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ABSTRACT

FINITE MODEL THEORY AND FINITE VARIABLE LOGICS
Eric Rosen

Supervisor: Scott Weinstein

In this dissertation, [ investigate some questions about the model theory of finite struc-
tures. One goal is to better understand the expressive power of various logical languages,
including first-order logic (FO), over this class. A second, related, goal is to determine
which results from classical model theory remain true when relativized to the class, F, of
finite structures. As it is well-known that many such results become false, I also consider
certain weakened generalizations of classical results.

I prove some basic results about the languages L*(3) and L% (3), the existential
fragments of the finite variable logics L* and LF . I show that there are finite models
whose Lk(ﬂ)—theories are not finitely axiomatizable. I also establish the optimality of a
normal form for L%, (3), and separate certain fragments of this logic. I introduce a notion

of a ‘generalized preservation theorem’, and establish certain partial positive results. I

w

“ > both over F and over

then show that existential preservation fails for the language L
the class of all structures. 1 also examine other preservation properties, e.g. for classes
closed under homomorphisms.

In the final chapter, I investigate the finite model theory of propositional modal logic.
I show that, in contrast to more expressive logics, modal logic is ‘well-behaved’ over F. In
particular, I establish that various theorems that are true over the class of all structures
also hold over F. I prove that, over F, a class of models is FO-definable and closed under
bisimulations iff it is defined by a modal FO sentence. In addition, I prove that, over F,

a class is defined by a modal sentence and closed under extensions iff it is defined by a

<O-modal sentence.
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Chapter 1

Introduction

Finite model theory investigates the model theory of finite structures. This subject in-
teracts with a variety of fields from math, logic, and computer science, including classical
model theory, graph theory, and complexity theory. The different areas and aspects of
finite model theory are unified by an interest in the expressive power of logical languages.
In this dissertation, I pursue model theoretic questions pertaining to definability, paying
particular attention to preservation theorems. Some of these problems are just finite ver-
sions of results from classical model theory. That is, we can ask whether a classical theorem
remains true when restricted to the class, F, of finite models. Other questions are varia-
tions on standard ideas. Chapters 3 and 4, for example, examine preservation theorems

involving languages other than first-order logic.

It is well known that many theorems from classical model theory become false over
the class of finite models (see [14]). For example, the Los-Tarski theorem states that a
first-order sentence defines a class of models that is closed under extensions if and only if
it is equivalent to an existential sentence. Tait [23] showed that this proposition becomes
false when relativized to the class F. That is, there is a sentence, ¢, such that Mod (),
the class of finite models of ¢, is closed under extensions but ¢ is not equivalent over F to
any existential sentence. As a result of these kinds of ‘failures’, it would be interesting to
find classical theorems that remain true over F. But ‘negative’ results can also be viewed
as raising new problems pertaining to what we call generalized preservation theorems. For

example, Tait’s example suggests that we look for some alternative characterization of the



first-order definable classes of models that are closed under extensions. Chapter 3 contains
some results in this direction. I also investigate preservation theorems for other logics
prominent in finite model theory.

The remainder of this introduction provides some information about more general as-
pects of finite model theory that provide a setting for what follows. Below, I briefly discuss
the importance of logical languages other than first-order logic. In Section 1, I then de-
scribe preservation theorems in more detail, and briefly summarize the topics covered in
the remaining chapters. Section 2 contains notation, background information, preliminary
definitions, and some basic results. Section 3 describes the connection between logical
equivalence and Ehrenfeucht-Fraisse games.

Over the class of finite models, central results of classical model theory either become
obviously false, such as the Compactness theorem, or meaningless, like the Lowenheim-
Skolem theorem. The failure of compactness, in particular, means that most standard
proofs of classical results are invalid over F. Furthermore, it has been shown that, when
relativized to the class F, many of these results actually become false, including the Los-
Tarksi theorem, the Beth definability theorem, Craig’s interpolation theorem (see [14]),
and Lyndon’s lemma (see [2]). In addition, many natural and computationally simple
properties, such as parity and graph connectedness, are not expressible in FO. As a con-
sequence, first-order logic (FO) is not as natural and attractive, over F, as it is in the
general case.

A central motivation for the investigation of other logics has been the desire to find
logical characterizations of computational complexity classes. An important early result
from Fagin [10] says that a property (that is, a class of models) is in NP iff it is definable by
an existential second-order sentence. Since then, Immerman and others have shown that,
over the class of ordered finite structures, many other complexity classes are captured, in
this sense, by different logics. This research has highlighted the interest of a variety of
fixed point logics, which extend FO by adding some sort of recursion operator.

Barwise [6] showed that, over a fixed structure, every formula in least fixed point logic

w

¥ »» infinitary finite variable logic, which is defined below.

is equivalent to a formula in L
Kolaitis and Vardi [19] observed that this remains true over the class F. Although finite

variable logic looks rather strange because of the way in which variables are reused, it has



been useful for proving results about the expressive power of fixed point logics, since there
is a nice algebraic characterization of logical definability for the language. From a very
different point of view, others (see [4]) have argued for the relevance of finite variable logic
to modal logic. Because of these connections, as well as my belief in the intrinsic interest
of this logic, it has been afforded considerable attention in this dissertation. Chapter 2, in
particular, is devoted to basic questions about the model theory of the existential fragments
of L* and L% .

Various kinds of questions arise about the expressive power of logical languages. As
mentioned above, Fagin and Immerman have established close connections between the
complexity of describing a property of finite structures in a logical language and the com-
plexity of computing the property on a Turing machine, or some other abstract model of
computation. A major open problem is to determine whether there is a logic that can
express exactly those properties that are in P. Given two logics, I and L', we can also ask
about their relative expressive power, that is, is every sentence ¢ in L equivalent to some
sentence ¢ in I'?7 Finally, given a single property, such as graph planarity, and a logic, I,
we can ask whether there is a sentence ¢ in L that expresses the property.

To show that a property can be defined in L, it suffices to exhibit a sentence that
expresses it. On the other hand, negative results require a more general method. Over the
class of all structures, one generally uses compactness; over F, these kinds of results are
most often established using Ehrenfeucht-Fraisse type games. This technique, which also
works in the classical setting, plays an important role in finite model theory, and has been
applied to logics other than FO, including, especially, finite variable logics and fragments

thereof. Some of these games are defined in Section 3.

1.1 Preservation theorems

Classical preservation theorems establish a connection between syntactic and semantic

properties of first-order logic. In particular, they are propositions of the following form.

A class of models, C, is FO-definable and closed under [‘preserved under’] some
specified algebraic operation iff C is defined by a FFO-sentence of some specified

syntactic form.



Thus, the Los-Tarski theorem relates classes closed under extensions to existential sen-
tences. The Homomorphism preservation theorem states that a class C is FO-definable
and closed under homomorphisms iff it is defined by a positive existential sentence.

We remarked above that one aspect of finite model theory has been the attempt to
determine which classical theorems remain valid over the class of finite structures. It was
also noted that essentially every known answer is negative. A fundamental motivation for
this dissertation has been to try to find positive model theoretic results that hold over
F. To this end, we introduce a generalization of the notion of a preservation theorem
in order to formulate certain weaker versions of classical theorems that we would like to
show remain true over F. The starting point for our investigation is Tait’s result that
the Los-Tarski theorem fails finitely. This led us to ask whether there is a natural logic,
stronger than FO, such that every FO-definable class that is closed under extensions is
defined by an ‘existential’ sentence of this logic.

This question also suggests that we investigate preservation theorems for these stronger
logics. For example, if there is a logic L that contains FO and has an existential preservation

theorem over F, then the answer to the previous question must be yes. One of the main

w
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results of this dissertation is that existential preservation does not hold for L
over F or over all structures.

Chapter 2 contains some basic results about the model theory of the languages L*(3)
and L% (3), the existential fragments of the finite variable logics L* and L% . We show
that there are finite structures whose L*(3)-theories are not finitely axiomatizable. We
also establish the optimality of a normal form for L* (3), due to Kolaitis and Vardi, and
separate certain fragments of this language.

Chapter 3 discusses preservation theorems for classes closed under extensions. Section
1 establishes some generalized preservation theorems for fragments of first-order logic.
In Section 2, we prove that existential preservation fails for LY (3). In Chapter 4, we
examine generalized preservation theorems for other classes of models, including those
that are ‘monotone’ and those that are closed under homomorphisms.

Chapter 5 initiates the investigation of the finite model theory of modal logic, which,

it is well known, can be viewed as a fragment of FO. The results here indicate that, in

contrast to stronger languages, modal logic is ‘well-behaved” over F. Thus, we prove that



some preservation theorems, due to van Benthem and his collaborators, remain true over F.
A somewhat open-ended question raised by this work is the extent to which these arguments
can be generalized to apply to stronger fragments of FO, especially those considered in [5].
Recently, connections have emerged between modal logic and certain areas of theoretical
computer science. We hope that some of our results, and the techniques developed here,

will be of interest to researchers in these fields.

1.2 Preliminaries

Let F, be the collection of finite structures of signature 0. We will assume that the universe
of any A € F, is an initial segment of N = {0,1,2,...}. We will often use A, B,...etc. to
denote both a structure and its universe when no confusion is likely to result. We assume
that the signature o is finite and contains no function symbols; we suppress mention of o
when no confusion is likely to result. A boolean query C C F is a class of finite structures
that is closed under isomorphisms. We use C to range over boolean queries. In Chapters

2 and 3, we focus on boolean queries which are closed under extensions.
Definition 1 EXT ={CC F|VA,BeC(C, if A€C and AC B, then B € C}.

Let L be alogical language and let ¢ be a sentence of L. Mod(¢) = {A | A |= ¢} is the
L-class determined by ¢ and Mods(¢) = {A € F | A |= ¢} is the boolean query expressed
by ¢. We say that C is L-definable, just in case it is the boolean query expressed by some
sentence ¢ € L. We will often use L to denote the set of L-definable boolean queries.
We let FO denote first-order logic, Loy, the usual infinitary extension of first-order logic
which allows conjunction and disjunction over arbitrary sets of formulas, L*, the fragment
of FO consisting of those formulas all of whose variables both free and bound are among
x1,..., 2k, and similarly LE , the k-variable fragment of L...; L%, = Urew LF . We
let FO(3) denote the set of existential formulas of FO, that is, those formulas obtained
by closing the set of atomic formulas and negated atomic formulas under the operations
of conjunction, disjunction, and existential quantification. We define L., (3), the set of
existential formulas of L., similarly, but require, in addition, closure under infinitary

conjunction and disjunction. We let L*(3) consist of the formulas common to FO(3) and

L* and we define L* (3) and L% (3) similarly.



A Datalog(#,—) program P is a collection of rules of the form

o — My---5 Nk

Such a rule has a head, 1y, and a body, 1y, ..., ;. Each of the n; is either an inequality or
a literal over the signature ¢ U 7 where ¢ and 7 are disjoint; o consists of the extensional
relations and constants of P and 7 consists of the intensional relations of P. The heads of
all rules are built from intensional relations and intensional relations occur only positively
throughout P. The program contains a distinguished intensional relation R of arity n > 0
and determines an n-ary query over structures in F,. The value of this query for a given
A € F, is the value of R when the program is viewed as determining least-fixed points for
each of the intensional relations with respect to a simultaneous induction associated with
the program. The reader may consult [1, 18] for further details and discussion. As with
logics, we use Datalog(#, ) to refer to the class of queries computed by Datalog(#, -)
programs as well as to the class of programs themselves. Datalog programs are defined
similarly except that all the 5; are restricted to be positive literals, even those built from
extensional relations. Observe that Datalog(#,-) is contained in the least fixed-point
extension of first-order logic (LFP).

In our current notation, the failure of the Los-Tarski Theorem over finite structures

may be expressed as:

FO N EXT ¢ FO(3).

This raises the question of whether FO N EXT is contained in the existential fragment
of some stronger logic. The following proposition completely characterizes the relative
expressive power of the existential fragments of the logics in which we are interested.

Proposition 1
FO(3) C Datalog(#,-) C L& ,(3) C Locw(3) = EXT.

Proof. 1t is easy to see that every query in FO(3) can be expressed by a program in
Datalog(#,—) which makes use of no recursion. It is well-known that this inclusion is
strict, for example, the query (s,?)-connectivity is expressible in Datalog but not in FO.
The inclusion of Datalog(#,-) in L% (3) has been noted by Afrati, Cosmadakis, and

Yannakakis [1] (see also [18]); the argument to show this is a variant of the proof that



least fixed-point logic is contained in L% , over the class of finite structures (see [19]).
Afrati, Cosmadakis, and Yannakakis [1] also exhibit queries which witness the separation
of Datalog(#,-) and L% (3), even over the class of polynomial time computable queries.
The identity between L. (3) and EXT has been noted by Kolaitis and independently by
Lo (see [1] and [20]). Finally, it is easy to construct polynomial time computable boolean
queries in EXT which are not in L% . For example, let C be the query over the signature
{FE,s,t} of source-target graphs that says that there is an E-path from s to ¢ whose length
is less than half the cardinality of the structure. It is clear that C € EXT. It is also easy to
verify that C is not in L% , (and therefore not in L¥ (3)) by a straightforward application

of the k-pebble Ehrenfeucht-Fraisse game which we review below. [

The above proposition together with the failure of the Los-Tarski Theorem in the finite

case suggests the following questions.

1. Is FONEXT C LY (3)?
2. Is FO N EXT C Datalog(#,—)?

3. Is I¥ , NEXT C L« _(3)?

Clearly a positive answer to the second or third question would imply a positive answer
to the first. In Chapter 3, we provide partial positive answers to the first and second
questions, and a negative answer to the third question. Recently, Martin Grohe [13] has

proved that the answer to question 1 is no.

1.3 Logical equivalence and Ehrenfeucht-Fraisse games

Let L be one of the logical languages we have defined above. Given a structure A, the
L-theory of A is the collection of sentences of I which are satisfied by A. We say that A
is L-equivalent to B, if and only if, the L-theory of A is equal to the L-theory of B and
we say that A is L-compatible with B, if and only if, the L-theory of A is contained in the
L-theory of B. Note that if L is closed under negation, then the relations of L-equivalence
and L-compatibility coincide, whereas for languages like L*(3) and L”_ _(3) these relations

—k —k

are distinct. We use the notations =*, =F . <% and <%  for L*-equivalence, L% -

equivalence, L*(3)-compatibility, and L%, (3)-compatibility, respectively. More generally,



if @ and b are j-tuples of elements from A and B, then we write (A,@)=<*(B,b) iff for all
formulas ¢(7) € L*(3), if A |= ¢[a], then B |= ¢[b].

The main tool for studying these relations are refinements of the Ehrenfeucht-Fraisse
game. Barwise [6] characterized L*_-equivalence in terms of partial isomorphisms, while
Immerman [17] and Poizat [21] provided related pebble game characterizations of L*-
equivalence. Kolaitis and Vardi [18] characterized compatibility in the negation free frag-
ment of L*_(3) both in terms of collections of partial homomorphisms as well as in terms
of a one-sided, positive version of the pebble game. Below we use a minor variant of the
approach in [18] to characterize L% (3)-compatibility.

A set I of partial isomorphisms from A to B is said to have the k-[back-and-|forth
property if for all f € I such that the domain of f has cardinality < &, and all @ € A
[b € B], there is a function ¢ € I such that f C g and @ € dom(g)[b € rng(g)]. (That is,
the k-forth property is the one-sided version, going forth from A, of the k-back-and-forth
property.)

Barwise [6] proved the following proposition which gives an algebraic characterization

of L* _-equivalence.

Proposition 2 (Barwise [6]) Let A and B be structures of signature o and let h be the
map with dom(k) = {c* | ¢ € o} such that h(c*) = B for all ¢ € o. The following

conditions are equivalent.
—k
1. A=% B.
2. There is a non-empty set I of partial isomorphisms from A to B such that

(a) I is closed under subfunctions;

(b) I has the k-back-and-forth property;

(c) for all f € I, fUh is a partial isomorphism from A to B.

In a similar spirit, Kolaitis and Vardi [18] gave an algebraic characterization of the
compatibility relation for the negation free fragment of L* _(3) in terms of collections of
partial homomorphisms with the k-forth property. We adapt their approach to the case of

L*.(3) in the following theorem.



Proposition 3 (Kolaitis and Vardi [18]) Let A and B be structures of signature o and
let h be the map with dom(h) = {c? | ¢ € o} such that h(c?*) = P for all ¢ € o. The

following conditions are equivalent.
1. A=k B.
2. There is a non-empty set I of partial isomorphisms from A to B such that

(a) I is closed under subfunctions;
(b) I has the k-forth property;

(c) for all f € I, fUh is a partial isomorphism from A to B.

Both Propositions 2 and 3 can be expressed more colorfully in terms of pebble games.
This approach to L*-equivalence was introduced by Immerman [17] and Poizat [21] and
as an approach to L* (3)-compatibility by Kolaitis and Vardi [18]. In order to state the
relevant results in a suitably refined form, we require the notion of the quantifier rank of a
formula. We state this definition for formulas of L., since all the languages we consider

are fragments of it.
Definition 2 The quantifier rank of ¢ € Loow,qr(p), is defined by the following induction.
1. qr(¢) = 0 if ¢ is atomic;
2 qr(=e) = qr(e);
3. qr(A®) = qr(V @) = sup({gr(¢) | ¢ € ®});
4. qr(Jee) = gr(Vee) = qr(e) + 1.

