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ABSTRACT

EUCLIDEAN SHAPE AND POSE RECOVERY OF SURFACES OF REVOLUTION

Cody J. Phillips

Kostas Daniilidis

Surfaces of revolution (SoRs) describe many man-made objects and exhibit several inter-

esting and useful mathematical properties. This thesis explores these relationships from

within a Euclidean-based framework and derives minimal problems and algebraic forms

for the tasks of single-view and multi-view SoR shape reconstruction, pose recovery, and

perceptual grouping. The assumption of a camera with calibrated intrinsic parameters al-

lows projective space to be upgraded to Euclidean space, where image metrology is more

readily performed. Specifically, the pose, shape and perspective projection of SoRs are

intimately related; knowledge of any two of these three aspects constrains the estimation

of the remaining parameters. Four metrology tasks are considered in this dissertation, the

first three of which assume known SoR contours. If the SoR shape is known, the absolute

pose is recovered from a single view using a one-point minimal correspondence problem

(MCP). Both shape and absolute pose are recovered from two extrinsically calibrated views

by triangulating the SoR’s 3D central axis using estimates of its 2D projection in each view.

This two-view triangulation procedure is generalized without the extrinsic calibration in a

structure-from-motion (SfM) manner to a two-point MCP to recover the SoR shape and

pose — modulo scale. The last metrology task assumes unknown SoR contours. If the SoR

pose in n views are known, the SoR geometry permits all views to be mapped into a common

shape space. This enables a simultaneous n-view perceptual grouping and shape recovery

algorithm. This algorithm is first demonstrated on noise-corrupted SoR views and then

applied to a stereoscopic parallax cue that allows the reconstruction of optically challenging

SoRs. These methods are validated on real and synthetic datasets.
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1 Introduction

If I were again beginning my studies, I would follow

the advice of Plato and start with mathematics.
—Galileo Galilei

Perhaps one of the many amazing aspects of human visual cognition is our seemingly innate

ability to understand the relationship between an object’s shape, pose, and visual appear-

ance. Looking upon a scene filled with familiar objects, we can intuit each item’s specific

shape and placement. In the mind’s eye we can rearrange the world at will. Whether it

be a plain black coffee table or a two-tailed purple monkey wearing a fez, our internalized

knowledge of shape and pose allows these objects to coalesce into a plausible mental image.

What makes this all so remarkable is that the complex mathematical relationships involved

in image formation are somehow intricately encoded (or perhaps completely sidestepped) in

our visual system. It is this aspect of human perception, the ability to operate over complex

mathematical spaces with apparent ease, that presents a persistent challenge to machine

perception scientists.

The classical response of the computer vision community to this challenge tends to favor

explicit geometric modeling of the imaging process. This is in contrast to the recent trend

towards the use of hyperparametric function estimation (e.g., deep learning, end-to-end

learning) to abstract away such geometric details. This work follows the former approach.

It adheres to the philosophy that explicitly encoding strong geometric constraints at the low

2



and mid-level vision steps, as appropriate, provides a solid foundation for higher-level visual

processing and learning. The models and methods presented in the subsequent chapters

demonstrate a degree of elegance that can be achieved by starting with geometric principles.

Such principles are developed and laid forth for objects that are defined as surfaces of

revolution (SoRs). Like clay vessels formed on a potter’s wheel, surfaces of revolution are

created by a contour shape that is swept symmetrically around a central axis. Vases, cups,

bowls, and jars – such rotationally symmetric objects have held prevalence in human society

since the Early Neolithic period (Derevianko et al., 2004), some 16,000 years ago. They have

only received treatment in the computer vision literature however since the early 1990s.

SoRs exhibit interesting mathematical properties and invariants due their inherent rota-

tional symmetry. It is these invariants that are exploited to accomplish various image

metrology tasks, such as shape and pose recovery from an SoR image profile. Each research

article typically introduces its own SoR geometry formulation with respect to the structural

assumptions and invariants (e.g., visible cross sections, bi-tangents points) that underlie its

method. The goal of this thesis is to first present a coherent Euclidean framework that re-

lates the most important geometric elements represented throughout the literature. Armed

with a comprehensive model of the SoR image formation and reconstruction process, sev-

eral expansions of prior techniques are accomplished. The aim of the first three presented

methods is to distill SoR pose recovery to a series of minimal problems, removing as many

structural assumptions as possible. The last two methods provide a means for SoR shape

reconstruction on noisy or optically challenging images.

1.1. Metrology tasks

This thesis addresses five primary tasks, the first three (Figures 1.1, 1.2, and 1.3) are related

to SoR pose and shape recovery, and the last two (Figures 1.4 and 1.5) are related to SoR

shape recovery and perceptual grouping.

3



Overview:
Known relative pose︷ ︸︸ ︷

Contours Contours

→
2D axis 2D axis 3D axis Shape

Input:
1. Images of an SoR with extracted profile contours from two views
2. Relative transform between the two cameras
3. Camera intrinsic calibrations

Output:
1. SoR 2D central-axis projection in each image
2. SoR 3D central-axis in camera space (modulo height)
3. SoR shape reconstruction (with arbitrary height)

Figure 1.1: Task one overview, SoR 2D central-axis recovery and 3D triangulation.

Overview:

Contours Shape

→
2D axis 3D pose

Input:
1. Single image of an SoR with extracted profile contours
2. SoR reference shape
3. Camera intrinsic calibration

Output:
1. SoR 2D central-axis projection
2. Absolute pose of the SoR in camera space

Figure 1.2: Task two overview, SoR single-view absolute pose recovery.

4



Overview:

Contours Contours

→
2D axis 2D axis 3D axis Shape

Input:
1. Images of an SoR with extracted profile contours from two views
2. Camera intrinsic calibration

Output:
1. SoR 2D central-axis projection in each image
2. Poses of the two SoRs (modulo scale, single-axis motion)
3. SoR shape reconstruction (modulo scale)

Figure 1.3: Task three overview, SoR two-view shape and pose recovery.

1.1.1. Pose and shape recovery

Prior work on SoR pose recovery and shape reconstruction makes several assumptions about

the visible SoR image geometry. Removing these constraints is the primary challenge and

accomplishment of the first three metrology tasks. The first step in shape reconstruction is

pose estimation, which itself first requires the image location of the 2D SoR central-axis pro-

jection. Estimating this entity is accomplished in prior work by the use of special projective

invariant points. It is computed as part of task one (Figure 1.1) using a two-point minimal

problem in a RANSAC-like (Fischler and Bolles, 1981) fashion. Once the 2D central-axis

projection is known, its attitude (the amount it tips towards or away from the camera)

is needed to recovery the 3D central-axis orientation. Prior work requires a visible cross

section to estimate this value by parametrizing the projection of the circular cross section

to an ellipse. Using two-views with a known relative camera transform, the orientation and

position of the 3D central axis is recovered by triangulating the 2D central-axis projections

(Figure 1.1). Relaxing the known relative camera transform assumption, the 3D central-

axis orientation and position (module-scale) is computed in task three (Figure 1.3) in an

SfM fashion using a two-point minimal correspondence problem. In prior work, visible cross
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Overview:
k views with known pose︷ ︸︸ ︷

· · · →

k contour groupings︷ ︸︸ ︷
· · ·

Shape
Input:

1. Images of an SoR from multiple camera views
2. SoR poses in the camera space
3. Camera intrinsic calibration

Output:
1. SoR shape reconstruction
2. SoR image profile contours

Figure 1.4: Task four overview, multi-view SoR perceptual grouping and shape recovery.

sections and a known shape are used to recover the absolute pose of the SoR with a single

view. Problem statement two (Figure 1.2) removes the requirement of visible cross sections

and solves for absolute pose using a one-point minimal correspondence problem.

1.1.2. Shape recovery and perceptual grouping

Prior work assumes that a high-resolution and readily extractable SoR profile contour is

present in the image, as shown in Figure 1.6. This is important as both the pose estimation

and reconstruction techniques require well-localized contour edge points with accurate tan-

gent information. No previous work is known to address the case of extreme contour noise

and clutter, which has the potential to yield invalid shape reconstructions. This is true even

when the SoR pose is known if additional global constraints are not incorporated into the

solution. The primary challenge of the last two tasks is to achieve accurate reconstruction

results given known SoR poses in the presence of extreme noise using multiple image views.

Task four (Figure 1.4) computes the apparent contour grouping and shape reconstruction

assuming a known SoR pose, while task five (Figure 1.5) extents this approach to handle

transparent and optically challenging SoRs.
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Overview:
k views with known pose︷ ︸︸ ︷

· · · →

k contour groupings︷ ︸︸ ︷
· · ·

Shape
Input:

1. Images of an optically challenging SoR from multiple camera views
2. SoR poses in the camera space
3. SoR supporting plane location
4. Camera intrinsic calibration

Output:
1. SoR shape reconstruction
2. SoR image profile contours

Figure 1.5: Task five overview, multi-view generatrix recovery of optically challenging SoRs.

1.2. Contributions

This thesis presents an explicitly parameterized Euclidean decomposition of the SoR forward-

projection equation and bijection between the shape of an SoR and its image profile. Many

of the various components of this formulation are similarly derived or utilized individually

in previous work, however they have never appeared together as a coherent framework.

It is through this framework that novel geometric relationships and parameterizations are

realized and employed to achieve new results.

Such parameterized forms are used to derive minimal problems that overcome the limitations

of prior approaches for SoR pose and shape recovery from known occluding contours, in

both monocular and stereo settings, as outlined in problem statements 1–3. The SoR

shape-profile bijection is used to novelly address the challenges of perceptual grouping and

shape recovery for noise-corrupted and non-salient SoR profiles, as summarized in problem

statements 3–4.
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Figure 1.6: Example input images and contours used in prior work. Prior work generally
assumes high-resolution images with properties that enable a reliable SoR profile contour
extraction. From left to right, images are excerpted from Dhome et al. (1990), Wong et al.
(2002), Utcke and Zisserman (2003), and Colombo et al. (2004).

This thesis allows for full 5-DoF pose and metric generatrix shape recovery (up to a scalar

in some instances) without the use of any cross sections or special projective invariant

contour points, as employed extensively in prior approaches. This is made possible by the

exploitation of the additional geometry constraints revealed in the Euclidean decomposition,

and the introduction of a stereo view in some cases.

Contributions by chapter are summarized as follows:

• Chapter 4 presents the pose-parameterized Euclidean SoR forward-projection decom-

position along with the SoR profile – shape bijection that in conjunction relate imaged

SoR profiles to their pose and shape;

• Chapter 5 presents the datasets collected and used to validate the approaches devel-

oped in this thesis;

• Chapter 6 first presents the two-point minimal problem for recovering the image pro-
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jection of an SoR’s central axis. It then presents how to triangulate the 3D central

axis from two such imaged axes of a stereo image pair;

• Chapter 7 presents the one-point minimal correspondence problem for absolute pose

recovery, yielding the three pose parameters of camera height, distance, and attitude;

• Chapter 8 presents the two-point minimal correspondence problem for two-view struc-

ture from motion, recovering the relative height and depth between two cameras as

well as the attitudes of the camera pair;

• Chapter 9 presents the generatrix contour space volume and the dynamic program-

ming optimal subproblem that are used together to accomplish simultaneous n-view

perceptual grouping and generatrix recovery;

• Chapter 10 presents a stereoscopic parallax cue that is used in conjunction with the

techniques of Chapter 9 to perform perceptual grouping and generatrix recovery on

SoRs with optically challenging surface properties.
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2 Related work

The SoR forward-projection decomposition and profile–shape bijection formulated in this

thesis draw from a body of prior research that began in the late 1980s. The relationship be-

tween algebraic surfaces and their image profile under perspective projection is first explored

in Giblin and Weiss (1987). This work is specialized to Straight Homogeneous Generalized

Cylinders (SHGCs), a geometric superclass of SoRs, in Ponce et al. (1989). The first no-

table treatment of SoRs is in Dhome et al. (1990) under the assumption of orthographic

projection.

In Glachet et al. (1992), the orthographic assumption is relaxed and the earliest perspective

SoR forward-projection equation is introduced. Special projective invariant SoR points are

described in Forsyth et al. (1992), yielding insight into the projective nature of SoRs. The

profile of an SoR is understood to be related by a planar harmonic homology in Zisserman

et al. (1995), providing an important mathematical relationship for interpreting SoRs in

projective space.

The first equation for metric SoR reconstruction from a projective image is presented in

Wong et al. (2002). The authors continue to explore the properties of SoRs under projection,

and develop a means of camera calibration from SoR views in Wong et al. (2003). Con-

tinuing the trend of projective SoR treatment, another calibration procedure is presented

in Colombo et al. (2002), which is expanded upon to allow for a SoR metric reconstruc-

tion technique that is defined almost exclusively in projective space. Utcke and Zisserman

(2003) presents a SoR reconstruction technique that does not require camera calibration,
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but yields a projective family of reconstructions instead of single metric solution.

This chapter traces the history of SoRs and highlights the starting points for this thesis.

2.1. Apparent contours and contour generators of algebraic surfaces

The image profile of a smooth surface corresponds to a viewpoint-dependant 3D curve along

such surface. This image profile is called an apparent contour, and the corresponding 3D

curve is called the contour generator. The relationship between these curves and the camera

center captures the most general constraints between an object’s shape, pose, and visual

appearance for smooth algebraic surfaces. These constraints are developed in Giblin and

Weiss (1987) and further expanded in Cipolla (1991) and Cipolla and Blake (1992) in the

context of smooth algebraic surface reconstruction for an object observed under motion.

These works assume that the camera centers are known in world coordinates, and that the

3D image rays of the apparent contours are also known, i.e., that the camera is calibrated.

There are two results in particular from these works that are pivotal to the development

of the SoR forward-projection decomposition and profile-shape bijection. First is the fact

that the contour generator and corresponding apparent contours are a sole function of the

surface definition and the camera center. Second is the surface tangency and intersection

constraint, which states that an apparent contour ray must be contained within the tangent

plane of the contour generator point on the surface it intersects.

2.2. Straight homogeneous generalized cylinders

Surfaces of revolutions (SoRs) belong to a central-axis-based class of geometric surfaces

known as straight homogeneous generalized cylinders (SHGCs). Such surfaces are defined

by an arbitrary cross section C that is swept along a perpendicular axis ẑ, while being

scaled by scaling function r(z). By this definition, an infinite unit cylinder is the simplest

SHGC, consisting of a unit circle cross section and a constant scaling function, r(z) = 1.

SoRs are a generalization of the cylinder, in that the cross section radius varies arbitrarily
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(a) Cylinder (b) Surface of revolution (SoR) (c) Straight homogeneous
generalized cylinder (SHGC)

Figure 2.1: Straight homogeneous generalized cylinders and their subclasses. The cylinder
has a circular cross section and a constant scaling function. The general SoR has a non-
uniform scaling function, resulting in cross sections of varying radii. The SHGC has an
arbitrary cross section shape and scaling function. In this figure the SHGC has a clover
cross section and the same scaling function as the SoR. The cross sections shapes can be
seen in blue.

(a) Zero curvature (b) Crease (c) Cusp (d) Bi-tangent

Figure 2.2: Special points with projective invariant properties.

by r, also called a generatrix. Examples of these surfaces are illustrated in Figure 2.1.

The projective geometry of SoRs was initially studied in the larger context of SHGCs (Ponce

et al., 1989; Forsyth et al., 1992). Much attention is given to special types of surface points

with projective invariant properties. Such points include creases, cusps, points of zero-

curvature and point pairs that are bi-tangent (incident to the same tangent line). These

“special points” are illustrated in Figure 2.2. Their invariant properties distinguish them as

a means of establishing correspondences between imaged surface profiles, enabling higher-

level geometric reasoning.
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(a) Orthographic image profile (b) Projective image profile

Figure 2.3: Effects of orthographic vs. perspective projection. A near-orthographic camera
(a) produces a pseudo-symmetric occluding contour, while a projective camera (b) produces
occluding contours that are related by a more general harmonic homology.

When reasoning about the shape of an imaged SHGC, visible cross sections are vital to

recovering the unknown cross section shape C as well as the axis ẑ orientation. For an

imaged SoR, cross sections provide even more orientation information as they are known

to be projections of a circle. As a testament to this fact, all work prior to this thesis

uses one or more visible cross sections to enable pose and shape recovery of SoRs. Gross

and Boult (1996) and Sato and Binford (1992, 1993) present approximate SHGC (and SoR

by extension) reconstruction techniques that operate on SHGC profiles created by near-

orthographic projection.

2.3. Surfaces of revolution under orthographic projection

The projective treatment of both SoRs and SHGCs was initially limited to orthographic or

near-orthographic perspective projections. The relationship between image profile and sur-

face shape is greatly simplified without the effects of perspective distortion. The occluding

contour of an SoR under orthographic projection has 2D symmetry about the projection of

the central axis ẑ (Figure 2.3a) and corresponds to a coplanar symmetric contour generator.

Dhome et al. (1990) is the first to present an algorithm for SoR pose recovery from image

profile contours. The central axis orientation is recovered from a visible cross section. The

pose is refined by iterative matching to a triangulated 3D mesh. Glachet et al. (1991)
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searches for the 2D central-axis projection in a near-orthographic view by assuming the

apparent contours are related by a pseudo-symmetry and verifying that profile points and

tangents approximately map onto themselves through an axis reflection.

2.4. Surfaces of revolution under perspective projection

Under perspective projection, the 2D symmetry of the orthographic assumption is replaced

with a more general 4-DoF planar harmonic homology (Figure 2.3b) and the planar contour

generator is replaced with a more irregular surface curve that is dependant upon the surface

normal and camera center.

The equation for the SoR contour generator under perspective projection is developed in

Glachet et al. (1992). This provides the starting point for the SoR forward-projection equa-

tion as well as the shape-to-profile half of the SoR profile-shape bijection. The apparent

contours of an SoR can be rendered directly from this equation using its shape representa-

tion, a 2D-curve, instead of an approximate 3D mesh model. The SoR pose is computed

in this extension to Dhome et al. (1990) the same way as in the original paper, except

that the explicit apparent contour equation is used instead of the mesh model. A visible

cross-section is used to get the approximate attitude, and a pseudo-symmetry axis search

or projective invariant points are recommended as alternative ways of approximating the

2D central-axis projection.

Zisserman et al. (1995) provides a survey of class-based grouping techniques that includes

the precise mathematical relationship between two SoR apparent contour pairs under per-

spective projection. Instead of a symmetry, SoR contours are related by a 4-DoF planar

harmonic homology that is often estimated using bi-tangent points. This fact is used heavily

in Mendonca et al. (2001); Wong et al. (2002, 2003), where the projective relationships of

SoRs under perspective projection are extensively explored. They present a least-squares

method to estimate the homology, initialized by four bi-tangent points, in which the ho-

mology is decomposed in terms of the central-axis projection and a vanishing point. Under-
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standing the relationship between the central-axis projection, planar harmonic homology,

and camera projection matrix, they provide a calibration procedure that operates over two

SoR views (with visible bi-tangent points). Most importantly, Wong et al. (2002) presents

a means to reconstruct the SoR shape from an apparent contour. This provides the second

direction of the SoR shape-contour bijection.

Along similar lines, Colombo et al. (2002) provides a single-view SoR calibration algorithm

that assumes a manually selected apparent contour and two ellipses. Another SoR recon-

struction algorithm is built on top of this calibration algorithm in Colombo et al. (2004,

2005, 2006) that operates almost exclusively in projective space.

All previous algorithms require the camera calibration to compute the SoR reconstruction.

Utcke and Zisserman (2003) sidesteps this requirement using two visible cross sections with

the caveat that the resulting solution is up to a 2-DoF projective family, parameterized as

a function of the camera calibration.

2.5. Summary

All the approaches presented in this chapter for the tasks of SoR pose and shape recovery

make several limiting assumptions that are overcome by the methods presented in this

thesis. The requirements of special points, cross sections, or pseudo-symmetry for 2D

central-axis projection recovery are removed in Chapter 6 via the use of a two-point minimal

problem for symmetric pose recovery. In Chapters 6 and 8, the requirements of visible cross

sections and a known SoR shape model are removed for 3D central-axis recovery using

two views for axis triangulation and structure from motion. Chapter 7 describes a method

that recovers the pose of an SoR of a specified shape without visible cross sections. The

various assumptions of prior work are summarized chronologically in Table 2.1, showing

the progression of the techniques. All such techniques assume readily obtainable apparent

contours, an assumption that is addressed in Chapters 9 and 10. These chapters frame SoR

apparent contour selection and shape recovery as a perceptual grouping problem that is
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Assumptions
CAD Model X

Generatrix X X
Special points X X X X X
1 cross section X X X

2 cross sections X X X
Near-orthography X X X X
Unit aspect ratio X

Intrinsics X X X X X X X
Stereo extrinsics X

Single view X X X X X X X
Stereo view X X X

Output
2D-axis X X X X X X X X X X X X X
3D-axis X X X X X X X X X

3D object center X X X X X X X X X
Intrinsics X X

Projective shape X X
Metric shape X X X X X X

*First paper of a highly related series
Forsyth et al. (1992); Zisserman et al. (1995)
Sato and Binford (1993); Gross and Boult (1996)
Wong et al. (2002, 2003)
Colombo et al. (2002, 2004, 2005, 2006)

Table 2.1: Summary of approach assumptions and results, arranged chronologically. Prior
to 2002, a near-orthographic camera was assumed to provide metric shape and pose recovery.
This restriction was removed with the formulation of the 4-DoF central-axis homology under
perspective projection and the addition of specialized SoR contour generator constraints.
All prior work requires special points or cross sections to perform this task. The work
presented in this thesis is not dependent on these features.
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informed by the geometric constraints of SoRs, assuming known central-axes.
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Part II

Preliminaries
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3 Image formation and projection
surfaces

In order for the light to shine so brightly, the darkness

must be present.
—Francis Bacon

Image formation begins in darkness, with a projection surface waiting to be struck with

rays of light; rays that carry color and intensity information from an external scene through

a small opening. This chapter describes the image formation process, introducing the

prerequisite notation, models, and concepts for further exploration of SoR image profiles.

