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Abstract 
"Protocol Boosters'' are modules inserted into protocol graphs. They allow the protocol's 

behavior to adapt to its environment. Boosters can mask undesirable properties of links or subnets 
in an internetwork. The method permits use of proprietary protocols and supports end-to-end 
optimizations. 

We have implemented Protocol Boosters support in the FreeBSD version of UNIX for Intel 
architecture machines. Our prototype embeds boosters in the 4.4 BSD-Lite Internet Protocol (IP) 
stack. We have measured the performance of two prototype boosters: an encryption booster (for 
passage across insecure subnets) and a compression booster (for passage across bandwidth-impaired 
subnets). 

Our measurement data suggests that OS support for this method can be constructed with low 
performance overhead; execution of the protocol elements dominates any overhead introduced by 
our implementation. We discuss some lessons learned from the implementation. 

1 Introduction 

Network protocols are designed to meet application 
requirements for data communications, including se- 
curity, reliability and performance. The dominant 
design and implementation process for protocols has 
been to first enumerate the requirements for the pro- 
tocol, and then design a protocol that provides the 
necessary features end-to-end[l6]. The protocol is 
then optimized by identifying common cases and im- 
plementing fast paths for these cases; TCP/IP is an 
example[4]. The resulting protocol is robust end-to- 
end and typically provides good performance. Ex- 
tremely poor performance can result when the as- 
sumptions permitting fast path execution are not 
met. 

1.1 Protocol Boosters 

Protocol gaphs[l l]  are a means of representing the 
interactions between protocol elements which carry 

intended to be transparently inserted into and deleted 
from protocol graphs on an as-needed basis. 

A policy associated with the booster is used to se- 
lectively invoke the protocol functions. For example, 
a forward error correction code might be used over a 
wireless data link to bring its error behavior into an 
acceptable operating range, without using the FEC 
end-to-end [13]. The error performance of the subnet 
is thus "boosted" to an acceptable level to improve 
end-to-end performance. Figure 1 shows a booster 
used in a network, in this case boosting a subnet be- 
tween an end-host and a router. 

Boosted L ~ n k  or Subnet u$ 
out functions required by the protocol, e.g., round- 
trip time estimation. An approach initially suggested Figure 1: Boosting a link or subnet 

by Feldmeier, et a1.[8], is the design of "Protocol 
Boosters." Protocol Boosters are protocol elements Boosters can be dynamically added and deleted as 

additional network functionality is needed. A policy 
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ble to have a completely general policy; policies must 
be associated with their boosters. 

These policies can be quite subtle, and may include 
definition of "metan-policies. For example, consider 
two boosters, one that compresses data, and a sec- 
ond that encrypts it. If compression is performed 
first, the later encipherment of data might in fact be 
slightly strengthened. However, if encryption is per- 
formed first, the compression is unlikely to be effec- 
tive. A policy module can be devised which properly 
structures the interaction of these two boosters, for 
example by indicating that the boosters are not com- 
mutative. 

1.2 Packet Modification 

A transparent booster does not modify the packet it 
boosts. For example, a Forward Error Correction 
(FEC) booster may send FEC packets in addition t o  
the data packets it encodes. Non-transparent boost- 
ers, on the other hand, modify data packets. For 
example, a compression booster for use on a wireless 
link might compress data packets. 

Transparency has architectural implications; non- 
transparent boosters are partitioned; the sender 
boosts the packet, and a "debooster" at  the receiver 
dehoosts and recovers the original packet. This is the 
situation shown in Figure 1. 

1.3 Implementing Boosters 

Implementation of boosters requires dynamic inser- 
t,ion of protocol elements into a protocol graph. In 
practice, protocol graphs are implemented as ex- 
ecutable modules that cooperate via messages or 
shared state. Booster support requires inserting and 
removing the booster's function from the execution 
path followed for a group of packets handled by the 
protocol. A simplified illustration of one style of 
l~ooster is shown in Figure 2. 