The n-round, k-pebble Ehrenfeucht-Fraisse game on A and B is played between two
players, Spoiler and Duplicator, with k pairs of pebbles, (a1, 31),..., (ak, 5r). The Spoiler
begins each round by choosing a pair of pebbles (a;, ;) that may or may not be in play
on the boards A and B. He (by convention, the Spoiler is male, the Duplicator female)
either places a; on an element of A, or §; on an element of B. The Duplicator then plays
the remaining pebble on the other model. The Spoiler wins the game if after any round

m < n the function f from A to B, which sends the element pebbled by «; to the element



pebbled by §; and preserves the denotations of constants, is not a partial isomorphism;
otherwise, the Duplicator wins the game. The n-round 3%-game is the one-sided version of
the n-round, k-pebble Ehrenfeucht-Fraisse game in which the Spoiler is restricted to play
a pebble a; into A at every round while the Duplicator responds by playing 3; into B; the
winning condition remains the same. Both the k-pebble Ehrenfeucht-Fraisse game and its
one-sided variant have infinite versions, which we call the eternal k-pebble Ehrenfeucht-
Fraisse game and the eternal 3%-game. In these games, the play continues through a
sequence of rounds of order type w. The Spoiler wins the game, if and only if, he wins at
the nth-round for some n € w as above; otherwise, the Duplicator wins. In describing the
play of pebble games below, we will often use S to refer to the Spoiler and D to refer to the
Duplicator. We will also often use a;, 3;, etc. to refer to both pebbles and the elements
they pebble at a given round of play.

The foregoing n-round games may be used to characterize equivalence and compatibility
of structures with respect to L* sentences and Lk(EI) sentences of quantifier rank n, and

the eternal games may be used to characterize equivalence and compatibility of structures

k

k . sentences and L* (3) sentences. Given structures A and B we let

with respect to L
A=%"B, if and only if, A and B satisfy the same sentences of L* of quantifier rank < n
and we let A=F"B_if and only if, every sentence of L*(3) of quantifier rank < n, which is
true in A, is also true in B. The following two propositions use the n-round pebble games

to characterize these relations. The first is due to Immerman [17] and Poizat [21] and the

second is essentially due to Kolaitis and Vardi [18].

Proposition 4 (Immerman [17], Poizat [21]) For all structures A and B, the follow-

ing conditions are equivalent.
1. A=F"B.

2. The Duplicator has a winning strateqy for the n-round, k-pebble Ehrenfeucht-Fraisse
game on A and B.

Proposition 5 (Kolaitis and Vardi [18]) For all structures A and B, the following

conditions are equivalent.
1. A=F"B.

10



2. The Duplicator has a winning strategy for the n-round 3*-game on A and B, with

the Duplicator playing on B.

The next proposition gives a characterization of the infinitary equivalence and compat-
ibility relations in terms of the eternal games. It is essentially due to Kolaitis and Vardi

19, 18].

Proposition 6 (Kolaitis and Vardi [19, 18])  I. Forall structures A and B, the fol-

lowing conditions are equivalent.

(a) A=F B.
(b) The Duplicator has a winning strategy for the eternal k-pebble Ehrenfeucht-

Fraisse game on A and B.
2. For all structures A and B, the following conditions are equivalent.

(a) A=k B.
(b) The Duplicator has a winning strategy for the eternal 3*-game on A and B,

with the Duplicator playing on B.

Kolaitis and Vardi [19, 18] observed that over finite structures infinitary equivalence

and compatibility coincide with their finitary analogs.

Proposition 7 (Kolaitis and Vardi [19, 18]) I. Let A or B be a finite structure.

Then, the following conditions are equivalent.
(a) A= B.
(b) A=FB.
2. Let B be a finite structure. Then, the following conditions are equivalent.
(a) Aj’;owB.
(b) A=FB.
The foregoing propositions yield the following corollaries concerning definability.

Proposition 8 (Kolaitis and Vardi [18]) For all C C F, the following conditions are

equivalent.

11



1. C is Lk, (3)-definable.
2. Forall A€C and B ¢ C, A4~ B.
3. Forall A€C and B ¢ C, A4*B.

4. For all A € C and B ¢ C, there is an n € w such that the Spoiler has a winning
strategy for the n-round 3*-game on A and B with the Spoiler playing on A.

12



Chapter 2

Basic finite model theory for L%(3)

and Lk ,(3)

In this chapter, we present some basic model theory for L*, Lk . L¥3), and L* (3),
answering questions concerning finite axiomatizability and normal forms. Let L and L’
be logical languages and let 7" be a collection of sentences of L. We say that T is finitely
axiomatizable in L', if and only if, there is a sentence ¢ € L’ such that Mody(T) =
Mod (). Dawar, Lindell and Weinstein [9] prove that the L% -theory of any finite model

is finitely axiomatizable in L*. As a corollary, they obtain a simple normal form for L*

k

~. 1s equivalent to a countable

over F, in particular, they show that every sentence of L
disjunction of sentences of L* and is also equivalent to a countable conjunction of sentences
of L*. In contrast, we show below that there are finite models whose L*(3)-theories are
not finitely axiomatizable in L*(3). Building on this result, we prove that the normal form
for L%, over F (every sentence of L¥  is equivalent over F to a countable disjunction of

countable conjunctions of sentences of Lk) exhibited by Kolaitis and Vardi [19] is optimal

when considered as a normal form for L (3) sentences over L¥(3).

We begin by proving that there are models whose L*(3)-theories are not finitely axiom-
atizable in L*(3). Our argument exploits the k-extension azioms, which we now describe
briefly. Let ¢ be a purely relational, finite signature. A basic k-type m over the signature
o is a maximal consistent set of literals over ¢ in the variables zq,..., 2. A k-extension

axiom of signature o is a sentence of the form Vay...2p_1Japg (AT — A7), where 7 is a
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basic (k — 1)-type of signature o, 7’ is a basic k-type of signature o, and 7 C 7. Over a
fixed signature o, the k-Gaifman theory, I'y, is the set of all k-extensions axioms of signa-
ture o. It is easy to see that, for each k, there are only finitely many k-extension axioms.
Gaifman [12] showed that the theory T' = |J, I'x axiomatizes an w-categorical model called
the random structure. Fagin [11] proved the 0-1 law for first-order logic by showing that
every extension axiom is almost surely true over F. Fagin’s result implies that almost
every A € F satisfies the k-Gaifman theory. Immerman [17] showed that any two models
of the k-Gaifman theory are L*-equivalent and Kolaitis and Vardi [19] made use of the
k-Gaifman theory in their proof of the 0 — 1 law for L% . We make the following easy

observation.

Proposition 9 Let A |= 'y, and let B be any (finite or infinite) model. Then B=* A.

Equivalently, for all ¢ € L% (3), if ¢ is satisfiable, then A |= .

Proof. The proof follows easily from Proposition 6 by considering the eternal 3*-game on
B and A with the Duplicator playing on A. The k-Gaifman axioms essentially say that D
can extend a partial isomorphism with domain of size < k in every possible way. Therefore,

she has a winning strategy for the game. [

We observe that this result yields a compactness theorem over finite structures and a

finitary analog of the Lowenheim-Skolem Theorem for L* (3).

Corollary 1 For every k € w, there is an ny € w such that for every set ® of sentences of
LF. (3), ® is satisfiable, if and only if, every finite subset of ® is satisfiable, if and only

if, ® is satisfied in a model of size ny.

The next proposition establishes that there are finite structures whose Lk(ﬂ)—theory is

not finitely axiomatizable in L*(3).

Proposition 10 For all k > 2, there is a model Ay € F such that the L*(3)-theory of Ay

is not finitely ariomatizable in L*(3).

Proof. Let Ay be any finite model of the k-Gaifman theory over the language of graphs.

We show that for any n € w, there is a B} such that Akjk’”B}; and Akﬁk’”HBz. This
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implies that the theory of A; cannot be axiomatized by Lk(EI) sentences of quantifier rank
< n and, therefore, that it is not finitely axiomatizable in L*(3).

For the purpose of defining the models By, we require the following notion and notation.
A basic k-type 7 satisfies the distinctness condition if for every | < k, the formula z; #

zp € 7. Let {my,...,7s} be a set of basic (k — 1)-types such that
1. every basic (k — 1)-type is equivalent to some 7; and
2. if © # 7, then m; is not equivalent to 7;.

Similarly, for each 1 < ¢ < s, let {m;1,.. .,7ri7n(i)} be a set of basic k-types each of which

extends w; and satisfies the distinctness condition such that

1. every basic k-type which extends w; and satisfies the distinctness condition is equiv-

alent to some 7; ; and
2. if j # j', then 7; ; is not equivalent to m; ;.

We proceed to define the models BY. Let B} be the graph on two vertices with exactly
one loop and no other edges. Thus B} realizes both basic 1-types. Given that B} has been
defined, we now define B} as an extension of BY. Tor each (k — 1)-tuple b of elements of
B, let 7(b) be the unique 7 such that By |= m;[b], and let X7 = {bg;’l | 1< 5 < n(r(d)}
be a set of distinct objects disjoint from Bj. We suppose that for any distinct pair of
(k — 1)-tuples @ and b of elements of BY, Xz N X7 = (). Let X be the union of all the sets
X7. We let the universe of BZ‘H = B UX. The edge relation of BZ‘H is obtained from that
of BY by adding the minimal number of edges so that each k-tuple bx* bg‘;l satisfies o)
It is easy to see that each BZ‘H is well-defined. We say that the height of an element b
introduced in this construction is the least n such that b € B}.

We first show that Akjk’”B}g. By Proposition 5, it suffices to describe a winning strat-
egy for D in the n-round 3*-game with D playing on B} and S playing on Aj. The strategy

we describe for D will allow her to play her m*”

move on some b € B}, for each m <n.In
round 1, D answers the first move of S by playing her pebble on the appropriate element of
B} C B} to create a partial isomorphism. Suppose that D has played only onto elements

of BJ* through round m, where m < n. Let S choose pebble pair («y, 3;) to play in round
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(m 4 1). We consider two cases. If S plays «; on the same element as some ay, for [ #£ ',
then D must play 8; onto the element pebbled by ;. Doing so, she obviously maintains
a partial isomorphism and succeeds in playing within BZL‘H. On the other hand, suppose
that S plays a; on a distinct element such that the elements pebbled by @ * a; on A after
the round satisfy 7;; (we may need to pad the tuple pebbled by @ to a tuple of length
(k—1) by repeating its last element, if all the pebbles are not in play at this round). Before
D plays her (m 4 1)*® move, the pebbles 3 are on a tuple b (similarly padded, if necessary)
that satisfies m;. She then plays ; on the element bgj’l € BZL'H, thereby maintaining a
partial isomorphism. This strategy enables her to win the n-round game.

Next, we show that Akﬁk’”‘HB}g. By Proposition 5, it sufflices to show that S can win
the (n+1)-round game with D playing on B} and S playing on Aj. We describe a strategy
for play by S which forces D to pebble an element of height at least m by the end of
round m to avoid losing at that round. It follows that S wins the (n + 1)-round game
since all elements of B} have height < n. S plays as follows. He first places his k-pebbles
on a set of k distinct elements which form a k-clique, that is, for every pair of distinct
pebbled elements a and @', Ay = E(a,d’). S may play in this way since Ay |= T'x. By our
construction above, if b,b" € B} are distinct elements of the same height, B} = E(b,b').
It follows immediately that any r-clique in B} contains an element of height at least r.
Therefore, if S has not won by round k, D has pebbled an element of height at least £ by
the end of that round. Note that in case (n+1) < k, we are done, since at round (n+41), D
will be unable to play onto an element of height at least (n+ 1) to form an (n + 1)-clique.

We proceed to describe the strategy for S’s continuing play under the assumption that
k < (n+ 1). Suppose that through round m,k < m < (n+ 1), D has played a pebble
onto an element of height at least m, and that the k pebbles S has played lie on distinct
elements of A which form a k-clique. We show how S can play to ensure that D must
play onto an element of height at least (m 4 1) at round (m + 1), if she is to prevent S
from winning at this round, and leave the round with a k-clique pebbled. Suppose that j3;
is pebbling an element b of height greater than the height of any other element pebbled in
B} at round m. By our hypothesis, the height of b is at least m. Pick j # ¢ (recall that
2 < k) and let @ € Ay be the element pebbled by ;. S picks up «; and places it on an
a' € Ap such that
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1. Ar | E(a,a) < —-E(d',d') and

2. for every a” € Ap on which one of the remaining (k — 1) pebbles lies, a’ # " and

Ay = E(d’,a") A E(a",a').

The existence of such an a’ follows from the fact that Ay | I'y. We claim that to avoid
losing at this round, D must play her pebble §; onto an element b’ of height greater than
the height of b, and hence of height at least (m + 1). Let 0" be the element pebbled by
B; at round m. By our construction, each element of B} is connected to at most (k — 1)
elements of lesser height. Therefore, from the hypotheses that S had pebbled a k-clique
at round m, and that b is an element of maximal height pebbled by D at that round, we
may conclude that the only element of height < the height of b adjacent to b onto which D
could play f; is b” itself. But this play would fail to maintain a partial isomorphism with
the elements S has now pebbled at round (m + 1) by the first condition we have imposed
on the choice of @’ above. Therefore, to avoid losing at round (m + 1), D must pebble an

element of height at least (m 4 1). |

The next result follows immediately.

Corollary 2 There are infinitely many formulas of LF(3) which are pairwise inequivalent

over F.

We now consider L% (3)-theories and normal forms for L* (3) sentences over F. We
let Th&(A) denote the L* (3)-theory of A. Before proceeding, we define the following

fragments of L% (3).
1. Let AL¥(3)={6]6 = \®, for some & C L*(3)}.
2. Let \VLF(3) = {0 ] 6 =\ ®, for some & C LF(3)}.
3. Let A(VL*(3)) =1{0]8 = A, for some countable ® C \/ L¥(3)}.

4. Let V(ANL*(3))= {00 =\ @, for some countable ® C A L*(3)}.

Proposition 11 For all finite structures A, there is a § € N\ L*(3) such that Mod(8) =
Mod ¢(ThE(A)).
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Proof. Observe that Mods(Th4(A)) = {B € F | A=% B} Let C4 = F — Mod(Th5(A)).

By Proposition 7, for each B € Cy4, there is a sentence ¢ € L¥(3) such that A = pp and
Bt op. Let 8 = Agec, ¢B- It is easy to verify that Mody(6) = Mod ;(Th&(A)). |

Kolaitis and Vardi [18] obtained a normal form for the negation free fragment of LX._(3)
over F. It is easy to extend their result to L* (3) and to provide a dual normal form as

well. We codify these normal forms in the next proposition.

Proposition 12 (Kolaitis and Vardi [18]) For every sentence ¢ € L%, (3), there is a
0 € V(ANL*3)) and a ¢ € N(V L*(3)) such that Mod () = Mod () = Mod ¢({).

Proof. Let C = Mod(p). By Proposition 8, for each A € C, B € F —C, there is a sentence
0aB € Lk(EI) such that A |= 04 p and B £ 64 5. Let § = VAeC(/\BgCeA,B) and let
¢ = Apgc(Vaec0a,). It is easy to verify that the proposition holds for this choice of 6
and . [ |

Next we show that the fragments A L¥(3) and \/ L*(3) are closed under finite con-
junction, finite disjunction, and existential quantification over F. This means that if an
LE, (3)-definable query cannot be expressed in either A L*(3) or \/ L*(3), then it is only

definable using both an infinitary conjunction and an infinitary disjunction.

Proposition 13 The languages \ L*(3) and \/ L*(3) are both closed under finite conjunc-

tion, finite disjunction, and ezistential quantification over F.

Proof. Let ® = {p;(2,7) | i € w} be a set of formulas of L*(3). We show that if 8(7) =
Jz A\ @, then 0(7) is equivalent over F to some formula ¢'(7) € A L¥(3). (The other closure
conditions may be easily verified.) Let ¢, = Aoci<n 1(@,Y) and let 0 (7) = Nonew 320m.
We show 6’ is equivalent to 6. It is obvious that 6 implies §’. Let A € F and @ € A be such
that A |= #'[a@]. Because A is finite, there is some a’ € A such that for arbitrarily large m,
A 4 [d,a@]. Therefore A |= A, c., ¥mld’, @], and ¢ implies 6. ]

Below we show that the query classes A L¥(3) and \/ L*(3) are proper subsets of
AV L¥(3)) and that neither of A L¥(3) and \/ L*(3) is a subset of the other. We first

give necessary and sufficient conditions for classes to be definable in A L*(3) and \/ L*(3),

and prove a lemma from Kolaitis and Vardi [18] that we need below.
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Proposition 14 1. A class C is definable in \ L*(3) iff for all B ¢ C, there is a ¢p €
L*(3) such that B [ pp and for all A € C, A = ¢p.

2. A class C is definable in \/ L*(3) iff for all A € C, there is a p4 € L*(3) such that
AlE s and for all BEC,B £ ¢4.

Proof. To prove 1., suppose that C is defined by the sentence A, ., ¥,, and that B ¢ C.
Then there is some ¥, such that B [£ ,,. Let ¢p be this t,,. In the other direction,

observe that the sentence ¢ = Aggc pp defines C. The proof of 2. is similar. |
Lemma 1 (Kolaitis and Vardi [18]) The relation <* is polynomial time computable.

Proof. Let A and B be models of signature 0. We define (A, B) to be the following model,
with signature o U {Qz}, where Qz is a unary predicate not in o. It is the disjoint union
of A and B, with the extension of the predicate @z interpreted as the universe of B. It
is easy to see that, given a standard encoding of the models A and B on Turing machines
(e.g. see [9]), an encoding of (A, B) can be produced in polynomial time.