3.1. Notation and conventions

In this paper, points, vectors, normals, and lines are represented with bold lowercase letters,

such as x. They are expressed as column vectors, e.g., x = (x, y, z)T, with italics used for

scalars. Matrices are represented with bold uppercase letters, such as M. All symbols may

have subscripts or superscripts to identify the entity, indicate the coordinate system, or

denote the index. A left superscript always indicates the coordinate system in which an

entity is expressed. Matrices that represent a mapping between coordinate systems have

the source frame as a right subscript and the destination frame as a left superscript. Square

brackets with a subscript may be used to indicate index. For example,

bxe =
[
bRa

]
i

axe
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shows that vector e expressed in coordinate system a is rotated to coordinate system b by

the ith rotation matrix from a to b.

A summary of the general conventions and symbol definitions is presented in Table 3.1.

Term type Example Note
Point / xe, axe ({3, 4} × 1) Point e (in coordinate system a)
Vector ne, ane (3× 1) Normal e vector (in coordinate system a)

tb, atb (3× 1) Origin (translation) of system a expressed in b

to Camera center in object coordinate system
tc Object center in camera coordinate system
ẑ The SoR central axis

Line ale (3× 1) Homogeneous line e in coordinate system a

Matrix bFa (4× 4) Euclidean transform from system a to b
bRa (3× 3) Euclidean rotation from system a to b
Rz(φ) (3× 3) Euclidean rotation of angle φ about the z-axis
bHa (3× 3) Homography from plane a to b
K 3× 3 Projection from calibrated to image coordinates
Rω 3× 3 Infinitesimal rotation matrix

Plane πt Tangent plane at an SoR surface point
πz Plane through to and ẑ
πm Plane through an SoR meridian

Matrix Sy Reflection matrix through y-axis
Variables d̂, ĥ Camera depth and height in canonical pose

∆d̂,∆ĥ Camera pair baseline in term of depth and height
Function r(h) SoR generatrix radius (scaling) at height h

ρ(h) SoR generatrix first derivative at height h
Relation A ∼ B Equivalence relation, A is equivalent to B by the relation

A ↔ B A corresponds with B
A ↔ B Bi-conditional, A if and only B
xa ∼ xb Projective equivalence relation, xa = λxb, λ ∈ R 6=0

Point sets S Object surface
Mθ SoR Meridian at azimuth θ in object cylindrical coordinates
Ph SoR Parallel at height h in object cylindrical coordinates

Scalars φ Pitch attitude
θ Azimuth angle

Table 3.1: Summary of mathematical terms and conventions. This table summarizes specific

mathematical terms and conventions that are used throughout this thesis.
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3.2. Image formation

Image formation as a physical process is a complex interaction of geometry and optics.

Indeed, fully and accurately encoding these interactions towards the goal of photo-realistic

rendering methods and techniques is an active and thriving area of research. This sec-

tion describes the aspects of the image formation process that are modeled and utilized

throughout this thesis.

3.2.1. Perspective projection and the pinhole camera model

The term “camera” in English comes from “camera obscura”, Latin for “dark room”. A

camera obscura is a dark room or box with a small hole on one side. Light passes through

the hole to produce an image of the outside scene on the opposing wall. This concept was

adapted in the form of a “pinhole” camera that was prevalent in early photography. The

pinhole opening in the camera acts as an aperture, a center through which light from the

scene geometry passes. These rays of light then strike a film plate that captures the image.

The pinhole camera model is used as the mathematical basis describing image formation

under perspective projection. As a mathematical model, the center of projection and 2D

image plane are conceptual analogues to the pinhole and the film plate, respectively. Light

rays from scene objects are modeled as 3D points that undergo a central projection to the

image plane.

3.2.2. Calibrated image plane

The camera coordinate system uses the center of projection as the origin with the positive z-

axis representing the normal of the image plane. Mathematically, all 3D points are mapped

to the image plane through the central projection. In practice, the only points that are

considered are those in front of the camera with a positive z-coordinate. The image plane

is taken as the xy plane at z = 1, with the top of the image in the negative y direction (see

Figure 3.1).
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o

x

x′

z = 1

o

x

x′
π

(a) Orthographic yz-side view (b) Orthographic xy-front view

Figure 3.1: Calibrated camera coordinate system. From the orthographic side view (a), the
3D point x is projected towards the projection center o to create 2D image point x′ on the
image plane at z = 1. The dashed black lines represent the camera’s view frustum. In the
orthographic front view (b), the 2D location of x′ on the image plane π is seen. The green
y-axis points down, the red x-axis points to the right, and the blue z-axis points forward
from the projection center towards the image plane.

This representation is considered the standard or natural camera coordinate system. It is also

called the calibrated camera coordinate system, as it abstracts away intrinsic properties of

the physical imaging device, which must be accounted for through system calibration. In an

uncalibrated system the image plane is represented in image coordinates, which is typically

expressed in terms of pixels, whereas the calibrated image plane is typically expressed in a

real-world metric unit, such as meters.

3.2.3. Coordinate transform

It is useful to define (at least) two coordinate systems, one for describing positions relative

to the scene geometry, and the other relative to the camera.

A 3D point ox in object coordinates is transformed to camera point cx by the 3×3 rotation

matrix cRo and object center cto, expressed in the camera coordinate system, by

cx = cRo
ox + cto (3.1)
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or homogeneously by (
cx
1

)
=
(
cRo

cto
0 1

)
︸ ︷︷ ︸

cFo

(
ox
1

)
, (3.2)

where cFo is the homogeneous transform from the object to the camera system.

3.2.4. Perspective projection

πl πcl

x
lx

l′
x′

Figure 3.2: The back-projection of points and lines. The 3D line l and point x project to

image plane πc as 2D line l′ and x′. The back-projection of l′ forms the plane πl, while the

2D point x′ back-projects to 3D line lx.

Central projection of a camera point cx = (x, y, z)T to the x-y image plane at z = 1 is

accomplished by projective division as

cx′ = (x/z, y/z, z/z)T = (x/z, y/z, 1)T, (3.3)

where cx′ is said to be the homogeneous representation of the non-homogeneous 2D image

point (x/z, y/z)T.

Observe that any point of the form (λu, λv, λ)T maps to the same point (u, v, 1)T under
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projective division, yielding the projective equivalence relation

(xa, ya, za)T ∼ (xb, yb, zb)T ↔
(
λ(xa, ya, za)T = (xb, yb, zb)T, λ ∈ R6=0

)
. (3.4)

Homogeneous coordinates are a convenient means of representing an equivalence class of

geometric entities under projective division. The equivalent class elements of a homogeneous

point span a 3D line in space, while those of a homogeneous line span a 3D plane (see Figure

3.2). The pre-image of a homogeneous entity under projective division is called its back-

projection. These concepts are vital to understanding the interaction between 3D surfaces

and their images.

3.2.5. Homogeneous image lines and 3D planes

Image lines can also be represented homogeneously by a 3D vector in a manner identical

to image points, however its geometric interpretation might not be as readily apparent.

An image line can be viewed as a collection of image points, the back-projection of which

is a collection of coplanar rays. When expressed in calibrated coordinates, these coplanar

rays sweep out a plane (Figure 3.2) with normal n that passes through the camera center.

The homogeneous form of an image line is precisely n, the normal of the 3D plane it back-

projects to. A homogeneous image point x is on the image line n if the 3D ray λx is

contained within the plane. To express this mathematically, it is enough to verify that the

3D ray is perpendicular to the plane normal, satisfying

nTx = 0. (3.5)

Note that both n and x can be arbitrarily scaled by λ without violating this equation.

3.2.6. Uncalibrated image plane

The calibrated image plane represents the 2D projection of the 3D world points in a metric

unit such as meters, with the center of projection at the origin. These properties allow it to
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oc

x′

πc

oc

ok

x′

πk

(a) Calibrated image plane (b) Uncalibrated image plane

Figure 3.3: Uncalibrated camera coordinate system. The calibrated image plane πc (a)
is typically represented with metric real-world units such as meters, with the projection
center at the origin oc. The uncalibrated image plane πk (b) is typically expressed in
pixels, which may not be square. As such the image plane is stretched unequally in the
x and y directions from the calibrated image plane. The projection center oc, also called
principal point, usually does not coincide with the image plane origin ok. As a result of
these differences, the same image point x′ may be represented on both image planes by
drastically different coordinates.

be used directly when reasoning in 3D Euclidean space. In practice, captured image points

are typically represented in a different coordinate system that mirrors the physical geometry

of the imaging device. This system is typically called image coordinates and is represented

in terms of pixels. The uncalibrated image plane is commonly related to the calibrated

image plane by an invertible 3 × 3 intrinsic matrix K with four degrees of freedom of the

form

K =

fx 0 cx

0 fy cy

0 0 1

 .

The 2D point (cx, cy)T represents the image location of the projection center, also called

the principle point, in the image plane. When this point is non-zero, it implies that the

uncalibrated image plane origin is shifted from that of the calibrated image plane (see Figure

3.3). The parameters fx and fy encode the focal length and metric pixel dimensions. If

fx and fy are equal, then the pixels are square and the camera is said to have unit aspect

ratio. Otherwise, the pixels are non-square and the image plane is stretched in the x and y

directions by different amounts.
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K and its inverse K−1 allow points and geometric entities to be transformed between the

calibrated and uncalibrated coordinate systems. A non-homogeneous calibrated point is

transformed by
kx ∼ K [cRo

ox + cto] . (3.6)

Using a homogeneous representation, the 3 × 4 form of K simultaneously transforms to

image coordinates and produces a drop in dimensionality with

kx ∼
(
K 0

)(cRo
cto

0 1

)(
ox
1

)
. (3.7)

3.3. Projection surface bijections

In object coordinates, the location of the projection center is represented as a 3× 1 transla-

tion column vector otc. The orientation of the image plane of the calibrated camera about
otc is specified by the rotation cRo. All rays through this center of projection also pass

through a unit sphere centered at otc. This unit sphere is called the image sphere, as the

projection of the 3D scene points onto this sphere encodes all the information necessary

for image formation. Modulo field of view, this representation contains no more or less

information than projection onto an image plane.

Representing an image using different surfaces of projection may be desirable as each pro-

jection surface exhibits its own set of geometric properties. For example, the image sphere

is useful for the treatment of any projective geometry that is invariant to the specific choice

of image plane, i.e., invariant to the camera orientation. The tangency between camera

rays and scene surfaces is such an invariant property, as introduced in Section 4.1. It is this

property that allows for seamless panoramic stitching of planar images that are taken with

the same (approximate) projection center, as well as the synthesis of arbitrary image plane

views from such a panorama.
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xs
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(a) Plane-sphere bijection (b) Plane-plane bijection

Figure 3.4: Projective bijections through shared projection center o. (a) shows the bijection

between the point xs on the image sphere and xp on the image plane. (b) shows the bijection

between the point xa on plane πa and xb on plane πb.

Panoramic images are an ideal example for discussing three important projection surface

bijections that are utilized in this thesis. The plane-sphere bijection maps images to the

image sphere, where the image rays from overlapping view frustums blend seamlessly to

create an omni-directional image on the sphere that may be back-projected onto any image

plane of the same projection center. The plane-plane bijection maps between image planes

directly, skipping the intermediate view sphere projections for the synthesis of an arbitrary

image plane view. These two bijections are shown in Figure 3.4. Finally, the sphere-cylinder

bijection is commonly used to store panoramic images as one continuous “flat” image.

3.3.1. Plane-sphere bijection

A point ox on the image sphere in the object coordinate system is expressed in the camera

coordinate system as cx = cRo
ox + cto = (x, y, z)T, where cto is the object origin expressed

in camera coordinates.

There is a bijective function f : S → P between image sphere and image plane points,
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where

S = {x ∈ R3|x = (x, y, z)T, ||x|| = 1}

is the set of unit sphere points and

P = {x ∈ R3|x = (x, y, z)T, z = 1}

is the set of image plane points.

The function

f (x) = (x, y, z)T/z

projects the unit image sphere point to the image plane in the standard projective manner.

The inverse function

f−1(x) = x
||x||

projects the image plane point to the unit sphere be dividing by its magnitude.

By verifying f(f−1(x)) = x, ∀x ∈ P:

f
(
f−1 (x)

)
= x

f
(
f−1

(
(x, y, 1)T

))
= (x, y, 1)T

f

(
(x, y, 1)T

||(x, y, 1)T||

)
= (x, y, 1)T

(x, y, 1)T||(x, y, 1)T||
||(x, y, 1)T||

= (x, y, 1)T

(x, y, 1)T = (x, y, 1)T
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and f−1(f(x)) = x, ∀x ∈ S:

f−1 (f (x)) = x

f−1
(
f
(
(x, y, z)T

))
= (x, y, z)T

f−1
(
(x/z, y/z, 1)T

)
= (x, y, z)T

(x/z, y/z, 1)T

||(x/z, y/z, 1)T||
= (x, y, z)T

z(x/z, y/z, 1)T

||(x, y, z)T||
= (x, y, z)T

z(x/z, y/z, 1)T

1 = (x, y, z)T

(x, y, z)T = (x, y, z)T

it is shown that f and f−1 are indeed each other’s inverse, implying f is invertible and

consequently a bijection. This bijection is illustrated in Figure 3.4a.

3.3.2. Plane-plane bijection (two-plane homography)

If a 3D point ax in camera a is related to a 3D point bx in camera b by

bx = bRa
ax + bta,

then the homology from the image plane of camera a to the image plane of b is

bHa = bRa +
(
0 0 bta

)
. (3.8)

If the two cameras share the same center of projection, bta = 0 then bHa is simply the

rotation matrix bRa relating the two cameras.

This result is seen by first observing that the image of a point ax in camera a is transferred

to bx′ on camera b’s image plane by the following steps:

1. Project ax to image plane πa by projective division as ax′ = ax/za.
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2. Represent ax′ in camera b coordinates by bx = bRa
ax′ + bta.

3. Project bx to bx′ by projective division.

In homogeneous coordinates, the relationship between ax and bx′ becomes

bx′ ∼ bRa(ax/za) + bta. (3.9)

This is massaged into the form of a homography as follows:

bx′ ∼ bRa(ax/za) + bta (Eq. 3.9)

bx′ ∼ bRa
ax + za

bta (By projective equivalence)

bx′ ∼ xarx + yary + zarz + za
bta (By matrix expansion)

bx′ ∼ xarx + yary + za(rz + bta) (By additive distribution)

bx′ ∼
(
rx ry (rz + bta)

)
ax (By matrix construction)

bx′ ∼
(
bRa +

(
0 0 bta

))
ax (By matrix additivity)

bx ∼ bHa
ax. (Desired result, eq. 3.8)

If the two cameras share a center of projection, then bta = 0, and the homography reduces

to bRa. This homography is illustrated in Figure 3.4b.
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4 Contour generators and surfaces
of revolution

We are to admit no more causes of natural things

than such as are both true and sufficient to explain

their appearances.
—Isaac Newton

When an image is formed of a solid 3D object, a dimension reduction occurs as the object’s

3D surface is represented as a 2D surface in the image. Accordingly, the 3D surface boundary

generally projects to some 2D image boundary, outlining the surface profile or silhouette.

This chapter begins by summarizing the work of Giblin and Weiss (1987), who first explored

occluding contours and the wealth of surface information they contain in their paper entitled

Reconstruction of Surfaces from Profiles.

Specializing these results for surfaces of revolution, Glachet et al. (1992) provide an SoR

occluding contour projective rendering equation given the generatrix and pose. Wong et al.

(2002) then provide the projective constraints for metric generatrix reconstruction given

the occluding contour and pose. The second half of this chapter presents this bijection in

a unified framework, providing a Euclidean decomposition of the SoR occluding contour

forward-projection equation, parameterized by pose. This framework enables the formula-

tion of the minimal problems for pose and generatrix recovery in subsequent chapters. It

also provides a means to aggregate evidence from multiple, potentially noisy, images for

generatrix reconstruction and apparent contour perceptual grouping.
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o

π

(a) Cube 2D silhouette (b) Cube 3D silhouette edges

o

π

(c) Sphere 2D apparent contour (d) Sphere 3D contour generator

Figure 4.1: 2D and 3D boundaries of smooth and discontinuous surfaces. The 2D and 3D
boundaries are outlined in thick red lines. In (a) and (c), the 3D boundary boundaries are
shown for a cube and sphere, respectively. The fine red lines represent the 3D boundary
projection onto image plane π through projection center o. The resulting profiles are shown
in (b) and (d), respectively. Note that the sphere has a smooth 3D boundary, while the
cube’s 3D boundary is composed entirely of surface discontinuities.

4.1. General contour generators

The 2D boundary of an imaged surface, called the apparent contour, represents the pro-

jection of some 3D surface boundary, called the extremal boundary or contour generator,

that divides the object into visible and occluded parts. A subtle yet important distinction

is made between boundary points that correspond to smooth surface geometry versus dis-

continuous regions such as edges and corners. Discontinuous contour generator points are

appropriately called surface edges, while smooth regions are called surface limbs. Occluding

contours are the smooth apparent contours resulting from the projection of surface limbs.

Figure 4.1 shows the apparent contour of two surfaces, a cube and a sphere.
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Figure 4.2: General contour generator relationships. The 3D point x̃ with normal n is
part of the contour generator (solid red circle), and therefore its tangent plane πt includes
the image ray through point x on image plane πc with projection center o. The tangent
plane projects to homogeneous line l, with a representation equal to n when expressed in
calibrated coordinates.

For surfaces such as the cube with no limbs, the apparent contour is composed entirely of

projected edges. For smooth surfaces however, the relationship between the 2D and 3D

surface boundaries is a complex function of the projection center and surface shape.

For a smooth surface S with well-defined surface normals at each point, it is possible to

define the contour generator that produces the occluding contour for a specific camera center
otc. It is important to note that the choice of otc fully defines the superset of image rays,

a subset of which intersects the contour generator. The contour generator is composed of

those image rays that intersect the surface at a single point ox and lay within the tangent

plane defined at ox. Equivalently, any point ox whose tangent plane contains the camera

center otc belongs to the contour generator. These relationships are demonstrated in Figure

4.2.

Explicitly, a surface point ox with normal on is part of a contour generator for camera

center otc if for some image ray ov the following equations hold:

λov + otc = ox (ray-surface intersection constraint) (4.1)
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onT(ox− otc) = 0 (ray-surface tangency constraint). (4.2)

These are the central constraints of Giblin and Weiss (1987) that enable reasoning about

the profiles of arbitrary smooth geometry surfaces.

4.1.1. Apparent contours and projection surfaces

It is important to reiterate that the contour generators are solely dependent on the choice of

surface S and projection center otc. The effect of this is that their corresponding apparent

contours are a sole function of the specific choice of the projection surface. That is to say,

the different apparent contours formed by a central projection onto the image sphere, stan-

dard camera image plane, or uncalibrated image plane, all originate from identical contour

generators. Additionally, as discussed in Section 3.3, there are projective bijections between

images planes and image spheres with the same center of projection that allow geometric

reasoning to be performed on whichever surface is most mathematically convenient.

4.2. Surface of revolution representation

Viewed as a specialization of SHGCs, surfaces of revolutions are formed by sweeping a

circular cross section along a central axis, ẑ, while the circle is scaled by scaling function

r(z). Alternatively, the function r(z) can be treated as a planar curve, called a generatrix,

that is revolved around ẑ, sweeping out the surface of the SoR. Figure 4.3 presents this

sweeping process under both interpretations.

Cylindrical coordinates (r, θ, h) are a natural way of expressing SoR points and normals,

with the cylindrical height extending along an upward pointing central axis of revolution, ẑ.

For the purpose of relating the SoR pose to the camera pose, the positive x-axis is treated as

the “front” of the SoR. The standard camera coordinate system is used, with the positive

z-axis aligned with the optical axis, and the x-axis pointing to the camera’s right. The

relationship between these two coordinate systems are illustrated in Figure 4.4.

