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Abstract

Robust Hypothesis Testing and Statistical Color Classification
Julie A. Adams
Max Mintz, Advisor

The purpose of this research is twofold: (¢) the development of a mathematical model for
statistical color classification; and (ii) the testing of this model under controlled conditions.

We consider the following hypothesis testing problem: Let Z = 8 + V', where the scalar
random variable 7Z denotes the sampling model, 6 €  is a location parameter,  C R, and
V is additive noise with cumulative distribution function F. We assume F' is uncertain, i.e.,
F e F. where F denotes a given uncertainty class of absolutely continuous distributions
with a parametric or semiparametric description. The null hypothesisis Hy: 0 € Q, F € F
and the alternative hvpothesisis H,: 8¢ Q, F € F.

Through controlled testing we show that this model may be used to statistically classify
colors. The color spectrum we use in these experiments is the Munsell color system which
combines the three qualities of color sensation: Hue, Chroma and Value. The experiments
show: (i) The statistical model can be used to classify colors in the Munsell color system; (i7)
more robust results are achieved by using a Chroma-Hue match instead of a Perfect match;
{717) additional robustness can be achieved by classifying a color based on measurements
averaged over a neighborhood of pixels verses measurements at a single pixel; and (iv) a

larger color spectrum than the Munsell color system is needed to classify a range of man-

made and natural objects.
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Chapter 1

Introduction

The purpose of this research is twofold: (#) the development of a mathematical model for

statistical color classification: and (i) the testing of this model under controlled conditions.

1.1 Mathematical Modeling Problem

We consider the following hypothesis testing problem: Let Z = §+ V', where the scalar ran-
dom variable Z denotes the sampling model. § € Q is the location parameter, & C R,
and V is additive noise with cumulative distribution function (CDF) F. We assume
I is uncertain. ie.. F7 € F. where F denotes a given uncertainty class of absolutely
continuous distributions with a parametric or semiparametric description. For example:
F={N[0.0%]:01 <o < op}.or F={F: Fi(2) < F(2) < Fa(x),2 € R}, where Fy
and Fy are given hounding distributions. The null hypothesis is Hg: 8 € Q, F' € F and the
alternative hypothesis is H1: 6 Q. F € F.

To introduce these ideas. we begin with an example taken from [4] where F' is known
exactlv: Let fly: 6, < 8 <@yand Hy: 6, >0 or 8 <8y, Z ~ N{#,0°), and the critical
(rejection) region (' = (=20, () U (5, o). Then, if Z < (7 or Z > Cy, we reject Hg.

We extend this previous example to the case where the noise distribution is not known
exactly. Let Z = 8+ V 4+ 5, | n |< w where 7 represents an uncertain shift or offset in

the noise distribution. The distribution F of V is assumed to be N(0,1) and | 8 |< Ho.



The uncertain shift. 1. represents a nuisance parameter. The effective noise V becomes
U+ 9. Thus. Fis {N[n.1]: | 5 |< w}. The presence of 7 makes this a robust testing
problem where the null hypothesis is Hy:| 8 | < 8y, F € F and the alternative hypothesis
is Hy: | 8|> 0y. F € F. Here, robustness refers to the need to contend with uncertainty in
the CDF F.

We present the development of the initial model and the expanded model in Chapter
2. This model provides an explanation for the experimental results: namely, that we are
able to differentiate the chroma and hue of a color but will have difficulties differentiating

between values within a chroma and hue.

1.2 Experimental Problem

Through controlled testing we show that this model may be used to statistically classify
colors. The color spectrum we use in these experiments is the Munsell color system which
combines the three qualities of color sensation: Hue, Chroma and Value.

The first step is to create a database of the spherical coordinates, (4. ¢), which represent
the chroma and hue for a given color sample. This is accomplished by placing all the color
chips for a certain hue onto the Munsell card, adding proper illumination, digitizing the
image, and calculating the coordinates. This information is then used for comparison when
classifving other images.

The first two experiments are aimed at testing the hypothesis: We can classify colors
based on the spherical coordinates of a pixel color or an average of these coordinates over
a set of pixels in an image.

Experiment [ involves taking three images of the color chips on their original Munsell
cards: (i) trying to recreate the base data, (i7) changing the aperture of the camera and
(#77) changing the position of the extra illumination. For this experiment we must choose
thresholds for (6.0). Based on the information from the statistical model building and
some preliminary tests. we made the classification region for a given color representation

(6.0) to be (6 +2.0°. ¢ £+ 2.0°). The results show we can classify colors using the spherical



coordinates and give us the actual thresholds we should use for the spherical coordinates:
(0 £20° o+3.0°).

Experiment II uses the same images as Experiment I, but we are testing the hypothesis
that the average of the spherical coordinates over a number of pixels will give better results
than the classification of the spherical coordinates for a single pixel. This experiment
provides strong evidence in support of this hypothesis correct.

Throughout both experiments we also compare the results of two types of matches: (1)
A Perfect match is a match where the exact chroma, hue and value of the color are found;
and (77) A Chroma-Hue match is a match where the correct chroma and hue are found
but the value is incorrect. The results from the statistical model show we should have
difficulty differentiating between values for a given chroma and hue. This result is shown in
the outcomes of both experiments. The number of matches attributed to the Chroma-Hue
match are consistently higher than those attributed to the Perfect match.

Experiment 1T shows that this model can be used to classify colors of real objects.
For this experiment we took images of different objects with differing colors, materials and
textures. Each set of images is taken with varying light and aperture conditions. The results
of this experiment is the knowledge that colors of real objects may be classified using this
model as long as the color is within the database color spectrum, the Munsell color system.

