixels
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Figure 5.3: Histograms of various void candidate properties which we use to make cuts (solid
vertical lines). The first panel shows the number of objects found at each iteration level of our
algorithm. The second panel requires that the ratio of the void transverse to line-of-sight size
Rv/sv be near unity, specifically 1/3 < Rv/sv < 3. In the third panel we remove the smallest
voids, requiring 15 Mpc/h < Rv. The fourth panel cuts out false voids which appear near
survey masks and edges, by looking at the density of random points within Rv. The fifth and
sixth panels cut on the maximum and average distance between void center and the remaining
pixels which compose it (see text for details): the purpose is to remove objects which are far
from circular on the sky. These cuts, plus those on volume overlap (see text for details) trim
the void candidates down to a catalog of ∼ 19, 000 objects.

130



5.2 Void finding

may lie along a line, so that some pixels will be much farther from the center than others.

In the first case, the distance to the nearest LRGs will be nearly the same in all directions;

in the second, the LRG ridge will be indistinct after azimuthally averaging. We expect a

better lensing signal for the first case, prompting another set of quality cuts.

For each set of disconnected pixels that make up a void, we calculate the maximum and

average of the center to pixel distance (in arcminutes), and divide by the total number of

pixels in that set, Npix. These distributions are shown in the lower center and right panels

of Fig. 5.3, respectively. The distances peak at 3′ × Npix but have a long tail stretching

towards larger distances. We require a maximum distance below 6’ ×Npix and an average

distance below 4’ ×Npix for each void, removing ∼ 3, 000 objects.

5.2.2.4 Volume overlap between voids

Many 3D void finders assign each volume element uniquely to one void. (Even if an algorithm

allows for sub-voids, these may be underdensities delineated from their parent voids by a

small density wall or ridge.) In contrast, our method of finding voids in projected 2D slices

requires oversampling the same volume using many different slice thicknesses. This is not

a failure of the algorithm, but it does require an extra step to remove objects which are

duplicates of the same underdensity. While we do not expect cosmological voids to be

cylindrical, our algorithm finds cylindrically shaped regions free of galaxies. Thus for the

purpose of removing duplicates we assign a volume V = 2sv × πR2
v to each object and the

fractional volume overlap fvol based on the neighbor with maximum overlap. Note that this

is a significant overestimate of the actual overlap fraction for elliptical or irregularly shaped

voids. Based on this metric, we discard voids that overlap completely with a larger voids.

Voids are not perfectly spherical and there are random variations in the LRG distribution.

Many void finders aggressively join underdensities into a new void, and calculate a new center

and effective radius. Our approach is quite different, but we can get some approximation

to such algorithms by lowering fvol. However, since our main purpose is to make a lensing
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Figure 5.4: The average surface density of LRGs within the void slices, as well as in slices on
either side of the void slice. This is a stack of all voids used in our lensing measurement. Note
that for the outside regions the lowest density bin is only different from the highest by . 10%.
Thus, since the density of LRGs outside the slice is roughly the same at small and large R/Rv,
our estimate of the line-of-sight void size sv is reasonable.
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measurement of void density profiles, we do not want to give up the substantial reduction in

shape noise relative to using just one center for each void, as discussed in § 5.3.4. Note that

this is analogous to galaxy-galaxy lensing, where a given source galaxy contributes to the

density profile of multiple lens galaxies since its shape is projected along different directions

for different lens centers. The volume overlap for galaxy-galaxy lensing also exceeds ours for

the scales of interest.

We find that the volume fraction in our void sample is about 0.7. Requiring fvol < 0.5 our

volume fraction drops below 0.5, close to the results in the literature. We have checked that

our measured density profiles are not sensitive to the change in the fvol cutoff: presumably

since voids have very shallow profiles they are not affected by the exact location of the

center. The shift in the parameter contours for voids with fvol < 0.5 is less than 1σ, as will

be shown in Fig. 5.8.

5.2.3 LRG surface density

We have sought to assign the line-of-sight and projected void sizes, sv and Rv, based purely

on the LRG distribution. However, since we have only considered the LRGs within the

void’s own slice, it is not clear that the assigned sv is a good choice. We expect that if the

sv values assigned by the preceding algorithm are accurate, then the 2d LRG density at the

void radius, just outside the void slice should not have a significant decrement relative to

the value far from the void center.

In Fig. 5.4 we show the LRG density within the slice of interest, i.e., LRGs within

rlos − sv < rlrg < rlos + sv, where rlrg is the line-of-sight comoving distance of the LRG

and rlos is the same for the void center. This results in a smoothed out version of the high

peaks in Fig. 5.2, since it includes voids found at all iterations of the void-finder. The peak

is lined up for all voids by binning in units of the void radius Rv. By 3Rv the LRG density

has leveled off near the cosmic mean.
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Figure 5.5: The left panel shows our measurement of the tangential shear (black circles) and
cross-component (magenta triangles) around our void centers, stacked in units of Rv. Our best-
fit model (solid line) has R(m)

v = 1.05Rv and A3 = 0.55. Our estimated 3d density profile is
shown in the right panel, along with the estimated 1σ uncertainty. The arrow gives a sense
of our model independent estimates, which prefer a lower central density (by up to 0.1ρ̄) than
allowed by our model.

