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ABSTRACT

Finite Model Theory and Finite Variable Logics

Eric Rosen

Supervisor
 Scott Weinstein

In this dissertation� I investigate some questions about the model theory of �nite struc�

tures� One goal is to better understand the expressive power of various logical languages�

including �rst�order logic �FO�� over this class� A second� related� goal is to determine

which results from classical model theory remain true when relativized to the class� F � of

�nite structures� As it is well�known that many such results become false� I also consider

certain weakened generalizations of classical results�

I prove some basic results about the languages Lk��� and Lk������ the existential

fragments of the �nite variable logics Lk and Lk�� � I show that there are �nite models

whose Lk����theories are not �nitely axiomatizable� I also establish the optimality of a

normal form for Lk������ and separate certain fragments of this logic� I introduce a notion

of a generalized preservation theorem�� and establish certain partial positive results� I

then show that existential preservation fails for the language L��� � both over F and over

the class of all structures� I also examine other preservation properties� e�g� for classes

closed under homomorphisms�

In the �nal chapter� I investigate the �nite model theory of propositional modal logic�

I show that� in contrast to more expressive logics� modal logic is well�behaved� over F � In

particular� I establish that various theorems that are true over the class of all structures

also hold over F � I prove that� over F � a class of models is FO�de�nable and closed under

bisimulations i	 it is de�ned by a modal FO sentence� In addition� I prove that� over F �

a class is de�ned by a modal sentence and closed under extensions i	 it is de�ned by a

��modal sentence�
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Chapter �

Introduction

Finite model theory investigates the model theory of �nite structures� This subject in�

teracts with a variety of �elds from math� logic� and computer science� including classical

model theory� graph theory� and complexity theory� The di	erent areas and aspects of

�nite model theory are uni�ed by an interest in the expressive power of logical languages�

In this dissertation� I pursue model theoretic questions pertaining to de�nability� paying

particular attention to preservation theorems� Some of these problems are just �nite ver�

sions of results from classical model theory� That is� we can ask whether a classical theorem

remains true when restricted to the class� F � of �nite models� Other questions are varia�

tions on standard ideas� Chapters � and �� for example� examine preservation theorems

involving languages other than �rst�order logic�

It is well known that many theorems from classical model theory become false over

the class of �nite models �see ������ For example� the Los�Tarski theorem states that a

�rst�order sentence de�nes a class of models that is closed under extensions if and only if

it is equivalent to an existential sentence� Tait ���� showed that this proposition becomes

false when relativized to the class F � That is� there is a sentence� �� such that Modf����

the class of �nite models of �� is closed under extensions but � is not equivalent over F to

any existential sentence� As a result of these kinds of failures�� it would be interesting to

�nd classical theorems that remain true over F � But negative� results can also be viewed

as raising new problems pertaining to what we call generalized preservation theorems� For

example� Tait�s example suggests that we look for some alternative characterization of the
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�rst�order de�nable classes of models that are closed under extensions� Chapter � contains

some results in this direction� I also investigate preservation theorems for other logics

prominent in �nite model theory�

The remainder of this introduction provides some information about more general as�

pects of �nite model theory that provide a setting for what follows� Below� I brie�y discuss

the importance of logical languages other than �rst�order logic� In Section �� I then de�

scribe preservation theorems in more detail� and brie�y summarize the topics covered in

the remaining chapters� Section � contains notation� background information� preliminary

de�nitions� and some basic results� Section � describes the connection between logical

equivalence and Ehrenfeucht�Fraisse games�

Over the class of �nite models� central results of classical model theory either become

obviously false� such as the Compactness theorem� or meaningless� like the Lowenheim�

Skolem theorem� The failure of compactness� in particular� means that most standard

proofs of classical results are invalid over F � Furthermore� it has been shown that� when

relativized to the class F � many of these results actually become false� including the Los�

Tarksi theorem� the Beth de�nability theorem� Craig�s interpolation theorem �see ������

and Lyndon�s lemma �see ����� In addition� many natural and computationally simple

properties� such as parity and graph connectedness� are not expressible in FO� As a con�

sequence� �rst�order logic �FO� is not as natural and attractive� over F � as it is in the

general case�

A central motivation for the investigation of other logics has been the desire to �nd

logical characterizations of computational complexity classes� An important early result

from Fagin ���� says that a property �that is� a class of models� is in NP i	 it is de�nable by

an existential second�order sentence� Since then� Immerman and others have shown that�

over the class of ordered �nite structures� many other complexity classes are captured� in

this sense� by di	erent logics� This research has highlighted the interest of a variety of

�xed point logics� which extend FO by adding some sort of recursion operator�

Barwise ��� showed that� over a �xed structure� every formula in least �xed point logic

is equivalent to a formula in L���� in�nitary �nite variable logic� which is de�ned below�

Kolaitis and Vardi ���� observed that this remains true over the class F � Although �nite

variable logic looks rather strange because of the way in which variables are reused� it has
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been useful for proving results about the expressive power of �xed point logics� since there

is a nice algebraic characterization of logical de�nability for the language� From a very

di	erent point of view� others �see ���� have argued for the relevance of �nite variable logic

to modal logic� Because of these connections� as well as my belief in the intrinsic interest

of this logic� it has been a	orded considerable attention in this dissertation� Chapter �� in

particular� is devoted to basic questions about the model theory of the existential fragments

of Lk and Lk�� �

Various kinds of questions arise about the expressive power of logical languages� As

mentioned above� Fagin and Immerman have established close connections between the

complexity of describing a property of �nite structures in a logical language and the com�

plexity of computing the property on a Turing machine� or some other abstract model of

computation� A major open problem is to determine whether there is a logic that can

express exactly those properties that are in P� Given two logics� L and L�� we can also ask

about their relative expressive power� that is� is every sentence � in L equivalent to some

sentence � in L�� Finally� given a single property� such as graph planarity� and a logic� L�

we can ask whether there is a sentence � in L that expresses the property�

To show that a property can be de�ned in L� it su�ces to exhibit a sentence that

expresses it� On the other hand� negative results require a more general method� Over the

class of all structures� one generally uses compactness� over F � these kinds of results are

most often established using Ehrenfeucht�Fraisse type games� This technique� which also

works in the classical setting� plays an important role in �nite model theory� and has been

applied to logics other than FO� including� especially� �nite variable logics and fragments

thereof� Some of these games are de�ned in Section ��

��� Preservation theorems

Classical preservation theorems establish a connection between syntactic and semantic

properties of �rst�order logic� In particular� they are propositions of the following form�

A class of models� C� is FO�de�nable and closed under �preserved under�� some

speci�ed algebraic operation i	 C is de�ned by a FO�sentence of some speci�ed

syntactic form�
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Thus� the Los�Tarski theorem relates classes closed under extensions to existential sen�

tences� The Homomorphism preservation theorem states that a class C is FO�de�nable

and closed under homomorphisms i	 it is de�ned by a positive existential sentence�

We remarked above that one aspect of �nite model theory has been the attempt to

determine which classical theorems remain valid over the class of �nite structures� It was

also noted that essentially every known answer is negative� A fundamental motivation for

this dissertation has been to try to �nd positive model theoretic results that hold over

F � To this end� we introduce a generalization of the notion of a preservation theorem

in order to formulate certain weaker versions of classical theorems that we would like to

show remain true over F � The starting point for our investigation is Tait�s result that

the Los�Tarski theorem fails �nitely� This led us to ask whether there is a natural logic�

stronger than FO� such that every FO�de�nable class that is closed under extensions is

de�ned by an existential� sentence of this logic�

This question also suggests that we investigate preservation theorems for these stronger

logics� For example� if there is a logic L that contains FO and has an existential preservation

theorem over F � then the answer to the previous question must be yes� One of the main

results of this dissertation is that existential preservation does not hold for L���� either

over F or over all structures�

Chapter � contains some basic results about the model theory of the languages Lk���

and Lk������ the existential fragments of the �nite variable logics Lk and Lk�� � We show

that there are �nite structures whose Lk����theories are not �nitely axiomatizable� We

also establish the optimality of a normal form for Lk������ due to Kolaitis and Vardi� and

separate certain fragments of this language�

Chapter � discusses preservation theorems for classes closed under extensions� Section

� establishes some generalized preservation theorems for fragments of �rst�order logic�

In Section �� we prove that existential preservation fails for L������� In Chapter �� we

examine generalized preservation theorems for other classes of models� including those

that are monotone� and those that are closed under homomorphisms�

Chapter � initiates the investigation of the �nite model theory of modal logic� which�

it is well known� can be viewed as a fragment of FO� The results here indicate that� in

contrast to stronger languages� modal logic is well�behaved� over F � Thus� we prove that
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some preservation theorems� due to van Benthem and his collaborators� remain true over F �

A somewhat open�ended question raised by this work is the extent to which these arguments

can be generalized to apply to stronger fragments of FO� especially those considered in ����

Recently� connections have emerged between modal logic and certain areas of theoretical

computer science� We hope that some of our results� and the techniques developed here�

will be of interest to researchers in these �elds�

��� Preliminaries

Let F� be the collection of �nite structures of signature ��We will assume that the universe

of any A � F� is an initial segment of N � f�� �� �� � � �g� We will often use A�B� � � � etc� to

denote both a structure and its universe when no confusion is likely to result� We assume

that the signature � is �nite and contains no function symbols� we suppress mention of �

when no confusion is likely to result� A boolean query C � F is a class of �nite structures

that is closed under isomorphisms� We use C to range over boolean queries� In Chapters

� and �� we focus on boolean queries which are closed under extensions�

De�nition � EXT � fC � F j �A�B � C� if A � C and A � B� then B � Cg�

Let L be a logical language and let � be a sentence of L� Mod��� � fA j A j� �g is the

L�class determined by � and Modf��� � fA � F j A j� �g is the boolean query expressed

by �� We say that C is L�de�nable� just in case it is the boolean query expressed by some

sentence � � L� We will often use L to denote the set of L�de�nable boolean queries�

We let FO denote �rst�order logic� L��� the usual in�nitary extension of �rst�order logic

which allows conjunction and disjunction over arbitrary sets of formulas� Lk � the fragment

of FO consisting of those formulas all of whose variables both free and bound are among

x�� � � � � xk� and similarly Lk��� the k�variable fragment of L��� L
�
�� �

S
k�� L

k
��� We

let FO��� denote the set of existential formulas of FO� that is� those formulas obtained

by closing the set of atomic formulas and negated atomic formulas under the operations

of conjunction� disjunction� and existential quanti�cation� We de�ne L������ the set of

existential formulas of L��� similarly� but require� in addition� closure under in�nitary

conjunction and disjunction� We let Lk��� consist of the formulas common to FO��� and

Lk and we de�ne Lk����� and L������ similarly�
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A Datalog������ program P is a collection of rules of the form

�� �� ��� � � � � �k�

Such a rule has a head� ��� and a body� ��� � � � � �k� Each of the �i is either an inequality or

a literal over the signature � � � where � and � are disjoint� � consists of the extensional

relations and constants of P and � consists of the intensional relations of P� The heads of

all rules are built from intensional relations and intensional relations occur only positively

throughout P� The program contains a distinguished intensional relation R of arity n 	 �

and determines an n�ary query over structures in F�� The value of this query for a given

A � F� is the value of R when the program is viewed as determining least��xed points for

each of the intensional relations with respect to a simultaneous induction associated with

the program� The reader may consult ��� ��� for further details and discussion� As with

logics� we use Datalog������ to refer to the class of queries computed by Datalog� �����

programs as well as to the class of programs themselves� Datalog programs are de�ned

similarly except that all the �i are restricted to be positive literals� even those built from

extensional relations� Observe that Datalog� ����� is contained in the least �xed�point

extension of �rst�order logic �LFP��

In our current notation� the failure of the Los�Tarski Theorem over �nite structures

may be expressed as


FO
 EXT �� FO����

This raises the question of whether FO 
 EXT is contained in the existential fragment

of some stronger logic� The following proposition completely characterizes the relative

expressive power of the existential fragments of the logics in which we are interested�

Proposition �

FO��� � Datalog������ � L������ � L����� � EXT�

Proof� It is easy to see that every query in FO��� can be expressed by a program in

Datalog������ which makes use of no recursion� It is well�known that this inclusion is

strict� for example� the query �s� t��connectivity is expressible in Datalog but not in FO�

The inclusion of Datalog������ in L������ has been noted by Afrati� Cosmadakis� and

Yannakakis ��� �see also ������ the argument to show this is a variant of the proof that
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least �xed�point logic is contained in L��� over the class of �nite structures �see ������

Afrati� Cosmadakis� and Yannakakis ��� also exhibit queries which witness the separation

of Datalog������ and L������� even over the class of polynomial time computable queries�

The identity between L����� and EXT has been noted by Kolaitis and independently by

Lo �see ��� and ������ Finally� it is easy to construct polynomial time computable boolean

queries in EXT which are not in L��� � For example� let C be the query over the signature

fE� s� tg of source�target graphs that says that there is an E�path from s to t whose length

is less than half the cardinality of the structure� It is clear that C � EXT� It is also easy to

verify that C is not in L��� �and therefore not in L������� by a straightforward application

of the k�pebble Ehrenfeucht�Fraisse game which we review below�

The above proposition together with the failure of the Los�Tarski Theorem in the �nite

case suggests the following questions�

�� Is FO 
 EXT � L�������

�� Is FO 
 EXT � Datalog� ������

�� Is L��� 
 EXT � L�������

Clearly a positive answer to the second or third question would imply a positive answer

to the �rst� In Chapter �� we provide partial positive answers to the �rst and second

questions� and a negative answer to the third question� Recently� Martin Grohe ���� has

proved that the answer to question � is no�

��� Logical equivalence and Ehrenfeucht�Fraisse games

Let L be one of the logical languages we have de�ned above� Given a structure A� the

L�theory of A is the collection of sentences of L which are satis�ed by A� We say that A

is L�equivalent to B� if and only if� the L�theory of A is equal to the L�theory of B and

we say that A is L�compatible with B� if and only if� the L�theory of A is contained in the

L�theory of B� Note that if L is closed under negation� then the relations of L�equivalence

and L�compatibility coincide� whereas for languages like Lk��� and Lk����� these relations

are distinct� We use the notations �k� �k
�� � 

k� and k
�� for Lk�equivalence� Lk���

equivalence� Lk����compatibility� and Lk������compatibility� respectively� More generally�
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if a and b are j�tuples of elements from A and B� then we write �A� a�k�B� b� i	 for all

formulas ��x� � Lk���� if A j� ��a�� then B j� ��b��

The main tool for studying these relations are re�nements of the Ehrenfeucht�Fraisse

game� Barwise ��� characterized Lk���equivalence in terms of partial isomorphisms� while

Immerman ���� and Poizat ���� provided related pebble game characterizations of Lk�

equivalence� Kolaitis and Vardi ���� characterized compatibility in the negation free frag�

ment of Lk����� both in terms of collections of partial homomorphisms as well as in terms

of a one�sided� positive version of the pebble game� Below we use a minor variant of the

approach in ���� to characterize Lk������compatibility�

A set I of partial isomorphisms from A to B is said to have the k��back�and��forth

property if for all f � I such that the domain of f has cardinality � k� and all a � A

�b � B�� there is a function g � I such that f � g and a � dom�g��b � rng�g��� �That is�

the k�forth property is the one�sided version� going forth from A� of the k�back�and�forth

property��

Barwise ��� proved the following proposition which gives an algebraic characterization

of Lk���equivalence�

Proposition � �Barwise ���� Let A and B be structures of signature � and let h be the

map with dom�h� � fcA j c � �g such that h�cA� � cB for all c � �� The following

conditions are equivalent�

�� A�k
��B�

�� There is a non�empty set I of partial isomorphisms from A to B such that

�a� I is closed under subfunctions�

�b� I has the k�back�and�forth property�

�c� for all f � I� f � h is a partial isomorphism from A to B�

In a similar spirit� Kolaitis and Vardi ���� gave an algebraic characterization of the

compatibility relation for the negation free fragment of Lk����� in terms of collections of

partial homomorphisms with the k�forth property� We adapt their approach to the case of

Lk����� in the following theorem�
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Proposition � �Kolaitis and Vardi ���� Let A and B be structures of signature � and

let h be the map with dom�h� � fcA j c � �g such that h�cA� � cB for all c � �� The

following conditions are equivalent�

�� Ak
��B�

�� There is a non�empty set I of partial isomorphisms from A to B such that

�a� I is closed under subfunctions�

�b� I has the k�forth property�

�c� for all f � I� f � h is a partial isomorphism from A to B�

Both Propositions � and � can be expressed more colorfully in terms of pebble games�

This approach to Lk�equivalence was introduced by Immerman ���� and Poizat ���� and

as an approach to Lk������compatibility by Kolaitis and Vardi ����� In order to state the

relevant results in a suitably re�ned form� we require the notion of the quanti�er rank of a

formula� We state this de�nition for formulas of L�� since all the languages we consider

are fragments of it�

De�nition � The quanti�er rank of � � L�� � qr���� is de�ned by the following induction�

�� qr��� � � if � is atomic�

�� qr���� � qr����

	� qr�
V
�� � qr�

W
�� � sup�fqr��� j � � �g��


� qr��x�� � qr��x�� � qr��� � ��

The n�round� k�pebble Ehrenfeucht�Fraisse game on A and B is played between two

players� Spoiler and Duplicator� with k pairs of pebbles� ���� 	��� � � � � ��k� 	k�� The Spoiler

begins each round by choosing a pair of pebbles ��i� 	i� that may or may not be in play

on the boards A and B� He �by convention� the Spoiler is male� the Duplicator female�

either places �i on an element of A� or 	i on an element of B� The Duplicator then plays

the remaining pebble on the other model� The Spoiler wins the game if after any round

m � n the function f from A to B� which sends the element pebbled by �i to the element
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pebbled by 	i and preserves the denotations of constants� is not a partial isomorphism�

otherwise� the Duplicator wins the game� The n�round �k�game is the one�sided version of

the n�round� k�pebble Ehrenfeucht�Fraisse game in which the Spoiler is restricted to play

a pebble �i into A at every round while the Duplicator responds by playing 	i into B� the

winning condition remains the same� Both the k�pebble Ehrenfeucht�Fraisse game and its

one�sided variant have in�nite versions� which we call the eternal k�pebble Ehrenfeucht�

Fraisse game and the eternal �k�game� In these games� the play continues through a

sequence of rounds of order type 
� The Spoiler wins the game� if and only if� he wins at

the nth�round for some n � 
 as above� otherwise� the Duplicator wins� In describing the

play of pebble games below� we will often use S to refer to the Spoiler and D to refer to the

Duplicator� We will also often use �i� 	i� etc� to refer to both pebbles and the elements

they pebble at a given round of play�

The foregoing n�round games may be used to characterize equivalence and compatibility

of structures with respect to Lk sentences and Lk��� sentences of quanti�er rank n� and

the eternal games may be used to characterize equivalence and compatibility of structures

with respect to Lk�� sentences and Lk����� sentences� Given structures A and B we let

A�k�nB� if and only if� A and B satisfy the same sentences of Lk of quanti�er rank � n

and we let Ak�nB� if and only if� every sentence of Lk��� of quanti�er rank � n� which is

true in A� is also true in B� The following two propositions use the n�round pebble games

to characterize these relations� The �rst is due to Immerman ���� and Poizat ���� and the

second is essentially due to Kolaitis and Vardi �����

Proposition � �Immerman ��	�� Poizat ����� For all structures A and B� the follow�

ing conditions are equivalent�

�� A�k�nB�

�� The Duplicator has a winning strategy for the n�round� k�pebble Ehrenfeucht�Fraisse

game on A and B�

Proposition � �Kolaitis and Vardi ���� For all structures A and B� the following

conditions are equivalent�

�� Ak�nB�

��



�� The Duplicator has a winning strategy for the n�round �k�game on A and B� with

the Duplicator playing on B�

The next proposition gives a characterization of the in�nitary equivalence and compat�

ibility relations in terms of the eternal games� It is essentially due to Kolaitis and Vardi

���� ����

Proposition � �Kolaitis and Vardi ���� ��� �� For all structures A and B� the fol�

lowing conditions are equivalent�

�a� A�k
��B�

�b� The Duplicator has a winning strategy for the eternal k�pebble Ehrenfeucht�

Fraisse game on A and B�

�� For all structures A and B� the following conditions are equivalent�

�a� Ak
��B�

�b� The Duplicator has a winning strategy for the eternal �k�game on A and B�

with the Duplicator playing on B�

Kolaitis and Vardi ���� ��� observed that over �nite structures in�nitary equivalence

and compatibility coincide with their �nitary analogs�

Proposition 	 �Kolaitis and Vardi ���� ��� �� Let A or B be a �nite structure�

Then� the following conditions are equivalent�

�a� A�k
��B�

�b� A�kB�

�� Let B be a �nite structure� Then� the following conditions are equivalent�

�a� Ak
��B�

�b� AkB�

The foregoing propositions yield the following corollaries concerning de�nability�

Proposition  �Kolaitis and Vardi ���� For all C � F � the following conditions are

equivalent�

��



�� C is Lk������de�nable�

�� For all A � C and B �� C� A�k
��B�

	� For all A � C and B �� C� A�kB�


� For all A � C and B �� C� there is an n � 
 such that the Spoiler has a winning

strategy for the n�round �k�game on A and B with the Spoiler playing on A�

��



Chapter �

Basic �nite model theory for L
k���

and L
k
�����

In this chapter� we present some basic model theory for Lk� Lk��� L
k���� and Lk������

answering questions concerning �nite axiomatizability and normal forms� Let L and L�

be logical languages and let T be a collection of sentences of L� We say that T is �nitely

axiomatizable in L�� if and only if� there is a sentence � � L� such that Modf�T � �

Modf���� Dawar� Lindell and Weinstein ��� prove that the Lk���theory of any �nite model

is �nitely axiomatizable in Lk� As a corollary� they obtain a simple normal form for Lk��

over F � in particular� they show that every sentence of Lk�� is equivalent to a countable

disjunction of sentences of Lk and is also equivalent to a countable conjunction of sentences

of Lk� In contrast� we show below that there are �nite models whose Lk����theories are

not �nitely axiomatizable in Lk���� Building on this result� we prove that the normal form

for Lk�� over F �every sentence of Lk�� is equivalent over F to a countable disjunction of

countable conjunctions of sentences of Lk� exhibited by Kolaitis and Vardi ���� is optimal

when considered as a normal form for Lk����� sentences over L
k����

We begin by proving that there are models whose Lk����theories are not �nitely axiom�

atizable in Lk���� Our argument exploits the k�extension axioms� which we now describe

brie�y� Let � be a purely relational� �nite signature� A basic k�type � over the signature

� is a maximal consistent set of literals over � in the variables x�� � � � � xk� A k�extension

axiom of signature � is a sentence of the form �x� � � � xk���xk�
V
� �

V
���� where � is a

��



basic �k � ���type of signature �� �� is a basic k�type of signature �� and � � ��� Over a

�xed signature �� the k�Gaifman theory� �k� is the set of all k�extensions axioms of signa�

ture �� It is easy to see that� for each k� there are only �nitely many k�extension axioms�

Gaifman ���� showed that the theory T �
S
k �k axiomatizes an 
�categorical model called

the random structure� Fagin ���� proved the ��� law for �rst�order logic by showing that

every extension axiom is almost surely true over F � Fagin�s result implies that almost

every A � F satis�es the k�Gaifman theory� Immerman ���� showed that any two models

of the k�Gaifman theory are Lk�equivalent and Kolaitis and Vardi ���� made use of the

k�Gaifman theory in their proof of the � � � law for L���� We make the following easy

observation�

Proposition � Let A j� �k� and let B be any ��nite or in�nite� model� Then Bk
��A�

Equivalently� for all � � Lk������ if � is satis�able� then A j� ��

Proof� The proof follows easily from Proposition � by considering the eternal �k�game on

B and A with the Duplicator playing on A� The k�Gaifman axioms essentially say that D

can extend a partial isomorphism with domain of size � k in every possible way� Therefore�

she has a winning strategy for the game�

We observe that this result yields a compactness theorem over �nite structures and a

�nitary analog of the L�owenheim�Skolem Theorem for Lk������

Corollary � For every k � 
� there is an nk � 
 such that for every set � of sentences of

Lk������ � is satis�able� if and only if� every �nite subset of � is satis�able� if and only

if� � is satis�ed in a model of size nk�

The next proposition establishes that there are �nite structures whose Lk����theory is

not �nitely axiomatizable in Lk����

Proposition �
 For all k 	 �� there is a model Ak � F such that the Lk����theory of Ak

is not �nitely axiomatizable in Lk����

Proof� Let Ak be any �nite model of the k�Gaifman theory over the language of graphs�

We show that for any n � 
� there is a Bn
k such that Ak

k�nBn
k and Ak �

k�n��Bn
k � This

��



implies that the theory of Ak cannot be axiomatized by Lk��� sentences of quanti�er rank

� n and� therefore� that it is not �nitely axiomatizable in Lk����

For the purpose of de�ning the models Bn
k � we require the following notion and notation�

A basic k�type � satis�es the distinctness condition if for every l � k� the formula xl ��

xk � �� Let f��� � � � � �sg be a set of basic �k � ���types such that

�� every basic �k � ���type is equivalent to some �i and

�� if i �� j� then �i is not equivalent to �j �

Similarly� for each � � i � s� let f�i��� � � � � �i�n�i�g be a set of basic k�types each of which

extends �i and satis�es the distinctness condition such that

�� every basic k�type which extends �i and satis�es the distinctness condition is equiv�

alent to some �i�j and

�� if j �� j �� then �i�j is not equivalent to �i�j� �

We proceed to de�ne the models Bn
k � Let B

�
k be the graph on two vertices with exactly

one loop and no other edges� Thus B�
k realizes both basic ��types� Given that Bn

k has been

de�ned� we now de�ne Bn��
k as an extension of Bn

k � For each �k� ���tuple b of elements of

Bn
k � let ��b� be the unique i such that Bn

k j� �i�b�� and let X
b
� fbn��

b�j
j � � j � n���b��g

be a set of distinct objects disjoint from Bn
k � We suppose that for any distinct pair of

�k � ���tuples a and b of elements of Bn
k � Xa 
Xb

� �� Let X be the union of all the sets

X
b
�We let the universe of Bn��

k � Bn
k �X� The edge relation of Bn��

k is obtained from that

of Bn
k by adding the minimal number of edges so that each k�tuple b� bn��

b�j
satis�es �

��b��j�

It is easy to see that each Bn��
k is well�de�ned� We say that the height of an element b

introduced in this construction is the least n such that b � Bn
k �

We �rst show that Akk�nBn
k � By Proposition �� it su�ces to describe a winning strat�

egy for D in the n�round �k�game with D playing on Bn
k and S playing on Ak� The strategy

we describe for D will allow her to play her mth move on some b � Bm
k � for each m � n� In

round �� D answers the �rst move of S by playing her pebble on the appropriate element of

B�
k � Bn

k to create a partial isomorphism� Suppose that D has played only onto elements

of Bm
k through round m� where m � n� Let S choose pebble pair ��l� 	l� to play in round

��



�m� ��� We consider two cases� If S plays �l on the same element as some �l� � for l �� l��

then D must play 	l onto the element pebbled by 	l� � Doing so� she obviously maintains

a partial isomorphism and succeeds in playing within Bm��
k � On the other hand� suppose

that S plays �l on a distinct element such that the elements pebbled by � � �l on A after

the round satisfy �i�j �we may need to pad the tuple pebbled by � to a tuple of length

�k��� by repeating its last element� if all the pebbles are not in play at this round�� Before

D plays her �m���st move� the pebbles 	 are on a tuple b �similarly padded� if necessary�

that satis�es �i� She then plays 	l on the element bm��
b�j

� Bm��
k � thereby maintaining a

partial isomorphism� This strategy enables her to win the n�round game�

Next� we show that Ak �
k�n��Bn

k � By Proposition �� it su�ces to show that S can win

the �n����round game with D playing on Bn
k and S playing on Ak �We describe a strategy

for play by S which forces D to pebble an element of height at least m by the end of

round m to avoid losing at that round� It follows that S wins the �n � ���round game

since all elements of Bn
k have height � n� S plays as follows� He �rst places his k�pebbles

on a set of k distinct elements which form a k�clique� that is� for every pair of distinct

pebbled elements a and a�� Ak j� E�a� a��� S may play in this way since Ak j� �k � By our

construction above� if b� b� � Bn
k are distinct elements of the same height� Bn

k �j� E�b� b���

It follows immediately that any r�clique in Bn
k contains an element of height at least r�

Therefore� if S has not won by round k� D has pebbled an element of height at least k by

the end of that round� Note that in case �n��� � k� we are done� since at round �n���� D

will be unable to play onto an element of height at least �n� �� to form an �n� ���clique�

We proceed to describe the strategy for S�s continuing play under the assumption that

k � �n � ��� Suppose that through round m� k � m � �n � ��� D has played a pebble

onto an element of height at least m� and that the k pebbles S has played lie on distinct

elements of Ak which form a k�clique� We show how S can play to ensure that D must

play onto an element of height at least �m � �� at round �m � ��� if she is to prevent S

from winning at this round� and leave the round with a k�clique pebbled� Suppose that 	i

is pebbling an element b of height greater than the height of any other element pebbled in

Bn
k at round m� By our hypothesis� the height of b is at least m� Pick j �� i �recall that

� � k� and let a � Ak be the element pebbled by �j � S picks up �j and places it on an

a� � Ak such that

��



�� Ak j� E�a� a�� �E�a�� a�� and

�� for every a�� � Ak on which one of the remaining �k � �� pebbles lies� a� �� a�� and

Ak j� E�a�� a��� � E�a��� a���

The existence of such an a� follows from the fact that Ak j� �k � We claim that to avoid

losing at this round� D must play her pebble 	j onto an element b� of height greater than

the height of b� and hence of height at least �m � ��� Let b�� be the element pebbled by

	j at round m� By our construction� each element of Bn
k is connected to at most �k � ��

elements of lesser height� Therefore� from the hypotheses that S had pebbled a k�clique

at round m� and that b is an element of maximal height pebbled by D at that round� we

may conclude that the only element of height � the height of b adjacent to b onto which D

could play 	j is b
�� itself� But this play would fail to maintain a partial isomorphism with

the elements S has now pebbled at round �m� �� by the �rst condition we have imposed

on the choice of a� above� Therefore� to avoid losing at round �m� ��� D must pebble an

element of height at least �m� ���

The next result follows immediately�

Corollary � There are in�nitely many formulas of Lk��� which are pairwise inequivalent

over F�

We now consider Lk������theories and normal forms for Lk����� sentences over F � We

let Thk��A� denote the Lk������theory of A� Before proceeding� we de�ne the following

fragments of Lk������

�� Let
V
Lk��� � f� j � �

V
�� for some � � Lk���g�

�� Let
W
Lk��� � f� j � �

W
�� for some � � Lk���g�

�� Let
V
�
W
Lk���� � f� j � �

V
�� for some countable � �

W
Lk���g�

�� Let
W
�
V
Lk���� � f� j � �

W
�� for some countable � �

V
Lk���g�

Proposition �� For all �nite structures A� there is a � �
V
Lk��� such that Modf��� �

Modf�Th
k
��A���
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Proof� Observe that Modf�Th
k
��A�� � fB � F j Ak

��Bg� Let CA � F �Modf �Th
k
��A���

By Proposition �� for each B � CA� there is a sentence �B � Lk��� such that A j� �B and

B �j� �B� Let � �
V
B�CA

�B � It is easy to verify that Modf��� � Modf�Th
k
��A���

Kolaitis and Vardi ���� obtained a normal form for the negation free fragment of Lk�����

over F � It is easy to extend their result to Lk����� and to provide a dual normal form as

well� We codify these normal forms in the next proposition�

Proposition �� �Kolaitis and Vardi ���� For every sentence � � Lk������ there is a

� �
W
�
V
Lk���� and a � �

V
�
W
Lk���� such that Modf ��� � Modf��� � Modf����

Proof� Let C � Modf���� By Proposition �� for each A � C� B � F �C� there is a sentence

�A�B � Lk��� such that A j� �A�B and B �j� �A�B � Let � �
W
A�C�

V
B ��C �A�B� and let

� �
V
B ��C�

W
A�C �A�B�� It is easy to verify that the proposition holds for this choice of �

and ��

Next we show that the fragments
V
Lk��� and

W
Lk��� are closed under �nite con�

junction� �nite disjunction� and existential quanti�cation over F � This means that if an

Lk������de�nable query cannot be expressed in either
V
Lk��� or

W
Lk���� then it is only

de�nable using both an in�nitary conjunction and an in�nitary disjunction�

Proposition �� The languages
V
Lk��� and

W
Lk��� are both closed under �nite conjunc�

tion� �nite disjunction� and existential quanti�cation over F�

Proof� Let � � f�i�x� y� j i � 
g be a set of formulas of Lk���� We show that if ��y� �

�x
V
�� then ��y� is equivalent over F to some formula ���y� �

V
Lk���� �The other closure

conditions may be easily veri�ed�� Let m �
V
��l�m �l�x� y� and let ���y� �

V
m�� �xm�

We show �� is equivalent to �� It is obvious that � implies ��� Let A � F and a � A be such

that A j� ���a�� Because A is �nite� there is some a� � A such that for arbitrarily large m�

A j� m�a�� a�� Therefore A j�
V
m�� m�a

�� a�� and �� implies ��

Below we show that the query classes
V
Lk��� and

W
Lk��� are proper subsets of

V
�
W
Lk���� and that neither of

V
Lk��� and

W
Lk��� is a subset of the other� We �rst

give necessary and su�cient conditions for classes to be de�nable in
V
Lk��� and

W
Lk����

and prove a lemma from Kolaitis and Vardi ���� that we need below�

��



Proposition �� �� A class C is de�nable in
V
Lk��� i� for all B �� C� there is a �B �

Lk��� such that B �j� �B and for all A � C� A j� �B�

�� A class C is de�nable in
W
Lk��� i� for all A � C� there is a �A � Lk��� such that