The generatrix function r(h) determines the radius for a given height and has a correspond-
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ẑ

(a) Planar generatrix curve (b) Scaled cross sections (c) Generatrix rotations

Figure 4.3: Surface of revolution formation. The planar generatrix curve in (a) is used to
produce the SoR by sweeping through the space in two different ways. In (b) it is used to
scale the circular cross section that is swept along ẑ, while in (c) it is swept in revolution
about ẑ.

ing derivative function ρ(h) that yields the derivative d r(h)
dh . Using these two functions, a

SoR surface point xo
def= (xo, yo, h)T and corresponding normal no

def= (ao, bo, co) are parame-

terized by height h and azimuth angle θ in the SoR coordinate system as

xo(θ, h) = (r(h) cos θ, r(h) sin θ, h)T, (4.3)

and

no(θ, h) ∝ (cos θ, sin θ,−ρ(h))T ∝ (xo, yo,− r(h)ρ)T (see Section 4.2.2), (4.4)

respectively. Notice that the x and y components of the surface normal are proportional

to those of the surface point. This property proves useful for constraining pose and shape

recovery from the occluding contour.

4.2.1. Surface point representation

The SoR surface point set S is generated by rotating the generatrix r(h) about the z-axis,

with

S = {xo(θ, h) | 0 ≤ θ ≤ 2π, h ∈ dom(r)}. (4.5)
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oc

oo

Figure 4.4: Object and camera coordinate systems. The origins of the object and camera
coordinate systems marked with oo and oc, respectively. The x, y, and z-axes are repre-
sented by the red, green, and blue arrows, respectively. The z-axis is treated as the up or
height axis for the object coordinate system. The camera points in the z-axis direction,
with the positive y-axis pointing towards the bottom of the image and the positive x-axis
pointing to the right.

A direct consequence of this is that S maps onto itself under any rotation Rz(φ) of angle

φ about the z-axis. This can be seen by applying an arbitrary rotation about the z-axis to

the definition of the SoR point set:

Rz(φ)S = Rz(φ){xo(θ, h) | 0 ≤ θ ≤ 2π, h ∈ dom(r)}

Rz(φ)S = {Rz(φ)xo(θ, h) | 0 ≤ θ ≤ 2π, h ∈ dom(r)}

Rz(φ)S = {xo(θ + φ, h) | 0 ≤ θ ≤ 2π, h ∈ dom(r)}

Rz(φ)S = {xo(θ, h) | φ ≤ θ ≤ 2π + φ, h ∈ dom(r)}

Rz(φ)S = {xo(θ, h) | 0 ≤ θ ≤ 2π, h ∈ dom(r)}

Rz(φ)S = S.

This relationship is commonly used to reduce the number of parameters that are needed to

express the SoR’s translation from three to two (Glachet et al., 1992; Wong et al., 2002).
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4.2.2. Surface normal representation

The surface of an SoR contains points x(θ, h) parameterized by azimuth angle θ and height

h. The surface normal is orthogonal to both partial vector derivatives of x(θ, h) with respect

to θ and h. Therefore, the surface normal is computed using the cross product as follows:

no(θ, h) = ∂xo(θ, h)
∂θ

× ∂xo(θ, h)
∂h

(Step 1)

no(θ, h) = ∂

∂θ
(r(h) cos θ, r(h) sin θ, h)T × ∂

∂h
(r(h) cos θ, r(h) sin θ, h)T (Step 2)

no(θ, h) = (− r(h) sin θ, r(h) cos θ, 0)T × (ρ cos θ, ρ sin θ, 1)T (Step 3)

no(θ, h) =

 r(h) cos θ(1)− (0)ρ sin θ
(0)ρ cos θ −− r(h) sin θ(1)

− r(h) sin θρ sin θ − r(h) cos θρ cos θ

 (Step 4)

no(θ, h) =

 r(h) cos θ
r(h) sin θ

− r(h)ρ(cos2 θ + sin2 θ)

 (Step 5)

no(θ, h) = r(h)

cos θ
sin θ
−ρ

 (Step 6)

no(θ, h) ∼ (cos θ, sin θ,−ρ)T. (Step 7)

Step 6 shows the normal for a point xo = (x, y, h) on parallel Ph as

no(θ, h) = r(h)

cos θ
sin θ
−ρ

 =

r(h) cos θ
r(h) sin θ
− r(h)ρ

 =

 x

y

− r(h)ρ

 . (4.6)

This form is first seen in Glachet et al. (1992), and is used to relate the contour generator

of an SoR to its generatrix.
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Figure 4.5: SoR contour generator constraints. As is the case with general contour gen-
erators, the tangent plane πt with normal n must contain the contour generator point x̃,
its projection x on πc, as well as the camera center o. Additionally, x̃ must be contained
within the meridian plane πm that contains n.

4.3. Meridian and parallel constraints

Parameterized by azimuth θ and height h, an SoR can be viewed as the infinite composition

of parallels of constant h, or alternatively as meridians of constant θ (see Figure 4.3). A

parallel is the circle of surface points generated at a constant height, named for the fact

that all such circles are parallel to each other, while perpendicular to the central axis ẑ.

Meridians are points of the same azimuth that are contained in the half plane πm with

normal m that extends from ẑ outwards. The parallel Ph is an infinite point set defined as

Ph = {xo|xo = (x, y, h) ∧ x2 + y2 = r(h)2}, (4.7)

while the meridian Mθ is defined as

Mθ = {xo(θ, h)|h ∈ dom(r)}. (4.8)
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By the surface definition, an SoR surface point xo is constrained to belong to some parallel

and to some meridian. This yields the surface-parallel intersection constraint

x2
o + y2

o = r(h)2, (4.9)

and the surface-meridian intersection constraint

xT
om = 0. (4.10)

Additionally, the normal no of any SoR surface point xo must also be contained in the same

meridian, yielding the normal-meridian coplanarity constraint

(ẑo × no)Txo = 0. (4.11)

All geometric constraints for SoR contour generators are shown in Figure 4.5. These con-

straints are encoded in the methods of Wong et al. (2002) and Colombo et al. (2005) to

achieve metrix generatrix reconstruction.

4.4. Occluding contour and generatrix bijection

Recall that the contour generator of a surface is a function of the projection center and

surface shape, and that the occluding contour of an SoR is the central projection of the 3D

contour generator onto some surface of projection. In this section, the bijection between

the occluding contour and generatrix is shown with a calibrated camera in a canonical pose.

Combined with the projective bijections of Section 3.3 and the projection center equivalence

relation of Section 4.4.2, this is sufficient to extend the bijection to a camera of arbitrary

pose and 4-DoF projection matrix.
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(a) Orthographic side view (xz-plane) (b) Orthographic top view (xy-plane)

Figure 4.6: Canonical camera pose representation. As shown by the two orthographic views,
the canonical camera pose places the camera center oc at height ĥ above the xy-plane and
at a distance of d̂ along the xy-plane away from the object origin at oo. The normal of the
image plane intersects the central axis perpendicularly. The result of this configuration is
that any SoR appears symmetric in the canonical image.

4.4.1. Canonical camera

Th canonical camera is defined as an upright calibrated camera in the object coordinate

system, with its z-axis perpendicular to and intersecting the central axis ẑ of the SoR. It

has a projection center of the form cto = (d̂, 0, ĥ)T in the object coordinate system, where

d̂ is the camera’s distance from the SoR origin along the xy-plane, and ĥ is the camera

height. The pose of the canonical camera with respect to the object frame is represented

succinctly by the homogeneous transform

oFg =


0 0 −1 d̂

1 0 0 0
0 −1 0 ĥ

0 0 0 1

 , (4.12)

which is depicted in Figure 4.6. Most reconstruction methods define such a canonical view

(Wong et al., 2002; Utcke and Zisserman, 2003; Colombo et al., 2005) into which the input

image in transformed as a penultimate step in generatrix reconstruction.
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(a) Equivalent camera projection centers (b) Equivalent camera image

Figure 4.7: Projection center equivalence. (a) illustrates the set of camera poses that are
equivalent due to the object’s symmetry about its z-axis. Rotating the camera around the
z-axis of the static object is the same relative motion as rotating the rotationally symmetric
object about its axis with the camera static. (b) shows the image seen from ot that has
invariant apparent contours for all equivalent poses.

4.4.2. Center of projection equivalence relation

Surfaces of revolution have the convenient property of circular symmetry; the surface maps

onto itself under rotation about its central axis ẑ by any arbitrary angle. This can be seen

by examining the surface point set, as shown in Section 4.2.1. Due to this property, the

same shape is seen by a static camera as an SoR rotates about ẑ. Expressing this relative

motion from the perspective of a static SoR and a revolving camera, a set of camera centers

emerges that all produce the same contour generator. Such an equivalent set of camera

centers is illustrated in Figure 4.7.

To describe the equivalence class of projection centers, we define the following equivalence

relation:

(ta ∼ tb)↔ (ta = Rz(φ)tb for some angle φ).

It can be easily verified that this is a proper equivalence relation as it is reflexive (φaa = 0),

symmetric (φab = −φba), and transitive (φac = φab+φbc). We define the canonical representative

of an equivalence class for any class representative to = (x, y, z) as

(
d̂, 0, ĥ

)T
=
(√

x2 + y2, 0, z
)T

. (4.13)
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The canonical representative illustrates a reduction in degrees of freedom and simplifies the

treatment of an arbitrary projection center.

4.4.3. Contour generator from generatrix

Combining the general contour generator constraints (Appendix 4.1) with the SoR parallel

and meridian constraints (Section 4.3), the points ox of the contour generator at height

h are specifically the points of parallel Ph with tangent planes that include the projection

center otc. The coplanarity of points otc and ox ∈ Ph on the tangent plane of ox with

normal on is described by the following system of equations:

onT(ox− otc) = 0

x2 + y2 = r(h)2.

Solving this system of equations for x and y yields:

x = (r2 + rp(ĥ− h))/d̂

y = ±
√
r2 − x2, (4.14)

with r = r(h), p = ρ(h); see Appendix A.1.1 for full derivation.

This formulation admits two contour generator points ox+ = (x,+y, h) and ox− = (x,−y, h)

due to the signed square root in Equation 4.14. These two solutions, the “left” and “right”

contour points, are indeed expected and demonstrate that the contour generator has sym-

metry through the xz-plane. These forms are derived similarly to the rendering equations

developed in Glachet et al. (1992).

4.4.4. Contour generator from occluding contour

Given image point xc, with corresponding homogeneous tangent line lc expressed on the

canonical image plane with known projection center, their back-projection is constrained to
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uniquely determine the corresponding generator point.

Transforming these homogeneous vectors into the SoR coordinate system, we have the

direction vector
ox = (xo, yo, zo)T (4.15)

of the camera ray
ox̃ = λox + otc (4.16)

that must be tangent to and intersect the SoR surface and some point ox̃, and the homo-

geneous tangent line
ol = (u′o, vo, wo)T (4.17)

that encodes the surface normal. The 3D normal component uo along the x-axis is lost

under projective division, yielding the projection u′o. The normal is recovered as

on ∝

uovo
wo

 , uo = −yovo + zowo
xo

(4.18)

using the tangent constraint Equation 4.2 (see Appendix A.1.2). The depth value λ of

Equation 4.16 is recovered as

λ = µd̂, µ = vo
uoyo − voxo

(4.19)

by applying the meridian constraint of Equation 4.10 (see Appendix A.1.3). With a known

distance λ, the 3D contour generator point ox̃ is recovered by direct substitution. These

equations are derived similarly to the reconstruction equations of Wong et al. (2002).

Using Equation 4.19 to introduce data term µ, the contour generator camera ray Equation

4.16 is rewritten as an explicit function of the representative camera center otc = (d̂, 0, ĥ)
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of the form x̃oỹo
z̃o

 = µd̂

xoyo
zo

+

d̂0
ĥ

 =

(µxo + 1)d̂
µyod̂

µzod̂+ ĥ

 (4.20)

4.4.5. Generatrix from contour generator

Given the 3D contour generator point ox̃ and surface normal on expressed in object coor-

dinates, the generatrix values of r(h) and ρ(h) are uniquely determined. The generatrix

height h is simply zo, with

r(h) =
√
x2
o + y2

o . (4.21)

Equation 4.4 relates generatrix derivative ρ to 3D surface normal on, allowing it to be

recovered by normalizing wo as

ρ(h) = wo√
u2
o + v2

o

. (4.22)

4.4.6. Generatrix and occluding contour bijection

Assuming a calibrated camera with known pose, a bijection between the generatrix and the

occluding contour is formed by composition. To obtain the occluding contour from a known

generatrix:

1. Compute 3D contour generator points from the generatrix using Section 4.4.3

2. Transform 3D contour generator points from object to camera coordinates

3. Project 3D contour generator points to the image plane

To recover the generatrix from an occluding contour:

1. Transform homogeneous image points and tangents to the canonical image plane

2. Compute 3D contour generator points using Section 4.4.4

3. Compute the generatrix from the 3D contour generator using Section 4.4.5
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(a) Canonical view (b) Symmetric view (c) Representative view (d) General view

Figure 4.8: Forward-projection decomposition. The forward projection of an SoR is com-
posed of a sequence of rotations. Pose recovery proceeds backwards from right to left.

4.5. Forward projection and pose decomposition

Recall from Equation 3.1 that object points ox are expressed in camera a coordinates as

ax = aRo
ox + ato,

where aRo and ato represent the rotation and translation components of the pose, respec-

tively. In calibrated camera coordinates, this equation also represents the forward projection

of the object point into camera space. In prior work, the SoR pose in camera space is re-

covered via a myriad of means, with each method implicitly or explicitly parametrizing this

equation in terms of the geometry it exploits.

For example, Glachet et al. (1992) uses bi-tangent points and cross sections to estimate the

central-axis orientation ẑ, restricting one of the three vectors of aRo. Wong et al. (2002);

Utcke and Zisserman (2003) partially recover aRo as a homography that is composed with

a 1-parameter projective transform, representing an unknown SoR attitude. Wong et al.

(2002) recovers this attitude using a visible cross section, and recovers ato as a one degree-

of-freedom translation vector using the rotational symmetry property of SoRs.

By assuming a known camera calibration matrix K and examining all prior methods in

Euclidean space, the various pose parametrizations can be seen to describe a common set

pose variables. Explicitly decomposing the SoR pose in terms of these variables, the SoR
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forward projection equation is factorized into five distinct transforms that each encode

various geometric parameters:

gx̃ = gRr︸︷︷︸
1

rRs︸︷︷︸
2

sRc︸︷︷︸
3

cRo︸︷︷︸
4

ox̃︸︷︷︸
5

+ gRr
rto︸ ︷︷ ︸

1

. (4.23)

Each of these factors (1-5) relate to previously discussed concepts that are used in some

fashion in prior work.

1. The general pose is related to the representative pose by arbitrary rotation θ about ẑ,

yielding the 2-DoF representative center of projection rto = (d̂, 0, ĥ)T (Section 4.4.2).

2. The representative pose is (non-uniquely) related to the symmetric pose by sRr,

encoding the 2-DoF camera roll and yaw, with arbitrary pitch.

3. The symmetric pose is related to the canonical pose by a camera pitch attitude of φ.

4. The canonical camera pose is related to the canonical SoR pose by a fixed transform

(Section 4.4.1).

5. The contour generator is computed from SoR generatrix as a function of d̂ and ĥ

(Section 4.4.3).

Transforms 1-3 (illustrated in Figure 4.8) encode five recoverable degrees of freedom (roll,

pitch, attitude, distance, height), and one ambiguous degree of freedom (rotation about ẑ).

While various components of this decomposition are used in many works, the forward pro-

jection equation has not been previously represented in an explicit and fully parameterized

form. This form is explored in subsequent chapters to accomplish pose recovery under a

variety of novel conditions. Starting with a generic pose, each step of the forward projection

when applied in reverse transforms the input to a more specialized pose, passing through

the representative, symmetric, and canonical poses, in order.
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4.5.1. Representative pose

A general pose is an arbitrary full 6-DoF 3D pose. It is reduced to a 5-DoF pose by

considering only poses with a projection center in the form (d̂, 0, ĥ)T in object coordinates.

This representative pose utilizes the projective center equivalence relation defined in Section

4.4.2. The representative pose (Figure 4.8c) is transformed to the general pose (Figure 4.8d)

by an arbitrary rotation θ about the central axis ẑ. The image of the contour generator is

invariant to such a rotation. All prior methods implicitly use the representative pose.

4.5.2. Symmetric pose

A symmetric pose is any camera pose where the camera’s z-axis intersects the central axis

ẑ. A representative pose is related to the symmetric pose by the 2-DoF rotation matrix sRr

that encodes the camera roll and yaw. As shown in Section 3.3, the images of two cameras

with the same camera center are related by a homography equal to the rotation relating

them. In other words, an image of the SoR in the representative pose is transformed to

the image of an SoR in the symmetric pose by the homography sRr. The image of an SoR

in the symmetric pose has symmetry through the projection of ẑ (Figure 4.8b), while the

corresponding contour generator is symmetric through the xz-plane of the SoR coordinate

system. Projectively transforming the input image to the symmetric pose, via rotation or

homography, is the first step of all reconstruction techniques (Wong et al., 2002; Utcke and

Zisserman, 2003; Colombo et al., 2005).

4.5.3. Canonical pose

The rotation of the canonical pose is a fixed transform relating the camera and the object

coordinate systems, as defined in Section 4.4.1. The symmetric pose is related to the

canonical pose by cRs, a 1-DoF rotation of angle φ about the camera’s x-axis. By this

relationship, the canonical pose is a specialization of a symmetric pose, where the camera’s

z-axis both intersects and is perpendicular to the central axis ẑ. The image of an SoR

in the symmetric pose can to be a linear stretching of the canonical image (Figure 4.8b).
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The rotation between the representative image and the canonical image of an SoR is by

the definition of the bijection between the occluding contour, contour generator and SoR

generatrix. The transform from the symmetric pose to the canonical pose is computed

implicitly for any approach that computes the SoR attitude (Glachet et al., 1992; Wong

et al., 2002; Colombo et al., 2005).

4.6. Symmetric axis recovery via cylindrical projection

A point on the infinite unit cylinder with central axis ẑ is expressed in cylindrical coordinates

as (θ, h)T, where θ is the azimuth angle and h is the height along ẑ. A point ox = (x, y, z)T

on the unit image sphere is projected to the cylinder as

(θ, h)T = (arctan2(y, x), z)T (4.24)

with an inverse projection of

(x, y, z)T = (cos θ, sin θ, h). (4.25)

The representation of an SoR under this axis-aligned cylindrical projection exhibits several

useful properties. Given that the central axis of the SoR is parallel with the central axis of

the cylinder, the following statements are true:

1. The SoR central axis ẑ projects to a vertical line at azimuth θ on the cylinder.

2. The SoR’s occluding contours are symmetric through the vertical line at azimuth θ.

Assuming the normal nz of ẑ is known, then the rotation Rẑ that aligns the SoRs axis to

a canonical upright cylinder is represented in angle-axis form with angle

θ = arccos
(nz · (0, 0, 1)

||nz||

)
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(a) Image plane projection (b) Axis-aligned cylinder projection

Figure 4.9: Symmetry of an SoR under cylindrical reprojection. SoRs with the same central
axis normal appear to have different tilts on the image plane (a) do to perspective distortion.
However, when they are projected onto a cylinder that is aligned with the central axis, they
all are represented as symmetric, with a height that is proportional to the radial distance
from the camera center.

and axis

v = nz × (0, 0, 1).

After the image sphere is rotated by Rẑ and projected to the cylinder, any SoR with ẑ

parallel to nz will appear as symmetric, regardless of translation from the camera (see

Figure 4.9). As SoRs move away from the camera, they will appear to translate upwards in

the cylindrical image. The cylindrical image provides an additional convenience in that it

can be unwrapped and represented as a flat image, allowing for traditional image processing

techniques.

To locate the image of the SoR central axis, it is sufficient to examine a single cylinder

height (horizontal scanline) and identify the azimuth coordinates of the two points that are

symmetric with respect to the axis. The azimuth angle θ of the symmetric axis is simply

the midpoint these two azimuth coordinates. If the SoR contours are known, then such

midpoint azimuths are obtained by averaging points with corresponding cylinder heights.

If the contours are not known, then a symmetry operator such as defined in Reisfeld et al.

(1995) can be applied to produce azimuth angle hypotheses. Any such azimuth θ back-
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projects to a line l in the image plane.
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Part III

Models and Methods
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5 Datasets

This chapter presents three datasets that are designed to evaluate the performance of the

pose and shape recovery techniques of the major thesis contributions. The effect of several

variables on performance is measured with respect to the accuracy of the recovered pose

parameters (d̂, ĥ, φ), and shape (generatrix radii) as compared to the groundtruth.

Specifically, the three datasets;

• View-plane dataset – images of a single opaque SoR taken within a plane of camera
positions (d̂, ĥ),

• Synthetic view-plane dataset – synthetic images in the same view-plane produced with
various parameters,

• Transparent SoR dataset – images of a single transparent SoR taken in various scenes
and poses,

are used to evaluate the effect on performance of the variables;

• Noise – sensor noise, contour discretization and localization,

• SoR shape – generatrix radii r(h) of heights h,

• Camera position – camera height ĥ and distance d̂ from the SoR origin,

• Camera baseline – difference in camera height ∆ĥ and depth ∆d̂ between two views,

• Number of views – image sample count k from which evidence is aggregated.

