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ABSTRACT 

SENSORY HISTORY MATTERS FOR VISUAL REPRESENTATION: 

IMPLICATIONS FOR AUTISM 

David Alexander Kahn 

Robert T. Schultz 

Geoffrey Karl Aguirre 

How does the brain represent the enormous variety of the visual world? An approach to 

this question recognizes the types of information that visual representations maintain. The 

work in this thesis begins by investigating the neural correlates of perceptual similarity & 

distinctiveness, using EEG measurements of the evoked response to faces. In considering 

our results, we recognized that the effects being measured shared intrinsic relationships, 

both in measurement and in their theoretic basis. Using carry-over fMRI designs, we 

explored this relationship, ultimately demonstrating a new perspective on stimulus 

relationships based around sensory history that best explains the modulation of brain 

responses being measured. The result of this collection of experiments is a unified model 

of neural response modulation based around the integration of recent sensory history into 

a continually-updated reference; a “drifting-norm.” 

With this novel framework for understanding neural dynamics, we tested whether 

cognitive theories of autism spectrum disorder (ASD) might have a foundation in altered 

neural coding for perceptual information. Our results suggest ASD brain responses 
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depend on a more moment-to-moment understanding of the visual world relative to 

neurotypical controls. This application both provides an exciting foothold in the brain for 

future investigations into the etiology of ASD, and validates the importance of sensory 

history as a dimension of visual representation. 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1   Introduction 

Somewhere toward the middle of my PhD work, my younger brother Sam and I were 

discussing the visual system over the phone. Having studied film as an undergrad, he 

brought up a simple example of how the visual system doesn’t work like a camera. He 

noted that when one tries to film a sunset with a manual film camera and a fixed aperture, 

the recorded scene on film would rapidly fall to black, whereas the human eye would 

experience a longer, gradual fade - continuing after the sun had fallen from view. The 

reasons for this are many, but the biggest one is that the eye doesn’t maintain a fixed 

aperture; it automatically adjusts to changes in light intensity to maintain sensitivity. This 

dynamic adjustment contains one implicit decision of the visual system - opting for 

sensitivity over an accurate representation of physical reality.  

On a breezy day in early February 2012, my close friend Dorota & I visited an 

installation by the artist Doug Wheeler entitled SA MI 75 DZ NY 12 at David Zwirner in 

New York. The installation is what Wheeler calls an “infinity environment.” It’s difficult 

to report exactly how large the environment is - perhaps 50 feet in diameter and circular 

in shape. Inside, the floor and ceiling curve to meet the walls in (what one presumes) are 

parabolic curves. The paint is consistent & diffusely reflective, and the whole space is lit 

from the edges of the vestibule through which one walks to enter. With no edges or 

textures, with one’s back to the entrance there is simply nothing for the eye to fixate on 

inside. The effect is something akin to being in a fog, but with a greater (yet ambiguous) 

sense of depth. There is simply nothing to see.  
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…Except that there is. After a few minutes inside the space, Dorota walked over to me & 

expressed amazement at how many “floaters” were in her eyes. I too, had never seen so 

many of them. The percept is a side effect of anatomy; the vitreous humour of the eye 

breaks down over time & the resulting imperfections can cast shadows on the retina. 

These shadows are always there. When there’s not much else to see, for instance when 

watching the sky on a clear day, it’s hard not to perceive them. But even as I write this 

and look around the library where I am siting, I struggle to perceive any. I would suggest 

this is another implicit decision of the visual system: when there is plenty to “see”, the 

system ignores some things.  

These are just two implicit decisions of the visual system. In the process of perception, 

countless such trade-offs occur. 

Coming back to the camera’s perspective, the history of computer vision (up until last 

year) has demonstrated another issue: making sense of image data is really hard. Consider 

the hurdles in creating an algorithm to recognize your car or bicycle using a camera. It 

must take into account every color spectra the paint could reflect under different 

illuminations and every angle of view. Perhaps with enough work, the algorithm one day 

seems pretty good… until you park behind a chain link fence. Or (to make the analogy 

even more explicit) a smudge gets on the camera lens. From this example we realize that 

ignoring some information can facilitate other functions.  

These observations are central to theories of perceptual systems that focus on the nature 

of neural information (Barlow, 1961; Olshausen & Field, 2004). The crux of many such 
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theories is that sensory information is processed into neural codes that manage to exploit 

features of the information in adaptive ways. The corner of vision science this thesis finds 

itself in is focused on these neural codes. What information is stored in them, and what is 

the relationship between different types of information? How do we measure these codes 

in the brain? And could we possibly link differences in these brain measurements to 

changes in behavior, or to psychiatric disorders? The arc of this thesis reframes two types 

of information stored in visual neural codes in terms of one unified model. The final 

chapter applies this unified perspective to look for neural coding differences in autism 

spectrum disorder.  

How does one begin to approach the question of information encoded in the brain? One 

of the most useful tools is derived from psychology - the concept of a perceptual space or 

stimulus space. A perceptual space is a theoretic multidimensional space in which all 

manner of stimuli (in our case, visual objects such as faces and cars etc.) can be placed. 

The dimensions of this space allow for mapping and measuring - and thus for 

understanding the visual relationships between all elements in the space. For simplicity, 

we will reduce the size of the space under discussion to just the space of a special class of 

objects: faces. A perceptual space for faces would need to be quite highly dimensioned; 

though faces are amazingly similar, there is still a wonder of variety between and within 

individuals. Consider what would be necessary to represent just my face and the faces of 

my two brothers, Winston and Sam. I’m often told we look quite similar; if one assumes 

that each brother is equally similar perceptually to each other, the space of our faces 
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could be represented as a plane with three points forming an equilateral triangle. Of 

course we’re never quite making the same expression; perhaps my smiling face is more 

like my younger brother’s smiling face than his frowning face. We will need to add a 

dimension to account for this. And of course sometimes we let our beards grow out a bit: 

more variation, another dimension. One can see how quickly perceptual spaces can grow!  

The useful thing about the perceptual space is that they reduce just as easily - indeed we 

started by reducing to just the space of faces, and then just the space of 3 brothers. Most 

of the work in this thesis starts with very reduced perceptual spaces - a single vector in 

“face-space” between two face identities. Having discussed the perceptual space as a tool, 

the appeal of this simplicity should be intuitive to the reader. (It is important to keep in 

mind while reading that any understanding we derive here will need to be studied 

eventually in respect to how it scales).  

What does the perceptual space as a tool offer the researcher? Like any map, at its 

simplest, it offers distances. These distances in perceptual space can be thought of as 

indexes of perceptual similarity. Psychologists have put these maps and distances to great 

use for years. To use them to investigate neural codes however, we also require a 

yardstick for the brain - some measure of distance in neural space. A few such yardsticks 

exist. The one most heavily exploited in this work is called neural adaptation. Adaptation 

is a phenomenon by which the repeated presentation of a stimulus will yield an attenuated 

neural response. This has been observed using neuroimaging measures such as functional 

magnetic resonance imaging (fMRI, Grill-Spector & Malach, 2001) and single-cell 
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recordings (Leopold et al., 2006), among other methods. Work by one of my advisors, 

Geoffrey Aguirre, just prior to the initiation of this thesis sought to extend this work 

beyond identical repetitions to investigate where and how this neural yardstick was neatly 

notched for distance (Aguirre, 2007; Drucker & Aguirre, 2009). The early work (Kahn et 

al., 2010) presented in this thesis uses neural adaptation as a yardstick for perceptual 

distance within the evoked response to faces measured by electroencephalography 

(EEG). 

(During the period during which this these was performed, other yardsticks came into 

use. One of the most exciting uses distributed patterns of activity in fMRI to index 

similarity. By evaluating the correlations between distributed activity evoked by different 

stimuli across a region of cortex in fMRI, it is possible to index the similarity between 

neural representations. This representational similarity analysis (RSA, Kriegeskorte et al., 

2009) and other types of multi-voxel pattern analysis (MVPA) share a complex 

relationship with neural adaptation (Epstein & Morgan, 2012)). 

Returning to our perceptual space: distance, some have argued, is not the only tool the 

space offers to us. It has been proposed that a perceptual space, such as that of faces, 

must have a center - or norm - that might have unique qualities. The idea of a norm-based 

code is that coordinates in neural space are referenced to the norm rather than merely to 

each other. By way of analogy, one could locate my hometown of Cleveland, OH by the 

coordinates 41˚28’56”N 81˚40’11”W. These coordinate place particular emphasis on a 

norm - the intersection of the equator and the prime meridian. (A separate method of 
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locating Cleveland would be to offer a collection of distances from other cities; 190 miles 

from Toronto, 408 miles from New York City, 311 miles from Chicago). Psychological & 

psychometric investigations of perceptual norms suggested some special properties likely 

exist. One class of such findings is adaptive after-effects (Leopold et al., 2001), in which 

exposure to a particular exemplar to one extreme of a norm could bias the norm in the 

opposite (“anti”) direction. Others properties were derived from the observation that 

norms were used a reference more often than they were referred to other exemplars. A 

classic example (Tversky, 1977) is that 99 is judged as more similar to 100 than 100 is to 

99. Yet another is the finding that average stimuli are judged as more familiar than 

extreme exemplars. For instance, when a collection of extreme exemplars from a simple 

cartoon face space is presented repeatedly, a familiarity bias is induced for the norm even 

if it was never seen; viewers will judge the norm as more likely seen relative to an 

extreme exemplar that was actually presented (Posner & Keele, 1968).  

In a perceptual space, the norm might not offer a ready yardstick but rather something 

more like a compass. Just prior to and during the early years of this thesis project, 

researchers using fMRI sought to find neural evidence of just such a compass. The 

hypothesized neural correlate was a reduced level of bulk neural response for a norm 

relative to an extreme exemplar. Studies investigating faces (Loffler et al. 2005), face 

silhouettes (Davidenko et al., 2011), and abstract shapes (Panis et al., 2010) indexed 

these responses. In addition to the possibility of a differential amplitude of neural 

response, we hypothesized that norms might induce neural biases, similar to 
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psychological biases of similarity. Just as an ellipse is judged as more like a circle than a 

circle is like an ellipse, we suspected our neural yardstick might measure differently 

when comparing more average stimuli to more extreme ones.  

The first chapter of this thesis began to play with these tools - neural adaptation & norm-

based effects - in a single EEG experiment. Though this experiment, we began to 

reconsider some of the seemingly straightforward definitions offered above. What we 

discovered was the interactions between effects were hard to disentangle. The following 

two chapters continue this reassessment. What coalesces is a new perspective on neural 

codes, yardsticks, and visual perception.   

The final chapter of this thesis presents recent work applying this new perspective to an 

investigation of the neural etiology of autism spectrum disorder (ASD). ASD is a 

heterogeneous group of developmental disorders clinical defined by social 

communication deficits and a tendency toward restricted interests and repetitive 

behaviors (DSM-V - APA, 2013).  

One of the oft-cited characteristics of ASD is an acute processing of detail in everyday 

experience. Theoretical approaches of ASD have sought to explain this tendency from a 

neurocognitive standpoint. One the most enduring theories is the weak central coherence 

account (Frith, 1989; Happé & Frith, 2006), which highlighted a difficulty to extract 

global meaning from features in ASD, likely driven by a bias for local-level information. 

Parallels are often drawn between weak central coherence and the stereotyped ASD 

cognitive style of “missing the forest for the trees.” Related theories highlighted other 
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imbalances: the “enhanced discrimination and reduced generalization” hypothesis 

(Plaisted, 2001) focused on a differential manifestation of perceptual ability, as did the 

“enhanced perceptual functioning” account (Mottron et al. 2006), which echoed the 

local-bias noted by weak central coherence. (I should note these theories form only one 

corner of the literature on altered cognitive functioning in ASD. A separate wing focuses 

on social-first theories of the disorder (e.g. Chevallier et al. 2012)).  

A collection of findings have lent support to these theories: the demonstration of 

enhanced perceptual discrimination (Plaisted et al. 1998; O’Riordan & Plaisted, 2001), a 

reduced ability to generalize prototypes (Klinger & Dawson, 2001), and alterations in the 

face adaptive after-effects described earlier (Pellicano et al., 2007).  

Early in this introduction, the point was raised that one of the trade-offs of sensory 

systems is the implicit choice to ignore certain information when there is already 

“enough.” From just the briefest description of these theories of ASD, it does not seem a 

stretch to speculate that just such a sensory trade-off (for example, implicitly deciding 

when to “ignore”) is differently balanced in ASD. This places the locus of dysfunction in 

ASD within the perceptual system, and likely within the nature of the neural codes. 

The idea of altered neural coding driving the autistic phenotype has been proposed 

before. Two neural network theories of ASD were influential in the development of the 

final project in this thesis. McClelland (2000) summarizes a framework for cognitive 

development in which neural networks optimize neural codes dynamically. Within this 

framework, the central trade-off struck by these codes is between preserving generality 
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(overlap or sharing between codes) or emphasizing the conjunction of features. In 

McClelland’s example, the former would encode the visual qualities of ‘red’ and ‘square’ 

separately (and allow thus allow ‘red’ to be used for a fire hydrant as well) while the 

latter would encode ‘red square’ in conjunction. This latter style was dubbed 

“hyperspecificity” - an increasingly conjunctive, less broadly connected code for all 

visual information - and proposed as a neural scheme to explain ASD. A related theory 

was that of Gustafsson (1997) who proposed that cortical feature maps (the neural Legos 

that assemble perceptual spaces) could be “inadequate” in ASD. He proposed that 

columns (the building blocks of feature maps) might be more narrowly tuned for their 

preferred stimulus features, and perhaps that the map itself could be more fragmented 

(using many columns in place of one broader one).  

When developing this final proposal for this thesis, these proposals seemed to raise a 

single question: if neural codes are altered in autism, shouldn’t we be able to measure 

those differences with our neural yardstick of adaptation? This was exactly the route we 

took when designing an investigation of neural codes and autism. However, as the 

following three chapters unfold, it will become clear that our understanding of our neural 

yardstick & compass shifted and merged. The new tool we end up with is both more 

complex and simpler, and proves useful for indexing perceptual differences in autism. 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2   Temporally Distinct Neural Coding of Perceptual Similarity and 

Prototype Bias    

2.1 Abstract 

Psychological models suggest that perceptual similarity can be divided into geometric 

effects, such as metric distance in stimulus space, and non-geometric effects, such as 

stimulus-specific biases. We investigated the neural and temporal separability of these 

effects in a carry-over, event-related potential (ERP) study of facial similarity. By testing 

this dual effects model against a temporal framework of visual evoked components, we 

demonstrate that the behavioral distinction between geometric and non-geometric 

similarity effects is consistent with dissociable neural responses across the time course of 

face perception. We find an ERP component between the “face-selective” N170 and 

N250 responses (the “P200”) that is modulated by transitions of face appearance, 

consistent with neural adaptation to the geometric similarity of face transitions. In 

contrast, the N170 and N250 reflect non-geometric stimulus bias, with different degrees 

of neural adaptation dependent upon the direction of transition within the stimulus space. 

These results suggest that the neural coding of perceptual similarity, in terms of both 

geometric and non-geometric representation, occurs rapidly and from relatively early in 

the perceptual processing stream. 

2.2 Introduction 

From searching for one’s car in a parking lot to finding a friend in a crowd, we are 

confronted daily with varying exemplars from a given visual category. How does the 
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visual system represent this variety? Several perceptual models are built around the 

notion of a “stimulus space,” a representation of comparative similarity based on 

observers’ judgments or their classification of stimuli into groups. Within-class stimulus 

variation may be mapped along the dimensions of this space. Rectangles, for instance, 

can be described in terms of aspect ratio and area, and color defined by variation in hue, 

saturation, and brightness. 

A number of psychological models have related stimulus spaces to behavioral measures 

of perceptual similarity. So-called “geometric” models postulate a direct correspondence 

between the two, defining similarity in terms of the metric distance between two stimuli 

within a representational space (Shepard, 1964; Torgerson, 1965). While such geometric 

models are successful in explaining a wide range of behavior, certain perceptual 

properties of similarity violate these models (Holman, 1979; Krumhansel, 1978; Tversky, 

1977). Notable is the violation of symmetry: while the ordering of a pair of stimuli should 

not alter their perceptual similarity in geometric models, this violation is frequently seen 

in practice. A classic perceptual example is that an ellipse is judged to be more similar to 

a circle than a circle is to an ellipse (Tversky, 1977). Often, such asymmetries suggest the 

existence of representational “prototypes” which can be interpreted as stimulus-specific 

biases producing non-geometric distortions of otherwise geometric similarity spaces. 

Prototypes may be the result of long-standing perceptual experience or the local effect of 

context induced by stimulus frequency (Polk, Behensky, Gonzalez, & Smith, 2002). 

Current models of similarity account for perceptual asymmetries through the inclusion of 

!11



both geometric and non-geometric properties. The “additive similarity and bias” model of 

perceptual proximity (Holman, 1979; Nosofsky, 1991), for example, incorporates both 

geometric and non-geometric effects by defining the perceptual “proximity” of two 

stimuli as the sum of metric stimulus distance and stimulus bias, a term representing the 

stimulus-specific effects behind such asymmetries. 

Supporting this distinction, studies of the neural representation of stimulus similarity 

have identified both geometric and non-geometric neural codes. A single-unit study of 

object perception demonstrated a correspondence between neural responsiveness in 

monkey inferotemporal cortex and the geometric organization of an abstract shape space, 

as derived from both behavioral and pixel-wise evaluations of similarity (Op de Beeck, 

Wagemans, & Vogels, 2001). Analogous geometric effects of similarity have been 

demonstrated in regions associated with object perception in humans using functional 

magnetic resonance imaging (fMRI; Drucker & Aguirre, 2009). Non-geometric similarity 

codes, in contrast, have been proposed to explain differential responsiveness to 

“prototypical” faces as compared to “distinctive” faces in fMRI (Loffler, Yourganov, 

Wilkinson, & Wilson, 2005). 

Yet a great deal about the neural representation of perceptual similarity remains poorly 

understood. One major question relates to the dissociation of geometric and non-

geometric effects at the neural level. While each of the studies cited above demonstrates 

neural correlates of either geometric or non-geometric encoding, no existing study has 

examined both types of effects concurrently. A second question is the time course of 
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perceptual similarity effects: when in the perceptual processing stream do geometric and 

non-geometric coding of stimulus similarity occur? This latter question, extending to the 

temporal domain, speaks to the former by providing a non-spatial means of 

distinguishing these components of perceptual similarity.  

In the present study, we investigated these questions using event-related potentials 

(ERPs). We hypothesized that geometric and non-geometric features of similarity would 

be evaluated during the time course of visual perception, and focused upon several of the 

early perceptual and “face-selective” components of the evoked visual response. In our 

analysis we examined four components of the ERP waveform previously associated with 

various stages of perceptual and mnemonic processing for faces. These include the P100, 

a marker of early visual processing (e.g., Di Russo, Martínez, Sereno, Pitzalis, & 

Hillyard, 2001), the N170 (occurring approximately 170 ms after stimulus onset) which is 

associated with perceptual encoding of the face (Bentin, Allison, Puce, & Perez, 1996; 

Itier & Taylor, 2004; Liu, Higuchi, Marantz, & Kanwisher, 2000; Sams, Hietanen, Hari, 

Ilmoniemi, & Lounasmaa, 1997), the P200, the positive component following the N170, 

and the N250, thought to reflect consolidation of perceptual representations into memory 

(Tanaka, Curran, Porterfield, & Collins, 2006). We used these components as elements of 

a temporal framework on which a neural model of geometric and non-geometric 

similarity effects could be evaluated. 

