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The Landau theory used by Choi and Mele (CM) to treat their rotor model on a triangular lattice
for the orientational ordering of polyacetylene chains in alkali-metal-doped polyacetylene is studied.
A reanalysis of the higher-order terms in the Landau expansion indicates that cosine ordering can
support a nonzero cubic term in the Landau expansion whereas the sine-ordered phase has no such
term. To construct a phase diagram requires a numerical solution of the self-consistent equations of
mean-field theory. Although this analysis does not convincingly treat the incommensurate phases
found by CM, it does identify an unusually rich variety of thermodynamically stable phases and leads
to significant modifications of the previous phase diagram. However, we do confirm the principle
result of CM, that alkali-metal doping tends to destabilize the herringbone phase that exists in the
undoped system. We also identify a number of interesting multicritical points. At one of these, the
quadratic terms in the Landau expansion are totally independent of wave vector. This situation is
similar to that for the kagome antiferromagnet.

I. INTRODUCTION

Recent experiments have established the existence of
a very rich phase diagram for the crystalline polyacety-
lene system as a function of conentration of alkali-metal
dopants (or better, in terms of the chemical potential, ts
of these dopants). An interesting phenomenon in these
systems is the orientational ordering of the polyacetylene
chains. To discuss the ordering of such molecules we will
refer to the principle axes as defined by the moment of
inertia tensor of the molecule. The "long" axis lies along
the chain direction. The "medium" axis is perpendicular
to the long axis and lies in the plane of the molecule.
The "short" axis is perpendicular to the plane of the
molecule. In the crystalline systems, the long axis lies
along the crystal c axis. This paper is concerned with
the ordering of the medium axes in the a-b or x-y plane.
We consider these projections to be quadrupolar objects
(thus neglecting the lack of a vertical mirror plane asso-
ciated with reversing the direction of the medium axis).
Henceforth we will refer to these quadrupolar projections
as "rotors, " and thereby do not allow the molecules to
have any twist in their equilibrium configuration.

For the undoped polyacetylene, a herringbonelike or-
dering of rotors was found, with a setting angle, P, whose
value was not fixed by symmetry. In contrast, the sim-
plest rotor models predict a true herringbone ordering
with P fixed by symmetry to be 45', independent of tem-
perature. Accordingly, as predicted for polyacetylene,
the P angle was found4 to be temperature dependent.
This lower symmetry is also indicated by the tempera-
ture dependence of the ratio, bja, of in-plane lattice con-
stants which deviates kom that of the perfect triangular
lattice. 4

Polyacetylene, when alkali-metal-doped, can exhibit
alterations in its orientational state. In particular,
even for moderate doping, the herringbone ordering is

destroyed. ' These results inspired an elegant, but sim-
ple, model Hamiltonian, which was shown by Choi and
Mele (CM) to reproduce qualitatively the structural
changes due to alkali-metal-doping. This model repre-
sents a nontrivial extension of a comprehensive mean-
field analysis of the pure system as described by a general
model for anisotropic rotors. In the CM model alkali-
metal doping is assumed to occur by completely filling
a number of z-directed galleries between three adjacent
polyacetylene polymers. They found that upon sufBcient
doping, the ordered phase was one displaying combined
compositional and orientational ordering. Such a phe-
nomenon was predicted [Harris, Mouritsen, and Berlin-
sky (HMB)j some time ago, and later observed, s for di-
luted diatomics physisorbed on a graphite substrate. The
CM model for doped polyacetylene and the HMB model
for randomly diluted diatomics on grafoil differ in some
details. The CM model is simpler than the HMB model
in that it describes rotors in a plane, characterized by a
single angle 8, , whereas the HMB model dealt with three-
dimensional rotors. On the other hand, the CM model
shows a richer phase diagram than the HMB model be-
cause it includes more possibilities for &ustration. Thus
CM found regimes in the phase diagram for the exis-
tence of incommensurate phases, either with a single
wave vector or with a superposition of three wave vectors.
The latter states are similar to those found previously in
other contexts. The existence and nature of these
phases, as well as whether or not the ordering transition
is discontinuous, depends on the form of the higher-than-
quadratic terms in the Landau expansion. As we shall
see, the CM treatment of these terms was not completely
correct. The purpose of the present paper is the present
and improved analysis of the relevant higher-order terms
in Landau theory and an elucidation of the phase di-
agram. In fact, we find that these higher-order terms
often result in a discontinuous transition. Since these
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terms are not scaled by a small parameter, a Landau
expansion cannot provide a controlled description of the
ordering or of the resulting ordered phases. Accordingly,
to construct the phase diagram we had recourse to a nu-
merical implementation of the self-consistent equations
of mean-Geld theory based on periodic structures with a
small unit cell. Unfortunately, such a treatment does not
allow us to access incommensurate phases. Therefore, in
some regimes, we are not entirely certain whether or not
incommensurate phases actually exist within mean field
theory for this model. Nevertheless, our results do indi-
cate the thermodynamic stability of a much richer variety
of phases than hitherto suspected.

Briefly, this paper is organized as follows. In Sec. II
we record the general form of the Landau expansion and
develop explicit expressions up to quadratic order in ap-
propriate order parameters. Using the complete enumer-
ation (given in Appendix A of Ref. 13) of all possible
critical points for this model, a stability analysis of the
disordered phase is performed in Sec. III. For the special
case of parameters considered by CM, their results for
the limit of stability are reproduced with minor modifi-
cations. In Sec. IV the higher-order terms in the Landau
expansion are reanalyzed. For cosine-type ordering we
find cubic terms which are missing in the case of sine or-
dering. The higher-order terms (either cubic or quartic)
usually favor triple wave vector ordering. As CM explain
this type of ordering is efficient in creating low-energy
galleries for the dopants. In Sec. V we construct phase
diagrams which show an unexpectedly large variety of or-
dered phases. In addition to the results of Landau theory
we use (a) exact calculations for the thermodynamic po-
tential at zero temperature for periodic structures with
small unit cells, (b) an exact relation which relates a
phases in which the ith gallery has an occupation prob-
ability n, to one in which n, is replaced by 1 —n, , and

(c) a numerical analysis of self-consistent field theory for
periodic structures with small unit cells. Our results are
summarized briefly in Sec. VI.

where 0; is the angle between the plane of the ith poly-
acetylene molecule (represented by a two-dimensional ro-
tor) and the x axis, P;~ is the angle between the vec-
tor joining the centers of rotors i and j and the x axis
(see Fig. 1), and E„ is the energy of an alkali-metal-filled
gallery:

E„=p ) cos(20„+s —2P„g),
8

where P„s is the angle between the z axis and the vector
joining the center of plaquette v and the site labeled v+8
(see Fig. 2). The local arrangement around an occupied
gallery favored by the potential in Eq. (3) is shown in
Fig. 3 for both signs of p. (In this paper we only con-
sider the case p ) 0.) The interaction E„competes with
the anisotropic potential V~ which favors a herringbone
structure for a wide range of values of o, and P. In the3

limit of zero doping the present model is similar to that
of Ref. 2 when the crystal potential is such as to force
the molecules to line in the plane of the substrate.