A j� �A and for all B �� C� B �j� �A�

Proof� To prove ��� suppose that C is de�ned by the sentence
V
n�� n� and that B �� C�

Then there is some m such that B �j� m� Let �B be this m� In the other direction�

observe that the sentence � �
V
B ��C �B de�nes C� The proof of �� is similar�

Lemma � �Kolaitis and Vardi ���� The relation k is polynomial time computable�

Proof� Let A and B be models of signature �� We de�ne hA�Bi to be the following model�

with signature � � fQxg� where Qx is a unary predicate not in �� It is the disjoint union

of A and B� with the extension of the predicate Qx interpreted as the universe of B� It

is easy to see that� given a standard encoding of the models A and B on Turing machines

�e�g� see ����� an encoding of hA�Bi can be produced in polynomial time�

Modifying an idea from Dawar� Lindell� and Weinstein ���� we now show that there is

an LFP sentence � such that for all A and B� hA�Bi j� � i	 AkB� It is well known �see

����� that every LFP query can be computed in polynomial time� Composing the function

that outputs a representation of hA�Bi with the function that computes the truth value

of � then yields the desired algorithm�

Let R�x�� � � � � xk� y�� � � � � yk� be the �k�ary relation on models hA�Bi such that hA�Bi j�

R�a�� � � � � ak� b�� � � � � bk� i	 each ai is in A� each bi is in B� and �A� a� �k �B� b�� We �rst

show that R�x� y� can be expressed in LFP� Let � � f�� � � � � tg be the set of all atomic

formulas over � with free variables among x�� � � � � xk� Given any k�tuple a � A and k�

tuple b � B� �A� a� �k�� �B� b� i	 there is a  � � such that A j� �a� i	 B �j� �b�� In

general� �A� a� �k�n�� �B� b� i	 there is an a� � A and an i � k such that for all b� � B�

�A� a�� �k�n �B� b
�
�� where a� and b

�
are the k�tuples obtained from a and b by replacing

the ith component by a� and b�� respectively� Then the least �xed point of the following

formula de�nes the desired relation� R�x� y��

��x� y� � lfp�
�

i�k

��Qxi�Qyi�� �
�

���

��x�� ��y���
�

i�k

�xi�yi��Qxi� �Qyi � R�x� y�����

��



Observe that AkB i	 for each k�tuple a � A� there is a k�tuple b � B such that

�A� a�k�B� b�� If A �k B� then there is a sentence � � Lk��� such that A j� � and B �j� ��

Then for any a � A and b � B� �A� a� j� ��a� and �B� b� �j� ��b�� In the other direction�

assume that AkB and a � A� Suppose that for each b � B� there is a formula �
b
�x� such

that �A� a� j� �
b
�x� and �B� b� �j� �

b
�x�� Then � � �x

V
b�B �

b
�x� is an Lk��� sentence such

that A j� � and B �j� �� a contradiction� Finally� let � be the following sentence�

� � �x� � � � xk�
�

i�k

�Qxi � �y� � � � yk�
�

i�k

Qyi � ���x� y���

This completes the proof�

Proposition �� For each k 	 �� there is a polynomial time computable boolean query

C �
V
Lk����

W
Lk����

Proof� Let k 	 � be given and let the graph Ak be a model of the k�Gaifman theory� Let T

be the Lk����theory ofAk and let � �
V
T� Clearly� � �

V
Lk���� Let C � Modf ���� It is easy

to see that C � fB � F j Ak
kBg� thus� by Lemma �� C is polynomial time computable� In

the proof of Proposition ��� we showed that for every satis�able � � Lk����Modf��� �� C�

This implies that for every  �
W
Lk���� C �� Modf ���

Proposition �� There is a polynomial time computable boolean query C �
W
L���� such

that for all k � 
� C ��
V
Lk���� In consequence� for each k 	 �� there is a class C �

W
Lk����

V
Lk����

Proof� Over the signature � � fE� s� tg� let C � fA j there is a path from s to tg� the class

of �s� t��connected graphs� This class is clearly in
W
L����� As noted earlier� it is in Datalog�

and� hence� polynomial time computable� From Proposition ��� to show that C ��
V
Lk����

it su�ces to show that there is a B �� C such that for all n � 
� there is an An � C such

that Ank�nB� This latter condition is equivalent to D�s possessing a winning strategy

for the n�round �k�game on An and B� We construct B to give her the greatest possible

freedom in choosing her moves� Let M be any graph such that M j� �k��� and let Ms

�resp� Mt� be obtained from M by requiring that s �resp� t� denote a loop�free element�

We de�ne B to be the disjoint union of Ms and Mt� thus insuring that B �� C�
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For each n� let An be the simple chain from s to t of length �n��� The basic idea is

that by choosing the chain to be long enough� S will not be able to witness the existence

of a path from s to t in only n moves� Let d�x� y� be the natural distance function on An�

We now describe D�s strategy� In each round m� D chooses to play on an element of Ms

i	 S just played a pebble on a � An such that either �i� d�s� a� � ��n����m� or �ii� there

is a j such that 	j is on an element of Ms and d��j � a� � ��n����m� She then plays her

pebble on an element of the appropriate component of B so that she maintains a partial

isomorphism among the pebbles on that component� It is easy to see that this is possible

because Ms and Mt are models of �k���

In order to establish that this is a winning strategy� it su�ces to verify the following

two claims�

�� In each round l � n� if D plays a pebble 	i on Ms� then �i is not adjacent to t on

An� Similarly for Mt and s�

�� After each round l� for all pairs of pebbles f�i� �jg� if An j� E��i� �j�� then 	i and

	j are on the same component of B�

We argue� by induction� that if D plays 	i onMs in roundm� then d�s� �i� � ���n������

��n����� � � � �� ��n����m� � �n�� � �� Since d�s� t� � �n��� this establishes that An �j�

E��i� t�� In round �� D plays 	i on Ms i	 d�s� �i� � ��n������ Suppose that in round m��

D plays 	i on Ms� Then either d�s� �i� � ��n����m or there is an �j such that 	j is on Ms�

d��i� �j� � ��n�����m���� and� by induction hypothesis� d�s� �j� � ���n����� � ��n����� �

� � �� ��n����m�� In both cases� the induction condition is maintained� The second part

of Claim � follows from the fact that in round m� if D plays 	i on Mt� then S must have

played �i such that d�s� �i� � ��n����m � ��

To prove Claim �� observe that at each round m� if 	i � Ms� and 	j � Mt� then

d��i� �j� 	 ��n����m � �� The details are similar to the previous argument�

The next result shows that the normal form for Lk����� over F given in Proposition

�� is optimal�

Proposition �	 For all k 	 �� there is a class C � F such that C �
W
�
V
Lk���� �

�
V
Lk��� �

W
Lk�����

��



Proof� The proof of this proposition is a synthesis of the proofs of the preceding two

results� We de�ne a set of models fA�� A�� � � �g which are pairwise Lk����incompatible

such that for each i� the Lk����theory of Ai is not �nitely axiomatizable in Lk���� We then

let C � fB j �i�Ai
kB�g� The arguments to show that this class is neither in

W
Lk��� nor

in
V
Lk��� are variants of the proofs of Propositions �� and ���

We de�ne each model Ai as an expansion of a homeomorphic image of a graph which

is a model of the �k � ���Gaifman theory� To clarify the exposition� we also add a unary

predicate V to the signature to label the original vertices of the graph� Let R be a �nite

graph that veri�es �k��� observe that R also veri�es �k � Each Ai is obtained from R

by replacing all edges which are not loops by pairwise disjoint paths of length i� �Where

there is a two�way� undirected edge� a single undirected path is inserted� rather than two

directed paths�� If i � �� then A� is just the expansion of R� with signature fExy� V xg�

such that V A� � R� If i � �� then the universe of Ai is the set R�ffa� b� jg j a� b � R�R j�

Eab� and � � j � ig� �We have labeled each new vertex by a set of size ��� If a and b

are connected in R� then in Ai there is a path of length i from a to b along the vertices

fa� b� �g� � � � � fa� b� i� �g� Again� we set V Ai � R� Observe that each vertex fa� b� jg is

connected to exactly two other vertices� Also� if a� b � V Ai � a �� b� then d�a� b�	 i�

To verify that C is not in
W
Lk���� it su�ces to show that there is a model A � C and a

sequence B�� B�� � � � � disjoint from C� such that for each n�Ak�nBn� Let A be A�� and let

each Bn be obtained from the model Bn
k from the proof of Proposition �� by putting every

vertex into the extension of the predicate V � From that proof it is immediate that� for all

n�A�
k�nBn but A� �

kBn� For each i 	 �� Ai j� �x�V x and� consequently� Ai �
kBn� This

establishes that each Bn is not in C�

In order to show that C ��
V
Lk���� we now de�ne a single B �� C such that for all

n� there is an Af�n� such that Af�n�
k�nB� By Proposition ��� this will establish that

C ��
V
Lk���� Let R� be an expansion of R obtained by letting V R� � fag for some a � R

such that R j� Eaa� Let R� be an expansion of R obtained by letting V R�

� fag� for

some a � R such that R j� �Eaa� We say that an element a contains a loop� or is looped�

i	 Eaa� Otherwise� it is loop free� Likewise� we say that each R� is looped and that R�

is loop free� We de�ne B to be the disjoint union of k copies of both R� and R�� A

component of B is any submodel that is one of the copies of R� or R�� Observe that the

��



components are exactly the maximal connected submodels� Here the predicate V plays a

role like the constants s and t in the proof of Proposition ���

It is easy to see that B is not in C� For each i� Ai has the property� expressible in L��

that there are two distinct vertices� both in the relation V � that are connected by a path

of length i� On the other hand� no component of B contains two distinct elements in V �

thus� for all i� Ai �
kB�

Let f�x� � �x�� � �� It remains to establish that� for each n�Af�n�
k�nB� As in the

proof of Proposition ��� the Duplicator can win the n�move �k�game on Af�n� and B

because the vertices of Af�n� that are in V are too far apart for the S to distinguish the

models by witnessing that they are actually connected� In order to describe the D�s winning

strategy� we de�ne an auxiliary matching partial function� ��x�m�� that assigns to each

vertex x � Af�n� that is pebbled in round m a vertex a� � Af�n� such that Af�n� j� V a��

We will write �m�x� for ��x�m�� or even omit the subscript when it is unnecessary� Let

aj � Af�n��bj � B� denote the vertex pebbled by the S �D� in round j� let Rj denote the

component of B that contains bj� For all a � Af�n�� say that a is live in round m i	 V a

or a is occupied by a pebble at the end of the round� The function �m�x� will satisfy the

following conditions� for all a� a� � fb j b is live in round mg


�� If the S does not replay the pebble on a in round m� then �m���a� � �m�a��

�� For all m � n� if V a� then �m�a� � a�

�� If a �� a� and �m�a� �� �m�a��� then d�a� a�� � �n��m���� In particular� if �m�a� ��

�m�a��� then there is no edge connecting a and a��

The D will also maintain the following modularity� condition�

�� In each round m� if the pebbles on ai and aj � i � j� have not been replayed between

rounds i and m� then �m�ai� � �m�aj� i	 bi and bj are on the same component of B�

In round � of the game� let the S play on a� � Af�n�� Let ���a�� be the element a� � V

that is closest to a�� observe that this is well�de�ned and that d�a�� ���a��� � �n� Since the

distance between any two elements in V is greater than f�n� � �n��� this implies that for

all v � V �fag� d�a� v� � �n� as required by condition �� The D then chooses a component
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R� of B such that R� is looped i	 ��a�� is looped� let v� be the unique element in R� such

that V v�� She then plays on an element b� � R� such that the ��tuple �b�� v�� has the same

atomic type as �a�� ��a���� which immediately implies that the pebbles in play determine

a partial isomorphism� Since R� j� �k��� it is easy to see that there is such an element�

In round m � � � n� the S plays on some am��� We describe the D�s response by

considering two cases� One� for all a �� am�� that are live in round m � �� d�a� am��� 	

�n���m������� In this case� let �m���am��� be any v � V such that� for all live a ��

v� �m�a� �� v� The D now chooses an unpebbled component of B� which we call Rm���

that is looped i	 v is looped� Since there are k copies of each of R� and R�� and only

k pebbles� there is always such a component� She then plays on some bm�� � Rm��

such that the atomic type of �bm��� vm��� is the same as that of �am��� ��am����� where

vm�� is the unique element of Rm�� such that V vm��� Note that for all live� pebbled

aj � j � m��m���aj� �� �m���am���� which implies� by conditions � and � above� that

aj �bj� is not adjacent to am���bm���� Therefore the D has succeeded in preserving a partial

isomorphism� it is easy to verify that conditions � � are also maintained�

Second if there is an element a � fb j b is liveg such that d�a� am��� � �n��m���� then

let �m���am��� be �m�a�� In order to see that �m���am��� is well�de�ned� suppose that

there are two such elements� a and a�� Observe that d�a� a�� � d�a� am��� � d�am��� a
�� �

�n��m���� By condition �� we have that �m�a� � �m�a��� as desired� Note that �m���x�

satis�es the above conditions � �� The D then plays on some element bm�� � Rm�� such

that �bl�� � � � � blj� bm��� vm��� has the same atomic type as �al�� � � � � alj � am��� �m���am�����

where �m���ali� � �m���am��� and Rli � Rm��� for all i � j� Again� this is possible

because Rm�� j� �k��� Note that the D also maintains condition �� This establishes that

the D has a winning strategy�

Finally� we prove the following separation�

Proposition � Over F � for k 	 �� Lk��� � �
V
Lk���� 
 �

W
Lk�����

Proof� Let Path�x� y� express the binary query there is an E�path from x to y�� For

signature � � fE� sg� we de�ne C � fA j �x� Path�s� x� and Path�x� x��g� Let �n�x� y� be

an L���� formula that de�nes the binary query there is a path of length n from x to y�� It is

easy to see that C is in
W
Lk���� Also observe that � �

V
n�� �x�y�s � x��n�x� y�� de�nes

��



C� Finally� there are arbitrarily large minimal models in C� that is� models A � C such that

for all proper submodels B � A�B �� C� This immediately implies that C �� FO��� and� a

fortiori� not in Lk����
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Chapter �

Existential preservation

��� Generalized preservation theorems

In this section� we prove some generalized preservation theorems for fragments of FO� Our

results are of the form

L 
 EXT � L�

for certain quanti�er pre�x classes L � FO� and L� � L������ or Datalog� ������ We

introduce the following notation�

De�nition � Let w be a regular expression over the alphabet f�� �g� in the sense of formal

language theory� FO�w �� with square brackets� is the set of prenexed sentences � such

that the quanti�er pre�x of � is a word in the regular language determined by the regular

expression w� �For example� FO����� is the set of sentences whose quanti�er pre�x is a

single � followed by a string of ��s��

Recall that Tait ���� showed FO 
 EXT �� FO���� Gurevich and Shelah ���� ��� give

examples witnessing that

FO�����
 EXT �� FO���

and Compton observed that

FO������ 
 EXT � FO����

showing that these examples are best possible in terms of quanti�er alternation pre�x �see

������ Kolaitis and Vardi �see ���� observed that the example of Gurevich and Shelah ����
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can be de�ned in Datalog������� Theorem � below establishes that

FO������ 
 EXT � Datalog� ������

It follows that the above mentioned examples in the literature witnessing the failure of

the Los�Tarski theorem in the �nite case are de�nable in Datalog� ������ since all these

examples are in FO������� The next theorem establishes a slightly more general result

with L������ in place of Datalog�������

Theorem � FO������� 
 EXT � L�������

Proof� Let � � FO������� 
 EXT� That is� � � FO������� and Modf��� � EXT� Let

C � Modf ���� We proceed to show that C � L������� By Proposition �� it su�ces to show

that there is a k such that� for each A � C and B �� C� there is a �A�B � Lk����� such that

A j� �A�B and B �j� �A�B �

Let � � �x� � � � xi�y�z� � � �zj�x� y� z�� where  is quanti�er free� and let k � i� j � �

�we suppose� without loss of generality� that i � ��� We now describe a winning strategy

for S in the eternal �k�game on A and B� for A � C and B �� C� which establishes� by

Proposition �� the existence of �A�B � Lk����� with the desired properties� There are two

stages� Let a � �a�� � � � � ai� be a sequence of elements of A such that A j� �y�z�a� y� z��

If D has not lost after h rounds� for h � i� S plays pebble �h�� on element ah��� If

S has not won after i moves� and D has played her pebbles on b � �b�� � � � � bi�� then

B j� �y�z��b� y� z� �since B �j� ���

The goal of the second part of S�s strategy is to force D to play a pebble on some

element b� such that B j� �z��b� b�� z�� without removing any of the pebbles ��� � � � � �i

which �x the interpretation� of the variables x�� � � � � xi on both A and B� Regardless of

the element a� on which S will have played his corresponding pebble� A j� �z�a� a�� z�� so

that he can then win easily� In order to describe S�s strategy� we �rst de�ne a sequence of

subsets of the universe of B� Let �� � fb� j b� � B and B j� �z��b� b�� z�g� Observe that

