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Abstract 

Formations of multi-agent systems, such as satellites 
and aircraft, require that individual agents satisfy 
their kinematic equations while constantly maintain- 
ing inter-agent constraints. In this paper, we develop a 
systematic framework for studying formations of multi- 
agent systems. In particular, we consider undirected 
formations for centralized formations and directed for- 
mations for decentralized formations. In each case, we 
determine differential geometric conditions that guar- 
antee formation feasibility given the individual agent 
kinematics. Our framework also enables us to ex- 
tract a smaller control system that describes the for- 
mation kinematics while maintaining all formation con- 
straints. 

1 Introduction 

Advances in communication and computation have en- 
abled the distributed control of multi-agent systems. 
This philosophy has resulted in next generation auto- 
mated highway systems [9], coordination of aircraft in 
future air traffic management systems [8],,as well as 
formation flying aircraft, satellites, and multiple mo- 
bile robots 12, 3, 7, 41. 

The control of multiple homogeneous or heterogeneous 
agents raises fundamental questions regarding the for- 
mation control of a group of agents. Multi-agent forma- 
tions require individual agents to satisfy their kinemat- 
ics while constantly satisfying inter-agent constraints. 
In typical leader-follower formations, the leader has the 
responsibility of guiding the group, while the followers 
have the- responsibility of maintaining the inter-agent 
formation. Distributing the group control tasks to in- 
dividual agents must be compatible with the control 
and sensing capabilities of the individual agents. As 
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the inter-agent dependencies get more complicated, a 
systematic framework for controlling formations is vi- 
tal. 

In this paper, we propose a framework for formation 
control of multi-agent systems. Formations are mod- 
eled using formation graphs which are graphs whose 
nodes capture the individual agent kinematics, and 
whose edges represent inter-agent constraints that must 
be satisfied. A similar approach has been proposed 
in [4]. We assume kinematic models for each agent 
described by drift free control systems. This class of 
systems is rich enough to capture holonomic, nonholo- 
nomic, or underactuated ?gents. Two distinct types of 
formations are considered : undirected formations and 
directed formations. 

In undirected formations each agent is equally respon- 
sible for maintaining the formation. For each edge 
constraining two agents of the formation graph, both 
agents cooperate in order to satisfy the constraint. 
Undirected formations therefore present a more cen- 
tralized approach to the formation control problem as 
communication between agents is, in general, neces- 
sary. In directed formations, for each edge constrain- 
ing two agents, only one of the,agents (the follower) 
is responsible for maintaining the constraint. Directed 
formations, therefore, represent a more decentralized 
solution to the formation control problem. 

In this paper, we focus on the feasibility problem: 
Given the kinematics of several agents along with the 
inter-agent constraints, determine whether there exist 
agent trajectories that maintain the constrains. For 
both directed and undirected formations we obtain 
differential-geometric conditions that determine forma- 
tion feasibility. When such conditions are verified the 
formation control abstraction problem is then consid- 
ered: Given a feasible formation, extract a smaller con- 
trol system that maintains formations along its trajec- 
tories. The extracted control system allows to control 
the formation as a single entity, therefore being well 
suited for higher levels of control. 

The structure of this paper is as follows: In Section 2 we 
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define the notion of a formation graph. In Section 3 we 
consider the feasibility problem for undirected forma- 
tions, whereas in Section 4 we consider it for directed 
formations. Finally, Section 5 describes many interest- 
ing directions of further research. 

2 Formation Graphs 

We assume the reader is familiar with various differ- 
ential geometric concepts at the level of [l]. Con- 
sider n heterogeneous agents with states xi(t) E Mi, 
i = 1, . . . , n whose kinematics are defined by drift free 
controlled distributions on manifolds Mi as: 

Ai : Mi xUi- iTMi  

Ai = C X j u j  (1) 
3 

where Ui is the control space, and the vector fields Xi 
form a basis for the distribution. The controlled distri- 
butions are general enough to model nonholonomy and 
underactuation. A distribution Ai can be equivalently 
defined by its annihilating codistribution WK;  defined 
as [5]: 

WK;  = {CY E T*Mi 1 .(A) = 0 }  (2) 

The formation of a set of agents is defined by the forma- 
tion graph which completely describes individual agent 
kinematics and global inter-agent constrains. 