The grand potential O(y„T) as a function of chemical
potential of the dopants, p, and the temperature, T, is
given as the minimum (with respect to variations in the
normalized density matrix, p) of the trial potential, and
is given by

0 = min&At, ——min~ Trp [('R —pn) + k~T ln p] . (4)

Mean-field theory is obtained by assuming a product
form for the density matrix:

~ ~ ~ ~ ~ P

p;(e*) p-,

where the density matrix for the rotor at site i is given
by

86

II. LANDAU EXPANSION: RESULTS TO
QUADRATIC ORDER 8,

In this section we review the formulation of mean-field
theory. We write the CM Hamiltonian in the form

'R = ) V,, (8, , 8, ) + ) n„E„({8„+g)),
(ij)

Oy
1

12

where (ij) indicates a sum over pairs of nearest-
neighboring sites on a triangular lattice, v is summed over
triangular plaquettes, each of which represents a gallery
which is either occupied by alkali dopants (n„= 1) or
is vacant (n„= 0), and v + b labels the three sites at
the vertices of plaquette v. In Eq. (1) V~ represents the
anisotropic interaction between rotors (i.e., polyacetylene
chains),

V&j:o!cos (20& 2' ) + P cos (28& 2Pzj) c (28ojs2$&j) &

(2)
FIG. 1. Definition of angles which specify the anisotropic

interactions between rotors.
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X

PIG. 2. Left-directed and right-directed plaquettes. The
angles P„,g for the left-directed triangle are 0', 120', and 240'
for sites 1, 2, and 3, respectively. The "position vector, " R
associated with each triangle is that of site 2.

y&0 y&0

FIG. 3. Minimum energy configuration of rotors surround-
ing an occupied gallery.

1
p;(8;) = —[1+C; cos28;+ S;sin28;+ C;,4cos48;2'

+S~ 4 sin 48~ ' '] (6)
Minimizing A„with respect to z„gives

and

1+ (z„—i)n.
P (7)

which leads to

z —g(P —(& })/(&&T') (io)

where n„ is zero if the gallery v is vacant and is unity if
the gallery v is occupied by altutli-metal dopants. Also,
in the above "Tr" indicates an integration over all angles
8, and a sum over all occupation numbers, n„. Here we

introduce the "order parameters, " C;, S;, C; 4, and S; 4
which describe the probability distribution for the orien-
tation of molecule i, and z„which describes the degree
of occupation of gallery v. In Eq. (6) we will limit the
expansion to terms which affect our results. With this
mean-field density matrix the trial potential assumes the
form

Notice that Oq„depends on C; 4 and S; 4 only via the
entropy term. Keeping only terms which afFect the re-
sults to fourth order in C; and S; we have

(In p;(8;)) = -(C,'+ S,') + —(C,'+ S,')'1 2 2 1

0„=) (V;,(8;;))+) k~T(lnp, (8;))+A. ,

&ij} t

where we define (A) = Tr[g,. p;(8;)A] and 0„ is the con-
tribution due to the gallery occupation:

+—(C;4+ S;4) ——C;4(C; —S;)

1——S 4CS. .
4

Minimizing with respect to C; 4 and S; 4 yields

(i2)

0, =) (E,) —p,
V

+k~T ln(1+z„ 1 + z„

ln1+z„ 1 + z„)

(lnp;(8;)) = —(C; + S,') + —(C,'+ S,')

By including the effect of terms involving cos68 and
sin68 we extended the above calculation to obtain the
entropy correct to sixth order in the order parameters.
In this way we obtained the mean-6eld expression for
the grand potential in terms of the order parameters C;
and S; as

) (C;C~ + S;S~) + —P ) [C;C~ cos 2P;~ + S;Sz sin 2P;z + C;Sz sin 2P;~ cos 2P;z + S;C~ sin 2P;~ cos 2P;~]
( } &'}

+k~T ) —(C,'. + S,'. ) + —(C,'. + S,'. )'+ (C,'. + S,')'. . . + ) c~(p)(E )"(k~T)' "
»P

(14)
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where c„ is defined so that ln(1+ exp[(p/(k~T) —x]) =
e x" and

p p

1
(E„)= —p) [C„+gcos2$„s+S„+ssin2$„s] . (15)

1 1 1
A„(q) = k—T+ — p(q) + —pp„(q) —2zlp (q)l

1
A„(q) = A„(q) = —Pp„(q) —2zRe (P,(q)P, (—q) j

(26)

Since P (E„) = 0, we may start the sum over p in Eq.
(14) at p = 2. For instance,

where

(27)

z z —z 2

2(1 + z)2 6(1 + z)s
—z+ 4z —z2 3

"'")—
24(1 +.)

(16)

z = p'z/[4k~T(1+ z)']

p(q) = 4c„(q)' —2+ 4c (q)c„(q),

(26)

(29)
where z = exp[@/(kgyT)]. In the absence of orientational
order (n„) = z/(1+ z), in which case z = (n„)/(I —(n„)).
For p negative, cs(p) is positive.

We now introduce Fourier transformed variables via
~-(q) = 4c.(q)' —2+ c*(q)c.(q) (3o)

C; = ) C(q)e *~' (17) „(q) = 3cw(q)c (q), (31)

S; = ) S(q)e '~
where

~-(q) = -&» (q)ss(q) (32)

(Ei(Ri)) = —) e '~' ' [C(q)P, (q) + S(q)g, (q)] (19)

and similarly for "right-directed" triangles we have

(E (R.)) =
—,).e """[C(q)&.(q)'+ S(q)&.(q)']

(20)

where R„and R~ are the locations of the vertices speci-
fied in Fig. 2 for the plaquette in question and

P, (q) = 1 —c„(q)e (21)

We first express (E„) in terms of these variables, For
instance, for "left-directed" triangles, as shown in Fig. 2,
we have

c (q) = cos(~3q /2), s (q) = sin(~3q /2) . (33)

III. LANDAU EXPANSION:
STABILITY ANALYSIS

The above results differ slightly &om those of CM. In
their Eq. (7a), 3/2 is a misprint (not afFecting their re-
sults) and should be replaced by 1/2. Likewise p2 should
be identified with cos(q„a/2) to reproduce the results for
the undoped system, providing the &ee energy is nor-
malized in the same way in both references. More serious,
however, is that where we have 2x in Eqs. (25), (26), and

(27), their results correspond to having 4x. As a result
of this, our results indicate that their phase boundary
for the disordered phase in their Fig. 2 corresponds to
ci = —1, P = 2, and p = 3~2, rather than p = 3, as we

find here.

P, (q) = —its„(q)e (22)

where

c„(q) = cos(q&/2), s„(q) = sin(q„/2) .

Then the quadratic part of Oz„ is

where

1 1 1
A..(q) = k&T +- —op(q) + —p—w„(q) —2*id, (q) l',

(25)

N '0 = —) [C(—q), S(—q)]A(q), (24)
g

At a p,-dependent temperature, To(p), the disordered
phase becomes locally unstable. This temperature is de-
termined as the highest temperature at which one of the
eigenvalues of the A matrix becomes zero. The wave

vector qo for which this happens selects the star of wave

vector(s) needed to form the ordered phase. In Appendix
A of Ref. 13 we locate all wave vectors at which extrema
can conceivably appear for the present model. We find
that go must lie in a high-symmetry direction. Here we

use that information to carry out an analysis which, for
simplicity, is confined to a restricted region in parameter
space. To treat negative o. we arbitrarily set o. = —1,
and we consider only positive P. Thereby we include
the parameter values considered by CM: o. = —1 and

P = 2. A simple way to find the instability temperature,
the wave vector associated with this instability, and the
associated eigenvector, is to compare the eigenvalues of
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the Buctuation matrix at the critical points listed in Ap-
pendix A of Ref. 13. We did this numerically for a = —1
over the region 0.5 (P ( 9.5 and the results are given in
Fig. 4. There we show what kind of instability occurs in
the Buctuation matrix as a function of parameters. The
instability temperature as a function of P and z is not
indicated in this diagram. Also, if the transition is a dis-
continuous one, that is not indicated either, but will be
discussed later in Sec. V. For P = 2 the results in Fig. 4
reproduce those of CM (apart from replacing p by p+2).
However, as we shall see, even within mean-field theory,
the phase diagram is quite a rich one and difFers &om
what one would predict on the basis of Fig. 4 due to the
occurrence of first-order phase transitions.