Modifying an idea from Dawar, Lindell, and Weinstein [9], we now show that there is
an LFP sentence # such that for all A and B, (A, B) |= 6 iff A<¥B. Tt is well known (see
[14]) that every LF'P query can be computed in polynomial time. Composing the function
that outputs a representation of (A, B) with the function that computes the truth value
of 8 then yields the desired algorithm.

Let R(x1,...,2%k,Y1,---,Yk) be the 2k-ary relation on models (A, B) such that (A, B) =
R(ay,...,ap,by,...,by) iff each a; is in A, each b; is in B, and (A, @) 2% (B,b). We first
show that R(Z,7) can be expressed in LFP. Let U = {1)1,...,4,;} be the set of all atomic
formulas over ¢ with free variables among zq,...,z,. Given any k-tuple @ C A and k-
tuple b C B, (A,@) £%0 (B,b) iff there is a ¢» € ¥ such that A | ¢[a@] iff B £ ¢[b]. In
general, (A,a@) A5 (B,b) iff there is an @’ € A and an ¢ < k such that for all ¥’ € B,
(A, @) AFn (B,E/), where @ and b’ are the k-tuples obtained from @ and b by replacing
the i*" component by a’ and b, respectively. Then the least fixed point of the following
formula defines the desired relation, R(Z,7).

1(7,7) = Up[ A\ (-Qzi AQui) A(\/ (¥[7] = ~¢[g) v \/ Fai¥yi(-Qzi A(Qyi — R(T.7))))]

i<k YED i<k
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Observe that A<FB iff for each k-tuple @ C A, there is a k-tuple b C B such that
(A, @)=*(B,b). If A £* B, then there is a sentence ¢ € L¥(3) such that A = ¢ and B |£ ¢.
Then for any @ C A and b C B, (A,@) | ¢[a] and (B,b) [£ ¢[b]. In the other direction,
assume that A<*B and @ C A. Suppose that for each b C B, there is a formula ((T) such
that (A,@) |= (5() and (B,b) £ (5(7). Then ( = 3% Ay (5(T) is an L*(3) sentence such
that A |= ¢ and B [£ ¢, a contradiction. Finally, let 6 b; the following sentence.

0 =Var...op( )\ Qi — 3y ... yx( A\ Qui A (7. 7))
i<k i<k

This completes the proof. [ |

Proposition 15 For each k > 2, there is a polynomial time computable boolean query

C e AL*(3) -V L*().

Proof. Let k > 2 be given and let the graph Ay be a model of the k-Gaifman theory. Let T
be the L¥(3)-theory of Ay, and let § = AT. Clearly, § € A\ L*(3). Let C = Mod(8). It is easy
tosee that C = {B € F | A.<*B}; thus, by Lemma 1, C is polynomial time computable. In
the proof of Proposition 10, we showed that for every satisfiable ¢ € L*(3), Mod(¢) € C.
This implies that for every ¢ € \/ L*¥(3),C # Mod ;(%). [

Proposition 16 There is a polynomial time computable boolean query C € \/ L*(3) such
that for all k € w, C ¢ AL*(3). In consequence, for each k > 2, there is a class C €

VIE3) = ALE3).

Proof. Over the signature o = {F,s,t},let C = {A | there is a path from s to t}, the class
of (s,t)-connected graphs. This class is clearly in \/ L?(3). As noted earlier, it is in Datalog,
and, hence, polynomial time computable. From Proposition 14, to show that C ¢ A Lk(EI),
it suffices to show that there is a B ¢ C such that for all n € w, there is an A, € C such
that A,<%"B. This latter condition is equivalent to D’s possessing a winning strategy
for the n-round 3*-game on A, and B. We construct B to give her the greatest possible
freedom in choosing her moves. Let M be any graph such that M |= T'gx1q, and let M
(resp. M) be obtained from M by requiring that s (resp. ¢) denote a loop-free element.
We define B to be the disjoint union of M, and M;, thus insuring that B ¢ C.
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For each n, let A, be the simple chain from s to ¢ of length 2"t2. The basic idea is
that by choosing the chain to be long enough, S will not be able to witness the existence
of a path from s to ¢ in only n moves. Let d(z,y) be the natural distance function on A,,.

We now describe D’s strategy. In each round m, D chooses to play on an element of M
iff S just played a pebble on a € A, such that either (i) d(s,a) < 20**2)=™: or (i4) there
is a j such that §; is on an element of M, and d(a;,a) < 2(n+2)=m  She then plays her
pebble on an element of the appropriate component of B so that she maintains a partial
isomorphism among the pebbles on that component. It is easy to see that this is possible
because M, and M, are models of I'p41.

In order to establish that this is a winning strategy, it suffices to verify the following

two claims.

1. In each round [ < n, if D plays a pebble §; on M, then «a; is not adjacent to ¢ on
A,,. Similarly for M; and s.

2. After each round [, for all pairs of pebbles {a;, a;}, if A, = E(a;,a;), then §; and

3; are on the same component of B.

We argue, by induction, that if D plays 3; on M, in round m, then d(s, a;) < (207214
20n42)=2 1 g 9ty « 9nt2 . Since d(s,t) = 272, this establishes that A, [
E(aj,t). In round 1, D plays 3; on M iff d(s, a;) < 2(1+2)-1 Guppose that in round m+ 1
D plays 8; on M. Then either d(s, a;) < 2(n+2)=m 1 there is an a; such that 3; is on M,
d(e;, o) < 20042~ “and, by induction hypothesis, d(s,a;) < (207+2)=1 4 2(n+2)=2 1
ot 2(”+2)_m). In both cases, the induction condition is maintained. The second part
of Claim 1 follows from the fact that in round m, if D plays 3; on My, then S must have
played a; such that d(s,a;) > 200+2)=7m 5 1,

To prove Claim 2, observe that at each round m, if 3; € M,, and 3; € M, then

d(;, ;) > 2002~ 5 1. The details are similar to the previous argument. [ ]

The next result shows that the normal form for L* (3) over F given in Proposition

12 is optimal.

Proposition 17 For all k > 2, there is a class C C F such that C € \/(\L*(3)) —
(ANLFI) UV LF3)).
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Proof. The proof of this proposition is a synthesis of the proofs of the preceding two
results. We define a set of models {A;, Ay,...} which are pairwise L*(3)-incompatible
such that for each 7, the L*(3)-theory of 4; is not finitely axiomatizable in L*(3). We then
let C = {B | 3i(4;=*B)}. The arguments to show that this class is neither in \/ L*(3) nor
in /\Lk(EI) are variants of the proofs of Propositions 15 and 16.

We define each model A; as an expansion of a homeomorphic image of a graph which
is a model of the (k + 1)-Gaifman theory. To clarify the exposition, we also add a unary
predicate V to the signature to label the original vertices of the graph. Let R be a finite
graph that verifies I'p11; observe that R also verifies I'y. Fach A; is obtained from R
by replacing all edges which are not loops by pairwise disjoint paths of length 7. (Where
there is a two-way, undirected edge, a single undirected path is inserted, rather than two
directed paths.) If ¢ = 1, then Aj; is just the expansion of R, with signature {Fzy, Va},
such that V41 = R. If i > 1, then the universe of A; is the set RU{{a,b,j}|a,b € R, R |=
Fab, and 1 < j < i}. (We have labeled each new vertex by a set of size 3.) If ¢ and b
are connected in R, then in A; there is a path of length ¢ from a to b along the vertices
{a,b,1},...,{a,b,i— 1}. Again, we set V4 = R. Observe that each vertex {a,b,j} is
connected to exactly two other vertices. Also, if a,b € VAi a # b, then d(a,b) > i.

To verify that C is not in \/ L¥(3), it suffices to show that there is a model A € C and a
sequence B, B%, ..., disjoint from C, such that for each n, A<*"B". Let A be Ay, and let
each B" be obtained from the model B} from the proof of Proposition 10 by putting every
vertex into the extension of the predicate V. From that proof it is immediate that, for all
n, Ay=F"B" but Ay 2¥B". For each i > 2, A; |= 32~V 2 and, consequently, A;2*B". This
establishes that each B™ is not in C.

In order to show that C ¢ A L*(3), we now define a single B ¢ C such that for all
n, there is an Ay, such that Af(n)jk’”B. By Proposition 14, this will establish that
C ¢ A L*(3). Let R* be an expansion of R obtained by letting VA" = {a} for some a € R
such that R |= Faa. Let R~ be an expansion of R obtained by letting V%~ = {a}, for
some a € R such that R |= = Faa. We say that an element a contains a loop, or is looped,
iff Faa. Otherwise, it is loop free. Likewise, we say that each RT is looped and that R~
is loop free. We define B to be the disjoint union of & copies of both R and R~. A

component of B is any submodel that is one of the copies of RT or R™. Observe that the
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components are exactly the maximal connected submodels. Here the predicate V plays a
role like the constants s and ¢ in the proof of Proposition 16.

It is easy to see that B is not in C. For each 7, A; has the property, expressible in L3,
that there are two distinct vertices, both in the relation V', that are connected by a path
of length ¢. On the other hand, no component of B contains two distinct elements in V;
thus, for all i, A;2*B.

Let f(z) = 2°T! 4 1. Tt remains to establish that, for each n,Af(n)jk’”B. As in the
proof of Proposition 16, the Duplicator can win the n-move 3F*-game on Af(ny and B
because the vertices of A,y that are in V' are too far apart for the S to distinguish the
models by witnessing that they are actually connected. In order to describe the D’s winning
strategy, we define an auxiliary matching partial function, u(z,m), that assigns to each
vertex ¥ € Ay, that is pebbled in round m a vertex a’ € A,y such that A, = Vd'.
We will write p,,(2) for p(z, m), or even omit the subscript when it is unnecessary. Let
a; € Ag(nylb; € B] denote the vertex pebbled by the S [D] in round j; let R; denote the
component of B that contains b;. For all @ € A say that a is live in round m iff Va
or a is occupied by a pebble at the end of the round. The function p,,(2) will satisfy the

following conditions, for all a,a’ € {b] b is live in round m}:
1. If the S does not replay the pebble on @ in round m, then p,,,11(a) = p,(a).
2. For all m <, if Va, then p,(a) = a.

3. If a # a and i, (a) # pm(a’), then d(a,a’) > 2=+ In particular, if 1, (a) #

pm(a’), then there is no edge connecting a and «o’.
The D will also maintain the following ‘modularity’ condition.

4. In each round m, if the pebbles on a; and a;,7 < j, have not been replayed between

rounds 7 and m, then p,,(a;) = pin,(a;) iff b; and b; are on the same component of B.

In round 1 of the game, let the S play on a; € Ay(,). Let pi1(ap) be the element o' € V'
that is closest to aq; observe that this is well-defined and that d(aq, p1(a1)) < 2”. Since the
distance between any two elements in V is greater than f(n) = 2"*!, this implies that for

all v € V—{a}, d(a,v) > 2", as required by condition 3. The D then chooses a component
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Ry of B such that Ry is looped iff p(aq) is looped; let vy be the unique element in Ry such
that Vv1. She then plays on an element by € Ry such that the 2-tuple (b1, v1) has the same
atomic type as (ay, p(a1)), which immediately implies that the pebbles in play determine
a partial isomorphism. Since Ry |= I'g41, it is easy to see that there is such an element.

In round m 4+ 1 < n, the S plays on some a,,4+1. We describe the D’s response by
considering two cases. One, for all @ # a,,41 that are live in round m + 1,d(a, ap41) >
on=((m+1)+1) * Tn this case, let Hm41(@my1) be any v € V such that, for all live ¢ #
v, tim(@) # v. The D now chooses an unpebbled component of B, which we call R,,41,
that is looped iff v is looped. Since there are k copies of each of Rt and R~, and only
k pebbles, there is always such a component. She then plays on some b,41 € Rpi1
such that the atomic type of (by,41,vm+1) is the same as that of (a1, p(a@m41)), where
V1 18 the unique element of R,,4+q1 such that Vv, ;. Note that for all live, pebbled
aj,j < m,pimt1(a;) # fm+1(@mer), which implies, by conditions 2 and 4 above, that
a;[b;] is not adjacent to @y, 41[bm41]. Therefore the D has succeeded in preserving a partial
isomorphism; it is easy to verify that conditions 1—4 are also maintained.

Second if there is an element a € {b | b is live} such that d(a, ayqq) < 27°~("*2) then
let ptmt1(@my1) be py(a). In order to see that piy,41(@m41) is well-defined, suppose that
there are two such elements, a and a’. Observe that d(a,d’) < d(a, @pmt1) + d(amy1,a’) <
2n=(m+1) " By condition 3, we have that p,,(a) = i, (a’), as desired. Note that g, 1(z)
satisfies the above conditions 1-3. The D then plays on some element b,,11 € R,,4+1 such
that (byy, ..., b1, 0my1, Vmg1) has the same atomic type as (ay,, .. ., @1, gty flng 1 (@my1)),
where ppq1(ar) = pmyr(@myr) and Ry, = Ry4q, for all ¢ < j. Again, this is possible
because R,,11 |= 'k+1. Note that the D also maintains condition 4. This establishes that

the D has a winning strategy. [

Finally, we prove the following separation.
Proposition 18 Over F, for k > 3, L*3) C (AL*(3))n(V LF(I)).

Proof. Let Path(z,y) express the binary query ‘there is an F-path from z to y.” For
signature o = {E, s}, we define C = {A | 32( Path(s, z) and Path(z,z))}. Let 6,(z,y) be
an L3(3) formula that defines the binary query ‘there is a path of length n from z to y.” It is

easy to see that C is in \/ L¥(3). Also observe that ¢ = A, ¢, 323y(s = 2 A0, (z,y)) defines

new

24



C. Finally, there are arbitrarily large minimal models in C, that is, models A € C such that
for all proper submodels B C A, B ¢ C. This immediately implies that C ¢ FO(3) and, «a

fortiori, not in L*(3). |
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Chapter 3

Existential preservation

3.1 Generalized preservation theorems

In this section, we prove some generalized preservation theorems for fragments of FO. Our
results are of the form

LNEXTC I/

for certain quantifier prefix classes L C FO, and L' = L% (3) or Datalog(#,-). We

introduce the following notation.

Definition 3 Let w be a regular expression over the alphabet {¥, 3}, in the sense of formal
language theory. FO[w], with square brackets, is the set of prenexed sentences ¢ such
that the quantifier prefiz of v is a word in the regular language determined by the regular
expression w. (For example, FO[V3*] is the set of sentences whose quantifier prefiz is a

single ¥ followed by a string of 3’s.)

Recall that Tait [23] showed FO N EXT ¢ FO(3). Gurevich and Shelah [14, 15] give
examples witnessing that

FO[V3* N EXT € FO(3)
and Compton observed that
FO[F*V*] n EXT C FO(3),

showing that these examples are best possible in terms of quantifier alternation prefix (see

[14]). Kolaitis and Vardi (see [3]) observed that the example of Gurevich and Shelah [14]
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can be defined in Datalog(#, ). Theorem 2 below establishes that
FO[F*Vd] n EXT C Datalog(#, —).

It follows that the above mentioned examples in the literature witnessing the failure of
the Los-Tarski theorem in the finite case are definable in Datalog(#, ), since all these
examples are in FO[3*V3]. The next theorem establishes a slightly more general result

with L% (3) in place of Datalog(#, —).
Theorem 1 FO[F*VI*| N EXT C L¥ (3).

Proof. Let ¢ € FO[F*VI*] N EXT. That is, ¢ € FO[F*VI*] and Mods(¢) € EXT. Let
C = Mod (). We proceed to show that C € L% (3). By Proposition 8, it suffices to show
that there is a k such that, for each A € C and B ¢ C, thereis a 84 5 € L* (3) such that
Al 04p and B |~ 64 .

Let ¢ = Jaq...2;Vy3dz ... 2;0(T, y, %), where ¢ is quantifier free, and let k =i+ j 41
(we suppose, without loss of generality, that ¢ > 0). We now describe a winning strategy
for S in the eternal 3*-game on A and B, for A € C and B ¢ C, which establishes, by
Proposition 6, the existence of 04 g € Lk, (3) with the desired properties. There are two
stages. Let @ = (ay,...,a;) be a sequence of elements of A such that A |= Vy3zy(a,y,z).
If D has not lost after h rounds, for A < ¢, S plays pebble apiq on element apyq. If
S has not won after i moves, and D has played her pebbles on b = (by,...,b;), then
B = Iyvz-1p(b, y, %) (since B £ ¢).

The goal of the second part of S’s strategy is to force D to play a pebble on some
element ' such that B | VzZ-1(b,b',Z), without removing any of the pebbles ay,...,a;
which ‘fix the interpretation’ of the variables xy,...,2; on both A and B. Regardless of
the element «’ on which S will have played his corresponding pebble, A |= 3z (@, d’, %), so
that he can then win easily. In order to describe S’s strategy, we first define a sequence of
subsets of the universe of B. Let I'g = {' | ¥/ € B and B |= Vz-¢(b,b',Z)}. Observe that
B = Iyvz-e)(b, y, 2), and therefore I'g is non-empty. Given Tg,...,T,,, if (Ui<m r)nd =0,
then let B,,41 be the submodel of B whose universe is (B — Ulgm I'y). Let I'ypyr = {0 |
V' € By and B,y | V7-(b,0,7)}. For each B,,, since B,, C B, we have that

B,, = VZ3y¥z-1(7,y,%). In particular, B, = JyVz-1(b,y,Z) and thus, as above, I',, 11
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is non-empty. Since B is finite, there is some n such that I', Nb # §, and some element
by eI, N b pebbled by By. Then B is partitioned into the sets I'g,...,I'n_1, B,. We also
have that A |= 32(@, ay, %), and B, | VZ-¢(b, by, Z).