Definition 2.1 (Formation Graph) A 
graph F = (V, E ,  C )  consists of: 

formation 

e A finite set V of vertices who’s cardinality is 
equal to the number of agents. Each vertex vi : 
Mi x Ui + TMi is a distribution Ai modeling the 
kinematics of each individual agent as described 
in (1). 

A binary relation E C V x V representing a link 
between agents. 

e A family of constraints C indexed by the set E ,  
C = {c,} ,EE.  For each edge e = (vi,Vj), C,  is 
a possibly time varying function c,(xi,xj,t) = 0 
describing the $(e) independent constraints be- 
tween vertices vi and vi. For a generic edge 
e = (vi,vj), ce is mathematically defined as c, : 
~i x ~j x R -+ R @ ( ~ ) ,  $(e)  E N YeEE. 

Two different types of formation graphs will be con- 
sidered: undirected formations where (V, E )  will be an 
undirected graph and directed formations where (V, E )  
will be a directed graph. In undirected formations, 

for each edge e = (vi,wj) both agents are equally re- 
sponsible for maintaining the associated constraint c,, 
whereas for directed formations the constraint c, must 
be maintained by agent i. At this point no further 
structure is assumed on the set E,  additional structure 
will be explicitly mentioned when needed throughout 
the paper. 

In this paper, we focus on the formation feasibility 
problem, more precisely: 

Problem 2.2 Given a formation graph F = (V, E,C) 
determine whether there are solutions xi(t)  of all agent 
kinematics (1) that maintain the constraints ce for all 
e E E .  

We will solve Problem 2.2 for both undirected and di- 
rected formations. In case the formation is feasible, a 
new problem immediately emerges, the extraction of a 
formation control abstraction which characterizes the 
solution space of Problem 2.2 : 

Problem 2.3 Given a feasible formation graph F = 
(V, E ,  C ) ,  extract a smaller control system that main- 
tains formation for all values of its control inputs. 

Problem 2.3 will also be solved for both the undirected 
and the directed cases. 

3 Undirected Formations 

3.1 Feasibility 
In undirected formations each agent is equally respon- 
sible for maintaining constraints. Because of this prop- 
erty it will be useful to collect all agent kinematics and 
constraints on a single manifold: 

n 

M = r p i  (3) 
i=l 

Given an element x of M the canonical projection on 
the ith agent: 

~i : M + Mi (4) 

allow us to denote the state of the individual agents by 
xi = xi(.). The formation kinematics is obtained by 
appending individual kinematics through direct sum, 
that is: 

A : M x U - + T M  
A = @r=IAi (5) 

where U is taken to be U = ny=l Vi. To lift the individ- 
ual constraints ce from Mi x Mj x R, i, j E { 1,2,  . . . , n} 
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to the group manifold M we define C, by: 

Formation feasibility requires that the constraints are 
satisfied along the formation trajectories, more pre- 
cisely: 

When C, is vector valued we consider that the Lie 
derivate of Ce along X will be given by LxC, = 
[LxCL CxCz  . . . LxC$e)]T. To develop a single mathe- 
matical object that will allow us to check for feasibility 
we will adopt a differential forms approach instead of 
working directly with the vector fields. By defining the 
exterior derivative of Ce aS dC, = [dC: dC2 . . . dC$e)]T 
equation (7) can be written as dCeIt(X) = -@,a, 

where we have denoted by dC,It the exterior derivative 
of C, for fixed t .  If we now consider an enumeration 
{ 1,2,  . . . , m} of the edges set E and define the follow- 
ing vector valued forms': 

we can express equation (7) as: 

The kinematics can also be modeled as differential 
forms by using-the annihilating codistributions. This 
lead us to define a single codistribution W K  modeling 
the kinematics of all formation agents as: 

. Solutions of equation (9) represent vector fields that 
maintain formation while solutions of equation (10) sat- 
isfy the kinematics. Therefore by merging both objects 
into: 

we can check for formation feasibility in a single equa- 
tion: 

The previous discussion leads to the following solution 
of Problem 2.2: 

'This definition is independent of the chosen enumeration as 
can be easily verified. 
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Proposit ion 3.1 An undirected formation is feasible 
i f f  equation (12) has solutions, equivalently iff T be- 
longs to the range of 0. 