We now discuss the results shown in Fig. 4. In describ-
ing our results it is useful to note that the fiuctuation
matrix is diagonal if either s or s„vanishes. Except
when the instability occurs at zero wave vector, we will

classify ordering by the type of instability that occurs
for q = 2z/+3. For small P (P ( 4/3) and small z,
the scalar interaction (proportional to a) dominates and
the instability is towards a "ferromagnetic" (F) phase in
which all rotors are parallel to one another. In this phase,
since the cosine and sine eigenvalues are degenerate at
zero wave vector, one has an z-y-like phase. Presum-
ably, the lattice will provide a sixfold anisotropy. The
mean-field transition temperature is given by

HB,s

3
kBT „=3——P.p (34)

As x is increased, the dominant instability shifts to a
herringbone phase. For P ( 4/3, this crossover occurs at

zF~HB, c = (4 —P)/16 . (35)

For q = Q~, as defined in Fig. 5, the instability is in 0 „
so we call this a herringbone cosine .(HB,c) phase (which
is illustrated in Fig. 6) and the instability temperature is
given by

1
kBTHB ~ = 16z —1 ——p .

2
(36)

As z is increased beyond a critical value,

+HB s-+I e =
48

(38)

the dominant instability is to an incommensurate phase.
In this phase one of the unstable wave vectors, vq, is
given by

, (3P —4 l:~i ——Qx+2cos '
I Ij.
q8(6z —1))

For this wave vector the instability occurs in A„, and
we call this phase an incommensurate sine (I, s) phase.
In this phase the star of the unstable wave vector again
consists of the six wave vectors, T; for i = 1,6, shown in

Simultaneous instabilities occur also at the other equiva-
lent herringbone wave vectors QB and C}c,shown in Fig.
5.

For P ) 4/3 and small z the instability is to a herring-
bone phase. For q = Q~ the instability is in 0„,so we
call this a herringbone sine (HB,s) phase (see Fig. 6). Its
instability temperature is given by

3
kBTHB, s = P

4/3

1 6

FIG. 4. Instability diagram for the diluted anisotropic ro-
tor model for a = —1. The regions shown indicate the in-
stability in the quadmtic term of the Landau expansion. In
most of the HB,s region the ordering transition which occurs
as the temperature is lowered is a continuous transition (at
least within mean-Seld theory) from the disordered phase to
the Ha, s phase. Similarly, within the E' region, the order-
ing transition is an x-y-like transition. For most other values
of the parameters the quadratic instability is probably pre-
empted by Srst-order transitions. For examples of this, see
Sec. V. There we discuss the phase diagram for a. = —1 and
P = 2 in the T @plane, which corresp-onds to the dashed line

P = 2. Also I, s (I, c) denotes incommensurate sine (cosine)
ordering and HB,c denotes herringbone cosine ordering. The
line labeled ~3 corresponds to ~3 ordering.

A' „ A

I

I

I

t

I

I

I

I

I

I

I

I

I

I

L-

G

FIG. 5. Location of the herringbone vectors, Q~, Qn, and
Qc one the edge of the Brillouin zone. The magnitude of
each vector is 4z /(3a) where a = 1 is the lattice constant. A
(big) reciprocal lattice vector is shown.
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At this critical value of x, a~ is equal to a ~3 wave vector.
The wave vector, 7 q, in the incommensurate cosine (I, c)
phase is given by

, (16*+P—4 '~:
~1 QA+2c» '

~ ~j
q8 —1 —2z )

(42)

-. 3 3

2 For this wave vector the instability occurs in A„. In
this phase the star of the unstable wave vector consists
of six wave vectors, as shown in Fig. 7. The instability
temperature is given by

HB, s HC, c
kgyTI, = 4x+P —1+ (16x+ P —4)'

32 —1 —2z (43)

Fig. 7. The instability temperature is given by

k T
32(6z —1)

(4O)

As z is increased still further the instability shifts to
the cosine channel. The critical value of x for this shift
is given by

I,.= p/8. (41)

PIG. 6. The ordered phases in which a single herringbone
wave vector hss condensed with s unit cell (indicsted by
dashed lines) containing two rotors snd four galleries. (s)
Left: the HB sine phase in which each sublattice of rotors
makes a 45' angle with the HB wave vector. Referred to that
direction (sin(28;)) = ko, where o measures the degree of or-
dering. In the HB,s phase all galleries are equally populated.
(b) Right: the HB cosine phase in which each sublsttice of ro-
tors makes either a 0 or 90 angle with the HB wave vector.
Referred to that direction (cos(28, )) = +o, where o measures
the degree of ordering. In the HB,c phase galleries 1 and 3
are equivalent and are preferentially occupied compared to
galleries 2 snd 4 (which are also equivalent to one another. )

Finally, for x larger than

zI,. Hg, , = (7p —4)/32 (44)

the instability is again into a herringbone phase, but now
a herringbone cosine (HB,c) phase. Here, for q = Q~,
the instability is in A„and occurs at the instability tem-
perature

1
kgyTHp, = 16z —1 ——P .

2
(45)

Consider the multicritical point at P = 4/3 and z =
1/6, at which all the phases are simultaneously unstable.
(This multicritical point could be modified if some of the
transitions are discontinuous. ) For these values of param-
eters, A is diagonal with q-independent degenerate diago-
nal elements, A,; =

z (k~T —1). As in the kagome case, 4

the degeneracy is removed by thermal Quctuations.
For completeness we display the form of the Bee energy

to quadratic order in the critical order parameters. In so
doing, it is useful to transform to "normal modes. " For
instance, when the instability occurs at the herringbone
vectors, we write

S(Q~) = ~2Xg, (46)

C(Q~) = ~2', (47)

~3
S(ggy) = — X2 — Y2,

2 2

~3
C(ggy) = Xg — Y2,

2 2
(49)

~3
S(Q~) = — Xs+ Ys,

2 2

FIG. 7. Location and labeling of the incommensurate vec-
tors which become unstable for the present model. The her-
ringbone snd ~3 wave vectors are Q& snd Q~~, respectively.

~3
C(Q~) = — Xs — Ys .

2 2

In terms of these variables the &ee energy is diagonal:
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N '0&2& = [T——T, (p)] [X2 + X22 + X22]
2

+ [T——T,(p)][Yi + Y2 + Ys],

S(Ti) = Xi, S(T4) = S(—Ti) = X4 ——X; ) (53)

+(~i) Y» +(~4) = +( ~i) Y4 Yi (54)

and similarly for the other wave vectors. (We intro-

duced the factors ~2 in the normalization of the herring-
bone modes so that the quadratic &ee energy would be
the same for commensurate and incommensurate cases. )
Then Eq. (52) continues to hold, except that the order
parameters are complex, X2 is replaced by ~X»~, and Y2

where T, (p) [T,(p)] is the instability temperature for sine
(cosine) fluctuations at wave vector Q~.