While future operating systems[l, 71 may ease user- 
level implementation of protocols with good support 
for efficient userlkernel boundary crossing and struc- 
t,ured user control of devices[6], today's operating sys- 
tems are ill-suited for such implementation. Access to 
system resources needed for high performance, such 
as address maps and fine-grained scheduling, leads 
t,o protocols embedded in operating systems. The 
canonical example is the IP protocol stack embed- 
(led in BSD UNIX. Implementing protocol boosters 

in this environment allows us to evaluate the tech- 
nique's applicability today in a realistic setting. 

Our overall goal is to show that Protocol Boosters 
are a good idea. As a first step, we must show that 
the idea can be realized with acceptable performance. 
To do this, we implemented several example Proto- 
col Boosters embedded in a BSD TCP/IP implemen- 
tation, and measured the costs and overheads. We 
used the FreeBSD implementation of UNIX, operat- 
ing on Intel Pentium processors interconnected by 10 
Mbps Ethernet cards. The availability of freely dis- 
tributable UNIX sources such as FreeBSD and Linux 
has made such machines extremely attractive as OS 
development platforms, and allows free distribution 
of systems such a s  the one we have implemented. It 
is our hope that other boosters and improved OS sup- 
port will result as others absorb and react to our im- 
plementations. 

The remainder of this paper is organized as follows. 
Section 2 motivates particular design choices reflected 
in the implementation. Section 3 discusses several ex- 
ample Protocol Boosters. Section 4 discusses aspects 
of the implementation in FreeBSD. Section 5 presents 
performance data and some inferences we can draw 
from it. Section 6 discusses related work, and Sec- 
tion 7 concludes the paper with a discussion of lessons 
learned, new directions and a pointer to the source 
for our implementation. 

Laver ntl 

Protocol I Protocol I 

(a) Unmodified (b) Booster-capable (c) Boosted 
Stack Stack Stack 

Figure 2: Insertion of Protocol Boosters in a Layered 
Protocol 

2 Implementation choices and 
strategy 

As Figure 2 shows, due to its generality and sim- 
plicity, the booster abstraction can be used in many 



protocol architectures. There is a wide range of im- 
plementation alternatives. 

2.1 Kernel vs. User level 

The initial design choice was whether to run boosters 
inside the kernel protection domain, or to operate in 
user-space. Each choice has major consequences for 
required operating system support. 

Running boosters as kernel modules can increase 
performance, because of context-switching and other 
overheads, as well as availability of control and in- 
formation about arriving packets. As many boosters 
commit layer violations, such information can be very 
important. Unfortunately, boosters as kernel mod- 
ules are difficult to debug. Boosters running in user 
space are much easier to debug, as well as easier to 
adapt to other operating systems. 

Since one role of boosters is as performance- 
enhancers interoperating with existing network pro- 
tocols, we implemented prototype support for boost- 
ers as kernel modules. This decision should be re- 
examined as technology advances. 

2.2 Platform choice 

We added support to FreeBSD, a free Unix clone for 
the Intel x86 processor architecture. There were two 
reasons: (1) no cost for a free BSD Unix inspired OS 
and its source code, and (2) excellent documentation; 
[18] has an excellent treatment of the BSD networking 
code. The placement of this implementation in the 
IP stack is shown in Figure 3. 

In our prototype we simplified the policy decision 
for boosting: all packets destined to (or sourced from) 
a specific IP address are boosted or de-boosted as nec- 
essary. This choice allowed us to investigate the OS 
performance independent of policy research and de- 
velopment. This is accomplished by a demultiplexing 
algorithm, as illustrated in Figure 3, which examines 
the IP address and based on a table lookup, either in- 
vokes an appropriate booster or reinserts the packet 
in the normal execution path. Insertion or deletion 
of booster functionality is thus controlled by choice 
of IP address. 

2.3 Protocol Layer and implications 

,4 completely general environment for protocol boost- 
ers would allow placement at  any protocol layer. The 
key lessons about feasibility and performance of OS 

Booster 1 

Booster 2 

Figure 3: Embedding and selecting boosters in the 
FreeBSD IP stack 

support can be learned with a prototype operating 
at a single layer. The choice of this protocol layer 
has important implications for software engineering, 
limitations of the prototype, and performance mea- 
surement. We used the IP layer. 