5.1. View-plane dataset

Camera pose is an important parameter for experimental evaluation. In the single-view

context, the most relevant aspects of the camera pose is the camera height ĥ and distance
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Figure 5.1: View-plane sample points with respect to SoR origin. The representative camera
pose is parameterized as a function of camera depth d̂ from the SoR origin and height ĥ
above it. The view-plane dataset samples this space with images taken from positions (d̂, ĥ)
that approximately form a grid. These sample points are visualized as black dots, shown
in relation to the SoR with blue contours.

(a) Near-view sample (b) Far-view sample

Figure 5.2: Extremal views from the sampled view plane. Image (a) shows the nearest
view with respect to the SoR origin, while image (b) shows the farthest. Represented with
the same scale, these images show the variability in SoR apparent size over the sampled
view plane. The vertical rulers are perpendicular to the supporting plane and in a known
configuration with respect to the SoR. They allow for accurate normal, scale, and translation
estimation of the SoR pose.
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d̂ from the SoR origin. In a multi-view context, the baseline between views is also an

important attribute, defined as the difference in depth ∆d̂ and height ∆ĥ.

To measure the effects of these parameters, a dense sampling of the parameter space is

captured with a calibrated Point Grey Bumblebee color camera for a single SoR. Such sample

points, of the form (d̂, ĥ), approximate a grid within a plane of image views along the depth

and height axes (see Figure 5.1), called a view plane. There are 900 view-plane samples with

45 depth values in 100mm increments and 20 height values in 135mm increments spanning

a 45cm×27cm area. This range provides good variability in the apparent size of the SoR,

with the closest view to the SoR (Figure 5.2a) at a depth of 30cm and a height of 3cm, and

the farthest view (Figure 5.2b) at a depth of 85cm and a height of 30cm.

The groundtruth SoR poses are estimated using two vertical rulers that are perpendicular

to the supporting plane and in a known configuration with respect to the SoR. Identification

of the two parallel ruler lines in the image provide the 3D supporting plane normal as well

one degree of freedom of the SoR’s origin. The ruler markings provide scale and height

information to fully determine the translation between the camera and SoR.

Color threshold segmentation is used to compute the apparent contours for all views. Gener-

atrix reconstructions are estimated from these contours for all views, and the groundtruth

generatrix is taken as the mean generatrix over all reconstructions. Figure 5.3a shows

all 900 estimated generatrices along with the mean reconstruction and standard deviation

bounds. Examining the generatrix closely in Figure 5.3b and Figure 5.3c, most generatrices

fall within the 0.4mm standard deviation from the mean generatrix. This consistency lends

confidence to the groundtruth pose estimations and also provides a baseline for the expected

variance from the groundtruth for any reconstruction experiments.

5.2. Synthetic view-plane dataset

The view-plane dataset allows for the evaluation of camera pose parameters on actual

sensor data, however it fails to provide a means to tractably test several other parameters
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(a) SoR reconstructions of the view-plane dataset

(b) Enlarged left region (c) Enlarged right region

Figure 5.3: Reconstructed SoR generatrices from the view-plane dataset with aggregated
statistics. All reconstructed generatrices from the view-plane dataset are presented in (a),
with the solid black line representing the average reconstruction and the dotted black lines
representing the computed standard deviation of 0.4mm from this average reconstruction.
Two regions on the left and right side of (a) are outlined with a black box and enlarged in
(b) and (c) for greater detail. Notice that most reconstructions fall within the black dotted
lines representing standard deviation in radii over all reconstructions.

of interest. To conduct experiments over varying sensor noise models and SoR shapes, the

view-plane dataset is replicated synthetically for every desirable test configuration.

Zero-mean Gaussian noise parameterized by variance σ is combined with optional synthetic

apparent contour discretization to yield 10 different sensor noise models, as enumerated in

Table 5.1. A database of 49 SoR generatrices created from real objects (see Figure 5.4)

produces a large experimental parameter space, with (900 poses) × (10 noise models) ×

(49 shapes) choices yielding a half-million single-view configurations. This number is on

the order of hundreds of millions when considering two-view configurations. Due to this

multiplicity, at least one of these parameters is typically held constant in experimental

setups while the others are explored.
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Figure 5.4: Synthetic SoR models and corresponding identification numbers. The SoRs
corresponding to 49 generatrices that compose the synthetic dataset are represented in
this figure, shown above their corresponding identification numbers. SoR-34 represents the
object that is imaged in the real dataset views.
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Noise model Discretized? Sensor σ (px)
Synth-0 No 0.00
Synth-1 Yes 0.00
Synth-2 Yes 0.25
Synth-3 Yes 0.50
Synth-4 Yes 0.75
Synth-5 Yes 1.00
Synth-6 Yes 1.25
Synth-7 Yes 1.50
Synth-8 Yes 1.75
Synth-9 Yes 2.00

Table 5.1: Synthetic contour noise model parameterizations. Synthetic views are generated
with one of ten noise models, parameterized by the variance σ of a zero-mean Gaussian and
whether the output signal is continuous or discretized. Such discretization simulates the
effect of sensor pixel sampling.

5.3. Transparent stereo dataset

black round clutter1 clutter2 clutter3 clutter4

Figure 5.5: Transparent SoR stereo setup exemplar images. The transparent stereo dataset

is composed of one SoR seen from multiple viewpoints in six scenes and two configurations,

both empty (top row) and filled with water (bottom row). The corresponding scene identifier

is presented underneath each column.
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A stereo dataset of transparent objects is used to evaluate the performance of a stereoscopic

cue for the reconstruction of optically challenging surfaces of revolution. This dataset

contains 120 images containing a single SoR (SoR-34 as identified in the synthetic dataset) as

seen from 10 known cameras poses in 12 different scene configurations. These configurations

are shown in Figure 5.5 and include both an empty and water-filled glass placed within six

different background settings.

Four settings have background clutter objects resting atop a black or wood textured sup-

porting surface. The remaining two settings are clutter-free, one with a plain black surface

and the other with a speckled surface texture. The pose of the SoR and supporting plane is

known via the use of a checkerboard calibration target that is imaged with a static camera

and swapped out for the object in a known relative position.
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6 Symmetry rotation recovery and
3D axis triangulation

The identification of the SoR central-axis image projection provides two degrees of freedom

of the SoR pose, called the symmetric rotation. Given two SoR views from cameras that

are related by a known transformation, the 3D SoR central-axis is triangulated by back-

projecting the 2D SoR central-axes. This chapter presents and evaluates the techniques for

accomplishing these two tasks.

6.1. Two-point minimal problem for symmetry recovery

The pose of an SoR is decomposed in Section 4.5 to yield two parametrizable transforms.

The first is sRr, which transforms the SoR’s xz-plane to be coplanar with the camera’s

yz-plane by encoding the camera’s roll and yaw. The second is cRs, encoding the camera’s

attitude φ and aligning the camera’s z-axis to be perpendicular to the SoR’s z-axis.

From the definition in Section 4.4.3, the contour generators of an SoR are symmetric through

the SoR’s xz-plane. From the bijection of Section 3.3, it is equivalent to consider occluding

contours as the projection of the contour generator onto the image sphere. Under such a

spherical projection, the 3D contour generators that are symmetric through the xz-plane

project to 2D occluding contours that are symmetric through the great circle representing

the projection of the SoR’s central axis, ẑ.

Exploiting this property of occluding contour symmetry, the xz-plane normal, the projection

of ẑ, and associated symmetric rotation are recovered using a two-point minimal problem

(Phillips and Daniilidis, 2016). If two occluding contour points a and b are known to be
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(a) Occluding contours on the image plane (b) Occluding contours on the image sphere

Figure 6.1: Symmetric points and axes for the symmetry rotation minimal problem. Two
corresponding SoR points a and b are homologous on the image plane (a) through the
projection of central axis ẑ, and are symmetric through the great circle projection of ẑ onto
the image sphere (b). The axis ŷ represents the normal of the great circle. From two points
alone, it is not possible to find the attitude of ẑ, which may point towards anywhere on the
great circle.

symmetric correspondences, then the pose of ẑ is recovered up to an unknown attitude,

providing transform sRr.

6.1.1. Two-point minimal problem

Given two SoR occluding contour points a and b that are homologous on the image plane

(Figure 6.1a) and therefore symmetric on the image sphere (Figure 6.1b), the symmetric

rotation is recovered as follows.

The y-axis is the normal of the xz-plane and its corresponding great circle on the image

sphere. It must be parallel to the line segment connecting a and b, so it is recovered as

ŷ = b− a
||b− a|| . (6.1)

The z-axis is projection of the central axis ẑ, with unknown attitude φ relating it to the
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true central axis. It must be orthogonal to a and b on the image sphere, respecting

ẑ = a × b
||a × b|| . (6.2)

To complete the orthonormal basis sRr = (x̂, ŷ, ẑ)T, the remaining x-axis is constrained to

be

x̂ = ŷ× ẑ
||ŷ× ẑ|| . (6.3)

The symmetry rotation is explicitly defined in terms of corresponding points a and b as

sRr =

 ŷ× ẑ
||ŷ× ẑ|| ,

b− a
||b− a||︸ ︷︷ ︸

ŷ

,
a × b
||a × b||︸ ︷︷ ︸

ẑ


T

. (6.4)

The reflection homology, Hz, that maps one occluding contour onto the other is defined

using sRr as

Hs = sRr
TDsRr. (6.5)

Considering a point being transformed from right to left, sRr rotates the point to be

symmetric about the camera’s y-axis, the reflection matrix

D = diag(1,−1, 1) (6.6)

reflects it about the y-axis, and rRs rotates this reflected point back to the representative

pose.

6.1.2. Minimal problems and parameter estimation

Minimal problems allow for the estimation of the parameters encoded by a potentially large

set of data points using a minimal number of data points. In the case of the symmetric

estimation problem, only two symmetric points are required to recover the axis of symmetry
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that is respected by the symmetric apparent contours. If the minimal problem is applied

to two apparent contour points that are not symmetric, then the resulting parameters

will be incorrect. Minimal problems therefore require “correct” input points that encode

the parameters being estimated in order to produce a valid solution. Without a priori

knowledge of such points, one strategy to parameter estimation follows the insight from

Fischler and Bolles (1981) and the now classic RANSAC algorithm. The procedure for an

n-point minimal problem is outlined as follows:

1. Sample an n-point input from some subset Sinput of the input point power set

2. Use the minimal problem to compute the corresponding parameter model Ω

3. Evaluate the parameter fit over all data points using some error function ferr

4. Repeat steps 1-3 some stop criterion is reached

5. Use the parameter model Ω̂ with the best fit over all data points

6. Optionally refine the parameter model over all data points using fref .

The choice of input space Sinput, error function ferr, stopping criteria, and fref are im-

plementation details that are specific to the problem domain. For problems in which two

contours A and B are aligned by the application of model parameters Ω, it is useful to

define a nearest-neighbor correspondence set Cnn. This set contains the indices (i, j) of

contour points ai ∈ A and bi ∈ B that are less than dmax apart after transformed by Ω. If

|C| is the number of correspondences, then the error function may be expressed as

ferr =
{
∞ |Cnn| < k
1
n

∑n
i |ai − Ω(bi)|2 otherwise

,

where k in the minimal required number of correspondences and Ωbi is the point bi

remapped by parameter model Ω to align with ai.

6.1.3. Symmetric rotation estimation and refinement

Given two contours A and B that are assumed to belong to the profile of an SoR, the two-

point minimal problem provides a means for generating hypotheses for sRr by applying
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Equation 6.4 to any point pair (a?,b?) ∈ {A × B}. The homology Hz corresponding

to rotation sRr maps a point b onto a as Hzb. Using this mapping to specialize the

correspondence residual function of the hypothesis search procedure in Section 6.1.2 as

1
n

n∑
i

|ai −Hzbi|2 , (6.7)

the best unrefined rotation estimate is recovered and denoted as [sRr]0.

This initial rotation can be iteratively refined following the assumption that the rotation

estimate [sRr]k yields corresponding contours kA and kB that are closely aligned, yet

related by a small refinement rotation R∆as

ka = R∆
kb, (6.8)

which decreases the correspondence residual

1
n

n∑
i

∣∣∣kai −R∆
kbi
∣∣∣
2
. (6.9)

By repeated estimation and application of such refinement matrices, the symmetric rotation

is iteratively improved as

[sRr]k+1 = [R∆]k [sRr]k . (6.10)

Symmetric rotation refinement is summarized as follows:

1. Use the current symmetric rotation estimate [sRr]k to compute aligned nearest cor-

respondence contours kA and kB.

2. Compute [R∆]k that minimizes the correspondence residual (Equation 6.9).

3. Rotate [sRr]k by R∆ to yield the new estimate [sRr]k+1.

4. Repeat steps 1-3 until convergence or iteration stop criteria is reached.
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Figure 6.2: Central axis triangulation by intersection of back-projection planes. Since the
relative pose of the two image planes πa and πb are known, the spatial relationship between
the measured image lines la and lb are also known. These lines back-project into planes
that intersect at the 3D line ẑ.

See Appendix B.1 for the computation of R∆.

6.2. Two-view 3D central axis triangulation

Given two calibrated stereo views with known 2D central-axis projections, the 3D central-

axis is recovered from the intersection of two back-projected planes. Section 6.1 provides

a means for recovering the 2D projection of the SoR central axis ẑ. Recall from Section

3.2.5 that the back-projection of a 2D line is a 3D plane through the camera center, the

normal n of which is equal to the homogeneous line representation l in the calibrated camera

coordinate system. A calibrated stereo camera system provides the relative point transform

between camera a and camera b as

ax = aRb
bx + atb (6.11)

and the relative normal transform as

an = aRb
bn, (6.12)
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where aRb is the rotation from camera b to camera a, and atb is the origin of camera b

expressed in the coordinate system of camera a.

Using these transforms, the 3D central axis is triangulated by computing the intersection

of the two back-projection planes in the same coordinate system, as shown in Figure 6.2.

The normals of the two planes expressed in camera a are expressed as

ana = ala (6.13)

anb = aRb
blb, (6.14)

where the left superscript denotes coordinate frame and the subscript denotes the entity.

The planes must contain the camera centers, yielding two known plane points

apa = 0 (6.15)

apb = atb. (6.16)

The line of intersection of these two plane-point representations yields the ẑ direction vector

nz as well as plane point pz. The attitude φ of cRs that maps the symmetric pose to the

canonical pose is directly recovered from nz as the signed angle between (0, 1, 0)T and Rr
snz.

The representative center of projection rto = (d̂, 0, ĥ) is directly recovered from pz via

Equation 4.13, where ĥ specifies an arbitrary reference point for height in the case that

there is no generatrix known a priori. After triangulation, all missing pose parameters of

the forward projection Equation 4.23 are specified, yielding the SoR pose cFo in the camera

frame and allowing for recovery of the SoR generatrix.

6.3. Surface of revolution generatrix recovery

The bijections derived in Section 4.4 provide a means of recovering the contour generator and

generatrix r(h) of an SoR from the occluding contour image points and tangents, assuming

knowledge of its pose in the camera frame Fo
c as well as camera intrinsics K.
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(a) Imaged apparent contours (b) Synthetic apparent contours (c) Metric generatrix
reconstruction

Figure 6.3: Metric generatrix reconstruction from occluding contour. Figure a. shows the
apparent contours of an SoR with known pose from a camera with known camera intrinsics.
The resulting generatrix from the Euclidean-based reconstruction is shown in figure c, which
is used to generate the synthetic apparent contours of figure b.

In this chapter, the pose cFo is recovered piecewise via the forward-projection decomposition

equation, 4.23, as follows:

1. Symmetric rotation sRr: The 2D projection of the central axis ẑ, and therefore the

symmetric rotation is estimated using the two-point minimal problem presented in

Section 6.1.

2. Camera attitude φ: The known relative camera transform aFb is used to triangulate

the 3D-axis in Section 6.2 by intersecting the back-projection planes of the estimated

central axis, yielding a line in point-vector form. The vector directly encodes φ.

3. Camera center (d̂, 0, ĥ)T : Any point on the recovered 3D axis line yields d̂ when

rotated into the canonical pose using φ to parameterize the rotation cRs. The camera

height ĥ is a free variable and can be arbitrarily chosen.

The requirement of a known relative camera transform to recover the SoR pose with respect

to each image is relaxed in Chapter 8, with the above steps 2 and 3 replaced with minimal

problems using occluding contour points and tangents.
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Regardless of the method used for SoR pose recovery, generatrix recovery is summarized as

follows:

1. Transform points and tangents to the calibrated coordinate system using K−1.

2. Compute the SoR canonical pose in the camera, cFr via whichever method available.

3. Transform points and tangents to the canonical view via homography cHr = cRr.

4. Compute the contour generator via the constraints of Section 4.4.4.

5. Compute the generatrix as r(z) =
√
x2 + y2 for each generator point x̃o = (x, y, z).

Figure 6.3 shows an example recovered generatrix from a real image using this method.

6.4. Symmetry rotation recovery evaluation

The first transform that is estimated in the forward-projection decomposition is the 2-DoF

symmetric rotation that encodes the projection of the SoR central axis in the image. The

accuracy of the estimated symmetric rotation is expressed with respect to the groundtruth

by two different metrics. The first metric is the average distance between the estimated and

groundtruth central-axis projections in the image, expressed in pixels. This encompasses

both error in axis orientation and translation. The second metric is the angle between these

two central axis projections on the calibrated camera plane, capturing only orientation

information.

The performance of the symmetric rotation estimation technique is evaluated with respect

to sensor noise and camera position. This is achieved by the use of both real and synthetic

datasets defined over a plane of camera view locations. Additionally, the improvement due

to the iterative infinitesimal symmetric pose refinement technique is quantified for a fixed

SoR over the view plane.

For two apparent contours A and B, the space of input points for the minimal problem is

defined as the Cartesian product of all points in A and every tenth point in B.
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Distance error (px) Angle error (deg)
Noise model Initial Refined Initial Refined
Real 0.09 0.07 0.04 0.03
Synth-0 0.03 0.01 0.01 0.00
Synth-1 0.49 0.49 0.02 0.01
Synth-2 0.51 0.50 0.02 0.01
Synth-3 0.53 0.51 0.02 0.01
Synth-4 0.55 0.53 0.04 0.02
Synth-5 0.83 0.70 0.24 0.15
Synth-6 0.94 0.78 0.27 0.19
Synth-7 0.86 0.75 0.19 0.15
Synth-8 0.93 0.78 0.23 0.13
Synth-9 1.04 0.88 0.29 0.18

Table 6.1: Effect of iterative refinement on symmetric pose geometric error. The geometric
error of a given symmetric axis is measured in terms of the average axis distance in pixels
and the angular distance in degrees from the groundtruth axis of symmetry. Summarized
in this table is the error of the initial estimate versus the iteratively refined estimate for the
real and synthetic datasets over the range of noise models.

6.4.1. Effect of sensor noise model and iterative refinement

The synthetic view-plane dataset defines 10 noise models (see Figure 5.1). Combining the

900 SoR images of the view-plane dataset with the simulated images of the synthetic view-

plane dataset, the effect of sensor noise on symmetric pose estimation is evaluated with

11 sensor models on 900 views each for a total of 9,900 sample points. Table 6.1 presents

the mean pixel distance and axis-angle error for each sensor model, both before and after

refinement by the iterative infinitesimal rotation. Performance on the real sensor data is

similar to the Synth-4 model with respect to angle error. With respect to pixel distance

error, it performs similarly to the Synth-0 and Synth-1 models. This suggests that the

contour localization error on the real dataset is bounded by 0.75, the error used for the

Synth-4 noise model. The improvement due to refinement becomes much more appreciable

as the sensor noise increases, with a greater improvement in angular error over pixel distance

error.

6.4.2. Effect of camera position and iterative refinement

Camera positions that are expressed in the representative pose span a plane with points

parameterized by depth d̂ and height ĥ as measured with respect to the SoR origin. The
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(a) Initial symmetric axis pixel errors
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(b) Refined symmetric axis pixel errors

Figure 6.4: Estimated and refined symmetric axis distance errors per view-plane sample
point. The error in symmetric axis angle (in pixels as indicated by the color bar) for the
initial (a) and refined (b) poses are aggregated over all 49 SoR models with synthetic views
generated using the Synth-4 noise model. Each square represents the mean of 49 error
values for a camera with depth d̂ (x-axis) and ĥ (y-axis), with darker values corresponding
to smaller errors.
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(a) Initial symmetric axis-angle errors
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(b) Refined symmetric axis-angle errors

Figure 6.5: Estimated and refined symmetric axis-angle errors per view-plane sample point.
The error in symmetric axis angle (in degrees as indicated by the color bar) for the initial (a)
and refined (b) poses are aggregated over all 49 SoR models with synthetic views generated
using the Synth-4 noise model. Each square represents the mean of 49 error values for a
camera with depth d̂ (x-axis) and ĥ (y-axis), with darker values corresponding to smaller
errors.
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synthetic view-plane dataset provides 900 views of 49 SoR models that are further param-

eterized by any one of 10 sensor noise models. The effect of camera position on symmetric

pose estimation is evaluated over all 900 views and 49 SoR models with the Synth-4 noise

model, yielding 44,100 sample points.