The results of all experiments show that: (i) We can indeed classify colors of real objects
based on the spherical coordinates: and (#7) In order for this model to be robust, the color
spectrum must be much larger than the Munsell color system. We present the detail of the

experimental set ups and results in Chapters 3 and 4, respectively.



Chapter 2

Statistical Model

Let Z = 6 + V. where the scalar random variable 7Z denotes the sampling model, 8 €
is a location parameter. Q = [—#y.6p], and V is additive noise with CDF F. We assume
F may be uncertain. i.e., F' € F, where F denotes a given uncertainty class of absolutely
continuous distributions with a parametric or semiparametric description. Specifically, we
consider three cases: (1) F = {N[0.1]}, i.e.. F is known completely; (2) F = {N[0,0?] :
01 < 0 < 03}, Le.. Fis known up to a scale parameter which lies in a given interval;
(3) F = {N[n.1] :| n | £ w}.le.. Fis known up to a location parameter which lies in a
given interval. The null hypothesis is Ho: 8 € Q, F € F and the alternative hypothesis is
Hi:0gQ FelF.

Since the underlying uncertainty classes and parameter sets have inherent symmetry,
we employ the following svmmetric two-sided test: Reject Hg if |Z| > ¢. In the sequel, we

examine the power function for this test under cases (1-3) for F.

2.1 Case 1:

Let (2) denote the CDF of the N[0, 1] distribution. Let IT;(8,¢) denote the power function
of the test:
H1(6.¢c) = Pr[|Z] > ¢|f] = G(8 — ¢) + G(—6 — ¢).

We select the threshold parameter ¢ based on: (7) the value of 6. and (i) the desired



size of the test. i.e., the maximum probability of rejecting Hp when Hyp is true [2, 8]. In this
case, the threshold parameter ¢ is selected by solving:

a{bg.c) = Gy — ¢) + G(—H0y — ¢) = ag.
where ag is the desired size of the test. For the purpose of this example, we let 83 = 5, and
select ag = 0.05. The corresponding value of ¢ is 6.64485.

The power function 111{f.¢) for this test and these parameters is plotted in Figure 1.
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Figure 1: 11,[6.6.64485], |6] < 12

This example provides us with the base model for the sequel. We examine the behavior
of the power function of the test parametrically in the context of the uncertainty classes F

in cases (2-3).

2.2 Case 2:

Here. F = {N[0.0¢?] : ¢y < @ < a3}, i.e., I is known up to a scale parameter which lies in
a given interval. Let 11,(8.0.¢) denote the power function of the test:

y(8.0.¢) = Prl|Z] > c|f.0] = G —¢)/o)+ G((—0 - ¢)/o).

Figure 2 depicts Tl1,(6. 0, ¢) as a function of 8 for the following fixed values of o: {0.5,1.0,2.0},
based on a threshold: ¢ == 6.64485.
The power functions in Figure 2 are keyed by dash-size: small (¢ = 1.0), medium (¢ = 0.5),

large (o = 2.0).
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Figure 2: 11,[0.0.6.64485], 0 < 8 < 12.0 € {0.5,1.0.2.0}

Figure 3 depicts [I;(6, 0. ¢) as a function of 8 for the following fixed values of o: {0.5,1.0,2.0},
based on a threshold: ¢ = 5.82243. This threshold corresponds to a size 0.05 test when

o= 0.5.

10 12

Figure 3: T1,[6.0.5.82243], 0 < 8 < 12,0 € {0.5.1.0.2.0}

The power functions in Figure 3 are keved by dash-size: small (¢ = 1.0). medium (¢ = 0.5),
large (¢ = 2.0).

Figure 4 depicts H,(#. 0, ¢) as a function of § for the following fixed values of ¢: {0.5,1.0,2.0},
based on a threshold: ¢ = 8.28971. This threshold corresponds to a size 0.05 test when

o= 2.0.
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Figure 1: 11,[0.0.8.28071], 0 < 8 < 12,0 € {0.5,1.0,2.0}

The power functions in Figure 4 are keyed by dash-size: small (¢ = 1.0), medium (¢ = 0.5),

large (o = 2.0).

Figure 5 depicts I1,(8.1.0.¢) as a function of 8 for ¢ € {6.64485,5.82243,8.28971}.

Is) 4
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Figure 5: 11,[8.1.0.c), 0 < 8 < 12.¢ € {6.64485, 5.82243,8.28971}

The power functions in Figure 5 are keved by dash-size: small (¢ = 6.64485), medium
{¢ = 5.82243). large (¢ = 8.28971).

We conclude from this analysis, that when o is uncertain, i.e., 01 < ¢ < 09, then we can
design the test based on the upper-value o5. This approach is feasible when (o, — 01)/03 is

small.



2.3 Case 3:

Here. F = {N[n.1] :| | < w},i.e., F is known up to a location parameter which lies in a
given interval. We adopt a partial Bayesian approach to analyzing this case. We assume the
parameter 7 can be modeled by a random variable with a uniform distribution on [—w,w].
Thus. the effective noise densityv becomes:

he.w) = (Gle + w) - Gle — w))/2w.
The CDF H{(z,w)is obtained by numerical integration. Figure 6 depicts the CDF H(z,w),z >
0 for w € {0.005.0.05.0.1}. Figure 7 depicts the CDF H(z,w),z > 0 for w € {0.05,0.5,0.99}.
We observe that as the value of w increases, the CDF H tends to flatten. As w increases,
the deviation of I from N[0.1] becomes more pronounced. We conclude from this analysis,
that when » is uncertain. i.e.. || < w. then we can design the w-dependent test based on

the CDF H{x.u). This approach is feasible when w is small in comparison with 6.