In the incommensurate phases, the above is modified
by introduction of a phase for each variable. Relative
to the herringbone phase, each wave vector bifurcates,
as illustrated in Fig. 7, to produce the incommensurate
phase. Then, for instance, we set

is replaced by ~Y»~2. In any case, the dominant instability
is the one with the higher instability temperature.

IV. LANDAU EXPANSION:
RESULTS TO HIGHER ORDER

In this section we analyze higher-order terms in the
Landau expansion. If there are cubic terms in the Lan-
dau expansion, the transition will be discontinuous. Also,
the nature of the higher-order terms will dictate whether
condensation takes place at a single wave vector or simul-

taneously at all wave vectors equivalent by symmetry. In
addition, higher-order terms can fix the relative phases
with which the order parameters condense. Such terms
describe phase locking or devil's staircase behavior, as
found, for instance, in the Frankel-Kontorova model
and in similar spin models.

Higher than quadratic terms in the Landau expansion
come &om two sources in Eq. (14): the entropy term and
the term involving (E„). Clearly cubic terms can only
come &om the latter source. We first analyze possible
cubic terms. For powers of (E„)we use

1
(E»(R)) = —p(e ' ' [isa„Xi+ (1+c„)Yj]+e'' [

—its„X4+ (1+c„)Y4]
2

+e ' '
[ iy 3s&X—2 —(1+cz)Y2]e'"~ + e' ' [its„Xs —(1+c&)Ys]e

+e ' '
( its„Xs —'(1—+c„)Ys]e '"~ +e' *' [its„Xs—(1+ c„) Ys]e'"~ ),

where ~i „——k specifies the incommensurate part of the
wave vectors and av ——sin(k/2) and cv

——cos(k/2). In
the above we noted that —2; and 2;+2 are equivalent.
For herringbone wave vectors, set k = 0, replace p by
pv 2, and omit the terms involving X; and Y; for i ) 3.
In writing these expressions we only keep contributions
from fluctuations which are potentially criticaL Note
that since P, (0) = P, (0), (E»(R)) has no contributions
involving zero wave vector. Also, in the commensurate
(herringbone) phase s„= 0 and the critical sine modes
do not couple to the vacancy free energy. To obtain the
analogous expression for (E„(R))replace a„by —s„and

ik/2 by e
—ik/2

A. Sine phases

& ').(E»(R))'= 6
l

x (XiX2X3 X4X&Xs) . (57)

Thus the fourth-order contribution to the &ee energy is

Since this result is an odd function of s&, we see that
hO&sl, as given by Eq. (56), vanishes in this case. Further-
more, the entropic terms are all even order. Therefore
sine phases, whether commensurate or incommensurate,
do not allow any cubic terms.

We now consider the quartic terms arising from the
entropy. For the commensurate (HB) case we write2

S2 + Z2 2[X2 + X2 + X2 X X ei'Qc. R

—X2Xse*~" —XsXie*~~ ] .

'bni'i =-",",) ((E,(R))'+(E„(R))') .

We see that

(56)

We start by analyzing the higher-order terms in the
Landau expansion for the sine phases. To treat these
phases, we focus on the X vanables, which are the critical
variables for sine ordering. For the cubic terms we have

m-'an&'1= ' ) (S'+C'-)'

kg) T
([X,'+ X,'+ X,']'+ X,'X,'
+XX +XX). (59)

Note that the anisotropy favors the condensation of a
single wave vector in preference to simultaneous conden-
sation of al/ wave vectors in the star. In view of the fact
that the present model is similar to that used in Ref. 2
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in the limit when their V, is large and negative (forcing
the molecules to lie in the plane), this result is expected.

The situation changes when the wave vector becomes
incommensurate. As we have seen, there are still no cu-
bic terms. Next consider the fourth-order entropic con-
tributions. In terms of the critical amplitudes of the six
incommensurate wave vectors, we have

S = "' 'I+ ''R'X' —— '' 'I1
j & 22'

1. . . 1 . 1iTs Re X* e iTs—'Re X iTs 'Re X q
(6p)2' 2 t 3 8 32' 2'

—irg R,g + ivy. R, g + —iw3. Rs g,lg
2

'
'tT'3 'Rs

3 ~ (6i)

N bn~l= ) (8 +c)64N

When we sum a fourth-order contribution over i, a
nonzero result only occurs when the sum of four incom-
mensurate wave vectors is zero modulo the reciprocal lat-
tice. We Gnd

~i = Q~+ki (64)

and similarly for the other v;. Note that k ranges from 0
(for the HB wave vector) to 27(/3 (for the v 3 wave vec-
tor). There are two fourth-order contributions, the first
obtained by expanding 0 to fourth order in the critical
amplitudes I;. The second is an induced term obtained
by the eKect of a third-order term in 0 which involves
two critical amplitudes and one noncritical amplitude.
Minimization with respect to the noncritical amplitude
then gives induced terms which are fourth order in the
critical amplitudes. 2 As we shall see, these contributions
are analytic in k in contrast to that written in Eq. (63).

The Brst type of term is

ture is a herringbone vector, and is zero otherwise. This
result shows that phase locking (into the HB state) is ac-
companied by an anisotropy which favors the single wave
vector phase.

For the incommensurate sine phase there are additional
fourth-order terms coming from 0 . We will express
these contributions in terms of the incommensurate part,
k, of the wave vector, where (see Fig. 7)

x, l'+ Ix, l'+ Ix, (62)

The important result here is that so far we have not ob-
tained any anisotropy at all. So far, then, there is no dis-
crimination between single and triple wave vector states.

It is interesting to observe the diH'erence between the
results in Eqs. (59) and (62). The discontinuity is an
example of phase locking and can be represented by a
term

Using Eq. (55) we find that

N-'b, ni'i = x.[lx, I'+ Ix, l'+ Ix.l'+ 4(lx, I'Ix.
+IX21'lxsl'+ Ix.l'Ixil')j (66)

where
(q g Qg)

b~ HB(X, + X2 + Xs),k~T 4 4

32
(63)

27 (p sin(k/2) i
(67)

where bq HB is unity if the wave vector q of the struc- To obtain the induced contribution we start from

Sn(3) 9c ~ sin t'ki2&
&( / ) g

[
—iT] Rx iTz Rx iTs RX ei—iq/2 + iTs RX i)q/2—

8N(kgT)2

—e "' "Xee '"+e"'"Xee'""]') e '"P(q)4"(q)+ S(q)4 (q)]I
q

3 ~ 2jL
/ ) & ~ ir —iTg R~ iT, Rqe. —iTS Rqe. —ik/2 iTS R~ ik/2

8N(k~T)

—e ' ' Xee'"& +e' ' Xee * i ] ) e 'e' (C(q)P, (q)'+S(q)P, (q)']I .