Figures 6.4 and 6.5 show the average pixel distance and angle error, respectively, for each

of the 900 camera positions on the view plane. They show that estimation error tends to

increase as the distance of the camera from the SoR increases. This relationship is explained

by the fact that as the apparent size of the object decreases, the sensor noise model remains

constant. The signal-to-noise ratio therefore decreases as an object recedes into the distance,

resulting in the degradation of the symmetry estimation quality.

Figures 6.4b and 6.5b show the improvement due to iterative refinement over the initial

estimates in Figures 6.4a and 6.5a. The average pixel distance and angle errors for the

initial estimates are 0.65 pixels and 0.14◦ versus 0.62 pixels and 0.11◦, respectively, for the

refined estimate, showing a marginal improvement.

6.5. Two-view 3D axis triangulation evaluation

The pose of an SoR is triangulated from two views that are related by a known relative

transform. Once the symmetric poses of the two views are estimated, the recovered 2D

projections of the central axes are back-projected to two planes that intersect in a line

containing the 3D SoR central axis. The accuracy of the 3D axis triangulation technique is

highly dependent on the accuracy of the symmetric axis estimation.

The accuracy of the triangulated axis is measured with respect to the groundtruth by two

different metrics, capturing error in translation and orientation. Since the position along

the central axis is arbitrary, a 2-DoF translation error is computed that encodes the axis

bearing and distance from the camera. The orientation error is computed as the angle

between the estimated and groundtruth axis direction vectors. The performance of the axis

triangulation technique is evaluated with respect to three factors: the sensor noise model,
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Noise model Translation error (mm) Axis-angle error (deg)
Real 3.1 2.2
Synth-0 0.8 0.9
Synth-1 2.5 1.2
Synth-2 2.8 1.3
Synth-3 2.9 1.3
Synth-4 4.6 2.1
Synth-5 26.5 9.0
Synth-6 30.4 9.6
Synth-7 30.7 9.1
Synth-8 27.9 8.6
Synth-9 23.7 6.6

Table 6.2: Triangulated pose translation and axis estimation errors by dataset. The recov-
ered SoR pose is described by its central axis direction and the 2-DoF translation encoding
its bearing and distance from the camera. These values are compared with the groundtruth
pose locations and aggregated over all 67081 pose configurations per dataset and presented
as the mean error.

camera position, and camera pair baseline.

6.5.1. Effect of sensor noise model

The imaged view-plane dataset is used in conjunction with the synthetic view-plane dataset

in order to evaluate 67,081 view pairs for each of the 11 sensor noise models, for a total of

737,891 samples. The mean translation and axis-angle errors are presented for each sensor

model in Figure 6.2. Performance gracefully degrades between sensor models Synth-0 and

Synth-4, with a maximum translation error of 4.6mm and axis-angle error of 2.1◦. The real

sensor model has similar errors of 3.1mm and 2.2◦ for translation and axis-angle errors,

respectively, suggesting that the real sensor model is approximated by the Synth-4 sensor

model. Translation and angular error spike dramatically starting at the Synth-5 sensor

model, exceeding 25mm translation error and 9◦ angle error. This jump mirrors a notable

increase in symmetric error at the Synth-5 sensor model.

6.5.2. Effect of camera position and baseline

Triangulation requires two views, introducing the potential for the baseline between two

views to affect accuracy independently from the individual camera positions. To explore

this increased parameter space, 67,081 view pairs are evaluated for 49 SoR models, yielding
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(a) Translation error by camera height and depth
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(b) Axis-angle error by camera height and depth

Figure 6.6: Triangulated pose translation and axis estimation errors by camera depth and
height. Pairs of views are selected with varying camera heights and depths. The recovered
SoR pose is described by its central axis direction and the 2-DoF translation encoding its
bearing and distance from the camera. These values are compared with the groundtruth
pose locations and aggregated by closest camera height and depth (d̂, ĥ) in the two corre-
sponding mean error plots (a) and (b).
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(a) Translation error by baseline (b) Axis-angle error by baseline

Figure 6.7: Triangulated pose translation and axis estimation errors by baseline. Pairs of
views are selected with baselines that vary both in camera height ∆ĥ and camera depth ∆d̂.
The recovered SoR pose is described by its central axis direction and the 2-DoF translation
encoding its bearing and distance from the camera. These values are compared with the
groundtruth pose locations and aggregated in by the baseline pairs (∆d̂,∆ĥ) in the two
corresponding mean error plots (a) and (b).

a total of 3,286,969 samples.

Figure 6.6 presents the triangulation accuracy in terms of translation and axis-angle error,

aggregated by the camera position of the closest view to the SoR. This captures the general

influence of distance of the camera to the SoR origin. Following the trend that is seen

with symmetric pose estimation, the triangulation accuracy tends to decrease as the camera

recedes from the SoR. This is not surprising as the accuracy of triangulation depends almost

entirely on the prerequisite symmetric poses.

The effect of increased SoR-camera distance on triangulation accuracy is also seen by ex-

amining the triangulation error based on baseline, as shown in Figure 6.7. While there is

no mathematical reason for a change in baseline as it is defined to influence triangulation

error, accuracy tends to decrease as the baseline depth increases, yet is largely unaffected

by baseline height. Since baseline errors are aggregated over all initial camera positions,

larger baselines samples will encompass views of greater depths on average, and will be

biased towards the increased error corresponding to such depths.
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6.6. Summary

This chapter presented methods for 2D central-axis projection recovery and 3D central-axis

triangulation that do not require bi-tangent points, visible cross sections, or a pseudo-

symmetry assumption. The 2D central-axis projection is recovered using a two-point min-

imal problem that exploits the fact that the projection of an SoR is symmetric on the

image sphere. The 2D central-axis projections of two views with a known relative camera

transform are used to triangulate the 3D central axis. These methods were evaluated over

a variety of noise conditions, poses, and baselines, and were shown to provide stable and

accurate results in the presence of moderate noise, with pose errors that generally increase

with increasing camera-to-SoR distance and increasing baseline depth.
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7 One-point minimal
correspondence problem for
absolute pose

The pose, generatrix, and occluding contours of a surface of revolution are so strongly

geometrically related that any two of these three entities contain sufficient information to

recover the remaining one. The generatrix is recovered in the previous chapter using the

absolute 5-DoF pose and the occluding contours; this chapter presents how the absolute pose

is recovered as a function of the generatrix and occluding contours from a single view. All

prior work on this problem (Dhome et al., 1990; Glachet et al., 1992) requires the presence

of at least one visible cross-section from which the object attitude φ is recovered. Not only

are cross-sections not required for pose recovery, as introduced in Phillips et al. (2016), but

three of the camera pose parameters (attitude φ, depth d̂, and height ĥ) can be recovered

as a one-point minimal correspondence problem. The remaining two parameters of camera,

roll and yaw, are encoded in the symmetric rotation sRr as recovered in Section 6.1.

7.1. One-point correspondence minimal problem

Referring back to the forward-projection Equation 4.23, an occluding contour point sx and

corresponding tangent line sl in the representative image view are related to the canonical

view by a rotation to the symmetric view of sRr, followed by a rotation to the canonical

view of cRs. With a known estimate of sRr, the transformed occluding contour point
cx and tangent cl are dependent on the rotation cRs, which is parameterized by attitude

angle φ. Including the static rotation oRc from the canonical to object coordinates, a vector

(ao, bo, co)T in object coordinates is explicitly parameterized by φ and the vector (as, bs, cs)T
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Figure 7.1: One-point correspondence for absolute pose. The correspondence between the
symmetric occluding contour point v with tangent line l and generatrix point (h, r(h), ρ(h))
is sufficient to compute the three pose parameters (d̂, ĥ, φ).

in symmetric coordinates as

aobo
co

 =

−bs sinφ− cs cosφ
as

−bs cosφ+ cs sinφ

 . (7.1)

Given one point correspondence of the form

(r, h, ρ)↔ (sx, sl), (7.2)

where (r, h, ρ) in the generatrix point corresponding to occluding contour point sx and

tangent line sl in the symmetric view, then the camera pose parameter tuple (attitude φ,

depth d̂, height ĥ) can be recovered as a minimal problem. An example correspondence is

illustrated in Figure 7.1.

7.1.1. Attitude recovery from generatrix derivative

Given an occluding contour point sx with its tangent line sl in the symmetric view, the

attitude φ that relates the symmetric and canonical view can be expressed as a function of

the point’s corresponding generatrix derivative ρ. This is accomplished by the composition

of two equations:
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1. Equation 7.1 relates sl to object coordinates ol as a function of φ.

2. Equation 4.22 relates ol to the corresponding generatrix derivative ρ.

Applying Equation 7.1 to sl and massaging it with the Pythagorean identity,

1 = cos2 φ+ sin2 φ,

allows the ρ-recovery parameterization from Equation 4.22 to be partially rewritten as

ρ = wo√
u2
s + v2

s + w2
s − w2

o

, (7.3)

which simplifies to

ρ = wo√
−w2

o + 1
, (7.4)

by normalizing sl. Solving for wo and representing it in terms of the rotated line sl provides

the relationship between ρ and φ,

(ρ−2 + 1)−1/2 = −vs cosφ+ ws sinφ, (7.5)

expressed as a single sinusoid by the phase shift identity

(ρ−2 + 1)−1/2 = k sin(φ+ ψ) (7.6)

with constants

k =
√
v2
s + w2

s , ψ = arctan2(ws, vs).

The solution is constrained to lie in front of the camera with

−π/2 ≤ φ ≤ π/2.

The intuition behind this geometric constraint is that the generatrix tangent line corre-
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(a) Symmetric occluding contours (b) SoR generatrix

Figure 7.2: Remapped tangent lines as a function of attitude φ. For a fixed occluding
contour point v with tangent line l (a), varying the attitude parameter φ results in a
generator point (h, r(h), ρ(h)) that spans the generatrix space as shown in (b).

sponding to generatrix derivative ρ directly maps to the tangent line ol in the canonical

view, which is then remapped by a rotation of φ about the camera’s x-axis to sl in the

symmetric view. The set of generatrix tangent lines that map to the same tangent line

ls under varying values of φ is shown in Figure 7.2. The value of φ must verify that the

resulting generatrix tangent line matches the known generatrix derivative ρ.

7.1.2. Translation recovery from generatrix point

Given an apparent contour point cx and tangent line cl in the canonical view, along with

its corresponding generatrix point (r, h), it is possible to solve for the representative camera

depth d̂ and height ĥ.

The camera ray Equation 4.20 expresses a contour generator point in terms of cx and cl

expressed in object space as:

x̃oỹo
z̃o

 = µd̂

xoyo
zo

+

d̂0
ĥ

 , (7.7)
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with

ox = (xo, yo, zo)T

ol = (uo, vo, wo)T

µ = v

uy − xv
.

Solving for d̂ using these equations and the known radius r, we have:

r2 = x̃2 + ỹ2 (7.8)

r2 = (µd̂x+ d̂)2 + (µd̂y)2 (7.9)

r2 = (µx+ 1)2d̂2 + (µ+ y)2d̂2 (7.10)

r2 = ((µx+ 1)2 + (µy)2)d̂2 (7.11)

d̂ =
√
r2/((µx+ 1)2 + (µy)2), (7.12)

and

ĥ = z̃ − µd̂z = h− µd̂z, (7.13)

for ĥ using d̂ and the known height h.

Intuitively, tangency information provides the attitude, but not does provide information

about the camera’s height or depth with respect to the object. The correspondence between

generatrix point (r, h) and image point cx constrains the scale of the contour generator by

r, as well as its height in the object’s coordinate system by h.

7.2. Absolute pose recovery evaluation

The absolute pose of an imaged SoR with a known generatrix is recovered using a one-

point minimal correspondence problem. Given a hypothesized correspondence between an

apparent contour point and a generatrix point, a corresponding absolute pose hypothesis is

directly computed. Such a pose hypothesis encodes three degrees of freedom, the represen-
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tative camera depth d̂ and height ĥ as well as the SoR central axis attitude φ. Two natural

metrics of estimated pose accuracy are therefore the translation and attitude error.

The performance of the absolute pose estimate technique is evaluated with respect to three

parameters: sensor noise, camera position, and SoR shape. This is achieved by the use of

both real and synthetic datasets defined over a plane of camera view locations.

7.2.1. Ranked hypothesis generation

The hypothesis generation and scoring procedure discussed in Section 6.1.2 is used to create

a ranked list of absolute pose hypotheses. This procedure requires a space of potentially

corresponding input points for use in the minimal problem. In Phillips et al. (2016), this

space is initialized by using a Procrustes-like (Hurley and Cattell, 1962) algorithm to yield

an approximate apparent contour alignment. To isolate any potential failure in this sub-

algorithm, the correspondence search space is initialized as a dilation from the groundtruth

correspondence set to produce a space of similar size that is guaranteed to contain approx-

imate correspondences.

7.2.2. Rank and recall analysis

Since absolute pose recovery is a hypothesis generation procedure (Section 6.1.2) that pro-

duces a ranked list of hypotheses, there is an inherent hypothesis selection problem that

needs to be addressed to evaluate the technique. The reconstruction error corresponding to

a hypothesized pose is used to rank all pose hypotheses with a sufficient number of inlying

correspondences. This provides a reasonable baseline selection mechanism that allows the

minimal problem to be examined. The estimation error of the best model that is present

below a specified rank is a useful metric for evaluating the overall quality and recall of the

hypotheses produced by the estimation procedure. The closer the error fall-off is towards

rank 1, the better the recall, while the lower the trailing error values, the higher quality the

estimation. Figure 7.3 illustrates such a rank analysis over the 900 views of the synthetic

view-plane database parameterized with noise model Synth-2 and generatrix SoR-34. The
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(a) Translation error (mm) (b) Attitude error (deg)

Figure 7.3: Absolute pose translation and attitude errors by model rank. Absolute pose
hypotheses are ranked by geometric reconstruction error w.r.t. the target SoR generatrix
model. The estimation error of the best model that is present below a specified rank is a
useful metric for evaluating the overall quality and recall of the hypotheses produced by an
estimation procedure. The closer the error fall-off is towards rank 1, the better the recall.
The lower the trailing error values, the higher quality the estimation. The best model is
seen to be contained within the first 50 hypotheses, with an average translation error (a) of
4.5mm and attitude error (b) of 0.32 degrees for the Synth-2 noise model and SoR-34.
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best model is seen to be contained within the first 50 ranked hypotheses, with an average

translation error (Figure 7.3a) of 4.2mm and attitude error (Figure 7.3b) of 0.32 degrees.

7.2.3. Effect of sensor noise model

The imaged view-plane dataset is used in conjunction with the synthetic view-plane dataset

to evaluate 900 views of the generatrix SoR-34 for each of the 11 sensor noise models, yielding

9,900 samples in total. Table 7.1 presents the absolute pose errors by model rank for each

of the sensor models. Pose errors are expressed in terms of translation and attitude error,

with translation error further reported in terms of its depth and height components. At

rank 20, the imaged dataset has approximately the same performance as the Synth-2 noise

model, with an average translation of 4.1mm as compared to 4.3mm. By rank 50, all sensor

models have mostly converged with translation errors growing gradually from 3.3mm for

Synth-1 to 5.2mm for Synth-9. The real sensor dataset has 1.9mm mean translation error

as opposed to 0.8mm for the least noisy model, Synth-0.

7.2.4. Effect of camera position

The synthetic view-plane dataset consists of 900 views and is parameterized with the Synth-

2 noise model for all 49 SoR models to yield 44,100 sample points. The estimation errors

of these views are evaluated with respect to the camera positions parameterized by depth

d̂ and height ĥ. The effect of camera position on pose estimation accuracy is shown in

Figure 7.4. Errors are presented in terms of translation and attitude error, with translation

further reported in terms of its depth and height components. Over all metrics, absolute

pose accuracy is the highest near the SoR and decreases with increased distance. A likely

explanation for this behavior is that the noise-to-signal ratio increases as distance increases

and apparent object size decreases. The absolute pose minimal-problem requires accuracy in

both apparent contour point localization and tangent estimation, a condition that becomes

harder to meet with diminished effective resolution due to distance.
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Error by model rank
Noise model 1st 5th 10th 20th 30th 40th 50th 100th

Tr
an

sla
tio

n
(m

m
)

Real 19.8 10.6 7.2 4.1 2.9 2.3 1.9 1.3
Synth-0 3.0 1.5 1.1 0.9 0.9 0.8 0.8 0.8
Synth-1 7.5 4.7 4.2 3.8 3.6 3.4 3.3 2.3
Synth-2 8.8 5.4 4.7 4.3 4.0 3.8 3.6 2.4
Synth-3 9.8 6.0 5.4 5.0 4.7 4.4 4.1 3.0
Synth-4 13.0 7.1 6.0 5.5 5.1 4.8 4.4 3.5
Synth-5 16.8 7.7 6.7 5.9 5.4 4.9 4.6 3.6
Synth-6 14.4 8.5 7.3 6.3 5.6 5.1 4.7 4.0
Synth-7 16.8 9.3 7.8 6.5 5.6 4.9 4.6 3.9
Synth-8 18.4 10.8 8.6 6.8 5.9 5.3 4.8 3.9
Synth-9 18.9 10.2 8.1 6.8 6.2 5.6 5.2 4.2

A
tt

itu
de

(d
eg

)

Real 2.01 1.07 0.73 0.41 0.28 0.21 0.17 0.12
Synth-0 0.28 0.13 0.09 0.08 0.07 0.07 0.07 0.07
Synth-1 0.54 0.22 0.15 0.13 0.13 0.13 0.13 0.13
Synth-2 0.68 0.26 0.19 0.16 0.16 0.16 0.16 0.18
Synth-3 0.76 0.29 0.23 0.21 0.20 0.19 0.20 0.20
Synth-4 1.08 0.39 0.28 0.24 0.22 0.22 0.23 0.23
Synth-5 1.40 0.43 0.32 0.27 0.26 0.24 0.24 0.24
Synth-6 1.13 0.47 0.37 0.32 0.30 0.28 0.28 0.28
Synth-7 1.34 1.16 0.84 0.96 0.53 0.50 0.30 0.30
Synth-8 1.78 0.97 0.75 0.62 0.58 0.56 0.55 0.53
Synth-9 1.69 0.91 0.52 0.43 0.61 0.58 0.56 0.54

D
ep

th
(m

m
)

Real 3.5 2.2 1.7 1.4 1.2 1.1 1.0 0.9
Synth-0 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.5
Synth-1 4.2 3.8 3.6 3.3 3.2 3.0 2.9 1.8
Synth-2 4.4 4.2 4.0 3.7 3.5 3.3 3.0 1.7
Synth-3 4.8 4.6 4.5 4.3 4.0 3.7 3.3 2.3
Synth-4 5.1 5.0 4.9 4.6 4.3 4.0 3.6 2.7
Synth-5 5.7 5.4 5.2 4.9 4.4 4.0 3.6 2.6
Synth-6 6.2 5.9 5.6 4.9 4.3 3.9 3.5 3.0
Synth-7 6.1 5.6 5.1 4.6 4.0 3.6 3.3 2.8
Synth-8 5.7 5.4 5.1 4.5 4.0 3.7 3.3 2.7
Synth-9 5.9 5.5 5.2 4.7 4.3 4.0 3.8 3.0

H
ei

gh
t

(m
m

)

Real 19.3 10.1 6.6 3.5 2.3 1.7 1.3 0.8
Synth-0 2.9 1.4 1.0 0.8 0.7 0.7 0.6 0.6
Synth-1 5.7 2.3 1.7 1.4 1.3 1.3 1.3 1.2
Synth-2 7.1 2.8 2.0 1.7 1.6 1.5 1.5 1.4
Synth-3 7.8 3.0 2.4 2.1 1.9 1.9 1.8 1.5
Synth-4 11.1 4.1 2.9 2.3 2.2 2.1 2.0 1.7
Synth-5 14.5 4.5 3.3 2.7 2.4 2.3 2.2 1.9
Synth-6 11.9 5.0 3.9 3.1 2.9 2.6 2.5 2.1
Synth-7 14.3 6.1 4.8 3.7 3.1 2.7 2.5 2.2
Synth-8 16.4 8.1 5.7 4.1 3.5 3.1 2.8 2.3
Synth-9 16.9 7.4 5.2 4.0 3.6 3.3 2.9 2.3

Table 7.1: Absolute pose errors by hypothesis rank and noise model. The estimation errors
of the best model present below the specified ranks are presented for the real and synthetic
dataset with 10 noise models for SoR-34. Errors are reported in terms of translation and
attitude error, with translation further presented in terms of its depth and height compo-
nents.
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Figure 7.4: Absolute pose estimation errors by camera depth and height. The camera center
is parameterized by a point (d̂, ĥ), representing the depth and height sampled from a plane
of views. Each point represents the pose error computed over the synthetic views with noise
model Synth-2 for all 49 SoR models. Pose error is reported in terms of (a) translation and
(b) attitude. Translation error is further presented in terms of its (c) depth and (d) height
components.
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7.2.5. Effect of SoR shape

Best 6
38 27 29 39 40 49

Worst 6
12 35 46 10 43 07

Figure 7.5: SoR models ranked by mean absolute pose estimate accuracy. The SoR models

are ranked in order of increasing mean absolute pose translation error at rank 20. The

six best and worst SoR models are presented in order of increasing error along with their

associated identification numbers.