Figure 6: The CDF H(z,w),w € {0.005,0.05,0.01}

Based on the foregoing. we conclude. we can classify the colors of the Munsell color
svstem based on the mean and variance of the normalized unit color vectors. We next

discuss the experimental test this hypothesis in Chapters 3 and 4.



Figure 7: The (DI H(a,w),w € {0.05,0.5.0.99}



Chapter 3
Experiment

3.1 Set Up

The experiment set up includes a Sony XC-77/77CE CCD B/W video camera module with
a gamma factor of 1. A 50 mm Nikon lens and a set of Kodak color filters. including no.
25 red. no. 58 green and no. 47 blue. In addition, a complete set of Munsell student color

charts. Extra incandescent and fluorescent illumination devices are employed. See Figure

S.

3.2 Base Information

The chips are properly arranged into the Munsell order of value, chroma and hue on the
cards provided with the color system. Then extra illumination is added because the ordinary
overhead illumination is insufficient. Pictures are digitized using an 8-bit digitizer! for the
Sun <4 machine.

Each hue is taken one at a time. The extra illumination is directed at the center of the
card so there is approximately equal illumination over the entire set of chips for a single
hue. The camera aperture is adjusted for calibration of the system for each hue, such that

the brightest chip has an intensity value close to. if not exactly. 225 with the Red filter.

"The intensity values for this digitizer range {from 0 to 255.

10




Figure 8: Initial Set Up

This intensity value is chosen to keep the hlue pixel intensity values from being lower than
30. The intensity values should not he higher than 225 to prevent oversaturation.

After we digitize each image, we partition the image into individual chips. The software
1o mauipulate the digitized images is PM2. This is used to cut the images such that each
individual chip is put into its own set of files. Each chip is cut into a 32x32 pixel image
which is centered at the center of the particular chip in the original image. This creates 708
individual files. three files. representing the red, green and blue components for each of the
236 color chips of the Munsell system.

After each color chip is set up into its own set of files, containing the red, green and

2 . . i
“PM is a group of prograins 1o be executed in the UNIX shell, and is also
a colfection of ¢ functious 1o he used by programmers doing work in image processing.”[12]

11



hlue components. the three files are scaled to unit length using the normalization program.
This program reads in each component file for a chip, namely the red, green and blue. The
scale for the filters plus the camera are: red = 2.1875137; green = 3.0927197 and blue
= 1.5181403. Each pixel from the original image is read into the program. As they are
read. they are multiplied by the scale values. The values of each pixel are then normalized:
normalize = \/r2 + g2 4 b2
Then cach component is retrieved by dividing the scaled component by the normalize value.
It is then stored into a file with the .rgh extension which is used by the mean program.
The normalized information. in the .rgh file, is then used to find the spherical coor-
dinates. referred to as (#.0) in the mean program. This program takes each normalized
component of each pixel and accumulates a sum for (4, ¢):
sumf = sumb + arccos(b)
sumo = sumo + arctan({g = r)
After all pixels have been processed the sums of (8, ¢) are divided by the number of pixels
in the image. this results in the final values of (8.¢). This information is combined with
the actual chip name. i.e.. 5-8r. and is used as the base data of the classification program.

See Appendix B for the actual C program code.

3.3 Classification Program

This program is used to calculate the spherical coordinates, (8.¢), for a specific pixel or a
neighborhood of pixels. This information is used to search the base data file for a match.
All chip names and spherical coordinates which are within a certain threshold range are
printed out. I the color which is being classified is one of the names printed out by the
program we have a match.

Based on the discussion in Chapter 2 Section 3, we show that it is difficult to distin-
euish between values within a chroma and hue because the value information is lost due
to normalization. This means that there are two types of matches we will discuss in the

results.

12



A Perfect match is a match where the exact color being classified is found. For
example. if a pixel of a 5-8r chip is being classified and the results include 5-8r, the value,
chroma and hue all match.

A Chroma-Hue match is a match where the results include the correct chroma and
hiue but not the correct value. For example. if a pixel of a 5-8r chip is being classified and
the results include 5-21. 5-4r, 5-61, 5-107, 5-121 or 5-14r but not 5-8r. then the chroma and
hue match. but not the value.

Refer to Appendix B for the cade of the classification program and all other programs

used in this syvstem.

13



Chapter 4

Results

4.1 Experiment I

The first experiment takes random pictures of the Munsell color chips. This is accomplished
by setting up the chips in their proper order on the Munsell color cards. Lighting and
aperture are then varied.

The first set of iinages are taken using an extra incandescent light directed at the center
of the card. The aperture of the camera is open such that the brightest chip has about the
same intensity value it had in the base data, an intensity value of approximately 225 for
the image taken with the red filter. This set of images are meant to duplicate the base data
and the set up is similar to Figure 8.

The second set of images are taken with the same conditions as the first set except
that the aperture on the camera is closed slightly. This causes the intensity values of the
brightest chip to he lower by an intensity value of approximately 25 for images taken with
the red filter.

The third set of images are taken with indirect lighting and a wide enough aperture to
make the brightest chip have intensity values as close to the 225 value as possible for the
image taken with the red filter. The extra lighting in this case is to the right side of the

Munsell card and is not directed to the center of the card but off to the top of the card.



In all three experiments the actual Munsell card remains in the same position, as does the
camera. The only equipment which moves throughout the experiments is the incandescent
lamp.

These images are then normalized using the normalize program which was used on the
base data. Pixels are then chosen from each chip and are input to the classification program.
This program requires threshold values for (6, ¢) be chosen ahead of time and are initially
chosen to he (8 £ 2.0°. 0 £ 2.0°). We base this choice on the knowledge the values should
be similar to the original.