The major software engineering issue other than 
kernel- vs. user-space placement is interacting with 
the existing layers. We defer discussion of Software 
Engineering until Section 4.3, after the implementa- 
tion details are discussed. 

Several limitations were introduced by using the 
IP layer. These were related to packet fragmenta- 
tion and reassembly and multipath routing, and are 
a direct consequence of operating at the IP layer. 

Packet fragmentation and reassembly is performed 
by IP at hosts to avoid the performance cost of re- 
peatedly carrying it out as packets traverse an in- 
ternetwork. A Maximum Transfer Unit (MTU) is 
determined for an IP route, which has the property 
that it requires minimal fragmentation and reassem- 
bly. Where a link has a smaller Maximum Transfer 
Unit (MTU) than the packet size, the packet is frag- 
mented into pieces of MTU size or smaller. The de- 
booster receives the original boosted packet as two 
(or more) packet fragments. This presents a problem 
where the booster functionality requires the entire 
original packet. Since this requirement is booster- 
dependent, our prototype OS implementation by sup- 
plies the MTU of the outgoing interface to the booster 
so it can act appropriately. 

Multipath routing occurs since Internet packets are 
not guaranteed to be delivered, take a particular 
route, or arrive in-order. TCP addresses the first 
and third problems as an IP overlay. This IP be- 



havior can present a problem for boosters, especially 
non-transparent boosters where appropriate deboost- 
ers or state necessary to  deboost the boosted packet 
are not present. It also complicates inserting and 
deleting boosters a t  necessary locations in an IP in- 
ternetwork. While routes rarely change, as shown by 
Claffy[3] in her studies of Internet traffic, such routing 
dynamics can be addressed by future protocol boost- 
ers. 

The ability to  measure performance in a convinc- 
ing and reproducible manner was our highest priority. 
Since application performance is an excellent mea- 
sure of end-to-end performance, measurement of de- 
lay and throughput was performed with widely-used 
t,ools which measure these parameters using IP pro- 
tocols and sockets. Thus, we had to  implement at the 
IP  layer or below to use these tools. The results suf- 
fer in reproducibility if we use subnet specific boost- 
ers; the first subnet-independent layer is the IP  layer. 
This argued strongly for an IP-layer implementation; 
we discuss the specifics of performance measurement 
in Section 5. 

3 Prototype Boosters 

We have implemented two example boosters: an en- 
cryption booster (for passage across insecure sub- 
net,s) and a compression booster (for passage across 
bandwidth-limited subnets). Both boosters have a 
trivial policy mechanism in which a booster is in- 
serted or removed from the protocol graph by explicit 
user requests. 

3.1 Lempel-Ziv Compression Booster 

Lempel-Ziv is a commonly used compression algo- 
rithm which finds duplicate strings and replaces the 
repeating occurrences with a pointer back to the orig- 
inal instance[l9]. In the case of limited bandwidth 
net,works, a compression booster might increase end- 
to-end performance, reducing required throughput, 
at t,he cost of increased CPU activity. Compression 
of various packet components has proven successful 
for low-bandwidth networks[l2]. 

Placing compression at the network level enables 
all network services to  benefit from compression with- 
out any added user-level complexity. Sophisticated 
policy mechanisms can be put in place with the com- 
pression booster to  detect the proper conditions for 
insertion into and removal from the protocol graph. 

For instance, a typical problem in congestion de- 
tection and avoidance is propagating the network in- 
formation across a WAN. However, a sophisticated 
policy/compression module could address congestion 
somewhat differently and immediately compress net- 
work streams based solely on information gathered 
locally, such as packet loss information used by TCP 
in making flow control decisions. 

3.2 Lucifer, an Encryption Booster 

Lucifer is an encryption algorithm developed by IBM 
in 1971; it was a precursor to the now heavily used 
DES (Data Encryption Standard) algorithm[21]. In 
the case of sensitive data traveling over an insecure 
subnet, an encryption booster can transparently in- 
crease the security of the network services provided. 