The Spoiler can win by executing a substrategy that compels D to play in sets 'y,
of successively smaller index. Let ¢ be a sequence of elements of length 7 such that,
A = ¥(@,as,¢). S plays his next j moves on this sequence, until D makes a losing move
or plays a pebble 3, onto an element in I';,, for m < n — 1. We claim that one of these
two possibilities must occur. For suppose that D plays on a sequence d C B,. Then
B, = ~¢(b,by,d), and ¢(T, y,Z) witnesses that the function that takes @+af*¢ to bxbs+d
and preserves the denotations of constants is not a partial isomorphism.

Suppose that D has played some pebble 3, into some set I';,. By the same argument
as above, reusing pebbles {a;41,...,ar} — {ay}, S can either win or force D to play into
some I',,s, for some m’ < m. Iterating this procedure, S can force D to play into I'g, and

then win by using the same procedure one more time. [ |
We remark the following two refinements of the foregoing theorem.

1. For each B ¢ C, there is a number mp such that for all A € C, S wins the mp-
round 3%-game on A and B. (Here, mp is determined by the maximum number of
sets I' that get defined on B, for any choice of D’s first ¢ moves.) It follows easily
from Proposition 5 that this condition is equivalent to there being a 6p € LF(3),
with quantifier rank < mp, such that for all A € C, A |= g, and B [£ 0. Then
6 = ABgc B is equivalent to ¢ and is a single infinite conjunction of L*(3) sentences.
We know by Proposition 16 that not all sentences of L’;ow(EI) can be expressed in this
form. Indeed, it follows from Theorem 2 below that if ¢ € FO[3*VI] N EXT, then ¢
is equivalent to a formula in A L*(3) N\ L¥(3) for some k.

2. Suppose that ¢ is an L* sentence with quantifier type ¥3*, that is, no V occurs in ¢
in the scope of another quantifier. In this case, we can show, by a modification of the
proof of Theorem 1, that ¢ is equivalent to an Lﬁow(ﬂ) sentence. This contrasts with
Proposition 19 below which establishes that for all k, there is a sentence ¢ € L® such

that Mod ;(¢) € EXT, but ¢y, is not equivalent over JF to any sentence in L% (3).

Theorem 2 FO[3*VI] N EXT C Datalog(#, -).
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Proof. Let ¢ = Jxq...2;Vy325(T,y, 2), with B(Z,y, z) quantifier free. Let € = (¢1,...,¢,)
be the sequence of constants in the signature of ¢ and let C = Mody(). For a € A, we
say that a closes with parameters @ iff there is a sequence ag(= @), aq,...,a, such that for
all I < n, A E B(a,a;,a;41) and there is an m < n such that A |= 3(@, a,, a.,). Note that
this is equivalent to there being an @’ such that there is a §(4@, y, z)-path from a to «’, and
a 3(@,y, z)-cycle including a'.

We claim that A |= ¢ iff there is a j-tuple @ such that every element of @ U ¢ closes
with parameters @. Suppose that A does not satisfy these conditions. We prove that
A |= VZ3IyVz-6(7,y,z)) where the latter sentence is equivalent to —p. Let @ C A be a
sequence of length j. By hypothesis, there is an «’ € @ U € such that ¢’ does not close
with parameters @. Since A is finite, this implies that there is an m > 0 and a sequence
a' = ag,...,ay, such that for all [ < m, A |= 3(@,a},a;,,) and A |= V2=0(a,ay,, 2), as
desired.

In the other direction, let @ be such that every member of @U € closes with parameters
@. Let 5, = (apo(= ap), ..., axm,) and &, = (epo(= ¢p), ..., €nn, ) be sequences witnessing
that each element of @U € closes with parameters @. Let B be the submodel of A with
universe |J;5; U UJ; ;. Then it is easy to verify that B |= ¢ and, since Mod(p) € EXT, it
follows that A |= .

The following program, with = (21, ...,;), computes ¢:

P(fv Y, Z) — ﬁ(fv Y, Z)
P(z,y,z)— P(T,y,w), P(T,w, 2)
Q R P(f,$1,y1),P(f, 3/173/1)7 .. '7P(fv $],y]),P(f, y]vy])v
P(Z,c1,wy), P(T, w1, wy),. .., P(T, cp,wy), P(T, wp, w,)
This can be easily converted into a Datalog(#,—) program. Let 8(7,y,2) =V, ¢;, where

each ¢; is a conjunction of literals. Replace the clause P(7,y,z) «— (T, y, z) with the

clauses P(Z,y,z) < ¢;, for all i. [
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3.2 The failure of existential preservation for L%

In this section we prove that LY NEXT ¢ L% (3). Indeed, we establish that there is a
sentence # € LY , such that Mod(#) is closed under extensions, but thereis no ¢ € L% (3)
such that Mod¢(#) = Mod(+). Thus, § witnesses the failure of existential preservation for
L¢ . simultaneously over the class of finite structures and over the class of all structures.
The central lemma on which this result relies is of interest in itself. It says that for all
k > 3, the finitary language L* fails in a strong way to satisfy an existential preservation
property. Andreka, van Benthem, and Nemeti [4] showed that for every k > 3, there is a
sentence ¢y, € LF which is preserved under extensions, but which is not equivalent to any
sentence of L*(3). For k > 3, the sentence ¢ they construct uses a relation symbol of

arity k£ — 1 and has the property that it is equivalent to a sentence of Lk"'l(EI). They state

the following open problems.

e For any k > 3 and n € w, is there a sentence ¢, € LF which is preserved under

extensions, but which is not equivalent to any sentence of L*+7(3)?

e For k > 3, is there a formula of L* containing only (one) binary relation symbols

which is preserved under extensions, but is not equivalent to any sentence of Lk(EI)?

The next proposition settles both these open problems. The main result of the section

follows easily from the proof of this proposition.

Proposition 19 For each k < w, there is a sentence 8;, € L, containing a single binary

relation, such that
1. Mod(8y) is closed under extensions, but
2. Mod(6;) # Mod () for all ¢ € LF(3).

Proof. Before presenting the full proof, we sketch the basic outline. Let the k-pyramid of
B, P¥(B), be the smallest class of (finite and infinite) models containing B that is closed
under substructures and L*-equivalence. For each k > 3, we define finite structures Ay

and By with the following properties:
1. Ap=F By
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2. P3(By) is L?-definable;
3. Ay & P3(By).

Let o, € L3 be such that Mod(¢g) = P3(Bg), and let 8y = —pg. It is obvious that
Mod(8y) is closed under extensions, that Ay |= 6y, and that By [£ 6. Suppose ¢ € Lk(EI)
is such that Ay |= . Since Akj’;oka, this implies that By |= ¢, and therefore that ¢ is
not equivalent to €.

We define structures Ay and By in terms of simpler submodels. For f < ¢, let the
[t, f]-flag, Ft, f], be the directed chain of length ¢ with one additional vertex attached
to the f¥* link. That is, the vertex set of F[t, f] is {0,1,...,¢,¢ + 1}, and the edge
relation is {(4,i4+ 1) | ¢ <t} U{(f,t 4+ 1)}. A is the disjoint union of the £ + 1 flags—
F2k+2,k+1], F[2k+2,k+2],..., F[2k+ 2,2k + 1]. Let the [k, j]-tree, T[k, j], be the tree
obtained from Ay, by fusing the i** nodes of each flag, for all i < j. This tree has height
2k + 2 and the node at height 7 has outdegree k + 1. Then By is the disjoint union of the
k trees— T[k,0],T[k,1],..., Tk, k- 1].

First we show that Ap<% By by describing a winning strategy for D in the eternal 3*-
game on Ay and By. A component of a model is a maximal connected submodel. Observe
that every component of Ay is embeddable in every component of By. Call a component
of either Ay or By vacant at round n if there is no pebble located on any element of that

th moves. We consider two cases of moves for

component before the players make their n
S. First, suppose that in some round n, S plays pebble «a; on a vacant component A" of
Aj. Since there are only k pairs of pebbles, and since pebble 3; is not on the board, there
is a vacant component B" of Bj, and an isomorphic injection h, : A™ — B™. D will play
pebble 3; on h,(«a;). In the other case, S plays on a non-vacant component A". There
is some m < n such that A™ has been occupied continuously since round m and either
m = 1 or A™ was vacant at round m — 1. Thus A™ = A™, and there are previously defined
B™ and h,,. D now plays 3; on h,(a;). By this condition, every pair of pebbles («y, 3;)
on components A™ and B™ satisfies the condition that h,,(a;) = ;. In both cases, it
is clear that D has maintained a partial isomorphism. By Proposition 6, it now follows
immediately that Akj’;oka.

Next, we show that P3(By) is definable in L?. Consider the following properties:
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1. A contains no chains of length > 2k + 2.
2. A contains no cycles of length < 2k 4 2.
3. No element a € A has indegree > 2, that is, A |= =Ja3yIz(x £ y A Faz A Eyz).

It is easy to show that each property is expressible in L2, is closed under substructures,
and holds of Bj. From this it follows immediately that each B’ € P3(B}) possesses all
three properties. Consequently, every member of P3(By) is a forest consisting of directed
trees of height < 2k 4 2.

Next we note the following facts:

Lemma 2 Let A and B be the disjoint unions of components Ay, ..., A, and By, ..., B,,
respectively. For k > 3, A=F__ B if and only if for each component A; [B;], either the
number of components of A that are L*-equivalent to it is equal to the number of components

of B that are L*-equivalent to it or both numbers are > k.

This result can be proved by a simple pebble game argument.

Lemma 3 For each h, and each k > 3, up to equivalence in L* there are only finitely

many trees of height < h.

The proof proceeds by induction on h. The case where h = 1 is obvious. Given a tree T,
call a proper subtree that contains a node t of height 1 and all of its descendents a 1-tree
of T. For h > 1, we claim that two trees T} and T, of height at most h are L*-equivalent
if and only if for each 1-tree T’ C T}, the number of 1-trees of T} that are L*-equivalent to
T’ equals the number of 1-trees of T, that are L*-equivalent to 7", or both numbers are
> k. The argument is just like the proof of the preceding lemma. From the claim, the

lemma follows immediately.

Corollary 3 For each h, and each k > 3, up to equivalence in L* there are only finitely

many forests of height < h.

This is an immediate consequence of the preceding lemmas.
These observations establish that there are only finitely many complete L*-theories that

are satisfiable in P?(Bg). Moreover, each such theory has a finite model. By [9], every
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such theory is axiomatized by a single L”* sentence. Hence, if we let ¢, be the disjunction
of these sentences, we have Mod(py) = P?(Bj) as desired.

Finally, we argue that A; ¢ P3(Bg). By the definition of P3(By), for every B’ €
P3(Bg), there is an m € w and a sequence (Fo, Dy, Ey, ..., D,,, E,) of structures, with
By, = FEy and B’ = E,,, such that:

1. Forall 1 <:<m,D; C F;,_4.
2. Forall 1 <i<m, D; =*E,.

It suffices to show that for any such sequence, A; cannot be embedded in any F;. Let
g : P3(By) — {0,1,...,k + 1} be the function such that g(D) is the maximum number
of components of Ay that can be embedded in D pairwise disjointly. We show that for
each i < m,g(F;) < k+ 1. In fact, we show that ¢ is monotonically decreasing on
the aforementioned sequence. Because each D; is a submodel of F;_q, it is clear that
g9(D;) < g(F;_1). It remains to establish that g(By) < k + 1 and that g(£;) < g(D;).

Observe that any embedding of a flag F[2k + 2, f] into a component C' of any B’ €
P3(Bj) must map the root of the flag to the root of C'. This implies that no two flags of Ay
can be disjointly embedded into any such component and, since By has only & components,
that g(By) < k + 1.

From Lemma 2, it follows that every F; can be obtained from D; by repeated application
of the following three operations. First, replace some component with a component that
is L3-equivalent to it. Second, add a disjoint copy of a tree that is L3-equivalent to
at least 3 components. Third, remove a component that is L3-equivalent to at least 3
other components. Thus, it suffices to argue that no such operation performed on some
B’ € P3(By) can yield a B” such that g(B”) > ¢(B’). It is obvious that removing a
component cannot increase the value of g.

We claim that it suffices to consider the effect of the other two operations on components
of height = 2k 4 2. If trees T and 7" are L3-equivalent, then they have the same height.
Also, no component F[2k + 2, f] of Aj can be embedded in any tree of height < 2k + 2.
This establishes that the presence of shorter components in a model B does not affect the

value of g(B).
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Observe that for all trees T and T’ such that T => T, F[t, f] can be embedded in T iff
it can be embedded in 7”. This is because the following property can be expressed in L?:
there is an element 2 such that (i) there is a y such that there is a path of length f from
y to a; (ii) @ has outdegree 2; (iii) there is a y such that there is a path of length ¢ — f
from 2 to y. Over trees, this property says that the model embeds F[t, f]. Consequently
the operation of replacement cannot increase the value of ¢.

It remains to establish that adding an additional component to a model B’ € P3(By)

does not change the value of g. We observe that By has the following properties:

1. For each (2k + 2)-chain contained in By there is at most one 5,0 < j < k — 1, such

that the j** link of the chain has outdegree > 1.

2. For each (2k + 2)-chain contained in Bj there is at most one 7,k + 1 < j < 2k 4 1,

such that the 5" link of the chain has outdegree > 1.

These properties are closed under substructures and L>-equivalence; consequently, they
hold of every model B’ € P3(By). Let Cy,C3, and C3 be L3-equivalent components of B’
of height 2k +2. The above argument establishes that each C is either some F[2k+2, f], or
the simple (2k 4 2)-chain. Let B” be the extension of B’ obtained by adding a component
(4. Observe that, in fact, all four components must be isomorphic, and embed at most
one isomorphism type of flag. Therefore, the image of any embedding h : Ay — B”
can contain vertices from at most one of these four components. This demonstrates that

g(B') = g(B"), and completes the proof. [ ]

The following result establishes the failure of existential preservation for L% .

Theorem 3 There is a sentence 8 € LY, | such that both

1. Mod(8) is closed under extensions.

2. Forall p € LY (3),Mods(0) # Mod ().

Proof. We claim that it suffices to show that for each k& € w there is a sentence 8, € L3

and a pair of finite models A and By such that
1. Mod(#y) is closed under extensions.
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2. A |= 0, and By, [~ 0.
3. Ap=% By.
4. For all j, A; |= 0.

Let 8 = A 0r. Tt is clear that 8 is closed under extensions and that it has finite models, since
it is true in each Ag. Suppose that ¢ is a sentence in L’;ow(EI) such that 8 implies . Then
Ay | ¢, and therefore By |= . But for all [, By [£ 6. Therefore, Mod¢(8) # Mod¢(¢).
The sentences 6 and the models A, and By from the proof of Proposition 19 fail to
meet condition 4 because for j < k, A; [£ 0;. To see this, observe that A; will always be a
submodel of By. To fix this defect, it suffices to construct A}, B}, and @), as in the proof of
Proposition 19 that also satisfy the additional condition that, for all j and k, A, ¢ P3(B).
In order to accomplish this, we add simple ‘gadgets’ to the models. Let the k-cycle, Cy,
be the graph on k vertices whose edge relation forms a simple, directed cycle of length k.
Then let A} and B}, be obtained from Ay and By, respectively, by adding a disjoint copy of
(. By slightly modifying the proof of Proposition 19, we can show that A%ﬁﬁowam and
that there is a 6] € L? satisfied by exactly the models in the complement of P3(B}) such
that A} |= 6}. Finally, it is easy to verify that for j # k, the j-cycle cannot be embedded
in any B € P?(Bj,) and, therefore, A’ |= 6. [ ]
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Chapter 4

Other (generalized) preservation

theorems

In previous chapters, we investigated ‘existential logics” and definability over the class EXT
of sets of structures closed under extensions. We now turn our attention to some other
natural classes of structures and examine the status of (generalized) preservation theorems
in connection with these classes. Recall that a homomorphism h(z) from A to B is a
function from A to B such that for all n-ary relation symbols R(Z) in the signature of
A, and all n-tuples @ in A", if A |= R(@), then B = R(h(@)). Let HOM be the class
consisting of all sets of finite models that are closed under homomorphisms. A model B
is an enrichment of A over the relations Ry, ..., R; iff the universe of B is equal to the
universe of A, and for all n-ary relations R;(Z) i < t, and all n-tuples @ € A"[= B"],
if A= Ri(a), then B |= R;(@). A class C of models is monotone in relations Ry,...R;
iff for all A € C, if B is an enrichment of A over the relations Ry,..., R;, then B € (.
Below we will be interested in sets of structures that are monotone in every relation of

their signature. Let MON denote the class of such sets of finite models.

Preservation theorems from classical model theory provide exact characterizations of
the FO-definable classes that are closed under homomorphisms and that are monotone.
The Homomorphism preservation theorem says that a FO-definable class is closed under
homomorphisms iff it is defined by a (purely) positive existential sentence,i.e. an existential

sentence in which every relation symbol, and equality, occurs only positively. Lyndon’s
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lemma states that a FO-definable class of models is monotone in relations R = {Ry, ..., Ry}
iff it is defined by a sentence @ in which each relation in R occurs only positively, i.e. in the
scope of no negations. It is still an open problem whether the Homomorphism preservation
theorem fails over F. We discuss this question in depth in Section 1, in which we present
some partial positive results. Ajtai and Gurevich [2] showed that Lyndon’s lemma fails
over the class of finite models. More recently, Stolboushkin [22] has constructed a simpler
counterexample. Below, we give a slight simplification of Stolboushkin’s example that is

also monotone in every relation symbol. This result, and generalized preservation theorems

over HOM and MON, are discussed in Section 2.

