
Operating System Support
for Protocol Boosters

A. Mallet
J . D. Chung
J . M. Smith

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Operating System Support for Protocol Boosters
A. qallet, J. D. Chung and J. M. Smith1

{ale, jdchung, jms)Ocis .upenn.edu

Distributed Systems Laboratory

University of Pennsylvania, Philadelphia, PA 19104-6389

Abstract
"Protocol Boosters'' are modules inserted into protocol graphs. They allow the protocol's

behavior to adapt to its environment. Boosters can mask undesirable properties of links or subnets
in an internetwork. The method permits use of proprietary protocols and supports end-to-end
optimizations.

We have implemented Protocol Boosters support in the FreeBSD version of UNIX for Intel
architecture machines. Our prototype embeds boosters in the 4.4 BSD-Lite Internet Protocol (IP)
stack. We have measured the performance of two prototype boosters: an encryption booster (for
passage across insecure subnets) and a compression booster (for passage across bandwidth-impaired
subnets).

Our measurement data suggests that OS support for this method can be constructed with low
performance overhead; execution of the protocol elements dominates any overhead introduced by
our implementation. We discuss some lessons learned from the implementation.

1 Introduction

Network protocols are designed to meet application
requirements for data communications, including se-
curity, reliability and performance. The dominant
design and implementation process for protocols has
been to first enumerate the requirements for the pro-
tocol, and then design a protocol that provides the
necessary features end-to-end[l6]. The protocol is
then optimized by identifying common cases and im-
plementing fast paths for these cases; TCP/IP is an
example[4]. The resulting protocol is robust end-to-
end and typically provides good performance. Ex-
tremely poor performance can result when the as-
sumptions permitting fast path execution are not
met.

1.1 Protocol Boosters

Protocol gaphs[l l] are a means of representing the
interactions between protocol elements which carry

intended to be transparently inserted into and deleted
from protocol graphs on an as-needed basis.

A policy associated with the booster is used to se-
lectively invoke the protocol functions. For example,
a forward error correction code might be used over a
wireless data link to bring its error behavior into an
acceptable operating range, without using the FEC
end-to-end [13]. The error performance of the subnet
is thus "boosted" to an acceptable level to improve
end-to-end performance. Figure 1 shows a booster
used in a network, in this case boosting a subnet be-
tween an end-host and a router.

Boosted L ~ n k or Subnet u$
out functions required by the protocol, e.g., round-
trip time estimation. An approach initially suggested Figure 1: Boosting a link or subnet

by Feldmeier, et a1.[8], is the design of "Protocol
Boosters." Protocol Boosters are protocol elements Boosters can be dynamically added and deleted as

additional network functionality is needed. A policy
'This research was supported by the Defense Advanced

f
Projects Research Agency under Contract #DABT63-95-C-

or this decision is needed in addition to the specific

0073. Additional support was provided by the Hewlet& booster mechanism for adding functionality. Since
Packard and Intel Corporations. boosters vary widely in their functions, it is impossi-

ble to have a completely general policy; policies must
be associated with their boosters.

These policies can be quite subtle, and may include
definition of "metan-policies. For example, consider
two boosters, one that compresses data, and a sec-
ond that encrypts it. If compression is performed
first, the later encipherment of data might in fact be
slightly strengthened. However, if encryption is per-
formed first, the compression is unlikely to be effec-
tive. A policy module can be devised which properly
structures the interaction of these two boosters, for
example by indicating that the boosters are not com-
mutative.

1.2 Packet Modification

A transparent booster does not modify the packet it
boosts. For example, a Forward Error Correction
(FEC) booster may send FEC packets in addition t o
the data packets it encodes. Non-transparent boost-
ers, on the other hand, modify data packets. For
example, a compression booster for use on a wireless
link might compress data packets.

Transparency has architectural implications; non-
transparent boosters are partitioned; the sender
boosts the packet, and a "debooster" at the receiver
dehoosts and recovers the original packet. This is the
situation shown in Figure 1.

1.3 Implementing Boosters

Implementation of boosters requires dynamic inser-
t,ion of protocol elements into a protocol graph. In
practice, protocol graphs are implemented as ex-
ecutable modules that cooperate via messages or
shared state. Booster support requires inserting and
removing the booster's function from the execution
path followed for a group of packets handled by the
protocol. A simplified illustration of one style of
l~ooster is shown in Figure 2.