B j� �y�z��b� y� z�� and therefore �� is non�empty� Given ��� � � � ��m� if �
S
l�m �l�
b � ��

then let Bm�� be the submodel of B whose universe is �B �
S
l�m �l�� Let �m�� � fb� j

b� � Bm�� and Bm�� j� �y��b� b�� y�g� For each Bm� since Bm � B� we have that

Bm j� �x�y�z��x� y� z�� In particular� Bm j� �y�z��b� y� z� and thus� as above� �m��
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is non�empty� Since B is �nite� there is some n such that �n 
 b �� �� and some element

bf � �n 
 b pebbled by 	f � Then B is partitioned into the sets ��� � � � ��n��� Bn� We also

have that A j� �z�a� af � z�� and Bn j� �z��b� bf � z��

The Spoiler can win by executing a substrategy that compels D to play in sets �m

of successively smaller index� Let c be a sequence of elements of length j such that�

A j� �a� af � c�� S plays his next j moves on this sequence� until D makes a losing move

or plays a pebble 	g onto an element in �m� for m � n � �� We claim that one of these

two possibilities must occur� For suppose that D plays on a sequence d � Bn� Then

Bn j� ��b� bf � d�� and �x� y� z� witnesses that the function that takes a�af �c to b�bf �d

and preserves the denotations of constants is not a partial isomorphism�

Suppose that D has played some pebble 	g into some set �m� By the same argument

as above� reusing pebbles f�i��� � � � � �kg � f�gg� S can either win or force D to play into

some �m� � for some m� � m� Iterating this procedure� S can force D to play into ��� and

then win by using the same procedure one more time�

We remark the following two re�nements of the foregoing theorem�

�� For each B �� C� there is a number mB such that for all A � C� S wins the mB�

round �k�game on A and B� �Here� mB is determined by the maximum number of

sets � that get de�ned on B� for any choice of D�s �rst i moves�� It follows easily

from Proposition � that this condition is equivalent to there being a �B � Lk����

with quanti�er rank � mB � such that for all A � C� A j� �B � and B �j� �B� Then

�� �
V
B ��C �B is equivalent to � and is a single in�nite conjunction of Lk��� sentences�

We know by Proposition �� that not all sentences of Lk����� can be expressed in this

form� Indeed� it follows from Theorem � below that if � � FO������ 
 EXT� then �

is equivalent to a formula in
V
Lk���


W
Lk��� for some k�

�� Suppose that � is an Lk sentence with quanti�er type ���� that is� no � occurs in �

in the scope of another quanti�er� In this case� we can show� by a modi�cation of the

proof of Theorem �� that � is equivalent to an Lk����� sentence� This contrasts with

Proposition �� below which establishes that for all k� there is a sentence �k � L� such

that Modf��k� � EXT� but �k is not equivalent over F to any sentence in Lk������

Theorem � FO������ 
 EXT � Datalog� ������

��



Proof� Let � � �x� � � �xj�y�z	�x� y� z�� with 	�x� y� z� quanti�er free� Let c � �c�� � � � � cp�

be the sequence of constants in the signature of � and let C � Modf ���� For a � A� we

say that a closes with parameters a i	 there is a sequence a��� a�� a�� � � � � an such that for

all l � n� A j� 	�a� al� al��� and there is an m � n such that A j� 	�a� an� am�� Note that

this is equivalent to there being an a� such that there is a 	�a� y� z��path from a to a�� and

a 	�a� y� z��cycle including a��

We claim that A j� � i	 there is a j�tuple a such that every element of a � c closes

with parameters a� Suppose that A does not satisfy these conditions� We prove that

A j� �x�y�z�	�x� y� z�� where the latter sentence is equivalent to ��� Let a � A be a

sequence of length j� By hypothesis� there is an a� � a � c such that a� does not close

with parameters a� Since A is �nite� this implies that there is an m 	 � and a sequence

a� � a��� � � � � a
�
m such that for all l � m� A j� 	�a� a�l� a

�
l��� and A j� �z�	�a� a�m� z�� as

desired�

In the other direction� let a be such that every member of a� c closes with parameters

a� Let sh � hah��� ah�� � � � � ahmh
i and th � heh��� ch�� � � � � ehnhi be sequences witnessing

that each element of a � c closes with parameters a� Let B be the submodel of A with

universe
S
i si �

S
j tj � Then it is easy to verify that B j� � and� since Modf ��� � EXT� it

follows that A j� ��

The following program� with x � �x�� � � � � xj�� computes �


P �x� y� z��� 	�x� y� z�

P �x� y� z��� P �x� y� w�� P �x� w� z�

Q�� P �x� x�� y��� P �x� y�� y��� � � � � P �x� xj � yj�� P �x� yj� yj��

P �x� c�� w��� P �x� w�� w��� � � � � P �x� cp� wp�� P �x� wp� wp�

This can be easily converted into a Datalog� ����� program� Let 	�x� y� z� �
W
i �i� where

each �i is a conjunction of literals� Replace the clause P �x� y� z� �� 	�x� y� z� with the

clauses P �x� y� z��� �i� for all i�

��



��� The failure of existential preservation for L�
��

In this section we prove that L��� 
 EXT �� L������� Indeed� we establish that there is a

sentence � � L��� such that Mod��� is closed under extensions� but there is no  � L������

such that Modf��� � Modf��� Thus� � witnesses the failure of existential preservation for

L��� simultaneously over the class of �nite structures and over the class of all structures�

The central lemma on which this result relies is of interest in itself� It says that for all

k 	 �� the �nitary language Lk fails in a strong way to satisfy an existential preservation

property� Andreka� van Benthem� and Nemeti ��� showed that for every k 	 �� there is a

sentence �k � Lk which is preserved under extensions� but which is not equivalent to any

sentence of Lk���� For k 	 �� the sentence �k they construct uses a relation symbol of

arity k� � and has the property that it is equivalent to a sentence of Lk������ They state

the following open problems�

� For any k 	 � and n � 
� is there a sentence �n � Lk which is preserved under

extensions� but which is not equivalent to any sentence of Lk�n����

� For k � �� is there a formula of Lk containing only �one� binary relation symbols

which is preserved under extensions� but is not equivalent to any sentence of Lk����

The next proposition settles both these open problems� The main result of the section

follows easily from the proof of this proposition�

Proposition �� For each k � 
� there is a sentence �k � L�� containing a single binary

relation� such that

�� Mod��k� is closed under extensions� but

�� Modf ��k� �� Modf��� for all � � Lk����

Proof� Before presenting the full proof� we sketch the basic outline� Let the k�pyramid of

B� Pk�B�� be the smallest class of ��nite and in�nite� models containing B that is closed

under substructures and Lk�equivalence� For each k 	 �� we de�ne �nite structures Ak

and Bk with the following properties


�� Ak
k
��Bk�
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�� P��Bk� is L
��de�nable�

�� Ak �� P��Bk��

Let �k � L� be such that Mod��k� � P��Bk�� and let �k � ��k� It is obvious that

Mod��k� is closed under extensions� that Ak j� �k � and that Bk �j� �k � Suppose � � Lk���

is such that Ak j� �� Since Ak
k
��Bk� this implies that Bk j� �� and therefore that � is

not equivalent to �k �

We de�ne structures Ak and Bk in terms of simpler submodels� For f � t� let the

�t� f ��ag� F �t� f �� be the directed chain of length t with one additional vertex attached

to the f th link� That is� the vertex set of F �t� f � is f�� �� � � � � t� t � �g� and the edge

relation is f�i� i� �� j i � tg � f�f� t � ��g� Ak is the disjoint union of the k � � �ags!

F ��k��� k���� F ��k��� k���� � � � � F ��k��� �k���� Let the �k� j��tree� T �k� j�� be the tree

obtained from Ak by fusing the ith nodes of each �ag� for all i � j� This tree has height

�k� � and the node at height j has outdegree k� �� Then Bk is the disjoint union of the

k trees! T �k� ��� T �k� ��� � � � � T �k� k� ���

First we show that Akk
��Bk by describing a winning strategy for D in the eternal �k�

game on Ak and Bk � A component of a model is a maximal connected submodel� Observe

that every component of Ak is embeddable in every component of Bk� Call a component

of either Ak or Bk vacant at round n if there is no pebble located on any element of that

component before the players make their nth moves� We consider two cases of moves for

S� First� suppose that in some round n� S plays pebble �i on a vacant component An of

Ak� Since there are only k pairs of pebbles� and since pebble 	i is not on the board� there

is a vacant component Bn of Bk � and an isomorphic injection hn 
 An �� Bn� D will play

pebble 	i on hn��i�� In the other case� S plays on a non�vacant component An� There

is some m � n such that An has been occupied continuously since round m and either

m � � or An was vacant at round m� �� Thus An � Am� and there are previously de�ned

Bm and hm� D now plays 	i on hm��i�� By this condition� every pair of pebbles ��l� 	l�

on components Am and Bm satis�es the condition that hm��l� � 	l� In both cases� it

is clear that D has maintained a partial isomorphism� By Proposition �� it now follows

immediately that Ak
k
��Bk �

Next� we show that P��Bk� is de�nable in L�� Consider the following properties
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�� A contains no chains of length 	 �k� ��

�� A contains no cycles of length � �k � ��

�� No element a � A has indegree 	 �� that is� A j� ��x�y�z�x �� y �Exz �Eyz��

It is easy to show that each property is expressible in L�� is closed under substructures�

and holds of Bk � From this it follows immediately that each B� � P��Bk� possesses all

three properties� Consequently� every member of P��Bk� is a forest consisting of directed

trees of height � �k � ��

Next we note the following facts


Lemma � Let A and B be the disjoint unions of components A�� � � � � Am� and B�� � � � � Bn�

respectively� For k 	 �� A�k
��B if and only if for each component Ai �Bi�� either the

number of components of A that are Lk�equivalent to it is equal to the number of components

of B that are Lk�equivalent to it or both numbers are 	 k�

This result can be proved by a simple pebble game argument�

Lemma � For each h� and each k 	 �� up to equivalence in Lk there are only �nitely

many trees of height � h�

The proof proceeds by induction on h� The case where h � � is obvious� Given a tree T �

call a proper subtree that contains a node t of height � and all of its descendents a ��tree

of T � For h � �� we claim that two trees T� and T� of height at most h are Lk�equivalent

if and only if for each ��tree T � � Ti� the number of ��trees of T� that are Lk�equivalent to

T � equals the number of ��trees of T� that are Lk�equivalent to T �� or both numbers are

	 k� The argument is just like the proof of the preceding lemma� From the claim� the

lemma follows immediately�

Corollary � For each h� and each k 	 �� up to equivalence in Lk there are only �nitely

many forests of height � h�

This is an immediate consequence of the preceding lemmas�

These observations establish that there are only �nitely many complete Lk�theories that

are satis�able in P��Bk�� Moreover� each such theory has a �nite model� By ���� every

��



such theory is axiomatized by a single Lk sentence� Hence� if we let �k be the disjunction

of these sentences� we have Mod��k� � P��Bk� as desired�

Finally� we argue that Ak �� P��Bk�� By the de�nition of P��Bk�� for every B� �

P��Bk�� there is an m � 
 and a sequence �E�� D�� E�� � � � � Dm� Em� of structures� with

Bk � E� and B� � Em� such that


�� For all � � i � m�Di � Ei���

�� For all � � i � m� Di �
� Ei�

It su�ces to show that for any such sequence� Ak cannot be embedded in any Ei� Let

g 
 P��Bk� �� f�� �� � � � � k � �g be the function such that g�D� is the maximum number

of components of Ak that can be embedded in D pairwise disjointly� We show that for

each i � m� g�Ei� � k � �� In fact� we show that g is monotonically decreasing on

the aforementioned sequence� Because each Di is a submodel of Ei��� it is clear that

g�Di� � g�Ei���� It remains to establish that g�Bk� � k � � and that g�Ei� � g�Di��

Observe that any embedding of a �ag F ��k � �� f � into a component C of any B� �

P��Bk� must map the root of the �ag to the root of C� This implies that no two �ags of Ak

can be disjointly embedded into any such component and� since Bk has only k components�

that g�Bk� � k � ��

From Lemma �� it follows that everyEi can be obtained fromDi by repeated application

of the following three operations� First� replace some component with a component that

is L��equivalent to it� Second� add a disjoint copy of a tree that is L��equivalent to

at least � components� Third� remove a component that is L��equivalent to at least �

other components� Thus� it su�ces to argue that no such operation performed on some

B� � P��Bk� can yield a B�� such that g�B��� � g�B��� It is obvious that removing a

component cannot increase the value of g�

We claim that it su�ces to consider the e	ect of the other two operations on components

of height � �k � �� If trees T and T � are L��equivalent� then they have the same height�

Also� no component F ��k � �� f � of Ak can be embedded in any tree of height � �k � ��

This establishes that the presence of shorter components in a model B does not a	ect the

value of g�B��
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Observe that for all trees T and T � such that T �� T �� F �t� f � can be embedded in T i	

it can be embedded in T �� This is because the following property can be expressed in L�


there is an element x such that �i� there is a y such that there is a path of length f from

y to x� �ii� x has outdegree �� �iii� there is a y such that there is a path of length t � f

from x to y� Over trees� this property says that the model embeds F �t� f �� Consequently

the operation of replacement cannot increase the value of g�

It remains to establish that adding an additional component to a model B� � P��Bk�

does not change the value of g� We observe that Bk has the following properties


�� For each ��k � ���chain contained in Bk there is at most one j� � � j � k � �� such

that the jth link of the chain has outdegree � ��

�� For each ��k � ���chain contained in Bk there is at most one j� k � � � j � �k � ��

such that the jth link of the chain has outdegree � ��

These properties are closed under substructures and L��equivalence� consequently� they

hold of every model B� � P��Bk�� Let C�� C�� and C� be L��equivalent components of B�

of height �k��� The above argument establishes that each Ci is either some F ��k��� f �� or

the simple ��k� ���chain� Let B�� be the extension of B� obtained by adding a component

C�� Observe that� in fact� all four components must be isomorphic� and embed at most

one isomorphism type of �ag� Therefore� the image of any embedding h 
 Ak �� B��

can contain vertices from at most one of these four components� This demonstrates that

g�B�� � g�B���� and completes the proof�

The following result establishes the failure of existential preservation for L����

Theorem � There is a sentence � � L��� such that both

�� Mod��� is closed under extensions�

�� For all � � L�������Modf��� �� Modf ����

Proof� We claim that it su�ces to show that for each k � 
 there is a sentence �k � L�

and a pair of �nite models Ak and Bk such that

�� Mod��k� is closed under extensions�
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�� Ak j� �k and Bk �j� �k �

�� Ak
k
��Bk�

�� For all j� Aj j� �k �

Let � �
V
k �k � It is clear that � is closed under extensions and that it has �nite models� since

it is true in each Ak� Suppose that � is a sentence in Lk����� such that � implies �� Then

Ak j� �� and therefore Bk j� �� But for all l� Bl �j� �� Therefore� Modf ��� �� Modf ����

The sentences �k and the models Ak and Bk from the proof of Proposition �� fail to

meet condition � because for j � k� Aj �j� �k � To see this� observe that Aj will always be a

submodel of Bk � To �x this defect� it su�ces to construct A�
k� B

�
k� and ��k as in the proof of

Proposition �� that also satisfy the additional condition that� for all j and k� A�
j �� P

��B�
k��

In order to accomplish this� we add simple gadgets� to the models� Let the k�cycle� Ck�

be the graph on k vertices whose edge relation forms a simple� directed cycle of length k�

Then let A�
k and B�

k be obtained from Ak and Bk � respectively� by adding a disjoint copy of

Ck� By slightly modifying the proof of Proposition ��� we can show that A�
k

k
��B

�
k � and

that there is a ��k � L� satis�ed by exactly the models in the complement of P��B�
k� such

that A�
k j� ��k � Finally� it is easy to verify that for j �� k� the j�cycle cannot be embedded

in any B � P��B�
k� and� therefore� A

�
j j� ��k �

��



Chapter �

Other �generalized� preservation

theorems

In previous chapters� we investigated existential logics� and de�nability over the class EXT

of sets of structures closed under extensions� We now turn our attention to some other

natural classes of structures and examine the status of �generalized� preservation theorems

in connection with these classes� Recall that a homomorphism h�x� from A to B is a

function from A to B such that for all n�ary relation symbols R�x� in the signature of

A� and all n�tuples a in An� if A j� R�a�� then B j� R�h�a��� Let HOM be the class

consisting of all sets of �nite models that are closed under homomorphisms� A model B

is an enrichment of A over the relations R�� � � � � Rt i	 the universe of B is equal to the

universe of A� and for all n�ary relations Ri�x� i � t� and all n�tuples a � An�� Bn��

if A j� Ri�a�� then B j� Ri�a�� A class C of models is monotone in relations R�� � � �Rt

i	 for all A � C� if B is an enrichment of A over the relations R�� � � � � Rt� then B � C�

Below we will be interested in sets of structures that are monotone in every relation of

their signature� Let MON denote the class of such sets of �nite models�

Preservation theorems from classical model theory provide exact characterizations of

the FO�de�nable classes that are closed under homomorphisms and that are monotone�

The Homomorphism preservation theorem says that a FO�de�nable class is closed under

homomorphisms i	 it is de�ned by a �purely� positive existential sentence� i�e� an existential

sentence in which every relation symbol� and equality� occurs only positively� Lyndon�s
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lemma states that a FO�de�nable class of models is monotone in relations R � fR�� � � � � Rkg

i	 it is de�ned by a sentence � in which each relation in R occurs only positively� i�e� in the

scope of no negations� It is still an open problem whether the Homomorphism preservation

theorem fails over F � We discuss this question in depth in Section �� in which we present

some partial positive results� Ajtai and Gurevich ��� showed that Lyndon�s lemma fails

over the class of �nite models� More recently� Stolboushkin ���� has constructed a simpler

counterexample� Below� we give a slight simpli�cation of Stolboushkin�s example that is

also monotone in every relation symbol� This result� and generalized preservation theorems

over HOM and MON� are discussed in Section ��

��� The class HOM

We investigate the status of preservation theorems over the class HOM� Although it is

unknown whether the Homomorphism preservation theorem remains true over F � below

we present some partial positive results� answering the question for certain fragments of FO�

In particular� we show that every sentence in FO��������
HOM is equivalent to a positive

existential sentence� In contrast to earlier results for EXT� we resolve �a�rmatively�

the homomorphism preservation theorem only for the �nite variable language L�� We then

discuss the class IHOM of sets closed under injective homomorphisms� Finally� we establish

a preservation theorem for identity free FO sentences over F �

We introduce the following notation� Let FO��� ��� denote the fragment of FO con�

taining exactly those sentences in which no relation symbol occcurs in the scope of a

negation� Thus� the negation symbol may only bind equalities� We use FO����� to

denote the purely positive existential fragment of FO� Adding inequalities to this frag�

ment� we get FO����� ���� In this terminology� the major open problem is whether

FO 
HOM � FO������

����� The homomorphism preservation property for FO

In this section� we consider various fragments of FO� We �rst show that if � � FO
HOM is

either existential or positive� then it is equivalent to a positive existential sentence� Recall

that A is a minimal model of a class C i	 for all proper submodels B of A�B �� C� Also� the
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positive diagram of a model A of cardinality n is the conjunction of all atomic formulas with

free variables among fx�� � � � � xng that are true in A under some �xed injective assignment

of these variables onto the universe of A� The next lemma is straightforward�

Lemma � Let � be an existential FO sentence such that Modf��� is closed under homo�

morphisms� Then there is a � � FO����� that is equivalent to ��

Proof� Let C � Modf���� Since C is in FO���� it has �nitely many minimal models� Let

� be the disjunction of the existential closures of the positive diagrams of each minimal

model in C� It is easy to verify the equivalence of � and ��

Below we establish the complementary result for the positive fragment of FO� Our

proof requires the following Ehrenfeucht�Fraisse game� played on a single structure� Unlike

games played on two structures� in each round only one player makes a move�

De�nition � Let � be a prenexed FO sentence� � � Q�x� � � �Qnxn�x�� � � � � xn�� where

each Qi is a quanti�er and  is quanti�er free� The ��game is played as follows� In each

round m� � � m � n � the D plays if Qm is an �� otherwise� the S plays� As usual� a move

consists of placing a pebble� �m� on some element of A� After n rounds� the D wins if

A j� ���� � � ��n�� and the S wins otherwise�

The following proposition characterizes satisfaction of a sentence in a model game

theoretically�

Proposition �
 For all prenexed sentences� �� and all structures A�A j� � i� the D has

a winning strategy in the ��game�

Proposition �� For all satis�able sentences �� � � FO��� ���
HOM i� there is an equiv�

alent � � FO������ �If � is unsatis�able� and thus in HOM� then it is equivalent to the

existential sentence �x�x �� x���

Proof� Let � be satis�able and in FO��� ���
HOM� Let C � Modf ���� If � is valid� we let

� be �x�x � x�� Otherwise� by Corollary �� proved below� we can assume that � is identity

free� i�e� contains no equalities or inequalities� Furthermore� we can also assume that � has

been prenexed and that its matrix is in conjunctive normal form� i�e� is a conjunction of
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disjunctions of atomic formulas� We say that an atomic formula� Rx� is a ��formula of � i	

there is a variable x� � x that is bound by a universal quanti�er in �� Let � be the sentence

obtained from � by deleting all occurences of all ��formulas and all universal quanti�ers�

For example� if � were �x��x��x���Rx�x� � Px� � Px�� � �Rx�x� � Rx�x� � Px���� then

� would be �x��x���Px� � Px��� �Rx�x���� We claim that � is equivalent to �� �Observe

that � is obtained e	ectively from an identity free ���

First we show that every conjunct of � contains a non���formula� Suppose� for contra�

diction� that � is a conjunct of � that contains only ��formulas� Let A be any model in C�

and let A� be the extension of A obtained by adding one element� a�� without altering any of

the relations� Observe that A� is in C� since the class is closed under homomorphisms� We

claim that the S has a winning strategy in the ��game on A�� which implies that A� �j� �� a

contradiction� In order to win� it su�ces for the S to always play each of his moves on the

element a�� regardless of the D�s play� Every variable assignment extending the assignment

determined by S�s moves falsi�es the conjunct �� and hence also the formula �� Therefore

the S wins the ��game� as desired�

We now show that � implies �� Let � � Q�x� � � �Qnxn
V
��j�k �j � where each �j is a

disjunction of atomic formulas� Let � � Qs�xs� � � �Qsmxsm
V
��j�k �j � where each Qsl is

�� and each �j is obtained from �j by deleting all ��formulas� Suppose that A j� �� let

a � �as� � � � � � asm� � A be such that A j�
V
��j�k �j �a�� We now describe the D�s winning

strategy in the ��game on A� In each round sl � n� she plays a pebble on asl � Any variable

assignment for fx�� � � �xmg that is determined by such a game veri�es each �j � hence also

each �j � Therefore A j� �� thereby establishing that � implies ��

Next we prove the opposite direction� Let A j� � and� again� let A� be the extension of

A obtained by adding an isolated� element� a�� Since A� j� �� the D has a winning strategy

for the ��game on A�� In particular� she can win a game in which the S plays every one

of his pebbles on a�� Since a� is not a member of any tuple that is in any relation� RA�

�

and since every atomic formula occurs only positively� we can assume that the D does not

play any pebble on a�� Let a � �as� � � � � � asm� � A be some tuple in A � A� such that

the D wins the ��game on A� in which the S always plays on a� and� in each round sl�

the D plays on asl � Observe that each ��formula is falsi�ed by this variable assignment�

Therefore each disjunction� �j � must contain a non���formula� �j � that is satis�ed by this
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variable assignment in A�� Since each �j occurs in the disjunction �j � it is easy to see that

A j�
V
��j�k �j �a�� Therefore� A j� �� This establishes that � implies �� and completes the

proof�

Next� we establish another partial positive result over a fragment of FO� de�ned in

terms of quanti�er pre�x structure� The proof uses the following version of the Ehrenfeucht�

Fraisse game� The �l�m�n�game on A and B is a ��round game played with l �m � n

labeled pebble pairs such that


�� The Spoiler plays l pebbles� 	
�
� �	�� � � � � 	l�� on B� The Duplicator then puts l

pebbles� �� � ���� � � � � �l�� on A�

�� In round �� the S plays m pebbles �� � ��l��� � � � � �l�m� on A� The D then puts m

pebbles� 	
�
� �	l��� � � � � 	l�m�� on B�

�� In round �� the S plays n pebbles� 	
�
� �	l�m��� � � � � 	l�m�n� on B� The D then

puts n pebbles� �� � ��l�m��� � � � � �l�m�n�� on A�

Of course� the D wins just in case the pebbles determine a partial isomorphism from A to

B� The following lemma is easy to verify�

Lemma � The following two conditions are equivalent�

�� For all � � FO��l�m�n�� if A j� �� then B j� ��

�� The D has a winning strategy in the �l�m�n�game on A and B�

Proposition �� FO�������� 
 HOM � FO������ Furthermore� given � � FO�������� 


HOM� there is an e�ective procedure for �nding an equivalent sentence � � FO������

Proof� Let � be in FO��l�m�n�
HOM� and let � be the signature of �� We show that there

is an s � 
 that bounds the size of every minimal model of C � Modf ���� This implies

that C is de�ned by a sentence in FO��� and thus� by Lemma �� that it is actually de�nable

in FO������ In fact� we can calculate s as a function of m and �� which establishes that

there is an e	ective procedure for �nding a sentence equivalent to � in FO������ Let r

be the number of models� up to isomorphism� of signature � and cardinality m� and let

s � r �m� Also let t � l �m� n�
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Let A be a minimal model of C� We want to show that there is a B � C� of cardinality

� s� such that there is a homomorphism from B into A� By the minimality of A� the homo�

morphism must be onto� implying that the cardinality of A is also � s� Let fM�� � � � �Mqg

be the set of submodels of A of cardinality � m� again up to isomorphism� We use C �D

to denote the model which is the disjoint union of C and D� and p �D to denote the disjoint

union of p copies of D� Let G � �t �M��� � � �� �t �Mq�� and let B � M� � � � � �Mq� It is

obvious that there are homomorphisms from G onto B� and from B into A� Observe also

that the cardinality of B is q �m � s� Since C is closed under homomorphisms� it su�ces

to show that G � C�

To establish this fact� we de�ne an extension A� of A� and describe the D�s winning

strategy for the �l�m�n�game on A� and G� Since A� j� �� this implies that G j� �� Let

A� � A � G� and let f�x� be the obvious injection from G into A�� In Round �� the S

plays l pebbles� 	
�
� on some l�tuple in G� The D then plays on the l�tuple f�	

�
�� in A�� In

Round �� the S plays some pebbles� ����� on A � A�� and plays his other pebbles� ����� on

G � A�� Conceptually� the D makes her move in two stages� She �rst plays her pebbles�

	
���

� on f��������� She then chooses an unpebbled component M �
p of G� one of the copies

of Mp� such that there is an embedding� h�x�� from M �
p into G that contains the tuple ����

in its range� There must be such a component since G contains t copies of each Mp� The

D then plays her pebbles� 	
���

� on the preimage of ���� under h�x�� It is clear that the

D succeeds in maintaining a partial isomorphism� Now� let f ��x� be the embedding of G

into A� that equals h�x� on M �
p� and equals f�x� on G�M �

p� In Round �� the D plays her

pebbles� ��� on the image� f ��	
�
� � A�� of the pebbles played by the S� It is easy to see

that this is indeed a winning strategy for the D�

����� L
� has the homomorphism preservation property

In this section� we show that L� has the homomorphism preservation property over F

and over the class of all structures� That is� we show that L� 
 HOM � L������� where

L������ is the set of sentences in L�
FO������ Recall that it is unknown whether L� has

the existential preservation property� though the corresponding negative result has been

established for all Lk� k 	 � �see ����� As L� only contains two variables� we assume� without
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loss of generality� that the signature� �� does not contain any relation of arity 	 �� Elements

a and b are adjacent i	 there is a binary relation Rxy � � such that A j� Rab �Rba�

Proposition �� The homomorphism preservation theorem holds for L� over F and over

the class of all structures� In fact� for all � � L� 
HOM� an equivalent � � L������ such

that qr��� � qr��� can be found e�ectively�

Proof� Let � � L�
HOM� and let qr��� � n� Let C � Modf���� �The same argument also

establishes the claim in the in�nite case�� For each model A � C� we de�ne a sentence �A �

L������� with qr��A� � n� such that A j� �A and Modf ��A� � C� From the construction�

it will be clear that� although C is in�nite� there are only �nitely many distinct �A� Letting

� �
W
A�C �A� it is immediate that Modf ��� � Modf ����

For each model A� and elements a� b � A� let �a�b�x� y� be the atomic type of �a� b� in

A� i�e� the conjunction of all atomic formulas � with free variables among x� y� such that

A j� �a� b�� For all a � A� and all m � n� we also de�ne a formula �ma �x� � L�������

with qr��ma �x�� � m� such that A j� �ma �a�� Let N�a�� the neighbors of a� denote the set of

b �� a such that a is adjacent to b� ��a�x� is just the atomic type of a in A� For all m� ��

we essentially want �m��
a �x� to be �ma �x� �

V
b�N�a� �y��

a�b�x� y�� �ma �y��� except that we

eliminate redundant� identical conjuncts� �Here� �ma �y� denotes the formula obtained from

�ma �x� by exchanging all occurences of x and y�� This guarantees that� for �xed m� there

are only �nitely many formulas of the form �ma �x�� Finally� let �A �
V
a�A �x�

n��
a �x��

again eliminating redundant conjuncts�

To show that �A implies �� we de�ne a model M such that �i�M j� �A� �ii�M � C� �iii�

for all B such that B j� �A� there is a homomorphism from M to B� Since C is closed

under homomorphisms� these conditions imply that every model of �A is in C� as desired�

Given �A� let Q � fq�� � � � � qtg be the set of occurences of �existential� quanti�ers in �A� For

de�niteness� we stipulate that if i � j� then qi occurs to the left of qj in �A� The universe

of M is Q� The interpretation of the relations on M is determined straightforwardly from

�A� as follows� M j� Eqiqj i	 there is an occurence of an atomic formula� Evw� such that

v� and w� are bound by qi and qj � respectively� Similarly for unary predicates� Every

formula occcurs only positively� so M is well�de�ned� It is easy to see that M satis�es

conditions �i� and �iii�� Indeed� for all B� an assignment of variables that veri�es that
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B j� �A determines a homomorphism from M to B�

To prove that M � C� it su�ces to show that there are A� and N such that �i�A �

A�� �ii�A� ���n N and �iii� there is a homomorphism from N to M � Here� A� ���n N

means that for all  � L� with qr�� � n�A� j�  i	 N j� � Since C is closed under

homomorphisms and L��n�equivalence� �i�� �iii� imply that M � C� Let N � � �M and

A� � A�N � It is immediate that �i� and �iii� are satis�ed�

We de�ne the following supplementary relation on M � and hence also on N � For all

qi� qj �M�Sqiqj i	 qj occurs in the scope of qi and there is an occurence of a binary atomic

formula in �A that contains variables bound by both qi and qj � Observe that qi and qj in

Q are adjacent in M i	 they are adjacent in the model �Q� S�� We claim that �Q� S� is

a directed forest� i�e� the disjoint union of directed trees� �Alternatively� G is a directed

forest i	 it is acylic and every element a has indegree � ��� The acylicity of �Q� S� follows

immediately from the de�nition of Sxy� To establish the claim� it su�ces to prove the

following lemma�

Lemma � Let  be a formula of L�� and let qj be an occurence of a quanti�er in � Then

there is at most one quanti�er occurence� qi� such that �i� qj is in the scope of qi� and �ii�

there is an atomic formula� Evw� in  such that �v� and �w� are bound by both qi and qj �

Proof� Let qj occur in � and let qjx���x�� be a subformula of � such that the scope of qj

is ��x�� Every occurence of a binary relation symbol that contains two distinct variables�

contains the two variables� x and y� since  � L�� Suppose that qi satsi�es conditions �i�

and �ii� of the lemma� Then qi must bind every free occurence of the variable y in the

subformula ��x�� Therefore no other quanti�er in  can satisfy this pair of conditions�

Since �Q� S� is a forest� there is a well�de�ned function� ��x�� on M �N �� such that ��qi�

is the height of qi in �Q� S�� The height of the model M �N � equals qr��A�� � � n � ��

We now establish that A� ���n N by describing the D�s winning strategy in the n�round

��pebble game on A� and N � We claim that if the S can win the game� then he can do so

playing according to the following normal form��

�� In each round m � �� he plays the pebble pair that was not played in the previous

round� and does not replay it on the same element it just occupied�
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�� In round �� he plays a pebble �i on the A�component of A��

�� In each round m� �� he plays a pebble �i�	i� on an element adjacent to ���i�	��i��

Condition � is obvious� To see that � does not hinder the S� suppose that he does not

play his �rst move on the A�component of A�� The D will then play all of her moves

according to the bijection between N and the N �component of A�� until the S plays on

the A�component� To win� the S must eventually play some �i on the A�component� The

D will then play 	i on the vacant M �component of N � At the start of the next round�

pebbles �j and 	j� i �� j are removed from the board� so the S could have reached the same

position sooner by playing on A � A� in round ��

Consider Condition �� Suppose that in some round m��� the S plays 	i on an element

of N not adjacent to 	��i� The D then plays �i on the corresponding element of a vacant

M �component in A�� Since the pebbles �j � 	j� i �� j will be replayed in the next round� for

the same reasons as above the S has not made any progress� Likewise� if the S plays on