We examined the sensitivity of this temporal framework to perceptual similarity by 

presenting faces varying in identity between two endpoint faces. Sensitivity to perceptual 
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similarity was assessed via neural adaptation: a reduction in neural response following 

repeated stimulus presentation (Grill-Spector & Malach, 2001; Henson & Rugg, 2003). 

Previous work has demonstrated neural adaptation of “face-selective” responses in ERP 

(Jacques & Rossion, 2006; Itier & Taylor, 2002; Kovács et al., 2006) and the related 

methodology of magnetoencephalography, or MEG (Furl, van Rijsbergen, Treves, 

Friston, & Dolan, 2007; Harris & Nakayama, 2007; Harris & Nakayama, 2008). 

However, few of these studies have tested for parametric variation of adaptation effects, 

and the measurement of geometric and non-geometric similarity effects are often 

confounded. For example, while studies of prototype representation may observe 

differential response to centrally located stimuli (e.g., Loffler et al., 2005), these effects 

may result from the tendency of prototypical stimuli to be more similar to other stimuli 

and thus produce neural adaptation. 

To disentangle these effects, we used a “carry-over design” (Aguirre, 2007) in which a 

continuous stream of stimuli is presented with first-order counterbalancing. The resulting 

data permit measurement of the direct effect of each stimulus upon the amplitude of 

neural response, as well as the modulatory effect of one stimulus upon the next (e.g., 

neural adaptation). Geometric neural similarity is revealed in this context as a symmetric, 

parametric adaptation of ERP response proportional to the change in perceptual 

similarity. Non-geometric neural similarity, suggestive of explicit neural representation of 

a prototype or central tendency of the stimulus space, was modeled as an asymmetric 

modulation of the ERP response dependent upon the direction of stimulus transition. 
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2.3 Materials and Methods  

2.3.1 Subjects 

Six right-handed subjects (3 women, 3 men) between the ages of 22 and 39 (mean age 

29.5) with normal or corrected-to-normal vision participated in the study. All subjects 

provided informed consent under the guidelines of the Institutional Review Board of the 

University of Pennsylvania and the Declaration of Helsinki.  

2.3.2 Stimuli 

Two neutral faces (subtending 9.4˚ x 10.9˚ of visual angle) adapted from the NimStim 

stimulus set (Tottenham et al., 2009), varying in eye and mouth identity, were used to 

create a linear morph, yielding five stimuli varying in 25% increments. (Since the actual 

images used for experimentation are not publishable, all figures use example morphs 

from a different stimulus set.) All faces (Figure 2.1A) were cropped of external facial 

features using the same selection boundary shape (ellipse, 3 pixel feathering) and set to 

grayscale bitmaps in Adobe® Photoshop®.  

The similarity of the resulting face images was analyzed using a biologically motivated, 

multi-scale, Gabor-filter model of V1 cortex (Renninger & Malik, 2004). A multi-

dimensional scaling (MDS) analysis of the computational similarity scores revealed that, 

as expected, the faces varied along a single dimension and had roughly equal spacing 

between the 5 stimuli (spacing between adjacent, nominal 25% morphs: 30%, 24%, 21%, 

25%). 
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Figure 2.1: Example stimuli and presentation.  
Representative example stimuli are presented here as  the actual stimuli used were not 
approved for publication. (a) The experimental stimuli consisted of five faces morphed in 
identity between two endpoint identities (Face A and B) in 25% increments; subjects 
were not informed of the stimulus space arrangement. Subjects were instructed to 
monitor for the appearance of a target face (far right) whose identity was distinct from the 
morph axis. (b) Stimulus presentation. Stimuli were presented for 1000 ms with an ISI of 
200, 300 or 400 ms, counterbalanced across trials using a type 1, index 1 sequence 
(Aguirre, 2007) with 18 elements. 

2.3.3 Behavioral Assessment of Stimulus Similarity 

A behavioral, reaction time study was used to confirm the monotonic ordering of the 

perceptual similarity of the stimuli along the face morph continuum. All subjects (N = 6) 

from the ERP study participated in the behavioral study several days following ERP data 

collection. 

The 5 faces from the morph continuum were used as stimuli and presented side-by-side 

on a computer screen using the PsychToolbox (Brainard, 1997; Pelli, 1997) for MATLAB 

(Mathworks, Andover, MA). Subjects were instructed to respond with a button press to 
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indicate if the pair of faces were the same or different (buttons indicating same or 

different were randomized to right or left across subjects). Each trial consisted of a side-

by-side face presentation lasting until the subjects responded with a button press, 

followed by a 250 ms inter-trial interval. Runs consisted of 640 trials, with breaks 

occurring every 40 trials.  “Same” trials, in which the face identity was the same, 

occurred with equal frequency as “different” trials. Within the “different” trials, the 

metric distances (∆25, ∆50, ∆75, ∆100) along the morph continuum occurred with equal 

frequency. 

For each different face pair for each subject, the inverse of the median of correct reaction 

times was found and entered into a distance matrix for multi-dimensional scaling (MDS) 

analysis (Kruskal & Wish, 1978). MDS analysis for each subject was performed for each 

subject using the MATLAB cmdscale() function. Coordinates were centered about the 

50% face for each subject, and then averaged across subject to yield estimates of stimulus 

placement. The first dimension of the MDS estimate was retained. 

2.3.4 ERP Stimulus Presentation 

Each run consisted of 648 trials; each subject underwent 3 consecutive runs for a total of 

1944 stimulus presentations. Each trial consisted of a stimulus presentation for 1000 ms, 

followed by an ISI of 200, 300, or 400 ms (counterbalanced across trials). Stimulus order 

was determined by a first-order, counter-balanced, n=18, type 1, index 1 sequence 

(Aguirre, 2007). An 18-element sequence was required to counterbalance the 6 stimuli (5 

morphs and 1 target) crossed with the three durations of ISI that could follow each 
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stimulus. During the ISI a central white fixation cross was presented on the same mean 

gray background surrounding the stimuli. Subjects were instructed to respond with a 

button press to the occurrence of a target face from outside the morph continuum (Figure 

2.1A, far right). Subjects were trained on a simplified version of the task immediately 

prior to the experiment to ensure accurate identification of the target face. Target trials 

and trials immediately following target presentations were excluded from the main 

analyses. 

Stimuli were presented using EPrime 2 (Psychology Software Tools, Inc.) on a Dell 24 

inch LCD display situated 100 cm from the subject at eye level. Task responses were also 

collected through EPrime 2. To obtain “sensors of interest” for experimental analysis, 

after the main experiment subjects completed a short “localizer” experiment with faces, 

houses, and everyday objects (100 exemplars each), randomly interleaved. Stimuli in the 

localizer were presented on a white background with a black fixation cross (9.2° x 7.7° 

visual angle) for 300 ms (ITI jittered between 900 and 1100 ms); subjects were instructed 

to passively view the stimuli. 

2.3.5 ERP Data Collection  

Data collection was performed on a BioSemi ActiveTwo system (http://

www.biosemi.com/products.htm) with 128 active electrodes with sintered Ag-AgCl tips 

in fitted headcaps. Evoked brain potentials were digitized continuously at a sampling rate 

of 512 Hz with default low-pass filtering at 1/5 of the sampling rate (http://

www.biosemi.com/faq/adjust_samplerate.htm). Two additional electrodes with a 4mm 
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sintered Ag-AgCl pallet were also placed bilaterally on the mastoids as references for 

data import (http://www.biosemi.com/faq/cms&drl.htm). Electrical offsets were verified 

to be between -20 and 20 µV for every channel prior to data collection.  

 

Figure 2.2: ERP sensor of interest (SOI) selection and component definition.  
(a) Twenty-one face-selective (black dots) SOIs were selected across subjects using an 
independent localizer task (Face > House). (b) Component identification. Grand-average 
waveforms (N = 6) comparing the response to trials in which the target face was 
presented and all non-target trials. The P100 and N170 are the first positive and negative 
deflection, respectively. The N250 is functionally defined as having a greater negative 
deflection for target recognition (Tanaka et al., 2006). 

2.3.6 ERP Pre-Processing and Analysis 

Data were processed offline using the EEGLAB toolbox (Delorme & Makeig, 2004) for 

MATLAB. Sensors were selected for analysis using a “sensor of interest” (SOI) approach 

(Liu, Harris, & Kanwisher, 2002), via a point-to-point t-test comparing face and house 

conditions in the “localizer” scan. Significant channels for each subject were identified 
!19

A B

100 ms

P100

“P200”

N250
−2

0

2

4

6  Non-Target
Target

N170

µV

Target vs. Non-Target (N=6)



within the N170 and N250 latency ranges, and group channels (Figure 2.2A) used for 

subsequent analysis were selected if they were identified as significant in a majority of 

subjects (4 out of 6). Group average waveforms across all non-target trials for each sensor 

can be found in Supplementary Figure 1.  

All data for each subject were saved from BioSemi ActiView and imported by run 

directly into EEGLAB. Mastoid channels were indicated as references to EEGLAB upon 

import and excluded; data were re-referenced immediately to the average signal of all 

128 cranial channels. Data were epoched to a time window of 700 ms (100 ms pre-

stimulus onset and 600 ms post) and baseline corrected (100 ms pre-stimulus onset). 

Trials containing artifacts (e.g., eye blinks) were identified and removed automatically 

using a ±100 µV threshold (average rejection rate across subjects for trials used in the 

main analysis was 16.7%, with a range of 5.3% - 38.8%). 

ERP components of interest were identified for each subject individually using data 

averaged over all non-target conditions across the “sensors of interest” defined at the 

group level (Figure 2.2B). The previously-described P100 and N170 were defined on the 

basis of latency and direction of deflection, while the N250 was defined by the 

comparison of target and non-target faces (Tanaka et al., 2006). Inspection of our results 

also revealed a meaningful deflection between the N170 and N250, here called the P200. 

For each subject’s grand average waveform, the time points of the local minima (for 

N170 and N250) and local maxima (for P100 and P200) were identified within search 

windows (P100: 125-175 ms; N170: 175-225 ms; P200: 225-275 ms; N250: 300-350 ms) 
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and used as centers of the respective components for that subject. For each subject, the 

value of each component for each trial in each condition was then determined as a sum of 

the seven data points surrounding and including the subject’s component center 

(approximating a 13.6 msec integral about the component center).  

This area measure was computed for each trial, rather than across the trial-averaged data, 

to facilitate modeling of the data using a general linear model (GLM). Though commonly 

employed in fMRI analysis, GLM is rarely applied to ERPs. However, the GLM 

approach is methodologically superior for studies of similarity space, as it provides 

unbiased parameter estimates of both the “direct effect” (Aguirre, 2007) of morph 

identity, and of carry-over effects associated with similarity to the preceding face. If 

direct effects alone had been measured, the amplitude for (e.g.) the extreme Face A would 

be influenced by the tendency of that extreme Face A to be preceded by dissimilar faces, 

and thus be subject to less adaptation. Simultaneous estimation of the direct and carry-

over effects in the context of a counterbalanced stimulus order allows the estimates to be 

efficient and unbiased. Similarly, as each condition in the non-geometric bias model 

represented a different subset of face identities, the simultaneous modeling of this effect 

and the direct effects ensures unbiased estimation of each. 

For each subject, the data for each component (P100, N170, P200, N250) were entered 

into a general linear model composed of 11 covariates. Five covariates coded for the 

particular morph identity (Figure 2.1A) presented on any one trial: the “direct effect” of a 

given morph identity upon the amplitude of an ERP component. The remaining 
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covariates modeled carry-over effects, or the effect of the status of the prior trial upon 

response amplitude for a given trial. Five of these covariates modeled the different sizes 

of change in stimulus identity between one trial and the next (∆0%, ∆25%, ∆50%, ∆75%, 

∆100%; Figure 2.4A); each covariate modeled those trials which had the given amount of 

identity change. A final covariate modeled asymmetric bias, and was set to have a 

positive value for trials in which the preceding trial was at the extreme of the morph 

continuum (0% or 100%) and the current trial at the center (50%), and a negative value 

for transitions in the other direction (from 50% to 0% or 100%). Trials in which the target 

face was presented, and the trials that followed target face presentations, were excluded. 

The estimates obtained from this first-order analysis were then collected across subjects 

into a second-order, random effects ANOVA analysis to test hypotheses of interest. 

2.4 Results 

 In this experiment, we explored the time course of perceptual similarity by recording 

ERPs during face perception. Given that behavioral judgment of similarity has been 

hypothesized to consist of geometric effects of stimulus similarity and non-geometric 

effects of stimulus-specific bias, we tested if graded neural adaptation in the ERP data 

was consistent with this dual-effects model. 

2.4.1 Behavioral Measure of Perceptual Similarity 

To confirm that the stimuli were linearly ordered in perceived similarity, we collected a 

behavioral measure of similarity in all subjects. All subjects participated in a paired-

discrimination task using the face stimuli. Accuracy across subjects was sufficient (mean 

!22



d’ 2.15) to allow an analysis of reaction time effects. An MDS analysis was conducted for 

each subject on the average reciprocal reaction time for each face pairing, and then 

averaged across subjects. Figure 2.3 presents the position of the five faces on the first 

MDS dimension, which accounts for 55% of the variance. As can be seen, the first 

dimension contained a monotonic ordering of the stimuli, with somewhat greater spacing 

of the faces away from the 50% morph. There was substantial agreement across subjects 

on the perceptual similarity of the stimuli as demonstrated by the small across-subject 

error bars. This ordering of the stimuli confirms that, as expected from the stimulus 

design, subjects perceived a monotonic perceptual change in identity across the face 

morph continuum. 

 

Figure 2.3: Behavioral results.  
Inverse reaction times from a paired discrimination task from each of six subjects were 
entered into a multi-dimensional scaling analysis, with the resulting coordinates centered 
about the 50% face. The first dimension of the resulting model is displayed, which orders 
the faces monotonically along the morph continuum. This first dimension accounts for 
55% of the variance. Error bars indicate plus/minus standard error of the mean across 
subjects. 

!23

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Dimension 1

Position in MDS space (arbitrary units)

0 25 50 75 100% Face B

±SEM



2.4.2 Geometric Effect of Stimulus Similarity in ERP responses 

ERP data were collected while subjects viewed a continuous stream of stimuli from the 

face continuum, presented in a counter-balanced order. ERP responses were assessed in 

relation to the identity of the face being presented, as well as the relationship of the 

current stimulus to the prior stimulus. 

We first tested for a geometric effect of stimulus similarity based on the absolute metric 

distance from the preceding stimulus to the current stimulus along the face identity 

continuum. Data from each trial were binned depending on the morph distance between 

the face shown and the previous image, resulting in five similarity distances (∆0, ∆25, 

∆50, ∆75, ∆100). Thus, a distance of ∆0 would be a repetition of the identical stimulus, 

whereas ∆100 represented a stimulus at one extreme of the morph continuum following 

the face at the opposite extreme (Figure 2.4A). 

Because of the monotonic ordering of the perceptual similarity space used here we would 

predict that the representation of metric stimulus similarity should change monotonically 

as a function of perceptual distance. In particular, given previous findings of neural 

adaptation in MEG (Furl et al., 2007; Harris & Nakayama, 2007; Harris & Nakayama, 

2008) and ERP (Itier & Taylor, 2002; Jacques & Rossion, 2006; Kovács et al., 2006), we 

would predict greatest attenuation for ∆0, the identical repetition condition, with 

decreasing adaptation for increasing perceptual distances between stimuli. 
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Figure 2.4: Geometric effect of 
similarity  
(a) Trials were grouped based upon 
the metric distance of the preceding 
stimulus to the current stimulus 
along the morphed face continuum. 
Trials in which the target face was 
the current or preceding stimulus 
were excluded from analysis. (b) 
Grand-average waveforms (across 
all significant sensors; Figure 2.2) 
comparing each distance transition 
condition. A significant interaction 
of component and distance 
condition was observed, and within 
the P200 component there was a 
significant effect of distance 
(asterisk). Y-axis is aligned to 
stimulus onset. (c) Group average 
beta-values from the P200 for the 
five covariates modeling each 
distance condition in the general 
linear model. A significant effect of 
distance was observed, with a 
significant linear contrast. Error bars 
correspond to the between-subject 
SEM. 
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Grand average waveforms across all significant ERP channels (Figure 2.2) for each 

perceptual distance condition are displayed in Figure 2.4B. While the early perceptual 

P100 and N170 components showed no discernible effect of stimulus similarity, a graded 

adaptation effect is clearly visible between the N170 and N250 components. The most 

positive deflection for this component occurs in the ∆0 condition, with decreasing 

amplitudes for greater perceptual distances. Modulation of the P200 component, 

therefore, appears to index the earliest stage of processing associated with computations 

of metric stimulus similarity. Caution is required in interpreting these average plots, 

however. As discussed previously, apparent graded responses in the waveforms could 

result not from an adaptation effect, but instead from the unbalanced representation of 

particular face identities in a given dissimilarity pair (see Supplementary Table 1). 

To test this finding in an unbiased manner, beta values from the general linear model 

were obtained for each subject and component, representing the weight on covariates 

modeling each absolute distance condition. These measures are independent of any 

“direct-effect” of stimulus identity (e.g., a hypothetically larger response to the extreme 

Face A or Face B). A repeated-measures ANOVA with component (P100, N170, P200, 

N250), and perceptual distance (∆0, ∆25, ∆50, ∆75, ∆100) as factors showed a significant 

interaction between component and distance [F(12, 60) = 5.05, p = 0.00001], confirming 

that the effect of stimulus similarity is not seen for all components. Follow-up one-way 

repeated-measures ANOVAs for each component found a significant main effect of 

distance for the P200 [F(4, 20) = 6.01, p = 0.002] (Figure 2.4C), but no other components 
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(all F tests < 2.8, ps > 0.05). The adaptation effect at the P200 was well-modeled by a 

linear contrast [F(1, 5) = 12.9, p = 0.016]. While a similar ordering of the adapted 

response is visible in the grand average waveform at the later N250 (Figure 2.4B), this 

effect was not significant (F(4, 20) = 3.38, p = 0.125). 

Therefore, these data suggest that neural sensitivity to perceptual similarity begins within 

the first 400 ms of perceptual processing after stimulus onset. While the early perceptual 

P100 and N170 components do not show an effect of stimulus similarity, graded neural 

adaptation related to symmetric perceptual distance can be seen at the stage of processing 

following the N170, the P200 response. Along with its temporal position between the 

N170 and N250, this finding could be interpreted as placing the P200 at an intermediate 

cognitive stage between perceptual and mnemonic encoding.  