We also show the LRG surface density just outside the void slice, rlos − 2sv < rlrg <

rlos − sv or rlos + sv < rlrg < rlos + 2sv. This range is chosen so that the integrated line-of-

sight distance, 2sv, is the same both inside and outside the void slice. Even at the innermost

bin, the LRG density outside has risen back to a comparable value to that at 3Rv. This is

good evidence that the slice thickness of 2sv is a reasonable value for the void size in the

line-of-sight direction.

5.3 Lensing Measurement

The shear catalog is composed of 34.5 million sources, and is nearly identical to that used

in Sheldon et al. (117): see that work for further details of the catalog. The source redshift
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Figure 5.6: Our covariance matrices for ∆Σ (left panel) and ∆Σ× (right panel). Off diagonal
correlations are significant beyond 2Rv, since source galaxies in these bins are shared among
multiple voids.

distribution is obtained by stacking the posterior probability distribution of the photometric

redshift for each source, P (zs). Its peak is at z ∼ 0.35, and it has a substantial tail extending

out to higher redshifts. The full distribution is shown in Fig. 4 of Clampitt et al. (17), which

uses precisely the same source catalog.

In what follows, we describe our lensing measurement procedure. Following the method

in Mandelbaum et al. (79), we use, as the lensing observable, the stacked surface mass

density field at the radial distance R in the region around each void, estimated from the

measured shapes of background galaxies as

∆Σk(R; zL) =

∑
j

[
wj

(〈
Σ−1

crit

〉
j

(zL)
)−1

γk(R)
]

∑
j wj

(5.3)

where the summation
∑

j runs over all the background galaxies in the radial bin R, around

all the void centers, the k indices denote the two components of shear (tangential or cross),
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and the weight for the j-th galaxy is given by

wj =

[〈
Σ−1

crit

〉
j

(zL)
]2

σ2
shape + σ2

meas,j

. (5.4)

We use σshape = 0.32 for the typical intrinsic ellipticities and σmeas,j denotes measurement

noise on each background galaxy ellipticity.
〈
Σ−1

crit

〉
j
is the lensing critical density for the

j-th source galaxy, computed by taking into account the photometric redshift uncertainty:〈
Σ−1

crit

〉
j

(zL) =
∫ ∞

0
dzsΣ−1

crit(zL, zs)Pj(zs), (5.5)

where zL is the redshift of the void and Pj(zs) is the probability distribution of photometric

redshift for the j-th galaxy. Note that Σ−1
crit(zL, zs) is computed as a function of lens and

source redshifts for the assumed cosmology as

Σ−1
crit(zL, zs) =

c2

4πG
DA(zs)(1 + zL)−2

DA(zL)DA(zL, zs)
, (5.6)

where the (1+zL)−2 factor is due to our use of comoving coordinates, and we set Σ−1
crit(zL, zs) =

0 for zs < zL in the computation.

5.3.1 Jackknife Realizations

We divide the voids into 30 spatial jackknife regions, shown in Fig. 3 of Clampitt et al. (17).

Note that we exclude the low-DEC stripes from our analysis: they are sub-optimal for void

finding due to a high ratio of perimeter to area. The remaining area is approximately 7,500

square degrees. We perform the measurement multiple times with each region omitted in

turn to make N = 30 jackknife realizations. The covariance of the measurement (97) is

given by

C[∆Σi,∆Σj ] =
(N − 1)
N

×
N∑
k=1

[
(∆Σi)k −∆Σi

] [
(∆Σj)k −∆Σj

]
(5.7)
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where the mean value is

∆Σi =
1
N

N∑
k=1

(∆Σi)k , (5.8)

and (∆Σi)k denotes the measurement from the k-th realization and the i-th spatial bin.

The covariance is measured for both components of shear; for clarity we do not denote the

separate components in Eqs. 5.7 and 5.8.

5.3.2 Null tests

We measure the tangential shear around random points and cross-component around voids,

both of which should be consistent with the null hypothesis. For N = 12 bins and no model

parameters (n = 0), the null has expected χ2:

〈χ2〉null = N − n±
√

2N + 2n (5.9)

= 12± 4.9 .

We perform the random points test by giving each void with radius Rv and redshift

z a random location in the survey area, avoiding masked regions in the same way as the

LRG catalog. Often tests involving random points use many more random points than lens

galaxies, but since void lenses are so large and many source galaxies fall in each radial bin,

we need only use as many random points as we have void positions. The result for the

tangential shear around random points is a χ2 = 16.7, within 1σ of the null hypothesis.

The cross-component is shown in Fig. 5.5 (pink triangles), and with a χ2 = 8.2 it is also

within 1σ of the null hypothesis.