Corollary 3.2 (Time-Invariant Case) If the for- 
mation constraints C are time-invariant then the undi- 
rected formation is feasible iff R (thought as a pointwise 
linear map between vector spaces) is not of full rank. 

A solution of equation R(X) = T specifies the mo- 
tion of each individual agent. When more than one 
independent solution exists, a change in the direction 
of a single agent may require that all other agents also 
change their actions to maintain formation. This shows 
that, in general, solutions for undirected formations are 
centralized and require inter-agent communication for 
their implementation. 

3.2 Group  Abstraction 
Whenever more then one independent solutions exist, 
the solution space of equation R ( X )  = T can be used to 
extract a smaller control system that will preserve the 
formation along its trajectories. This new control sys- 
tem is an abstraction that hides away low-level control 
necessary to maintain the formation and can be used 
in higher levels of control. Since the solution space is in 
general an affine space the new control system will also 
be affine in the control. Let K p  be a particular solution 
of equation (12), Problem 2.3 is therefore solved by the 
new control system: 

(13) AG = K p  + Ker(0 )  

If we now denote by { K1,  Kz, . . . , Kk} a basis for the 
kernel of 0 we can rewrite (13) in a more usual form 
as: 

k 

(14) AG = K p  + C Kjuj 
j=1 

In the time-independent case we recover linearity of the 
abstracted control system since we can chose K p  = 0. 
The centralized nature of the problem is also reflected 
on the control abstraction. When one or more of the 
control inputs ui are used, inter-agent cooperation is 
necessary to implement the new direction of motion 
since each vector Kj specifies the motion for all forma- 
tion agents. 

In addition to using the above abstracted system to 
control the formation, one can also guide the formation 
by appending a virtual vertex vo defining the reference 
trajectory and several edges specifying how the refer- 
ence should be followed by the formation. In particu- 
lar consider a feasible formation graph F = (V, E, C) 
and let V' be a singleton containing the vertex vo : 
R + TMo, vo = &zo(t). This vertex is connected 



to the remaining formation by the additional edge set 
E’ = U~E~{(w~,w~)}, where I C V is a subset of all the 
vertices indices. Associated with each vertex we have 
the constraints C’ = {c’,),tE~t and we can define a new 
formation graph given by F’ = (V’UV,E‘UE,C’UC). 
Once again it is necessary to ensure that the feasible 
formation is capable of maintaining the reference con- 
straints by applying Proposition 3.1 to formation graph 
F’. 

Note that this construction is general enough to encom- 
pass traditional formations such as: leader-follower by 
superimposing the virtual vertex onto an existing one 
or placing references on the formation centroid [4, 71. It 
also allows some other interesting possibilities such as 
connecting a disconnected feasible formation graph by 
the reference constraints, that is several independent 
formations following a single reference. 

Example: Consider two planar robots evolving on 
Mi = R2 x S1 i = 1,2, parameterized by (xi,yi,Oi), 
Bi E [0,2n[, zi, yi E R. Robot 1 is nonholonomic, there- 
fore only motions along the direction where it is pointed 
to are allowed while robot 2 is holonomic being able to 
move in any direction. The two robots are described 
by the following controlled distributions: 

A1 = X ; U ~ + X ~ U ~  
A2 = X ; U ~ + X ~ U ~ + X ~ U ~  (15) 

where the vectors XI,  XZ and X3 are defined as: 

cos ei - sin Bi 
xf = F] xi = [ singei] xi = [ e r e i ]  (16) 

Equivalently the kinematics of robot 1 and 2 can be 
collectively modeled by the following form: 

- sin el dxl + cos el dy, 
Odx2 + Ody2 W K  = [ 

Figure 1: Graph used to specify the undirected formation. 