A�� again the D can respond by playing on the vacant M �component of N �

We now describe the D�s winning strategy assuming that the S always plays in accord

with the above conditions� The S begins by playing on some a � A � A�� The D then plays

on the qk �of either M �component� such that qk occurs in the formula �A as the quantifer

that binds the formula �n��a �x�� Observe that qk is the root of an S�tree� In all later rounds�

the 	 pebbles are always played adjacently� so the D can play so that these pebbles climb

up the S�tree�� To win� she maintains the condition that the pebbles� �i� 	i� are played

in round m so that ��	i� � m � � and 	i is located on the element ql that binds the

formula ��j��i�x� y���n�m�i
�y�� Suppose that the D has maintained this condition through

m rounds� m � n� and that� in round m��� the S plays �j � N��i�� The D will then play

pebble 	j on the quanti�er occurence that binds the formula ��i��
�

j�x� y� � �
n��m���
��j

�y��

which is a conjunct of �n�m�i
�y�� The argument for the case where the S plays on N is

similar� Because the D always plays up the tree�� in every round m � �� the 	 pebble of

lesser height will be replayed� The S is thereby prevented from moving down the tree� as

doing so would violate Condition �� This establishes that A� ���n N � Thus� �A implies ��

and � �
W
A �A is equivalent to ��
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Lastly� we argue that � can be found e	ectively� By induction on m� it is easy to show

that one can e	ectively generate all possible formulas of the form �ma �x�� Thus one can

also enumerate the ��nite� set� "� of formulas of the form �A� with qr��A� � n� for �xed

n� Let d be the maximal number of quanti�ers occuring in any formula �i � "� Every

minimal model of Modf ��i� has cardinality � d� so � is equivalent to �i i	 the sentences

are equivalent on all models of cardinality � d� which is decidable� Since " is �nite� one

can e	ectively �nd the � � " that is equivalent to ��

����� Injective homomorphisms

In this section� we brie�y discuss a class that lies between EXT and HOM� Recall that a

map h�x� is injective i	 for all a� b � dom�h�� if f�a� � f�b�� then a � b� Let IHOM be

the class consisting of exactly those sets of �nite models which are closed under injective

homomorphisms� Observe that HOM � IHOM � EXT� and that each inclusion is proper�

Over the class of all structures� the Injective homomorphism theorem says that a FO�

de�nable class of models is closed under injective homomorphisms i	 it is de�nable by a

FO����� ��� sentence� Minor modi�cations of the proofs of Proposition �� and Theorem �

yield the following results�

Proposition �� For each k � 
� there is a sentence �k � L�� containing a single binary

relation� such that

�� Mod��k� is closed under injective homomorphisms� but

�� Modf ��k� �� Modf��� for all � � Lk����

�Sketch� Alter the proof of Proposition �� by de�ning the k � pyramid of B�Pk�B�� to

be the smallest class of ��nite and in�nite� models containing B that is closed under

substructures� Lk�equivalence� and impoverishments� �A is an impoverishment of B i	 B

is an enrichment of A�� The proof then proceeds as before�

The next theorem follows from the previous proposition as Theorem � follows from

Proposition ���

Theorem � There is a sentence � � L��� such that both
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�� Mod��� is closed under injective homomorphisms�

�� For all � � L�������Modf��� �� Modf ����

Beyond these two propositions� other results relating to preservation properties for

EXT and HOM do not seem to generalize easily to yield analagous results for IHOM� For

example� we do not see how to adapt any of the examples witnessing the failure of the

Existential preservation theorem� due to Tait� Gurevich�Shelah� and Grohe� to de�ne non�

trivial FO�classes in IHOM� Furthermore� our proofs of partial positive results concerning

FO�de�nability over HOM appear to rely essentially on the stronger closure properties of

HOM� There are thus various open questions regarding injective homomorphism preser�

vation properties over F � We pose the following problem�

� Does the Injective homomorphism preservation theorem hold over F�

By Lemma �� an a�rmative answer to this question immediately implies the Homomor�

phism preservation theorem over F � though it is uncertain whether the reverse implication

holds�

This brief section indicates that the class IHOM is rather di	erent than EXT and

HOM� while still sharing features with both classes� Resolving the status of the Injective

homomorphism preservation theorem in either way would yield additional information

about older questions and results� Thus� a negative answer would clearly strengthen Tait�s

result� More generally� we believe that further understanding of the relationship between

de�nability over EXT� IHOM� and HOM will provide insight into FO�de�nability and

�generalized� preservation properties�

����� Identity free FO

The following preservation theorem characterizes the expressive power gained from adding

the identity sign to the language of FO� As the proof uses a modi�ed Ehrenfeucht�Fraisse

game� it is simultaneously a proof over F and over the class of all structures� A map

h�x� from A to B is a strict surjection i	 it is a homomorphism of A onto B such that

for all k�ary relations� R�x�� in the signature of A� and all k�tuples a � A� A j� R�a� i	

B j� R�h�a��� A class C is closed under reverse strict surjections i	 for all A� and all B � C�
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if there is a strict surjection from A to B� then A � C� For the rest of this section� to avoid

trivialities� we restrict our attention to languages with non�empty signatures�

De�nition � The n�round ��identity free�� i�f��game on A and B is played according to

the same rules as the standard n�round Ehrenfeucht�Fraisse game on A and B� but has

di�erent winning conditions� The S wins at some round m i� there is a k�ary relation

symbol� R�x�� and a sequence� p � �p�� � � � � pk�� pi � m� such that A j� R��p� � � � � � �pk� i�

B �j� R�	p� � � � � � 	pk�� The D wins the game if the S does not win at any round m � n�

Observe that the D does not have to play so that the pebbles determine a bijection between

the models� This re�ects the absence of identity in the language under consideration� We

omit the obvious equivalent algebraic characterization� The following proposition and

corollary are stated without proof�

Proposition �� Given models A and B� the following two conditions are equivalent�

�� For all identity free sentences� �� with quanti�er rank � n�A j� � i� B j� ��

�� The D has a winning strategy in the n�round i�f��game on A and B�

Corollary � For all classes C� the following two conditions are equivalent�

�� C is de�ned by an identity free sentence of quantifer rank � n�

�� For all A � C� B �� C� the S wins the n�round i�f��game on A and B�

We now state and prove the preservation theorem�

Proposition �� Let C be a class of models� Then C is FO�de�nable and closed under strict

surjections and reverse strict surjections i� it is de�nable by an identity free sentence�

Proof� Let C be de�ned by a sentence � � FO� with qr��� � n� We argue that for all

A � C� B �� C� the S wins the n�round i�f��game on A and B� By the preceding Corollary�

this implies that C is de�nable by an identity free sentence with the same quanti�er rank

as ��

Suppose that the D wins the n�round i�f��game on some A � C and B �� C� Let A�nB

mean that A and B are equivalent on all FO sentences of quanti�er rank � n� We will
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de�ne models A� � C� B� �� C such that A��nB
�� a contradiction� Given a model A� and

elements a�� a� � A� we say that a� is a copy of a� i	 the permutation �a�a��� permuting

a� and a�� is an automorphism of A� Let A� �B�� be the extension of A �B� obtained by

adding n � � copies of every element of the structure� �For example� if A were the graph

with universe fa�� b�g� and edge relation EA � f�a�� b��g� then A
� would be the graph with

universe fa�� � � � � an� b�� � � � bng and edge relation� EA�

� f�ai� bj� j i� j � ng�� There are

obvious strict surjections from A� and B� to A and B� respectively� and hence A� � C�

B� �� C�

We now show that the D�s winning strategy for the i�f��game on A and B can be

easily adapted to provide a winning strategy for the standard n�round Ehrenfeucht�Fraisse

game on A� and B�� demonstrating that A� �n B�� The basic idea is that the presence

of n copies of every element enables the D to modify her strategy from the i�f��game as

follows� Whenever she is in a position where she would have played on a previously pebbled

element� she instead plays on a vacant copy of that element� That is� she maintains the

condition that if� through round m� pebbles have been placed on a� � �a��� � � � � a
�
m� � A��

b
�
� �b��� � � � � b

�
m� � B�� then she would win the i�f��game on A and B with the pebbles on

a � �a�� � � � � am�� b � �b�� � � � � bm�� where each a�i �b
�
i� is a copy of ai �bi�� Suppose that she

maintains this condition through m rounds� m � n� and that in round m � �� the S plays

on some unpebbled a�m�� � A�� The D then plays on an unpebbled copy b�m�� � B� of some

bm�� � B such that �a � am��� b � bm��� is a winning position for the D in the i�f��game on

A and B� Similarly if the S plays on B��

The next corollary follows immediately�

Corollary � For all classes C� if C � FO 
 HOM� then it is de�nable by an identity free

sentence�

The above argument demonstrates the existence of an equivalent identity free sentence

� with the same quanti�er rank as �� More generally� the idea of the above proof yields

signi�cant information about the desired identity free sentences� For example� if � is in

prenex form� we can establish that there is an identity free � with the same quanti�er

pre�x� The next corollary was needed in the proof of Proposition ��� above� It can be
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proved using the positive Ehrenfeucht�Fraisse game from ����� described in Section �� and

the positive i�f��game� C is non�trivial i	 it is neither empty nor the class of all structures�

Corollary � Let C be a non�trivial class de�nable in FO��� ��� and closed under strict

surjections and reverse strict surjections� Then C is de�ned by an identity free sentence

of FO���� �If C � F � �resp� ��� then it is de�ned by the sentence �x�x � x�� �resp� �x�x ��

x����

��� Generalized preservation theorems for HOM and MON

In this section we discuss generalized preservation properties for the classes HOM and

MON� We pose various open problems in the same spirit as the question of whether

FO 
 EXT is contained in the existential fragment of some stronger logic� from Chapter

�� One purpose of this investigation is to try to understand better the connection between

de�nability in FO and in resource bounded� fragments of L���� For example� the fact that

FO
Datalog��� �� FO��� means that there are classes in EXT�FO��� that are de�nable

in two di	erent extensions of FO��� that are obtained by adding di	erent orthogonal�

mechanisms to the language!� to get FO� and recursion to get Datalog����

The languages L�������� and L������ ��� are de�ned in the obvious manner� We

view Datalog as LFP������ and Datalog��� as LFP���� Positive LFP� LFP��� ���� extends

Datalog in allowing any FO��� ��� formula to occur in the body of a clause� The intensional

predicates are computed in the obvious manner� The following proposition is proved by

arguments analagous to those in the proof of Proposition ��

Proposition �	 �� Datalog � L�������� � HOM

�� LFP��� ��� � L������ ��� � MON

In strict analogy to open problems posed above for EXT� we ask the following questions�

�� Is FO 
 HOM � L���������

�� Is FO 
 HOM � Datalog�

�� Is FO 
MON � L������ ����

�� Is FO 
MON � LFP��� ����
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Ajtai and Gurevich ��� showed that FO 
 Datalog � FO������ Consequently� a positive

answer to the second question would imply the truth of the Homomorphism preservation

theorem over F � Observe also that their result contrasts with the known fact that FO 


Datalog��� �� FO���� We now show that FO 
 LFP��� �� FO��� ���� The class that we

de�ne is based on a construction from Stolboushkin ����� which gives a simple proof that

Lyndon�s lemma fails �nitely�

Proposition � There is a FO�de�nable class C � MON such that

�� C is de�nable in LFP����

�� C is not de�nable in FO��� ����

Therefore� FO 
 LFP��� �� FO��� ����

Proof� We de�ne a class C which includes a class of structures that we call P�Q�orders�

based on the #grids$ from ����� A P�Q�order� A� consists of two disjoint linear orders �with

some additional relations� of sets PA and QA� where P and Q are monadic predicates

in the signature� We verify directly that C is de�nable in FO and in LFP���� Using

a modi�cation of Stolboushkin�s idea� and the appropriate Ehrenfeucht�Fraisse game for

FO��� ���� we then show that C is not FO��� ����de�nable�

De�nition � Let � � fPx�Qx� x � y� Sxy� Txy� c� dg� A is a P�Q�order i�

�� Every element a � A is in exactly one of the relations P and Q�

�� The relation x � y linearly orders the submodels PA and QA� and for all a � PA�

b � QA� A j� ��a � b � b � a��

	� Sxy is the successor relation on the submodels PA and QA� and for all a � PA�

b � QA� A j� ��Sab � Sba��


� c is the ��minimal element in PA� and d is the ��minimal element in QA�

�� �xy�Txy � �Px �Qy��

�� Tcd��x�x�x�x���Px��Px��Qx��Qx��Tx�x��� f�x� � x� � Tx�x�����Sx�x��

Sx�x��� Tx�x��g�
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�� �uvw�u � v � Tuw � Tvw � �x�x � w� �Tux��

It is obvious that the class of �nite P�Q�orders is de�ned by some � � FO� We now

de�ne a sentence � � FO������ and let C � Modf �� � ��� We de�ne �i� � � i � �� as

follows� and let � �
W
i�	 �i�

�� � �x�Px �Qx� �Qc � Pd

�� � �xy�Txy � �Py � Qx��

�� � �xy�x � y � ��Px �Qy� � �Qx � Py���

�� � �xy�x � y � y � x�

�� � �xyz�x � y � y � z � z � x�

�	 � �xyz�Sxy � �x � y � y � x � �x � y � y � z� � �Px � Qy�� �Py �Qx���

We claim that C is monotone� First� suppose that A � C satsi�es �� Since � is positive�

every enrichment of A also satsi�es �� Now suppose that A is a P�Q�order� By considering

expansions of the di	erent relations in the signature� it is easy to see that every enrichment

of A is also in C� For example� if B is obtained from A by expanding PA� then there is a

b � B such that B j� Pb � Qb� Thus� B j� �� Similar considerations show that expanding

Qx� Sxy� or x � y also produces a model of �� Finally� there are enrichments B of A such

that only the relation Txy is expanded and B �j� �� but it is easy to verify that any such

enrichment is a P�Q�order�

We now show that C is LFP����de�nable� �Observe that� by Proposition ��� this also

provides an alternative proof that C is monotone�� We de�ne in LFP��� a relation Rxy

such that� over the class of P�Q�orders� Rab holds i	 Pa � Qb � height�b� � height�a���

Here� height�x� is the height of x in the linear order� Rxy is like Txy� except that it

consists of edges from P �s to Q�s pointing� in the other direction� Let Rxy be the relation

computed by the clause� Rxy �� �Px � y � d�� �wz�Rwz � Swx� Szy��

The following sentences are components of the LFP��� program to be de�ned below�

Roughly� any model that satis�es their conjunction is either a model of � or looks very

much like a P�Q�order�

Let � � �x�Px � Qx� � �xy��Qx � Qy � x � y � y � x � x � y� � �Px � Py � x �

y � y � x � x � y��� The second conjunct says that every pair of elements in PA�QA� is
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connected by the relation x � y� For assume that no element of A is in both P and Q�

�Otherwise� we simply have that A j� ��� Then � says that if x and y are distinct and in

PA� i�e� not in QA� then there is an ��edge connecting them� Likewise for x and y in QA�

Let � � �xy�z�Qx�Qy�x � y�y � x�Sxz���xy�z�Px�Py�x � y�y � x�Sxz��

This sentence says that every element that is not ��maximal has a successor�� For example�

suppose that x and y are in PA � QA� such that x � y� In particular� x is not maximal�

Then� by the �rst conjunct� x has a successor�

Let � � �xy�Qx�Py� �Rxy�Txy����vw�Tvw�Rvw�� This says that Txy behaves

in the appropriate way� by using the �inductively de�ned� relation Rxy as its complement��

The following LFP��� program de�nes C�

Rxy �� �Px � y � d� � �wz�Rwz � Swx � Szy�

B �� � � �o � � � ��

Here� B is the distinguished Boolean predicate� Suppose that A � C� Either A j� �� in

which case A is obviously in the class computed by the above program� or it is a P�Q�order�

In the latter case� it is easy to verify that �� �� and � are each satis�ed in A� and hence

the value of the Boolean predicate B� on A� is true� To establish the containment in the

other direction� suppose that A is in the class computed by the program� If A �j� �� but

A j� � � � � �� then it is straightforward to verify that A is a P�Q�order�

The de�nition of the preceding program exploits the following idea� Since every element

in a P�Q�order� A� is either in P or Q� and since x � y linearly orders PA and QA� negation

can essentially be expresssed in a positive way� For example� A j� �Pa i	 A j� Qa� Also�

roughly� �x � y i	 x � y � y � x� We also observe that� by making minor changes� one

can eliminate the symbols c� d� and Sxy from the vocabulary� For example� Sxy is actually

positively de�nable over P�Q�orders�

It remains to show that C is not de�nable by a FO��� ��� sentence� We adapt a proof of

Stolboushkin�s� from ����� in which the positive n�round Ehrenfeucht�Fraisse game is intro�

duced� The rules of this game are identical to those of the standard n�round Ehrenfeucht�

Fraisse game� except that the D wins i	 the function� f�x�� from A to B that sends each

pebble �i to pebble 	i is a partial injective homomorphism between the induced submodels

of A and B� That is� the D must maintain the condition that for all k�ary relations� R�
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and all k�tuples of pebbles ��� if A j� R����� then B j� R�f������ We de�ne A ��n B to

mean that for all sentences � � FO��� ���� with qr��� � n� if A j� �� then B j� ��

Proposition �� �Stolboushkin����� For all A and B� and all n� the following condi�

tions are equivalent�

�� A ��n B�

�� The D has a winning strategy in the positive n�round game on A and B�

To prove that C �� FO��� ���� it su�ces to show that for all n� there are A � C� B �� C

such that A ��n B� We de�ne A to be a P�Q�order� and B to be an impoverishment

of A� obtained by removing a single T �edge� Let the universe of A be the set of ordered

pairs f�w� h� j w � f�� �g and � � h � �n��g� with PA�resp� QA� the set of elements of

the form ��� h��resp� ��� h��� A j� �w� h� � �w�� h�� i	 w � w� and h � h�� The relation

x � yA uniquely determines the the interpretation of Sxy� cA � ��� ��� dA � ��� ��� Finally�

TA � f��w� h�� �w�� h��� j w � �� w� � �� and h � h�g � f���� �n���� ��� �n�� � ���g� B is

identical to A� except that TB � TA � f���� �n���� ��� �n����g� It is easy to verify that

A � C� and that B �� C�

We now describe a winning strategy for the D in the n�round positive game on A and

B� In each round� she either plays on the same element� on the other structure� as the S�

or she plays on its S�predecessor or successor� Roughly� on P or far from the midpoints�

��� �n��� and ��� �n���� the D copies the S�s moves� and near the midpoints and in Q� she

plays so that the 	 pebbles� on B� are shifted one higher than their � counterparts� In

any round m� if S plays on ��� h�� in either A or B� then the D plays on ��� h� in the other

model� In round �� if the S plays on ��� h� and d�h� �n��� �j h��n�� j� �n� then the D also

plays on ��� h�� Otherwise� the D plays a shift� so that �� � ��� h�� and 	� � ��� h� � ���

with h� � h or h � �� depending on whether or not the S played on A� In this case� we

say that the pebble pair is shifted� In each round m� �� let Im�� be the smallest interval

�sm��� tm���� � � sm�� � tm�� � �n�� that contains �n�� and the h�component� hl� of

any shifted pebble 	l� l � m� If no pebbles have been shifted through round m� then

Im�� is the degenerate interval ��n��� �n���� In round m � �� the D copies the S�s move�

�m�� � ��� hm��� if the distance from hm�� to the interval Im�� is greater than ��n����m�

��



Otherwise� the D plays a shift� exactly as described for the �rst round� It is easy to see

that this provides the D with a winning strategy�
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Chapter �

Modal logic over �nite structures

In this chapter� we discuss the �nite model theory of the language of propositional modal

logic� PM� Modal logic has been studied extensively in connection with philosophical logic�

More recently� connections have emerged between modal logic and computational linguis�

tics and certain areas of computer science� Below we will be interested in the classical

model theory� of modal logic� an approach taken by van Benthem and others� For example�

PM satis�es certain preservation theorems that are analogous to classical theorems for FO�

We show that� in contrast to more expressive logics� PM remains well�behaved over F as

various classical results remain true over the class of �nite models�

In order to make this chapter self�contained� we brie�y describe the syntax and seman�

tics of PM� Most of this material is well�known� and more detailed descriptions can be

found in many places� �e�g� see ����� The syntax of PM is obtained from that of simple

sentential logic by adding the two modal operators ��� necessarily �� and ��� possibly

�� Over a signature of proposition symbols� � � fp�� � � � � pkg� the class of sentences of

PM��� is the smallest class containing each atomic sentence pi and closed under nega�

tion� conjunction� disjunction� and the operators � and �� We will always assume that

the signature is �nite and non�empty� A �Kripke� model of PM��� is a directed graph A

with additional unary predicates fP�� � � � � Pkg� corresponding to each proposition symbol�

The edge relation Rxy is often called the accessibility relation�� and we will say that b is

accessible from a just in case Rab�

De�nition 	 Satisfaction for sentences of PM at a node �or world� is de�ned inductively�
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�� �A� a�j�PMpi i� A j� Pi�a��

�� The Boolean operations are given their standard interpretations�

	� For the modal operator necessarily� �A� a�j�PM
�q i� for all b � A such that A j�

Rab� �A� b�j�PMq� Possibly is de�ned dually� �A� a�j�PM�q i� there is some b � A

such that A j� Rab and �A� b�j�PMq�

This semantics suggest a natural interpretation of PM into FO� In fact� by reusing

variables we can translate PM into the language L�� Since sentences of PM are evaluated

at a node of the Kripke model� they naturally translate into FO�formulas with one free

variable� In order to keep the image of the translation in L�� we will simultaneously

de�ne two functions� ����� and ����� such that �i� �d��� contains xd free� and �ii� for

all � � PM� ����� is obtainable from ����� by replacing every occurrence of x� by x��

and vice�versa� The functions �d��� from sentences of PM to formulas of L� are de�ned

inductively as follows


�d�pj� � Pj�xd�

�d�q� � q�� � �d�q�� � �d�q��

�d��q� � ��d�q�

�d��q� � �x��d�Rxdx��d � ���d�q��

�d��q� � �x��d�Rxdx��d � ���d�q��

To simplify the exposition� we add a single constant c to our FO�signature� to convert each

formula with one free variable into a sentence� Let ���� be the function from PM to L�

such that for all � � PM� ���� is obtained from ����� by replacing each free occurence

of x� by c� Then each model is viewed as having a distinguished node� at which modal

sentences are evaluated� Let FOM � the modal fragment of �rst order logic� be the image of

PM under the mapping �����

In his dissertation ���� van Benthem gave an algebraic characterization of FO�de�nable

classes that are de�nable by a modal sentence� He introduced the following important

notion�
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De�nition  Given two models A and B �with distinguished nodes cA and cB�� a bisim�

ulation between A and B� is a binary relation� �� contained in A �B� such that

�� cA � cB

�� For all a� b such that a � b� if A j� Raa��B j� Rbb��� then there is a b� � B�a� � A�

such that a� � b�

	� For all a� b such that a � b� and all Pj � A j� Pj�a� i� B j� Pj�b��

We say that A bisimulates with B i� there is a bisimulation between the two models� We

also write �A� a� � �B� b� if there is a bisimulation � between A and B such that a � b�

Bisimulation is an equivalence relation on structures� which can be seen as a modi�ed�

weak kind of partial isomorphism� It is easy to see that if there is a bisimulation between

a pair of models� then they satisfy the same modal sentences�

Van Benthem proved the following preservation theorem
 a FO�de�nable class of mod�

els is closed under bisimulations i	 it can be de�ned by a sentence in FOM � Below we

prove that this result remains true over F � We then show that an existential� preservation

theorem� due to van Benthem and Visser �see ����� also holds over the class of �nite struc�

tures� Finally� we give an alternative proof� which does not use the compactness theorem�

of Andreka� van Benthem� and Nemeti�s result ��� establishing the modal analog of the

Craig interpolation theorem�

��� Background

In this section� we present background information needed for the proofs of the main results

that appear in Section �� Our development of this material closely parallels analogous

results for both FO and for the various �nite variable logics� We �rst de�ne an in�nite

game to characterize full bisimulation� We then introduce �nite versions of the game� and

the notion of n�bisimulation�� and determine their connection to modal de�nability�

In the �eternal� modal Ehrenfeucht�Fraisse game the Spoiler and the Duplicator play

a modi�ed two pebble Ehrenfeucht�Fraisse game� with pebble pairs ���� 	��� ���� 	��� At

the start of the game� pebbles �� and 	� are on cA and cB� respectively� In round �� the S
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either places �� on some element of A such that A j� R���� or places 	� on some element

of B such that B j� R	�	�� The D then does the same on the other structure� In each

subsequent round n��� the Spoiler chooses a pair ��i� 	i� of pebbles� already in play� and

replays either �i on A such that A j� R���i�i or 	i on B such that B j� R	��i	i� The D

then plays the other pebble on the other structure in accordance with the same restriction�

Each player loses immediately if he or she cannot make a legal move� The Spoiler wins at

round n if there is Pm such that A j� Pm�i i	 B �j� Pm	i� �Observe that the Duplicator

does not have to play so that the partial mapping from A to B induced by the pebbles is a

partial isomorphism!e�g� in some round� she could play 	� on the same element as 	� in

B� even if S had not just played �� on �� in A� This is because sentences of FOM do not

contain equality�� The Duplicator wins the game� just in case� in every round the Spoiler

does not win� The following proposition is straightforward�

Proposition �
 For all A and B of signature �� the following conditions are equivalent�

�� There is a bisimulation between A and B�

�� The Duplicator has a winning strategy in the modal game on A on B�

We turn our attention now to modal de�nability�

De�nition � The quanti�er rank of a formula� qr���� is de�ned inductively�

�� qr�Pi� � �

�� qr���� � qr���

	� qr��� � ��� � qr��� � ��� � max�qr����� qr�����


� qr���� � qr���� � qr��� � �

Of course� there are no genuine quanti�ers in PM� the choice of terminology emphasizes

the connection between PM and FO� In particular� for all � � PM� qr��� equals the

quanti�er rank of the FO�sentence� ����� Let PMn be the set of sentences of quanti�er

rank � n� Given a model A� the PMn�theory of A is then the set of sentences� of quanti�er

rank � n� satis�ed by A�
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Lemma 	 Let � be a �xed signature�

�� For all n� up to logical equivalence� there are �nitely many sentences of PMn�

�� There is a recursive function f�n� that generates a ��nite� list of all sentences� up

to logical equivalence� of quanti�er rank � n�

	� For all A� the PMn�theory of A is �nitely axiomatizable�

Proof� We prove Part � by induction on n� The case n � � is obvious� For n � �� observe

that every sentence of quanti�er rank � n�� is a Boolean combination of sentences of the

form ��� with qr��� � n� Parts � and � follow easily from Part ��

De�nition �
 We say that there is an n�bisimulation between A and B� written A �n B�

i� there is a sequence of relations ��� � � � ��n� each on A� B� such that

�� cA �� c
B

�� For all m � n� if a �m b� and A j� Raa� then there is a b� � B such that B j� Rbb�

and a� �m�� b
��and vice�versa��

	� For all m � n� if a �m b� then for all Pj � A j� Pj�a� i� B j� Pj�b��

Intuitively� A �n B means that A and B bisimulate up to depth n�� Observe that

A � B implies A �n B� for all n� and that �n also de�nes an equivalence relation on

classes of structures� By �xing a bound on the number of rounds in a game� we get the

n�round modal Ehrenfeucht�Fraisse game� Then the following proposition can be proved

by straightforward modi�cation of standard results connecting Ehrenfeucht�Fraisse games

to logical expressibility�

Proposition �� For all n� and A and B over some �� the following conditions are equiv�

alent�

�� There is an n�bisimulation between A and B�

�� The Duplicator has a winning strategy in the n�round modal game on A on B�

	� For all modal formulas � of quanti�er rank � n� A j� � i� B j� ��
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The next proposition follows easily from Proposition �� and Lemma ��

Proposition �� Let C be any class of models� closed under isomorphism� Let C� be any

subclass of C� also closed under isomorphism� Then� for all n� the following conditions are

equivalent�

�� For all A � C �� B � C � C�� A ��n B�

�� For all A � C �� B � C � C�� the S wins the n�round modal game on A and B�

	� There is a modal sentence of quanti�er rank � n that de�nes the class C� over C�

Bisimulation and n�bisimulation are rather weak equivalence relations� in the sense

that they determine relatively large equivalence classes� In other words� for every model

A there are many other models with the same modal theory� Our proofs will exploit this

feature repeatedly�

We �x the following terminology�

De�nition �� The children of a in A are those b such that A j� Rab� We say that b is a

descendent of a i� there is a directed path from a to b� For all n� b is an n�descendent of

a if there is a path of length � n from a to b� The family of a� written F a is the submodel

of A with universe fag � fb j b is a descendent of ag� For all a and b� we say that a and b

are disjoint i� Fa 
 Fb � ��

The r�neighborhood of a point a� denoted Nr�a�� is de�ned inductively� N��a� is the

submodel of A with universe fag� For all r � �� b � Nr���a� i� b � Nr�a� or there is an

a� � Nr�a� such that A j� Ra�b � Rba�� An r�tree is a directed tree rooted at c of height

� r� An r�pseudotree is a model such that Nr�c� is a tree such that all distinct pairs of its

leaves are disjoint� as de�ned above�

We now describe certain operations on models that produce either bisimilar or n�

bisimilar models� For A and a� we say that A� is obtained from A by adding a copy of

the family of a i	 A� is the extension of A with universe the disjoint union of A and of

F a such that for all a � A and a�� � F �a� the copy� of F a in A�� A� j� Raa���Ra
�
�a� i	

A j� Raa��Ra�a�� where a�� is the copy of a� � F a� The binary relation f�a� a�� j a �

A� a� � A� and a � a� or a� is a copy of ag witnesses that A � A��
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Another concept from modal logic is that of unraveling a structure to produce another

structure with which it bisimulates� Before de�ning this notion� we give a simple illus�

tration� Let A be the graph on one vertex with a loop� and let A� be the directed chain

on c � �� �� � � � � n such that for all m � n�A� j� Rm�m� � and A� j� Rnn� We can view

A� as having been obtained from A by unraveling� or unwinding� the loop n times� The

set A � A� is itself a bisimulation between A and A�� In general� any model A can be

n�unraveled� so that the n�descendents of c form an n�tree� By 
�unraveling F c in A we

obtain a �possibly in�nite� tree� Every unraveling of A bisimulates with A�

To simplify the de�nition� we assume that every element of A is a descendent of c� i�e

A � F c� The n�unraveling of A will be an n�pseudotree� which we call A�� We �rst describe

the tree portion of A�� that is� Nn�c
A�

�� The root of the tree will be c itself and� for each

path in A of length s � n starting at c� there is a node of height s in the tree� Thus� each

node is indexed by a path a � �c � a�� a�� � � � � as� �that is� a sequence of length s��� such

that for all q � s� A j� Raqaq��� Given a path a and an element a� � A� let a � a� denote

their concatenation� that is� �a�� a�� � � � � as� a
��� For each such a� A� j� Pj�a� i	 A j� Pj�as��

In A�� there is an edge from a to a� i	 a� � a � a�� for some a� � A� This completes the

description of the n�tree which is the n�neighborhood of c in A�� We now attach copies of

families to the leaves of this tree of height n� to obtain the n�pseudotree A�� That is� at

each node a � �c � a�� a�� � � � � an�� we attach a copy of F an � identifying the elements a and

an� There may be many copies of any family� but each pair of families is disjoint� It is now

easy to construct a bisimulation between A and A�� The 
�unraveling is de�ned similarly�

except that no families are attached to any nodes�

We collect together some easy to verify facts for later use�

Proposition �� For all A� �� A � F c
A� �� A bisimulates with a tree rooted at c� its


�unraveling� 	� A bisimulates with an n�pseudotree� its n�unraveling� 
� A n�bisimulates

with an n�tree� a submodel of its n�unraveling� �� Over a �xed signature �� there is a

recursive function f�x� such that for all modal sentences � of quanti�er rank � n� if �

is satis�able� by a �nite or in�nite model� then it is satis�able by an n�tree of cardinality

� f�n�� �� For all �nite A� the modal theory of A is �nitely axiomatizable i� F c is acyclic�

Proof� We provide proofs of Facts � and �� From Fact � and Proposition ��� it is clear that
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for all � � PMn� � is satis�able i	 it is satis�ed by an n�tree� Given a �xed �nite signature

�� we now de�ne an e	ective procedure that maps each natural number n into a �nite

set of n�trees T n such that for all � � PM��� of quanti�er rank � n� if � is satis�able�

then it is satis�ed in some A � T n� This will su�ce to establish the claim� The sets T n

are de�ned inductively� T � contains every model� up to isomorphism� with exactly one

element� and has cardinality � �j�j� For n � �� A � T n�� i	 A � T n or A is an n�tree

rooted at c with children a�� � � � � ak satisfying the following properties
 �i� for all i � k�

the family F ai is isomorphic to some tree B � T n� and �ii� for all i �� j � k� F ai ��� F aj �

It is easy to verify both that there is a recursive bound on the size of models in each T n

and that every n�tree bisimulates with an n�tree in T n� This establishes Fact ��

We now prove Fact �� Suppose that F c is acylic� We show� by induction on the

height n of F c� that A is axiomatized by a sentence of quanti�er rank � n � �� For

n � �� let � � �
V
P�� P �

V
Q���� �Q� � ���P � � �P ��� where � is the set of proposition

symbols satis�ed at c� and P � is any proposition symbol in �� For n 	 �� and each child

ai of c� let �i be a sentence that axiomatizes the family F ai � Then let � � �
V
P�� P �

V
Q���� �Q�� �

V
i��i�� ��

W
i �i�� It is clear that � axiomatizes the modal theory of A� In

the other direction� let A be such that F c contains a cycle� and let � be a modal sentence

of quanti�er rank n� Let B be an n�tree that veri�es �� It is easy to show that there is

a modal sentence� � of quanti�er rank � n � � true in A but not in B� For example�

let  � ��� � ���P � �P � � � �� contain a string of n � � ��s� for any P � �� Therefore the

modal theory of A is not axiomatized by any sentence of quanti�er rank n� and hence is

not �nitely axiomatizable�

Observe that Fact � implies some well�known results� One� a modal formula is satis�able

i	 it is satis�able by a �nite Kripke model� Two� it is decidable whether a formula is

satis�able� both over the class of all structures and over F �

��� Preservation theorems

In this section� we show that two modal preservation theorems remain valid over the class

F � The arguments do not use �niteness in any essential way� therefore they also give

alternative proofs of the theorems in the general case that do not rely on the Compactness