4.1 The class HOM

We investigate the status of preservation theorems over the class HOM. Although it is
unknown whether the Homomorphism preservation theorem remains true over F, below
we present some partial positive results, answering the question for certain fragments of FO.
In particular, we show that every sentence in FO[V*3*Y*]NHOM is equivalent to a positive
existential sentence. In contrast to earlier results for EXT, we resolve (affirmatively)
the homomorphism preservation theorem only for the finite variable language L?. We then
discuss the class IHOM of sets closed under injective homomorphisms. Finally, we establish
a preservation theorem for identity free FO sentences over F.

We introduce the following notation. Let FO(+,+#) denote the fragment of FO con-
taining exactly those sentences in which no relation symbol occcurs in the scope of a
negation. Thus, the negation symbol may only bind equalities. We use FO(3,+) to
denote the purely positive existential fragment of FO. Adding inequalities to this frag-
ment, we get FO(3,+,#). In this terminology, the major open problem is whether
FONHOM = FO(3, +).

4.1.1 The homomorphism preservation property for FO

In this section, we consider various fragments of FO. We first show that if ¢ € FONHOM is
either existential or positive, then it is equivalent to a positive existential sentence. Recall

that A is a minimal model of a class C iff for all proper submodels B of A, B ¢ C. Also, the
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positive diagram of a model A of cardinality n is the conjunction of all atomic formulas with
free variables among {1, ..., 2,} that are true in A under some fixed injective assignment

of these variables onto the universe of A. The next lemma is straightforward.

Lemma 4 Let ¢ be an existential FO sentence such that Mod () is closed under homo-

morphisms. Then there is a 8§ € FO(3,4) that is equivalent to .

Proof. Let C = Mod¢(¢). Since C is in FO(3), it has finitely many minimal models. Let
# be the disjunction of the existential closures of the positive diagrams of each minimal

model in C. It is easy to verify the equivalence of 8 and ¢. [ |

Below we establish the complementary result for the positive fragment of FO. Our
proof requires the following Ehrenfeucht-Fraisse game, played on a single structure. Unlike

games played on two structures, in each round only one player makes a move.

Definition 4 Let ¢ be a prenexed FO sentence, ¢ = Q121 ...Qnxn0(21,...,2,), where
each Q); is a quantifier and ¥ is quantifier free. The @-game is played as follows. In each
round m,1 < m < n, the D plays if Q,, is an 3; otherwise, the S plays. As usual, a move
consists of placing a pebble, a,,, on some element of A. After n rounds, the D wins if

A E Ylas,...a,], and the S wins otherwise.

The following proposition characterizes satisfaction of a sentence in a model game

theoretically.

Proposition 20 For all prenexed sentences, ¢, and all structures A, A |= ¢ iff the D has

a winning strateqy in the p-game.

Proposition 21 For all satisfiable sentences ¢, ¢ € FO(+4,#)NHOM iff there is an equiv-
alent 8 € FO(3,+). [If ¢ is unsatisfiable, and thus in HOM, then it is equivalent to the

existential sentence Jz(x # x).]

Proof. Let ¢ be satisfiable and in FO(4, #)NHOM. Let C = Modf(¢). If ¢ is valid, we let
6 be Jz(xz = z). Otherwise, by Corollary 6, proved below, we can assume that ¢ is identity
free, i.e. contains no equalities or inequalities. Furthermore, we can also assume that ¢ has

been prenexed and that its matrix is in conjunctive normal form, i.e. is a conjunction of
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disjunctions of atomic formulas. We say that an atomic formula, RZ, is a V-formula of o iff
there is a variable 2’ € T that is bound by a universal quantifier in ¢. Let 6 be the sentence
obtained from ¢ by deleting all occurences of all ¥V-formulas and all universal quantifiers.
For example, if ¢ were Jz1Vaodus((Rz1zy V Pay V Pas) A (Rxyzs V Ragas V Pry)), then
§ would be Jzy3x5((PzyV Pas) A (Rzixs)). We claim that 8 is equivalent to . (Observe
that @ is obtained effectively from an identity free ¢.)

First we show that every conjunct of ¢ contains a non-V-formula. Suppose, for contra-
diction, that v is a conjunct of ¢ that contains only V-formulas. Let A be any model in C,
and let A" be the extension of A obtained by adding one element, ¢, without altering any of
the relations. Observe that A’ is in C, since the class is closed under homomorphisms. We
claim that the S has a winning strategy in the ¢-game on A’, which implies that A’ [£ ¢, a
contradiction. In order to win, it suffices for the S to always play each of his moves on the
element a’, regardless of the D’s play. Every variable assignment extending the assignment
determined by S’s moves falsifies the conjunct «, and hence also the formula ¢. Therefore
the S wins the -game, as desired.

We now show that ¢ implies . Let ¢ = Q121...0n2n Aj<j<p 7j, Where each 7; is a
disjunction of atomic formulas. Let 0 = Q, 25, ... W5, s, /\léjék 0;, where each @, is
3, and each 6; is obtained from v; by deleting all V-formulas. Suppose that A |= 6; let
@ = (as,...,as,) C A besuch that A = A\i<;<; ¢;[al. We now describe the D’s winning
strategy in the ¢-game on A. In each round s; < n, she plays a pebble on a,,. Any variable
assignment for {zq,...2,,} that is determined by such a game verifies each ¢;, hence also
each ;. Therefore A |= ¢, thereby establishing that 8 implies ¢.

Next we prove the opposite direction. Let A |= ¢ and, again, let A’ be the extension of
A obtained by adding an ‘isolated’ element, a’. Since A’ |= ¢, the D has a winning strategy
for the ¢-game on A’. In particular, she can win a game in which the S plays every one
of his pebbles on a’. Since @’ is not a member of any tuple that is in any relation, R4,
and since every atomic formula occurs only positively, we can assume that the D does not
play any pebble on a’. Let @ = (as,,...,as,) € A be some tuple in A C A’ such that
the D wins the p-game on A’ in which the S always plays on ¢’ and, in each round s,
the D plays on a,. Observe that each V-formula is falsified by this variable assignment.

Therefore each disjunction, 7;, must contain a non-V-formula, 7;, that is satisfied by this
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variable assignment in A’. Since each 7; occurs in the disjunction é;, it is easy to see that
A= Aicj<r 6;@l. Therefore, A |= 6. This establishes that ¢ implies 6, and completes the

proof. [ |

Next, we establish another partial positive result over a fragment of FO, defined in
terms of quantifier prefix structure. The proof uses the following version of the Ehrenfeucht-
Fraisse game. The V'3™V"-game on A and B is a 3-round game played with [ +m + n
labeled pebble pairs such that:

1. The Spoiler plays [ pebbles, Bl = (f1,...,01), on B. The Duplicator then puts I

pebbles, @' = (ay,...,q;), on A.

2. In round 2, the S plays m pebbles @* = (ayy1,...,a14,,) on A. The D then puts m
pebbles, 3 = (Bi11.- ., Fm), on B,

3. In round 3, the S plays n pebbles, 33 = (Bixm+1s- -+ Bigmsn) on B. The D then

puts n pebbles, @ = (@pmi1,--» Qgman), o0 A.

Of course, the D wins just in case the pebbles determine a partial isomorphism from A to

B. The following lemma is easy to verify.
Lemma 5 The following two conditions are equivalent.
1. For all p € FOV'I™V"], if A |= ¢, then B |= .
2. The D has a winning strategy in the ¥'3™V"-game on A and B.

Proposition 22 FOV*I*V*|N HOM = FO(3,4). Furthermore, given ¢ € FO[V*3*V*] N

HOM, there is an effective procedure for finding an equivalent sentence § € FO(3,4).

Proof. Let ¢ be in FO[V!37Y"]NHOM, and let ¢ be the signature of . We show that there
is an s € w that bounds the size of every minimal model of C = Mod(¢). This implies
that C is defined by a sentence in FO(3) and thus, by Lemma 4, that it is actually definable
in FO(3,+4). In fact, we can calculate s as a function of m and o, which establishes that
there is an effective procedure for finding a sentence equivalent to ¢ in FO(3,+). Let r
be the number of models, up to isomorphism, of signature ¢ and cardinality m, and let

s=7r-m. Alsolet t =14+ m + n.
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Let A be a minimal model of C. We want to show that there is a B € C, of cardinality
< s, such that there is a homomorphism from B into A. By the minimality of A, the homo-
morphism must be onto, implying that the cardinality of A is also < s. Let {My,..., M}
be the set of submodels of A of cardinality = m, again up to isomorphism. We use C' & D
to denote the model which is the disjoint union of C' and D, and p- D to denote the disjoint
union of p copies of D. Let G = (t-My) @ ---®(t-M,),and let B=M; &---& M,. Itis
obvious that there are homomorphisms from G onto B, and from B into A. Observe also
that the cardinality of B is ¢-m < s. Since C is closed under homomorphisms, it suffices
to show that G € C.

To establish this fact, we define an extension A’ of A, and describe the D’s winning
strategy for the ¥/3™V"-game on A’ and G. Since A’ |= ¢, this implies that G' |= ¢. Let
A" = A& G, and let f(x) be the obvious injection from G into A’. In Round 1, the S
plays [ pebbles, BI, on some [-tuple in G. The D then plays on the [-tuple f(ﬁl), in A’. In
Round 2, the S plays some pebbles, @*", on A C A’, and plays his other pebbles, @®!, on
G C A’. Conceptually, the D makes her move in two stages. She first plays her pebbles,
52,17 on f~1(@?'). She then chooses an unpebbled component M), of G, one of the copies
of My, such that there is an embedding, h(z), from leﬂ into ¢ that contains the tuple a?°
in its range. There must be such a component since (& contains ¢ copies of each M,. The
D then plays her pebbles, 52’0, on the preimage of @?® under h(x). It is clear that the
D succeeds in maintaining a partial isomorphism. Now, let f/(2) be the embedding of G
into A" that equals A(x) on M, and equals f(z) on G — M. In Round 3, the D plays her
pebbles, @>, on the image, f’(ﬁS) C A’, of the pebbles played by the S. It is easy to see

that this is indeed a winning strategy for the D. [

4.1.2 [? has the homomorphism preservation property

In this section, we show that L? has the homomorphism preservation property over F
and over the class of all structures. That is, we show that L2 N HOM = L%*(3,+), where
L%(3,+) is the set of sentences in L2NFO(3, +). Recall that it is unknown whether L? has
the existential preservation property, though the corresponding negative result has been

established for all L*, k > 3 (see [4]). As L? only contains two variables, we assume, without
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loss of generality, that the signature, o, does not contain any relation of arity > 3. Elements

a and b are adjacent iff there is a binary relation Rxy € o such that A |= RabV Rba.

Proposition 23 The homomorphism preservation theorem holds for L? over F and over
the class of all structures. In fact, for all ¢ € L* N HOM, an equivalent 6 € L*(3,+) such
that qr(8) < qr(y) can be found effectively.

Proof. Let ¢ € L*NHOM, and let qr(¢) = n. Let C = Mod (). (The same argument also
establishes the claim in the infinite case.) For each model A € C, we define a sentence 04 €
L*(3,+), with qr(64) < n, such that A |= 64 and Mod(64) C C. From the construction,
it will be clear that, although C is infinite, there are only finitely many distinct 84. Letting
0 =V 4¢c 04, it is immediate that Modg(6) = Mod¢(¢).

For each model A, and elements a,b € A, let p®’(2,y) be the atomic type of (a,b) in
A, i.e. the conjunction of all atomic formulas 1, with free variables among z, %y, such that
A |= ¥la,b]. Forall a € A, and all m < n, we also define a formula 77 (x) € L%(3, +),
with ¢r(7"(2)) < m, such that A |= 7*[a]. Let N(a), the neighbors of a, denote the set of
b # a such that a is adjacent to b. 72(x) is just the atomic type of @ in A. For all m + 1,
we essentially want 7771 (z) to be 77(x) A Noen(a) Jy(p»t(x,y) A 77 (y)), except that we
eliminate redundant, identical conjuncts. (Here, 7]*(y) denotes the formula obtained from
7' (x) by exchanging all occurences of 2 and y.) This guarantees that, for fixed m, there
are only finitely many formulas of the form #7*(x). Finally, let 84 = A,cy Jo7i™ (),
again eliminating redundant conjuncts.

To show that 84 implies ¢, we define a model M such that ()M |= 04; (i) M € C; (ii7)
for all B such that B |= 64, there is a homomorphism from M to B. Since C is closed
under homomorphisms, these conditions imply that every model of 84 is in C, as desired.
Given 04, let Q = {q1,...,q} be the set of occurences of (existential) quantifiers in 84. For
definiteness, we stipulate that if ¢+ < j, then ¢; occurs to the left of ¢; in #4. The universe
of M is (). The interpretation of the relations on M is determined straightforwardly from
64, as follows. M |= Fq¢;q; iff there is an occurence of an atomic formula, Evw, such that
‘v” and ‘w’ are bound by ¢; and g;, respectively. Similarly for unary predicates. Every

formula occcurs only positively, so M is well-defined. It is easy to see that M satisfies

conditions (¢) and (7i7). Indeed, for all B, an assignment of variables that verifies that
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B |= 04 determines a homomorphism from M to B.

To prove that M € C, it suffices to show that there are A’ and N such that (i)A C
A’ (4)A" =27 N and (iii) there is a homomorphism from N to M. Here, A’ =27 N
means that for all ¢» € L? with ¢r(y)) < n, A" | ¢ iff N | 1. Since C is closed under
homomorphisms and L?"-equivalence, (i) — (i7¢) imply that M € C. Let N = 2- M and
A"= A& N. It is immediate that () and (7:) are satisfied.

We define the following supplementary relation on M, and hence also on N. For all
¢,q; € M, Sq;q; iff ¢; occurs in the scope of ¢; and there is an occurence of a binary atomic
formula in 64 that contains variables bound by both ¢; and ¢;. Observe that ¢; and ¢; in
() are adjacent in M iff they are adjacent in the model (Q,5). We claim that (Q,5) is
a directed forest, i.e. the disjoint union of directed trees. (Alternatively, G is a directed
forest iff it is acylic and every element a has indegree < 1.) The acylicity of (@), .5) follows
immediately from the definition of Sxy. To establish the claim, it suffices to prove the

following lemma.

Lemma 6 Let ¢ be a formula of L*?, and let q; be an occurence of a quantifier in ¢. Then
there is at most one quantifier occurence, ¢;, such that (i) g; is in the scope of q;, and (%)

there is an atomic formula, Evw, in 1 such that v’ and ‘w’ are bound by both q; and ¢;.

Proof. Let ¢; occur in v, and let ¢;2(n(2)) be a subformula of %, such that the scope of ¢;
is n(x). Every occurence of a binary relation symbol that contains two distinct variables,
contains the two variables, z and y, since ¢» € L. Suppose that ¢; satsifies conditions (¢)
and (¢¢) of the lemma. Then ¢; must bind every free occurence of the variable y in the

subformula n(z). Therefore no other quantifier in v can satisfy this pair of conditions. ®

Since (@, 9) is a forest, there is a well-defined function, v(z), on M[N], such that v(¢;)
is the height of ¢; in (@, 5). The height of the model M[N] equals ¢r(64) —1 <n — 1.

We now establish that A’ =%" N by describing the D’s winning strategy in the n-round
2-pebble game on A" and N. We claim that if the S can win the game, then he can do so

playing according to the following ‘normal form’.

1. In each round m + 1, he plays the pebble pair that was not played in the previous

round, and does not replay it on the same element it just occupied.
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2. In round 1, he plays a pebble a; on the A-component of A’.
3. In each round m + 1, he plays a pebble «;[3;] on an element adjacent to ay_;[F1—_;].

Condition 1 is obvious. To see that 2 does not hinder the S, suppose that he does not
play his first move on the A-component of A’. The D will then play all of her moves
according to the bijection between N and the N-component of A’ until the S plays on
the A-component. To win, the S must eventually play some «; on the A-component. The
D will then play (; on the vacant M-component of N. At the start of the next round,
pebbles a; and 3;,7 # j are removed from the board; so the S could have reached the same

position sooner by playing on A € A" in round 1.

Consider Condition 3. Suppose that in some round m+ 1, the S plays 3; on an element
of N not adjacent to 31_;. The D then plays a; on the corresponding element of a vacant
M-component in A’. Since the pebbles a;, 5;,¢ # j will be replayed in the next round, for
the same reasons as above the S has not made any progress. Likewise, if the S plays on

A’, again the D can respond by playing on the vacant M-component of N.