The initial ran is used to create the proper threshold values and to test the correctness
of the hypothesis. This experiment shows the threshold of (8 £+ 2.0°) for gives an accuracy
of 92.08%. and the same threshold for ¢ gives an accuracy of 81.72%.

Figure 9 shows the histogram of the  values after taking the absolute values of the
difference between the 6 value calculated by the classification program and the € value in
the base data. Figure 10 shows the histogram of the same data, less 4 outlying points,
hefore the absolute values are taken. Figure 10 plots 99.81% of the data points. Figure
11 plots the histogram of the ¢ values after taking the absolute values of the difference
between the o value calculated by the classification program and the ¢ value in the base
data. Figure 12 shows the histogram of the same data, less 26 outlying points, before the
absolute values are taken. This figure plots 98.78% of the data points.

This information is used to find the threshold values needed to obtain at least a 90%
accuracy for both (#.0). Figures 9 and 10 show the € threshold should be (6 & 2.0°) which
gives a 92.08% accuracy. Figure 11 and 12 show the ¢ threshold should be (¢ 4 3.0°) which
gives a 93.01% accuracy.

The experiment also shows illumination effects the results. The first two sets of images
with direct illumination give significantly better results than the third set of results when
indirect illumination is used. Table 1. This is an expected result, since the chip vector
values will decrease when illumination is changed significantly.

The experiment shows aperture eflects the classification but the effect is insignificant

compared to that of illumination. Tt is found when the aperture is changed by a significant



Figure 9: 6

Set Hit | Total | Percentage
1 662 | 712 92.98
2 635 | 712 89.19
3 373 | 712 52.39
Total | 1493 | 2136 69.90

Table 1: All Three Sets

degree. the results can be much lower. This is expected since by lowering the aperture we
are not allowing as much illumination to enter the system. This is seen in the results of the
second set of images in Table 1.

The above information is relevant to a Perfect match. the results of the Chroma-Hue
match must be considered. Table 2 shows a comparison of the total number of matches
for a Perfect match verses a Chroma-Hue match., This information further supports the
hvpothesis that it is very difficult to distinguish between values of a chroma and hue based
on normalized data. The Chroma-Hue match results are 21.02% better.

The conclusions drawn from this particular experiment:

| - 1t is feasible to use this tvpe of a model for color classification;

16



N2
(&
<

100

400

300

100

Iigure 10:

1 1.5 2 2.5 3 3.5

# with Positive and Negative Values

3 3.5 4 4.5

Figure [1: ¢

17



-1.5-1-0.50.5

Figure 12: ¢ with Positive and Negative Values

Match Tvpe | Hit | Total | Percentage
Perfect 1493 | 2136 69.90
Chroma-Hue | 1942 | 2136 90.92
Diflference 1449 21.02

Table 2: Perfect Match vs. Chroma-Hue Match of All Three Image Sets

2 - The threshiold values of (8,¢) should be (6 £2.0°. ¢ £ 3.0°);
3 - Mumination is a significant lactoy in the classification;

4 - Aperture can effect the classification when it is significantly closed.

4.2 Experiment II

This experiment utilizes the same information as Experiment I but we are now using the
average of (#.0) over a neighborhood of 9 pixels, around the pixel used in Experiment I,
to create the classification results. The purpose of this experiment is to verify the hypoth-
esis that the averaging of the spherical coordinates over a neighborhood ol pixels should

give better results than the spherical coordinates of a single pixel. The thresholds for the

18



averaged (8. ¢) are (6 £ 2.0°. ¢ + 3.0°).

Figure 13 shows the histogram of the 6 values after taking the absolute values of the
difference between the 8§ value calculated by the classification program and the # value in
the hase data. Figure 14 shows the histogram of the same data, less 6 outlying points,
hefore the absolute values are taken. Figure 14 plots 99.72% of the data points. Figure 15
the histogram of the @ values after taking the absolute values of the difference between the
@ value calculated by the classification program and the ¢ value in the base data. Figure
16 shows the histogram of the same data. less 38 outlying points. before the absolute values

arc taken. This figure plots 98.22% of the data points.

Figure 13: Average 4

The four figures show the resnlts are indeed better. The € threshold of (8 £ 2.0°) gives
a 95.27% accuracy, an improvement of 3.19%. The & threshold of (¢ £ 3.0°) gives a 93.16%
accuracy, an improvement of 0.15%. A future experiment could include testing smaller and
larger neighborhoods to find the neighborhood size which gives optimal results.

This experiment also shows improved results can be achieved for images when indirect

illumination is used. Table 3 shows a comparison of the results for classification of the

19
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Figure 16: Average ¢ with Positive and Negative Values

third set of images using just a single pixel and the averaging method. Recall the third
set of images is taken with indirect lighting. As can be seen from Table 3. the results are
significantly improved. 30.76%. when the averaging method is used.

We show the difference in accuracy when using the Chroma-Hue matching between the
single pixel method and the averaging method of classification, in Table 4. Once again the
averaging method out performs the single pixel method, by 11.65%.

Table 5 shows the (‘hroma-Hue match is 30.48% more accurate [or the single pixel
method than the Perfect mateh. Table 6 demonstrates the Chroma-Hue match is 11.37%

better than the perfect mateh when using the averaging method.

4.3 Experiment III

The third experiment involves classifyving images of real objects as opposed to the Munsell
color chips. The purpose of this experiment is to verify the model will work on real objects.