As with many software-based encryption tech- 
niques, the performance of the encryption booster as 
shown in Section 5 is poor due to  its CPU-intensive 
nature. Naturally, encrypting the data  with special 
purpose hardware would improve performance signif- 
icantly, and this could easily be done with a booster 
which detects and uses such hardware. 

The performance of software-based encryption 
highlights an important point. For sensitive data 
traveling between secure clouds, it may be less expen- 
sive to encrypt the data only over the insecure hop 
thereby reducing CPU cost on the endpoints. For ex- 
ample, the boosted link in Figure 1 might be insecure, 
and the policy module could detect this by destina- 
tion IP address or other means. Moreover, with the 
use of special purpose hardware, one could multiplex 
the hardware across many possible endpoints. 

The Lucifer booster is based on widely-available 
code written by one of us and published in 
Schneier[l7]. Converting this Lucifer code from a user 
program to a network protocol booster required less 
than a hour. 

4 Implementation in FreeBSD 

The majority of OS support as well as the booster 
modules are loadable kernel modules. The remaining 
OS support is modifications to the kernel networking 
code. The modules are loaded with an ioctl() system 
call. Our modified kernel can dynamically load and 
unload support for protocol boosters. 



4.1 Initial BSD network stack 

When a datagram arrives at the hardware interface, 
the hardware puts the datagram into the IP input 
queue and schedules a software interrupt to execute 
t,he IP input routine[l8]. This routine processes each 
datagram on its input queue and returns when the 
entire queue has been processed. During processing, 
the IP input routine verifies the IP header checksum, 
processes IP  options and forwards the datagram if 
necessary. If the datagram has reached its final des- 
tination, it is passed to the appropriate higher-level 
protocol. 

On output[l8], higher-level protocols like TCP and 
UDP fill in as much of the datagram as they can, e.g., 
the TCP header, and then pass the datagram to the 
IP output queue. This fills in the remaining fields 
in the IP header, like the checksum, determines the 
outgoing interface to pass the datagram to, fragments 
t,he datagram if necessary and then calls the interface 
output function. 

to i p i n t r  0 to finish processing the packet. Figure 
3 illustrates much of this behavior. 

4.2.3 Outpu t  

A packet can arrive a t  the IP output routine 
ip-output() in two states : boosted or unboosted. 
If it is boosted, then the packet is destined for an- 
other host, and has been passed to  ip-output 0 by 
i p f  orward(). If it is not boosted, then it may ei- 
ther be coming from the local host, or it may have 
also come from i p f  orward (1. 

All outgoing packets are passed to the PB output 
routine. This routine determines whether to boost, 
deboost or simply forward the packet before send- 
ing it out. The packet(s) are then passed back to 
ip-output () which processes and fragments them as 
appropriate before sending them to the hardware in- 
terface. 

4.2.4 Booster interface to OS 

4.2 Protocol Booster support in the The interface with the kernel is simple. It can be 
viewed as consisting of basically two functions - one 

network stack to boost and the other to deboost. Minimal examples 

The basic architecture of our implementation in the of such functions are given in Figures 4 and 5. 

IP stack is illustrated in Figure 3. The following sub- The booster registers these functions by inserting 

sections explain how it is done. function pointers to them into a lookup-table. This 
table is then used to demultiplex incoming and outgo- 

4.2.1 Identifying boosted packets 

In the IP header, the type-of-service is field is not 
wed. We used this field to store the booster id of 
boosted packets. If boosters need headers or trail- 
ers added to packets, they must allocate space and 
perform the appropriate checksumming themselves. 

4.2.2 Inpu t  

When a packet arrives at an interface, it is passed to 
the IP input routine ( i p i n t r o )  by the hardware. If 
t,hr packet is destined for another host, it is passed 
on t,o ip-f orwardo ,  which forwards packets appro- 
priately. If the current machine is the final desti- 
riation, the packet is passed to the protocol booster 
input routine. At this point, the packet consists of 
t,hc IP and TCP headers as well as whatever data is 
in it,. The protocol booster (PB) input routine deter- 
mines whether the packet is boosted or not; if it is 
riot., it. returns at once. Else, it passes the packet to 
t.lle appropriate debooster routine, which attempts to 
deboost the packet and return the deboosted packet 

ing packets. The function called on output of a packet 
(2 .  e., the boosting function) is passed 4 parameters - 
a pointer to the original mbuf chain containing the 
packet, a pointer to the contiguous memory block 
into which the packet has been spilled, a pointer to 
memory that has been allocated to it (the booster) 
and the MTU of the interface on which the packet is 
being sent. The deboosting function, usually called 
when a packet is received, is passed the same param- 
eters except for the MTU size. 