5.3.3 Tangential shear profile

We show the stacked lensing profile of the voids in the left panel of Fig. 5.5. The most

significant and largest amplitude ∆Σ values of ∼ −0.6M�h/pc2 occur at the void radius

Rv. The signal remains significant out to ∼ 2.5− 3Rv. The covariance, shown in Fig. 5.6, is
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Figure 5.7: Dependence of lensing signal on void size Rv. We divide our fiducial measurement
(Fig. 5.5) into several bins, and also extend the range to Rv = 40 Mpc/h. The signal is clearly
consistent over a wide range of void sizes, which is a useful test. It has no significant trend with
Rv. This may be due to the small number of voids above ∼ 30 Mpc/h, as well as their large
covariance between bins.
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used to calculate the detection significance. Comparing the signal to the null hypothesis, we

have χ2 = 94.2 (78.7), a 16.7σ (13σ) inconsistency for the pictured fiducial case (overlaps

well below 50% case).

This high significance detection is further supported by the null tests described above.

We check our measured statistical significance with a rough analytical estimate of the signal-

to-noise below. We then discuss the implications for void density profiles.

The covariance matrix is largely diagonal up to 1.5 Rv. At large R the off diagonal

elements are mostly positive, presumably since multiple projections of source galaxies pro-

vide less independent information about the voids. In Fig. 5.7 we show three size bins.

No systematic trend in magnitude or shape of the signal is visible from these plots. The

consistency of the signal across size bins that span nearly a factor of three in void radius

validates the lensing interpretation.

5.3.4 Analytical signal-to-noise estimate

We present two checks of our measurement: an analytical estimate of signal-to-noise for void

lensing as well as a comparison to the signal-to-noise in SDSS galaxy-galaxy lensing. The

tangential shear around a void is given by

γt =
∆Σ
Σcrit

=
Σ(< R)− Σ(R)

Σcrit
(5.10)

where Σcrit is defined above and is Σcrit ≈ 6000M�/pc2 for our typical lens and source

redshifts. Inside the void radius the signal can be anticipated using the results of Krause

et al (2013): ∆Σ ≈ −0.6M�/pc2 (adjusted for the fact that our mean void radius is larger

than the range considered in Krause et al). Hence the typical tangential shear is γt ≈ 10−4.

Since our voids and therefore source galaxies are at high redshift, shape and measurement

noise both contribute to the errors. We take the noise on the shear of a given background

source to be σ =
√
σ2

shape + σ2
m ∼ 0.3. With a source number density n ≈ 0.5/arcmin2,

we can then estimate the noise contribution on a stacked void lensing measurement. For
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Nv voids of radius θv, we get a sky coverage that exceeds Nvπ(2θv)2 since the signal is

measured out to at least twice the void radius. This gives a total effective number of sources

Nsource = nNvπ(2θv)2 ≈ 1 − 2 × 109. This is at least thirty times larger than the actual

number of source galaxies since each galaxy shape is used multiple times: it is projected

along different directions for different void centers. As discussed above in Section is a valid

procedure in cross-correlations such as ours and galaxy-galaxy lensing. The estimated shape

noise is then σshape/
√
Nsource ≈ 0.7− 1× 10−5. The uncertainty is mainly due to the choice

of a single void size to represent the distribution. The estimated signal to noise is:

S/N ≈ 12. (5.11)

While the estimate above involves several approximations, it gives us a reality check on

our measurement. One might still worry that shears at the 10−4 level are dominated by

systematic errors. Indeed for shear-shear correlations from SDSS, that appears to be the

case due to additive systematics that are spatially correlated. Such terms however cancel

out of cross-correlations. Published measurements of galaxy-galaxy lensing demonstrate

this: at distances greater than 10 Mpc the signal falls below 10−4, see e.g. Figure 6 in

Mandelbaum et al (2013). We have checked that the signal-to-noise of that measurement

is consistent with ours, adjusting for the smaller number of source galaxies in their angular

bin. Of course closer to the center the galaxy halo overdensity far exceeds the amplitude

of the void underdensity, so integrated over all scales the significance of the galaxy-galaxy

lensing measurement is higher.

5.3.5 Comparison with other work

The strength of our detection may be surprising given other work on void lensing. In

particular, Melchior et al. (85) used a conservative sample of a relatively conservative void

finder (125) which was not optimized for lensing purposes. All these factors make a difference

in the potential S/N:
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• Melchior et al. (85) used the “central” sample of Sutter et al. (125); for lrgdim (the

sample most comparable to ours) the usable volume is only 75% of the total. Further-

more, the void volume fraction is less in the central sample than in the total, where

both volume fractions are calculated with respect to their own usable volumes. We

make a related quality cut, but which only removes ∼ 1% of our sample (Fig. 5.3,

lower left panel).

• Over most of the volume where Sutter et al. (125) can compare with Pan et al. (101),

the former finds only half as many voids. This is for the main SDSS galaxy sample, but

it is indicative of a difference in void finder aggressiveness between the two methods.

• Another point worth noting is that our assignment of void radii on the sky is optimized

for lensing by setting Rv to the distance to the LRG ridge in the plane of the sky.

Sutter et al. (125) starts with the void volume and then assign the void radius as

Reff = (3V/4π)1/3, which is used by Melchior et al. (85) to bin the background shears.