The first set of images. Figure 7. contains ten shiny plastic blocks and five wooden

21



Method Hit | Total | Percentage
Single pixel | 373 | 712 52.39
Averaging | 592 | 712 83.15
Difference 219 30.76

Table 3: Single Pixel vs. Averaging for the Third Set of Images and a Perfect Match

Method Hit | Total | Percentage
Single pixel | 590 | 712 R2.87
Averaging | 673 | 712 94.52
Difference 83 11.65

Table It Single Pixel vs. Averaging for the Third Set of Images and a Chroma-Hue Match

Method it | Total | Percentage
Perfect 373 712 52.39
Chroma-Hue | 590 | 712 32.87
Difference 217 30.48

Table 5: Perfect match vs. Chroma-Hue match for the Single Pixel Method

Method it | Total | Percentage
Perfect 592 1 712 83.15
Chroma-Hue | 673 | 712 94.52
Difference 31 11.37

Table 6: Perfect mateh vs. Chroma-Hue match for the Averaging Method
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blocks. Two dilferent hnages are taken with differing illumination. The colors of the blocks
include white, pink. vellow, blue, red, orange and green. The white, blue, pink and orange
blocks are colors outside of the Munsell color system. The classifying program correctly
classifies the vellow. red and green blocks. Once again illumination is found to cause a
problem when not directly upon the objects.

The sccond set of images. Fignre 18, includes a Wheat Thinst™ box and five shiny
plastic balls. The balls are green, vellow. red, blue and pink. left to right in Figure 8.
Three diflerent images are taken with differing illumination. The green and blue balls are
outside of the Munsell color system as are the blue letters on the box. The pink ball is
consistently classified as red and red-purple. The tomato, green leaves above the tomato
and the vellow of the hox are classified correctly.

Other images include the Mathematica™ conference posters from 1991 and 1992. Clas-
sification on these images are almost continuously correct. See the {ollowing copies of the
images to see what portions of the posters we use. Figure 19 is the image from the 1991
poster. IYigures 20 and 21 are the images taken from the 1992 poster. These portions are
chosen [or the number of different shades and hues in them.

This experiment shows this model can be used to classify real objects with colors within
the Munsell color syvstem, but will give incorrect or no results if the color is not within the
color svstem. [t also shows the material of the object; plastic, wood, cardboard or paper;

does not necessarily effect the results.
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Figure 17: Image of assorted blocks with direct lighting
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Fignre 18: Image of Wheat Thins' box with direct lighting



Figure 19: Image of 1991 Mathematica™ Conference Poster
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Figure 20: Image of a portion of the 1992 Mathematica™ Conference Poster
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Figure 21: Image of another portion of the 1992 Mathematica’™ Conference Poster
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

We developed a statistical hypothesis testing model which incorporates uncertainty in the
distribution of the observation noise. We begin with 7 = # + V., where the scalar random
vatriable Z denotes the sampling model. § € Q is a location parameter, = [—#g, 8g], and
Vois additive noise with CDF F. We assume F may be uncertain. i.e., F' € F, where F
denotes a given uncertainty class of ahsolutely continuous distributions with a parametric
or semiparametric description. Specifically. we consider three cases: (1) F = {N[0.1]}, 1.e.,
Fis known completely: (2) F = {N[0.0%] : 01 < 0 < a3}. i.e., F is known up to a scale
parameter which lies in a given interval; (3) F = {N[n,1] ;| | < w}, i.e., £ is known up to
a location parameter which lies in a given interval. The null hypothesisis Hg: 6 € Q, F € F
and the alternative hyvpothesisis H1: 6 € Q. ' € F.

We are able to build a suitable threshold test for (6,¢). but since the value parameter
is normalized out. in the transformation to the spherical coordinates, the value information
is lost. Therefore. we can distinguish between chroma and hue but will have difficulties
distingnishing value.

The experiments show improved results can be obtained by taking the average of (8, ¢)

over a neighborhiood of pixels as opposed to using just the single pixel method. The spatial
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averaging has the effect of reducing the observation noise and the volume of the underlying
uncertainty class. The experiments also show the results can be improved based on the
type of match required. Perfect verses Chroma-Hue.

[lumination effects the results. direct illumination is best, based on the base data where
the original illumination is directed at the center of the hue card. Aperture can effect results
if it is closed too much such that the intensity values of the image created with the blue
filter are too low.

Overall this model is capable of being used for color segmentation as long as the base
data includes a large enough color spectrum to classify all natural colors. This can not be

accomplished with the Munsell color svstem.

5.2 Future Research

This paper is a study to see if the hypotheses is correct. Now further studies are need to
improve the robustness of the model.

The effects of illuniination need to be studied further to extract more accurate error
bounds when: (/) using different sources of illumination, such as incandescent or fluorescent
lighting: (7/) varving the position of the illumination; and (%) varying the intensity of the
illumination. This issue is related to the value discrimination problem. In order to test
or estimate the value of a color, the following procedure could be tested: (7) Test for or
estimate (6. o). based on the normalized data. (i7) Take the unnormalized data and estimate
the value parameter based on the estimated hue.

The effects of changing aperture should also be studied in detail. It is important to
know the exact threshold where the classification becomes incorrect due to aperture.

Other color systems should be tested to find one which has a broad enough color spec-
trum to classifv the mnost real objects. The actual model should need no changes for these
tests. The purpose of this study should be to find a color system which is encompassing
enough to work on as many real objects as possible.