We now describe the D’s winning strategy assuming that the S always plays in accord
with the above conditions. The S begins by playing on some a € A C A’. The D then plays
on the g (of either M-component) such that g occurs in the formula 64 as the quantifer
that binds the formula 777 1(z). Observe that g is the root of an S-tree. In all later rounds,
the 0 pebbles are always played adjacently, so the D can play so that these pebbles ‘climb
up the S-tree’. To win, she maintains the condition that the pebbles, «;, 3;, are played
in round m so that v(8;) = m — 1 and §; is located on the element ¢ that binds the
formula p®**(z,y) A7 (y). Suppose that the D has maintained this condition through

m rounds, m < n, and that, in round m + 1, the S plays a; € N(«;). The D will then play
(m+1)(

LY (z,y) A 7TZ,_
j

pebble 3; on the quantifier occurence that binds the formula p Y),

which is a conjunct of 7~ (y). The argument for the case where the S plays on N is
similar. Because the D always plays ‘up the tree’, in every round m > 2, the § pebble of
lesser height will be replayed. The S is thereby prevented from moving down the tree, as
doing so would violate Condition 1. This establishes that A’ =" N. Thus, 64 implies ¢,

and 8 = \/ 4 04 is equivalent to ¢.
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Lastly, we argue that # can be found effectively. By induction on m, it is easy to show
that one can effectively generate all possible formulas of the form 77*(z). Thus one can
also enumerate the (finite) set, ©, of formulas of the form 64, with ¢r(64) < n, for fixed
n. Let d be the maximal number of quantifiers occuring in any formula 6; € O. Every
minimal model of Mod;(#;) has cardinality < d, so ¢ is equivalent to §; iff the sentences
are equivalent on all models of cardinality < d, which is decidable. Since © is finite, one

can effectively find the 8 € © that is equivalent to ¢. [ |

4.1.3 Injective homomorphisms

In this section, we briefly discuss a class that lies between EXT and HOM. Recall that a
map h(z) is injective iff for all a,b € dom(h), if f(a) = f(b), then ¢ = b. Let IHOM be
the class consisting of exactly those sets of finite models which are closed under injective
homomorphisms. Observe that HOM C THOM C EXT, and that each inclusion is proper.
Over the class of all structures, the Injective homomorphism theorem says that a FO-
definable class of models is closed under injective homomorphisms iff it is definable by a
FO(3, +, #) sentence. Minor modifications of the proofs of Proposition 19 and Theorem 3

yield the following results.

Proposition 24 For each k < w, there is a sentence 8;, € L, containing a single binary

relation, such that
1. Mod(8y) is closed under injective homomorphisms, but

2. Mod(8r) # Mod () for all ¢ € L*(3).

(Sketch) Alter the proof of Proposition 19 by defining the k — pyramid of B, P*(B), to
be the smallest class of (finite and infinite) models containing B that is closed under
substructures, L*-equivalence, and impoverishments. (A is an impoverishment of B iff B

is an enrichment of A.) The proof then proceeds as before.

The next theorem follows from the previous proposition as Theorem 3 follows from

Proposition 19.

Theorem 4 There is a sentence 0 € LY = such that both

oow
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1. Mod(8) is closed under injective homomorphisms.
2. Forall p € L% (3),Mods(0) # Mod ().

Beyond these two propositions, other results relating to preservation properties for
EXT and HOM do not seem to generalize easily to yield analagous results for IHOM. For
example, we do not see how to adapt any of the examples witnessing the failure of the
Existential preservation theorem, due to Tait, Gurevich-Shelah, and Grohe, to define non-
trivial FO-classes in IHOM. Furthermore, our proofs of partial positive results concerning
FO-definability over HOM appear to rely essentially on the stronger closure properties of
HOM. There are thus various open questions regarding injective homomorphism preser-

vation properties over F. We pose the following problem.
e Does the Injective homomorphism preservation theorem hold over F?

By Lemma 4, an affirmative answer to this question immediately implies the Homomor-
phism preservation theorem over F, though it is uncertain whether the reverse implication
holds.

This brief section indicates that the class IHOM is rather different than EXT and
HOM, while still sharing features with both classes. Resolving the status of the Injective
homomorphism preservation theorem in either way would yield additional information
about older questions and results. Thus, a negative answer would clearly strengthen Tait’s
result. More generally, we believe that further understanding of the relationship between
definability over EXT, THOM, and HOM will provide insight into FO-definability and

(generalized) preservation properties.

4.1.4 Identity free FO

The following preservation theorem characterizes the expressive power gained from adding
the identity sign to the language of FO. As the proof uses a modified Ehrenfeucht-Fraisse
game, it is simultaneously a proof over F and over the class of all structures. A map
h(z) from A to B is a strict surjection iff it is a homomorphism of A onto B such that
for all k-ary relations, R(T), in the signature of A, and all k-tuples @ C A, A = R(a) iff
B = R(h(@)). A class C is closed under reverse strict surjectionsiff for all A, and all B € C,
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if there is a strict surjection from A to B, then A € C. For the rest of this section, to avoid

trivialities, we restrict our attention to languages with non-empty signatures.

Definition 5 The n-round (‘identity free’) i.f.-game on A and B is played according to
the same rules as the standard n-round Ehrenfeucht-Fraisse game on A and B, but has
different winning conditions. The S wins at some round m iff there is a k-ary relation
symbol, R(T), and a sequence, D = (p1,...,pr), pi < m, such that A |= R(oy,,...,a,, ) iff
B ¥ R(By,, ..., 0Bp,). The D wins the game if the S does not win at any round m < n.

Observe that the D does not have to play so that the pebbles determine a bijection between
the models. This reflects the absence of identity in the language under consideration. We
omit the obvious equivalent algebraic characterization. The following proposition and

corollary are stated without proof.
Proposition 25 Given models A and B, the following two conditions are equivalent.
1. For all identity free sentences, ¢, with quantifier rank < n, A |= ¢ iff B | .

2. The D has a winning strategy in the n-round i.f.-game on A and B.

Corollary 4 For all classes C, the following two conditions are equivalent.
1. C is defined by an identity free sentence of quantifer rank < n.

2. Forall A€ C,B ¢C, the S wins the n-round i.f.-game on A and B.

We now state and prove the preservation theorem.

Proposition 26 LetC be a class of models. Then C is FO-definable and closed under strict

surjections and reverse strict surjections iff it is definable by an identity free sentence.

Proof. Let C be defined by a sentence ¢ € FO, with ¢r(¢) = n. We argue that for all
A€eC,B ¢C, the S wins the n-round i.f.-game on A and B. By the preceding Corollary,
this implies that C is definable by an identity free sentence with the same quantifier rank
as .

Suppose that the D wins the n-round i.f.-game on some A € C and B ¢ C. Let A=, B

mean that A and B are equivalent on all FO sentences of quantifier rank < n. We will
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define models A" € C, B" ¢ C such that A’=, B’, a contradiction. Given a model A, and
elements ag,a; € A, we say that ag is a copy of aq iff the permutation (agaq), permuting
ap and aq, is an automorphism of A. Let A’ [B’] be the extension of A [B] obtained by
adding n — 1 copies of every element of the structure. (For example, if A were the graph
with universe {a;,b1}, and edge relation E4 = {(ay,b1)}, then A’ would be the graph with
universe {aq,...,a,;by,...b,} and edge relation, E4" = {(a;,b;) | i,j < n}.) There are
obvious strict surjections from A’ and B’ to A and B, respectively, and hence A’ € C,
B ¢C.

We now show that the D’s winning strategy for the if.-game on A and B can be
easily adapted to provide a winning strategy for the standard n-round Ehrenfeucht-Fraisse
game on A’ and B’, demonstrating that A’ =" B’. The basic idea is that the presence
of n copies of every element enables the D to modify her strategy from the i.f.-game as
follows. Whenever she is in a position where she would have played on a previously pebbled
element, she instead plays on a vacant copy of that element. That is, she maintains the

condition that if, through round m, pebbles have been placed on @ = (af,...,al,) C A,

b = (b),....0" ) C B’ then she would win the i.f..game on A and B with the pebbles on
@=(ay,...,an), b= (by,...,b,), where each a’ [b] is a copy of a; [b;]. Suppose that she
maintains this condition through m rounds, m < n, and that in round m + 1, the S plays
on some unpebbled a], ; € A’. The D then plays on an unpebbled copy o/, , € B’ of some

b1 € B such that (@« am+1,5* but1) is a winning position for the D in the i.f.-game on

A and B. Similarly if the S plays on B’. [ |

The next corollary follows immediately.

Corollary 5 For all classes C, if C € FONHOM, then it is definable by an identity free

sentence.

The above argument demonstrates the existence of an equivalent identity free sentence
# with the same quantifier rank as ¢. More generally, the idea of the above proof yields
significant information about the desired identity free sentences. For example, if ¢ is in
prenex form, we can establish that there is an identity free 6 with the same quantifier

prefix. The next corollary was needed in the proof of Proposition 21, above. It can be
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proved using the positive Ehrenfeucht-Fraisse game from [22], described in Section 2, and

the positive i.f.-game. C is non-trivial iff it is neither empty nor the class of all structures.

Corollary 6 Let C be a non-trivial class definable in FO(+,#) and closed under strict
surjections and reverse strict surjections. Then C is defined by an identity free sentence
of FO(+). [If C = F,(resp. 0), then it is defined by the sentence Jx(x = ), (resp. Ja(x #
z))]-

4.2 Generalized preservation theorems for HOM and MON

In this section we discuss generalized preservation properties for the classes HOM and
MON. We pose various open problems in the same spirit as the question of whether
FO N EXT is contained in the existential fragment of some stronger logic, from Chapter
1. One purpose of this investigation is to try to understand better the connection between
definability in FO and in ‘resource bounded’ fragments of L%, . For example, the fact that
FO N Datalog(—) # FO(3) means that there are classes in EXT — FO(3) that are definable
in two different extensions of FO(3) that are obtained by adding different ‘orthogonal’
mechanisms to the language—V to get FO, and recursion to get Datalog(-).

The languages LY ,(3,4) and LY (4,#) are defined in the obvious manner. We
view Datalog as LF'P(3, +), and Datalog(—) as LFP(3). Positive LFP, LFP(4, #), extends
Datalog in allowing any FO(+, #) formula to occur in the body of a clause. The intensional
predicates are computed in the obvious manner. The following proposition is proved by

arguments analagous to those in the proof of Proposition 1.
Proposition 27 1. Datalog C L% (3,4+) C HOM
2. LFP(+,#) € Lz, (+,#) € MON

In strict analogy to open problems posed above for EXT, we ask the following questions.

1. Is FONHOM C L¥ ,(3,+)?
2. Is FO N HOM C Datalog?
3. Is FONMON C LY (+,#)?

4. 1s FO N MON C LFP(+,#)?
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Ajtai and Gurevich [3] showed that FFO N Datalog = FO(3, +). Consequently, a positive
answer to the second question would imply the truth of the Homomorphism preservation
theorem over F. Observe also that their result contrasts with the known fact that FO N
Datalog(—) # FO(3). We now show that FO N LFP(+) # FO(+, #). The class that we

define is based on a construction from Stolboushkin [22], which gives a simple proof that

Lyndon’s lemma fails finitely.

Proposition 28 There is a FO-definable class C € MON such that
1. C is definable in LFP(+).
2. C is not definable in FO(+,#).

Therefore, FO N LFP(+) # FO(+, #).

Proof. We define a class C which includes a class of structures that we call P,()-orders,
based on the “grids” from [22]. A P, Q-order, A, consists of two disjoint linear orders (with
some additional relations) of sets P# and Q#, where P and @ are monadic predicates
in the signature. We verify directly that C is definable in FO and in LFP(+). Using
a modification of Stolboushkin’s idea, and the appropriate Ehrenfeucht-Fraisse game for

FO(+, #), we then show that C is not FO(+, #)-definable.
Definition 6 Let o = {Px,Qu,z <y, Sxy, Tzy,c,d}. A is a P,Q-order iff
1. Every element a € A is in exactly one of the relations P and ().

2. The relation x < y linearly orders the submodels P and Q#, and for all a € P*,
beQd AE-(a<bVb<a).

3. Saxy is the successor relation on the submodels P4 and Q#, and for all a € P4,

be Q4 Al —(SabV Sba).
4. ¢ is the <-minimal element in P2, and d is the <-minimal element in Q*.
5. Yay(Tzy — (Px A Qy))

6. TedN\Vriz22304((Pr1APraAQusAQuaNTr123) — {(23 < 24 — Tx120) AN ((ST122A
Swsry) — Twgzg)})

50



7. Juvw(u < v ANTuw A Tvw AVz(z < w — ~Tuz))

It is obvious that the class of finite P, (Q-orders is defined by some ¢ € FO. We now
define a sentence § € FO(3,4), and let C = Mods(¢ V 0). We define 6;,0 < ¢ < 5, as
follows, and let 6 = \/;<5 ;.

6o = Jz(Pr AQz)V Qe V Pd

6, = Jay(Tzy A (PyV Qu))

0y = Juy(x <y A ((PeAQy) Vv (Qz A Py)))

05 = Jzy(z < yAy<uz)

0, =Jayz(z <yAy<zAz<uz)

05 = Jazyz(SeyAN(z=yVy<aV(e<yAy<z)V(PrAQy)V (PyAQzx)))

We claim that C is monotone. First, suppose that A € C satsifies #. Since @ is positive,
every enrichment of A also satsifies #. Now suppose that A is a P, ()-order. By considering
expansions of the different relations in the signature, it is easy to see that every enrichment
of Ais also in C'. For example, if B is obtained from A by expanding P*, then there is a
b € B such that B = Pb A Qb. Thus, B |= 6. Similar considerations show that expanding
Qz,Szy, or x < y also produces a model of §. Finally, there are enrichments B of A such
that only the relation T'zy is expanded and B £ 6, but it is easy to verify that any such
enrichment is a P, ()-order.

We now show that C is LIF'P(+)-definable. (Observe that, by Proposition 27, this also
provides an alternative proof that C is monotone.) We define in LFP(+) a relation Rzy
such that, over the class of P, Q-orders, Rab holds iff Pa A Qb A ‘height(b) < height(a)’.
Here, height(z) is the height of z in the linear order. Razy is like T'zy, except that it
consists of edges from P’s to ()’s ‘pointing’ in the other direction. Let Rzy be the relation
computed by the clause, Rzy «— (Paz Ay =d)V Jwz(Rwz A Swa A Szy).

The following sentences are components of the LFP(4) program to be defined below.
Roughly, any model that satisfies their conjunction is either a model of 8 or looks very
much like a P, ()-order.

Let g = Va(Pz V Q) AVay((QzV QyVa <yVy<azVa=y A(PzVPyve <

yVy<azVae=y)). The second conjunct says that every pair of elements in PA[Q4] is

51



connected by the relation z < y. For assume that no element of A is in both P and ).
(Otherwise, we simply have that A |= 6.) Then 1y says that if  and y are distinct and in
P4 ie. not in Q*, then there is an <-edge connecting them. Likewise for 2 and y in Q4.

Let 11 = Vay3z(QaVQyVa = yVy < aVSzz)AVeydz(PeV PyVe = yVy < aVSzz).
This sentence says that every element that is not <-maximal has a ‘successor’. For example,
suppose that x and y are in P4 — @4, such that 2 < y. In particular, = is not maximal.
Then, by the first conjunct,  has a successor.

Let 1y = Vay(Qa vV PyV (RazyVTazy)) AJvw(TvwA Rvw). This says that T'zy behaves
in the appropriate way, by using the (inductively defined) relation Rxy as its ‘complement’.

The following LFP(4) program defines C.

Rxy «— (Px Ay =d)V Jwz(Rwz A Swz A Szy)
B — 0V (o Ny M)

Here, B is the distinguished Boolean predicate. Suppose that A € C. Either A |= 6, in
which case A is obviously in the class computed by the above program, or it is a P, ¢)-order.
In the latter case, it is easy to verify that i, 11, and 19 are each satisfied in A, and hence
the value of the Boolean predicate B, on A, is true. To establish the containment in the
other direction, suppose that A is in the class computed by the program. If A [~ 6, but
A |= 1o A 1 A by, then it is straightforward to verify that A is a P, Q-order.

The definition of the preceding program exploits the following idea. Since every element
in a P,Q-order, A, is either in P or Q, and since 2 < y linearly orders P* and @4, negation
can essentially be expresssed in a positive way. For example, A = = Pa iff A = Qa. Also,
roughly, mz < y iff x = y Vy < . We also observe that, by making minor changes, one
can eliminate the symbols ¢, d, and Szy from the vocabulary. For example, Szy is actually
positively definable over P, ()-orders.

It remains to show that C is not definable by a FO(+, #) sentence. We adapt a proof of
Stolboushkin’s, from [22], in which the positive n-round Ehrenfeucht-Fraisse game is intro-
duced. The rules of this game are identical to those of the standard n-round Ehrenfeucht-
Fraisse game, except that the D wins iff the function, f(z), from A to B that sends each
pebble a; to pebble §; is a partial injective homomorphism between the induced submodels

of A and B. That is, the D must maintain the condition that for all k-ary relations, R,
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and all k-tuples of pebbles @, if A | R(@), then B |= R(f(a’)). We define A <T" B to
mean that for all sentences ¢ € FO(+4, #), with gr(¢) < n,if A |= ¢, then B |= ¢.

Proposition 29 (Stolboushkin[22]) For all A and B, and all n, the following condi-

tions are equivalent.
1. A<tm" B,

2. The D has a winning strategy in the positive n-round game on A and B.

To prove that C € FO(+, #), it suffices to show that for all n, there are A € C,B ¢ C
such that A <" B. We define A to be a P, Q-order, and B to be an impoverishment
of A, obtained by removing a single T-edge. Let the universe of A be the set of ordered
pairs {(w,h) | w € {0,1} and 0 < h < 272}, with PA[resp. Q] the set of elements of
the form (0, h)[resp. (1,h)]. A E (w,h) < (w',h') iff w = w’ and h < A’. The relation
z < y? uniquely determines the the interpretation of Szy; ¢4 = (0,0),d4 = (1,0). Finally,
T4 = {((w, h), (', ")) | w = 0,w' = 1, and b < A’} U {((0,27F%),(1,2"*2 — 1))}. B is
identical to A, except that T8 = T4 — {((0,27F1),(1,2"*F1))}. It is easy to verify that
A€, and that B ¢ C.