Converting in this way from volume to an effective void radius assumes all three

dimensions are the same, but for lensing purposes the line-of-sight size of the void is

much less important than its size on the sky. We have tested the effect of assigning an

Reff as described above to each of the voids in our fiducial sample and then remeasuring

∆Σ binned in R/Reff . The result is an increase in our errors such that the detection

significance drops from 16.7σ to 12.5σ.

5.4 Void density profile

5.4.1 Model constraints

The 3-dimensional density profiles of voids have been studied using simulations and other

theoretical approaches. One of the subtle issues is how to transition from the underdensity

of the void to the cosmic mean density ρ̄ at a sufficiently large distance from the void
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center. Typically a small transition zone outside the void radius allows for some degree of

compensation of the profile, i.e., a region of density higher than ρ̄. In perfectly compensated

voids models, the enclosed mass at about two times the void radius is exactly the same as

the mass enclosed in a region of the same size with constant density ρ̄.

Lavaux & Wandelt (68) fit a cubic profile inside the void radius using simulations, and

Krause et al. (65) gives the lensing prediction for this model. We use the cubic profile up

to the void radius, but outside the void we use a constant density profile. Thus we require

continuity at the void radius but not exact compensation. The resulting profile is given by

ρ(r,Rv) =

{
ρ̄[A0 +A3(r/R(m)

v )3] for 0 < r < R
(m)
v

ρ̄[A0 +A3] for R(m)
v < r

, (5.12)

where A0, A3, and R
(m)
v /Rv are model parameters. However, we are not sensitive to A0, and

so have assumed its value is set by requiring that the 3d density returns to the cosmic mean

density outside the void, thus A0 = 1−A3. Then our fit just involves two parameters, A3 and

R
(m)
v /Rv, which are constrained as in Fig. 5.8. For our two parameter model the expected

chi-square is 〈χ2〉 = 10± 5.3 so that the χ2 = 13.8 of the best-fit model is acceptable. The

right panel of Fig. 5.5 shows the corresponding 3d density profile for our best-fit parameters.

If we were to require compensation, as in some models explored by Krause et al. (65),

we would put some constraints on A0. Note also that Higuchi et al. (40) apply the (47)

void finder to ray-traced simulations, and their tangential shear profiles look compensated

just beyond the void radius. However, assuming that Σ = Σ̄ by 2Rv (see below), the data

clearly prefers an uncompensated void inside 2Rv. This is shown by the negative values

of the measured ∆Σ up to and beyond 2Rv (it should be zero for a compensated void if

Σ(2Rv) → Σ̄). We see no evidence for a ridge of density well above ρ̄ just beyond Rv, as

suggested by the LRG profiles for the small voids. The data in fact support a projected

density below the mean at Rv. More work is needed to understand the relationship of the

LRGs to the mass profile as we expect that our void finder played some role in the details

of the LRG profile.
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5.4 Void density profile

Figure 5.8: Contours show the limits on our model parameters. R(m)
v , the radius at which

the density profile transitions from cubic to constant, is constrained to be near the LRG ridge
determined from the data. Solid gray bands on the x- and y-axes show 1d marginalized con-
straints for both parameters. The constraints for the case requiring volume overlaps of less than
50% are consistent with our fiducial model (hatched bands).
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While the minimum density at the center of the void is formally not constrained by the

data, we find that the requirement that the density approach the mean at large radii, coupled

with measurements between Rv and 2Rv, leave little freedom. We explored modifications to

the density profile beyond Rv and find that A0 can be lowered by at most 0.1. The arrow

in Fig. 5.5 (right panel) pointing to lower central densities indicates this possibility.

The solid gray bands on the x- and y-axes of Fig. 5.8 show 1d marginalized constraints

for both parameters. The hatched bands of Fig. 5.8 compare the effect of stricter criteria

for void overlap, for the case with overlaps well below 50%. The constraints are degraded

due to throwing away a large fraction of overlapping voids, but the shift in the contours is

negligible for R(m)
v and just over 1σ for A3.

5.4.2 Estimated mass deficit inside the voids

Since the measured ∆Σ = Σ(< R)− Σ(R), we can estimate Σ(< Rv) once we require Σ to

approach Σ̄ at some large radius. At radii above 2Rv both the galaxy distribution and the

mass in simulations are close to the mean density. These are large scales, typically above

40 Mpc/h, so it is reasonable to expect that there aren’t departures at more than a few

percent level from mean density in the data as well. We therefore use our measurements

at about 2Rv to estimate Σ(< Rv) with this assumption. We test it by checking the range

1.5− 2.5Rv, at which our signal to noise is still reasonable.

The results for the mass deficit and fractional mass deficit are shown in Table 1. Three

methods are used: directly from the data as described above, using our best fit for ρ(r), and

using the best fit ρ(r) from voids in N-body simulations with a similar tracer to our LRG

halos (such tracers enclose voids with more mass in small scale structure than in voids iden-

tified using dark matter particles – Sutter et al. (128) and Sutter, private communication).