Further study should also include different object materials. Studies of the effects of
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shadows and reflections are needed. A study should be conducted to determine the proper
neighborhood size which gives the best consistent classification results when using the av-

eraging method.
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Appendix A

The Munsell Color System

The primary experbments in this study are based on the Munsell color chart chips. This
appendix describes what the Munsell color chart is and its values. This color chart was
designed by A. H. Munsell. It combines the three qualities of color sensation: Hue, Chroma,
and Value.

Hue refers to the name of the color [11]. such as red, purple. green or blue. Value is the
lightness of the color. or the whiteness in a color. The darker a color the lower its value
and the more it tends towards black. The Chroma coincides with the deepness of the color.
As the chroma increases the intensity of the color increases. The combination of the three
characteristics give us the different shades of colors in the chart.

The purpose of this system is to classifv color relations. This is how the colors like yellow-
red and purple-blue are developed. Yellow and red are neighbors and the intermediary space
hetween them represents the color vellow-red. The same is true with purple-blue, red-purple,

grecn-vellow. ete. Figure 22 is a picture of the Munsell student color chart.
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Appendix B

Programs for Data Analysis

This Appendix delineates the complete programs which are used for the data analysis in

this study.

B.1 Vector Normalization Program

This program was originally written by Jakov Kucan. It takes three files containing red,
green and blue components and scales them to unit length. The files are named [name].r,
[name].g and [name].b. 1f -s is used. the rgh components are scaled with RSCALE, GSCALE,
and BSCALE read from a scale-file. If -d is used, the default scale values are assumed. If
- is used the PM_F file containing norms of rgb vectors is produced. The usage of this

program is: RGBnorm -s [scale-file] -d -n [name].

#include<stdio.h>
#include<math.h>
#include<local/pm.h>

#include<string.h>
#define TRUE 1
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#define FALSE O

#define NARGS 1

#define max(a,b) (((a) > ()) 7 (a) : (b))

#define min(a,b) (((a) < (™)) ? (a) : (b))

#define RSCALE 2.1875137 /* RED filter #25 + camera */
#define GSCALE 3.0927197 /* GREEN filter #58 + camera */

#define BSCALE 4.5181403 /* BLUE filter #47 + camera */

#define OPTIONS "s:dn"
extern int optind;

extern char *optarg;

main(argc,argv)
int argc;

char **argv;

{ int i;
pmpic *Rpic, *Gpic, *Bpic;
pmpic *result, *norm_pic;
float *res, *norm_img;
double r, g, b, norm, normi;
double r_scale, g_scale, b_scale;
char fname[256];
FILE *fd;
int err, scale, do_norm;

char *cmd, c;



err = 0;
scale = FALSE;
do_norm = FALSE;

cmd = argv[0];

while((c = getopt(argc,argv,0PTIONS)) ‘= EQOF)
{ switch(c)
{ case ’s’:
1f((fd = fopen(optarg,"r")) == NULL)
{ fprintf(stderr,"%s: Cannot open ¥s.\n",cmd,
optarg);
scale = FALSE;
}
else
{ fscanf(fd,"}s",fname);
r_scale = atof(fname);
fscanf (fd,"%s",fname);
g_scale = atof(fname);
fscanf (fd,"%s",fname);
b_scale = atof(fname);
if(r_scale * g_scale * b_scale)
scale = TRUE;
else
{fprintf(stderr,"¥s: Scale is O, ignored.\n",
cmd) ;
scale = FALSE;
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break;

case ’'d’:
r_scale = RSCALE;
g_scale = GSCALE;
b_scale = BSCALE;

scale = TRUE;
break;

case ’'n’:
do_norm = TRUE;
break;

case ’7’:

err++;

+
if(optind >= argc)
err++;
if(err)
{ fprintf(stderr,'"Usage: %s {-s [scale-filel} {-d}
[fname]\n",cmd) ;

exit(err);

strcpy (fname,argv[optind]);
strcat(fname,".r");
if((fd = fopen(fname,"r")) == NULL)
{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,fname);
exit(-1);
}
Rpic = pm_read(fd,NULL);
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fclose(£fd);
strcpy (fname,argv[optind]);
strcat(fname,".g");
if((fd = fopen(fname,"r")) == NULL)
{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,fname);
exit(-1);
}
Gpic = pm_read(fd,NULL);
fclose(fd);
strcpy (fname,argv{optindl);
strcat(fname,".b");
if((fd = fopen(fname,"r")) == NULL)
{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,fname);
exit(-1);
}
Bpic = pm_read(fd,NULL);
fclose(£d);

result = pm_alloc();
result->pm_nband = 3;

result->pm_ncol = Rpic->pm_ncol;

result->pm_nrow = Rpic->pm_nrow;

result->pm_form PM_F;
result = pm_prep(result,result);
res = (float *) result->pm_image;

if(do_norm)

{ norm_pic = pm_alloc();

norm_pic->pm_ncol = Rpic->pm_ncol;

norm_pic->pm_nrow = Rpic->pm_nrow;
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norm_pic->pm_form = PM_F;

norm_pic = pm_prep(norm_pic,norm_pic);

norm_img = (float *) norm_pic->pm_image;

for(i=0;i<pm_nelm(Rpic) ;i++)

{r

(Rpic->pm_image[i]);

(Gpic->pm_image[i]);

(Bpic->pm_image[i]);
if (do_norm)
norml = sqrt(r * r + g * g + b * b);
if (scale)
{ r %= r_scale;
g *= g_scale;
b *= b_scale;
}
norm = sqrt(r *x r + g *x g + b * b);
r /= norm;
g /= norm;
b /= norm;
res[3*i] = r;
res[3*i+1] = g;
res[3*i+2] = b;
if (do_norm)

norm_img[i] = normi;

strcpy (fname,argvoptind]);

strcat(fname,".rgb");
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fd = fopen(fname,"w");
pm_write(fd,result);

fclose(fd);

if (do_norm)
{ strcpy(fname,argvloptind]);
strcat{(fname," .norm");
fd = fopen(fname,"w");
pm_write(fd,norm_pic);

fclose(fd);

B.2 Mean Program

This program finds the mean RGB vector with respect to the spherical coordinates. It finds
the (A.0) values as well as the means of the red, green and blue components. This program
also calculates the dot product with the mean. This program was originally written by
Jakov Kucan and modified by myself. The usage is: RGBmean [name] where the name
of the file is the output of the normalization program.