Since boosters can generate new packets as well as 
modifying the old ones, they are required to fill in a 
data structure that indicates the packet(s) generated. 
This data structure consists of a linked list of pointers 
to the start of packets and the length of these pack- 
ets. We process this linked list to extract the packets 
and repackage them into mbufs which can then be 
processed by the rest of the networking code. 

4.2.5 Protocol Layer 

While our implementation supports boosters at the 
IP layer, it would be easy to add booster support that 



int null~boost(struct mbuf *mO, 
char *pcPacketBuffer, 
char *pcPlayground, 

int iMtu0ut) 
C 

register struct ip *ip = (struct ip *) pcPacketBuffer; 

ip->ip-tos = ip->ip-p; 
ip->ip-p = IPPROTO-PBOOSTERS + PB-BID-NULL; 

SegmentInfo-pSegmentInfo = (SegmentInfo *) pcPlayground; 
SegmentInfo-pSegmentInfo->pcPacketStart = pcPacketBuffer; 
SegmentInfo-pSegmentInfo->iPacketLength = m0->m-pkthdr.len; 
SegmentInfo-pSegmentInfo->pNextSegment = NULL; 
return (0) ; 

1 

Figure 4: Example Null Booster for FkeeBSD 

int null~deboost(struct mbuf *mO, 
char *pcPacketBuffer, 
char *pcPlayground) 

C 
register struct ip *ip = (struct ip *) pcPacketBuffer; 

SegmentInfo-pSegmentInfo = (SegmentInfo *) pcPlayground; 
SegmentInfo-pSegmentInfo->pcPacketStart = pcPacketBuffer; 
SegmentInfo-pSegmentInfo->iPacketLength = m0->m-pkthdr.len; 
SegmentInfo-pSegmentInfo->pNextSegment = NULL; 
return(0) ; 

1 

Figure 5: Example DeBooster for FreeBSD 

works at  the TCP or UDP levels (above IP in the a linked list containing a datagram if the datagram's 
stack), or one a t  the Ethernet level, which is below length exceeds the size of a single mbuf. 
IP in the stack. We began by passing the packets t o  the boosters as 

the mbufs in which they were encapsulated. However, 
the mbuf structure proved awkward to manipulate, 

4.3 Software Engineering particularly for boosters that operate on contiguous 

4.3.1 Interact ing with Mbufs pieces of data, e.g., the compression booster. 
We allocate a 32KB memory buffer in which we 

FreeBSD's network information and datagrams are gather packets as they arrive. A booster is passed 
stored and processed in mbufs (memory buffers). a pointer to this contiguous region of memory. We 
Mbufs have a maximum size and are chained into allocate an additional 32K chunk of memory used by 



the boosters in their processing. 
While slightly constrained, implementing each of 

our sample boosters became very simple. The cur- 
rent FreeBSD kernel network data structures restrict 
schemes like protocol boosters, Application-specific 
Safe Handlers[7] and SPIN[l] modules. To exploit 
ideas from these new systems, the FreeBSD kernel 
must be made more "extension-friendly" . 

4.3.2 Kernel-awareness and user-level calls 

provided an understanding of the delay overhead im- 
posed by boosters, and allowed us to quantify per- 
byte and per-packet overheads. 