2.4.3 Non-Geometric Effect of Asymmetric Bias in ERP Responses 

In addition to the geometric representation of stimulus similarity, we also tested for non-

geometric, asymmetric neural representation of the stimulus space. Given behavioral 

findings demonstrating a bias for more ‘prototypical’ stimuli (Op de Beeck, Wagemans, 

& Vogels, 2003), we hypothesized that the central face in the set, being an average of the 

faces at the extremes, would yield a differential effect on neural adaptation depending on 

whether it was a prior or current stimulus. 
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Figure 2.5: Non-geometric effects of 
similarity 
(a) Trials were grouped based upon 
the direction of transition. “Towards 
center” trials were those in which 
the 50% face was presented 
following a face at either extreme of 
the morph continuum. “Towards 
extreme” trials had the opposite 
transition. (b) Grand-average 
waveforms (across all significant 
sensors; Figure 2.2) comparing each 
condition. A significant interaction 
of component and direction 
condition was observed, and 
significant effects of direction were 
observed within the N170 and N250 
components (asterisks). Y-axis is 
aligned to stimulus onset. (c) Group-
average beta-values from the N170 
and N250 components for the 
covariate modeling the bias 
condition. Both components had 
significant weighting on the bias 
covariate, showing greater 
adaptation for the “towards center” 
transition in line with described 
prototype effects. These beta 
estimates are corrected for any 
“direct” effect of stimulus identity 
(i.e., a tendency for a larger 
amplitude response to “extreme” 
faces). 
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We compared the response on trials in which the central face is preceded by either of the 

two faces on the extreme of the stimulus space to trials in which the extreme faces are 

preceded by the central face (Figure 2.5A). Crucially, both of these conditions represent 

the same metric distance transition (∆50), but vary in the direction of transition (‘towards 

the center’ of the stimulus space, and ‘towards the extremes’). Previous work has 

proposed that extreme stimuli preceded by more central or prototypical stimuli are 

perceived as more dissimilar than central stimuli preceded by extremes (Tversky, 1977; 

Op de Beeck et al., 2003). Therefore, we predicted that neural adaptation would be 

sensitive to the direction of stimulus transition, with greater neural adaptation for 

transitions towards the center and less adaptation towards the extreme. 

A group average of the two bias conditions is plotted in Figure 2.5B. In line with our 

predictions, transitions from the center of the stimulus space towards the extremes yield a 

greater negative deflection—but only at the N170 and N250 components. In contrast, the 

P100 and P200 display equal adaptation for both presentation orders. Again, these 

average waveforms confound direct and carry-over effects due to unbalanced 

representation of transitions and face identities (see Supplementary Table 2). 

To evaluate the statistical significance of this effect, we modeled the stimulus transition 

as a covariate in a general linear model analysis. Loading on this covariate indexes the 

asymmetric carry-over effect of the transition, independent of other symmetric carry-over 

or direct effects. A repeated-measures ANOVA for the single bias covariate with 

component (P100, N170, P200, N250) as a factor showed a significant main effect of 
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component [F(3,15) = 7.536, p = 0.003]. Follow-up one-sample t-tests across subjects 

indicated this asymmetric bias is significant in the N170 [t(5) = 3.36, p = 0.02] and N250 

[t(5) = 2.65, p = 0.045] components (Figure 2.5C). 

Thus, asymmetric bias effects also occur within the first several hundred milliseconds of 

visual processing. Interestingly, in contrast to the N170 and N250 responses, the P200 

showed no significant asymmetric bias. This suggests, regardless of how geometric and 

non-geometric effects of similarity interact psychologically, the earliest neural stages 

associated with these computations are temporally separated. The visible asymmetric bias 

at the relatively early N170 response may be indicative that such bias effects need not 

rely on higher-level conceptual processing, but may be extracted relatively rapidly and 

early in the visual processing stream. 

2.4.4 Direct Effects of Stimulus Identity on ERP Responses 

Finally, we examined the “direct” effect of stimulus identity upon the ERP response. 

Studies of “prototype” responses in fMRI to faces, for example, have reported that there 

is a larger amplitude of neural response to distinct, as opposed to typical, stimuli (Loffler 

et al., 2005). 
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Figure 2.6: Direct effects of 
stimulus identity  
(a) Trials were grouped based upon 
the identity along the morph 
continuum shown. (b) Grand-
average waveforms (across all 
significant sensors; Figure 2.2) 
comparing each identity condition. 
A significant main effect of identity 
was observed, but no significant 
interaction of identity and 
component. Y-axis is aligned to 
stimulus-onset. (c) Group-average 
beta values collapsed across 
component are shown.  As there was 
no significant main effect of 
component, or interaction of 
component with identity condition, 
beta-values were mean-centered 
within component for each subject, 
averaged across component for each 
subject, and then averaged across 
subject for display. Error bars 
correspond to between-subject SEM 
of mean-centered, across-
component averages. 
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A group average of the stimulus identity conditions is presented in Figure 2.6B. Some 

separation between the identities is visible in the P200 and N250 components, perhaps 

consistent with a differential response to the extreme stimuli from the morph continuum 

as compared to the center. As discussed previously, however, these effects may be 

confounded by carry-over effects. For instance, a grand average waveform for the 

“direct” effect of the 50% morph face is confounded by the fact that the 50% morph is, 

on average, more often preceded by similar faces by virtue of its central location; and 

thus more subject to adaptation. Similarly, a postulated differential response to the 50% 

morph face compared to the extreme faces (a “direct” effect) might confound the non-

geometric bias effects without concurrent modeling. 

To examine direct effects in an unbiased manner, we obtained the beta values associated 

with the amplitude of the ERP response to each face identity, after accounting for the 

adaptation and bias effects. A repeated-measures ANOVA was then performed with each 

identity covariate (0%, 25%, 50%, 75%, 100% Face B identities) and component (P100, 

N170, P200, N250) as factors. A significant main effect of identity was found [F(4, 20) = 

5.444, p = 0.004], but the interaction of identity and component was nonsignificant [F(12, 

60) = 1.400, p = 0.191], suggesting this main effect of identity did not differentially 

modulate any component in particular. Figure 2.6C presents the average across subjects 

and components of the response to each face identity. The pattern of responses does not 

correspond readily to a simple model of prototype or geometric effects. 
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2.5 Discussion 

Psychological models of perceptual proximity, the subjective judgment of “likeness” 

between stimuli, have historically drawn a distinction between two factors or processes: 

representation of simple metric distance between stimuli, and stimulus-specific bias. 

Quantified in models such as the ‘additive similarity and bias’ model (Holman, 1979; 

Nosofsky, 1991), this two-part framework separating geometric and non-geometric 

effects has guided our understanding of how the visual system represents variation 

between stimuli. 

What are the neural correlates of these processes? We examined this question using a 

continuous carry-over design (Aguirre, 2007) in ERP. Previously used in fMRI, 

continuous carry-over designs allow measurement of graded neural adaptation, and 

therefore better characterization of the neural representation of perceptual similarity 

space. Using this paradigm with a set of ordered, morphed faces in ERP, we tested a dual-

effects model of perceptual similarity against a temporal framework of early visual 

evoked components previously associated with face processing.  

Modeling transitions between stimulus presentations in terms of absolute metric distance 

along our morphed face continuum, we found graded neural adaptation consistent with 

metric stimulus similarity at a component between the N170 and N250 responses. 

Modulation of the P200 was related to perceptual similarity, with greater positive 

deflection for smaller perceptual distances (Figure 2.4). The temporal position of this 

component suggests that computation of metric stimulus similarity begins within the first 
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several hundred milliseconds of stimulus presentation, although after the earliest stages of 

perceptual processing indexed by the P100 and N170 components. Adaptation of a 

neuroimaging signal that is proportional to stimulus similarity can result from a cortical 

region that codes stimulus identity by a population code (Aguirre, 2007; Drucker, Kerr, & 

Aguirre, 2009). This suggests that, at the P200 stage, a neural population code for facial 

identity is evoked that reflects geometric effects of similarity. It is also possible that 

another neural mechanism apart from adaptation (e.g., a re-entrant masking effect; 

Kotsoni, Csibra, Mareschal, & Johnson, 2007) is responsible for this parametric 

modulation. In either case, these data are among the first to place a neural signature of 

geometric similarity coding within a definite time window, arising as early as 200 ms 

after stimulus presentation. 

We also modeled the effects of asymmetric bias (Tversky, 1977; Op de Beeck et al., 

2003). Neural markers of such a non-geometric similarity effect were found for the N170 

and N250 components (Figure 2.5). While both the N170 and N250 components show 

sensitivity to asymmetric transitions positioned about the center of the stimulus space, the 

P200 does not. Thus, not only have we found neural correlates of perceptual proximity 

processing within relatively early stages of perceptual processing, but we also 

demonstrate that the encoding of metric stimulus similarity and asymmetric bias are 

temporally distinct. 

Our model of non-geometric similarity effects is based upon the notion of a ‘prototype’ 

effect (Tversky, 1977; Op de Beeck et al., 2003). Two stimuli are perceived as more 
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proximal when the more prototypical or average stimulus is presented following another 

one less so, and less proximal in the reverse case. There are other non-geometric bias 

effects that might be considered. In studies of magnitude estimation, for example, the 

response to a stimulus tends to be larger when the preceding stimulus intensity was 

greater. This “assimilation” effect is commonly seen for stimuli in which one end of the 

continuum is “larger” (DeCarlo & Cross, 1990). The opposite, “contrast” effect is also 

observed. A model for this directional bias in neuroimaging data is considered in Aguirre 

(2007), and is orthogonal to the ‘prototype’ effect just discussed. While the ‘prototype’ 

model of bias is symmetric about the center of the stimulus space, directional bias is 

inversely symmetric towards each extreme. Directional bias has been observed in 

perceptual adaptation effects for face identity (Leopold, O'Toole, Vetter, & Blanz, 2001), 

gender (Webster, Kaping, Mizokami, & Duhamel, 2004), and attractiveness (Rhodes, 

Jeffery, Watson, Clifford, & Nakayama, 2003). We tested for directional bias effects in 

our ERP study but found no significant effect (data not shown). This is not surprising as 

our stimuli were a morph between two faces of equal distinctiveness, as opposed to the 

stimuli of (e.g.) Leopold et al. (2001) in which one end of the continuum was a 

distinctive face and the other a prototypical or average face.  

 A perceptual prototype may arise from long-term exposure to stimuli of a given class, 

from the local context of a set of stimuli in an experiment, or both. Our study did not 

distinguish between these two types of prototype. The center point of our stimulus 

continuum may have achieved prototype status as it was a more “average” face in 
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general, or because it was the central tendency of this particular stimulus set. These 

possibilities might be distinguished through the use of an unbalanced face continuum in 

which the “middle” face in the local context of the experimental set is not the most 

average at the global level. 

Related to this point, it is worth noting that while we observed neural prototype effects 

for both the N170 and N250 components, it is possible that these distinct components are 

related to different prototype effects. For the N170 in particular, we might expect that the 

“prototype” effect reflects a local stimulus effect, driven by the experimental stimulus 

space alone. Previous work has demonstrated a lack of adaptation in the N170 to within-

class features of faces, including eye-gaze direction (Schweinberger, Kloth, & Jenkins, 

2007) and gender (Kloth, Schweinberger, & Kovács, 2009). These findings suggest that 

the N170 adapts in a broad categorical fashion to faces and not to within-category 

features, such as global face distinctiveness. Taken together with the apparent role of the 

N170 in structural encoding (Bentin et al., 1996; Rossion et al., 2000), we would suggest 

that the “prototype” effect observed in the N170 might reflect a rapid, implicit extraction 

of local central tendency (i.e., within the experimental stimulus space). In contrast, as the 

N250 is thought to reflect access to stored face representations (Tanaka et al., 2006), it is 

possible that the non-geometric effect observed in this component indexes transitions 

about a stored, global face “prototype”. While these interpretations rely on the 

characteristics of the underlying components, future experiments which dissociate local 
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and global face prototypes in the manner described above could characterize putatively 

separable non-geometric similarity effects in a component-independent manner.  

Finally, a notable methodological feature of this study was the concurrent measurement 

and separation of the direct effects of each stimulus from carry-over effects of adaptation 

and asymmetric bias. Without explicit modeling, these effects are confounded, rendering 

it unclear whether effects reflect perceptual proximity per se, or a combination of 

adaptation and identity effects. This potential confound exists in several studies of face 

representation. For example, Loffler et al. (2005) used a block design in fMRI to 

demonstrate increasing BOLD signal in the fusiform face area (FFA) in response to 

groups of faces of increasing ‘distinctiveness’. The authors define ‘distinctiveness’ as 

distance along putatively orthogonal identity axes extending from a central ‘mean’ face. 

This design focuses primarily on non-geometric prototype and identity effects. However, 

their observed decrease in BOLD signal for face blocks more proximal to the mean could 

represent neural adaptation indexing geometric effects of metric distance, or some 

combination of geometric and non-geometric effects. 

Likewise, in an fMRI study using a similar facial identity morph continuum to ours, Jiang 

et al. (2006) reported non-linear BOLD adaptation in response to increasing metric 

distance. The authors interpreted this finding as suggesting that neural adaptation would 

asymptote for greater metric stimulus distances, something we do not observe in our data. 

In their experimental design, Jiang et al.(2006) use a traditional paired-presentation 

paradigm with the adapting stimuli only located at the extreme of the morph continuum, 

!37



and test stimuli at ∆30, ∆60 and ∆90 metric distances. It is possible with this design that 

the unbalanced frequency of stimulus presentation introduces a non-geometric similarity 

effect such as the ‘relative prominence’ bias presented by Johannesson (2000), or an 

asymmetry driven by exposure frequency as presented by Polk et al. (2002). Thus while 

Jiang et al. (2006) suggest their data reflects non-linear (asymptotic) encoding of metric 

linear distance, our findings suggest their data could reflect a combination of geometric 

effects and non-geometric effects.  

2.6 Conclusions 

Our results provide evidence for the dissociation in neural coding of non-geometric 

‘prototype’ effects from the geometric effects of stimulus similarity, supporting 

psychological models of the two elements as separate factors in the perception of 

proximity. Using a continuous carry-over design in ERP, in conjunction with a principled 

GLM approach to distinguish geometric and non-geometric processing, we find that these 

different effects occur at discrete temporal stages of face processing. These findings 

should expand our understanding of neural similarity, offer new avenues for exploring 

global and local prototype effects, and encourage more careful consideration of the 

complexity of stimulus space representations in the brain. 
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3   Confounding of Norm-Based and Adaptation Effects in Brain 

Responses 

3.1 Abstract 

Separate neuroscience experiments have examined two properties of neural coding for 

perceptual stimuli. Adaptation studies seek a graded recovery from neural adaptation with 

ever greater dissimilarity between pairs of stimuli. Studies of prototype effects test for a 

larger absolute response to a stimulus which is distant from the center of a stimulus 

space. While intellectually distinct, these effects are confounded in measurement in 

standard neuroscience paradigms and can be mistaken for one another. Stimuli which are 

more distinctive are less subject to adaptation from perceptual neighbors. Therefore, a 

putative prototype effect may simply result from greater adaptation of prototypical 

stimuli by other stimuli in the experiment. Conversely, stimulus pairs which are the most 

perceptually distant from one another, and therefore expected to show the greatest 

recovery from adaptation, disproportionately draw from the extremes of the stimulus 

space. Thus, a putative neural similarity effect may be created by an underlying prototype 

representation. We simulate BOLD fMRI results driven by each possible effect and 

demonstrate spurious results in support of the complementary effect. We then present an 

example fMRI experiment that demonstrates the confound and how it may be minimized. 

Finally, we discuss the implications of this intrinsic confound for studies of perceptual 

representation, neural coding, and category learning. 
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3.2 Introduction 

A common target of neuroscience studies is the form of neural coding used to represent 

variation in stimulus properties. Very often, such studies use stimuli with linear variation 

along a single dimension. Examples of these “morphed” stimuli include facial image 

morphs of identity (Freeman et al., 2010, Jiang et al., 2006, Kahn et al., 2010) or 

emotional expression (Said et al., 2010a), mathematically defined abstract shapes (Panis 

et al., 2010, De Baene & Vogels, 2010), or auditory cues (Latinus et al., 2011). 

Within the broad category of distributed neural encoding models (Barlow, 1972, 

Edelman, 1998), perceptual variation can be expected to have several neural correlates. 

Norm-based encoding models (Leopold et al., 2001, Rhodes and Jeffery, 2006) postulate 

that variation relative to a reference point in a stimulus space results in differential 

absolute responses to stimuli. These differences may take the form of a “prototype” effect 

(Valentine, 1991): a reduction in the neural response to a centrally-oriented prototype 

relative to those stimuli that are more extremely positioned. However, other distributed 

encoding models are possible, including those in which a stimulus space is represented 

using tuning functions that do not depend upon a particular point of space as a reference. 

In such a case, as in all distributed encoding models, perceptual variation could be 

indexed by the overlap in neural populations constituting two distributed representations. 

One manifestation of this form of neural representation is an “adaptation” effect (Grill-

Spector & Malach, 2001; Henson & Rugg, 2003): a reduction in the neural response to a 

stimulus resulting from recent presentation of an identical or related stimulus. As defined, 
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these two effects of encoding are intellectually distinct and based upon related and well-

defined schema for neural representation. 

Testing for these two effects of perceptual variation is possible via neuroimaging. 

Prototype effects, hypothesized to manifest as a larger bulk neural response to extreme 

stimuli, have been observed using functional magnetic resonance imaging (fMRI) in 

response to faces (Freeman et al., 2010; Loffler et al., 2005; Said et al., 2010a), face 

profile silhouettes (Davidenko et al., 2011) and abstract shapes (Panis et al., 2010). 

Similar findings have been demonstrated in monkey electrophysiological recordings 

(Leopold et al., 2006). Adaptation effects, a form of “carry-over” effect of one stimulus 

upon another (Aguirre, 2007), manifest as an increasing reduction in neural response for 

the latter stimulus in a sequentially-presented pair as a function of the pair’s dissimilarity 

in fMRI (Drucker et al., 2009, Jiang et al., 2006) and ERP (Kahn et al., 2010). Graded 

neural adaptation related to stimulus similarity has been demonstrated in MEG (Furl et 

al., 2007) and in neuronal firing in monkey electrophysiology studies (De Baene & 

Vogels, 2010). 

Despite being coherent and distinct predictions of neural models, we show here that these 

effects are confounded in measurement, and thus can be mistaken for one another. 

Importantly, while counter-balance (Aguirre et al., 2011) in the order of stimulus 

presentation is ultimately necessary to address this confound, it is not sufficient to 

remove it. 
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3.3 An Example Stimulus Space 

Consider a simple experiment that presents stimuli in a counter-balanced order from a set 

of five, evenly spaced morphed faces (Figure 3.1A; morphs created using Photoshop 

CS5.5, Adobe; & JPsychoMorph). We may then ask if different face morphs have 

systematically different relationships to the set of stimuli as a whole. 

 

Figure 3.1: Consequences of a 
counterbalanced experimental design 
with a 5-exemplar morph space  
(a) An example stimulus set 
consisting of the two authors of this 
paper morphed in 5 equal steps. The 
average distance of all possible 
transitions from the central face is 
less than that from either extreme 
face. (b) Relative representation of 
each stimulus in every possible 
transition distance for a 
counterbalanced stimulus sequence. 
Transition distance is measured as 
the number of steps within the 
stimulus space between the 
preceding and current stimuli. 
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Faces from the center of the space will, on average, be preceded and followed by faces 

which are more similar: on average, there will be a transition of 1.2 positions within the 

stimulus space from a center stimulus to the prior or next stimulus in the sequence 

(Figure 3.1A). In contrast, faces from the ends of the stimulus space will have transition 

sizes of 2.0 positions from sequentially adjacent trials on average. Thus, the position of 

the stimulus within the space is related to the size of transitions in which it is involved. If 

different neural responses attended stimulus transitions of different sizes, this relationship 

would produce different average neural amplitudes to the different faces, even if the 

neural responses to the faces themselves were identical. This is a mechanism by which 

neural adaptation to stimulus similarity alone might be mistaken for a prototype effect. 