The program is used to create a file called all.means. This file contains the red, green
and blue component averages and the (#.¢) values. It also is used to create a file called
means which contains the (6. ) values for every color chip. The means file is the base data

which the classification program uses to compare to.

#include<stdio.h>
#include<math.h>
#include<local/pm.h>

#include<string.h>
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#define TRUE 1
#define FALSE O

#define RAD2DEG 57.29578

#define NARGS 1

#define max(a,b) (((a) > (b)) 7 (a) : (b))
#define min(a,b) (((a) < (b)) 7 (a) : (b))

main(argc,argv)
int argc;

char **argv;

{ int 1;

pmpic *pic, *xdot_pic;

float *pic_image, *dot_pic_img;

double r, g, b, fi, theta;

double mean_r, mean_g, mean_b, sum_fi, sum_theta;

double dot, sum_dot, sum_2_dot, max_dot, mean_dot,
var_dot;

char fname[256];

FILE =fd;

char *cmd;

cmd = argv[0];
if(--argc < NARGS)
{ fprintf(stderr,"Usage: %s [fnamel\n",cmd);

exit(0);



strcpy(fname,argv[1]);
strcat(fname,".rgb");
if((fd = fopen(fname,"r")) == NULL)

{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,

fname) ;
exit(-1);

}
pic = pm_read(fd,NULL);
fclose(£d);

/* find the mean wrt spherical coordinates */

pic_image = (float *) pic->pm_image;

sum_fi = sum_theta = 0.0;

for(i=0;i<pm_nelm(pic);i++)

{r

pic_image[3%*i];

g = pic_image[3xi+1];

"

pic_image[3*i+2];
sum_fi += atan(g/r);
sum_theta += acos(b);
+
fi = sum_fi / pm_nelm(pic);
theta = sum_theta / pm_nelm(pic);

mean_r = sin(theta) * cos(fi);

mean_g sin(theta) * sin(fi);
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mean_b = cos(theta);

printf("4s:\n",argv(1]);

printf ("%1f %1f %1f\n",mean_r,mean_g,mean_b);

printf ("%s\t%1f\t%1f\n" ,argv[1],theta*RAD2DEG,
£i*RAD2DEG) ;

/* do the dot product with mean (i.e. d(x,y) =

arccos(<x,y>)) */

dot_pic = pm_alloc();

dot_pic->pm_nrow = pic->pm_nrow;

|

dot_pic->pm_ncol = pic->pm_ncol;

dot_pic->pm_form = PM_F;
dot_pic = pm_prep(dot_pic,dot_pic);

dot_pic_img = (float *) dot_pic->pm_image;

sum_dot = sum_2_dot = 0.0;
max_dot = 0.0;
for(i=0;i<pm_nelm(pic);i++)
{ r = pic_image[3#i];

g = pic_image[3*i+1];

b = pic_image[3*i+2];

dot = acos(mean_r * r + mean_g * g + mean_b * b);

printf ("%1f,",dot*RAD2DEG);

if (dot>max_dot)

max_dot = dot;
sum_dot += dot;

sum_2_dot += dot * dot;




dot_pic_img[i] = dot;
}
mean_dot = sum_dot / pm_nelm(pic);
var_dot = (sum_2_dot / pm_nelm(pic));

printf ("41f\n\n" ,max_dot*RAD2DEG) ;

strcpy(fname,argv(1]);
strcat(fname,".dot");
fd = fopen(fname,"w");
pm_write(fd,dot_pic);

fclose(fd);

B.3 Single Pixel Classification Program

This {ile reads in the (#.0) values from a file "means™. It puts this information into an
arvay of structures Theta_Fi. This array will be searched during the classification portion
of the program.

Then the normalized vectors are read in. The (8, ¢) values are calculated from this
image for a specific pixel. These are the values we will search for in the indata array. The
binary search is used to find these values.

The usage of the program is class [name] row column. where name is the file created
by the normalizing program and row column is the position of the pixel in the image we
wish to classify. The normalizing program must be run before this classification can he

completed.

#include<stdio.h>

#include<math.h>



#include<local/pm.h>

#include<string.h>

#define TRUE 1

#define FALSE O

#define RAD2DEG 57.29578
#define MAX 237

#define NARGS 1

#define max(a,b) (((a) > (®)) 7 (a) : (b))
#define min(a,b) (((a) < (b)) 7 (a) : (b))

typedef struct t_f_struct
{ char *name;

double theta;

double fi;