We analyzed the throughput of the resulting net- 
work stacks using the netperf tool[lO]. We have ex- 
perimented with both t t cp  and netperf, and have 
drawn two conclusions from these experiments. First, 
netperf results are reproducible; t t cp  measurements 
exhibit significant variation in reported throughput 
- up to 20% in some cases. Second, netperf results 
correspond very closely with maximum t t c p  reported 

Implementation issues which are of minor conse- throughputs. What this suggests is that netperf bet- 
quence in user space can have devastating side-effects ter controls the variables under study, while reducing 
if errors are introduced in the kernel protection do- noise from other factors. 
main. Our sample boosters (compression and en- 
cryption) were all essentially constructed by simply 
taking the skeleton algorithm of existing applications 
(Lempel-Ziv, Lucifer, etc.) at the user-level and turn- 
ing it into the main routine for the booster modules. 

The implementations made calls to user-level li- 
braries, or to system calls. Since these are not avail- 
able in the kernel, we had to implement any required 
functions. Memory allocation was particularly ob- 
scure, so our implementation provides each booster 
with a pointer to 32K of allocated memory which the 
booster is expected to manage. 

Authors of boosters in our prototype must be 
'kernel-aware'. However, it is undesirable for the 
authors of boosters to completely master FreeBSD 
internals. More complex boosters will require more 
powerful and extensive services. A clearly-defined, 
powerful interface to the kernel should be imple- 
mented to provide the most important facilities avail- 
able to user-level applications; this would greatly ac- 
celerate importing existing code into a kernel-resident 
booster framework. 

5 Performance Evaluation 

The goal of our performance evaluation experiments 
was to measure the overhead introduced by our im- 
plementation as well as the costs of executing the ex- 
ample boosters. Our experimental setup consisted of 
two 133 MHz Intel Pentium processors equipped with 
32MB of E D 0  RAM with support for burst reads, a 
256IiB pipeline write back cache, and 3COM 3~509 
ISA Ethernet cards operating at  10 Mbps. 

We recorded the roundtrip times of ICMP ECHO 
(ping) packets of varying sizes between the two hosts, 
with a number of different boosters installed. This 

5.1 Delay measurements 

Figure 6 shows the variation in ping round-trip times 
with packet sizes ranging from 60 to 1400 bytes and 
different boosters. 

Figure 6 shows that there is virtually no differ- 
ence in delay between a kernel with booster support 
enabled and an unmodified F'reeBSD kernel. The 
overhead added by a "null" booster ( 'spilling' the 
packet and reassembling it into mbufs) is incurred by 
all boosters. This overhead is very small, between 
0.1 and 0.2 ms, and remains constant with increas- 
ing packet size, implying that the cost is per-packet, 
rather than per-byte. 

The Lempel-Ziv booster is much more expensive 
than the null booster for small packet sizes, but 
the cost decreases with increasing packet size. We 
attribute this to increasing compressibility with in- 
crease in packet size, so that the increase in pro- 
cessing time is offset by the decrease in the time 
needed to transmit the data. The Dumb-Lempel- 
Ziv booster, which compresses the data but sends the 
original packet rather than the compressed one, be- 
haves as expected - round-trip ping times increase 
linearly with time, reflecting the processing overhead 
involved in compressing the packet. It  might seem 
odd that the Dumb-Lempel-Ziv booster ever out- 
performs the Lempel-Ziv booster. The Lempel-Ziv 
booster compresses the packet at the source, trans- 
mits the compressed packet and decompresses it at  
its destination, while the Dumb-Lempel-Ziv booster 
performs the compression computation at  the source 
but sends the uncompressed packet, bypassing de- 
compression at the destination. Therefore the Dumb- 
Lempel-Ziv booster starts to outperform the Lempel- 
Ziv booster when the additional time required to de- 
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Figure 6: Ping round-trip times 

compress the packet exceeds the time gained by trans- 
mitting a compressed packet. With increasing packet 
size and compression gain, this discrepancy lessens 
until Lempel-Ziv starts to outperform Dumb-Lempel- 
Ziv. 

The roundtrip times of the Encryption booster are 
very large even for small packet sizes; only the time 
for the smallest packet is shown in Figure 6 (it is in 
the upper left corner of the plot). The other times 
are correspondingly ridiculous. 

5.2 Throughput measurements 

Netperf uses a client-server model to measure the 
throughput, with one machine acting as the server to 
the others client. We measured bulk data transfers 
using TCP and BSD sockets. 