(68)

We must minimize the term written in Eq. (68) with
the quadratic terms (taking both signs of wave vectors)
written in Eq. (24). So doing yields an induced quartic
interaction of the form

s,n('& = a, (IX,I'+ IX,I'+ IX,I')

+~2 (IX.I'IX~ I' + Ix, l'lx, l' + IX.I'Ix, I')
(69)
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In Appendix B of Ref. 13 we evaluate these coefBcients

Slcsp sin (k/2)
4(k&T)4A„(2kj)

(70)

Slcs2ps sin (k/2)
4(k~T)4

[cos k + cos(k/2)]2

A„[(2m/~3) i + ski]
[1 + cos(k/2)]s+ A„(ri) (71)

3 kar+ Ao+ A
32

(73)

Thus, the sum of the fourth-order contributions is

ho&'& = t), (Ix,l'+ Ix, l'+ Ix, l')

+v. (Ixil'lxsl'+ lxll'lxsl'+
I

sl'lxil')
(72)

where

tervenes) only rather close to the point A in Fig. 4 (where
the herringbone phase appears). Siace v, is always neg-
ative (except very close to p = 0), the triple wave vector
incommensurate state is favored over the striped incom-
mensurate phase. (This is reasonable, inasmuch as it is
the former phase which tends to make favorable galleries
for the dopants. ) At point B in Fig. 4, the cubic term
begins to become nonzero, as we shall see in a moment.
We will discuss this znulticritical point further in the next
section, when we describe numerically obtained phase di-
agrams.

For the incoznznensurate phase we have not yet said
anything about how the phases associated with the three
wave vectors are fixed, if at all. In general, two of these
phases will be associated with the origin of the structure
and if these two phases are completely free, oae will have
a two-dimensional phason. It seems likely that there are
regimes of such behavior, as in the Frankel-Koatorova
model. The sum of the three phases will be fixed by
a sixth-order term. Note that the quartic terms dictate
that the amplitudes of all the aormal modes should be
equal when they order. So we write

aad

v, = 2Ap —2Ai+ As . (74)
X = X' = Ze'~',1 4

X3 ——X' = Ze'~',6

X2 ——X' = Ze'~'
5

(75)
Two important aspects of this result are (a) the sign

of v, and the sign of the overall fourth-order term in
the easy direction: u4 = Min(t)„t), + (v, /3)). The sign
of v4 will indicate whether or not the transition is con-
tinuous (assuming this transition is not preempted by
another first-order transition). Assuming a continuous
transition, or at least a sufBciently weak first-order tran-
sition, we can say that if v, is positive, we have a single
wave vector, i.e., what CM call a striped phase. Oth-
erwise we have what CM call a hexagonally modulated
phase. In Fig. 8 we show t), and v, as functions of p, eval-
uated at the instability temperature Tp(p) for a = —1,
P = 2, and p = 3. One sees that t), is positive, i.e., this
transition is continuous (assuming no other transition in-

where Z is positive real. Then there will be a sixth-order
term proportional to

K. (x,'x,'x,'+ x,'x,'x,')

= 2KsZ cos(2/i+ 2/2+ 2gs), (76)

which will fix the sum of the phases to either be 0 or to
be n'/2, depending on the sign of the constant, Ks. Since
the calculation of Ks is rather tedious, we omit it.

B. Cosine phases

0 In this section we consider the form of the higher-order
terms in the cosiae phases. We start with the cubic
terms. For this purpose we rewrite Eq. (55) keeping only
the cosine ('Y) variables. Thus, for the incommensurate
cosine phase we write

-8-

\

\

I
ll

1
\
\

l
l

l

(E)(R)) = —p(1+c„)(e ' ' Yi —e ' ' Y2
I

-e 3+ e 4
—i~g.Ry )

—i~4.RY

5 —e 6)
—its.Ry —i~g.Ry

so that for the I, c phase the result is

(77)

-2.4 -2.0 -1.6 -1.2

FIG. 8. Landau parameters u, v, of Eq. (74) versus p for
the incommensurate sine (I, s) phase, for n = —1 and P = 2,
and 7 = 3. Point A in Fig. 4 corresponds to p = —2.246 and
point B to p, = 0.

«,",.' = „'„)((WR))'+ (E.(R))')

3Nc3p3

)2 (1 + c„) (YiY2Ys + Y4Ys Ys)
2 JpT

Writing Yi = Z;e'&' for i = 1,2, 3, this gives

(78)
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b'Ol, ——NK3Z] Z2Z3 COS($] + Q2 + $3) (79)

where

3C3 jfK, = „,(I+ „) (8o)

hOHn, ——(81~2/8)Neap (k~T) Yj Y2 Ys I (81)

where the Y''s are real.

For the commensurate HB,c phase, we drop the term
Y4Ys Ys in Eq. (78) and replace Y; by ~2Y; to get

For the I, c phase, bO~ ~ is minimized by taking Z; = Z
and appropriately choosing the sum of the phases. As in
the case of the sine phases, we expect that for the I, c
phase there will be regimes in which the two other phases
are &ee phason variables. To see the meaning of fixing
the sum phases in Eq. (79), it is simplest to consider the
commensurate HB,c phase. Here the Y''s are real and we
set Y, = 0;Z, where g is real positive, each o, is either +1
or —I and the cubic term forces all the amplitudes to be
equal to one another. The construction of the resulting
triple wave vector states, having four rotors per unit cell,
is similar to that done in Ref. 2. First observe Born Eqs.
(6) and (46)—(51) that the density matrix is

2mpR(8;) —1 = v 2Z
~

o'~e'~"' — o'ae'—~ ——0'ce'~
~

cos(28R)

(~~e' I —~~e*'l' ) sin(2eR)iclc R i+a.R
2

3

,
'5 6 ', 5

I

I

I

t

-. 2 2

4 /

Suppose csp ) 0. (Since we assume that p ) 0, this
condition implies that y, ( 0.) If one chooses all the a' s
to be negative, one minimizes the cubic term in the free
energy [see Eq. (81)j, whereas taking all the a's to be
positive would minimize the &ee energy for the opposite
sign of c3p. The four states obtained by choosing the

0's so that their product is positive (or negative) differ
&om one another by diferent origins for the unit cell.
The state with all o's negative is shown in Fig. 9(a) and
that with all the 0 s positive is shown in Fig. 9(b). As in
the triple wave vector sine state, called a pinwheel state, ~

one rotor is disordered and the other three each assume a
different orientation. (It is not expected that this phase,
with complete disorder in one sublattice, could remain
the true equilibrium state down to zero temperature. )
The gallery occupation energies for these two triple wave
vector cosine states are given in Table I. Again, the four
choices of o's correspond to the four choices of origin of
the disordered rotor in the unit cell. (A similar anal-
ysis shows that for the triple wave vector, or pinwheel
sine phase, shown in Fig. 10, all eight choices of the o s
lead to states which are equivalent by symmetry and in
fact all the gallery occupation energies in the pinwheel

c p)0
3

c p(0
3

FIG. 9. The two herringbone or pinwheel cosine (PWc)
triple wave vector states. The filled circles represent orienta-
tionally disordered rotors. In each case the unit cell contain-
ing four rotors and eight galleries is shown by dashed lines.
In each case one see that galleries 1 and 6 are equivalent and
the other galleries are all mutually equivalent. (a) Left: the
state corresponding to the choice of the three phase factors,
o, , such that their product is negative. The eight galleries
in the unit cell are numbered and have occupation energies
listed in Table I. (b) Right: the state corresponding to the
product of the cr, being positive. Changing the sign of a,.
induces a change in the orientation of the ith rotor by 90 .
Note the most negative occupation energy for galleries 1 and
6 in the left-hand structure and the most positive occupation
energy for these galleries in the right-hand structure. Thus
when the galleries are less (more) than half filled, the left-hand
(right-hand) structure is favored.