��



theorem� Finally� we show how these methods can be used to reprove the modal version

of the Craig interpolation theorem without employing compactness�

Proposition �� The bisimulation preservation theorem for modal sentences remains true

in the �nite case� That is� a class C is FO�de�nable and closed under bisimulations i� it

is de�nable by a modal sentence�

Proof� Let C be a FO�de�nable class that is closed under bisimulations� Suppose that C

is not de�nable by a modal formula� By Proposition ��� this implies that for all n� there

are A � C and B �� C such that A �n B� �Of course� since C is closed under bisimulations�

we have that A �� B�� We will show that this condition implies that for all n� there are

actually A � C and B �� C such that A�nB� �Recall that A�nB means that for all � � FO�

with qr��� � n� A j� � i	 B j� ��� This immediately implies that C is not FO�de�nable�

a contradiction�

More speci�cally� we show that there is a function l�x� such that� for all n� if A �l�n� B�

then there are A� and B� such that A � A�� B � B� and A��nB
�� By choosing A � C and

B �� C� we get A� � C and B� �� C� Given A and B� we �nd A� and B� by modifying A and

B in a sequence of steps� as described in the following lemmas�

Lemma  Let A and B be such that A �t B� Then there are t�pseudotrees A� and B�

such that A � A�� B � B�� and A� �t B
��

Let A� and B� be the t�unravelings of A and B� Then A� and B� are t�pseudotrees such

that A � A� and B � B�� By the transitivity of �t� this implies that A� �t B
��

Lemma � Let A and B be t�pseudotrees such that A �t B� Then there are t�pseudotrees

A� and B� such that A � A�� B � B�� and Nt�c
A�

� �� Nt�c
B�

��

The proof describes an algorithm for modifying the two models in a sequence of steps

that yields models with isomorphic t�neighborhoods of c� After each step s� s � t� we

have models As and Bs such that A � As and B � Bs� and cAs and cBs have isomorphic

s�neighborhoods� At each step s � �� As�� �resp� Bs��� is obtained from As by adding

copies of families of nodes of distance s� � from c�
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Let fa�� � � �al� b�� � � � � bmg be the set of the children of c in A and B� The relation �t��

induces an equivalence relation on this set such that each equivalence class has at least

one member in each of A and B� To obtain A� and B� with isomorphic ��neighborhoods

of c that bisimulate with A and B� it su�ces to add enough copies of families of the c�

children ai and bj such that each equivalence class has an equal number of members in

A� and B�� For example� renumbering the indices of c�children if necessary� suppose that

fa�� � � � � ai� b�� � � � bjg is one such equivalence class� Also� without loss of generality� assume

that i � j� Then A� will contain j � i additional copies of the family F ai � Let g��x� be a

bijection between the c�children in A� and B� such that for all ai� �A�� ai� �t�� �B�� g��ai���

By iterating this procedure� at each step s� �� we obtain As�� and Bs��� and a bijection

gs�� between nodes of distance s � � from cA and cB with the following properties� For

all nodes ai in As of distance s from c� the bijection gs�� maps the children of ai to those

of gs�ai�� and for all a � dom�gs���� �As��� a� �t��s��� �Bs��� gs���a��� Finally� we choose

A� and B� to be the models At and Bt�

Together� these lemmas establish that there are models A � C and B �� C that look

rather similar� In particular� for all t� there are t�pseudotrees A � C and B �� C such that

Nt�c
A� �� Nt�c

B�� Although these models have isomorphic t�neighborhoods of c� we still

know nothing about the other part of each model� which might make A and B look very

di	erent� in FO� The �nal step of the proof takes care of this by using a version of Hanf�s

lemma�

Proposition �� �Hanf ����� For each signature �� there is a function f�x� with the fol�

lowing property� For all n� A and B� if there is a bijection h 
 A �� B such that for all

a � A� Nf�n��a� �� Nf�n��h�a��� �with a and h�a� distinguished�� then A�nB�

Lemma �
 Let A and B be ��f�n���pseudotrees with N�f�n��c
A� �� N�f�n��c

B�� where

f�x� is the Hanf function� Then there are A� and B� such that A � A�� B � B�� and

A��nB
��

Each of A� and B� will be obtained from A and B� respectively� by extending the original

model by adding disjoint components in such a way that it will be obvious that A� and

B� possess the same f�n��nbhds� It is clear that extending models in such a way does not
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a	ect bisimulations� Let A� �B�� be the submodel of A �B� with universe A �Nf�n��c
A�

�B�Nf�n��c
B��� We de�ne A� �B�� to be the disjoint union of A and B� �B and A��� We�ve

added to A the part of B that may look very di	erent from it� and vice�versa� so that

A� will look the same locally� as B�� In particular� for example� it is easy to see that

card�A�� � card�B��� We now de�ne a bijection between these models in � parts� Let

g�x� be an isomorphism between N�f�n��c
A� in A and N�f�n��c

B� in B� De�ne h��x� to be

the bijection between N�f�n��c
A� and N�f�n��c

B� that is a restriction of the isomorphism

g�x�� Let A� be the submodel of A� whose universe is those elements of B� that are in

N�f�n��c
B� �viewing B� here as a submodel of B�� We de�ne B� similarily� Let h� be the

bijection between A� and B� that is also a restriction of the isomorphism g�x�� Let h� be

the bijection between the remaining pieces of A� and B� that takes the A�part� of A� to

the A�part� of B�� and the B�part of A� to the B�part of B�� It is then easy to verify that

h � h� � h� � h� is a bijection from A� to B� that preserves f�n��nbhds�� �This is perhaps

easier to see if one draws a picture�� Thus A��nB
� as desired�

To complete the proof� all that remains is to combine the above results� Suppose that

C is FO�de�nable� closed under bisimulations� but not de�nable by a modal formula� Then

by Lemmas �� �� and ��� for all n� there are A � C and B �� C such that A�nB� But this

implies that C is not FO�de�nable� a contradiction� This proves the proposition�

The next preservation theorem that we consider characterizes those sentences whose

classes of models are closed under extensions� Before stating the main result� we de�ne

some terminology and prove a few preliminary lemmas�

De�nition �� �� A ��sentence is a modal sentence built up from atomic propositions

and negated atomic propositions using �� �� and ��

�� For all A and B� we write A�	 B i� for all ��sentences �� if A j� �� then B j� ��

	� Given a model A� the ��theory of A is the set of ��sentences satis�ed by A�

Observe that the��sentences are precisely those � � PM such that ���� is an existential

FO sentence� In particular� the class of models of any��sentence is closed under extensions�

Lemma �� Let A be an n�tree� rooted at c�

��



�� For all ��sentences� �� of quanti�er rank 	 n� �� A �j� ��

�� The ��theory of A is axiomatized by a sentence of quanti�er rank � n�

Proof� Part � is obvious� since A does not contain any paths of length n��� By Lemma ��

let ��� � � ��k be the set of all ��sentences of quanti�er rank � n� up to equivalence� satis�ed

in A� By Part �� it is clear that � �
V
�i axiomatizes the ��theory of A�

Lemma �� Given a �xed signature� there is a �nite set of n�trees� T n � fB�� � � � � Bvg

such that for all A� there is a u � v such that A �n Bu� Furthermore� T n can be obtained

e�ectively�

Proof� This result follows easily from Fact � of Proposition ��� Let T n be the same set that

was de�ned in the proof of this Fact� such that every satis�able sentence � of quanti�er

rank � n is satis�ed by some B � T n� Let A be any model� and let �n � PMn axiomatize

its PMn�theory� again using Lemma �� By Fact �� there is a B � T n such that B j� �n�

This now implies that A �n B�

The next result can be viewed as the modal version of the Los�Tarski theorem for �nite

structures�

Proposition �� The existential preservation theorem for modal logic remains true over F �

That is� for all �� if Modf ��� � EXT� then � is equivalent to a ��sentence �� Moreover�

there is an e�ective procedure for �nding the equivalent ��sentence�

Proof� Let C � EXT be de�ned by some sentence �� with quanti�er rank n� Let Cn �

C 
 T n � fD�� � � � � Dkg� For each Di� i � k� let �i axiomatize the ��theory of Di� By

Lemma ��� qr��i� � n� Let � �
W
i�k �i� We claim that � is equivalent to ��

First we show that � implies �� Suppose that A j� �� We claim that there is a D � Cn

such that A �n D� By Lemma ��� there is a B � T n such that A �n B� Since C is closed

under �n�equivalence� B must actually be in C� and hence in Cn� Let D � B� There is

some �i� as de�ned above� such that D j� �i� Since qr��i� � n� this implies that A j� �i�

and hence A j� ��

Now we prove the opposite direction� � implies �� Suppose that A j� �� Then A j� �i�

for some i � k� By Lemma ��� there is a B � T n such that A �n B� Observe that

��



Di �	 B� We want to show that there is an A� such that �i� B � A�� and hence A �n A
��

and �ii� Di � A�� As Di � C� and C � EXT� �i� and �ii� imply that A� � C� Since C is

closed under �n�equivalence� A � C� as desired� Thus� it su�ces to establish the following

lemma�

Lemma �� Let B�D be trees such that D�	 B� Then there is a m�tree A�� m � n� such

that B � A� and D � A��

By induction� on the height n of D� For n � �� it is obvious that D � B� since D is just

the single node cD� and for all predicate symbols p� D j� p i	 B j� p� Let A� � B�

Consider n � �� Let fd�� � � � � dsg and fb�� � � � btg be the children of cD and cB� re�

spectively� We claim that for each dp� there is a br such that F dp �	 F
br � Let � with

qr�� � n� axiomatize the ��theory of F dp � Then D j� �� and therefore B j� �� Thus

there is a br such that F br j� � as desired�

By adding extra copies of families of the children of cB to B� if necessary� we get B�

such that B � B� and there is an injection h 
 fd�� � � �dsg �� fb��� � � � � b
�
t�g� b

�
j � B�� such

that F di �	 F
h�di�� By the induction hypothesis� each such F h�di� bisimulates with an

�n� ���tree� Th�di�� such that F di � Th�di�� Let A� be obtained from B� by replacing each

subtree Fh�di� � B�� with the tree Th�di�� It is easy to see that B � A� and D � A��

This also completes the proof of the proposition�

Corollary 	 For every modal sentence �� there is a decision procedure that determines

whether Modf��� �Mod���� is closed under extensions� Therefore the set of sentences that

de�ne such classes is recursive�

Proof� By the proof of the previous proposition� if Modf ��� �Mod���� � EXT� then it is

equivalent to a ��sentence of quanti�er rank � qr���� By Lemma �� one can e	ectively

list� up to logical equivalence� all such sentences� �� � � � � l� Then it su�ces to test the

validity of each sentence� �� i� which is decidable�

We now turn to an interpolation theorem� due to Andreka� van Benthem� and Nemeti�

It will be convenient to introduce brie�y a fragment of second order propositional modal

logic� which allows quanti�cation over propositions� We often use P � etc�� as shorthand

��



for sequences� �P�� � � � � Pn�� We write �P� to indicate that the set of proposition symbols

that occur in  equals P � Also� by �P�P�Q� we mean the sentence �P� � � ��Pn�P�Q��

De�nition �� Let ��P�Q� be a sentence of PM� such that P 
 Q � �� Then �Q��P�Q�

is a %�
� modal sentence� for all A� with signature � � P � A j� �Q��P�Q� i� there is a B�

an expansion of A with signature � � P �Q� such that B j� ��P�Q�� &�
� modal sentences�

of the form �Q��P�Q�� are de�ned similarly�

For all A�B� and n� we write A �P
n B i	 for all sentences �� qr��� � n� that only

contain proposition symbols from P � A j� � i	 B j� �� Recall that every satis�able modal

sentence is satisifed by a �nite model� hence � implies � over the class of all models i	 �

implies � over F � By this fact� the truth of the interpolation theorem in the general case

immediately yields its truth over F �

Proposition �	 �Andreka� van Benthem� and Nemeti ���� Let � and � be modal

sentences� with signatures �� and ��� such that �� 
 �� is non�empty� If � implies �

�over F�� then there is a sentence � with �� � �� 
 ��� such that � implies  and 

implies �� Furthermore� qr�� � max�qr���� qr�����

Proof� Suppose that ��P�Q� implies ��P�R�� where P�Q� and R are pairwise disjoint

sequences of propositions symbols� Equivalently� �Q��P�Q� implies �R��P �R�� Thus� we

consider models over the signature � � P � Let n � max�qr���� qr����� Recall that� by

Lemma � or ��� there are only �nitely many �P
n equivalence classes� We claim that it

su�ces to show that for any �P
n class C� if there is an A � C such that A j� �Q��P�Q��

then for all B � C� B j� �R��P �R�� If this is true� for each �P
n class C containing an A

that satis�es �Q��P�Q�� let �i be a sentence with signature P � qr��i� � n� that de�nes

the class� �Here we use that P is non�empty� since no sentence contains no proposition

symbols�� Then � �
W
�i is an interpolant�

Suppose� towards a contradiction� that there are A and B such that A �P
n B� A j�

�Q��P�Q� and B j� �R���P �R�� Let A� and B� be expansions of A and B such that

A� j� ��P�Q� and B� j� ���P �R�� By Lemma ��� there are n�trees A�� and B�� that are

�n�equivalent to A� and B�� respectively� Finally� let A� and B� be the ��reducts of A��

��



and B��� It is clear that A� j� �Q��P�Q� and B� j� �R���P �R�� We now want to �nd a

D such that D j� �Q��P�Q� � �R���P �R�� This will establish the contradiction�

D is constructed by extending A� and B� simultaneously� by iteratively adding copies

of families of elements� First we show that for any model M � if M � is obtained from M

by adding a copy of a family Fm� for any m � M � then every %�
� sentence satis�ed in M

is also satis�ed in M �� Suppose that M j� �P�P�Q�� Let N be an expansion of M that

veri�es the ��rst�order� modal sentence �P�Q�� and let N � be obtained from N by adding

a copy of the family of m� It is clear that N � N �� thus N � j� �P�Q�� Since N � is an

expansion of M �� M � j� �P�P�Q�� as desired�

We now describe the construction of D� As in the proof of Lemma �� �n�� induces an

equivalence relation on the set of children of cA� and cB� such that every equivalence class

has at least one member in each model� Let A� and B� be obtained from A� and B� by

adding enough copies of families of these children so that there is a bijection g��x� from

the children of cA� to those of cB� such that for all ai� F
ai �n�� F g��ai�� Observe that

N��c
A�� �� N��c

B��� Repeat this procedure at each level m � n of the trees� on pairs of

subtrees in Am and Bm determined by the bijection gm���x� at the previous level� By the

argument of the preceding paragraph� for all m� Am j� �Q��P�Q� and Bm j� �R���P �R��

Furthermore� Nm�cAm��� �� Nm�cBm��� This construction yields trees An�� and Bn�� such

that A� � An��� B� � Bn��� and An��
�� Bn��� Let D � An���
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Chapter �

Conclusion

In this dissertation� we have investigated the prospects for the development of positive

model theoretic results over the class of �nite structures� Regarding preservation theorems�

these prospects appear to be somewhat mixed� The positive results that we establish have

been for weaker� less expressive� languages� such as propositional modal logic� L�� and low�

quantifer pre�x classes of FO� and for classes with strong closure conditions� e�g� HOM�

In particular� results from Chapter � indicate that modal logic remains well�behaved over

F � One way to try to extend this work would be to try achieve similar results for stronger

levels of the bounded quanti�er hierarchy introduced in ���� It is also unknown whether

existential preservation holds for L�� both over F and over the class of all structures �see

����� and whether homomorphism preservation holds for Lk � k 	 �� We have also given a

partial positive answer to what is perhaps the major open question in this area� does the

Homomorphism preservation theorem hold over F�

The situation regarding generalized preservation theorems for the class EXT is now

fairly well understood� Grohe�s proof that FO
EXT �� L������ essentially yields a de�ni�

tive� negative� answer to the questions that appear at the end of Section ���� One may still

ask� for which quantifer pre�x classes� w� is FO�w� 
 EXT � L������� We can also raise

analogous questions for the class HOM�

�� Is FO 
 HOM � L���������

�� Is FO 
 HOM � Datalog�

�� Is L��� 
HOM � L���������
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Observe that� by Ajtai and Gurevich�s result� a positive answer to question � would imply

the truth of the Homomorphism preservation theorem over F �

Finally� I would like to mention several questions that arise in connection with the

results from Chapter �� Recall that for all k� there is a single �nite model that satis�es the

set� �k � of all consistent sentences of Lk���� By Proposition ��� Modf��
k� is not de�nable

in
W
Lk���� of course� it may be de�nable in

W
Lk

�

���� for some k� � k� We ask� instead�

the following related question�

�� For k 	 �� is Modf��
k� in FO����

Recall also that for any model Ak of the k�Gaifman theory� �k � Ak j� �k � Let Ck � fA j

there is a B such that B � A and B j� �kg� the upward closure� of Modf ��k�� It is clear

that for all k� Ck � Modf ��k�� but we do not know whether the classes are equal�

�� For k 	 �� is Ck � Modf ��k��

�� For k 	 �� is Ck in FO����

The �nal question can be reformulated as a problem in combinatorics� It is equivalent to

asking whether there is a �nite set� fB�� � � � � Bng� of models with the k�extension property�

such that for every model with this property� there is some such Bi embedded in it�
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