This can be appreciated in the complementary analysis as well (Figure 3.1B). Consider 

the sizes of transitions that are available between the faces in the experiment. Only 

stimuli from the ends of the space can be involved in the largest transitions. Conversely, 

small transitions disproportionately involve the faces from the center of the space. If the 

faces from the ends of the stimulus space evoked larger neural responses than faces from 

the center, this relationship would produce different average neural responses to the 

transitions of different sizes, even if there was no effect of transition size itself upon 

neural response. This is a mechanism by which prototype effects alone might be 

mistaken for neural adaptation to stimulus similarity. 

We note that the first of these concerns has been recognized previously (Panis et al., 

2010; Davidenko et al., 2011). We expand upon these previous observations by 
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highlighting the reciprocal nature of this confound (which affects more than just studies 

of norm-based encoding), describing steps to mitigate the problem, and illustrating the 

explanatory potential when this complexity is embraced by experimental designs rather 

than eliminated.  

3.4 A Simulated Experiment 

We conducted a simulation of an experiment that uses a linear morph space. Following 

the parameters of a recent study of prototype representation (Panis et al., 2010), we 

created a sequence for presentation of five stimuli (along with blank trials) using 

OptSeq2 (NMR Center; Massachusetts General Hospital, Boston, MA).  An inter-trial-1

interval of 2000 msecs was assumed. 

We first simulated the case in which a neural population has norm-based (prototype) 

coding for the stimuli, but no neural adaptation takes place. Figure 3.2A (top row) shows 

the “carry-over matrix” (Aguirre, 2007) which characterizes the neural response to a 

given stimulus as a function of the prior stimulus. As can be seen, the modeled neural 

response is entirely determined by the identity of the current stimulus (“direct” effects). 

The particular amplitudes of response used were taken from the measure of a behavioral 

prototype effect (Upper left panel of Figure 4 of Panis et al., 2010). 

 While the optseq program offers “preoptimized first-order counterbalancing”, it does 1

not actually provide perfect counter-balance of the stimuli (Aguirre et al., 2011). This has 
no consequence for the didactic purpose of our simulation, but would complicate 
attempts to remedy the confound within a linear model.
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Figure 3.2: A simulation of fMRI BOLD response demonstrating confounding of 
prototype and similarity effects.  
TOP ROW (a) A neural response model in which only prototype effects are postulated, 
with extreme stimuli resulting in a greater bulk response. The amplitude of neural 
response is driven entirely by the current stimulus with no modulation by preceding 
stimuli. (b) Simulated BOLD response for a counterbalanced stimulus presentation driven 
by prototype effects (grey). The model fit (red) represents a covariate modeling a linear 
adaptation effect for transition distance but not the prototype effect driving the data. (c) A 
spurious linear neural adaptive effect of similarity resulting from solely un-modeled 
prototype effects. BOTTOM ROW (a) A neural response model in which only stimulus 
similarity effects are present, with large transitions resulting in the greatest neural 
response (recovery-from-adaptation) and repetitions yielding the smallest. Individual 
responses are a function of the distance of the prior stimulus to the current stimulus (b) 
Simulated BOLD response for a counterbalanced stimulus presentation driven by 
similarity effects (grey). The model fit (red) represents a covariate modeling a prototype 
effect for transition distance but not the similarity effect driving the data. (c) A spurious 
effect of prototype resulting from solely un-modeled neural adaptive effects. 
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Given the sequence of stimuli and the matrix of neural responses, a simulated BOLD 

fMRI signal was generated (grey line, top row, Figure 3.2B) using an assumed 

hemodynamic response function (Aguirre et al., 1998). 

We then analyzed the simulated data using a model that tested only for the presence of 

neural adaptation effects, and ignored the possibility of a prototype effect. In the model, 

covariates were generated to model transitions between the stimuli of different step sizes. 

As can be seen, the model of a non-existent neural effect fit a substantial portion of 

variance in the simulated BOLD data (red line, top row, Figure 3.2B). A plot of the 

loading on the model covariates reveals a spurious effect that could easily be mistaken for 

a linear neural adaptation effect (top row, Figure 3.2C). Therefore, in data that contain 

only “prototype” neural effects, a spurious neural adaptation effect might be found. 

Next, we simulated the case in which a neural population scales the amplitude of 

response dependent upon the similarity of the prior stimulus in the sequence, but which 

has equal responses to all the stimuli in isolation (Figure 3.2A, bottom row). Again, 

simulated BOLD fMRI data were generated. These data were then modeled assuming that 

only direct effects of the stimuli are present in the data, and ignoring any possible neural 

adaptation. Separate covariates were fit to the average neural response to each stimulus 

identity (Figure 3.2C, bottom row). The result (Figure 3.2C, bottom row) is a spurious 

“prototype” effect, in which larger amplitude neural responses are measured for the 

stimuli from the extremes of the stimulus range. Therefore, in data that contain only 

neural adaptation effects, a spurious “prototype” effect may be measured. 
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3.5 An Empirical Example 

We next collected fMRI data from one participant (naive to the hypotheses of this study) 

to demonstrate these spurious effects in practice, and mitigation of the confound through 

concurrent modeling of both effects. Stimuli were 5 radial frequency contours (RFCs; Op 

de Beeck et al., 2001) created along a linear axis of varying RFC-phase and amplitude, 

and rendered with a pseudorandom black checkerboard texture on a gray background. 

The stimuli, subtending 5˚ x 5˚ of visual angle, were back projected onto a screen and 

viewed by the subject via a head coil mounted mirror. The five stimuli, an additional 

target stimulus (an RFC orthogonally related to the morphed stimuli), and a blank trial 

were presented in sequences defined by second-order counterbalanced k=7, n=3, de 

Bruijn cycles (Aguirre et al., 2011). Each of 4 runs consisted of 343 continuous trials. 

Trials consisted of a 900 msec stimulus presentation followed by a 200 msec inter-

stimulus interval of a grey blank screen (Figure 3.3A). The duration of all blank trials was 

either doubled or tripled pseudorandomly to fit the 343 trials to 154 TRs. The subject was 

directed to monitor for the appearance of the target stimulus and respond with a button 

press. Echo-planar BOLD fMR images were collected (TR = 3 sec), with 3 mm isotropic 

voxels on a Siemens 3-T Trio with a 8-channel head coil. A functional localizer (Harris & 

Aguirre, 2008) consisting of faces, objects, buildings, and phase-scrambled images was 

also run for use in region-of-interest (ROI) definition. We defined an ROI corresponding 

to the left ventral lateral occipital complex (LOC) that had a significantly greater 

response to objects and faces (as compared to buildings and scrambled images) and a 
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significant response to the average (main effect) of all shape stimuli in the primary 

experiment as compared to a blank screen (Figure 3.3B). The response to the different 

RFC shapes and their transitions were obtained within this ROI.  

The raw data were sinc-interpolated in time to correct for slice acquisition order and 

motion corrected using least squares minimization. The effects of adaptation and 

prototype in the data, both in isolation and concurrently, were analyzed using a modified 

general linear model (Worsley & Friston, 1995). After accounting for serial correlation in 

the residuals and the covariates used, the statistical tests we report below had 

approximately 110 effective degrees of freedom. 

Our first model contained covariates only for adaptation, without differences in absolute 

response to individual stimuli modeled. Four covariates modeled the possible step sizes 

from the prior stimulus to the current stimulus (∆1 through ∆4, as in Figure 3.1; identical 

stimulus repetitions, ∆0, served as a reference condition for the entire model to avoid 

over-fitting of the model to the data). Additional covariates modeled the main effect of 

stimulus presentation versus the blank trials, targets, transitions from blanks to a 

stimulus, and the whole-brain global signal. The weightings on these covariates are 

presented in Figure 3.3C, top-left panel. A significant effect of step size, (evaluated 

simply as a t-test for [Step 4 - Step 1]; t = 3.46, p = 0.0004) is present in this analysis, but 

is subject to potential confound of norm-based effects.  

A complementary analysis modeled only the “direct” effect of each stimulus. Four 

covariates were fit the response to the presentation of each non-target stimulus,  
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Figure 3.3: An analysis of empirical fMRI data demonstrating both confounded and 
unconfounded measurement of adaptation and prototype effects  
(a) Experimental design. Individual trials consisted of a stimulus presentation of 900 ms 
followed by a blank screen ISI of 200 ms. Trials proceeded continuously while the 
subject monitored for the appearance of an unrelated target shape (not shown). (b) The 
region of interest (ROI) used for statistical analysis, 50 voxels in ventral LOC, defined 
using an independent localizer comparison of [(Faces, Objects) - (Buildings & Scrambled 
Images), t > 4] crossed with a main effect of [Shapes, t > 4]. (c) TOP ROW Beta values 
from general linear models for covariates modeling the adaptive effects of transition 
distance. All values are mean-centered, One the left, the effects of stimulus identity are 
un-modeled in the GLM. On the right, the effects of both adaptation and identity are 
modeled concurrently. With concurrent modeling, the strength of the adaptive effect can 
be quantified without confound. BOTTOM ROW Beta values from a GLM for covariates 
modeling stimulus identity, indexed to the central stimulus. One the left, the effects of 
adaptation are un-modeled in the GLM. On the right, both effects are modeled 
concurrently. With concurrent modeling, the trend of a prototype effect is no longer 
present. 
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referenced to the central stimulus. The additional covariates included in the model were 

the same as that for the prior, “adaptation only” analysis. The covariate weights for this 

model are presented in Figure 3.3C, bottom-left panel. The presence of a norm-based 

effect of prototype should manifest as a greater response for the extreme stimuli relative 

to the central stimulus. A t-test for [(stimulus 1 - stimulus 3) + (stimulus 5 - stimulus 3)] 

in this one subject showed an effect in this direction (t = 1.18, p = 0.12). Thus a norm-

based effect of prototype could be present, but is similarly subject to confound due to un-

modeled effects of adaptation.  

A third model contained both sets of covariates. The resulting beta values are presented in 

Figure 3.3C, right panels. When controlling for the effect of prototype, the carry-over 

effects of adaptation observed in previous GLM remain in the larger model (evaluated as 

before, t = 3.59, p = 0.0002). However, when these carry-over effects are modeled in 

parallel, the suggestive trend of a norm-based effect of prototype, with the extreme 

stimuli yielding greater response than the central stimulus, is no longer present (t = -1.17, 

p = 0.87). 

The ventral region we examined is close to that previously reported to manifest 

proportional adaptation for two-dimensional closed contours (Drucker & Aguirre, 2009), 

and which is not thought to demonstrate significant norm-based effects of prototype 

(Panis et al., 2010).  
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With these data, we present an empirical example of the confound of adaptation effects 

and norm-based effects. We demonstrate that in the same data, incomplete modeling can 

lead to spurious effects for which complete modeling can account.  

3.6 Implications For Other Studies 

We simulated and measured this confound in a particular experimental design that 

presented the stimuli in a counter-balanced order, but it is present in other studies as well.  

In an fMRI study, Jiang et al. (2006) argued in favor of a non-linear trend in recovery 

from adaptation as a function of stimulus dissimilarity. The authors presented a series of 

facial stimulus pairs of varying inter-stimulus distances drawn from a linear morph space, 

and observed the predicted recovery-from-adaptation. However, as the authors used only 

an extremely-positioned stimulus as the adapting stimulus, and an uneven selection of 

test stimuli, it is possible that their measures of recovery-from-adaptation were 

confounded by un-modeled effects of prototypicality.  

In another fMRI study, Loffler et al. (2005) presented blocks of faces varying in 

distinctiveness from an average face. The authors demonstrated an increase in neural 

response for blocks of faces further from the average face, a finding which was presented 

in support of a mean-centric direct effect. While the prototype explanation is possible, the 

experimental design is confounded in that faces more similar to a prototype are 

geometrically less distinct. Blocks of more prototypical faces would thus be subject to 

greater neural adaptation, yielding a reduction in response amplitude driven by carry-over 

effects. Davideko et al. (2011) subsequently used an elegant stimulus manipulation to call 
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this result into question. Within blocks of stimuli, they manipulated the distinctiveness of 

parameterized face silhouettes while controlling the physical variability of the stimuli in 

the block. While this stimulus manipulation removes the confound, it does not provide a 

generalized solution to the joint examination of distributed and norm-based neural 

coding. 

A similar stimulus set was used by Leopold et al. (2006) during electrophysiological 

recordings of inferotemporal cortex in monkeys. The authors demonstrated increased 

neural activity for faces further from the average face in support of a norm-based 

encoding model. While it is difficult to assess the potential for confound, (indeed, 

different experimental methods can minimize this potential, as we will discuss) this study 

demonstrates that stimulus sets vulnerable to confounding of prototype and adaptation are 

not limited to human neuroimaging.  

The confound of prototype and adaptation effects will have a more subtle effect in multi-

voxel pattern analysis (MVPA) studies that make use of one-dimensional stimulus sets 

(Said et al., 2010b). In this case, the uncertainty regards the form of neural representation 

that is used to decode the stimuli. MVPA studies make use of the pattern of direct-effects 

across voxels (the average response to a given stimulus across presentations). The ability 

of an MVPA analysis to classify the identity of a stimulus from the pattern of activity 

may not be the consequence of a difference in the neural response to the stimulus itself, 

but instead as a consequence of differences in relative neural adaptation. 
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Finally, a confound between norm-based and adaptation measures has implications for 

studies of category formation as well. A common hypothesis predicts enhanced recovery-

from-adaptation for a stimulus transition of a given distance that crosses a perceptual 

category boundary, relative to a transition of the same distance that does not cross a 

category boundary (Goldstone, 1994). However, as category boundaries typically bisect a 

stimulus space (and large stimulus transitions crossing the boundary have no within-

category analog), stimulus transitions crossing the category boundary will preferentially 

sample stimuli from the center of the space, while within-category transitions will 

involve more extremely positioned stimuli. In such a case, a smaller bulk response to 

centrally-oriented stimuli due to norm-based coding effects could negate or even reverse 

the predicted alteration in adaptation effects driven by a category boundary. Indeed, we 

are aware of results from our lab (and others) that demonstrate this reversal and have to 

date remained unpublished due to puzzlement regarding the cause and interpretation.  

It is important to emphasize that the acknowledgment of this confound does not negate 

the presence of a neural effect in the studies we cite. Instead, this confound leads to 

uncertainty regarding the precise form of neural coding that produced a measured neural 

response. 

3.7 Mitigation of Confound 

With an understanding of the potential of confound between adaptation and direct effects, 

we can consider several steps that may be taken to mitigate the problem. It should be 

noted that the study we used as a model for our simulation (Panis et al., 2010) is also a 
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model example of awareness of this possible confound. The authors considered the 

possibility of adaptation effects in their data, and conducted an appropriate post-hoc test 

(effectively, a measure of carry-over for some stimulus pairings).  

Similarly, Davidenko et al. (2011) anticipated the possibility of adaptation effects 

yielding spurious prototype effects in a block design study similar to Loffler et al. (2005). 

The authors mitigated the effect of stimulus variation upon their measurement by 

matching variability within block while varying prototypicality across block. For block-

design studies, this method is a appropriate mitigation of the confound. We describe 

below additional, and more comprehensive, responses to this confound. 

Principally, covariates for prototype and neural similarity effects (more generally, direct 

and carry-over effects) should be included in the same general linear model. As our 

empirical example demonstrates, the presence of either effect may then be measured after 

accounting for the confounding regularities that exist in the order of stimulus presentation 

(see also, e.g., Kahn et al., 2010). The use of a fully counter-balanced stimulus sequence 

(Aguirre et al., 2011) is crucial, as this allows the two types of effects to be estimated 

efficiently and without bias (De Carlo et al., 1990).   2

A limitation of this solution is that the degree of correlation between direct and carry-over 

effects can become substantial, particularly in fMRI studies which are affected by the 

 Our paper which introduced the notion of simultaneous modeling of direct and carry-2

over effects in neuroimaging (Aguirre 2007) erroneously states that “direct and carry-
over effects are orthogonal when the order of presentation of stimuli is serially first-order 
balanced”. While this is true for the forms of neural response considered in that paper, the 
current work demonstrates that it is not a true statement generally, as confounds do exist 
for some forms of response.
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temporal filtering properties of the hemodynamic response. Careful design of stimulus 

sequences can enhance power for measurement of carry-over effects (Aguirre et al., 

2011), improving the ability to model carry-over effects for measurement or removal. 

More broadly, a model that includes both carry-over and direct effects may be assessed 

with an omnibus F-test without negative consequences of correlation within the 

covariates. This test would reveal that the neural signal does code for the stimuli or their 

relationship without determining the relative contribution of these effects. 

One means of avoiding this issue is through the design of stimulus spaces. For example, 

stimuli drawn from a circle within a two-dimensional space are not subject to this 

confound, as every stimulus is equidistant from the (prototypical) center of the space. Of 

course, a downside to such a design is the inability to present a stimulus in the center of 

the space, thus precluding the study of norm-based coding. 

Finally, experimental design may be used to minimize the presence of carry-over effects 

within the data. For example, a sparse fMRI design with long inter-stimulus intervals 

(e.g., greater than 6 seconds) would both plausibly reduce adaptation effects and reduce 

the degree of confound. Stimulus masking may be used to similar effect. The 

effectiveness of these measures for the reduction of carry-over effects would be an 

empirical question, with measurement of the effect subject to the same confounds 

discussed. 
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3.8 Discussion 

We have explored a particular confound in the study of perceptual variation and stimulus 

representations. While individual neuroimaging studies have sought evidence for either 

prototype or adaptation effects in relation to neural encoding schemes, we find that these 

have the potential to be confused. We further demonstrate this confound empirically, and 

find that spurious effects can arise with incomplete modeling of fMRI data.  

While this confound does not negate the existence of claimed neural effects, it may call 

into question their interpretation. As we have recommended, researchers interested in 

solely norm-based or adaptation effects have several avenues toward isolation of their 

effect of interest. We would argue, however, that instead of striving to solely mitigate one 

effect or the other, a more holistic perspective toward neural coding effects and their 

interaction could be useful.  

As we have discussed, the concept of a prototype effect is related to a differential 

absolute response to a central stimulus relative to an extreme one. We can classify these 

prototype effects as a type of first-order effect of representation - one related to the 

unique neural response to a stimulus. Adaptation effects pertain to the overlap between 

distributed neural responses and arise from comparisons of stimuli - a type of second-

order effect of representation.  

The preservation of both the uniqueness of each stimulus, and the relationships of stimuli 

to each other is thought to be a primary goal of perceptual representation. In psychology, 

these two features are captured in the concept of a stimulus space - a representation of 
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both stimulus identity and stimulus relationships. Stimulus spaces posit a unique location 

for each exemplar, with distances within space as an index of stimulus similarity. In 

relating this conceptual space to neural representations, it is possible to reframe prototype 

and adaptation effects. First-order effects of prototypicality speak to the position within a 

stimulus space, and second-order effects of similarity (e.g. adaptation) speak to distance.  

The concept of a stimulus space goes further than these simple features; such spaces have 

topology. In his classic psychological observation, Amos Tversky (1977) highlighted that 

similarity relationships were prone to asymmetry, particularly in comparisons involving 

prototypes. For example, most observers judge an ellipse to be more like a circle, than a 

circle to be like an ellipse. Such asymmetries can be understood as slopes in the surfaces 

of a stimulus space, biasing an otherwise equal metric relationship toward one direction. 

These slopes create a surface topology oriented about the prototype that has both second-

order and first-order consequences.  