The experiments used the test setup described at 
the beginning of this section, the modified kernel, and 
no other machines on the Ethernet link. The experi- 
ments were repeated until a 99% confidence interval 
in the results was reached, using an option provided 
by netperf. The command line used was: 

netperf -F design. tx t  -H logos -I 99,5 
-i 10,2 -1 60 

Table 1 shows the results of our tests. The first 
column in the table shows the code path being exe- 
cuted, the second column shows the throughputs ob- 
tained by netperf, and the third shows the percent- 
age change in throughput relative to a kernel with no 
booster support installed, which is given as the first 
row of the table. 

The additional processing overhead incurred by our 
FreeBSD support for protocol boosters has a negligi- 
ble impact on throughput; with no booster installed, 
throughput stays the same (7.21MBitlsec). For 
the null booster, with the associated packet spilling 
and resegmentation costs, throughput decreases by 
0.01%, from 7.21MBitIsec to 7.15MBitIsec. 

The measurements also indicates the effect on 
throughput when boosters which perform significant 
processing are employed. The Lempel-Ziv booster 
performs Lempel-Ziv compression, as described in 
Section 3, and then sends the compressed packet; the 
Dumb-Lempel-Ziv booster also executes the compres- 
sion code but sends the original packet, thus incurring 
all of the cost but none of the benefits of the Lempel- 
Ziv booster. This provided us with an upper bound 
on the cost of the Lempel-Ziv booster. The Crypto 
booster encrypts its data stream using the Lucifer[21] 
algorithm. 



Table 1: Netperf statistics 

Stack configuration 

No support installed 
Support installed, no booster 
Null booster 
Lempel-Ziv booster 
Dumb-Lempel-Ziv booster 
Crypto booster 

The Lempel-Ziv booster improves performance by 
up to 30%, approaching the maximum link-level 
bandwidth when compressible data (such as text files) 
is being sent. The throughput obtained with the 
Dumb-Lempel-Ziv booster provides an estimate of 
the worst-case behavior, decreasing throughput by 
up to 28%. This is encouraging, implying as it does 
that even a relatively unsophisticated implementa- 
tion of the proposed technique for protocol enhance- 
ment produces significant performance gains in some 
fairly common cases. 

The Crypto booster, on the other hand, decreases 
throughput to 5% of its normal value. Since the costs 
incurred by the OS support are negligible, this de- 
crease in throughput comes from computations for 
encrypting and decrypting the data stream. Clearly, 
inefficient or computationally expensive boosters may 
cause dramatic reductions in throughput. 

Throughput 
(MBit/s) 

7.21 
7.22 
7.15 
9.42 
5.22 
0.34 

5.3 Installation costs 

Percent 
Change 

0.00% 
0.00% 

-0.01% 
30.65% 

-27.60% 
-95.28% 

Boosters are intended to be added and deleted dy- 
namically to react to network dynamics. In our pro- 
totype, this is done from the user level. Inserting 
the module for booster support into the running ker- 
nel takes an average of 30ms (29000 ps). Adding an 
actual booster takes an average of 20ms (19000 ps). 
Both of these are times spent executing in the kernel 
on account of a user-level ioctl() request, and exclude 
concurrency-control costs. 

Where a booster's functionality is dynamically in- 
serted and deleted under control of a kernel-resident 
policy module, the operations can be considerably 
faster. The simple kernel data structure operations 
consist of three pointer updates. These can be accom- 
plished while a single processor-priority based lock is 
held. The cost of lock acquisition and release is less 
than 100 instructions. 

6 Relation to other work 

The University of Arizona's z-Kernel[ll] work pro- 
vides support for composing protocols from simpler 
elements. Protocol boosters are examples of such el- 
ements, but they are inserted "on-the-fly". More re- 
cent work on the Scout[l4] project seeks to use com- 
piler technology to optimize protocol stacks by re- 
ducing them to minimal sets of functions. This opti- 
mization approach is static, where a general protocol 
architecture is pared away by optimization technol- 
ogy to achieve a high-performance protocol. Protocol 
boosting, in contrast, is additive and dynamic; pro- 
tocol boosters are added when necessary. 