The desired formation is presented on Figure 1. Vertex 
vo is a virtual node associated with the reference tra- 
jectory given by (h( t ) ,  b ( t ) ) .  The constraints associated 
with edge el are given by c,, = [xo - z1 yo - y1lT, 
therefore the position of vertex vo will be the same as 
the position of vertex wl, but no constraints exist on 
the orientation. The constraints associated with edge 
e2 are c,, = [xl - 2 2  - IC, y1 - y2 - k, el - e21T for 

. 

some positive offsets k,  and ICy. These constraints re- 
quire that both agents perform equal trajectories trans- 
lated by the offsets I C ,  and I C , .  From the constraints we 
compute the form W F  and the vector TF: 

Constructing the form 0 and the vector T from the 
above forms we easily see that T belongs to the range 
of R, as long as b ( t )  cos el - h( t )  sin el = o (meaning 
that robot 1 must be aligned with the reference veloc- 
ity) therefore the formation is feasible. If we swap the 
location of the robots, the new form WK will be given 
by: 

and the equation O(X) = T has solutions as long as 
robot 1 is aligned with the reference velocity and since 
both robots must share the same orientation, robot 2 
must also be aligned with the reference velocity. Both 
undirected formations are feasible but this is not the 
case when dealing with directed formations as we shall 
see next. 

4 Directed Formations 

Another important class of formations can be modeled 
by directed graphs. A directed graph assigns respon- 
sibilities to the formation members in an asymmetric 
way. For each edge e = (vi,wj) agent i is responsible 
for maintaining the constraints ce,  while agent j is not 
affected by the constraint of the edge. 

We will assume through the remaining section that a 
directed formation graph is a directed acyclic graph. 
As a consequence all directed formations will have at 
least one leader. This assumption will allow the re- 
cursive procedures to start on the leaders and to ter- 
minate since there are no cycles. Cyclic formation 
graphs, although important, will be discussed sepa- 
rately [6]. We will also consider that the formation 
constraints are time independent for simplicity of pre- 
sentation although the results can easily be extended 
to time-varying constraints. 

Although in the undirected case we were able to lift 
the constraints and individual agents kinematics to a 
larger manifold M ,  the same approach will not be pos- 
sible for the directed case since only one agent is re- 
sponsible for satisfying the constraints associated with 
an edge. More precisely, given an edge e = (vi, wj) the 
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time derivative of its associated constraints ce can be 
decomposed as: 

dce - = L X i C ,  + c x j c e  dt 

Feasibility requires that % = 0, however only Xi can 
be chosen to ensure feasibility. In view of this we will 
follow a similar approach to the undirected case, but 
in a recursive formulation. This requires the following 
operators: 

Definition 4.1 (Post and Pre) Let F = (V, E ,C)  
be a directed formation graph. The Post operator is 
defined by  

P0s t :V  -+ 2v 
wi cj {Wj E v : (Wi,Wj) E E }  (21) 

Similarly, the Pre operator is defined as: 

P r e : ~  -+ 2v 
vi c+ { ~ j  E V : ( ~ j , ~ i )  E E }  (22) 

Intuitively, Post(wi) will return the agents that are 
leading agent i, while Pre(wi) will return all the agents 
that are following agent i. Post and Pre extend to sets 
of vertices in the natural way, Post(P) = UpEpPost@) 
and Pre(P) = UpEp Pre@). 

Definition 4.2 (Leaders) A vertez vi is called a 
leader i f  Post(wi) = 0. 

We shall abuse notation a represent the distribution Ai 
defining the kinematics of agent vi by A(wi) and for the 
set of agents Post(wi), A(Post(vi))  = $pepost(vi)  A@) 
defined over l-IpEpost(vi)Mp. Similarly to the undirected 
case we define the following objects for each agent i: 

where { 1,2,. . . m} is an enumeration of the edges set 
between agent i and its leaders (Post(w,)). These vec- 
tor valued differential forms allow us to write equa- 
tion (20) as: 

w f . ( x z )  = w $ ( x J )  (24) 

which is to be considered only for Xi E A(v,) and X J  E 
A(Post(vi)). Instead of restricting the Xi's to A(vz) 
we can incorporate the kinematic restrictions directly 
into equation (24) by defining: 

where w k  is the vector valued form annihilating agent 
i kinematic distribution A(vi). Equation (20) can now 
be further modified to the following form. 