3

5

7 8,
'

/

4i

FIG. 10. As in Fig. 9, but for the triple wave vector [pin-
wheel (Ref. 2)] sine phase. In contrast to the galleries in Fig.
9, all galleries here have zero occupation energy. Also there
are eight equivalent such pinwheel states, corresponding to
four choices of origin and also re8ection through a vertical
mirror line (Ref. 2). Changing the orientation of all rotors by
90' leads to an equivalent pinwheel state.
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TABLE I. Occupation energies E(9a) for galleries as num-

bered in Fig. 9(a) and sinai&arly for those in Fig. 9(b).
hT = ur /(54u, + 18v,) . (87)

Gallery
1
2
3
4
5
6
7
8

& [9(a)]/~
—3
1
1
1
1

—3
1
1

& [9(b)]/~

3
—1
—1

phase are zero. This symmetry does not allow a cubic
term, since such a term would difFerentiate two equiv-
alent structures. ) The galleries in the cosine pinwheel
phase are illustrated in Fig. 9. From the gallery occu-
pation energies listed in Table I one can understand the
effect of the cubic term in structure selection. For sim-

plicity, consider first the case when cs7 is positive. Then
it is favorable to first fill the galleries labeled 1 and 6 in
Fig. 9(a). Note that the sum of all the gallery occupation
energies is zero. Accordingly, when less than half the gal-
leries are filled, the structure of Fig. 9(a) is favored. In
Fig. 9(b) we see that galleries 1 and 6 have the highest
possible energy, so they are the ones which will be filled
last. Accordingly, for more than half filling the structure
in Fig. 9(b) will be favored. Amazingly, these results are
incorporated in the cubic term of Eq. (79).

We now make a rough estimate of the discontinuity
in the order parameter for the transition into the com-
mensurate cosine phase, assuming the coeificient tv of the
cubic term to be small. We have the grand potential in
the form

Just inside the ordered phase, i.e., for T -+ To, the order
parameter satisfies

IY I
= »T/I~l (88)

We will compare this result to our numerical results in
the next section.

Note that the cubic term in Eqs. (79) and (81) is
proportional to cs which vanishes for z = 1, i.e., for

(n„) = 1/2. At or near this point, fourth-order terms
compete with the above cubic contribution. We will not
study this case here.

C. 120' phases

Here we briefiy comment on the nature of the higher-
order terms at point B in Fig. 4, where the cosine and
sine-order parameters are simultaneously critical. At this
point, the "root 3" wave vectors, Q~z and —Q~z (see
Fig. 7) represent the complete star of the critical wave

vector. Then s„= ~3/2, c„= 1/2, and the analog of
Eq. (55) (for the case of two critical wave vectors with
complex conjugate amplitudes) becomes

In view of Eq. (56), this yields a third-order contribution
to 0 of

(E~(R)) = —p e '~~& (Y'+iX)+e'~~' (Y'+iX') .
4

(89)

[T —T,(p)] [Y—i + Y2 + Ys ] + tv Yi YzYs
N 2

+v, [Yi Y2 + Yz Ys + Yi Ys ], (83)

Sn&s)

N

3 R H

32 kgyT 2 (Y + iX) + (Y' + iX') . (90)

where the coefBcients are

tv = (81' 2/8)csp (kgyT) (84)

kgT 8lc4p
16 32(k&T)s ' (85)

\

s /',
\

' /
1

\

s

3'/'
4 'i

'I

kg) T 8lc4p
16 8(k&T)s (86)

c p(0
3

c g)0
3

The result for ur is from Eq. (81). The results for u,
and v, are obtained in analogy with Eqs. (59) and (66).
There are no induced fourth-order terms because cou-
pling to zero wave vector or to the herringbone sine
modes vanishes: P (0) = P, (0) = 0 and P, (Q~) = 0.
By minimizing the form in Eq. (83) one finds the tem-
perature To for the first-order phase transition into the
cosine pinwheel phase as To ——T,(p) + b,T, where T,(y)
is given by Eq. (45) and for P = 2

FIG. 11. The two 120' phases associated with the ~3 wave
vectors. (a) Left: the 120' phase which occurs when the
gallery occupation probability is greater than 1/2. At low

temperature only gallery 1 is unoccupied. (b) Right: the
120 phase which occurs when the gallery occupation proba-
bility is less than 1/2. At low temperature only gallery 1 is
occupied. Note that the vertical (nearest-neighbor) and hor-
izontal (second-neighbor) directions are not equivalent. Also,
re8ection through a vertical mirror line produces structures
equivalent to those shown here.
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This term is similar to what one finds for the anti-
ferromagnetic x-y model on a triangular lattice: It is
extremized (subject to keeping the quadratic term fixed)
by choosing X = io.Y, where ~ = +1. Then the phase
of Y is restricted to extremize the cubic term. If we set
Y = ~Y~e '4', then

baal & = 27Nc p ~Y~ cos(3$)/[4(k T) ] . (91) 2 3 ', 2 3',

Thus cos(3$) is of unit magnitude and has the same sign
as —c3p. The resulting "120'" phases are shown in Fig.
11.

c ((0
3

6 5

c y&0
3

6 5

V. PHASE DIAGRAM

The above analysis is not sufhcient to construct the
phase diagram, because it cannot tell us whether or not
a first-order transition to some type of order preempts
the instability found from quadratic fluctuations. So it is
necessary to supplement the above analysis with some ac-
tual evaluations of self-consistent field theory. However,
before doing that we establish an exact relation between
occupied and unoccupied galleries, similar to particle-
hole symmetry in the Hubbard model.

A. Particle-hole symmetry

m({e,), {~„))=) V,, (e, , e,)+) n„E„({e„„))
(ij) V

=) v,, (e,'. , e,')+) „[-E„({e„'„})]
(~2) V

=):v (e,' e,')+).(1- .)E.({e.'
))

(~~) 'U

—) .E.({e.'+s)) . (92)

This general relation relates two phases which are ob-
tained &om one another by rotating each rotor through
an angle of 90' and interchanging occupied and unoccu-
pied galleries. To develop this relation we set 8' = 0+90',
and write

FIG. 12. As in Fig. 11. The two 90' phases at the ~3
wave vector, in which there are three rotors and six galleries
per unit cell (indicated by dashed lines). (a) Left: the 90'
phase which occurs when the gallery occupation probability
is greater than 1/2. At low temperature only galleries 1 and 4
are unoccupied. (b) Right: the 90' phase which occurs when
the gallery occupation probability is less than 1/2. At low

temperature only galleries I and 4 are occupied.

ever, for the triple wave vector (HB,c) states and the i/3
phases, this operation will give rise to a first-order transi-
tion, in the former case between the two states shown in
Fig. 9, and in the latter case (for the 90' phase) between
the two states shown in Fig. 12.