While future operating systems[l, 71 may ease user-
level implementation of protocols with good support
for efficient userlkernel boundary crossing and struc-
t,ured user control of devices[6], today's operating sys-
tems are ill-suited for such implementation. Access to
system resources needed for high performance, such
as address maps and fine-grained scheduling, leads
t,o protocols embedded in operating systems. The
canonical example is the IP protocol stack embed-
(led in BSD UNIX. Implementing protocol boosters

in this environment allows us to evaluate the tech-
nique's applicability today in a realistic setting.

Our overall goal is to show that Protocol Boosters
are a good idea. As a first step, we must show that
the idea can be realized with acceptable performance.
To do this, we implemented several example Proto-
col Boosters embedded in a BSD TCP/IP implemen-
tation, and measured the costs and overheads. We
used the FreeBSD implementation of UNIX, operat-
ing on Intel Pentium processors interconnected by 10
Mbps Ethernet cards. The availability of freely dis-
tributable UNIX sources such as FreeBSD and Linux
has made such machines extremely attractive as OS
development platforms, and allows free distribution
of systems such a s the one we have implemented. It
is our hope that other boosters and improved OS sup-
port will result as others absorb and react to our im-
plementations.

The remainder of this paper is organized as follows.
Section 2 motivates particular design choices reflected
in the implementation. Section 3 discusses several ex-
ample Protocol Boosters. Section 4 discusses aspects
of the implementation in FreeBSD. Section 5 presents
performance data and some inferences we can draw
from it. Section 6 discusses related work, and Sec-
tion 7 concludes the paper with a discussion of lessons
learned, new directions and a pointer to the source
for our implementation.

Laver ntl

Protocol I Protocol I

(a) Unmodified (b) Booster-capable (c) Boosted
Stack Stack Stack

Figure 2: Insertion of Protocol Boosters in a Layered
Protocol

2 Implementation choices and
strategy

As Figure 2 shows, due to its generality and sim-
plicity, the booster abstraction can be used in many

protocol architectures. There is a wide range of im-
plementation alternatives.

2.1 Kernel vs. User level

The initial design choice was whether to run boosters
inside the kernel protection domain, or to operate in
user-space. Each choice has major consequences for
required operating system support.

Running boosters as kernel modules can increase
performance, because of context-switching and other
overheads, as well as availability of control and in-
formation about arriving packets. As many boosters
commit layer violations, such information can be very
important. Unfortunately, boosters as kernel mod-
ules are difficult to debug. Boosters running in user
space are much easier to debug, as well as easier to
adapt to other operating systems.

Since one role of boosters is as performance-
enhancers interoperating with existing network pro-
tocols, we implemented prototype support for boost-
ers as kernel modules. This decision should be re-
examined as technology advances.

2.2 Platform choice

We added support to FreeBSD, a free Unix clone for
the Intel x86 processor architecture. There were two
reasons: (1) no cost for a free BSD Unix inspired OS
and its source code, and (2) excellent documentation;
[18] has an excellent treatment of the BSD networking
code. The placement of this implementation in the
IP stack is shown in Figure 3.

In our prototype we simplified the policy decision
for boosting: all packets destined to (or sourced from)
a specific IP address are boosted or de-boosted as nec-
essary. This choice allowed us to investigate the OS
performance independent of policy research and de-
velopment. This is accomplished by a demultiplexing
algorithm, as illustrated in Figure 3, which examines
the IP address and based on a table lookup, either in-
vokes an appropriate booster or reinserts the packet
in the normal execution path. Insertion or deletion
of booster functionality is thus controlled by choice
of IP address.

2.3 Protocol Layer and implications

,4 completely general environment for protocol boost-
ers would allow placement at any protocol layer. The
key lessons about feasibility and performance of OS

Booster 1

Booster 2

Figure 3: Embedding and selecting boosters in the
FreeBSD IP stack

support can be learned with a prototype operating
at a single layer. The choice of this protocol layer
has important implications for software engineering,
limitations of the prototype, and performance mea-
surement. We used the IP layer.

The major software engineering issue other than
kernel- vs. user-space placement is interacting with
the existing layers. We defer discussion of Software
Engineering until Section 4.3, after the implementa-
tion details are discussed.

Several limitations were introduced by using the
IP layer. These were related to packet fragmenta-
tion and reassembly and multipath routing, and are
a direct consequence of operating at the IP layer.