This motivates the following result analogous to the 
undirected case: 

Proposition 4.3 A directed formation is feasible iff 
equation (26) has solutions for each agent i in the for- 
mation. Equivalently iff the range of R j / ~ ( e ~ t ( ~ , ) )  is 
contained in the range of Ri for each agent 2 .  

Since Proposition 4.3 must be true for each agent, an 
algorithm can be constructed to determine feasibility. 
Let L c V be a set of leaders and denote by ( W ) - ' ( X )  
the set of preimages of X under Ri and by R(S)  the 
range of operator S. 

Algorithm 1 (Directed Feasibility) 

initialization: V := L 
while Pre(V) # 0 do 

V := Pre(V) 
for all vi E V do 

end 
end 

All the computations in the algorithm can be per- 
formed using basis vector fields for the distributions 
and since there are no cycles in the algorithm we have 
the following result: 

Theorem 4.4 (Directed Formation Feasibility) 
Let F = (V, E,C)  be an acyclic, directed formation 
graph. Algorithm 1 terminates in a finite number of 
steps and returns: 

0 Unfeasible if the formation is not feasible. 

0 A distribution per agent specifiing the available 
directions to maintain formation i f  the formation 
is feasible. 

Example: Consider the formation graphically dis- 
played in Figure 2, where agent 1 and agent 2 are as in 
the previous example. Similarly we associate the con- 
straint ce = [xl - x2 - IC, y1 - yz - IC, el - eZlT 
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e 

Figure 2: Graph used to specify the directed formation. 

to edge e = (v2,vl). To determine feasibility of this 
directed formation one has to compute: 

-dxz -dxl 
U;= [:;;j U&= [:;;:I (27) 

and also: 

r-dx2i r 1 

(28) 

Feasibility now requires that R(R1 la(post(vz))) C 
R(R2), but since Post(v2) = v1 and agent v1 has 
no kinematic constraints, we get R(R' la(post(v2))) = 
R(R1). From this we see clearly that the conditions of 
Theorem 4.4 are not fulfilled and the directed forma- 
tion is not feasible. Maintaining the formation requires 
a cooperative effort from agent 01 to cope with agent 
v2 nonholonomic restrictions. However if we change the 
position of the robots in the formation we render the 
formation feasible. In this situation the new forms are 
given by: 

1 

and the inclusion R(R1la(post(,,,))) 'R(R2) is sat- 
isfied, meaning that formation feasibility is achieved. 
This shows, in particular, that one can break the global 
undirected solution into local ones, for e.g. agent 01 
does not need to know that it is being followed. From 
an implementation point of view this means that agent 
v1 control laws are independent from agent 212 state. 

When a directed formation is feasible the formation 
control abstraction is trivially taken as the control sys- 
tems of the leaders. Contrary to the undirected case 
this abstraction does not allow direct control over each 
individual agent. Control is exerted on the leaders 
that indirectly control the formation through the inter- 
agents links. 

5 Conclusions 

In this paper we have proposed a general framework 
for determining feasibility of formations. Two differ- 

ent types of formations were considered: undirected 
formations were inter-agent cooperation is required to 
maintain formation and directed formations were con- 
trol responsibilities are distributed between the agents. 
Conditions were developed to determine formation fea- 
sibility for the two type of formations considered and a 
control abstraction for the group was also extracted to 
model the formation as single object in higher control 
layers. 

When a directed formation is not feasible it may still 
be possible to extract a feasible formation by reducing 
the degrees of freedom that cannot be handled by the 
followers. This direction of research will be addressed 
in forthcoming publications as well as considering di- 
rected formation graphs with possible cycles. 
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