Another aspect of the symmetry at p = 0 is that at
that point the odd order terms in the Landau expansion
vanish. In that case Eq. (11) becomes

0„=) E„/2 —k~T ) in{2cosh[(E„)/(2k~T)])
'U 'U

k~T ) in{2—cosh[(E„)/(2k~ T)]}, (

which is patently an even function of the order param-
eters. Since the entropy is also an even function of the
order parameters, one sees that for p = 0 there are no
odd order terms in the Landau expansion. (This conclu-
sion holds for all the phases considered in this paper. )

By considering a given rotor and summing over its
nearest-neighboring shell of galleries, one can show that
the last sum in the last line of the above equation van-
ishes. Therefore the result is

&({e*){~-))= &({e,') {n'.))
where n' = 1 —n . In terms of the grand potential we
have

fl({e') u) = ~1({e.') —s ) .

This result indicates that as p passes through zero, the
rotors will be rotated through an angle of 90 . For the
single wave vector herringbone phases (shown in Fig. 6),
this is a symmetry operation, so passing through this
point need not correspond to a phase transition. How-

B. Zero-temperature results

VVe can also use exact calculations of grand potential
at zero temperature, since this calculation only requires
the energy of a structure characterized by a small num-
ber of angles, assuming a small unit cell. The details of
the calculations are given in Appendix D of Ref. 13. %le
have carried out such calculations for structures shown in
Figs. 6, 9, and 11—13. The structures which we now con-
sider, but which we have not so far encountered (because
they do not occur through an instability of the disor-
dered phase), are (a) the 90' structures (shown in Fig.
12) associated with the root-3 wave vector and (b) the
"distorted" structures shown in Fig. 13. The order pa-
rameters for the various structures at arbitrary nonzero
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FIG. 13. Distorted phases. (a) Left: the distorted 90'
(d90) phase. Starting from the 90' phase shown in Fig. 12

(right) all vertically (horizontally) oriented rotors are rotated
through an angle of magnitude 6„(bg), with alternating signs,
as shown, so that the unit cell is doubled in size. The rotors
which were horizontal in Fig. 12 have one order parameter and
those which were vertical have another independent order pa-
rameter. There are three inequivalent galleries: (1, 4, 7, 10),
(2, 5, 9, 12), and (3, 6, 9, 12). (b) Right: the distorted cosine
HB (dC) phase in which the two sublattices remain perpen-
dicular to one another but one sublattice makes an angle b

with the HB wave vector. For 8 = 0 this phase reduces to
the HB,c phase and for b = 45' it reduces to the HB,s phase.
Both sublattices have the same magnitude order parameter.
Galleries 1 and 3 are equivalent as are 2 and 4.

temperature are listed in Table II. To find the energy
at zero temperature one sets the magnitude of each (if
there are more than one) orientational order parameter
equal to unity and sets all the gallery occupation vari-

ables to zero except the ones labeled nq, which is set
equal to unity. In the case of the distorted structures,
the angle not fixed by symmetry is determined by mini-

mizing the energy. In this way we obtained, in Appendix

D of Ref. 13, the results given in Table III. These results
were confirmed to very high precision by our numerical

work, extrapolated to zero temperature. We emphasize,
however, that the "ground states" we find represent only
the states of lowest energy within the set of structures
considered.

C. Results from self-consistent equations

To obtain actual phase diagrams we allowed the system
to relax to the self-consistent equations of mean-field the-
ory as discussed in Appendix C. In so doing, we allowed
the system to assume any periodic structure consistent
with a unit cell containing 12 rotors. This cell was so
constructed (2 x 6) as to be compatible with both her-

ringbone aad ~3 wave vectors. However, structures with
periods too long to fit in such a unit cell were obviously
not accessed by this approach. In particular, we had no
hope of detecting incommensurate states by this method.
As indicated by CM such incommensurate structures are
likely to be found only relatively close to the ordering
temperature. At low temperature, we would expect lock
in to some relatively short-period structure.

With this importaat caveat, we now turn to a discus-
sion of the numerical results. We will only consider the
case o. = —1. Our numerical results are all for P = 2, but
we will comment on the situatioa for other values of P.
Out calculations were performed for p = 3, shown in Fig.
14 and for p = 4, showa in Fig. 15. As mentioned above,
the phase boundaries at zero temperature agree precisely
with our analytic results in Table III. These calculations
show that the distorted structures do not occur for large

For instance, the results of Table III show that the
dC (distorted herringbone cosine) phase only occurs at
zero temperature for p & 2p. Likewise, for n = —1 and
P = 2, the d90 (distorted v 3, 90') phase only occurs at
zero temperature for p & 1+~5 —3.24.

Most of the transitions shown in Figs. 14 and 15 are
of necessity discontinuous oaes. The exceptions are (a)

TABLE II. Orientational order parameters and gallery occupation expectation values for various
periodic phases.

Phase

HB,s
HB,c
PW, c

dC

Fig.

6(a)
6(b)
9(a)
13(b)

Orientational
order parameters

o(45 )
o(0) = o(90')

o(0) = o(60') = o(120')
o(—h) = a(90 —b)

(n„)0
2N
0

1/2
1/4
1/2

ng

1)3
1,6
13

n2'

2,4
2,3,4,5,7,8

2,4

n3'

120
90

d90

11(b)
12(b)
13(a)

cr(0) = o (60 ) = a'(120')
a.(0) g o.(90')

a(+P) g cr(90'+ @)

1/6
1/3
1/3

1
1,4

1)4,7,10

2,4
2)3)5,6
2,5,9,12

3,5,6

3,6,8,11

Number of rotors in the unit cell.
(n„)T denotes the thermally averaged number of occupied galleries at temperature T. Thus

(n )0/(2N) is the fraction of galleries occupied at zero temperature.
'We list equivalent galleries which all have (n ) = nz, (n„) = n2, and (n„) = n3, with nq & n2 & na
See the relevant 6gure for the labeling of galleries.

One rotor is completely disordered [see Fig. 9(a)j.
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Phase
I

Energy

HB,S —CX-
HB,c —o+ ,'P ——2~
dC' Min, [

—n —(3/2)P + 2Pc —2pc]

d90 -Min —1 —pc + c —g4 —4c + p~
C

120 —(3/2) a —(3/4) P —p
o + P!2 —»/3 —12o'+ P + (2/3) V I

PWc —[6o. + 3p + 3p]/8

I(n-)o/(2n )'
0

1/2
1/2

1/3

1/6
1/3
1/4

TABLE III. Zero-temperature energies for selected struc-
tures. e= -1

P= 2 DO

2.0

1.5

1.0

Min, means to minimize with respect to c, with —1 ( c & 1.
As in Table II.
This phase is undistorted, i.e., it is the HB,c phase, if c = 1,

as happens for [2P/p~ ( l.
The energy quoted for this case is for a = —1 and P = 2. The

more general result obtained in Appendix D of Ref. 13 is E =
min, E(c), where 3E(c) = —o —3P/2 —2pc+ [4m+ 3P]c —R,
where R = (2o. + 3P) (1 —c ) + [(6o + 3P)c + 2p] .
'For 2n+P+ (2/3)p ) 0 (the case we consider in Figs 14 a. nd
15), the structure is that of Fig. 12(b). For 2a+P+(2/3)p ( 0,
the structure is that of Fig. 12(a).
This phase, in which there is one disordered rotor [see Fig.

9(a)], does not actually occur at T = 0.

the transition &om the disordered phase to the herring-
bone sine phase (but including fluctuations causes this
transition to become discontinuouss), and (b) the transi-
tions from the distorted dC or d90 phases, to their undis-
torted counterparts. In principle the transition &om the
distorted d90 ~3 structure to the HB,s phase could be
continuous, as noted in the caption to Fig. 13. However,
since this transition occurs at low temperature, it is not
easy to numerically investigate whether or not this tran-
sition is in fact continuous.