A qualitative analysis of the effect of SoR shape on absolute pose estimation is performed

by first ranking the SoRs by their average estimation error. Figure 7.5 shows the best and

worst six SoR models based on their average estimation error at rank 20. One observation

is that the best six have larger average radii than the worst six. Following the trend that

objects with smaller apparent sizes have greater pose estimation errors, this observation

seems a plausible explanation for the improved performance on larger objects.

7.3. Summary

This chapter presented a method for absolute pose recovery that does not require bi-tangent

points or visible cross sections. The absolute pose is recovered using a one-point minimal

correspondence problem that directly relates the imaged points and tangents to the gener-

atrix height, radius and derivative. It exploits this information and the forward-projection

decomposition to recover the SoR attitude and position. This method was evaluated over

a variety of noise conditions, poses, and SoR shapes, and was shown to provide stable and

accurate results in the presence of moderate noise, with pose errors that generally increase

86



with increasing camera-to-SoR distance.
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8 Two-point minimal
correspondence problem for
structure from motion

A classic result of Structure from Motion (SfM) allows the reconstruction of smooth al-

gebraic surfaces from their 2D apparent contours using a Euclidean parameterization of

the back-projected image rays (Giblin and Weiss, 1987; Cipolla, 1991; Cipolla and Blake,

1992). This chapter presents a two-point minimal correspondence problem for SfM for the

case of an unknown model, allowing for the recovery of the relative poses of the SoR and

two cameras, modulo scale and a single axis motion about the SoRs axis. With this pose

information, the shape of the SoR is recovered up to an unknown scale.

Chapter 2 shows how pose and shape recovery is possible from the apparent contours seen

from two views that have a known relative transform. The relative transform encodes

both translation and attitude information as both aspects are uniquely determined by a

triangulation of back-projected 2D SoR central-axes. Without the relative transform, these

two parameters need to be recovered using the geometric constraints relating the SoR to

its apparent contours.

Constraints of this nature are exploited in Chapter 7 to recover the translation and attitude

of an SoR from the apparent contours of a single image given a known SoR generatrix. The

two-view SfM formulation is an extension of the single-view case, where a second apparent

contour view takes the place of a known generatrix. This substitution introduces an ad-

ditional unknown attitude parameter that must be recovered, as well as a scale ambiguity

that is inherent to SfM. The two unknown attitude parameters versus one explains why the

SfM minimal problem requires two point correspondences instead of one, as is the case for
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Figure 8.1: SfM two-view system pose parameterization. The position of each camera is
specified in the representative pose as the distance d̂ along the xy-plane and the height
ĥ above it. Due to the scale ambiguity of SfM and the arbitrary choice of height origin,
the four parameters of (d̂a, ĥa) and (d̂b, ĥb) are encoded more compactly as (∆d,∆h). The
attitude of the two cameras are represented by the parameters (φa, φb), for a total of four
unknowns.

absolute pose recovery. In fact, once the attitude of either view is known, the SfM problem

reduces to the absolute pose problem with an unknown scale.

8.1. Two-view system pose parameterization

The 5-DoF SoR pose is decomposed following the forward-projection Equation 4.23 as the

symmetric rotation sRr and parameter tuple (φ, d̂, ĥ), leading to the symmetry rotation

minimal problem of Chapter 6 and the absolute pose minimal problem of Chapter 7. The

number of parameters required to describe the system increases with the addition of another

view to form a view pair, however it does not quite double. The symmetric rotation encoding

the camera pitch and yaw is estimated for each image separately, contributing 4-DoF,

however the remaining elements of the system configuration can be described by a 4-tuple

parameter, totaling 8-DoF.

Assuming two parameter tuples are required, one for each camera a and b, a 6-tuple

(φa, d̂a, ĥa, φb, d̂b, d̂b) would be required to describe the camera poses. However, due to

the scale ambiguity inherent in SfM as well as the freedom to choose the height offset
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a

b

a

b

View 1 symmetric occluding contours View 2 Symmetric occluding contours

Figure 8.2: Two-point minimal problem for structure from motion. Given occluding contour
point correspondences a and b between the two views, the pose of both SoRs can be recovered
up to an unknown scale and arbitrary height offset.

for the reconstructed generatrix, a reduction of 2-DoF allows for a 4-tuple of the form

(φa, φb,∆d,∆h). The two attitude parameters are irreducible, although may also be repre-

sented as φa and ∆φ = φb − φa for mathematical convenience. Choosing the system scale

to be such that d̂a = 1, then d̂b = 1 + ∆d and the first DoF reduction is seen. The second

reduction occurs by choosing ĥa = 0, with ĥb = 0 + ∆h.

8.2. Two-point minimal correspondence problem

8.2.1. Dual attitude recovery

Recall from the absolute pose formulation in Section 7.1.1 that the attitude of a single SoR

view with known generatrix can be recovered using one correspondence of the form

(r, h, ρ)↔ (xs, ls)

between the generatrix and the occluding contour in conjunction with Equation 7.6,

(ρ−2 + 1)−1/2 = k sin(φ+ ψ).
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Here the left hand side encodes the derivative from the (known) generatrix, and the right

hand side encodes the point and tangent information from the occluding contour corre-

spondence. In an SfM formulation, the generatrix is unknown and therefore the required

derivative ρ is not directly measurable.

In this two-view SfM formulation, the views a and b contain occluding contours of an SoR

of the same generatrix. If one occluding contour point correspondence,

(xa1, la1)↔ (xb1, lb1),

is known, where correspondence implies the two points are generated by the same (unknown)

generatrix point (r1, h1, ρ1), then Equation 7.6 becomes useful again. Duplicating the right

hand side of the equation for each point produces the three-way equality

(ρ−2
1 + 1)−1/2 = ka1 sin(φa + ψa1) = kb1 sin(φb + ψb1), (8.1)

which constrains the values of φa and φb even though the value of ρ1 is unknown. Equation

8.1 is one equation with two unknowns, therefore another equation is required to solve for

both φa and φb. Assuming a second contour point correspondence

(xa2, la2)↔ (xb2, lb2)

provides the system of equations

ka1 sin(φa + ψa1) = kb1 sin(φb + ψb1)

ka2 sin(φa + ψa2) = kb2 sin(φb + ψb2), (8.2)

which fully constrains φa and φb.
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Solving the system of equations 8.2 for φa yields the quadratic form

(b2 − 1)x2 + 2abx+ (a2 + c− 1) = 0,

with

x = cot(φa)

and constants (a, b, c) encoding the phase shifts and amplitudes of the system. The attitude

φa is recovered as arctan
(
x−1) and φb is recovered by back-substitution; see the Appendix

C.1 for the full derivation.

8.2.2. Relative translation recovery

Due to the scale ambiguity inherent to SfM and the arbitrary choice of generatrix height off-

set, the 4-DoF of the two representative camera centers (d̂a, 0, ĥa) and (d̂b, 0, ĥb) are reduced

by 2-DoF to the relative camera center translation (∆d, 0,∆h). Under this parameterization,

the representative camera center of camera a is fixed as

toa = (d̂a, 0, ĥa)T = (1, 0, 0)T,

while the center of camera b is expressed by the relative translation

tob = toa + (∆d, 0,∆h)T.

A contour generator point is parameterized by the linear form

x̃ỹ
z̃

 =

(µx+ 1)d̂
µyd̂

µzd̂+ ĥ

 (4.20)

as a function of image data (x, y, z, µ) and representative camera center (d̂, 0, ĥ)T. Sub-

stituting in the above forms for camera centers ta and tb into Equation 4.20 yields two
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parameterized contour generator points,

x̃aỹa
z̃a

 =

(µaxa + 1)
µaya

µaza

 ,
x̃bỹb
z̃b

 =

(µbxb + 1)(1 + ∆d)
µbyb(1 + ∆d)

µbzb(1 + ∆d) + ∆h

 , (8.3)

with the first contour point xa fixed and the second xb dependent on the camera center

translation (∆d, 0,∆h)T. Assuming points xa and xb correspond to the same generatrix

point (r, z̃), these two points provide a system of equations that is sufficient to recover the

translation parameters as

∆d =
√

x̃2
a + ỹ2

a

(µbxb + 1)2 + (µbyb)2 − 1

∆h = z̃a − µbzb(1 + ∆d). (8.4)

See Appendix C.1.1 for the full derivation.

8.3. Structure-from-motion pose recovery evaluation

Structure from motion from two views of an SoR is achieved using a two-point minimal

correspondence problem. Given two hypothesized correspondences between the two SoR

views, a corresponding pose hypothesis and associated generatrix reconstruction is directly

computed. Due to scale ambiguity and the arbitrary selection of a height reference point,

such a pose hypothesis encodes four degrees of freedom. The first two are the representative

camera depth d̂ and height ĥ of second view with the first view fixed arbitrarily at a depth

of 1 and height of 0. The last two are the two attitudes (φa, φb) of the two views.

The scale and height offset of the two views is recovered using the groundtruth pose, allowing

the second estimated view pose and its groundtruth pose to be directly compared. Two

reasonable metrics of SfM pose accuracy are the translation error of the second view and

the combined attitude errors of both views. The translation of the first view encodes two

free degrees of freedom and is used to recover the scale and height offset of the second view
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with respect to the groundtruth.

In the absolute pose minimal problem, the mean reconstruction error of the view with

respect to a known generatrix is used to rank candidate pose hypotheses (Section 7.2.1).

In the two-view SfM minimal problem, the mean reconstruction between the two views is

used for this purpose.

8.3.1. Effect of sensor noise model

The imaged view-plane dataset is used in conjunction with the synthetic view-plane dataset

to evaluate 17,152 views pairs of the generatrix SoR-34 for each of the 11 sensor noise models,

yielding 188,672 samples in total. The effect of camera position on pose estimation accuracy

is shown in Figure 8.1. Errors are presented in terms of translation and attitude error, with

translation further reported in terms of its depth and height components.

By rank 50, all sensor models have mostly converged with translation errors growing gradu-

ally from 10.4mm for Synth-1 to 16.3mm for Synth-9. The real sensor dataset has 21.0mm

mean translation error as opposed to 6.2mm for the least noise model, Synth-0. Height

error contributes the most to the translation error, with all models having less than 3.5mm

of depth error at rank 50, as opposed to a height errors in the range of 6.1–19.6mm. This is

an expected phenomenon for objects viewed at a large distance along the depth axis, as a

small error in estimated attitude translates to a comparatively large error in height relative

to depth.

8.3.2. Effect of camera position and baseline

As SfM requires two views, the effect of the baseline between two views on estimation

accuracy is examined independently from the individual camera positions. To explore this

increased parameter space, 17,152 view pairs are evaluated for 49 SoR models with the

Synth-2 noise model, yielding a total of 840,448 samples. Figure 8.3 presents the SfM pose

accuracy aggregated by the camera position of the closest view to the SoR. Errors are
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Error by model rank
Noise model 1st 5th 10th 20th 30th 40th 50th 100th

Tr
an

sla
tio

n
(m

m
)

Real 52.0 30.8 26.5 23.5 22.0 21.0 20.2 17.7
Synth-0 25.8 6.8 5.9 6.1 6.1 6.2 6.2 6.2
Synth-1 42.6 19.9 16.3 13.6 12.1 11.1 10.4 9.1
Synth-2 45.2 20.8 17.1 14.5 13.1 12.1 11.5 9.9
Synth-3 45.8 20.9 17.4 14.9 13.4 12.4 11.8 10.0
Synth-4 45.1 20.3 16.8 14.6 13.4 12.5 11.9 10.4
Synth-5 43.5 20.1 17.0 14.9 13.9 13.1 12.6 11.1
Synth-6 43.0 19.9 17.1 15.4 14.5 13.7 13.2 11.9
Synth-7 42.1 20.3 17.8 16.3 15.4 14.7 14.1 12.7
Synth-8 41.6 21.1 18.9 17.5 16.6 15.9 15.4 13.9
Synth-9 40.6 21.6 19.7 18.4 17.5 16.8 16.3 15.0

A
tt

itu
de

(d
eg

)

Real 27.4 11.0 7.3 5.0 4.0 3.5 3.1 2.4
Synth-0 14.8 2.7 1.6 1.1 1.0 0.9 0.9 0.8
Synth-1 23.1 6.0 3.5 2.3 1.8 1.6 1.5 1.2
Synth-2 24.5 6.4 3.7 2.4 2.0 1.7 1.6 1.3
Synth-3 24.6 6.4 3.8 2.5 2.0 1.8 1.6 1.3
Synth-4 24.0 6.3 3.7 2.4 2.0 1.8 1.6 1.3
Synth-5 23.1 6.3 3.8 2.5 2.1 1.8 1.7 1.4
Synth-6 23.0 6.4 3.9 2.6 2.2 1.9 1.8 1.5
Synth-7 22.5 6.4 4.0 2.7 2.3 2.1 1.9 1.6
Synth-8 22.2 6.5 4.1 2.9 2.4 2.2 2.1 1.8
Synth-9 21.7 6.6 4.3 3.0 2.6 2.3 2.2 1.9

D
ep

th
(m

m
)

Real 10.1 6.7 5.2 4.2 3.8 3.5 3.4 3.2
Synth-0 1.0 0.8 0.7 0.8 0.8 0.9 0.9 1.0
Synth-1 4.3 3.3 2.8 2.5 2.3 2.2 2.1 1.9
Synth-2 4.2 3.4 3.1 2.8 2.6 2.4 2.3 2.1
Synth-3 3.7 3.3 3.0 2.8 2.6 2.5 2.3 2.1
Synth-4 3.2 3.0 2.9 2.7 2.6 2.4 2.3 2.2
Synth-5 2.9 2.8 2.8 2.7 2.6 2.6 2.5 2.4
Synth-6 2.9 2.9 2.8 2.8 2.7 2.7 2.6 2.5
Synth-7 3.1 3.0 3.0 3.0 2.9 2.9 2.8 2.8
Synth-8 3.4 3.2 3.2 3.2 3.1 3.1 3.1 3.0
Synth-9 3.5 3.3 3.3 3.3 3.3 3.3 3.2 3.2

H
ei

gh
t

(m
m

)

Real 49.3 29.3 25.4 22.7 21.3 20.4 19.6 17.1
Synth-0 25.6 6.6 5.8 5.9 6.0 6.1 6.1 6.0
Synth-1 41.8 19.1 15.7 13.0 11.6 10.6 9.9 8.6
Synth-2 44.5 20.0 16.4 13.9 12.5 11.5 10.9 9.3
Synth-3 45.2 20.2 16.7 14.3 12.8 11.9 11.2 9.4
Synth-4 44.7 19.7 16.2 14.0 12.9 12.0 11.3 9.8
Synth-5 43.1 19.5 16.5 14.3 13.3 12.6 12.0 10.5
Synth-6 42.6 19.3 16.5 14.8 13.9 13.1 12.6 11.2
Synth-7 41.6 19.7 17.2 15.6 14.7 14.0 13.4 12.0
Synth-8 41.1 20.5 18.2 16.9 15.9 15.2 14.6 13.2
Synth-9 40.0 20.9 19.0 17.7 16.8 16.1 15.5 14.2

Table 8.1: Two-view structure-from-motion pose errors by hypothesis rank and noise model.
The estimation errors of the best model present below the specified ranks are presented for
the real and synthetic dataset with 10 noise models for SoR-34. Errors are reported in
terms of translation and attitude error, with translation further presented in terms of its
depth and height components.
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Figure 8.3: Two-view structure-frame-motion pose estimation errors by camera depth and
height. Pairs of views are selected with varying camera depths and heights from a plane
of views, with the first view at point (d̂, ĥ) and second at point (d̂ + ∆d̂, ĥ + ∆ĥ), with
baseline (∆d̂,∆ĥ). Each point represents the pose error computed over the synthetic views
with noise model Synth-2 for all 49 SoR models. Pose error is reported in terms of (a)
translation, (b) attitude, and translation (c) depth and (d) height components.
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(a) Translation error (b) Attitude error
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(c) Depth error (d) Height error

Figure 8.4: Two-view structure from motion pose estimation errors by depth and height
baseline. Pairs of views are selected with varying camera depths and heights from a plane
of views, with the first view at point (d̂, ĥ) and second at point (d̂ + ∆d̂, ĥ + ∆ĥ), where
(∆d̂,∆ĥ) is the inter-view baseline. Each point represents the error computed over synthetic
views with noise model Synth-2 of all 49 SoR models. Errors are reported for a model rank
of 100 in terms of (a) translation and (b) attitude. Translation error is further presented in
terms of its (c) depth and (d) height components.
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presented in terms of translation and attitude error, with translation further reported in

terms of its depth and height components. The error graphs capture the general influence

of camera distance to the SoR origin. SfM pose accuracy tends to decrease as the camera

recedes from the SoR, following the intuition that as the apparent size of the SoR decreases,

so does the fidelity of the apparent contour point and tangent estimates. Since SfM requires

accurate contour points and tangents, any increase in signal noise will decrease performance.

Figure 8.4 shows the effect of the two-view baseline on estimated pose accuracy, reported in

terms of translation, attitude, depth and height errors. SoR views with the largest baseline

in height and smallest baseline in depth have the smallest estimation error across all metrics.

This represents the combination of two competing factors, the first due to mathematical

degeneracy, and the second due to signal degradation from increased distance as previously

described. Structure from motion reaches a degenerate state if there is no motion; as the

baseline distance approaches zero, the SfM solution becomes unstable.

For surfaces of revolution, the stability of a system is more accurately described by the

motion of the contour generators (modulo single-axis motion) along the SoR’s surface than

the actual camera motion itself. As the camera recedes in depth, the contour generators

converge to a planar shape, with little relative change as the camera continues to move. As

the camera moves vertically however, there is typically a large variation in the contour gen-

erator position. This can be understood rather intuitively by considering the phenomenon

of foreshortening. As one moves backwards from an object, the view angle remains relative

constant, and the object mostly appears as the same shape, just smaller. As one moves

vertically with respect to an object, their view angle must adjust to keep the object in view.

Egocentrically, the object appears to tilt towards the viewer, with its shape distorted by

foreshortening. Such an apparent shape change accompanies large changes in the contour

generators, an advantage for system stability.

In this way, large baselines in height yield more stable results. Large baselines in depth

are less effective in this regard, with the signal degradation due to lower effective resolution
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Best 6
39 34 45 33 32 37

Worst 6
05 46 20 35 01 07

Figure 8.5: SoR models ranked by mean two-view absolute pose estimate accuracy. The
SoR models are ranked in order of increasing mean absolute pose translation error. The
six best and worst SoR models are presented in order of increasing error along with their
associated identification numbers.

canceling out the relatively small motion in the contour generator.

8.3.3. Effect of SoR shape

A qualitative analysis of the effect of SoR shape on SfM pose estimation is performed by

first ranking the SoRs by their average estimation error. Figure 8.5 shows the best and

worst six SoR models based on their average estimation error at rank 20. One observation

is that the best six have larger average radii than the worst six. Following the trend that

objects with smaller apparent sizes have greater pose estimation errors, this observation

seems a plausible explanation for the improved performance on larger objects.

8.4. Summary

This chapter presented a method for two-view SfM shape and pose recovery that does not

require bi-tangent points, visible cross sections, or relative camera positions. The SfM pose

is recovered using a two-point minimal correspondence problem that directly relates the

imaged points and tangents from two views. It exploits this information and the forward-

projection decomposition to recover the SoR attitudes and relative positions of these views.

This method was evaluated over a variety of noise conditions, poses, SoR shapes, and

baselines and was shown to provide stable and accurate results in the presence of moderate

noise, with pose errors that generally increase with increasing camera-to-SoR distance and
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increasing baseline depth.
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9 Simultaneous n-view perceptual
grouping and shape recovery

In previous chapters, the pose and shape of an imaged SoR is recovered assuming known

apparent contours using the contour generator constraints for surfaces of revolution. In con-

trast, this chapter aims to recover the unknown apparent contour and generatrix assuming

a known pose.

By assuming a known pose, the bijective mapping between the SoR generatrix and apparent

contour can be treated as a geometric prior for simultaneous apparent contour perceptual

grouping and generatrix recovery. This approach, as demonstrated in Phillips et al. (2016),

has two key advantages over näive perceptual grouping followed by shape reconstruction.

The first advantage is that the generatrices produced by the perceptual grouping technique

are guaranteed to be geometrically plausible SoRs. Even perceptual grouping techniques

that enforce smoothness may produce invalid generatrices of non-monotonically increasing

height, with multiple radii values for the same height.

The second advantage comes from the fact that the grouping is performed in generatrix

space. This property allows simultaneous bilateral contour grouping of a single image,

aggregating edge evidence about both apparent contours into the same generatrix space,

ensuring the resulting contours are symmetric on the view sphere. Furthermore, such ev-

idence aggregation is not limited to a single view, as the information from an arbitrary n

views can be leveraged to ameliorate the effects of noise, clutter, occlusions and low signal

energy. In addition to an improvement in perceptual grouping performance, the runtime

efficiency is significantly increased as the generatrix recovery procedure only needs to be
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Figure 9.1: Three ideal SoR profiles.