Dynamic modification of protocols is not a new 
idea; for example the notion of building a FILO 
queue (stack) of reentrant modules is embedded in 
the UNIX System V STREAMS implementations 
patterned on Ritchie's Streams[l5]. Unfortunately, 
Streams are restrictive with respect to flow con- 
trol (they resemble a string of co-routines), mod- 
ule scheduling, and intermodule messaging. Boosters 
have a smaller set of such restrictions, in fact they 
are in practice almost unrestricted. This means that 
the range of protocol architectures which can be im- 
plemented is enhanced; for example there are pro- 
tocol features (e.g., multiplexers) which are difficult 
to implement with the implicit flow control of the 
STREAMS message-passing discipline, and easy to 
implement with boosters. 

For example, composition properties are essen- 
tial for the many-to-one, one-to-many, and many-to- 
many forms of multiplexing in communications sys- 
tems. The "waits-for" dependencies used to sched- 
ule coroutines would force multiplexers (and demulti- 
plexers) to be single-threaded and data-driven, rather 
than clock or priority driven. 

Protocol boosters have a strong intellectual rela- 
tion to the application-specific services approach sug- 



gested by the University of Washington's SPIN[l] 
project for building an extensible microkernel. A dif- 
ferent tack is followed by MIT's Exokernel[7]; the 
Exokernel concentrates on allowing applications to 
specify almost all elements of their OS substrate, 
without focusing specifically on network protocols. 
Application-specific Safe Handlers (ASHs) are most 
similar to protocol boosters. A major difference is 
the focus on protocols in our work; it lets us take 
advantage of considerable structure inherent in pro- 
tocols. OS support for protocol boosters occupies a 
middle ground of generality between STREAMS and 
an extensible OS. 

7 Suggestions for further work 
and Conclusions 

Sophisticated policy modules are clearly essential for 
many classes of dynamic behavior. Our prototype 
implementation requires users to explicitly ask for 
boosters to be inserted and deleted. Automating 
insertion and deletion of boosters under control of 
a policy module (e.g., a "compressibility detector") 
is underway. David Feldmeier[9] has observed that 
monitoring congestion on a WAN to determine when 
compression should be applied has desirable proper- 
ties; compression is then used only when the WAN 
is congested, and compression reduces throughput, a 
correct response to WAN congestion. 

Our implementation provides access to packets at  
the IP  layer. This was based on our requirements 
for reproducible measurements, as discussed in Sec- 
tion 2.3. On input, for example, we pass the packet to 
the booster module after error-checking has been per- 
formed; some applications may wish to pass the data- 
gram to the booster module before error-checking. 

More general protocol graph support in the 
F'reeBSD would allow adding booster modules at  any 
level in the protocol hierarchy as well as at  arbitrary 
points in the processing of the datagram. This would 
offer finer-grained control of boosting. For example, 
one could implement TCP Vegas [2] using protocol 
boosters if we inserted booster modules at  the TCP 
layer. A desirable implementation target is x-Kernel- 
like protocol graph facility, with access to FreeBSD 
resources, and with smart policy modules. 

To achieve that target, further OS support for 
boosters should include library routines accessible to 
booster modules, similar to libraries available at the 
user-level. This would would insulate programmers 

from many details such as kernel memory allocation, 
and let them focus on the algorithms used in the 
boosters themselves. From a software and protocol 
engineering perspective, it would save effort, since 
many boosters have common support needs. 

7.1 Summary 

Our prototype shows that it is possible to dynami- 
cally insert and delete protocol elements in a conven- 
tional TCP/IP stack operating under UNIX. Support 
for these "protocol boosters" can be implemented effi- 
ciently; there is a very small performance cost relative 
to the cost of executing the protocol element's func- 
tions. We analyzed these costs using both network 
throughput and network delay measurements made 
with widely-available tools; our source code can be 
obtained via anonymous FTP2 for those wishing to 
replicate our measurements or experiment with new 
boosters. 
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