On the second-order, surface topology would result in biases of adaptation effects in the 

direction of the prototype. Just as metric similarity has a neural adaptive effect, so does 

this asymmetric bias. As demonstrated by Kahn et al. (2010) in an ERP study, differential 

adaptation in the N170 and N250 evoked potentials occurs for comparisons of 

prototypical and extreme faces dependent upon the order of comparison - a second-order 

effect of prototype. Notably, this finding would be impossible without simultaneous 

modeling of first-order prototype effects and second-order similarity effects.  
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On the first-order, surface topology would result in differential elevation of two points in 

the stimulus space. As the topological slopes are oriented toward prototypical stimuli, the 

elevation, and therefore absolute neural response to prototypical stimuli would be 

reduced relative to extreme stimuli - exactly the prediction of norm-based encoding 

models. Thus thinking in terms of stimulus space topology highlights several of the 

dominant effects of representation currently researched.  

The cohesion of the topological stimulus space model lends itself to one more avenue of 

investigation, namely the dynamics of this space, and the interactions which might drive 

changes in topology. Importantly, Panis et al. (2010) offered evidence in favor of a 

dynamic prototype effect. Were the dual effects of prototype and stimulus similarity 

modeled in parallel, it might have been possible to disentangle both the first- and second-

order effects of stimuli, as well as the interaction of the two in driving the dynamics of 

the other.  

We believe this is a promising area of investigation. It is possible that second-order 

effects of neural adaptation are instrumental in the molding of prototype effects in the 

short and long term. One prediction is that the pattern of neural adaptation effects across 

the course of an experiment changes in concert with the emergence of the dynamic 

prototype, as suggested by Panis et al. (2010).  

The conclusions of this paper are therefore two-fold. In regard recent neuroimaging 

studies, we highlight a confound of stimulus effects which draw into question existing 
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interpretations. We also suggest a more cohesive approach to investigating neural 

stimulus spaces that enables study of the dynamics of perceptual representation. 
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4   A Single Temporal Integration Mechanism Unites Neural Adaptation 

and Prototype Formation 

4.1 Abstract 

What information is encoded in a cortical visual representation?  

That visual representations are distributed across the ventral temporal cortex is well 

established. fMRI adaptation studies demonstrate these neural codes are modulated by the 

perceptual similarity of sequential stimuli. Studies investigating prototype-based coding 

effects propose that neural responses are proportional to distinctiveness from a central 

reference, or prototype. In existing fMRI work, these two effects are considered 

independently. We propose here that these two effects arise as a consequence of a single 

mechanism of coding based upon temporal integration over recent stimulus history.   

Using a carry-over fMRI design, we show significant neural adaptation and prototype-

based coding effects in a face-responsive region of interest in the right fusiform gyrus 

when effects are modeled discretely. By considering these effects as extremes of a single 

drifting norm model, we find that visual representations tend to encode identity in terms 

of intermediate stimulus history. Looking beyond the region of interest, we demonstrate 

that the effect of temporal context varies smoothly across the cortex, with the modulatory 

effect of recent visual history extending further back in time in a posterior to anterior 

fashion along the right ventral temporal cortex.  

These findings reframe two branches of the visual representation literature in terms of a 

unified encoding model. Importantly, this finding offers a perspective on the cortical 
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topology of visual identity representations. We discuss the implications of this gradient as 

an organizing principle of the ventral visual topology. 

4.2 Introduction 

The responses of neural populations are modulated both by systematic variations in 

stimulus properties, as well as by the recent history of stimuli. 

The distinctiveness of a stimulus is a behaviorally relevant and much studied dimension 

of stimulus variation that impacts neural response. A graded increase in bulk neural 

response to stimuli that are increasingly different from a central, “prototype” stimulus is 

seen in both BOLD fMRI (Loffler et al., 2005; Panis et al., 2011; Davidenko et al., 2011) 

and single unit electrophysiological recordings (Leopold et al., 2006, De Baene et al., 

2007). These results are taken as evidence that neurons implement a “norm-based” code 

that represents stimulus exemplars with respect to a stored representation of a centrally 

positioned prototype (Leopold et al., 2001; Rhodes & Jeffery, 2006). Quantitatively, the 

magnitude of norm-based neural responses is found to be proportional to the distance of 

the currently presented stimulus from the center of a multi-dimensional stimulus space 

from which the stimuli are drawn (Anderson & Wilson, 2005; Loffler et al., 2005). 

The effect of the history of presented stimuli upon the perception and neural 

representation of the currently presented stimulus is also a topic of great interest. Neural 

adaptation effects are the primary example of this influence of stimulus history as studied 

in electrophysiologic and functional neuroimaging studies (Grill-Spector & Malach, 

2001). In these experiments, the repetition of an immediately preceding stimulus 
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produces a reduced neural response to the subsequent presentation. Adaptation effects are 

found to parametrically vary with the similarity between stimuli (Drucker & Aguirre, 

2009, Jiang et al., 2006). Specifically, the adaptation of neural response is found to be 

proportional to the distance of the currently presented stimulus from the previously 

presented stimulus within a multi-dimensional stimulus space. 

It is interesting to observe that both norm-based and adaptation effects are related to 

distance within a representational stimulus space, with the precise magnitude of the effect 

relative to the position of the prior stimulus, or to the center of the stimulus space. For 

norm-based studies, a recent question is how the stored prototype that resides at the 

center of the stimulus space is initially generated (Tsao & Freiwald 2006). Clearly, this is 

an effect of stimulus history, but one with a potential influence of the lifetime of sensory 

experiences. Recent findings, however, suggest that the formation of the central prototype 

is a more dynamic process operating on shorter time scales. In a study of novel abstract 

shapes (Panis et al., 2011), norm-based neural effects were observed when distinctiveness 

was defined over the course of an experimental run. 

The current literature would suggest that both neural adaptation and norm-based 

responses are properties of neural systems, each with some sensitivity to the history of 

presented stimuli, but operating at very different timescales. Could it be, however, that 

instead of two separate mechanisms, there is a single, intermediate representation of 

recent stimulus history that can account for both effects? What would be the nature of 

such an effect?  
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Consider the simplest example of the sequential presentation of three stimuli. According 

to a neural adaptation model, the response to the second stimulus will be larger 

proportional to its perceptual distance from the first, and the response to the third 

stimulus will be scaled by its perceptual distance to the second. If response modulation 

were to accumulate according to a monotonically decreasing function of stimulus history, 

the response to the third stimulus would be modulated by the distance to the prior 

stimulus and partially by the distance to the first - in effect a modulation relative to a 

norm which resides in between the two preceding stimuli. In the context of a longer 

stimulus presentation, the same rationale can be applied, leading to the prediction of a 

drifting norm in perceptual space. The drifting norm represents the temporally integrated 

stimulus history, and serves as a reference point from which the degree of neural response 

modulation is proportional. Indeed, any exponentially decaying model of neural 

adaptation is, in principle, a model of a drifting norm. 

Here, we test the hypothesis that a single mechanism of temporal integration of stimulus 

history can account for both neural adaptation and prototype effects in fMRI measures of 

face perception. To test this hypothesis, we began by replicating prior findings of norm-

based and neural adaptive effects in isolated models within a face-responsive region of 

interest. We find that both effects are present in our data. We then examine whether a 

drifting norm model better accounts for the variation in fMRI responses to faces than 

other models of stimulus history effects. We show that, within a region where both neural 

adaptation and norm-based effects can be measured, a drifting norm model corresponding 
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to an intermediate temporal integration window best explains the variation of BOLD 

fMRI response to a stream of face stimuli. We then go on to investigate how the horizon 

of the observed temporal integration effect varies across the ventral cortical visual 

pathway.  

4.3 Methods 

4.3.1 Participants 

A total of 41 subjects contributed data to either Dataset #1 or Dataset #2. From a total of 

20 subjects enrolled in Dataset #1, one subject was discarded because of lost behavioral 

data, one subject for not responding in more than 15% trials, and three discarded for 

excessive head motion, leaving fifteen subjects (twelve right handed, ten female, aged 

19-25 years) whose data were analyzed. From a total of 21 subjects enrolled in Dataset 

#2, two subjects were discarded for excessive head motion, leaving nineteen subjects 

whose data were analyzed. All subjects provided informed consent and the study protocol 

was approved by the Institutional Review Board of the University of Pennsylvania. 

4.3.2 Scanning 

Magnetic resonance images were obtained at 3.0-T on a Siemens Trio equipped with an 

8-channel head coil at the Hospital of the University of Pennsylvania. T1-weighted 

structural images (160 axial slices, voxel size = 0.98 x 0.98 x 1.00 mm) were collected 

using a 3D magnetization-prepared rapid gradient-echo pulse sequence. During 

experimental runs, blood-oxygenation level dependent (BOLD) functional images were 

collected using an echo-planar pulse sequence (time repetition [TR] = 3 sec, time echo 
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[TE] = 3 ms, voxel size = 3.00 mm isotropic). Functional data were acquired with 64 x 64 

in-plane resolution across 45 axial slices. Pre-processing of the functional data involved 

sinc-interpolation in time to correct for the slice acquisition order and motion corrected 

using least squares minimization. The MPRAGE image from each subject was 

reconstructed in surface space and mapped to the fsaverage template using FreeSurfer; 

functional data were transformed to the surface space and smoothed with a 10mm 

FWHM kernel. 

4.3.3 Stimuli and Experimental Design 

Two sets of synthetic facial stimuli were created for Datasets #1 and #2 using GenHead 

(version 1.2, Genemation). Each stimulus set was created with 3 primary axes with 3 

points along each axis, resulting in 27 distinct stimuli. For Dataset #1, the three axes were 

gender, race, and internal facial features (Figure 4.1A) and for Dataset #2, the axes were 

skin tone, facial thickness, and facial identity (Figure 4.2C inset); stimuli in the second 

dataset were physically less distinct than the first dataset. All stimuli were created in an 

“older” and “younger” version; this orthogonal fourth dimension was used in the 

scanning cover task. 

Stimuli were presented using a carry-over design20. Each trial lasted 1500 msec (1400 

msec stimulus, 100 msec blank screen). Blank trials, in which no stimulus was presented, 

were also counterbalanced and doubled in length to 3000 msec. Stimuli, subtending 5˚x5˚ 

of visual angle, were back-projected onto a screen and viewed  by subjects via a head 

coil-mounted mirror. On each stimulus trial, the presented face was randomly set to 
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appear in the “older” or “younger” version. Subjects were directed to judge the age of 

each face and respond. A linear four button response box was held with both hands; a 

dual-thumb outer button press corresponded to a younger face judgment, and a dual-

thumb inner button press to older faces. All but 4 subjects in both datasets performed 

above chance on this perceptually demanding attention task. Subjects were instructed to 

withhold a response on blank trials. The percentage of trials for which the subject failed 

to respond was taken as an index of poor attention to the stimuli. Prior to scanning, 

subjects performed a brief pilot session of twenty-five trials during which they practiced 

the age judgment task with the same stimuli used in the scanning experiments and 

received feedback. 

4.3.4 Stimulus Sequence 

Trial order was determined by Type-1, Index-1 (k = 28), first-order counterbalanced 

sequences (optimized as described in Appendix B of Aguirre 2007 20). For Dataset #1, the 

same sequence was used for all subjects, while for Dataset #2 a different sequence was 

used for each subject. As blank trials were doubled in duration, the total number of 

effective trials analyzed was 1624 (812 TRs).  

The total sequence was spread over six functional scans of 141 TRs each. To allow for  

appropriate adaptive context to be achieved at the beginning of each run, the last 10 

stimuli (5 TRs) from the preceding run were presented at the beginning of each scan (for 

the first run, the final 10 stimuli in the sequence were presented). The first 5 TRs of each 

scan were discarded during pre-processing. For the final scan, the sequence completed 
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prior to completion, and thus the last 4 TRs of the scan were discarded. Thus, 136 images 

from the first five scans and 132 from the last run were analyzed.  

4.3.5 Behavioral Assessment of Stimulus Similarity  

Each subject performed a set of explicit judgments of similarity for the pairs of faces 

following MRI scanning. Each pairing of faces was rated on a scale from 1 to 10 (1 being 

identical, 10 being completely different). For Dataset #1, similarity ratings provided by 

different subjects were strongly concordant (the average correlation of each subject to the 

remainder of the group was 0.75). Consistent ratings were obtained for both old and 

young face sets (average between set correlation was 0.95). These similarity ratings were 

z-transformed within subject, averaged across subjects, scaled between 0 and 1, and 

entered into a multi-dimensional scaling analysis in Matlab (Mathworks, Natick, MA). 

The first three dimensions of the result defined the behavioral stimulus space (Figure 

4.1A) used for subsequent analysis. This 3-dimensional MDS solution explained 70% of 

the variance in the behavioral data. A second behavioral experiment using implicit 

measures of perceptual similarity (inverse reaction time in a discrimination task) yielded 

a highly correlated result (correlation of implicit and explicit group similarity matrices = 

0.79). 

The same analyses were conducted for face stimuli for Dataset #2, though only 14 of the 

scanned subjects were available to provide similarity data. For the explicit similarity data, 

the average correlation of each subject to the average of the group was 0.67. A second 

behavioral experiment using implicit measures of perceptual similarity (inverse reaction 
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time in a discrimination task) yielded a highly correlated result (correlation of implicit 

and explicit group similarity matrices = 0.86). 

4.3.6 ROI Definition 

A one-sample group (across subject) mean GLM was run on the main effect of stimuli 

versus the blank screen. The result was masked with the FreeSurfer fusiform label, and 

then the top 800 vertices in the right hemisphere selected to define a region of interest 

(ROI). The average signal across vertices was obtained for each subject and then further 

examined. 

4.3.7 General Linear Model 

The central hypothesis of the study is that the neural response to the sequence of face 

stimuli is best explained by a drifting norm model. In this conception, neural response is 

modulated in a carry-over fashion by the similarity of the presented stimulus to a single 

drifting norm - the current integrated representational context of the neural system.  The 

drifting norm (x) is expressed as a position within the 3-dimensional MDS stimulus space 

defined by behavioral measures. For the first trial, the drifting norm is arbitrarily set to 

the center of the stimulus space. The norm position is then updated by the presentation of 

stimuli (s), which draw the norm towards the position of the current stimulus in the 

perceptual space. The degree to which the norm drifts in response to a stimulus 

presentation is determined a scaled decay rate (µ): 

  𝒙n = 𝜇𝒔n + (1−𝜇)𝒙n-1 
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where x and s are coordinates in the three-dimensional MDS perceptual space, and µ is 

between zero and unity. The sequential application of this equation to a particular 

ordering of stimuli with known perceptual similarity yields a covariate that predicts the 

continual modulation of neural response to the presentation of the stimuli, dependent 

upon the scaled decay rate (µ) selected. When the µ is set to zero (Figure 4.1C, lower left 

panel), the resulting covariate is precisely a global norm model, in which the response to 

each stimulus is modeled as proportional to the distance of the stimulus from the center 

of the MDS perceptual stimulus space; there is no predicted effect of sequential stimulus 

transitions upon neural response.  When µ is set to one (Figure 4.1C, lower right panel), 

the covariate produced is a 1-back adaptation model, in which the predicted response is 

proportional to the distance of the prior stimulus to the current one in the MDS-

reconstructed stimulus space; the system has no memory of stimuli past the last stimulus 

presented. Intermediate values of µ correspond to varying degrees of temporal integration 

across the sequence of stimuli. 

We modeled the data from the region of interest for each subject using a set of models, 

each of which incorporated a drifting norm covariate with a scaled decay rate (µ) ranging 

from 0 to 1 in steps of 0.05. Each covariate was mean centered and scaled to have unit 

variance. Additional covariates (common to all models) fit the main effect of the stimulus 

presentation versus the blank trials and the effect of stimuli presented following a blank 

trial.  All neural model covariates were convolved with a canonical hemodynamic 
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response function (Aguirre et al., 1998).  Additional regressors were included to account 

for global signal, between-scan variation, and subject-specific spikes. 

4.3.8 Whole Brain Mapping 

For each value of µ, we combined subjects individual surface maps in FreeSurfer through 

a group analysis, resulting in 21 group surface maps. We then combined these into a 

single surface map containing at each vertex the µ with the largest beta from the 21 

possible. From this surface map, we cropped all vertices where the largest corresponding 

beta or the main effect of faces were negative.  We also removed any vertices where the 

p-value associated with the largest beta was less than 0.5 (Figure 4.2A). To quantify the 

anterior-posterior trend present on the whole brain map, 15 circular ROIs with a 15-

vertex radius were plotted on the fsaverage surface in a continuous line, running 

anteriorly along the ventral temporal lobe from the temporal pole (Figure 4.2A, top panel 

overlay). On the group maps of Figure 4.2A, the average µ value within each of the 15 

ROIs was evaluated for each of the 21 drifting norm models, in order to reveal the trend 

from posterior to anterior visual areas (Figure 4.2B). The standard error of the mean at 

each anatomical position was estimated by resampling (bootstrapping). The set of 

subjects was sampled with replacement up to the total number of available subjects. The 

mean value from this resampling was retained and 1000 such means were recorded across 

bootstraps. The standard deviation of this set of means provides an estimate of the 

standard error of the mean of the measure. 

!70



Figure 4.1: Stimuli, design, and region-of-interest analysis  
(a) Faces varied in identity, race, and gender. Each was generated in an “older” or 
“younger” version (inset). Separate ratings of pair-wise face similarity were used to 
generate the perceptual similarity space. (b) During scanning, subjects observed a 
continuous stream of face stimuli and indicated for each if it was the “older” or 
“younger” version. Neural responses were modeled using continuous covariates 
corresponding to the perceptual distance of the current stimulus from either the previous 
face or the center of the stimulus space. (c) Average across-subject regression coefficients 
(n=15) within the ROI for norm-based and adaptation effects within an across-subject, 
face-responsive region of interest (ROI) in the right fusiform gyrus (inset). Stimulus 
space figures below illustrate how neural response to each face is modeled with respect to 
the center of the perceptual space or to the prior stimulus for five example stimulus 
transitions. (d) Fit to the neural data within the ROI for a range of decay rates (µ). The 
stimulus space figures illustrate how the drifting norm (solid vectors) is increasingly 
responsive to the most recently presented stimulus at ever higher decay rates. 
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4.4 Results 

We obtained BOLD fMRI data while subjects viewed a continuous stream of face stimuli 

(Figure 4.1B). Separately, the perceptual similarity of the set of 27 faces was measured 

for each subject. These perceptual judgments were found to be very similar across 

subjects, and thus combined to produce an average perceptual similarity space (Figure 

4.1A). 

We identified across subjects a face-responsive region of the right fusiform gyrus (Figure 

4.1C inset). We focus on the right hemisphere in this study given evidence that sensitivity 

to face variation is substantially stronger in the right as compared to the left hemisphere 

(Mur et al., 2012). This region has a consistently large, main effect of neural response 

across all the faces presented during the experiment. We then sought to replicate prior 

findings of “norm-based” and “adaptation” effects in the neural responses to faces within 

this region. 

4.4.1 Norm-Based and Adaptation Effects 

Prior studies of neural responses to faces have found that more distinctive faces evoke a 

larger neural response (Loffler et al., 2005; Panis et al., 2011; Davidenko et al., 2011). 

We tested for such an effect in our data using a covariate in which the response to a face 

is modeled as being proportional to the distance of that face from the center of the 

perceptual stimulus space (Figure 4.1B, red curve; also Figure 4.1C, lower left panel).  