Packet fragmentation and reassembly is performed
by IP at hosts to avoid the performance cost of re-
peatedly carrying it out as packets traverse an in-
ternetwork. A Maximum Transfer Unit (MTU) is
determined for an IP route, which has the property
that it requires minimal fragmentation and reassem-
bly. Where a link has a smaller Maximum Transfer
Unit (MTU) than the packet size, the packet is frag-
mented into pieces of MTU size or smaller. The de-
booster receives the original boosted packet as two
(or more) packet fragments. This presents a problem
where the booster functionality requires the entire
original packet. Since this requirement is booster-
dependent, our prototype OS implementation by sup-
plies the MTU of the outgoing interface to the booster
so it can act appropriately.

Multipath routing occurs since Internet packets are
not guaranteed to be delivered, take a particular
route, or arrive in-order. TCP addresses the first
and third problems as an IP overlay. This IP be-

havior can present a problem for boosters, especially
non-transparent boosters where appropriate deboost-
ers or state necessary to deboost the boosted packet
are not present. It also complicates inserting and
deleting boosters a t necessary locations in an IP in-
ternetwork. While routes rarely change, as shown by
Claffy[3] in her studies of Internet traffic, such routing
dynamics can be addressed by future protocol boost-
ers.

The ability to measure performance in a convinc-
ing and reproducible manner was our highest priority.
Since application performance is an excellent mea-
sure of end-to-end performance, measurement of de-
lay and throughput was performed with widely-used
t,ools which measure these parameters using IP pro-
tocols and sockets. Thus, we had to implement at the
IP layer or below to use these tools. The results suf-
fer in reproducibility if we use subnet specific boost-
ers; the first subnet-independent layer is the IP layer.
This argued strongly for an IP-layer implementation;
we discuss the specifics of performance measurement
in Section 5.

3 Prototype Boosters

We have implemented two example boosters: an en-
cryption booster (for passage across insecure sub-
net,s) and a compression booster (for passage across
bandwidth-limited subnets). Both boosters have a
trivial policy mechanism in which a booster is in-
serted or removed from the protocol graph by explicit
user requests.

3.1 Lempel-Ziv Compression Booster

Lempel-Ziv is a commonly used compression algo-
rithm which finds duplicate strings and replaces the
repeating occurrences with a pointer back to the orig-
inal instance[l9]. In the case of limited bandwidth
net,works, a compression booster might increase end-
to-end performance, reducing required throughput,
at t,he cost of increased CPU activity. Compression
of various packet components has proven successful
for low-bandwidth networks[l2].

Placing compression at the network level enables
all network services to benefit from compression with-
out any added user-level complexity. Sophisticated
policy mechanisms can be put in place with the com-
pression booster to detect the proper conditions for
insertion into and removal from the protocol graph.

For instance, a typical problem in congestion de-
tection and avoidance is propagating the network in-
formation across a WAN. However, a sophisticated
policy/compression module could address congestion
somewhat differently and immediately compress net-
work streams based solely on information gathered
locally, such as packet loss information used by TCP
in making flow control decisions.

3.2 Lucifer, an Encryption Booster

Lucifer is an encryption algorithm developed by IBM
in 1971; it was a precursor to the now heavily used
DES (Data Encryption Standard) algorithm[21]. In
the case of sensitive data traveling over an insecure
subnet, an encryption booster can transparently in-
crease the security of the network services provided.

As with many software-based encryption tech-
niques, the performance of the encryption booster as
shown in Section 5 is poor due to its CPU-intensive
nature. Naturally, encrypting the data with special
purpose hardware would improve performance signif-
icantly, and this could easily be done with a booster
which detects and uses such hardware.

The performance of software-based encryption
highlights an important point. For sensitive data
traveling between secure clouds, it may be less expen-
sive to encrypt the data only over the insecure hop
thereby reducing CPU cost on the endpoints. For ex-
ample, the boosted link in Figure 1 might be insecure,
and the policy module could detect this by destina-
tion IP address or other means. Moreover, with the
use of special purpose hardware, one could multiplex
the hardware across many possible endpoints.

The Lucifer booster is based on widely-available
code written by one of us and published in
Schneier[l7]. Converting this Lucifer code from a user
program to a network protocol booster required less
than a hour.

4 Implementation in FreeBSD

The majority of OS support as well as the booster
modules are loadable kernel modules. The remaining
OS support is modifications to the kernel networking
code. The modules are loaded with an ioctl() system
call. Our modified kernel can dynamically load and
unload support for protocol boosters.