ρ1
ẑ ρ2

ẑ ρ3
ẑ ρ4

ẑ ρ5
ẑ

Figure 9.2: Three SoR image profiles mapped to generatrix space. This figure demonstrates
how any number of SoRs can be mapped into generatrix space. The generatrix space is a
volume, and presented here are generatrix space slices of constant derivative ρ. Multiple
SoRs will only overlap perfectly at the (r, h, ρ) locations that match the generatrix values
with which they were generated.

performed once over the aggregated energy map to simultaneously segment all n views.

Three synthetic SoR profiles (Figure 9.1) are shown in Figure 9.2, illustrating how evidence

from multiple images is mapped into the same generatrix space.

9.1. Apparent contour oriented edge response map

The bijection of Section 4.4.6 conceptually represents a mapping of the form

(u, v, θ)T ↔ (r, h, ρ)T
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(a) Basis filter Gx (b) Basis filter Gy (c) Interpolated filter, 45◦

Figure 9.3: Steerable first-derivative Gaussian filter kernels. Interpolated filters (c) are
created by the linear combination of the two base filters (a) and (b).

that relates the oriented image edge point (u, v) with angle θ to the generatrix point (r, h)

with tangent derivative ρ. An oriented edge response function ψ(u, v, θ) is therefore required

to apply the bijection and transfer the edge response from the image space to the generatrix

space.

Steerable derivative filters (Freeman and Adelson, 1991) can be employed either to com-

pute oriented edge responses directly from the source image, or to reaggregate the output

of more sophisticated boundary detectors as a function of edge orientation. A steerable

first-derivative Gaussian filter is presented in this chapter, which is best suited for step

edges, however any oriented filter of the form ψ(u, v, θ) may be substituted as appropriate.

Additionally, a higher-order odd derivative could be substituted for a “peakier” step edge

response.

The steerable first-derivative Gaussian filter is defined by two kernels

Gx(u, v) = −x
πσ2 e

−(x2+y2)
2σ2 , Gy(u, v) = −y

πσ2 e
−(x2+y2)

2σ2 , (9.1)

representing base filters of orientations 0◦ and 90◦ that can be linearly combined to form a

filter of any angle θ as

Gθ = Gx cos θ + Gy sin θ. (9.2)
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(a) Input image (b) Basis Gx (c) Basis Gy (d) 45◦ interpolation

Figure 9.4: Steerable first-derivative Gaussian filter basis images and linear combination.
The input image (a) in convolved with basis kernels Gx and Gy to produce basis images
(b) and (c). Any direction can be interpolated (d) by the linear combination of these basis
images.

Figure 9.3 illustrates these two basis kernels and an oriented kernel formed from their linear

combination.

For image I, the oriented edge response ψ for an angle θ is then defined as

ψ(θ) = I ∗Gθ = I ∗ (Gx cos θ + Gy sin θ) . (9.3)

Since convolution is a linear operator, the convolution of I can be distributed as a weighted

linear combination

ψ(θ) = (I ∗Gx) cos θ + (I ∗Gy) sin θ (9.4)

with (I ∗Gx) and (I ∗Gy) representing basis edge responses images that only need to be

calculated once per image. Such basis images are illustrated in Figure 9.4 along with an edge

response resulting from their linear combination. In this way, the oriented edge response

ψ(u, v, φ) can be computed for any image point, with any angle.

9.2. Generatrix contour space

Given the SoR pose, an oriented edge response map ψ(u, v, θ) in image space is transferred

to the generatrix space γ(r, h, ρ) by the back-projection half of the bijection between the ap-
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Figure 9.5: Optimal dynamic programming path through the generatrix parameter space.
The generatrix space volume slices are stacked horizontally in increasing derivative value ρ
from left to right, separated by vertical lines. The response of the mapped generatrix energy
will be highest at points that match the generatrix value (r, h, ρ) to which it corresponds.
The blue curve represents the generatrix that was used to create the imaged profile. Notice
how the curve follows area of high energy.

parent contour and the generatrix (Section 4.4.6). Since the representation of the generatrix

space is viewpoint independent, the energy of any number of arbitrary SoR views can be

efficiently aggregated in this space. Leveraging edge and shape information from multiple

views helps ameliorate the effects of noise, clutter, occlusions and response drop-outs.

The generatrix is recovered by optimizing the generatrix curve with respect to the contour

energy back-projected from image space ψ(u, v, θ) into generatrix space γ(r, h, ρ). The

apparent contour grouping for each input image is determined by the forward projection

of the generatrix into the image space using the known corresponding SoR pose. In this

manner, perceptual grouping and generatrix recovery are performed simultaneously and are

guaranteed to be geometrically consistent.

In practice, both the image space map ψ(u, v, θ) and generatrix space map γ(r, h, ρ) are

discretized bounded three-dimensional volumes. The volumes are typically examined in

slices of constant θ for image space and ρ for generatrix space. Three such generatrix space

slices are illustrated in Figure 9.2.

9.3. Dynamic program optimal subproblem for generatrix optimization

The generatrix edge response map γ(r, h, ρ) is a discretized three-dimensional volume that

provides the energy value for a generatrix curve point at height h with radius r and derivative
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ρ. The “optimal” generatrix curve through this space is one that maximizes the total

corresponding edge energy while satisfying the following properties:

1. C0 continuity: the curve must be single connected segment.

2. C1 continuity: the first derivative ρ must vary smoothly.

3. Low complexity: the curve must have no more than k inflexion points.

Figure 9.5 illustrates such a curve through generatrix space.

The selection of such an optimal generatrix from a discretized bounded generatrix space is an

example of a combinatorial optimization problem. While the solution space is finite, a näıve

brute force exploration of it tends to suffer from an exponential “combinatorial explosion”.

A more intelligent approach recognizes and exploits the fact that the evaluation of two

similar problems may depend on the solutions of a set of smaller overlapping subproblems,

a property called optimal substructure.

Dynamic programming (Bellman, 1954) is such a combinatorial optimization technique that

exploits a problem’s optimal substructure by recursively decomposing overlapping subprob-

lems, solving them from bottom up. The smaller subproblem solutions are memoized,

computed and stored, for repeated use in the evaluation of the larger subproblems. The

effective use of memoization can have dramatic time complexity implications, often allowing

an exponentially large combinatorial space to be searched in O(nk) time, where k is the

dimensionality of the space.

To apply dynamic programming to an optimization problem, two aspects must be defined.

First is the definition of the optimal subproblem OPT(Ω) that exploits the optimal sub-

structure. The function OPT(Ω) yields the optimal solution for parameters Ω by evaluating

some number of subproblems OPT(Ω′), where Ω′ parameterizes a smaller instance of the

subproblem. The second aspect, seemingly trivial yet important, is the traversal order and

base cases for solving the larger optimal subproblems in terms of the smaller ones. These
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elements inductively validate that it is feasible to solve the smaller subproblems necessary

for solving the larger subproblems.

For ease of presentation, the three-dimensional optimal subproblem will be introduced first

and then extended to four-dimensions to include the number of inflexion points.

9.3.1. Generatrix shape representation

To reduce the time and implementation complexity of the dynamic programming solution,

the SoR generatrix is optimized as a piecewise-linear function represented by a path of points

through the generatrix contour space. Any two adjacent points (ha, ra, ρa) and (hb, rb, ρb)

with ha < hb are constrained such that

hb = ha + ∆h (9.5)

and

rb = ra + ρa∆h, (9.6)

ensuring that points are separated in height by the fixed algorithm parameter ∆h, and that

the line segment (ha, ra) − (hb, rb) has slope ρa. The effect of these constraints is that the

generatrix is guaranteed to have C0 continuity.

C1 continuity is approximated by bounding the discrete second derivative between adjacent

points as

|ρa − ρb| < ∆ρ, (9.7)

where ∆ρ is a fixed algorithm parameter. The number k of curve inflection points is used

to curve shape complexity, acting as a regularization parameter.

Once the optimal generatrix path is recovered, the piecewise linear approximation is smoothed

by a corner-cutting subdivision curve scheme (Chaikin, 1974) to achieve C1 continuity.

Given a specific generatrix space discretization γ and algorithm parameters ∆h and ∆ρ, the
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adjacency set function A(h, r, ρ) yields the set of all points {(h′, r′, ρ′) ∈ γ ∧ h′ < h} that

are adjacent to (h, r, ρ) while respecting the adjacency constraints of equations 9.5, 9.6 and

9.7.

9.3.2. Three-dimensional optimal subproblem

The three-dimensional optimal problem, OPT(h, r, p), is stated to be the optimal generatrix

composed of adjacent generatrix points in γ that extend from the lowest height hmin up to

the maximum point with height h, radius r, and derivative ρ. Using this optimal problem,

the optimal solution is defined recursively as

OPT(h, r, ρ) = max
(h′,r′,ρ′)∈A(h,r,ρ)

[
OPT(h′, r′, ρ′) + ψ(r, h, ρ)f(ρ, ρ′)

]
, (9.8)

where the function f(ρ, ρ′) can be used to control the algorithm’s preference for smooth

generatrix second-derivatives. The optimal subproblem solution OPT(h′, r′, ρ′) on the right

hand side of Equation 9.8 is extended to include point (h, r, ρ) by adding the energy along the

line (h′, r′, ρ′)− (h, r, ρ) that is encoded in the function ψ(r, h, ρ). All optimal subproblems

that are adjacent to (h, r, ρ) are represented by the constrained adjacency set function

A(h, r, ρ), and are therefore evaluated in determining the optimal solution for (h, r, ρ).

Showing the feasibility of subproblem memoization, Equation 9.8 can be evaluated by mem-

oizing in order of increasing height values with the base case defined as OPT(0, ·, ·) = 0.

From Equation 9.5, h′ is strictly less than h, meaning OPT(h′, r′, ρ) will always be computed

prior to OPT(h, r, ρ), as is required for feasibility.

9.3.3. Four-dimensional optimal subproblem with inflection constraint

To constrain generatrix complexity by limiting the number of inflection points, another

dimension is required in the optimal subproblem. The new optimum problem OPT(k, h, r, p)

is the same problem statement as OPT(h, r, p), except that the generatrix must contain (at
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most) k inflection points. The optimal problem recursive definition,

OPT(k, h, r, ρ) = argmax
(h′,r′,ρ′)∈A(k,h,r,ρ)


OPT(k, h− 1, r′, ρ′) + ψ(p, h, ρ)f(ρ, ρ′)

OPT(k − 1, h− 1, r′, ρ′) + ψ(p, h, ρ)f(ρ, ρ′)
, (9.9)

now has two cases on the right hand side. The first case represents expanding upon an

optimal subproblem that has the same number of inflections, while the second case considers

increasing the inflection count by one and builds upon optimal subproblems with fewer

inflections. A subtle but important change is in the addition of the parameter k to the

point adjacency set function A(k, h, r, ρ), along with a new constraint that is dependent on

the value of k. If k is even then ρ must be strictly decreasing with respect to ρ′,

ρ < ρ′

else it must be non-decreasing

ρ ≥ ρ′

to be considered a valid adjacency. This forces ρ to be either strictly increasing or strictly

non-decreasing until the inflection count changes, appropriately reversing the sign of the

second derivative.

Examining subproblem traversal and feasibility, problems are examined in order of increas-

ing h for increasing values of k. The first case of constant k is identical to the three-

dimensional optimal subproblem and is likewise satisfiable. The second case is dependent

on OPT(k−1, ·, ·, ·), which by the traversability order will always be computed and available

when evaluating OPT(k, ·, ·, ·).

9.4. Multi-view perceptual grouping and generatrix recovery evaluation

The simultaneous n-view perceptual grouping and generatrix recovery technique allows

information from n-views to be aggregated into to a common three-dimensional generatrix
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k=100 k=200 k=300 k=400 k=500

k=600 k=700 k=800 k=900 k=1000

Figure 9.6: Speckle noise applied to a single view with varying densities. Random white
and black speckle noise is added to a dataset view parameterized by speckle density k, the
number of speckles per image. The 10 non-zero experiment speckle densities are visualized
through application to a single dataset view.
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Mean reconstruction error (mm) by number of images used
Speckle density 1 2 3 4 5 10 25 100 500 900
0 0.1 0.1 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0
100 0.8 0.6 0.4 0.3 0.2 0.3 0.1 0.0 0.0 0.0
200 0.2 0.2 0.3 0.4 0.5 0.3 0.2 0.1 0.0 0.1
300 0.3 0.9 0.6 0.3 0.3 0.4 0.2 0.1 0.1 0.0
400 7.3 5.8 0.4 0.3 0.2 0.5 0.3 0.1 0.1 0.1
500 5.3 10.0 5.3 0.4 0.4 0.4 0.2 0.0 0.1 0.1
600 6.9 2.3 0.7 0.9 2.1 0.5 0.4 0.2 0.1 0.0
700 2.3 10.6 2.9 2.8 2.4 2.2 2.9 0.3 0.1 0.1
800 6.8 1.7 2.6 2.7 2.4 2.1 0.3 0.3 0.2 0.1
900 12.0 10.2 12.2 12.4 8.8 1.5 1.6 0.3 0.2 0.1
1000 14.6 13.8 3.3 1.7 1.6 4.0 0.7 0.3 0.3 0.2

Table 9.1: Mean SoR reconstruction error by speckle density and aggregated image count.
SoR reconstruction error is measured as the difference between the groundtruth generatrix
and the generatrix estimated using n images with speckle density k. Increasing speckle
noise as parameterized by speckle density increases the mean SoR reconstruction error,
while increases the number of images used for the reconstruction decreases this error.

space. This provides a mechanism to combine SoR structure evidence from many noisy

images and extract a globally optimal generatrix, provided the poses of the SoR are known.

The optimal generatrix is considered to be the one that passes through the most response

energy, subject to smoothness constraints.

The performance of this generatrix recovery technique is evaluated with respect to two

parameters, the number of images n used and the amount of image noise. The input images

of prior work (Figure 1.6) allow for reliable segmentation and contour grouping, with high

contours and crisp contours. To violate this assumption as definitively as possible, image

noise is introduced that is modeled by random white and black speckles. It is parameterized

by speckle density k, the number of speckles per image. The performance metric is the mean

reconstruction error with respect to the groundtruth generatrix.

Ten non-zero speckle densities are applied to all 900 views of the view-plane dataset, as

illustrated in Fig. 9.6. Figure 9.1 shows the resulting reconstruction errors for all speckle

densities and select image counts. Reconstruction errors achieve values of less than 0.2mm

in the limit with 900 images. With speckle density of 500 and less, 5 images is sufficient to

achieve reconstruction errors of less than 0.5mm. Even with the highest density of 1000, less

than 1.0mm error is achieved with 25 images, and less than 0.5mm with 100 images. Figure
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Figure 9.7: Aggregated SoR responses and reconstructions for varying input image counts.
The SoR reconstruction procedure operates over an image response that is aggregated in
three-dimensional generatrix space. The optimal generatrix is considered to be the one that
passes through the most response energy, subject to smoothness constraints. As the number
of images aggregated increases, the less sensitive the response to image noise and the better
the reconstruction. The solid line represents the reconstructed generatrix as compared to
the dotted line representing the groundtruth generatrix.
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9.7 illustrates the incremental effect of adding images on both the aggregated response and

the resulting SoR generatrix reconstruction.

9.5. Summary

This chapter presented a method for SoR apparent contour perceptual grouping and shape

recovery that operates over multiple views with extreme speckle noise corruption and known

SoR poses. This is a departure from prior shape recovery techniques, which are not designed

for such noisy inputs, and are typically evaluated on high-accuracy contours that are either

easily and automatically extracted, manually annotated, or entirely synthetic. A dynamic

programming technique was presented that operates in a common 3D generatrix space,

aggregates evidence from multiple images, and enforces global smoothness and shape com-

plexity constraints. It was shown that impressive reconstruction results can be achieved

with just a few noisy images, with results that converge very close to the groundtruth as

more images are used.
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10Perceptual grouping and shape
recovery of optically challenging
SoRs

Parallax is an effect whereby the position of an object appears differently when viewed

from different view points. Such a displacement is dependent on the distance of the object,

with nearby objects exhibiting a larger apparent motion than those at a distance. Relating

the parallax between corresponding image points to their depth is the basis of stereo depth

perception. This chapter uses this relationship to compute a cue to the presence of an object

protruding from a known supporting plane, expanding on the work presented in Phillips

et al. (2011).

The parallax cue allows the supporting plane points to be discriminated from off-plane

points by checking for photometric consistency between corresponding plane points across

images. Any points that disobey the parallax mapping are likely to produce photometric

inconsistency, providing a response even for edges and regions that are non-salient in a

single image. This implies that the applicability of the cue is not limited to just opaque

surfaces, but encompasses transparent and other non-Lambertian surfaces as well.

If the SoR is assumed to be upright with respect to the known supporting plane, the

only remaining pose parameters are encoded in the unknown intersection point between

the supporting plane and the SoR central axis. Constraining the intersection point to the

supporting plane leaves 2-DoF in the SoR pose. The projection of an imaged SoR onto a

ẑ-aligned unit cylinder, as defined in Section 4.6, yields a profile that is symmetric about

a vertical line with constant azimuth in cylindrical coordinates. Reprojecting the parallax

cue map in this manner for the two images and searching such a symmetric signal allows
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the 3D-axis triangulation used in Section 6.2 to recover the remaining pose translation

parameters. The SoR pose and the parallax cue used in conjunction with the techniques of

Chapter 9 allows the generatrix recovery of visually challenging surfaces of revolution.

10.1. Parallax of a plane

The parallax displacement of a point between two images is dependent on the distance of the

point from each camera. In the case of a plane in 3D, these point-camera distances and the

corresponding parallax disparities are described by a concise linear form. Assuming a 3D

plane p in known pose with respect to a camera a, the bijection that relates 2D image points

with 2D points on the planes surface is described in Equation 3.8 as a 3 × 3 homography

matrix pHa. A homogeneous plane point px is mapped to the homogeneous image point ax

in camera a by

xa = aHp
pX (10.1)

Combining this equation with the homography pHb from an image point in camera b to the

plane produces the homography between the image of the plane in b to the image of the

plane in a as
ax = aHp

pHb︸ ︷︷ ︸
aHb

bx, (10.2)

with the parallax displacement computed as

aδb = bx− ax (10.3)

Figure 10.1 illustrates how a 2D grid imposed upon the 3D plane maintains a grid structure

as it is displaced between views via the parallax effect.

10.2. Planar parallax photometric consistency

Given the plane pose in both cameras a and b with images Ia and Ib, the plane point ax in

Ia that corresponds to plane point bx in Ib is given in Equation 10.2 as homography aHb,
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a a b

(a) View 1 (b) View 2 (c) View 1 remapped to 2 via homography

Figure 10.1: Geometric consistency and the parallax effect under supporting plane homog-
raphy. The same plane, point and line are imaged by a camera that has translated to left
between view 1 (a) and view (2). Remapping view 1 to view 2 (c) via the planar homog-
raphy, the image of the plane from view 1 coincides perfectly with that of view 2, however
the plane point displays strong parallax. The distance between point a and point b is the
parallax displacement.

a a b

(a) View 1 (b) View 2 (c) View 1 remapped to 2 via homography

Figure 10.2: Photometric inconsistency of SoR profile under supporting plane homography.
The same SoR and plane are imaged by a camera that has translated to the left between
view 1 (a) and view (2). Remapping view 1 to view 2 (c) via the planar homography, the
image of the plane from view 1 coincides perfectly with that of view 2, however the SoR
profile displays strong parallax, and does not map onto itself.

called the stereo inverse perspective map. If plane image Ib is remapped by aHb, then the

resulting image I′b should be identical to image Ia, as illustrated in Figure 10.1. The two

images are said to be photometrically consistent with respect to the homography.

10.3. Parallax cue computation

Figure 10.1 also shows that a line extending upward from the plane does not map onto

itself under the supporting plane homography, but rather yields a photometric inconsistency

between the image Ia and the remapped image I′b. The presence of such an inconstancy has
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been used previously as a reliable indicator of ground plane clutter in vehicular obstacle

detection and avoidance (Storjohann et al., 1990; Mallot et al., 1991; Simond and Parent,

2007), but never as a segmentation energy map. Figure 10.2 shows the stereo inverse

perspective map (SIPV) applied to a synthetic SoR mask computed for a stereo pair. Super-

imposing Ia and the remapped I′b, as in Figure 10.1, illustrates how object points that do

not belong to the supporting surface produce photometrically inconsistent boundaries and

regions. The most notable are areas that contain binocular half-occlusions (Egnal and

Wildes, 2002), where the supporting plane is seen in one view, but occluded by the object’s

surface in the other.