} theta_fi;

main(argc,argv)
int argc;

char **argv;

theta_fi *indata(237];
theta_fi *item;

int i,pixel,high,low = O,middle,row_pixel,col_pixel,
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X,3;
float *pic_image;
pmpic *pic;
double fi, theta, r, g, b,buff2,buff3,sum_fi,fiaccum,
thetaaccum;
char fname[256];
char *name;
FILE *fd;
char *cmd;

char *buff = (char *) malloc(1024);

cmd = argv[0];
if(--argc < NARGS)
{ fprintf(stderr,"Usage: %s [fnamel\n",cmd);
exit(0);
}

row_pixel

atoi(argv[3]);

col_pixel atoi(argv([2]);
/* Read in the file containing the Theta and Fi values
to be used for classification. The array indata will be

searched for the classification */

fd = fopen("means","r");

i=0;

while ((!feof(fd)) && (i < MAX))
{

fscanf (£fd, "Ys\t%1f\t%1f\n" ,buff,&buff2,&buff3);

item = (struct t_f_struct x)
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malloc(sizeof (struct t_f_struct));
name = strdup(buff);
item->name = name;
item->theta = buff2;
item->fi = buff3;

indatal[i++] = item;

fclose(fd);
high = i;

/* Read in the normalized vectors */

strcpy(fname,argv[1]);
strcat(fname,".rgh");
if((fd = fopen(fname,"r")) == NULL)
{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,fname);
exit(-1);
}
pic = pm_read(fd,NULL);
fclose(fd);

/* Calculate theta and fi for a specific pixel in

the image */

pic_image = (float *) pic->pm_image;

theta = fi = 0O;

i = ((row_pixel - 1)%512) + j;
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r = pic_image[3*i];
= pic_image[3*i+1];
= pic_image[3%i+2];
fi= atan(g/r)*RAD2DEG;

theta= acos(b)*RAD2DEG;

row_pixel i/ 512;

col_pixel = i - (row_pixel * 512);

low = 0;

/* here we want the search stuff */

printf ("\n\nThe pixel is row %d and column %d of %s\n",
row_pixel+1,

col_pixel,fname);

printf("Theta is %1f and Fi is %1f\n",theta,fi);

printf("\nThe results of the search are: \n");

while(low <= 236) {
if (((theta + 2.0) >= indata[low]->theta) &&
((theta - 2.0) <= indata[low]->theta)) {
if (((fi + 3.0) >= indata[low]->fi) &&
((fi - 3.0) <= indata[low]->fi))
{
printf ("%s\t%1lf\t%1f\n",

indata[low]->name,
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indata[low]->theta,

indatal[low]->fi);

}

low = low + 1;

B.4 Averaging Pixel Classification Program

This file is exactly like the single pixel classification program except that it takes an average
of a range of pixels and uses this to find the classification results. This particular copy of

the program is set to take the average over a neighborhood of 9 pixels.

#include<stdio.h>
#include<math.h>
#include<local/pm.h>

#include<string.h>

#define TRUE 1

#define FALSE O

#define RAD2DEG 57.29578
#define MAX 237

#define NARGS 1

#define max(a,b) (((a) > (b)) 7 (a) : (b))
#define min(a,b) (((a) < (b)) 7 (a) : (b))




typedef struct t_f_struct
{ char *name;

double theta;

double fi;

} theta_fi;

main(argc,argv)
int argc;

char **argv,

theta_fi *indata[237];

theta_fi *item;

int i,pixel,high,low = O,middle,row_pixel,col_pixel,

X,3;

float *pic_image;

pmpic *pic;

double fi, theta, r, g, b,buff2,buff3,sum_fi,fiaccum,
thetaaccum;

char fname[256];

char *name;

FILE *fd;

char *cmd;

char *buff = (char *) malloc(1024);

cmd = argv([0];



if(--argc < NARGS)
{ fprintf(stderr,"Usage: %s [fname]\n",cmd);
exit(0);
}

row_pixel = atoi(argv[3]);

col_pixel = atoi(argv([2]);
/* Read in the file containing the Theta and Fi values
to be used for classification. The array indata will

be searched for the classification */

fd = fopen('means","r");

i=0;

while ((!feof(fd)) && (i < MAX))

{
fscanf (£d,"%s\th1f\t%1f\n" ,buff, &buff2,&buff3);
item = (struct t_f_struct *)
malloc(sizeof (struct t_f_struct));

name = strdup(buff);
item->name = name;
item->theta = buff2;
item->fi = buff3;

indatal[i++] = item;

fclose(fd);

high = i;

/* Read in the normalized vectors */



strcpy(fname,argv(1]);
strcat(fname,".rgb");
if((fd = fopen(fname,'r")) == NULL)
{ fprintf(stderr,"%s: Cannot find %s.\n",cmd,fname);
exit(-1);
+
pic = pm_read(fd,NULL);

fclose(fd);

/* Calculate theta and fi for a set of pixels in

the image */

sum_fi = 0;

pic_image = (float *) pic->pm_image;

for(x = (row_pixel - 1);x < (row_pixel + 2);x++)
for(j = (col_pixel - 1);j < (col_pixel + 2);j++)
{

theta = fi = 0;

-
]

((row_pixel - 1)*512) + j;

H
I}

pic_image[3%i];

pic_image[3*i+1];

"

pic_image[3*i+2];

fiaccum += atan(g/r)*RAD2DEG;

thetaaccum += acos(b)*RAD2DEG;
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+
fi = fiaccum/9;

theta = thetaaccum/9;

/* here we want the search stuff x/
printf ("\n\nThe pixel is row %d and column %d of %s\n",
row_pixel+1,col,pixel,fname);
printf("Theta is %1f and Fi is %1f\n",theta,fi);

printf("\nThe results of the search are: \n");

while(low <= 236) {
if (((theta + 2.0) >= indatal[low]->theta) &&
((theta - 2.0) <= indatallow]->theta)){
if (((fi + 3.0) >= indatallow]->fi) &&

((fi - 3.0) <= indatal[low]->fi))

printf ("%s\t4A1f\t%1f\n",indata[low] ->name,
indata[low]->theta,

indata[low]->fi);

}

low = low + 1;
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