4.1 Initial BSD network stack

When a datagram arrives at the hardware interface,
the hardware puts the datagram into the IP input
queue and schedules a software interrupt to execute
t,he IP input routine[l8]. This routine processes each
datagram on its input queue and returns when the
entire queue has been processed. During processing,
the IP input routine verifies the IP header checksum,
processes IP options and forwards the datagram if
necessary. If the datagram has reached its final des-
tination, it is passed to the appropriate higher-level
protocol.

On output[l8], higher-level protocols like TCP and
UDP fill in as much of the datagram as they can, e.g.,
the TCP header, and then pass the datagram to the
IP output queue. This fills in the remaining fields
in the IP header, like the checksum, determines the
outgoing interface to pass the datagram to, fragments
t,he datagram if necessary and then calls the interface
output function.

to i p i n t r 0 to finish processing the packet. Figure
3 illustrates much of this behavior.

4.2.3 Outpu t

A packet can arrive a t the IP output routine
ip-output() in two states : boosted or unboosted.
If it is boosted, then the packet is destined for an-
other host, and has been passed to ip-output 0 by
i p f orward(). If it is not boosted, then it may ei-
ther be coming from the local host, or it may have
also come from i p f orward (1.

All outgoing packets are passed to the PB output
routine. This routine determines whether to boost,
deboost or simply forward the packet before send-
ing it out. The packet(s) are then passed back to
ip-output () which processes and fragments them as
appropriate before sending them to the hardware in-
terface.

4.2.4 Booster interface to OS

4.2 Protocol Booster support in the The interface with the kernel is simple. It can be
viewed as consisting of basically two functions - one

network stack to boost and the other to deboost. Minimal examples

The basic architecture of our implementation in the of such functions are given in Figures 4 and 5.

IP stack is illustrated in Figure 3. The following sub- The booster registers these functions by inserting

sections explain how it is done. function pointers to them into a lookup-table. This
table is then used to demultiplex incoming and outgo-

4.2.1 Identifying boosted packets

In the IP header, the type-of-service is field is not
wed. We used this field to store the booster id of
boosted packets. If boosters need headers or trail-
ers added to packets, they must allocate space and
perform the appropriate checksumming themselves.

4.2.2 Inpu t

When a packet arrives at an interface, it is passed to
the IP input routine (i p i n t r o) by the hardware. If
t,hr packet is destined for another host, it is passed
on t,o ip-f orwardo , which forwards packets appro-
priately. If the current machine is the final desti-
riation, the packet is passed to the protocol booster
input routine. At this point, the packet consists of
t,hc IP and TCP headers as well as whatever data is
in it,. The protocol booster (PB) input routine deter-
mines whether the packet is boosted or not; if it is
riot., it. returns at once. Else, it passes the packet to
t.lle appropriate debooster routine, which attempts to
deboost the packet and return the deboosted packet

ing packets. The function called on output of a packet
(2 . e., the boosting function) is passed 4 parameters -
a pointer to the original mbuf chain containing the
packet, a pointer to the contiguous memory block
into which the packet has been spilled, a pointer to
memory that has been allocated to it (the booster)
and the MTU of the interface on which the packet is
being sent. The deboosting function, usually called
when a packet is received, is passed the same param-
eters except for the MTU size.

Since boosters can generate new packets as well as
modifying the old ones, they are required to fill in a
data structure that indicates the packet(s) generated.
This data structure consists of a linked list of pointers
to the start of packets and the length of these pack-
ets. We process this linked list to extract the packets
and repackage them into mbufs which can then be
processed by the rest of the networking code.

4.2.5 Protocol Layer

While our implementation supports boosters at the
IP layer, it would be easy to add booster support that

int null~boost(struct mbuf *mO,
char *pcPacketBuffer,
char *pcPlayground,

int iMtu0ut)
C

register struct ip *ip = (struct ip *) pcPacketBuffer;

ip->ip-tos = ip->ip-p;
ip->ip-p = IPPROTO-PBOOSTERS + PB-BID-NULL;

SegmentInfo-pSegmentInfo = (SegmentInfo *) pcPlayground;
SegmentInfo-pSegmentInfo->pcPacketStart = pcPacketBuffer;
SegmentInfo-pSegmentInfo->iPacketLength = m0->m-pkthdr.len;
SegmentInfo-pSegmentInfo->pNextSegment = NULL;
return (0) ;

1

Figure 4: Example Null Booster for FkeeBSD

int null~deboost(struct mbuf *mO,
char *pcPacketBuffer,
char *pcPlayground)

C
register struct ip *ip = (struct ip *) pcPacketBuffer;