Representing the intensity of image I at point x as the function I[x], the discrepancy image

Da for image Ia with respect to image Ib is

Da [ax] =
∣∣∣Ia [ax]− Ib

[
bHa

ax
]∣∣∣ . (10.4)

The discrepancy image for Ib is similarly defined as

Db

[
bx
]

=
∣∣∣Ib [bx]− Ib

[
aHb

bx
]∣∣∣ , (10.5)

which can equivalently be defined in terms of Da as

Db

[
bx
]

= Da

[
aHb

bx
]
. (10.6)

These discrepancy images are used as the underlying energy map to compute the function ψ

for the dynamic programming segmentation and generatrix recovery procedure of Chapter

9.
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(a) Lambertian (b) Specular (c) Refraction (d) Transmittance
reflection reflection

Figure 10.3: Lambertian vs. non-Lambertian surface properties. In a Lambertian reflection
(a), the incoming ray is reflected isometrically outward in a sphere with equal intensities in
all directions. In the case of specular reflections (b), rays of high intensity are reflected in
some directions, but not others. Under refraction (c) a ray is bent as it passes through a
medium. During the transmission of light (d), the intensity and color of the light may also
change.

10.4. Non-Lambertian surface properties

One of the most prevalent assumptions in the development of vision algorithms and sensors

is that of diffuse Lambertian surface reflectance, where light rays that strike an object’s

surface are isotropically reflected towards all viewpoints (see Figure 10.3a). This property

allows a certain degree of photometric consistency when an object is viewed from different

viewpoints. While the apparent shape of an imaged surface may change and some regions

may become occluded, it is generally assumed that the imaged surface intensity values and

gradients will be stable enough to model and match across views.

The strength of the parallax cue is that only the supporting plane is required to have the

photometric consistency that is provided by a Lambertian surface. Photometric inconsis-

tency in the foreground object can actually increase the cue response, as corresponding

foreground object points match neither themselves nor the background. There are several

ways in which a non-Lambertian surface can contribute to image intensity discrepancies

between the two views. In the case of transparent objects, light is often reflected non-

isotropically, leading to specularities arising from the fact that some viewpoints receive the

reflected light at high intensity while others do not (see Figure 10.3b). Additionally, most
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(a) Right image (b) Remapped left image (c) Right parallax cue

(d) Original left image (e) Left remapped
parallax cue

Figure 10.4: Planar homography warpings and the parallax cue. A planar homography
exists between the supporting plane as viewed in the right (a) and left (d) images. The
left image can be remapped (b) via this homography such that all plane points in the left
image map to their corresponding points in the right image. As a result the photometric
consistency of these corresponding plane points, the subtraction of the right image (a) from
the remapped left image (b) yields high photometric inconsistency (c) for all points that
are not a direct image of the supporting plane. This inconsistency is called the parallax
cue, and can be computed in either the left or right image. If computed in the right image
(c), it can be transferred to left image (e) by the inverse planar homography used to remap
the left image to the right.

light rays are transmitted through the material and are bent (see Figure 10.3c) or diminished

in intensity (see Figure 10.3d) based on the material’s refractive index and transmittance.

Due to these properties, most light rays received at a specific viewpoint originate from the

surfaces behind the object or from light sources in front of the object. In both cases, the

light passing through the same transparent object surface point is likely to vary significantly

with a change in viewpoint.
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Mean reconstruction error (mm) by number of images used
Scene 1 2 3 4 5 6 7 8 9 10

pl
ai

n

black plain 2.3 1.4 1.1 1.0 1.8 1.7 1.7 1.8 1.5 1.3
round 2.3 2.2 2.3 1.8 1.7 1.6 1.3 1.3 1.2 1.2
clutter1 2.6 1.6 1.8 1.5 1.4 1.2 1.1 1.1 1.1 1.0
clutter2 3.1 1.0 1.6 1.9 1.0 0.9 1.1 1.1 0.8 0.8
clutter3 1.4 1.9 1.5 1.5 1.3 1.3 1.3 1.2 1.2 1.1
clutter4 1.5 1.4 1.6 1.4 1.3 1.2 1.0 0.8 0.9 1.0

w
at

er

black 2.2 3.6 1.1 1.7 1.9 1.8 1.8 1.6 1.2 0.9
round 1.9 2.1 1.7 1.6 1.6 1.5 1.4 1.3 1.3 1.2
clutter1 3.3 1.8 3.3 1.3 1.5 1.4 1.5 1.5 1.4 1.4
clutter2 2.9 1.8 2.0 1.7 1.5 1.3 1.0 1.0 0.9 0.9
clutter3 1.3 0.8 0.9 0.8 1.1 0.7 0.6 0.7 0.6 0.7
clutter4 1.1 1.0 1.3 1.0 1.1 1.0 1.0 0.8 1.0 1.0

Table 10.1: Mean SoR reconstruction error by scene and aggregated image count. SoR re-
construction error is measured as the difference between the groundtruth generatrix and the
generatrix estimated using k images. While the various scene configurations produce differ-
ent error baselines, increasing the number of images used for the reconstruction decreases
the relative error for all scenes.

10.5. Transparent SoR perceptual grouping and generatrix recovery evaluation

Transparent object perception has received very sparse attention in the literature. Most

approaches capture the geometric inconsistencies of glass objects in some manner, whether it

be through the detection of sensor anomalies and failures (Klank et al., 2011; Lysenkov and

Eruhimov, 2013; Lysenkov and Rabaud, 2013), explicit statistical modeling of highlights,

caustics, and distortions, (McHenry et al., 2005; McHenry and Ponce, 2006; Kompella

and Sturm, 2011) or more general adaptive learning techniques (Fritz et al., 2009; Wang

et al., 2013). The parallax cue falls mostly in the “sensor anomaly” family of techniques,

indirectly capturing light field distortions through the photometric inconsistency revealed

by the planar homology.

The stereoscopic parallax cue provides a response map to use as inputs to the simultaneous

n-view perceptual grouping and generatrix recovery technique presented in Chapter 9. The

cue is generated for all images transparent SoR dataset (see Figure 10.4). The number of

images used and the source scene configuration are the two parameters varied to evaluate

the reconstruction technique’s performance using the parallax cue. There are 12 scene

configurations with 10 images each, yielding a total of 120 samples.
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Figure 10.5: SoR responses and reconstructions for all scenes using a single input image.
The SoR reconstruction procedure operates over an image response that is aggregated in
three-dimensional generatrix space. The optimal generatrix is considered to be the one that
passes through the most response energy, subject to smoothness constraints. While the
major structure of the SoR is visible in most cases, there are many areas of signal dropouts
and extreme noise, as reflected in the corresponding SoR reconstructions. The solid line
represents the reconstructed generatrix as compared to the dotted line representing the
groundtruth generatrix.
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Figure 10.6: SoR responses and reconstructions for all scenes using a single input image.
The SoR reconstruction procedure operates over an image response that is aggregated in
three-dimensional generatrix space. The optimal generatrix is considered to be the one
that passes through the most response energy, subject to smoothness constraints. Using 10
images per scene, the major structure of the SoR is salient over the signal noise contributed
by each individual image. The corresponding SoR reconstructions (solid lines) show close
fidelity to the groundtruth generatrix (dotted lines).
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Figure 10.7: SoR parallax responses and reconstructions for varying image counts over
all scenes. The SoR reconstruction procedure operates over an image response that is
aggregated in three-dimensional generatrix space. The optimal generatrix is considered to
be the one that passes through the most response energy, subject to smoothness constraints.
As the number of images used is increased, the noise contribution of each individual image
fades and the structure of the SoR becomes salient. The corresponding SoR reconstructions
(solid lines) show increasing fidelity to the groundtruth generatrix (dotted lines).
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Table 10.1 reports the reconstruction error by scene configuration and number of images

used. Using all images, the average reconstruction error is under 1.5mm. For comparison,

the groundtruth reconstructions over all 900 view-plane poses are typically within 0.4mm

of average groundtruth reconstruction. Figure 10.5 shows the result of reconstructing each

scene configuration with just one image, while Fig. 10.6 shows the result of using all 10

images per scene. Using all images for reconstruction (see Fig. 10.7), the reconstruction

error drops below 1.0mm after 30 images, and ultimately converges to 0.9mm.

10.6. Summary

This chapter presented a parallax-based cue that increases the saliency of optically chal-

lenging SoRs, and showed that it can be used with the SoR apparent contour perceptual

grouping and shape recovery technique of Chapter 9. Combining these methods, it was

shown that impressive reconstruction results can be achieved for transparent SoRs with

just a few images, with results that converge very close to the groundtruth as more images

are used.
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Part IV

Discussion and Conclusions
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In summary, this thesis presented a Euclidean framework for SoR pose recovery, shape

reconstruction and apparent contour perceptual grouping.

SoR forward-projection decomposition and profile–shape bijection

A pose-parameterized Euclidean SoR forward-projection decomposition (Chapter 4) was

presented along with an SoR profile–shape bijection. These formulations provide a coherent

and complete view of the SoR imaging and reconstruction process. They reveal additional

geometric constraints that are exploited in single and multi-view contexts. Specifically, the

explicitly parameterized forms were used to derive minimal problems that overcome the

limitations of prior approaches with respect to SoR pose and shape recovery as well as

perceptual grouping.

SoR pose and shape recovery

Methods for SoR pose and shape recovery were presented for three different image metrology

tasks. None of the pose recovery techniques assume visible cross sections, special projective

points, or a near-orthographic camera, as required in prior work. For all pose recovery tasks

the 2D central-axis projection is recovered using a two-point minimal problem that exploits

the fact that the projection of an SoR is symmetric on the image sphere. Task one requires

two views with a known relative camera transform that is used to triangulate the 3D central

axis. Task two recovers the pose of an SoR given its apparent contours and a known shape

model using a one-point minimal problem. Task three relaxes the first task requirement of

a known relative camera transform, using a structure-from-motion formulation to recover

the SoR pose and shape. These methods were evaluated over a variety of noise conditions,

poses, and baselines (for two-views), and were shown to provide stable and accurate results

in the presence of moderate noise, with pose errors that generally increase with increasing

camera-to-SoR distance and increasing baseline depth.
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SoR perceptual grouping and shape recovery

Methods for SoR apparent contour perceptual grouping and shape recovery were presented

for two metrology tasks. Both tasks have many SoR-views with known poses. The first tasks

views are corrupted by extreme speckle noise, while the second task views contain SoRs with

optically challenging transparent surfaces. Prior shape recovery techniques are not designed

for such noisy inputs, and are typically evaluated on high-accuracy contours that are either

easily and automatically extracted, manually annotated, or entirely synthetic.

A dynamic programming technique was presented that operates in a common 3D generatrix

space, aggregates evidence from multiple images and enforces global smoothness and shape

complexity constraints. This technique was evaluated on both the speckle-corrupted dataset

and the transparent dataset after the application of a parallax-based cue to increase saliency.

It was shown in both cases that impressive reconstruction results can be achieved with just

a few noisy images, with results that converge very close to the groundtruth as more images

are used.

10.6.1. Future work

The SoR perceptual grouping and shape recovery methods presented in this thesis currently

require the full 5-DoF SoR pose in order to be applied. If the axis orientation of the SoRs

is known, perhaps by an upright assumption with respect to a known supporting plane or

gravity vector, then the only unknown pose parameter is the 3-DoF SoR position in space.

By applying the cylindrical reprojection of Section 4.6 using the known axis orientation,

all SoRs of this orientation become symmetric in the 2D cylindrical image about some

vertical image line. Recovering the 2D central-axis projection is thus reduced to a 1-DoF

search for the translation of this vertical line. Such a symmetric-axis search problem over

unsegmented images has received a great deal of attention in the literature (Atallah, 1985;

Reisfeld et al., 1995; Tsogkas and Kokkinos, 2012). Using the 2D central-axis projection

recovered in this manner along with known relative camera poses, the SoR 3D central-axis
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can be triangulated as in Chapter 6. In this way, it is possible to perform perceptual

grouping and shape and pose recovery from noisy, unsegmented images.
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Part V

Appendices
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APPENDIX A : Contour generators and surfaces of revolution

A.1. Contour generator bijection

A.1.1. Contour generator by height

An apparent contour point ox = (x, y, h)T is constrained by the tangent constraint,

onT(ox− otc) = 0,

and the intersection constraint x2 + y2 = r2.

Using the first equation, x is solved for as follows:

onT(ox− otc) = 0

onTox− onTotc = 0

onTox = onTotc

(x, y,−rρ)(x, y, h)T = (x, y,−rρ)(d̂, 0, ĥ)T

x2 + y2 − rρh = xd̂− rρĥ

r2 − rρh = xd̂− rρĥ

x = (r2 − rρh+ rρĥ)/d̂

x = (r2 + rρ(ĥ− h))/d̂.

With known x, the second equation is solved for y:

x2 + y2 = r2

y2 = r2 − y2

y = ±
√
r2 − x2.
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A.1.2. Normal recovery

The normal on projects to the canonical image plane as

on′ = (0, ny, nz)T.

The component nx is recovered as:

nTvo = 0

(nx, ny, nz)T(vx, vy, vz) = 0

nxvx + nyvy + nzvz = 0

nxvx = −(nyvy + nzvz)

nx = −(nyvy + nzvz)/vx.

A.1.3. Depth recovery

The 3D contour point ox is constrained by:

omTox = 0 (Tangent plane constraint)

and

λov + otc = ox. (Image ray constraint)
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Solving the first equation for y yields:

omTox = 0

(−ny, nx, 0)Tox = 0

−nyx+ nxy = 0

y = ny(nx)−1x.

Solving for the second equation for λ yields:

λov + otc = ox

λ


vx

vy

vz

+


d̂

0

ĥ

 =


x

y

z


λvy = y

λ = y(vy)−1

λ = ny(nxvy)−1x

λ = ny(nxvy)−1(λvx + d̂)

λ = λvxny(nxvy)−1 + ny(nxvy)−1d̂

λ− λvxny(nxvy)−1 = ny(nxvy)−1d̂

λ(1− vxny(nxvy)−1) = ny(nxvy)−1d̂

λ = ny(nxvy)−1d̂

1− vxny(nxvy)−1

λ = nyd̂

nxvy − vxny
.

Substituting λ back into the image ray equation yields ox.
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APPENDIX B : Symmetry rotation recovery and 3D axis triangulation

B.1. Symmetry refinement by use of infinitesimal rotations

B.1.1. Infinitesimal transforms

An infinitesimal rotation matrix is an antisymmetric matrix of the form

Ω(ωx, ωy, ωz) =


0 +ωz −ωy

−ωz 0 −ωx

+ωy +ωx 0

 , (B.1)

that represents the differential change in a vector v upon application of the corresponding

infinitesimal transform

M = I + Ω. (B.2)

In other words, if two vectors a and b are related by

a = (I + Ω) b, (B.3)

then

a − b = Ωb (B.4)

represents the differential change.

For small rotations, the infinitesimal transform I+Ω approximates the behavior of a rotation

matrix in SO(3). This form is used to compute the values of the vector ω̂ = (ωx, ωy, ωz)

that locally minimizes the rotation estimation residuals. The infinitesimal rotation vector

ω̂ is then mapped back a rotation matrix R∆ in SO(3) by Rodrigues’ rotation formula.
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B.1.2. Symmetric rotation infinitesimal form

The rotation from the representative pose to the symmetric pose encodes the roll and yaw

of the camera. Accordingly, it is the composition of two rotations about the camera’s z-axis

and y-axis, with no rotation about the x-axis. This zero-degree rotation is incorporated

into the infinitesimal rotation matrix of Equation B.1 by fixing ωx = 0.

Error in the estimate of the symmetric rotation [sRr]k yields residual vectors between the

aligned corresponding contours kA and kB. Interpreting the contours as concatenated

component vectors,

kA = (xa,ya, za)T (B.5)

kB = (xb,yb, zb)T (B.6)

the residual vectors are expressed as

r = (xa + xb,ya − yb, za − zb)T . (B.7)

Considering these residual vectors to be the differential change due to the application of

some refining infinitesimal transform M∆ = I+Ω that approximates R∆, its corresponding

infinitesimal rotation matrix Ω∆ can be directly fit to the residual vectors as

ωy
ωz

 =


−za ya

0 −xa

xa 0


+

xa + xb

ya − yb

za − zb

 , ωx = 0, (B.8)

where operator + represents the pseudo-inverse.

The pseudo-inverse computes (ωy, ωz) to minimizes the residual vectors, thereby minimizing

the correspondece residual function Equation 6.7.
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The derivation for the minimizing form of Equation B.8 is as follows


xa + xb

ya − yb

za − zb

 =


0 +ωz −ωy

−ωz 0 0

+ωy 0 0




xa

ya

za

 (B.9)


xa + xb

ya − yb

za − zb

 =


yaωz − zaωy

−xaωz

xaωy

 (B.10)


xa + xb

ya − yb

za − zb

 =


−za ya

0 −xa

xa 0


ωy
ωz

 (B.11)


xa + xb

ya − yb

za − zb

 =


−za ya

0 −xa

xa 0


ωy
ωz

 (B.12)

ωy
ωz

 =


−za ya

0 −xa

xa 0


+

xa + xb

ya − yb

za − zb

 (B.13)

The operator + represents the pseudo-inverse.
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APPENDIX C : Two-point minimal correspondence problem for structure from

motion

C.1. Dual attitude recovery

The attitudes of two SoR views can be recovered from two contour point correspondences

between the view a and b:

(xa1, la1)↔(xb1, lb1)

(xa2, la2)↔(xb2, lb2).

Combining these correspondences with the two-view constraint of ρ from Equation 8.1

provides the system of equations,

ka1 sin(φa + ψa1) = kb1 sin(φb + ψb1)

ka2 sin(φa + ψa2) = kb2 sin(φb + ψb2), (C.1)

that allows us to solve for both φa and φb.

Applying the following change of variables:

φa = φas − ψa1 (C.2)

φb = φbs − ψb1 (C.3)

ψa = −ψa1 + ψa2 (C.4)

ψb = −ψb1 + ψb2 (C.5)

K1 = Ka1
Kb1

(C.6)

K2 = Ka2
Kb2

, (C.7)
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and rearranging yields

K1 sin (φas) = sin (δφ + φas) (C.8)

K2 sin (φas + ψa) = sin (δφ + φas + ψb). (C.9)

Applying the following identities:

sin (δφ + φas) =
√
− cos2 (δφ + φas) + 1 (C.10)√

−K2
1 sin2 (φas) + 1 = cos (δφ + φas) (C.11)

K2 sin (φas + ψa) = sin (ψb) cos (δφ + φas) + sin (δφ + φas) cos (ψb), (C.12)

and solving in terms of φa yields

cosφas b+ sinφas a =
√
−φ2

asc+ 1, (C.13)

with

a = −K1 cos (ψb)
sin (ψb)

+ K2 cos (ψa)
sin (ψb)

(C.14)

b = K2 sin (ψa)
sin (ψb)

(C.15)

c = K2
1 . (C.16)

Rewriting into quadratic form,

cos2 φas(b2 − 1) + 2 cosφas sinφasab+ sin2 φas(a2 + c− 1) = 0, (C.17)

and substituting

x = cosφas
sinφas

, (C.18)
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yields the quadratic,

a2 + 2abx+ b2x2 + c− x2 − 1 = 0, (C.19)

in terms of x.

This is solved using the quadratic formula, and then back-substituted to recover φa and

φb.

C.1.1. Relative translation recovery

After φa and φb have been recovered, the apparent contour rays xa and xb in the SoR’s

coordinate system are known along with parameters µa and µb.

Using the contour generator parameterization of Equation 4.20,


x̃

ỹ

z̃

 =


(µx+ 1)d̂

µyd̂

µzd̂+ ĥ

 , µ = f(x, l), (C.20)

substituting in the values,

(d̂a, 0, ĥa)T = (1, 0, 0)T (C.21)

(d̂b, 0, ĥb)T = (1 + ∆d, 0,∆h)T (C.22)

and xa,xb yields the two contour generator equations


x̃a

ỹa

z̃a

 =


(µaxa + 1)

µaya

µaza

 ,

x̃b

ỹb

z̃b

 =


(µbxb + 1)(1 + ∆d)

µbyb(1 + ∆d)

µbzb(1 + ∆d) + ∆h

 . (C.23)

We want the values of ∆d and ∆h such that contour generator points describe the same
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generatrix point as

(ra, ha) = (rb, hb). (C.24)

Starting with the radius equations for a and b, substituting in the contour generator equa-

tions, and solving for ∆d yields the following:

r2
a = r2

b (C.25)

x̃2
a + ỹ2

a = x̃2
b + ỹ2

b (C.26)

x̃2
a + ỹ2

a = ((µbxb + 1)2 + (µbyb)2)(1 + ∆d)2 (C.27)

x̃2
a + ỹ2

a

(µbxb + 1)2 + (µbyb)2 = (1 + ∆d)2 (C.28)√
x̃2
a + ỹ2

a

(µbxb + 1)2 + (µbyb)2 = 1 + ∆d (C.29)

∆d =
√

x̃2
a + ỹ2

a

(µbxb + 1)2 + (µbyb)2 − 1. (C.30)

Starting with the height equations and solving for a and b and solving for ∆h yields:

z̃a = z̃b (C.31)

z̃a = µbzb(1 + ∆d) + ∆h (C.32)

∆h = z̃a − µbzb(1 + ∆d). (C.33)

The translation is therefore recovered as

∆d =
√

x̃2
a + ỹ2

a

(µbxb + 1)2 + (µbyb)2 − 1. (C.34)

∆h = z̃a − µbzb(1 + ∆d). (C.35)
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