We now describe a winning strategy for the D in the n-round positive game on A and
B. In each round, she either plays on the same element, on the other structure, as the S,
or she plays on its S-predecessor or successor. Roughly, on P or far from the midpoints,
(0,27F1) and (1,27*1), the D copies the S’s moves, and near the midpoints and in @, she
plays so that the 3 pebbles, on B, are shifted one higher than their a counterparts. In
any round m, if S plays on (0, h), in either A or B, then the D plays on (0, k) in the other
model. In round 1, if the S plays on (1, k) and d(h,2"*!) =] h—2"+1 |> 27 then the D also
plays on (1,h). Otherwise, the D plays a ‘shift’ so that a; = (1,h') and 8y = (1,h" + 1),
with A’ = h or h — 1, depending on whether or not the S played on A. In this case, we
say that the pebble pair is shifted. In each round m + 1, let I,,,41 be the smallest interval
[Sma1>tma1],0 < Sma1 <t < 27+2 that contains 2"t! and the h-component, h;, of
any shifted pebble 8,1 < m. If no pebbles have been shifted through round m, then
I, 41 is the degenerate interval [27+1 27+, In round m + 1, the D copies the S’s move,

i1 = (1, hupy1) if the distance from hy,41 to the interval [, 41 is greater than 2(nt1)=m
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Otherwise, the D plays a shift, exactly as described for the first round. It is easy to see

that this provides the D with a winning strategy. [
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Chapter 5

Modal logic over finite structures

In this chapter, we discuss the finite model theory of the language of propositional modal
logic, PM. Modal logic has been studied extensively in connection with philosophical logic.
More recently, connections have emerged between modal logic and computational linguis-
tics and certain areas of computer science. Below we will be interested in the ‘classical
model theory’ of modal logic, an approach taken by van Benthem and others. For example,
PM satisfies certain preservation theorems that are analogous to classical theorems for FO.
We show that, in contrast to more expressive logics, PM remains well-behaved over F as
various classical results remain true over the class of finite models.

In order to make this chapter self-contained, we briefly describe the syntax and seman-
tics of PM. Most of this material is well-known, and more detailed descriptions can be
found in many places, (e.g. see [8]). The syntax of PM is obtained from that of simple
sentential logic by adding the two modal operators O, necessarily o, and O, possibly
@. Over a signature of proposition symbols, o = {py,...,pr}, the class of sentences of
PM(o) is the smallest class containing each atomic sentence p; and closed under nega-
tion, conjunction, disjunction, and the operators O and <. We will always assume that
the signature is finite and non-empty. A (Kripke) model of PM(o) is a directed graph A
with additional unary predicates {P,..., Pr}, corresponding to each proposition symbol.
The edge relation Rzy is often called the ‘accessibility relation’, and we will say that b is

accessible from a just in case Rab.

Definition 7 Satisfaction for sentences of PM at a node (or world) is defined inductively.
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1. (A, a)E"Mp; iff A= Pi(a).
2. The Boolean operations are given their standard interpretations.

3. For the modal operator necessarily, (A,a)="M0q iff for all b € A such that A |=
Rab, (A,b)="Mq. Possibly is defined dually, (A,a)="MOq iff there is some b € A
such that A |= Rab and (A,b)="Mq.

This semantics suggest a natural interpretation of PM into FO. In fact, by reusing
variables we can translate PM into the language L2. Since sentences of PM are evaluated
at a node of the Kripke model, they naturally translate into FO-formulas with one free
variable. In order to keep the image of the translation in L%, we will simultaneously
define two functions, po(¢) and pq(¢) such that (i) pa(e) contains z4 free; and (i7) for
all ¢ € PM, u1() is obtainable from puo(¢) by replacing every occurrence of zg by z1,
and vice-versa. The functions p4(¢) from sentences of PM to formulas of L% are defined

inductively as follows:

pa(p;) = Pi(za)

pa(q A g2) = palar) A pa(gz)

pd(=q) = —palq)

pd(Bq) = Vor_a(Reari—q — pr-a(q))

1d(Oq) = v _g(Regri—g A p—a(q))

To simplify the exposition, we add a single constant ¢ to our FO-signature, to convert each
formula with one free variable into a sentence. Let u(¢) be the function from PM to L?
such that for all ¢ € PM, u(¢p) is obtained from po(¢) by replacing each free occurence
of zg by ¢. Then each model is viewed as having a distinguished node, at which modal
sentences are evaluated. Let FOM | the modal fragment of first order logic, be the image of
PM under the mapping p().

In his dissertation [7], van Benthem gave an algebraic characterization of F'O-definable
classes that are definable by a modal sentence. He introduced the following important

notion.
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Definition 8 Given two models A and B (with distinguished nodes ¢* and ¢P), a bisim-

ulation between A and B, is a binary relation, ~, contained in A X B, such that

2. For all a,b such that a ~ b, if A |= Rad'[B |= RbY], then there is a b’ € Bla' € A]

such that o' ~ b’
3. For all a,b such that a ~ b, and all P;, A |= P;(a) iff B |= P;(b).

We say that A bisimulates with B iff there is a bisimulation between the two models. We

also write (A,a) ~ (B,b) if there is a bisimulation ~ between A and B such that a ~ b.

Bisimulation is an equivalence relation on structures, which can be seen as a modified,
weak kind of partial isomorphism. It is easy to see that if there is a bisimulation between
a pair of models, then they satisfy the same modal sentences.

Van Benthem proved the following preservation theorem: a FO-definable class of mod-
els is closed under bisimulations iff it can be defined by a sentence in FOM. Below we
prove that this result remains true over F. We then show that an ‘existential’ preservation
theorem, due to van Benthem and Visser (see [5]), also holds over the class of finite struc-
tures. Finally, we give an alternative proof, which does not use the compactness theorem,
of Andreka, van Benthem, and Nemeti’s result [5] establishing the modal analog of the

Craig interpolation theorem.

5.1 Background

In this section, we present background information needed for the proofs of the main results
that appear in Section 2. Qur development of this material closely parallels analogous
results for both FO and for the various finite variable logics. We first define an infinite
game to characterize full bisimulation. We then introduce finite versions of the game, and
the notion of ‘n-bisimulation’, and determine their connection to modal definability.

In the (eternal) modal Ehrenfeucht-Fraisse game the Spoiler and the Duplicator play
a modified two pebble Ehrenfeucht-Fraisse game, with pebble pairs (aq, 8o), (a1, 51). At

the start of the game, pebbles ag and By are on ¢ and ¢?, respectively. In round 1, the S
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either places ay on some element of A such that A |= Rapay or places 5y on some element
of B such that B |= Rf3y31. The D then does the same on the other structure. In each
subsequent round n + 1, the Spoiler chooses a pair («;, ;) of pebbles, already in play, and
replays either a; on A such that A |= Ray_;a; or §; on B such that B = Rf;_;3;. The D
then plays the other pebble on the other structure in accordance with the same restriction.
Each player loses immediately if he or she cannot make a legal move. The Spoiler wins at
round n if there is P, such that A | P, o; iff B £ P,,5;. (Observe that the Duplicator
does not have to play so that the partial mapping from A to B induced by the pebbles is a
partial isomorphism—e.g. in some round, she could play ; on the same element as g in
B, even if S had not just played aq on ag in A. This is because sentences of FOM do not
contain equality.) The Duplicator wins the game, just in case, in every round the Spoiler

does not win. The following proposition is straightforward.

Proposition 30 For all A and B of signature o, the following conditions are equivalent:
1. There is a bisimulation between A and B.

2. The Duplicator has a winning strateqy in the modal game on A on B.
We turn our attention now to modal definability.

Definition 9 The quantifier rank of a formula, qr(y), is defined inductively.
1. qr(P) =0
2 qr(=p) = qr(e)
3. qr(1 A p2) = qr(e1 V pa) = maz(qr(e), qr(2))
4. qr(Ow) = qr(By) = qr(p) + 1

Of course, there are no genuine quantifiers in PM; the choice of terminology emphasizes
the connection between PM and FO. In particular, for all ¢ € PM, ¢r(¢) equals the
quantifier rank of the FO-sentence, u(y¢). Let PM™ be the set of sentences of quantifier
rank < n. Given a model A, the PM"-theory of A is then the set of sentences, of quantifier
rank < m, satisfied by A.
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Lemma 7 Let o be a fixed signature.
1. For all m, up to logical equivalence, there are finitely many sentences of PM”.

2. There is a recursive function f(n) that generates a (finite) list of all sentences, up

to logical equivalence, of quantifier rank < n.

3. For all A, the PM"-theory of A is finitely axiomatizable.

Proof. We prove Part 1 by induction on n. The case n = 0 is obvious. For n + 1, observe
that every sentence of quantifier rank < n+ 1 is a Boolean combination of sentences of the

form &6, with ¢r(#) < n. Parts 2 and 3 follow easily from Part 1. [
Definition 10 We say that there is an n-bisimulation between A and B, written A ~, B,

off there is a sequence of relations ~q, ..., ~y,, each on A X B, such that

1. A ~o B

2. For allm < n, if a ~,, b, and A |= Rad’ then there is a b/ € B such that B |= RbY

and o' ~,, 11 b'[and vice-versal.
3. For allm < n, if a ~,, b, then for all P;, A= P;(a) iff B = P;(b).

Intuitively, A ~,, B means that A and B bisimulate ‘up to depth n’. Observe that
A ~ B implies A ~, B, for all n, and that ~, also defines an equivalence relation on
classes of structures. By fixing a bound on the number of rounds in a game, we get the
n-round modal Ehrenfeucht-Fraisse game. Then the following proposition can be proved
by straightforward modification of standard results connecting Ehrenfeucht-Fraisse games

to logical expressibility.

Proposition 31 Ffor all n, and A and B over some o, the following conditions are equiv-

alent:
1. There is an n-bisimulation between A and B.
2. The Duplicator has a winning strategy in the n-round modal game on A on B.

3. For all modal formulas 0 of quantifier rank <n, A=6 iff B = 6.
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The next proposition follows easily from Proposition 31 and Lemma 7.

Proposition 32 Let C be any class of models, closed under isomorphism. Let C' be any
subclass of C, also closed under isomorphism. Then, for all n, the following conditions are

equivalent:
1. ForallAelC',BeC—-C" A+, B.
2. Forall Ac(C',B €C—C' the S wins the n-round modal game on A and B.

3. There is a modal sentence of quantifier rank < n that defines the class C' over C.

Bisimulation and n-bisimulation are rather weak equivalence relations, in the sense
that they determine relatively large equivalence classes. In other words, for every model
A there are many other models with the same modal theory. Our proofs will exploit this
feature repeatedly.

We fix the following terminology.

Definition 11 The children of a in A are those b such that A = Rab. We say that b is a
descendent of a iff there is a directed path from a to b. For all n,b is an n-descendent of
a if there is a path of length < n from a to b. The family of a, written F°® is the submodel
of A with universe {a}U{b| b is a descendent of a}. For all @ and b, we say that a and b
are disjoint iff F, NI, = (.

The r-neighborhood of a point a, denoted N,(a), is defined inductively. No(a) is the
submodel of A with universe {a}. For allv+ 1, b € N,y1(a) iff b € N,.(a) or there is an
a’ € N.(a) such that A = Ra’bV Rba’'. An r-tree is a directed tree rooted at ¢ of height
< r. An r-pseudotree is a model such that N,(c) is a tree such that all distinct pairs of its

leaves are disjoint, as defined above.

We now describe certain operations on models that produce either bisimilar or n-
bisimilar models. For A and a, we say that A’ is obtained from A by adding a copy of
the family of a iff A’ is the extension of A with universe the disjoint union of A and of
F* such that for all @ € A and a} € F'®, the ‘copy’ of F* in A, A’ E Raa|[Rd)a] iff
A |= Raai[Raja], where af is the copy of a; € F®. The binary relation {(a,d’) | @ €

A,a' € A" and a = @' or @’ is a copy of a} witnesses that A ~ A’.
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Another concept from modal logic is that of unraveling a structure to produce another
structure with which it bisimulates. Before defining this notion, we give a simple illus-
tration. Let A be the graph on one vertex with a loop, and let A’ be the directed chain
on ¢ =0,1,...,n such that for all m < n, A" = Rm,m + 1 and A’ |= Rnn. We can view
A’ as having been obtained from A by unraveling, or unwinding, the loop n times. The
set A x A’ is itself a bisimulation between A and A’. In general, any model A can be
n-unraveled, so that the n-descendents of ¢ form an n-tree. By w-unraveling F° in A we
obtain a (possibly infinite) tree. Every unraveling of A bisimulates with A.

To simplify the definition, we assume that every element of A is a descendent of c, i.e
A = F¢. The n-unraveling of A will be an n-pseudotree, which we call A’. We first describe
the tree portion of A’, that is, Nn(cA/). The root of the tree will be ¢ itself and, for each
path in A of length s < n starting at ¢, there is a node of height s in the tree. Thus, each
node is indexed by a path @ = (¢ = ag, a1, ..., a,) [that is, a sequence of length s + 1] such
that for all ¢ < s, A |= Ragya441. Given a path @ and an element o’ € A, let @ * ¢’ denote
their concatenation, that is, (ag, a1, . .., as,a’). For each such @, A’ = P;(@) iff A |= P;(as).
In A’, there is an edge from @ to @y iff @ = @ * o/, for some @’ € A. This completes the
description of the n-tree which is the n-neighborhood of ¢ in A’. We now attach copies of
families to the leaves of this tree of height n, to obtain the n-pseudotree A’. That is, at
each node @ = (¢ = ag, a1, ..., a,), we attach a copy of F'*7 identifying the elements @ and
a,. There may be many copies of any family, but each pair of families is disjoint. It is now
easy to construct a bisimulation between A and A’. The w-unraveling is defined similarly,
except that no families are attached to any nodes.

We collect together some easy to verify facts for later use.

Proposition 33 For all A, 1. A ~ F§. 2. A bisimulates with a tree rooted at c, its
w-unraveling. 3. A bistmulates with an n-pseudotree, its n-unraveling. 4. A n-bisimulates
with an n-tree, a submodel of its n-unraveling. 5. Over a fized signature o, there is a
recursive function f(z) such that for all modal sentences ¢ of quantifier rank < n, if ¢
1s satisfiable, by a finite or infinite model, then it is satisfiable by an n-tree of cardinality

< f(n). 6. For all finite A, the modal theory of A is finitely axiomatizable iff F'¢ is acyclic.

Proof. We provide proofs of Facts 5 and 6. From Fact 4 and Proposition 31, it is clear that
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for all ¢ € PM", ¢ is satisfiable iff it is satisfied by an n-tree. Given a fixed finite signature
o, we now define an effective procedure that maps each natural number n into a finite
set of n-trees 7™ such that for all ¢ € PM(0) of quantifier rank < n, if ¢ is satisfiable,
then it is satisfied in some A € 7". This will suffice to establish the claim. The sets 7"
are defined inductively. 7! contains every model, up to isomorphism, with exactly one
element, and has cardinality = 2l9l. For n +1,4 € 7*t1 iff A € 7" or A is an n-tree
rooted at ¢ with children aq,...,a; satisfying the following properties: (7) for all 7+ < £,
the family F** is isomorphic to some tree B € 7"; and (i¢) for all ¢ # j < k, F'* 2 F%.
It is easy to verify both that there is a recursive bound on the size of models in each 7"
and that every n-tree bisimulates with an n-tree in 7". This establishes Fact 5.

We now prove Fact 6. Suppose that F* is acylic. We show, by induction on the
height n of F°, that A is axiomatized by a sentence of quantifier rank = n 4+ 1. For
n=0,let & = (Ape, P AN\geo—r 7Q) A (=OP" AOP'), where 7 is the set of proposition
symbols satisfied at ¢, and P’ is any proposition symbol in o. For n > 1, and each child
a; of ¢, let #; be a sentence that axiomatizes the family F**. Then let § = (Apc, P A
Ngeo—r Q)N (N; CO)A(OV,; 0;). Tt is clear that 6 axiomatizes the modal theory of A. In
the other direction, let A be such that F° contains a cycle, and let # be a modal sentence
of quantifier rank n. Let B be an n-tree that verifies 6. It is easy to show that there is
a modal sentence, 1, of quantifier rank = n + 1 true in A but not in B. For example,
let p = O(...O(PV —P)...) contain a string of n + 1 &7s, for any P € 0. Therefore the
modal theory of A is not axiomatized by any sentence of quantifier rank n, and hence is

not finitely axiomatizable. [ |

Observe that Fact 5 implies some well-known results. One, a modal formula is satisfiable
iff it is satisfiable by a finite Kripke model. Two, it is decidable whether a formula is

satisfiable, both over the class of all structures and over F.

5.2 Preservation theorems

In this section, we show that two modal preservation theorems remain valid over the class
F. The arguments do not use finiteness in any essential way; therefore they also give

alternative proofs of the theorems in the general case that do not rely on the Compactness
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theorem. Finally, we show how these methods can be used to reprove the modal version

of the Craig interpolation theorem without employing compactness.

Proposition 34 The bisimulation preservation theorem for modal sentences remains true
in the finite case. That is, a class C is FO-definable and closed under bisimulations iff it

s definable by a modal sentence.