Each estimate involves some assumptions or caveats which are briefly described in the table.

The mass deficit

δM =
4π
3
R3

v [ρ(< Rv)− ρ̄] (5.13)
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Method δM(< Rv) ρ(< Rv)/ρ̄− 1 Σ(< Rv)/Σ̄− 1 Assumptions
Measured ∆Σ – – -0.3 Σ(R)→ Σ̄ at R ≈ 2Rv

Best fit model −1× 1015M� -0.4 -0.32 Recover ρ̄ at R ≈ Rv

Simulations fit −1.4× 1015M� -0.5 -0.44 Different void finder.

Table 5.1: Estimated mass deficit δM and the fractional deficit in the 3d density ρ and
projected density Σ at the void radius Rv. The measurements, interpreted without a model
in the first row, give us only projected quantities. For the model fits we give both 2d and
3d versions of the fractional density contrast. We set Rv = 20 Mpc/h to estimate δM ; for
voids with other values of Rv, δM scales approximately as R3

v. See text for discussion of the
dependence on the LRG sample and the simulation fits.

is estimated for the 3d model fit and the fit to simulations.

While we have not attempted to place rigorous bounds on our estimated δM values, we

can see the trends between data and simulations: the two methods of estimation from the

data are in reasonable agreement, and involve more mass inside voids than in simulations

(the deficit is about 40% higher in the simulation fits). Projection effects and flaws in the

void finder would lead us to overestimate the mass enclosed. We also note that we extended

the profile from Rv to 2Rv using different models, including a possible ridge of density above

the mean, but find that the measurements leave little wiggle room.

Our measurements indicate significant levels of underdensity inside the void radius: the

inferred 3d fractional under density is ≈ −0.3 to −0.4 inside Rv. This corresponds to mass

deficits comparable to the masses of the most massive clusters in the universe. The bigger

voids in our sample will have up to ten times the mass deficit. Given that our LRG sample

has a bias factor of about 2, we expect that voids using a less biased tracer would have lower

central densities. Simulations with mock catalogs also support this trend (128). We leave

for future work the details of the mass profile and its relationship to the galaxy sample and

void finder.
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5.5 Discussion

Void Lensing Detection. We have made the first statistically significant measurement of

gravitational lensing by large voids (Fig. 5.5), ruling out the null hypothesis with a signif-

icance of about 13 − 16σ depending on the cuts made on the void finder. This detection

may be surprising given that theoretical work (65) predicted that ambitious future surveys

(in particular, Euclid) would be needed for measurements with comparable signal-to-noise.

We differ from previous work in that our void finder and void characterization is optimized

for lensing. We work with projected 2d slices and have a flexible criterion that allows for

some overlap between voids. Our stacked shear measurement is analogous to galaxy-galaxy

lensing in that it projects a source galaxy shape along multiple void centers. This greatly

increases the total number of lens-source pairs and reduces shape noise by a factor of several.

Other improvements described in Section 2 contribute to the size and quality of our void

sample.

We validate our detection of void lensing in several ways, using both the LRG positions

around voids and standard galaxy-shear tests. Figures 5.3 and 5.4 show the validation and

improvements based on the LRG distribution. We verify that the tangential shear around

random points and the lensing cross-component around void centers are consistent with the

null hypothesis. The error analysis is analogous to that for our measurement of filament

lensing with the same dataset presented in Clampitt et al. (17).

Void density profiles. We measure the stacked density profile of voids with radii Rv =

15− 40 Mpc/h in 12 radial bins. We can make some model-independent statements about

void properties (see Table 1). By requiring the projected density to approach the mean

density at radii of 2Rv or larger, we can convert our measured ∆Σ to estimates of Σ(< Rv)

and therefore to the fractional density contrast at Rv. We further estimate the mass deficit

δM . In addition, we find that our voids are uncompensated within twice the void radius.

By 3Rv however, the measurements are consistent with fully compensated voids, but we see
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no evidence for overcompensated voids of the kind seen in simulations (at the lower end of

our Rv range).

By fitting our measurements with a model motivated by simulations, we can draw con-

clusions about the voids’ 3d density profile and mass deficit δM as summarized in Table 1.

Our data is consistent with a central density of ≈ 0.6ρ̄. At the edge of the void, it is also con-

sistent with a density below the mean density at the LRG ridge, though the corresponding

2d density of LRGs is above the mean (Fig. 5.4).

Caveats. The standard disclaimer with void-related work is that the results can be quite

sensitive to the specific void-finder used. As highlighted above, this holds true also for our

work which is designed to find voids for gravitational lensing. Our use of multiple potential

void centers is helpful for lensing S/N reasons, but also makes interpretation of the resulting

density profile less straightforward. We expect some miscentering between the lowest dark

matter density and the emptiest places in the sparse galaxy density, and our multiple centers

may also add to this miscentering in some instances. However since the density profiles are

very flat between the center and half the void radius, these effects are far less problematic

than for galaxy or cluster lensing.