When modeled in this way, we find a significant norm-based response across subjects 

(Figure 4.1C, left bar). 
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Separate studies have observed that the response to a stimulus may be modulated by the 

similarity of the immediately preceding stimulus (Drucker & Aguirre, 2009, Jiang et al., 

2006). We tested for such an effect in our data using a covariate which models the neural 

response to a stimulus as proportional to the distance between the current face and the 

immediately preceding face (Figure 4.1B, blue curve; also Figure 4.1C, lower right 

panel). When modeled in this fashion, we find a significant proportional adaptation 

response across subjects (Figure 4.1C, right bar). 

An initial interpretation of these results is that adaptation and norm-based effects coexist 

in the responses of neural populations. While we have argued elsewhere that these effects 

may be mistaken for one another in measurement (Kahn & Aguirre, 2012), we consider 

here a deeper connection: that the observed norm-based and adaptation effects are simply 

different measurements of a single temporal integration mechanism operating over recent 

stimulus history. 

4.4.2 A Single Temporal Integration Mechanism 

We next tested the hypothesis that stimulus history is temporally integrated into a single 

reference point in the stimulus space, which we term the “drifting norm”. The 

presentation of a new stimulus draws the drifting norm towards the new stimulus. The 

degree to which the current stimulus changes the drifting norm can be described by a 

scaled decay rate (µ). At the boundaries, a fully “elastic” neural system updates the 

drifting norm to match the last presented stimulus (µ=1), behaving exactly like a 1-back 

neural adaptation effect (Drucker & Aguirre, 2009, Jiang et al., 2006), while a “rigid” 
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neural system retains the norm at its initial position regardless of presented stimuli (µ=0), 

behaving like a norm-based effect (Loffler et al., 2005; Davidenko et al., 2011). This 

model is isometric with an exponential integrator over stimulus history with varying 

decay rates, here simplified to scaled values of µ between 0 and 1.  

We tested this idea by estimating the best fitting parameter of temporal integration (µ) for 

each subject within the fusiform region of interest. A set of models, with scaled decay 

rates ranging between 0.0 (rigid norm) and 1.0 (fully elastic 1-back adaptation) were 

assessed. For each coefficient, we determined how much variance in the neural data was 

explained by the model, and obtained the average and variability of this measure across 

subjects.  

The amount of variance explained in the neural data across subjects as a function of µ 

within the right fusiform is shown in Figure 4.1D. As the drifting norm is allowed to relax 

from rigid to fully elastic, the fit to the neural data steadily improves and then declines, 

reaching a peak at an intermediate value of µ (0.40). This finding suggests that face-

responsive neurons maintain an integrated representation over the last several stimuli to 

which the currently presented face is compared. 

While this result is consistent with a single temporal integration mechanism, it alone 

cannot adjudicate between a single integration mechanism over intermediate temporal 

history and a neural system that truly incorporates both adaptation and a norm-based 

effects. We addressed this question using a cross-validation procedure in which the data 

from n-1 subjects were used to estimate the scaled decay rate and the individual 
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contributions of norm-based and adaptation effects. For the nth subject, we then 

compared the variance explained by a model combining the norm-based and adaptation 

covariates with the estimated weights, with the variance explained by the drift covariate. 

In all 15 subjects, the proportion of variance explained by the single mechanism model 

was greater than the variance explained by the combined model (R2 single mechanism 

model = 0.0070±0.0016, R2 combined model = 0.0042±0.0011, both mean ± SEM). 

4.4.3 Drifting Norms Across the Visual Pathway 

The analyses to this point confirms the validity of the drifting norm model within the 

right fusiform gyrus, a region known to be responsive to face stimuli and where findings 

of norm-based coding are usually described. Visual stimuli, however, evoke broad neural 

responses across ventral visual cortices. While particular category-selective visual areas 

have peak responses to preferred stimuli, the identity and relative similarity of visual 

objects may be decoded from the broader responses (Kriegeskorte et al., 2008). We 

therefore examined how neural response modulation based on temporal context varied 

across ventral visual cortex.  Broadly, we anticipated that earlier visual areas would show 

greater modulation on the short time-scale and ever more anterior visual areas would 

integrate over longer time-scales (Hasson et al., 2008). 
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Figure 4.2: A gradient of temporal integration  
(a) Optimal scaled decay rate (µ) across subjects at each ventral occipito-temporal 
cortical site for dataset 1. White points indicate the centers of the ROIs sampled in panel 
b. The stimulus space for this dataset is inset. (b) Plot of across-subject average, regional 
µ from the posterior to anterior ventral occipito-temporal cortex, fit with a second-order 
polynomial. Averages taken from cortical regions of the size and positions indicated in 
panel A.  (c) Optimal µ across subjects as measured in a separate dataset. The stimulus 
space for this dataset is inset. (d) Plot of across-subject, average, regional µ for the 
second dataset. 
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We measured the µ that corresponded to the best-fitting drifting norm model separately 

for every vertex across the right cortical surface. We examined only those vertices that 

showed a positive main effect of face presentation compared to a blank screen across 

subjects and a positive effect of stimulus dissimilarity. We found that near the occipital 

pole, in the vicinity of the calcarine sulcus, the measured µ was 1.0, indicating that the 

neural response within this earliest visual area is modulated only by the immediately 

preceding stimulus.  Moving anteriorly along the ventral cortex, the measured µ declines, 

indicating an ever greater degree of integration of stimulus history (Figure 4.2A). 

We quantified this gradient by defining a path running from the occipital pole anteriorly 

along the ventral surface of the occipito-temporal cortex. Figure 4.2B plots the average 

peak µ within patches of cortex centered at each of 15 points along this path, revealing 

the increasing integration of temporal context in ever more anterior visual areas. A second 

degree polynomial fit confirmed the ever longer degree of integration of stimulus history, 

between early visual areas and higher level areas. 

Figure 4.2 demonstrates a posterior-to-anterior gradient of temporal effects along the 

ventral visual stream, in which increasingly long integrated windows of stimulus history 

modulate the response to a presented stimuli. The gradient (Figure 4.2A) is described by 

the peak decay rate (µ) which best explains the neural signal measured at each patch of 

cortex. This map dispenses with the relative strength of these effects, however, and 

additional perspectives are necessary.  
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Figure 4.3: Strength of measured temporal integration models on the cortical surface 
(a) The p-values associated with each measured decay rate model at all vertices 
measured. (b) The ratio of the variance of the measured decay rate model and the 
variance of the main effect model at each vertex. These are cropped to vertices with 
values greater than 0.01 and fully saturated for values above 0.25. Values >> 1 are 
cropped. Since the covariates for the main effect and all temporal modulatory models are 
scaled to one, this is equivalent to a ratio of the beta values for each. 

A surface map of the p-values (Figure 4.3A) for the peak drift model (Figure 4.3A, inset) 

illustrates the significance of the effects at each vertex. It appears the medial edges near 

the fusiform portion of the gradient show stronger effects. Complementarily informative 

is a plot of the ratio of the variance of the modeled peak temporal effect against the 

variance of the modeled main effect (Figure 4.3B). For regions where the main effect of 
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facial stimuli is large, this ratio will be relatively reduced (red). This is true overlapping 

the FFA region of interest, selected specifically for having large main effects of stimuli. 

For regions where both the p-value of the peak temporal model is relatively low, and the 

temporal modulation covariate is larger relative to the main effect of stimuli, it is 

increasingly possible that the temporal modulatory effect model is capturing noise. For 

more anterior regions, this seems to be the case. 

4.5 Discussion 

In this study, we investigated modulatory mechanisms of the neural response to facial 

stimuli - specifically the relationship between norm-based representation and short-term 

neural adaptation. We proposed a single mechanism based upon temporal integration to 

unite these two effects, where the neural response to a stimulus is modulated as a function 

of distance to a “drifting” norm. In turn, the norm’s position is updated by the recent 

visual experience at a rate determined by a scaled decay rate (µ), which can be directly 

related to an underlying exponential temporal integration function.  

For µ close to zero, the drifting norm model behaves like a short-term neural adaptation 

effect, modulating neural responses as a function of the shortest-term stimulus history.  

For µ close to one, the drifting norm model behaves like a norm-based effect.  A neural 

population that has an intermediate timescale of temporal integration, when probed for 

either adaptation or global norm effects in a neuroscience experiment, will be found to 

have both, resulting from the correlation of both adaptation and global norm predictors 

with the true single effect. We confirmed that an intermediate drifting norm model can 
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better describe the data than either the norm-based or 1-back adaptation model, and used 

a model comparison and cross-validation approach to prove that the drifting norm model 

outperforms a combination of both earlier models. Lastly, we extend our findings beyond 

our initial region of interest to investigate the broader topology of temporal contextual 

encoding. We observe a gradient of increasing temporal integration from primary visual 

cortex extending anteriorly along the ventral surface of the right temporal lobe. This 

result suggests a hierarchy of temporal integration at ever higher levels of extrastriate 

cortex. 

Merely at a conceptual stage, dynamic encoding based on recent temporal context solves 

a major problem of putative norm-based representation models: how is the brain 

supposed to “know” the arbitrary center of an unseen set? Within a unified framework of 

a drifting norm, any non-zero µ will position the drifting norm near the center of the 

space within a reasonable number of stimulus exposures, regardless of the initial set-point 

of the neural system. 

Neural adaptation is an ubiquitous phenomenon in sensory systems, occurring at many - 

if not all - levels of the sensory hierarchy, and is thought to be mediated by various 

mechanisms beyond merely the short-term adaptation effects here described. Similarly, 

the realm of norm-based coding models - many of which postulate a special status for a 

“global” norm - reaches beyond the narrow form of dynamic norm-based effects 

(Davidenko et al., 2011, Panis et al., 2011) approached in this study. The literature on all 

these phenomena is extensive, yet still evolving. Our results cannot settle many questions 
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- for instance that of global norm-based encoding - yet these findings offer a novel 

inclusive perspective on these effects as well as exciting avenues for future investigation.  

For example, as we have previously recognized, short-term neural adaptation and norm-

based coding effects as previously studied can be confounded in measurement (Kahn & 

Aguirre, 2012). Our work here resolves this confound, suggesting both may be 

manifestations of a single modulatory effect. With respect to postulated differential 

responses to global norms, with careful experimental design, these could be tested while 

controlling for the modulatory effect of recent stimulus context. Further, it could be that 

the modulatory effect here demonstrated might represent a mechanism by which the 

representational geometry of visual cortex is lastingly modified by visual experience. 

This possibility could be tested by carefully steering the path of the drifting norm to 

repeatedly cross different non-central locations in a perceptual space for different subjects 

- while maintaining mean stimulus exposure - and then probing the distributed response 

after hours or days. Lastly, it may be that multiple drifting norms could be maintained by 

the visual system, coding for different stimulus features or categories, with distinct 

windows of temporal integration distributed across the visual hierarchy.  

Neural encoding based on temporal context is conceptually linked to the work of Hasson 

et al. (2008). In an elegant study using short video stimuli presented intact, in reverse, or 

temporally scrambled, the researchers demonstrate a hierarchy of “temporal receptive 

windows” across the cortex, with ever more anterior regions sensitive to ever longer 

snippets of video content. Our finding of a monotonic posterior-anterior gradient of 
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temporal integration is consistent with this result. Hasson et al. (2008) show consistent 

differences between regions in the duration of temporal integration, suggesting different 

portions of cortex may have inherent temporal windows over which visual information is 

encoded.  

The finding of differential modulatory effects of stimulus history for increasingly anterior 

portions of the right temporal lobe is interesting. Previously, the large majority of studies 

showing fMRI adaptation effect for faces have focused on the fusiform face area or 

immediately adjacent  (e.g. Andrews & Ewbank, 2004; James & Gauthier, 2006; Fang et 

al. 2007; Harris & Aguirre, 2010). There exist studies demonstrating differential fMRI 

adaptation effects (with a temporal component) in anterior regions, though for non-face 

stimuli (Epstein et al. 2008). The closest analog in the face literature to a different 

posterior to anterior adaptive difference is demonstrated by Weiner et al. (2010), though 

the regional difference demonstrated was between posterior- and middle-fusiform (pFus 

and mFus, respectively).  

This relative lack of precedent could draw into question the reliability of our 

measurements for increasingly anterior regions. Face identity information has been 

observed to be resolvable using distributed pattern analysis in the right anterior temporal 

lobe (Kriegeskorte et al, 2007), even in cases when a fusiform ROI is unable to 

distinguish them. Taking into account the possibility that distributed patterns & neural 

adaptation index different features of neural information (Drucker & Aguirre, 2009; 

Epstein & Morgan, 2011), it could be the case that the coarseness of identify information 
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increases from posterior-to-anterior, in accordance with Kriegeskorte et al. (2007). If this 

were the case, we might expect that the apparent underperformance of our modulatory 

models (Figure 4.3) anterior to the FFA resulted from the relative weakness of individual 

vertex modeling on a “coarser” neural coding region. Two aspects of our data support this 

interpretation. First, the series of ROI analyses (Figure 4.2B) demonstrate a smooth 

gradient of temporal integration. These ROIs will aggregate over small effects to give a 

stable estimate of regional behavior. Phrased differently: though the reliability of 

individual vertex results may decline for increasingly anterior regions, the central 

tendency within region of interest should be stable. Second: we observe a difference in 

the anterior pattern of the temporal gradient between datasets. Given that the second 

dataset was generated using a more tightly clustered stimulus set, we might expect that it 

would be less susceptible to the effects of coarseness in increasingly anterior regions. 

Both of these observations are post-hoc; future work is necessary to understand the 

relationship of our measures to the underlying neural code. Regardless, the possibility 

that both temporal history effects and relative neural code coarseness vary along similar 

trajectories could be deeply informative. 

These findings could account for the variable effect of stimulus history in neuroscience 

and behavioral experiments. A single modulatory mechanism based on temporal 

integration offers a tidy explanation for the different findings, in strikingly similar 

studies, of either norm-based or adaptation effects (Panis et al., 2011; Kahn & Aguirre, 

2012). Different paradigms, response conditions, and subject instructions arguably probe 
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the cortical gradient of temporal integration at different levels, producing behavioral 

effects ranging from short-term perceptual adaptation to the dynamic formation of 

prototype representations. 

Our study is also not suitable for answering the latent question of whether the 

determining factor in temporal integration of stimulus history is time or number of trials. 

Indeed, our findings from with a region-of-interest show that our measured modulatory 

effect has a half-life of either 3-4 stimuli or 4-5 seconds. In single-unit studies in early 

sensory systems (e.g., the fly H1 visual neuron or mouse retinal ganglion cell; Fairhall et 

al., 2001; Wark et al., 2009), the timescale of integration was found to vary with the 

timescale of stimulus changes. This suggests that neural systems can scale temporal 

integration to the context of stimulus variability. Interestingly, a cascade of decaying 

exponential integrators has this property (Wark et al. , 2007), which could correspond to 

the gradient of temporal integration we observe along the ventral temporal cortex. 

In neural and behavioral terms, the implications of a moving norm are open to 

interpretation.  One on hand, a moving norm can be thought of as implementing gain 

control, preventing large transitions in the perceptual space from saturating neural 

responses by constantly readjusting its reference point.  Alternatively, the norm in our 

model can be understood as a ”prediction” of the upcoming stimulus given previous 

sensory evidence, with the evoked signal corresponding to an error signal. This 

possibility is in agreement with the predictive coding hypothesis (Friston & Kiebel, 

2009), and could be tested empirically via novel experimental design. Regardless of the 

!84



underlying theory, we believe that our model is a useful and didactic description of the 

cumulative effects of neural response modulation.  

Major advances have been made in recent years toward the goal of mapping the 

representational geometry of visual cortex. Distributed neural population responses, as 

measured by BOLD fMRI, have been shown to contain information regarding the large-

scale perceptual similarity relationships of broad categories of visual stimuli 

(Kriegeskorte et al. 2008), and recently it was suggested that this representational 

geometry is relatively uniform and ubiquitous across ventral visual cortex (Cohen & 

Alvarez, 2014). Our results presented here, focusing on the nuanced dynamics of 

distributed representation, speak to the questions of why visual information should be so 

broadly distributed across the ventral stream, and how processing unfolds over a 

seemingly uniform scaffold.  

A representational neural state is a product of both the underlying geometry and 

modulatory effects, such as those of temporal context demonstrated here and likely 

others, such as task demands. Moving forward, it may be productive to consider visual 

neural encoding in terms of a manifold, a dimensioned encoding structure with temporal 

and task-based response characteristics. In this framework, the currently studied 

representational geometry of visual cortex (Kriegeskorte et al., 2008)) would be a 

primary map projection of the manifold, and higher dimensions could scaffold the 

dynamic properties of perception. The interactions of stimulus properties, task demands, 

or cortical areas with the representational geometry could be collected as parallel charts 
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of the manifold through careful experimental manipulations. Investigations such as these 

would allow for a more nuanced understanding of what information is encoded in a given 

neural state, and thus facilitate the future pursuit of neural decoding. 
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5   An ERP Index of Visual “Sameness” is Altered in Autism Spectrum 

Disorder 

5.1 Abstract 

In the search for a neural etiology of autism spectrum disorder, Leo Kanner’s original 

observation (1943) of an “insistence on sameness” in the autistic phenotype provides a 

promising avenue of inquiry, prompting? the question: “how does the brain evaluate 

sameness?” This question is far from trivial, though one answer lies in how neural 

systems relate current sensory information to recent stimulus history. Advances in 

neuroimaging have lent perspective on this evaluation, suggesting that neural responses 

to visual stimuli are modulated by similarity to a prior that reflects temporally integrated 

stimulus history.  

In this study, we ask whether this modulatory effect is altered in individuals with autism 

spectrum disorder. As the timescale of temporal integration can be related to the moment-

to-moment changes in the visual environment as well as the generalization of stimulus 

relationships (i.e., across a longer timescale), we hypothesized that autism would be 

marked by response modulations based on increasingly immediate stimulus history.  

Using electroencephalography, we measured event-related potentials to morphed face 

stimuli in 54 young adults (27 with ASD). By modeling the timescale of the evoked 

response modulations, we find that ASD is marked by effects of information accumulated 

over shorter temporal windows. We relate this difference in neural processing to recent 

theories of perceptual functioning in ASD.  
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5.2 Introduction 

A broad collection of neurocognitive theories of ASD have implicated perceptual 

processing as a locus of dysfunction. Early and enduring theories, such as the weak 

central coherence account (Frith 1989, Happé & Frith, 2006), the enhanced 

discrimination and reduced generalization hypothesis (Plaisted, 2001), and the enhanced 

perceptual functioning account (Mottron et al., 2006), highlight perceptual features of 

ASD as driving imbalances in cognitive functions and abilities. These proposed 

differences commonly take the form of a bias toward local processing at the expense of 

global understanding, difficulties with abstracting or generalizing commonalities (the 

cognitive style of ‘missing the forest for the trees’), and a more veridical perspective on 

the world. Though the predictions of these theories have been met with mixed success 

experimentally, they have succeeded in keeping the realm of perception central to 

discussions of autistic etiology.  

As theoretic accounts of ASD have evolved, the discussion of perception has become 

grounded in theories of sensory systems - including the process of neural representation. 

Neural representation is the means by which sensory information is encoded in patterns 

of neural activity, and the nature of a neural representation determines the information 

available to a neural system for guiding learning and behavior. Though the idea that 

differences in neural representation could drive ASD symptomology is not new 

(Gustafsson, 1997; McClelland, 2000), recent theoretical accounts of ASD have re-

emphasized the potential explanatory importance of sensory encoding / decoding 
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disruptions in ASD. These recent neurocognitive accounts approach the sensory process 

holistically, considering it, for instance, in terms of a Bayesian inference calculator 

(Pellicano & Burr, 2012), or a predictive coding system (Lawson et al., 2013; Van de 

Cruys et al., 2014).  