SegmentInfo-pSegmentInfo = (SegmentInfo *) pcPlayground;
SegmentInfo-pSegmentInfo->pcPacketStart = pcPacketBuffer;
SegmentInfo-pSegmentInfo->iPacketLength = m0->m-pkthdr.len;
SegmentInfo-pSegmentInfo->pNextSegment = NULL;
return(0) ;

1

Figure 5: Example DeBooster for FreeBSD

works at the TCP or UDP levels (above IP in the a linked list containing a datagram if the datagram's
stack), or one a t the Ethernet level, which is below length exceeds the size of a single mbuf.
IP in the stack. We began by passing the packets t o the boosters as

the mbufs in which they were encapsulated. However,
the mbuf structure proved awkward to manipulate,

4.3 Software Engineering particularly for boosters that operate on contiguous

4.3.1 Interact ing with Mbufs pieces of data, e.g., the compression booster.
We allocate a 32KB memory buffer in which we

FreeBSD's network information and datagrams are gather packets as they arrive. A booster is passed
stored and processed in mbufs (memory buffers). a pointer to this contiguous region of memory. We
Mbufs have a maximum size and are chained into allocate an additional 32K chunk of memory used by

the boosters in their processing.
While slightly constrained, implementing each of

our sample boosters became very simple. The cur-
rent FreeBSD kernel network data structures restrict
schemes like protocol boosters, Application-specific
Safe Handlers[7] and SPIN[l] modules. To exploit
ideas from these new systems, the FreeBSD kernel
must be made more "extension-friendly" .

4.3.2 Kernel-awareness and user-level calls

provided an understanding of the delay overhead im-
posed by boosters, and allowed us to quantify per-
byte and per-packet overheads.

We analyzed the throughput of the resulting net-
work stacks using the netperf tool[lO]. We have ex-
perimented with both t t cp and netperf, and have
drawn two conclusions from these experiments. First,
netperf results are reproducible; t t cp measurements
exhibit significant variation in reported throughput
- up to 20% in some cases. Second, netperf results
correspond very closely with maximum t t c p reported

Implementation issues which are of minor conse- throughputs. What this suggests is that netperf bet-
quence in user space can have devastating side-effects ter controls the variables under study, while reducing
if errors are introduced in the kernel protection do- noise from other factors.
main. Our sample boosters (compression and en-
cryption) were all essentially constructed by simply
taking the skeleton algorithm of existing applications
(Lempel-Ziv, Lucifer, etc.) at the user-level and turn-
ing it into the main routine for the booster modules.

The implementations made calls to user-level li-
braries, or to system calls. Since these are not avail-
able in the kernel, we had to implement any required
functions. Memory allocation was particularly ob-
scure, so our implementation provides each booster
with a pointer to 32K of allocated memory which the
booster is expected to manage.

Authors of boosters in our prototype must be
'kernel-aware'. However, it is undesirable for the
authors of boosters to completely master FreeBSD
internals. More complex boosters will require more
powerful and extensive services. A clearly-defined,
powerful interface to the kernel should be imple-
mented to provide the most important facilities avail-
able to user-level applications; this would greatly ac-
celerate importing existing code into a kernel-resident
booster framework.

5 Performance Evaluation

The goal of our performance evaluation experiments
was to measure the overhead introduced by our im-
plementation as well as the costs of executing the ex-
ample boosters. Our experimental setup consisted of
two 133 MHz Intel Pentium processors equipped with
32MB of E D 0 RAM with support for burst reads, a
256IiB pipeline write back cache, and 3COM 3~509
ISA Ethernet cards operating at 10 Mbps.

We recorded the roundtrip times of ICMP ECHO
(ping) packets of varying sizes between the two hosts,
with a number of different boosters installed. This

5.1 Delay measurements

Figure 6 shows the variation in ping round-trip times
with packet sizes ranging from 60 to 1400 bytes and
different boosters.

Figure 6 shows that there is virtually no differ-
ence in delay between a kernel with booster support
enabled and an unmodified F'reeBSD kernel. The
overhead added by a "null" booster ('spilling' the
packet and reassembling it into mbufs) is incurred by
all boosters. This overhead is very small, between
0.1 and 0.2 ms, and remains constant with increas-
ing packet size, implying that the cost is per-packet,
rather than per-byte.