We expect our error bars accurately account for shape noise and sample variance. How-

ever, we have not accounted for possible shear calibration errors, which could bias the signal

by up to 5%. In addition, two effects could result in a dilution of the signal and thus un-

derestimation of A3: inaccurate source redshifts or fake voids from chance LRG projections.

We have not estimated the contribution of these effects.

Future Work. We can attempt a void lensing measurement with several different variants

of the void sample. Going beyond our sparse sample of LRGs, we can apply this void finder

to the SDSS Main sample. Although the volume probed will be significantly smaller, this

disadvantage is offset in part by the larger number of background sources available behind

lower redshift voids. Furthermore, Sutter et al. (128) find that the voids identified using
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a lower galaxy luminosity threshold have a lower central dark matter density (as expected

based on their lower galaxy bias as well), which should increase the lensing effect.

Nearly all detailed applications will require a careful study of our void selection via

mock catalogs that create galaxies from HOD prescriptions or dark matter halos. Our

measurements are now confined to Rv > 15 Mpc/h, in part because the contamination from

fake voids due to projection effects gets worse as the void size gets smaller than the 2d tracer

density. Mock catalogs will allow us to go down to smaller radii and estimate the number

of fake and real small voids. With those numbers we can take into account the expected

dilution of the signal.

The comparison of the galaxy distribution with the mass distribution is of great interest.

The question of galaxy biasing can be understood better by having measurements in under

dense regions to complement those in over dense regions. Many other questions can be posed

by stacking voids in different ways: along the major axis of the galaxy distribution, varying

the environment and the properties of the galaxy population, and so on. The measurement

of a magnification signal behind voids would be of interest, in particular to provide a direct

measurement of Σ(R).

Void mass functions, mass profiles, and the cross-correlation with galaxy profiles are the

key ingredients in cosmological applications of voids. The velocity profiles measured in SDSS

have an anisotropy and relationship to the mass profile that carry cosmological information

(68). Modified gravity theories in particular predict differences in these observables. In

many respects modeling voids is less problematic than massive nonlinear objects like galaxy

clusters, and the measurements are not affected by foreground galaxies, but the use of mock

catalogs to understand the selection effects in the data is likely to be essential to interpreting

survey measurements.
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Appendix A

Newtonian force of host

Here we show the result of integrating the density profile of eq. (2.20) to find the Newtonian

force of the host component. We have

dΨN

dr
(r) =

G

r2
M(< r)

=
G

r2
4π
∫ r

0
dr′r′2〈ρh〉(r′)

dΨN

dr
(r) =

16πGρ0r
3
s

r2

[
−r
d

+
(

1 +
rs

d

)
ln

(
r + d+ rs −

√
(d+ rs)2 − r2

r − d− rs +
√

(d+ rs)2 − r2

)]
, r ≤ d

=
16πGρ0r

3
s

r2

[
−1 +

(
1 +

rs

d

)
ln

(
2d+ rs −

√
2drs + r2

s

−rs +
√

2drs + r2
s

)

+
1
2

(
1− rs

d

)
ln
(
r + rs − d

rs

)
+

1
2

(
1 +

rs

d

)
ln
(
r + rs + d

2d+ rs

)]
, d ≤ r .(A.1)
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Variations of host-satellite separation

Although using the averaged host profile of eq. (2.20) preserves spherical symmetry, we must

still solve the nonlinear eq. (2.14) for each choice of host-satellite separation d. To see the

effect of varying this parameter continuously, we make a different approximation. If the

symmetron profile of the host at the location of the satellite has value φhost(d), and this

value varies little across the diameter of the satellite, we can instead solve the approximately

equivalent system of an isolated satellite with asymptotic field value φ(r →∞) = φhost(d).

Figure B.1 plots the satellite force deviation at 1Rsat as a function of d. This is done

using two different approximations: the method using the asymptotic value of the field

appropriate for a small object at distance d from the host and the total density profile

method of eq. (2.20). Plotting continuous curves for the latter is impractical: the shooting

method must be employed to solve eq. (2.14) for each distance d. Fortunately, a discrete set

of points shows the trend sufficiently well.

We see that the computationally much simpler asymptotic value method approximates

well the more sophisticated average density calculation as long as the host and satellite

masses are within 2 orders of magnitude. Here the simpler method overestimates the fifth

force by only 5 − 30% FN over the range of separations considered. The differences exceed
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Figure B.1: (left panel): Satellite force deviation Fφ/FN at 1 Rsat as a function of center-
to-center distance d from a nearby host halo. Continuous lines display the result using the
asymptotic value of the field appropriate for a relatively small object at distance d from the
host (see text for details). Satellite masses Msat = 1011, 1012, 1013M� correspond to solid,
dashed, and dotted curves, respectively. Also shown for the same range of masses are the
results using the total density profile of eq. (2.20) applied at a discrete set of points. Horizontal
lines show the force deviation of isolated satellites. The host mass is 2 × 1014M�. For the
1011 and 1012M� satellites, the screening from the host has a significant (∼ 10%) effect even at
separations of ≈ 7− 8 Rhost. (right panel): Same as left, but for a host mass of 1013M�.
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this level for the case of a 1011M� halo in the neighborhood of a 2× 1014M� host, but only

at separations of 5-6 Rhost where it reaches ≈ 50%.
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Appendix C

Excursion Set Theory

It is widely accepted that the large-scale structure (LSS) in the Universe has developed

hierarchically through gravitational instability. The excursion sets (regions where the matter

density exceeds some threshold when filtered on a suitable scale) generally correspond to

sites of formation of virialised structures (10, 20, 21, 28, 29, 90, 112).