While theoretic approaches possess intellectual heft, they require neural correlates to 

establish an experimental foothold in the brain. The work presented here begins with a 

model of neural response modulations that are related to stimulus representation. By 

beginning with a neural model, we remain agnostic to the broader theoretic frameworks, 

but benefit from the proximity of our model to the brain.  

The central measure of this study is an extension a long-studied feature of sensory 

systems: neural adaptation - an attenuation of neural response to repetitions of similar or 

identical stimuli (Grill-Spector & Malach, 2001). Recently, it was demonstrated that 

neural adaptation effects extend in time - that is, the modulatory effect on evoked 

responses depends upon stimulus history beyond merely the most recent stimulus seen 

(Mattar et al., in preparation). For continuous, serial presentations of stimuli, sensory 

history is best modeled as being temporally integrated into a drifting norm. The drifting 

norm is in essence a continually updated “prior” used as a reference for neural response 

modulation.  

The character of the drifting norm depends upon the window of temporal integration. For 

long temporal integration windows, the drifting norm behaves like a prototype - residing 

near the center of a representational stimulus space. For increasingly short temporal 
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windows, the drifting norm reflects moment-to-moment stimulus history. At the shortest 

extreme of the model, the drifting norm is updated by each new stimulus, with the 

resulting modulation behaving effectively like a 1-back neural adaptive effect. Using 

fMRI, Mattar et al. (in preparation) demonstrate BOLD signal modulations in the 

fusiform gyrus of neurotypical participants are best fit by an intermediate window of 

temporal integration.  

We use the same framework (Mattar et al., in preparation) in this study to model 

modulations to the evoked responses to faces in electroencephalography (EEG). The 

temporal character of the “drifting norm” is captured in a single parameter - the scaled 

decay rate (µ). Moment-to-moment updating of the drifting norm (akin to 1-back 

adaptation effects) is based on a maximal decay rate (µ = 1) while generalization of 

central tendency (akin to a prototype-referenced modulation) corresponds to a null decay 

rate (µ = 0).  

Our prediction for ASD in this case is straightforward; we anticipated a shift toward 

modulation of neural responses based on more recent stimulus history. The reasons for 

this are several-fold. For one, the temporal integration model is related to the 

establishment of a prototype - a representation of the central tendency of a stimulus 

space. From a certain perspective, this is the essence of weak central coherence (Frith, 

1989; Happé & Frith, 2006) or the reduced generalization hypothesis - the ability to 

abstract a sense of central tendency. Behavioral studies of ASD support our expectation. 

A reduced ability to form perceptual prototypes has been suggested in ASD (Klinger & 
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Dawson, 2001), and face adaptive after-effects have been shown to be reduced in ASD 

(Pellicano et al., 2007). Given that these effects both build up over time and rely on a 

sense of central tendency (Rhodes & Jeffery, 2006), a shift toward neural modulation 

based on a more recent window of stimulus history could be mechanistic to these 

behavioral observations in ASD.  

We measured event related potentials (ERPs) while participants viewed a continuous 

stream of morphed faces while performing an orthogonal oddball task. We examined first 

the modulations of the P200 component of the evoked response, given that it is known to 

be sensitive to effects of recent stimulus history (Kahn et al., 2010). Modeling the 

extremes of the drifting norm framework (µ = 0 and µ = 1) demonstrates a group 

difference in this component, which we build upon by examining the full range of decay 

rates. We then investigate modulatory effects across the duration of the measured evoked 

response in a component-independent manner. The group difference we demonstrate 

suggests that the shift toward moment-to-moment modulations we observe in ASD has 

unexpected cascading effects on the time course of face processing. We go on to discuss 

the implications of increasingly moment-to-moment modulation of neural responses in 

ASD on recent neurocognitive models of the disorder.  

5.3 Methods 

5.3.1 Participants 

Fifty-four young adult subjects (27 with ASD, 27 neurotypical - NT) were included in 

this study.  
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Participants were recruited from the Philadelphia area and surrounding region. All 

participants were compensated for their time, travel costs, and a bonus (up to $10) for 

task attention. All subjects earned the entire bonus. Informed consent was obtained from 

all participants after a complete description of procedures, and the study design was 

reviewed and approved by the Institutional Review Board (IRB) of the Children’s 

Hospital of Philadelphia.  

The two groups were matched on FSIQ, handedness, and gender ratio. The groups 

differed significantly by age (a mean difference of 1.43 years that was not deemed 

clinically relevant). See Table 1 for a subject information. 

Volunteers and parents of volunteers were screened over the phone to rule out the 

presence of Axis I disorders, uncorrected auditory or visual impairments, or significant 

medical or neurological abnormalities or injuries. Participants with ASD had their 

diagnosis confirmed by current symptom presentation (Autism Diagnostic Observation 

Schedule[ADOS], Module 4; Lord et al., 2009) and autism-specific developmental 

history (Autism Diagnostic Interview [ADI-R]; Lord et al., 1994). Clinical assessments 

were administered, scored, and interpreted by clinical psychologists or doctoral level 

trainees under supervision of clinical psychologists. Full Scale IQ above 75, determined 

by Weschler Abbreviated Scale of Intelligence (WASI-II; Wechsler, 2008), was used as an 

inclusionary criterion. 

An additional 6 participants provided EEG data but were excluded from analysis. Two 

subjects were excluded prior to pre-processing: one subject (ASD) was excluded based 
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on clinician uncertainty over diagnosis, and a second subject (neurotypical) was excluded 

due to a setup error during data collection. Four subjects (two with ASD, two 

neurotypical) were excluded based on excessive artifacts during pre-processing 

(exceeding 40% of modeled trials). 

Table 5.1: Participant characterization 

5.3.2 Stimuli 

Two female faces with neutral expressions (identities 06F and 10F) from the NimStim 

stimulus set (Tottenham et al., 2009) were used to create a linear morph continuum. The 

raw faces were aligned and resized to match inter-pupillary distance and location in 

Adobe Photoshop CS5 (Adobe, San Jose, CA). The images were desaturated, major 

blemishes were removed, and the faces were cropped of external features with a 3-pixel 

feathered oval boundary. Using MATLAB (MathWorks, Natick, MA), the mean 

luminance of the faces was equilibrated. Wireframe templates were fitted to the images 

using JPsychomorph (http://cherry.dcs.aber.ac.uk:8080/wiki/jpsychomorph) and the faces 

ASD (N = 27) TDC (N = 27)

Mean(SD) Mean (SD) Significance

Age in years 19.64(1.61) 21.07(2.38) t(52)=2.59, 
p=0.012

FSIQ 109.96(17.44) 113.19(11.29) t(52)=-0.81, 
p=0.42

Gender 22 male, 5 female 21 male, 5 female Fisher’s exact test 
p = 1.0

Handedness 25 right, 2 left 25 right, 2 left Fisher’s exact test 
p = 1.0
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were morphed in 11 equal steps. After morphing, the images were balanced for mean 

luminance once again. Six faces (Figure 4.1A) from the 11 original steps were used in the 

experiment (steps 2, 3, 5, 7, 9, 10). In addition, four male faces to be used as targets were 

drawn from the NimStim set (23M 27M 28M 35M) were prepared in the same manner, 

but were not morphed. The stimuli from the NimStim set are not authorized for 

publication, all figures use representative identities created using the same methods. 

5.3.3 ERP Stimulus Presentation 

The experiment consisted of a total of 1082 trials. Stimulus order was set using a series of 

3 first-order counterbalanced (k = 18, n = 2) de Bruijn cycles (Aguirre et al., 2012). The 

18-element sequence allowed for counterbalancing of the 6 morphed stimuli and 3 ISI 

durations. Nine break periods occurred evenly through the experiment, during which the 

experiment paused until the participant clicked to continue. Ten “target” trials occurred at 

pseudorandom points during the experiment. After each target and break, the five 

preceding trials were repeated to “warm-up” the carry-over effects of interest. For the 

beginning of the experiment, the five final trials were presented as warm up. Three 

separate versions of the full sequence were generated and counterbalanced across 

participants to reduce the potential for higher-order stimulus order effects. All target and 

warm-up trials were excluded from the analysis, leaving only the 972 trials from the three 

cycles used in the main analyses.  
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Figure 5.1: Experimental design & 
modeling  
(a) Stimuli were six exemplars 
(unequally spaced)  drawn from a 
linear morph continuum of two 
identities. The actual anchor 
identities were taken from the 
NimStim stimulus set (Tottenham 
et al., 2009); example stimuli 
shown are two of the author’s 
friends. (a) Experimental design 
and modeling. Morphed stimuli 
were presented continuously while 
subjects monitored for the rare 
appearance of “robbers” and 
responded with a button press 
(example “robber” is 
representative). Trials were 
modeled as the perceptual distance 
from a reference point which varied 
as a function of the scaled decay 
rate (µ). (c) Grand average evoked 
response across the sensors-of-
interest (SOIs). Four bilateral SOIs 
(inset) were selected using an 
independent localizer. The average 
waveforms across subjects shows 
four canonical components within 
the 600 ms epoch. The P200 
window indicated was used for 
component-of-interest analysis. 

Each trial (Figure 5.1B) consisted of a stimulus presentation subtending 5.7˚ x 8.6˚ of 

visual angle on a gray background for 1000 ms, followed by an inter-stimulus interval of 

200, 300, or 400 ms during which a black fixation cross was shown (Figure 5.1B). 
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Stimuli were presented on a 19” ViewSonic G90fb CRT display using EPrime 2 

(Psychology Software Tools, Inc.) situated at eye level 100 cm from participants.  

During the experiments, participants performed an orthogonal task (“catch the robbers”) 

in which they responded via button press to the appearance of any of four male faces (the 

“robbers”) among the female distractors. Participants were trained on a version of the 

task using different distractor faces immediately prior to the main experiment in order to 

familiarize themselves with the target faces. Participants were generally amused by the 

task. Participants responded to targets via mouse click and responses were collected in 

EPrime 2. For successful identification of targets, a green set of “bars” would appear over 

the face (Figure 5.1B), indicating a correct response. For “false alarm” responses, a red 

frame would appear around the face to indicate the incorrect response.  

Following the main experiment, participants completed a short passive-viewing 

functional localizer consisting of faces, cityscapes, and objects (72 exemplars each, 

subtending 12.5˚ x 12.5˚ of visual angle) in a random order. In the localizer, stimuli were 

presented for 400 ms with a jittered ITI between 800 and 1200 ms. The localizer was 

used in order to independently assess “sensors of interest” for use in the main analysis 

(Liu, Harris, & Kanwisher, 2002).  

5.3.4 ERP Data Collection 

Data were collected using the BioSemi ActiveTwo system (http://www.biosemi.com/

products.htm) with 64 active electrodes with sintered Ag-AgCl tips fitted into sized head 

caps. Additionally, two electrodes with a flat 4-mm pallet were placed on the mastoid 
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processes bilaterally with adhesive stickers and used as references for data import. 

Electrical offsets were verified prior to initiation of data collection & kept below 25 µV 

for all channels. Continuous data were sampled at a 512 Hz sample rate using the default 

1/5 sample rate low-pass filtering (http://www.biosemi.com/faq/adjust_samplerate.htm).  

Participants were seated alone in an adjacent room from the experimenter with the door 

between ajar. Verbal encouragement was kept uniform and offered during breaks (e.g. 

“doing great, keep it up.”) in order to assess subject attentiveness.  

5.3.5 ERP Pre-Processing 

All EEG data were pre-processed offline using MATLAB and and the EEGLAB toolbox 

version 9 (Delorme & Makeig, 2004). Data were imported into EEGLAB directly, 

mastoid channels were indicated as references and excluded. The data were re-referenced 

to the average signal across the 64 cranial channels, and a 40 Hz low-pass filter was 

applied. The continuous data were separated into 700 msec epochs (100 ms pre-stimulus 

onset and 600 post) corresponding to individual stimulus presentations. Epochs were 

baseline corrected (100 ms pre-stimulus onset). Sensors-of-interest were identified using 

the independent localizer data via a point-to-point t-test comparing the face and house 

conditions in the latency range of the N170 and N250. Sensors-of-interest (Figure 5.1C, 

inset) were selected if they were identified as significant in a majority of subjects. 

Artifacts were identified only within the sensors-of-interest using a ±50 µV threshold 

across the full epoch. Trials containing artifacts within the SOIs were removed from 
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analysis. Groups did not significantly differ on frequency of artifacts (ASD: mean 

10.28%, std 9.48%; NT: mean 7.32%, std 9.65% ).  

For the initial analyses (Figure 5.2), the P200 component of the evoked response was 

defined across participants. A grand average waveform was generated for all included 

trials and participants (Figure 5.1C). The P200 was defined as the peak value within a 

search window of 200 to 300 ms post-stimulus onset. The P200 amplitude for individual 

trials was evaluated as the mean of the 5 data-point (9.76 ms) window about this time 

point (Figure 5.1C, grey column).  

For the analysis investigating the entire evoked response epochs (Figure 5.3), each time 

point of the evoked response across epochs was modeled individually. Grand average 

waveforms were generated for each group by averaging all modeled epochs within 

subject and then across subject (Figure 5.3A). At each time point, the peak µ model was 

determined within group. The plot of the percent variance explained for the peak model 

(Figure 5.3B) is used a clipping mask for a color plot demonstrating the peak µ. For 

Figure 5.3C, the waveforms were exported from MATLAB as EPS files and were 

manipulated in Adobe Illustrator CS5 for visualization. The raw paths were set to 12 pt 

line widths and outlined automatically by Adobe Illustrator. The resulting outline was 

used as a clipping mask for a columnar color plot indicating the peak µ for each time 

point within group after statistical correction.  
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5.3.6 General Linear Modeling 

All analyses relied upon modified general linear models (GLMs). For every GLM here 

reported, the data modeled corresponded to a single narrow time window of the evoked 

responses across trials. The GLM would contain a covariate modeling the effect of 

interest, the effect of inter-stimulus interval as a nuisance covariate, and a unit offset 

term. Following calculation of the ß values on each covariate, the percentage of the 

residual variance explained by the covariate of interest would be calculated as follows. 

The variance of the modeled effect of interest (the variance of the covariate of the effect 

of interest multiplied by its ß value) would be divided by variance of the original data 

after ISI effects were removed. This denominator was calculated as the variance of the 

difference between the original data and the modeled effect of ISI (the covariate for ISI 

multiplied by the beta). This proportion is multiplied and reported as percent residual 

variance explained. All covariates of interest (described below) were mean-centered and 

scaled to have unit variance. Lastly, as a convention, the sign of the covariates was 

reversed to correspond to direction of modulation (Kahn et al., 2010).  

For the modeling of adaptation-like (“from previous”) effects a covariate was created 

modeling the dissimilarity of the prior face to the current one on each trial (Figure 5.1B, 

blue line). These were set to have value for each trial corresponding to a linear distance 

within the linear stimulus space (with the six morph faces positioned at 1, 2, 4, 6, 8, and 

9).The resulting covariate was mean-centered and scaled to have unit-variance. This 

covariate was identical to the drifting norm covariate with µ = 1.  
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For the modeling of norm-like “from center” effects (Figure 5.1B, yellow line), a 

covariate was created modeling the distance of each stimulus within the linear stimulus 

space from the center of the space (e.g. the difference between any given face position 

and the average of the face positions). The resulting covariate was mean-centered and 

scaled to have unit-variance. This covariate was identical to the drifting norm covariate 

with µ = 0.  

Following from Mattar et al. (in preparation), we recognized that adaptation and norm-

based effects represent narrow windows onto a single effect model of modulation based 

upon temporal context. The “drifting-norm” is expressed as the reference point from 

which the perceptual distance of the currently presented stimulus is measured. The 

drifting norm position is updated on each trial as a function of the scaled decay rate (µ, 

between 0 and unity) using the function: Xn = Xn-1 + µ(Sn - Xn-1), where Sn is the 

location of the most recent stimulus and Xn the location of the drifting norm on a given 

trial, both as positions within the linear morph space.  

For each “drifting norm” covariate, the value on any given trials was set to the distance 

between the given stimulus and the drifting norm on that trial. 51 covariates were 

generated corresponding to values of µ between 0 and 1 in steps of 0.02. Each covariate 

was mean-centered and set to have unit variance.  
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5.3.7 Peak-µ Waveform Correction 

For the analysis investigating the entire epoch of the evoked response, it was necessary to 

correct for both the number of comparisons within group & also evaluate whether group 

differences were significant. This was handled with a two-fold test of significance. 

Within each group, the full array of % residual variance explained values [time points x 

µ] was tested for significance. The results were FDR correct at α < 0.05 for each group.  

Separately, group differences were assessed by subtracting the full array of residual % 

variance explained values [time points x µ] for neurotypical participants from that of the 

ASD group. To evaluate these differences for significance, a bootstrap resampling the two 

groups with replacement was performed 1000 times and the difference between each 

bootstrap at every point in the [time point x µ] array evaluated. The standard deviation of 

the bootstrap differences at each point was taken as the SEM of the corresponding point 

of the veridical difference map and used to assess significance. The resulting p-values 

were FDR corrected at α < 0.05.  

For the plots of the full waveforms in each group (Figure 5.3C), the time points rendered 

in color demonstrated significant % residual variance explained after FDR correction 

within group, as well as a significant corrected group difference in % residual variance 

explained for the time point and µ rendered. This double-correction suggests the 

modulations rendered represent both significant within-group and across-group effects.  
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5.4 Results 

In this experiment, we collected EEG data while participants with ASD and neurotypical 

controls monitored a continuous series of linearly morphed faces for oddball targets 

(“robbers”). We modeled modulations of the evoked response to faces in our data based 

upon a “drifting norm” (Mattar et al., in preparation) framework, in which response 

amplitude is altered as a function of distance from a reference point reflecting temporally 

integrated stimulus history. The variable of interest in this framework is the timescale of 

this temporal integration - how freely does the norm drift? At one extreme (a scaled 

decay rate µ = 0), stimulus history is broadly integrated & thus the norm remains fixed at 

the center of the stimulus space. At the other extreme (µ = 1), the drifting norm is updated 

completely to match the most recent face. Since a longer timescale of integration 

corresponds to the generalization of a perceptual prototype - a process argued to be 

altered in ASD (Klinger & Dawson, 2001) - we hypothesized that our participants with 

ASD would demonstrate modulations based upon more recent stimulus history.  

We first modeled effects within the P200 component of the evoked response to faces, as 

this component has been previously shown to exhibit modulations based upon stimulus 

history (Kahn et al., 2010). Based upon these results, we then investigated modulations of 

responses in a component-agnostic manner across 600 ms of the evoked response. 
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Figure 5.2: Analysis within the 
P200 component 
(a) The amplitude of the P200 
component across trials was 
modeled first as a function of 
distance from a central 
“norm” (yellow bars) or from the 
distance of the prior face to the 
current one (blue bars) in the linear 
stimulus space. A significant 
interaction effect of model by 
group was observed. Error bars 
correspond to the between-subject 
SEM. (b) The amplitude of the 
P200 component was next 
modeled using 51 “drifting norm” 
models corresponding to scaled 
decay rates (µ) between 0 and 1 in 
steps of 0.02. The neurotypical 
group (NT) demonstrated a peak µ 
of 0.06 (yellow arrow) while the 
ASD group had a peak of of 0.74 
(blue arrow). 