The Lempel-Ziv booster is much more expensive
than the null booster for small packet sizes, but
the cost decreases with increasing packet size. We
attribute this to increasing compressibility with in-
crease in packet size, so that the increase in pro-
cessing time is offset by the decrease in the time
needed to transmit the data. The Dumb-Lempel-
Ziv booster, which compresses the data but sends the
original packet rather than the compressed one, be-
haves as expected - round-trip ping times increase
linearly with time, reflecting the processing overhead
involved in compressing the packet. It might seem
odd that the Dumb-Lempel-Ziv booster ever out-
performs the Lempel-Ziv booster. The Lempel-Ziv
booster compresses the packet at the source, trans-
mits the compressed packet and decompresses it at
its destination, while the Dumb-Lempel-Ziv booster
performs the compression computation at the source
but sends the uncompressed packet, bypassing de-
compression at the destination. Therefore the Dumb-
Lempel-Ziv booster starts to outperform the Lempel-
Ziv booster when the additional time required to de-

6

Latency (ms)

4

0
0 200 400 600 800 1000 1200 1400

Packet size (bytes)

No booster support -6-
Booster support, no booster installed .+. -

Null booster
Lempel-Ziv booster -x. -

I I I I I I

Figure 6: Ping round-trip times

compress the packet exceeds the time gained by trans-
mitting a compressed packet. With increasing packet
size and compression gain, this discrepancy lessens
until Lempel-Ziv starts to outperform Dumb-Lempel-
Ziv.

The roundtrip times of the Encryption booster are
very large even for small packet sizes; only the time
for the smallest packet is shown in Figure 6 (it is in
the upper left corner of the plot). The other times
are correspondingly ridiculous.

5.2 Throughput measurements

Netperf uses a client-server model to measure the
throughput, with one machine acting as the server to
the others client. We measured bulk data transfers
using TCP and BSD sockets.

The experiments used the test setup described at
the beginning of this section, the modified kernel, and
no other machines on the Ethernet link. The experi-
ments were repeated until a 99% confidence interval
in the results was reached, using an option provided
by netperf. The command line used was:

netperf -F design. tx t -H logos -I 99,5
-i 10,2 -1 60

Table 1 shows the results of our tests. The first
column in the table shows the code path being exe-
cuted, the second column shows the throughputs ob-
tained by netperf, and the third shows the percent-
age change in throughput relative to a kernel with no
booster support installed, which is given as the first
row of the table.

The additional processing overhead incurred by our
FreeBSD support for protocol boosters has a negligi-
ble impact on throughput; with no booster installed,
throughput stays the same (7.21MBitlsec). For
the null booster, with the associated packet spilling
and resegmentation costs, throughput decreases by
0.01%, from 7.21MBitIsec to 7.15MBitIsec.

The measurements also indicates the effect on
throughput when boosters which perform significant
processing are employed. The Lempel-Ziv booster
performs Lempel-Ziv compression, as described in
Section 3, and then sends the compressed packet; the
Dumb-Lempel-Ziv booster also executes the compres-
sion code but sends the original packet, thus incurring
all of the cost but none of the benefits of the Lempel-
Ziv booster. This provided us with an upper bound
on the cost of the Lempel-Ziv booster. The Crypto
booster encrypts its data stream using the Lucifer[21]
algorithm.

Table 1: Netperf statistics

Stack configuration

No support installed
Support installed, no booster
Null booster
Lempel-Ziv booster
Dumb-Lempel-Ziv booster
Crypto booster

The Lempel-Ziv booster improves performance by
up to 30%, approaching the maximum link-level
bandwidth when compressible data (such as text files)
is being sent. The throughput obtained with the
Dumb-Lempel-Ziv booster provides an estimate of
the worst-case behavior, decreasing throughput by
up to 28%. This is encouraging, implying as it does
that even a relatively unsophisticated implementa-
tion of the proposed technique for protocol enhance-
ment produces significant performance gains in some
fairly common cases.

The Crypto booster, on the other hand, decreases
throughput to 5% of its normal value. Since the costs
incurred by the OS support are negligible, this de-
crease in throughput comes from computations for
encrypting and decrypting the data stream. Clearly,
inefficient or computationally expensive boosters may
cause dramatic reductions in throughput.

Throughput
(MBit/s)

7.21
7.22
7.15
9.42
5.22
0.34

5.3 Installation costs

Percent
Change

0.00%
0.00%

-0.01%
30.65%

-27.60%
-95.28%

Boosters are intended to be added and deleted dy-
namically to react to network dynamics. In our pro-
totype, this is done from the user level. Inserting
the module for booster support into the running ker-
nel takes an average of 30ms (29000 ps). Adding an
actual booster takes an average of 20ms (19000 ps).
Both of these are times spent executing in the kernel
on account of a user-level ioctl() request, and exclude
concurrency-control costs.