Proof. Let C be a FO-definable class that is closed under bisimulations. Suppose that C
is not definable by a modal formula. By Proposition 32, this implies that for all n, there
are A € C and B ¢ C such that A ~,, B. (Of course, since C is closed under bisimulations,
we have that A  B.) We will show that this condition implies that for all n, there are
actually A € C and B ¢ C such that A=, B. (Recall that A=,, B means that for all ¢ € IFO,
with ¢r(¢) < n, A |= ¢ iff B |= ¢.) This immediately implies that C is not FO-definable,
a contradiction.

More specifically, we show that there is a function /() such that, for all n, if A ~iny B,
then there are A’ and B’ such that A ~ A’ B ~ B’ and A’=,, B’. By choosing A € C and
B ¢C,weget A’ €C and B' ¢ C. Given A and B, we find A’ and B’ by modifying A and

B in a sequence of steps, as described in the following lemmas.

Lemma 8 Let A and B be such that A ~; B. Then there are t-pseudotrees A’ and B’
such that A~ A’ B~ B', and A’ ~; B'.

Let A’ and B’ be the t-unravelings of A and B. Then A’ and B’ are t-pseudotrees such
that A ~ A" and B ~ B’. By the transitivity of ~;, this implies that A’ ~; B’.

Lemma 9 Let A and B be t-pseudotrees such that A ~; B. Then there are t-pseudotrees
A" and B’ such that A~ A', B ~ B', and Ni(c*') =2 Ni(cB).

The proof describes an algorithm for modifying the two models in a sequence of steps
that yields models with isomorphic ¢-neighborhoods of ¢. After each step s,s < t, we
have models A; and B, such that A ~ A, and B ~ B,, and ¢** and ¢P¢ have isomorphic
s-neighborhoods. At each step s+ 1, Asyq [resp. Bsyq] is obtained from A, by adding

copies of families of nodes of distance s + 1 from c.
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Let {ay,...a;,b1,...,b,} be the set of the children of ¢ in A and B. The relation ~;_y
induces an equivalence relation on this set such that each equivalence class has at least
one member in each of A and B. To obtain A; and By with isomorphic 1-neighborhoods
of ¢ that bisimulate with A and B, it suffices to add enough copies of families of the ¢-
children a; and b; such that each equivalence class has an equal number of members in
Ay and Bj. For example, renumbering the indices of ¢-children if necessary, suppose that
{a1,...,a;3b1,...b;} is one such equivalence class. Also, without loss of generality, assume
that ¢ < j. Then A; will contain j — ¢ additional copies of the family F®. Let ¢g1(z) be a
bijection between the ¢-children in Ay and By such that for all a;, (A1, a;) ~—1 (B1,91(a;)).
By iterating this procedure, at each step s + 1, we obtain A,4q and Bsyq, and a bijection
gs41 between nodes of distance s 4+ 1 from ¢ and ¢ with the following properties. For
all nodes a; in A, of distance s from ¢, the bijection ¢gs;41 maps the children of a; to those
of gs(a;), and for all a € dom(gst1), (Asy1,@) ~—(s41) (Bst1,gs41(a)). Finally, we choose
A’ and B’ to be the models A; and B;.

Together, these lemmas establish that there are models A € C and B ¢ C that look
rather similar. In particular, for all ¢, there are ¢t-pseudotrees A € C and B ¢ C such that
Ny(c?) 2 Ny(cP). Although these models have isomorphic t-neighborhoods of ¢, we still
know nothing about the other part of each model, which might make A and B ‘look very
different’ in F'O. The final step of the proof takes care of this by using a version of Hanf’s

lemma.

Proposition 35 (Hanf [16]) For each signature o, there is a function f(x) with the fol-
lowing property. For all n, A and B, if there is a bijection h : A — B such that for all
a € A, Nypyla) = Nyoy(h(a)), (with a and h(a) distinguished), then A=, B.

Lemma 10 Let A and B be (3f(n))-pseudotrees with N3f(n)(cA) = N3f(n)(cB), where
f(z) is the Hanf function. Then there are A" and B’ such that A ~ A’, B ~ B', and
A'=,B'.

Each of A’ and B’ will be obtained from A and B, respectively, by extending the original
model by adding disjoint components in such a way that it will be obvious that A’ and

B’ possess the same f(n)-nbhds. It is clear that extending models in such a way does not
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affect bisimulations. Let Ay [Bo] be the submodel of A [B] with universe A — Nf(n)(cA)
[B— Nf(n)(cB)]. We define A’ [B’] to be the disjoint union of A and By [B and Ag]. We've
added to A the part of B that may look very different from it, and vice-versa, so that
A’ will look the same ‘locally’ as B’. In particular, for example, it is easy to see that
card(A") = card(B’"). We now define a bijection between these models in 3 parts. Let
g(z) be an isomorphism between N3p(,y(c?) in A and Nsj,y(cP) in B. Define hy(z) to be
the bijection between NQf(n)(cA) and sz(n)(cB) that is a restriction of the isomorphism
g(z). Let Ay be the submodel of A’ whose universe is those elements of By that are in
NQf(n)(cB) (viewing By here as a submodel of B.) We define By similarily. Let hy be the
bijection between A; and Bj that is also a restriction of the isomorphism g(z). Let hs be
the bijection between the remaining pieces of A’ and B’ that takes the ‘A-part’ of A’ to
the ‘A-part’ of B’, and the B-part of A’ to the B-part of B’. It is then easy to verify that
h = h1Uhg U hg is a bijection from A’ to B’ that ‘preserves f(n)-nbhds’. (This is perhaps

easier to see if one draws a picture.) Thus A’'=, B as desired.

To complete the proof, all that remains is to combine the above results. Suppose that
C is FO-definable, closed under bisimulations, but not definable by a modal formula. Then
by Lemmas 8, 9, and 10, for all n, there are A € C and B ¢ C such that A=, B. But this

implies that C is not FO-definable, a contradiction. This proves the proposition. [ |

The next preservation theorem that we consider characterizes those sentences whose
classes of models are closed under extensions. Before stating the main result, we define

some terminology and prove a few preliminary lemmas.

Definition 12 1. A O-sentence is a modal sentence built up from atomic propositions

and negated atomic propositions using A, V, and <.
2. For all A and B, we write A ~, B iff for all O-sentences ¢, if A |= ¢, then B |= ¢.

3. Given a model A, the O-theory of A is the set of O-sentences satisfied by A.

Observe that the O-sentences are precisely those ¢ € PM such that p(¢) is an existential

FO sentence. In particular, the class of models of any &-sentence is closed under extensions.

Lemma 11 Let A be an n-tree, rooted at c.
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1. For all O-sentences, ¢, of quantifier rank > n+ 1, A [£ ¢.
2. The O-theory of A is axiomatized by a sentence of quantifier rank = n.

Proof. Part 1 is obvious, since A does not contain any paths of length n 4 1. By Lemma 7,
let @4, ...0; be the set of all O-sentences of quantifier rank < n, up to equivalence, satisfied

in A. By Part 1, it is clear that 8§ = A 6; axiomatizes the O-theory of A. [ |

Lemma 12 Given a fized signature, there is a finite set of n-trees, T" = {By,..., By}
such that for all A, there is a u < v such that A ~,, B,. Furthermore, T™ can be obtained

effectively.

Proof. This result follows easily from Fact 5 of Proposition 33. Let 7™ be the same set that
was defined in the proof of this Fact, such that every satisfiable sentence ¢ of quantifier
rank < n is satisfied by some B € 7". Let A be any model, and let 8, € PM" axiomatize
its PM"™-theory, again using Lemma 7. By Fact 5, there is a B € 7" such that B = 6,.

This now implies that A ~,, B. [ |

The next result can be viewed as the modal version of the Los-Tarski theorem for finite

structures.

Proposition 36 The existential preservation theorem for modal logic remains true over F.
That is, for all ¢, if Mod(p) € EXT, then ¢ is equivalent to a O-sentence 8. Moreover,

there is an effective procedure for finding the equivalent &-sentence.

Proof. Let C € EXT be defined by some sentence ¢, with quantifier rank n. Let C" =
CNT™ ={Dy,...,Di}. For each D;,i < k, let 6; axiomatize the O-theory of D;. By
Lemma 11, gr(6;) = n. Let § = \/;,;, 6;. We claim that ¢ is equivalent to 6.

First we show that ¢ implies 6. Suppose that A |= ¢. We claim that thereis a D € C"
such that A ~, D. By Lemma 12, there is a B € 7" such that A ~,, B. Since C is closed
under ~,-equivalence, B must actually be in C, and hence in C". Let D = B. There is
some #;, as defined above, such that D |= 6;. Since ¢r(§;) < n, this implies that A |= 6;,
and hence A |= 6.

Now we prove the opposite direction, 8 implies ¢. Suppose that A |= 6. Then A |= 0;,
for some ¢ < k. By Lemma 12, there is a B € 7" such that A ~, B. Observe that
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D; ~, B. We want to show that there is an A’ such that (i) B ~ A’, and hence A ~, A’
and (i4) D; C A’. As D; € C, and C € EXT, (¢) and (7i) imply that A" € C. Since C is
closed under ~,,-equivalence, A € C, as desired. Thus, it suffices to establish the following

lemma.

Lemma 13 Let B, D be trees such that D ~+, B. Then there is a m-tree A', m < n, such
that B~ A" and D C A'.

By induction, on the height n of D. For n = 0, it is obvious that D C B, since D is just
the single node ¢, and for all predicate symbols p, D |= p iff B |= p. Let A’ = B.

Consider n > 0. Let {dy,...,d,} and {by,...b;} be the children of ¢” and cP, re-
spectively. We claim that for each d,, there is a b, such that Fir ~y F . Let 1, with
qr(1) < n, axiomatize the O-theory of F%. Then D |= O, and therefore B = &, Thus
there is a b, such that F* |= 1, as desired.

By adding extra copies of families of the children of ¢? to B, if necessary, we get B°
such that B ~ BY and there is an injection h : {dq,...ds} — {b7,...,0%}, b? € B°, such
that F% ~sy FM4)_ By the induction hypothesis, each such F™%) bisimulates with an
(n — 1)-tree, T™M%)  such that F% C T"4), Let A’ be obtained from B° by replacing each
subtree F™M4) C B with the tree T™(%) Tt is easy to see that B ~ A’ and D C A'.

This also completes the proof of the proposition. [ |

Corollary 7 For every modal sentence @, there is a decision procedure that determines
whether Mod ¢(¢) [Mod(y)] is closed under extensions. Therefore the set of sentences that

define such classes is recursive.

Proof. By the proof of the previous proposition, if Mods(¢) [Mod(¢)] € EXT, then it is
equivalent to a O-sentence of quantifier rank < gr(¢). By Lemma 7, one can effectively
list, up to logical equivalence, all such sentences, 1,...,4;. Then it suflices to test the

validity of each sentence, ¢ < 1;, which is decidable. [ |

We now turn to an interpolation theorem, due to Andreka, van Benthem, and Nemeti.
It will be convenient to introduce briefly a fragment of second order propositional modal

logic, which allows quantification over propositions. We often use P, etc., as shorthand
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for sequences, (P, ..., P,). We write 1)(P) to indicate that the set of proposition symbols
that occur in v equals P. Also, by 3P (P, Q) we mean the sentence 3P ...3P,v(P, Q).

Definition 13 Let o(P,Q) be a sentence of PM, such that PN Q = (. Then 3Q¢(P, Q)
is a Y1 modal sentence; for all A, with signature ¢ = P, A |= 3Q¢(P, Q) iff there is a B,
an expansion of A with signature T = PUQ, such that B |= o(P,Q). 111

of the form VQ(P,Q), are defined similarly.

modal sentences,

For all A, B, and n, we write A NnF B iff for all sentences ¢, ¢r(¢) < n, that only
contain proposition symbols from P, A |= ¢ iff B |= ¢. Recall that every satisfiable modal
sentence is satisifed by a finite model; hence ¢ implies 8 over the class of all models iff ¢
implies 8 over F. By this fact, the truth of the interpolation theorem in the general case

immediately yields its truth over F.

Proposition 37 (Andreka, van Benthem, and Nemeti [5]) Let ¢ and 8 be modal
sentences, with signatures o, and oy, such that o, N og is non-empty. If ¢ implies §
(over F), then there is a sentence ¢, with oy C o, N 0g, such that ¢ implies 1 and

implies 8. Furthermore, qr(1¢) < max(qr(e),qr(8)).

Proof. Suppose that o(P,Q) implies 8(P, R), where P,@Q, and R are pairwise disjoint

sequences of propositions symbols. Equivalently, 3Q (P, Q) implies VRO(P, R). Thus, we
consider models over the signature o = P. Let n = max(qr(p),¢r(8)). Recall that, by

P

Lemma 7 or 12, there are only finitely many ~

equivalence classes. We claim that it

suffices to show that for any ~ class C, if there is an A € C such that A = 3Qp(P,Q),

n

then for all B € C, B |= VRO(P, R). If this is true, for each NnF class C containing an A
that satisfies 3Q¢(P, @), let 6; be a sentence with signature P, ¢r(6;) < n, that defines
the class. (Here we use that P is non-empty, since no sentence contains no proposition
symbols.) Then 8 =\/#6; is an interpolant.

Suppose, towards a contradiction, that there are A and B such that A NnF B, A=
3Qp(P,Q) and B = IR-6(P,R). Let A’ and B’ be expansions of A and B such that
A" ¢(P,Q) and B' | -8(P,R). By Lemma 12, there are n-trees A” and B" that are

~n-equivalent to A" and B’, respectively. Finally, let A; and B; be the o-reducts of A”
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and B”. 1t is clear that Ay = 3Q(P,Q) and By |= IR-6(P, R). We now want to find a
D such that D |= 3Q¢(P,Q) A IR-6(P, R). This will establish the contradiction.

D is constructed by extending Ay and B; ‘simultaneously’ by iteratively adding copies
of families of elements. First we show that for any model M, if M’ is obtained from M
by adding a copy of a family F™, for any m € M, then every X1 sentence satisfied in M
is also satisfied in M’. Suppose that M = IP¢(P,Q). Let N be an expansion of M that
verifies the (first-order) modal sentence (P, @Q); and let N’ be obtained from N by adding
a copy of the family of m. It is clear that N ~ N’; thus N’ |z ¥(P,Q). Since N’ is an
expansion of M', M’ |= 3P (P, @), as desired.

We now describe the construction of D. As in the proof of Lemma 9, ~,_; induces an
equivalence relation on the set of children of ¢ and ¢?' such that every equivalence class
has at least one member in each model. Let Ay and B, be obtained from Ay and By by
adding enough copies of families of these children so that there is a bijection ¢;(z) from
the children of ¢#2 to those of ¢P2 such that for all a;, F% ~p,_ 4 Fo1(a) . Observe that
Ni(c#2) = Ny(cP2). Repeat this procedure at each level m < n of the trees, on pairs of
subtrees in A,, and B,, determined by the bijection g,,_1() at the previous level. By the
argument of the preceding paragraph, for all m, A4, | 3Q¢(P, Q) and B, | IR-6(P, R).
Furthermore, N,,(cAm+1) 2 N, (cPm+1) This construction yields trees A, 11 and B,y such

that Al ~ An+1, By~ Bn+1, and An-l—l = Bn_|_1. Let D = An+1. |
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Chapter 6

Conclusion

In this dissertation, we have investigated the prospects for the development of positive
model theoretic results over the class of finite structures. Regarding preservation theorems,
these prospects appear to be somewhat mixed. The positive results that we establish have
been for weaker, less expressive, languages, such as propositional modal logic, L2, and ‘low’
quantifer prefix classes of FO, and for classes with strong closure conditions, e.g. HOM.
In particular, results from Chapter 5 indicate that modal logic remains well-behaved over
F. One way to try to extend this work would be to try achieve similar results for stronger
levels of the bounded quantifier hierarchy introduced in [5]. It is also unknown whether
existential preservation holds for L?, both over F and over the class of all structures (see
[4]), and whether homomorphism preservation holds for L,k > 3. We have also given a
partial positive answer to what is perhaps the major open question in this area, does the
Homomorphism preservation theorem hold over F7

The situation regarding generalized preservation theorems for the class EXT is now
fairly well understood. Grohe’s proof that FONEXT ¢ LY (3) essentially yields a defini-
tive, negative, answer to the questions that appear at the end of Section 1.2. One may still
ask, for which quantifer prefix classes, w, is FO[w] N EXT C L% (3)?7 We can also raise

analogous questions for the class HOM.
1. s FONHOM C L% (3,+)?
2. Is FO N HOM C Datalog?

3. 1s L2, nHOM C L¥ (3,+)?
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Observe that, by Ajtai and Gurevich’s result, a positive answer to question 2 would imply
the truth of the Homomorphism preservation theorem over F.

Finally, I would like to mention several questions that arise in connection with the
results from Chapter 2. Recall that for all k, there is a single finite model that satisfies the
set, 3%, of all consistent sentences of L¥(3). By Proposition 15, Mod ;(3¥) is not definable
in \/ L¥(3); of course, it may be definable in \/Lk/(EI), for some k' > k. We ask, instead,

the following related question.
1. For k > 2, is Mod(3*) in FO(3)?

Recall also that for any model A* of the k-Gaifman theory, I'y, A* |= 3*. Let C* = {4 |
there is a B such that B C A and B |= 'y}, the ‘upward closure’ of Mod¢(I'y). It is clear

that for all k, C* C Modf(Elk), but we do not know whether the classes are equal.

2. For k > 2, is C¥ = Mod(3%)?
3. For k > 2,is C* in FO(3)?

The final question can be reformulated as a problem in combinatorics. It is equivalent to
asking whether there is a finite set, { By, ..., B, }, of models with the ‘k-extension property’

such that for every model with this property, there is some such B; embedded in it.
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