5.4.1 Analysis Within the P200 Component 

The P200 component of the evoked response has been demonstrated to exhibit amplitude 

modulations based on recent stimulus history, and so we began by modeling the 

amplitude of this component. A grand average waveform (Figure 5.1C) was obtained 
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across all participants and groups. The center of the P200 component was identified as 

237.89 ms after stimulus onset, and the amplitude of the response was set as a mean of 

the five time points around this peak.  

Following from the analyses in Mattar et al. (in preparation), we first targeted 

modulations from the extremes of the drifting norm framework, which correspond to a 

“1-back” neural adaptation effect - modulation as a function of current stimulus distance 

from the stimulus immediately preceding in time, and a “norm-based” effect - a 

modulation as a function of current stimulus distance from the center of the stimulus 

space. These effects were modeled separately in all participants, and summarized as a 

percentage of the residual variance explained within the P200 component after effects of 

inter-stimulus interval were removed. These data are presented in Figure 5.2A. In the 

ASD group, a significant amount of the variance was explained by the model 

corresponding 1-back neural adaptation (“from previous”, t(26) = 4.45, p < 1.43e-04) as 

well as the model corresponding to a norm-based effect (“from center, t(26) = 2.51, p < 

0.019). The neurotypical group showed a significant modulation of the P200 component; 

in contrast to the ASD group, modulation in nuerotypical corresponded to a norm based 

effect (“from center” t(26) = 4.51, p < 1.22e-04). A repeated-measures ANOVA 

comparing the groups and models demonstrated a significant interaction effect of group 

by model, suggesting that the boundaries of the drifting norm framework varied across 

diagnostic boundaries (F(1,52) = 7.25, p = 0.0095).  
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As the boundary conditions of the drifting norm framework appeared altered, we then 

investigated the full spectrum of temporal integration windows within the P200. We 

evaluated the percentage variance of the P200 amplitude explained by models 

corresponding to 51 values of the scaled decay rate (µ) across participants. These are 

summarized in Figure 5.2B, averaged across group. The “peak” scaled decay rate is 

indicated, as the max of the averaged curves for each group. The optimal scaled decay 

rate for neurotypical participants (µ = 0.06) is smaller than that of the ASD group (µ = 

0.74) suggesting the P200 component is modulated in neurotypical participants based 

upon a longer window of stimulus history relative to participants with ASD. This 

difference can be evaluated statistically by finding the peak µ for each subject and testing 

the groups using a 2-sample t-test assuming unequal variance. While this between-

subjects average yields a smaller difference, the group separation is significant (t(50.25) 

= 2.44, p = 0.018).  

5.4.2 Analysis of the Full Evoked Response Time-Course 

A suggested finding in ASD is the potential for phase delays in the evoked response to 

sensory information (Sutherland, 2010). Were the modulatory effects we are investigating 

to vary across time, we might anticipate that comparing groups at a fixed time after 

stimulus onset to demonstrate differences based upon the stage of processing and not 

upon the underlying window of temporal integration.  
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Figure 5.3: Analysis across evoked response  
(a) Group average waveforms for neurotypicals (left) and ASD (right). Grey regions 
represent the standard error of the mean at each time point. (b) Percentage residual 
variance explained, after interstimulus interval effects are accounted for, labeled by the 
peak scaled decay rate (µ) at each time point of the 600 ms epoch. (c) Statistical analysis. 
Group average waveforms were labeled as in B. Time points rendered in color 
represented models whose % residual variance explained was significantly greater than 
zero (α < 0.05, FDR corrected), and for which there was a significant difference in % 
residual variance explained between groups for the peak µ (α < 0.05, FDR corrected). 

!106

Average Waveform Unsmoothed Data ASD

−4

−2

0

2

4

6

0 200 400 600
−4

−2

0

2

4

6

0 200 400 600

Average Waveform Unsmoothed Data TDC

0 200 400 600
−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

0.6

Pe
rc

en
t V

ar
ia

nc
e 

Ex
pl

ai
ne

d

0 200 400 600

±SEM ±SEM

0 ms 200 400 600 0 ms 200 400 600

Scaled decay rate (µ)
0 1

Autism Spectrum Disorder (N = 27)
6

4

2

0

-2

-4

Neurotypical (N = 27)

FDR corr. (α < 0.05)

6

4

2

0

-2

-4

µV µV

Time after stimulus onset

µVµV

Time after stimulus onset

A

B

C



We thus next modeled the modulatory effects of stimulus history across the entire 

extracted epoch (600 ms) of the evoked response. Each group waveform is plotted in 

Figure 5.3A. Should the modulations unfold evenly over the time course for each group 

but do so more slowly in ASD, it should manifest here. The percentage of the residual 

variance explained (after accounting for the inter-stimulus interval) by the best-fitting 

modulatory effect model for each group is plotted in Figure 5.3B. The color code 

corresponds to the peak µ of the model at that time point, evaluated as in Figure 5.2B. 

The statistical significance of these measurements is rendered in Figure 5.3C. The 

average waveform for each group is plotted with a color scale indicating the peak µ for 

each time point. The peak µ at each time point was tested for significance and the entire 

plot for each group FDR corrected for time points (308 points at 512 Hz) and drifting 

norm models (51 values of µ). Separately an FDR corrected group difference was 

calculated for each time point and drifting norm model via bootstrap resampling. Time 

points plotted in color represent significant within-group and between-group effects.  

These plots demonstrate a circumscribed modulatory effect in the neurotypical group 

beginning close to the center of the N170 component (196.8 ms after stimulus onset) and 

terminating approximately in the middle of the N250 component (325.8 ms after stimulus 

onset). The peak decay rate (µ) of the modulatory effect in the neurotypical group across 

this stage of the evoked response ranged from 0.58 to 1, with a median of 0.82.  

The modulatory effects in the ASD group manifest differently across the average evoked 

response. The peak µ for the ASD group is consistently higher relative to the neurotypical 
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group,  ranging from 0 to 0.46, with a median of 0.26, reflecting shorter windows of 

temporal integration driving the modulatory effects. Further, though the onset of 

significant modulation begins at the N170 in the ASD group (198.8 ms after stimulus 

onset), the modulatory effects persist longer.  

Figure 5.4: Raw variance data across the time course  
(a) The average variance for each group (neurotypical in yellow, ASD in blue) for each 
time point of 600 msec epoch. (b) The percentage of the variance in A explained by the 
modeling of interstimulus interval for each group. (c) The percentage of the raw variance 
explained by the peak temporal history model for each group, across time. 
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For completeness, we also present raw variance data (Figure 5.4) including the proportion 

of the variance explained across time points by the effects of interstimulus interval 

(Figure 5.4B) for each group and the effects of the peak modulatory model (Figure 5.4C).  

5.5 Discussion  

In this study we investigate the time course of the evoked response to faces in autism 

spectrum disorder. We demonstrate that, relative to neurotypical controls, participants 

with ASD exhibit modulations of their evoked response based upon more recent stimulus 

history - in essence a more moment-to-moment neural calculation of similarity from 

sensory evidence to stimulus history. We demonstrate this first within the P200 

component of the evoked response to faces, which has been demonstrated to show 

stimulus history effects (Kahn et al., 2010). We expand this finding by demonstrating that 

not only are modulations in ASD based on more recent stimulus history, but that these 

modulatory effects are evident for a longer period of the evoked response to faces. While 

we had hypothesized the former would occur in our data, the latter feature was novel. It 

seems very possible that a shift in the modulatory window could have cascading effects 

on the face processing stream.  

While these results are exciting, it is important to recognize several limitations. First, we 

use a limited stimulus set to assess effects, so the range of potential modulations is 

smaller. The behavior of the drifting norm model for highly dissimilar stimuli is less well 

understood (Mattar et al., in preparation). Additionally, our findings are limited to the 

realm of faces. To assess whether this is a general mechanism of altered neural processing 
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in ASD, we would want to use different stimulus modalities. Lastly, our relatively small 

sample size limits our ability to assess individual differences. Future work can optimize 

our approach to link it to the ASD phenotype.  

Several recent neurocognitive models of ASD correspond well to our findings. The high, 

inflexible precision of prediction errors in autism account (HIPPEA, Van de Cruys et al., 

2014) suggests that low-level sensory information, interpreted as prediction errors, is 

encoded maladaptively. HIPPEA suggests that in the context of sensory responses 

representing deviations from expectation, ASD may be understood as an increase in 

precision of these prediction errors that is invariant to context. Though our model of 

modulatory effects on neural responses (Mattar et al., in preparation) arose from an 

exploration of representational geometry, its conceptual basis can be readily linked to the 

theories of predictive encoding. The “drifting norm” here discussed can be interpreted as 

a rolling sensory prediction, and modulations relative to the norm (deviations) as 

prediction error signals. If interpreted this way, the measurements we demonstrate here 

corroborate HIPPEA’s account (Van de Cruys et al., 2014).  

Related but distinct to the concept of ASD as a disorder of prediction is the proposal of a 

Bayesian basis for ASD (Pellicano & Burr, 2012). In this account, Pellicano & Burr 

suggest that to the extent sensory information processing can be modeled as a Bayesian 

inference, ASD could be marked by attenuated priors (or “hypopriors”), placing an 

overemphasis on incoming sensory information in establishing a percept. Critiques of this 

model (Friston et al., 2013; van Boxtel & Lu, 2013; Van de Cruys et al., 2013) pointed to 
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the lack of a neural framework to explain the concept of hypopriors. Our findings could 

bolster this account; to the extent that the drifting norm represents a form of prior, 

calculation of this norm on a more moment-to-moment basis (e.g. with a higher decay 

rate, µ) would effectively de-emphasize generalization, and could reduce the usefulness 

or even establishment of a prior.  

Separate from the concept of predictive coding, it was recently suggested that evoked 

responses in ASD are unreliable, exhibiting greater intra-individual variability of 

stimulus-evoked responses in fMRI (IIV, Dinstein et al., 2012; Haigh et al., 2014). It is 

non-trivial to assess the interactions of our findings with the account of greater intra-

individual variability in ASD.  

If one were to consider the “drifting norm” as an actual image prior existing in our one-

dimensional stimulus space, and then to calculate the pixel-wise differences between the 

current stimulus and the drifting norm across the time course of the experiment, the 

variability of this pixel-wise difference plot over time would increase as a function of 

decay rate. Phrased differently, the amplitude of the signal generated by an encoding 

system using a given decay rate will increase as a function of decay rate. This observation 

reflects the fact that the visual world is prone to high frequency change inessential to an 

understanding material reality (we hesitate to call this noise). A neural system with a 

lower decay rate (µ) in essence applies a low-pass filter to this signal, dampening the 

features of visual change. The difference we observe in ASD, lower decay rates (µ), is a 

shift toward less filtering. The open question would seem to be whether greater intra-
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individual variability reflects a reduction in signal-to-noise or a fundamental difference in 

the nature of the signal encoded. We would argue in favor of the latter interpretation.  

The alternative view flips the relationship between IIV and µ - the argument that IIV is 

“upstream” of a larger decay rate for sensory evidence (µ). We think this is less likely for 

two reasons. If intra-individual variability is higher, it seems likely that a neural system 

would opt to reduce the weighting of current sensory evidence to maintain stability 

(lower µ for higher IIV). Also, if intrinsic noise were higher in ASD, why then is higher 

IIV predominately observed for stimulus-evoked signals (Dinstein et al., 2012; Haigh et 

al., 2014)? Generally, we feel the similarities between the increased IIV account of ASD 

& our findings outweigh any disagreements. We would suggest our result offers an 

exciting new avenue for exploring the origins of increased IIV in ASD. 

In this article we have offered a perspective on the dynamics of visual evoked responses 

in ASD. While the modeling framework is relatively new, we feel the findings generally 

support a number of existing neurocognitive theories of ASD focused on perception. A 

great deal of research will be needed to begin to explain how the measures we assess 

emerge from visual networks, and how this emergence varies as a function of 

connectivity of the network. A mechanistic neural perspective on ASD will require more 

than the narrow window on the brain reported here.  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6   General Discussion  

The work presented in this thesis has unified two effects of neural encoding - what we 

called neural adaptation and norm-based effects - in terms of one modulatory mechanism 

based on stimulus history. The fundamental variable of this model is the decay rate (µ) 

which determines how much of recent sensory history is used in establishing a reference 

point. The updating of this reference point is done on a rolling basis - as the visual world 

is ever changing, so too must the drifting norm update.  

Plenty of questions remain about the picture we draw of stimulus history effects on neural 

responses. In our experiments, we can’t dissociate between the effects of recent stimulus 

history measured in units of time and that measured in stimulus presentations; our 

experiments were not designed to separate these two. One could envision an experiment 

where stimuli are presented for varying amount of time while also varying in metric 

similarity to each other. It also remains to be explored whether there is one or several 

references points maintained perceptually. The stimuli we used were all sampled from a 

single continuous space. What would happen if there were implicit groupings of stimuli? 

It seems likely that several local norms could be established. If so, is there an upper limit 

to the number of norms?  

Another aspect of our experiments that gets me: how often does one really see a series of 

faces presented serially? While this is useful to make detailed measurements, I wonder 

how stimulus history effects are instantiated under natural or naturalistic viewing 
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conditions? In this work, we begin to understand the neural calculus that is used to filter 

incoming visual information. How does this scale to the experience of real environment?  

I think this latter question is quite important when discussing the implications of our 

work to autism spectrum disorder. In ASD, we observe that the timescale over which the 

reference is calculated is shorter, corresponding to a reduction in the smoothing of 

sensory input. Ignoring information via smoothing isn’t necessarily a net loss - there is a 

forest to see if you gloss over the trees. If we had a better understanding of how sensory 

history effects played out in full environments, we might gain an understanding of how 

the world “feels” to someone whose visual system smoothes less. A thought experiment I 

considered recently: if we could use neural measurements of sensory history effects in 

ASD drawn from the experience of a movie (for instance) could we apply a filter to the 

movie (exaggerating variation for instance) to impose similar visual cortical modulation 

in a neurotypical viewer? This proposal relies on a reverse inference: matching the 

cortical modulation doesn’t mean the percept is the same. However, it might be possible 

to validate the method by designing stimuli that are salient to a neurotypical individual 

when filtered & testing whether the unfiltered stimulus is salient to someone with ASD. 

This prospect has potentially fun applications: if we could validate a model of how the 

world looks to someone with ASD, would be possible, for instance, to design a classroom 

which minimizes overstimulation for students on the spectrum? 

If we return to the central question framed by the introduction to this thesis - how the 

visual system balances encoding variation and yet generalizes - we’re left with a clear set 
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questions: how is this trade-off balancing act evaluated? Phrased differently: what 

determines the timescale of smoothing across variation? Why is this calculation different 

in autism? I will speculate around a few avenues to walk in search of answers, and then 

walk down one a much further than I think any current research justifies.  

The first avenue toward a possible answer focuses on unit characteristics. That is, on the 

properties and activity of neurons or perhaps cortical columns - the building blocks of the 

systems and streams discussed here. This avenue holds a lot of promise, as it will be most 

easily integrated with understanding from other fields such as genetics and animal 

models. The second focuses on network qualities of sensory systems - how does the 

distributed system appear to behave.  

This second avenue has been of particular interest to me through the development of this 

work. One way to conceptualize visual representation is a distributed mapping of a 

perceptual space onto a neural network. The modulatory activity related to sensory 

history we discuss here could represent topological alterations to this representational 

surface. The gradient of modulatory activity we observe across the cortex could be 

understood as different dynamics of this topology - short windows of temporal 

integration could be like a drum which bounces back immediately after deformation, 

whereas longer windows are like memory foam that takes longer to reshape.  

It should be noted that this finding of different temporal characteristics across the cortex 

has been echoed in other work using different methods. Uri Hasson used the term 

“temporal receptive windows” to describe the amount of time different patches of visual 
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cortex seems to care about (Hasson et al. 2008). Recent work in monkeys suggested 

intrinsic timescales existed in hierarchies across cortex (Murray et al. 2014). The 

interaction of sensory information and time seems like it could be a fundamental 

organizing principle of cortical activity. If we were to extend the gradient we observed in 

Chapter 3, we might glimpse the possibility (as in Murray et al. 2014) of a brain-wide 

map of timescales. Of course, we also observe that this gradient seems to shift a bit based 

on stimulus properties - perhaps our map could bring in the different possible temporal-

integration states of each patch of cortex into a chart across stimulus conditions. What 

else might cause it to vary? Let’s add more maps.  

What we quickly realize in this search for maps is that the measures needn’t be limited to 

the modulatory timescales we’ve spent this whole thesis exploring. Countless other 

neural calculations unfold across cortex. Receptive fields vary in size & location. Sensory 

modalities as well. The early findings of fMRI demonstrated functional areas such as the 

fusiform face area (FFA), a patch of cortex which prefers faces to other classes of visual 

objects dot the cortex as well.  

By analogy these are state-by-state maps in geography; perhaps our timescale gradient is 

something akin to mean temperature or population density. Still other maps exist. A huge 

wing of computational neuroscience has focused on connectivity analyses - using 

different imaging modalities to evaluate the strength of connections between two regions 

of the brain. The layering of such maps under different conditions has also been 

approached - Danielle Bassett and Marcelo Mattar (a collaborator of mine on the 
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temporal integration work) at Penn have been observing differences in functional 

connectivity across brain areas under different task conditions.  

Let’s speculate what it would be like to have even more measures than receptive fields 

and temporal windows and connectivity profiles. What other maps might we draw? By 

analogy, the humanities are way ahead of us. A friend of mine during my years at Penn, 

Andy Fenelon, did his graduate work in demography - a field which excels at mapping. 

One could understand much about the United States by layering maps of population 

density and median income and mean social network size, for instance. Could we start to 

ask new questions with enough information?  

A fun question I’ve been pondering is “why is the fusiform face area where it is?” - if we 

had enough maps would it be the obvious place for it to fall? (By analogy to geography, a 

related question is “why is the film industry in Hollywood?” - a little knowledge of 

climate and film history answers this).  

Eventually these sort of questions and the collection of maps would demand a level of 

rigor. What I think we might need are new terms to describe the approach to information 

processing at the population level - not necessarily systems neuroscience - but truly a 

crowd or mob understanding within and across systems. I would suggest something like 

neurodemography or socioneurology. Sociology being the study of information transfer 

across a population, and demography the mapping of distributions of traits across a 

population based on factors such as geography.  
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In many ways, this is what the field of neuroscience is doing already - careful 

characterization of the brain at many levels. However, it seems to me that the useful thing 

(soon) would be to bring together this information in whatever and every way possible. 

What would follow would be the brain equivalent of what companies like Facebook or 

Amazon are doing currently with their users - developing cohesive, exhaustive profiles of 

what each user (patch of cortex) is doing across a variety of measures. This deep profiling 

is the raw material that might allow for mechanistic understandings to coalesce. And just 

as Amazon uses algorithms to target consumers, so too might deep learning algorithms 

mine neurodemographic profiles to, for instance, diagnose psychiatric disorders in a 

distributed way via deep learning algorithms. I think this is where the network road leads 

- deep profiling followed by deep learning to abstract a model of the brain’s processing 

space.  

As out there as I feel like we’ve reached in this discussion, I’m convinced there’s much 

further to go. I think simply of how much I’ve grown over the course of my graduate 

school career & I’m reminded that the brain is not a static processor - the maps I could 

have collected (were I able) of my own brain at the outset of graduate school might not 

even tell me much about it today. Though I do really aspire to make sense of all this, I 

find that fact oddly comforting.  
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