Where a booster's functionality is dynamically in-
serted and deleted under control of a kernel-resident
policy module, the operations can be considerably
faster. The simple kernel data structure operations
consist of three pointer updates. These can be accom-
plished while a single processor-priority based lock is
held. The cost of lock acquisition and release is less
than 100 instructions.

6 Relation to other work

The University of Arizona's z-Kernel[ll] work pro-
vides support for composing protocols from simpler
elements. Protocol boosters are examples of such el-
ements, but they are inserted "on-the-fly". More re-
cent work on the Scout[l4] project seeks to use com-
piler technology to optimize protocol stacks by re-
ducing them to minimal sets of functions. This opti-
mization approach is static, where a general protocol
architecture is pared away by optimization technol-
ogy to achieve a high-performance protocol. Protocol
boosting, in contrast, is additive and dynamic; pro-
tocol boosters are added when necessary.

Dynamic modification of protocols is not a new
idea; for example the notion of building a FILO
queue (stack) of reentrant modules is embedded in
the UNIX System V STREAMS implementations
patterned on Ritchie's Streams[l5]. Unfortunately,
Streams are restrictive with respect to flow con-
trol (they resemble a string of co-routines), mod-
ule scheduling, and intermodule messaging. Boosters
have a smaller set of such restrictions, in fact they
are in practice almost unrestricted. This means that
the range of protocol architectures which can be im-
plemented is enhanced; for example there are pro-
tocol features (e.g., multiplexers) which are difficult
to implement with the implicit flow control of the
STREAMS message-passing discipline, and easy to
implement with boosters.

For example, composition properties are essen-
tial for the many-to-one, one-to-many, and many-to-
many forms of multiplexing in communications sys-
tems. The "waits-for" dependencies used to sched-
ule coroutines would force multiplexers (and demulti-
plexers) to be single-threaded and data-driven, rather
than clock or priority driven.

Protocol boosters have a strong intellectual rela-
tion to the application-specific services approach sug-

gested by the University of Washington's SPIN[l]
project for building an extensible microkernel. A dif-
ferent tack is followed by MIT's Exokernel[7]; the
Exokernel concentrates on allowing applications to
specify almost all elements of their OS substrate,
without focusing specifically on network protocols.
Application-specific Safe Handlers (ASHs) are most
similar to protocol boosters. A major difference is
the focus on protocols in our work; it lets us take
advantage of considerable structure inherent in pro-
tocols. OS support for protocol boosters occupies a
middle ground of generality between STREAMS and
an extensible OS.

7 Suggestions for further work
and Conclusions

Sophisticated policy modules are clearly essential for
many classes of dynamic behavior. Our prototype
implementation requires users to explicitly ask for
boosters to be inserted and deleted. Automating
insertion and deletion of boosters under control of
a policy module (e.g., a "compressibility detector")
is underway. David Feldmeier[9] has observed that
monitoring congestion on a WAN to determine when
compression should be applied has desirable proper-
ties; compression is then used only when the WAN
is congested, and compression reduces throughput, a
correct response to WAN congestion.

Our implementation provides access to packets at
the IP layer. This was based on our requirements
for reproducible measurements, as discussed in Sec-
tion 2.3. On input, for example, we pass the packet to
the booster module after error-checking has been per-
formed; some applications may wish to pass the data-
gram to the booster module before error-checking.

More general protocol graph support in the
F'reeBSD would allow adding booster modules at any
level in the protocol hierarchy as well as at arbitrary
points in the processing of the datagram. This would
offer finer-grained control of boosting. For example,
one could implement TCP Vegas [2] using protocol
boosters if we inserted booster modules at the TCP
layer. A desirable implementation target is x-Kernel-
like protocol graph facility, with access to FreeBSD
resources, and with smart policy modules.

To achieve that target, further OS support for
boosters should include library routines accessible to
booster modules, similar to libraries available at the
user-level. This would would insulate programmers

from many details such as kernel memory allocation,
and let them focus on the algorithms used in the
boosters themselves. From a software and protocol
engineering perspective, it would save effort, since
many boosters have common support needs.

7.1 Summary

Our prototype shows that it is possible to dynami-
cally insert and delete protocol elements in a conven-
tional TCP/IP stack operating under UNIX. Support
for these "protocol boosters" can be implemented effi-
ciently; there is a very small performance cost relative
to the cost of executing the protocol element's func-
tions. We analyzed these costs using both network
throughput and network delay measurements made
with widely-available tools; our source code can be
obtained via anonymous FTP2 for those wishing to
replicate our measurements or experiment with new
boosters.