The filtered, or smoothed, matter density perturbation field δ(x, R), is given by

δ(x, R) =
∫
W (|x− y|;R)δ(y)d3y,

=
∫
W̃ (k;R)δkeik·xd3k, (C.1)

where W (r;R) is a filter, or window function, with radius R, and W̃ (k;R) its Fourier

transform; δ(x) ≡ ρ(x)/ρ̄− 1 is the true, unsmoothed, density perturbation field and δk its

Fourier transform; we will always use an overbar to denote background quantities.

As usual, we assume that the initial density perturbation field δ(x) is Gaussian and

specified by its power spectrum P (k). The root-mean-squared (rms) fluctuation of mass in

the smoothing window is given by

S(R) ≡ σ2(R) ≡ 〈δ2(x;R)〉 =
∫
P (k)W̃ (k;R)d3k. (C.2)
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Note that, given the power spectrum P (k), S, R andM are equivalent measures of the scale

of a spherical perturbation and they will be used interchangeablly below.

If W̃ (k;R) is chosen to be a sharp filter in k-space, then the increment of δ(x;R) as

R → R − δR or equivalently S → S + δS comes from only the extra higher-k modes of

the density perturbation (see Eq. (C.1)). The absence of correlation between these different

wavenumbers means that the increment of δ(x;R) is independent of its previous value. It

is also a Gaussian field, with zero mean and variance δS. Thus, considering S as a ‘time’

variable, we find that δ(x;S) can be described by a Brownian motion.

The probability distribution of δ(x;R) is a Gaussian

P (δ, S)dδ =
1√
2πS

exp
[
− δ

2

2S

]
dδ. (C.3)

In an Einstein-de Sitter or a ΛCDM universe, the linear growth of initial density pertur-

bations is scale-independent, so that δ(x) and σ(R) =
√
S grow in the same manner, and

as a result the density field will remain Gaussian while it is linear. Following the standard

literature, hereafter we shall use δ(x;R) to denote the initial smoothed density perturbation

extrapolated to the present time using linear perturbation theory, and the same for σ or S.

In the standard cold dark matter scenario, the initial smoothed densities which, extrap-

olated to the present time, equal (exceed) δc correspond to regions where virialised dark

matter halos have formed today (earlier). In an Einstein-de Sitter universe δc is a constant,

while in a ΛCDM universe it depends on the matter density Ωm. In neither case does δc
depend on the size of (or equivalently the mass enclosed in) the smoothed overdensity, or

the environment surrounding the overdensity.

As a result, to see if a spherical region with initial radius R has collapsed to virialised

objects today or lives in some larger region which has collapsed earlier, we only need to see

whether δ(x;≥ R) ≥ δc. Put another way, the fraction of the total mass that is incorporated

in virialised dark matter halos heavier thanM = 4
3πR

3ρ̄i is just the fraction of the Brownian
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C. EXCURSION SET THEORY

motion trajectories δ(x;S) which have crossed the constant barrier δc by the ‘time’ S = S(R),

which is given by Bond et al. (4)

F (M, z) =
1√
2πS

∫ ∞
D+(0)

D+(z)
δc

[
e−

δ2

2S − e−
(δ−2δc)

2

2S

]
dδ, (C.4)

where the lower limit of the integral is D+(0)
D+(z)δc, because if a virialised object formed at

redshift z, then its corresponding initial smoothed density linearly extrapolated to z is δc,

while extrapolated to today it is D+(0)
D+(z)δc with D+(z) being the linear growth factor at z. In

Einstein-de Sitter cosmology D+(z) ∝ (1 + z)−1 and this quantity becomes (1 + z)δc.

Alternatively, one can say that the fraction of the total mass that is incorporated in

halos, the radii of which fall in [R,R + δR] (or equally [S, S + δS]) and which collapse at

z = zf is given by

f(S, zf )dS =
1√
2πS

D+(0)δc
D+(zf )S

exp
[
−
D2

+(0)δ2
c

2D2
+(zf )S

]
dS, (C.5)

where f(S) the distribution of the first-crossing time of the Brownian motion to the barrier

D+(z = 0)δc/D+(z = zf ). Once this is obtained, one can compute the halo mass function

observed at zf as

dn(M)
dM

dM =
ρ̄m(zf )
M

f(S)dS. (C.6)

Other observables, such as the dark matter halo bias (86) or merger history (66), can be

computed with certain straightforward generalizations of the theory.
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Appendix D

Comparing fixed- and
moving-environment models

In the main text we use a moving-environment approximation in which the smoothing scale of

the environment is a function of the void scale, specifically Renv = 5R. However we have also

checked the effect of using a fixed-environment approximation to calculate the fifth force.