8 Acknowledgments

The Lempel-Ziv booster is based on publicly-
available code by Ross Williams[20]. Tony McAuley
and Dave Feldmeier of Bellcore have provided impor-
tant ideas and commentary. Comments from Scott
Nettles greatly improved an earlier draft of this pa-
per.

References

[I] B. Bershad, et al.,, "Extensibility, Safety and
Performance in the SPIN Operating System,"
Proc. 15th SOSP, pp. 267-284, December 1995.

[2] L. Brakmo and L. Peterson, "TCP Vegas: End
to End Congestion Avoidance on a Global In-
ternet," in IEEE Journal on Selected Areas e'n
Communications, 13(8), Oct. 1995, pp. 1465-
1480.

[3] K. ClaiTy, "Internet Traffic Characterization,"
Ph.D. Thesis, UCSD, 1994.

[4] David D. Clark, Van Jacobson, John Romkey
and Howard Salwen, "An Analysis of TCP Pro-
cessing Overhead," in IEEE Communications
Magazine, 27(6), June 1989, pp. 23-29.

'f tp. cis. upenn. edu: - pub/dsl/boosters .d

[5] D. Clark & D. Tennenhouse, "Architectural
Considerations For A New Generation Of Pro-
tocols," Proceedings of ACM SIGCOMM, pp.
200-208, September 1990.

[6] P. Druschel, L. L. Peterson and B. S. Davie, "Ex-
periences with a High-Speed Network Adaptor:
A Software Perspective," pp. 2-13, Proceedings,
1994 SIGCOMM Conference, London, UK.

[16] J . H. Saltzer, D. P. Reed, & D. D. Clark, "End-
to-end Arguments in System Design," Proceed-
ings of the 2'nd IEEE International Conference
on Distributed Computing Systems, pp. 509-
512, April 1981.

[17] B. Schneier, "Applied Cryptography: Protocols,
Algorithms and Source Code in C," Wiley 1994,
pp. 485-491.

[18] W. Richard Stevens and Gary R. Wright,
[7] D. Engler, et al., "Exokernel: An Operating Sys- "TCP/IP Illustrated, Vo1.2 - The Implementa-

tem Architecture for Application-Level Resource tion," Addison-Wesley, 1995.
Management," Proc. 15th SOSP, 1995.

[8] D. C. Feldmeier, A. J. Macauley and J. M.
Smith, "Protocol Boosters," Technical Report,
U. Penn CIS Dept.,
1996. See also http://gump.bellcore.com/-
dcf/boosters/
homepage. html.

[9] D. C. Feldmeier, Personal Communication, May
7th, 1996.

[lo] Hewlett-Packard, Information Networks Divi-
sion, "Netperf: A Network Performance Bench-
mark (Revision 2.0)," Feb. 15, 1995. See also
http://onetl.external.hp.com/netperf/
NetperfPage.htm1.

[ll] N. C. Hutchinson and L. L. Peterson, "The x-
Kernel: An architecture for implementing net-
work protocols," IEEE Transactions on Software
Engineering, 17(1), Jan. 1991, pp. 64-76.

[12] V. Jacobson, "Compressing TCP/IP Headers for
Low-Speed Serial Links," Internet RFC 1144,
February 1990.

[13] A. J . McAuley, "Error Control for Messaging
Applications in a Wireless Environment ," INFO-
COM 95, Boston, MA, April 2-6, 1995.

[14] A. B. Montz, et al., "Scout: A communications-
oriented operating system," Technical Report
94-20, Dept. CS, University of Arizona, June
1994.

[19] J. Ziv and A. Lempel, "A Universal Algorithm
for Sequential Data Compression", IEEE Trans-
actions on Information Theory", Vol. 23, No. 3,
pp. 337-343.

[20] Nico E. de Vries, "Lossless Datacompression
Sources Kit," 1996. Email nevries@aip.nl t o ob-
tain a copy.

[21] J . L. Smith, "The Design of Lucifer, A Crypto-
graphic Device for Data Communications," IBM
Research Report RC3326, 1971.

[15] D.M. Ritchie, "A Stream Input-Output Sys-
tem", in AT&T Bell Laboratories Technical
Journal, October 1984, 63(8) part 2, pp. 1897-
1910.