We compare the effect of the approximations on the environment-averaged first-crossing

distribution in Fig. D.1, for a fixed-environment scale of Renv = 75 Mpc/h, corresponding

to Senv = 0.01. The differences are below 10% for ν & 1, corresponding to final void radii

Rf & 1 Mpc/h. Thus, throughout the range of observable void sizes our conclusions are

fairly insensitive to the precise approximation used to calculate the environmental effect of

the fifth force.
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D. COMPARING FIXED- AND MOVING-ENVIRONMENT MODELS
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Figure D.1: Upper panel: Environment-averaged first-crossing distribution of voids with (solid
lines) and without (dashed lines) the fifth force. The higher solid and higher dashed lines show
results for the fixed-environment approximation, while the lower pair show the moving envi-
ronment approximation. Lower panel: Fractional difference of fixed- from moving-environment
approximation for modified gravity (solid) and GR (dashed). For ν ∼ 1 and larger, the obser-
vational range of interest, the difference is below 10%.
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Appendix E

Theory variations

Figure E.1 shows the results for the conditional first-crossing distributions, for various pa-

rameter values. The results for any individual panel are qualitatively very similar to those

for our fiducial model, α = 10−6, γ = 1/3. The main exception is for the α = 10−7 theories

in very underdense environments, δenv ∼ −2.4. Here the random walk begins close to a bar-

rier which is itself very near to the ΛCDM barrier. This situation shows that the monotonic

increase of the deviation with void size is not universal.

In general, larger values of α allow for much greater variation in the conditional first-

crossing distributions for various environments. Variations in the coupling 2γ2 cause less

variation between the different environments. Finally, although it is more clearly seen after

the environment averaging (Fig. 3.7), larger variations of the distribution with 2γ2 occur for

larger α values.

159



E. THEORY VARIATIONS
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Figure E.1: Fractional differences of the conditional first-crossing distribution for various
parameter values. Within each panel, δenv decreases from 1.6 to -2.4, from top to bottom. Our
fiducial model is shown in the top center panel.
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Appendix F

Halo ellipticity

In order to show that the contribution from halo ellipticity is small, we consider a very

simple model which is even less spherical than an elliptical halo. Thus, if the shear from this

model is negligible, then so is shear from elliptical halos. We take two point masses labelled

E1 and E2 on Fig. F.1. These are each separated from the halo center by ∆ . Rvir. The

outermost square region pictured corresponds to the top square of Fig. 4.1, with side length

Rpair.

On the left panel of Fig. F.1 we extend two lines from E1 which are both 45 degrees from

the horizontal axis. With our shear sign convention (Fig. 4.1), these lines describe points

where the shear from E1 is purely γ2, i.e., these lines are the zeros of γ1. Thus, points which

are on opposite sides of and equidistant from these lines have a net contribution of γ1 = 0.

As a result, the net γ1 shear when summed over all galaxies in regions A and A’ is zero. In

the same way, regions B and B’ sum to zero.

Likewise, on the right panel we draw a line from E2 which is 45 degrees from the vertical,

and the net γ1 shear in C and C’ is zero. A final cancellation occurs in regions D and D’,

where the positive γ1 shear from E1 in D cancels the negative shear from E2 in D’. The net

shear from these two point masses is then given by the remaining regions, labelled +γ and
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F. HALO ELLIPTICITY

−γ. These two regions do not cancel perfectly, but it is clear that (i) these regions nearly

cancel: while the +γ region is slightly closer to E1 than the −γ region is to E2, in area,

the +γ region is slightly smaller; (ii) the size of these imperfectly cancelled regions shrinks

rapidly as ∆/Rpair gets smaller. The upper bound is

∆/Rpair ≤
Rvir

Rpair
=

1 Mpc/h
6 Mpc/h

, (F.1)

but most of our LRG pairs have smaller virial radii and larger pair separation. Furthermore,

the density profile of halos falls off quickly, so that relatively little of the mass is displaced

an entire virial radius from the center.

Finally, note two more points concerning the contribution of halo ellipticity to the sys-

tematic regions of Fig. 4.2. First, subtracting the signal in the left and right systematic

regions, which have the same shape as the Signal region, partially removes the very small

ellipticity contribution described above. Second, halo ellipticity could also contribute to the

top and bottom systematic regions of Fig. 4.2. However, being offset by an additional dis-

tance of Rpair, the contribution in these regions will be even smaller than the closer regions

which we have just considered.
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Figure F.1: As an extreme model of halo ellipticity, we consider the shear from point masses E1
and E2. The two panels show the same region twice: the left panel highlights the contribution
from E1, and the right that from E2. The net γ1 shear (with the sign convention of Fig. 4.1)
cancels in regions A and A’, B and B’, etc. (See the text for the details.) The size of the
uncancelled regions, +γ and −γ, shrinks rapidly with the small number ∆/Rpair ≤ 1/6, showing
that contributions from halo ellipticity are highly suppressed in our measurement.
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