We established that the transitions of type (b), above,
were continuous as follows. In the lower-symmetry phase
the rotors tip away &om their high-temperature sym-
metry directions. Consider first the HB,c to dC transi-
tion which takes place for p between about —0.3 and 0,
and for near T = 1.5, as shown in Fig. 14 for p = 3.
If the herringbone vector lies along the z axis, then in
the high-temperature phase all rotors have (cos(28;)) =
ka and (sin(28;)) = 0. In the low-temperature (dis-
torted) phase, shown in Fig. 13, we set (sin(28;)) = kil.
For p = —0.08, we found that rI(T) was linear in T:
For T = 1.50, 1.495, 1.49, 1.485 and 1.48, we obtained
1000' = 4.54, 6.14, 7.75, 9.35, and 10.94, respectively.
The nearly perfect linearity of these results is an indica-
tion of their accuracy. These data establish the charac-
teristic signature of a continuous transition within mean-
field theory: il gT, —T, with T, = 1.514 in this
case. A similar analysis was performed for the transi-
tion &om the 90 to the d90 distorted phase which oc-
curs at p = —2.2 at T = 0.5. In the high-temperature
phase the angles of the rotors are restricted to either be
parallel or perpendicular to nearest-neighbor lattice vec-
tors of the triangular lattice, as shown in Fig. 12. In the
low-temperature phase, shown in Fig. 13, a deviation in
the rotors away &om these symmetry directions devel-

0.5

-3.0 -2.5 -2.0 -'1.5 -1.0 -0.5
0.0

FIG. 14. Results of self-consistent treatment of periodic
structures with small unit cells, for a = —1, P = 3, and

p = 3. Here DO denotes disordered; 8 denotes HB,s; 120 (90)
denotes the 120' (90') phase at the v 3 wave vector, and C
denotes the HB,c phase. The dC and d90 phase are distorted
version of the C and 90 phases (shown in Fig. 13). Continuous
phase transitions are indicated by dash-dotted lines. The in-
stability given by Eq. (40) is not shown, but nearly coincides
with the phase boundary we show here. The question mark
in the upper right part of the phase diagram emphasizes that
incommensurate phases (found by CM) are likely to occur in
this part of the phase diagram.

2.5

2.0

1.0

0.5

-5 -2
0.0

0

FIG. 15. Results of self-consistent treatment of periodic
structures with small unit cells, for o. = —1, P = 3, and

p = 4, as in Fig. 14. Here PW denotes the cosine pinwheel
phase shown in Fig. 9(a). The dashed line is the instability
line, given by Eqs. (40), (43), and (45). Points on this line
labeled A and B correspond to points A and B in Fig. 4. Near

p = 0 this phase diagram becomes uncertain because of the
possible occurrence of incommensurate phases, in this case,
probably incommensurate cosine phases.
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ops. If the axes are properly chosen an order parameter
analogous to g in the previous example can be identified
and again numerically is found very accurately to vary
as gT —Ti, where Ti is the critical temperature for this
transition. This characteristic square root behavior indi-
cates a continuous phase transition. (The fact that sym-
metry consideration alone indicate that these transitions
are allowed to be continuous does not indicate whether
they actually are continuous or not. This can only be
settled by a quantitative analysis. )

We also performed a test of Landau theory vis a vis
the first-order transition &om the disordered phase into
the cosine pinwheel (PWc) phase. For n = —1, P = 2,
and p = 4 we collected data at p = —2. Using the
small cell self-consistent equations, we found the disor-
dered phase to minimize the free energy at T = 2.978.
At T = 2.977 the PWc phase miaimizes the ft.ee energy
and for each of the three ordered rotors in this phase,
we found (cos(28 —28o))z = 0.22667, where 8o is the
equilibrium angle of the rotor in question. We checked
that this order parameter varied linearly (with temper-
ature) near the transition to exclude categorically the
possibility that this transition (at To 2.977) might
be a continuous one. Also for this value of p, we eval-
uated the instability temperature [see Eq. (45)] to be
T,(p = —2) = 2.904. Now we compare these results to
the predictions of Landau theory. For p = 4, p = —2,
and T = 2.904 we find that u, + (v, /3) = 0.440 and
io = 1.337, so that Eq. (87) gives b,T = 0.075 which
is in good agreement with our numerical determination
LT = 2.977 —2.904 = 0.073. Likewise, the Landau ex-
pansion prediction of Eq. (88) for the order parameter
at T = To gives ~Y;~ = 3(2.977 —2.904)/1.337 —0.17.
From Eq. (82) one sees that for the ordered rotors
in the PWc phase, (cos(28 —28o))z = V2~Y;~. Our
direct numerical solution for this average thus yields
~Y;~ = 0.22667/v 2 = 0.16, in reasonable agreement with
the above estimate based on the Landau expansion. Ia
this case, therefore, the Landau expansion carried up to
order Y4 satisfactorily describes the first-order transition
iato the Hac phase.

Next some general comments are in order. The most
obvious aspect of these phase diagrams is that one sees a
progression of structures which progressively accommo-
date more and more occupied galleries as p is increased.
This was noted in a general way by CM and we confirm
this. A surprising aspect of these results is that these
phase diagrams could not have been predicted on the ba-
sis of the lowest-order terms in the Landau expansion.
This is why our results do not look very similar to those
of CM who used Landau theory together with a few zero-
temperature calculations to construct a phase diagram.
Landau theory indicates that as the chemical potential
is increased, the herringbone sine phase is followed by an
incommensurate sine phase. To assess the likelihood that
this phase actually does appear, we have shown on the
phase diagrams the instability temperature given with
Landau theory for the I, s phase. To start, consider Fig.
15, for p = 4. First, recall the results of Sec. IV A: the I, s
phases do not support a cubic term in the Landau expan-
sion. Also over a small part of the range, the fourth-order

term, u„shown in Fig. 8, is positive. In that case we ex-
pect the instability towards forming an incommensurate
phase to occur where the quadratic term is unstable. (Al-
though Fig. 8 is for p = 3, this observation also applies
for p = 4.) Since, as the temperature is lowered, the
PW, c phase has already condensed before this instability
is reached, it seems unlikely that the I, s forms, at least
for p suKciently negative. Near p, = 0, it is likely that
incommensurate phases do exist, but judging from the
location of the instability line for the I, s and I, c phases,
the incommensurate cosine phases is the oae most likely
to exist. For the I, c phases, a triple wave vector state
is almost guaranteed by the existence of a cubic term, as
discussed in Sec. IV D.

For p = 3, the situation is less clear. It seems quite
possible that for temperatures above, say, 1.5, the phase
diagram in Fig. 14 is quite wrong and that incommen-
surate phases do occur. However, in contrast to the CM
phase diagram, it seems unlikely that the single wave vec-
tor or striped phase occurs, since v, of Eq. (74) shown
in Fig. 8 is normally negative. The question mark near
p, = 0 is inserted in Fig. 14 to emphasize this uncertainty.

D. Multicritical points

We now very briefly discuss special points within this
model. For simplicity, we restrict the discussion to n =
—1. The multicritical points where three phases coexist
are so numerous that we will restrict ourselves to the
more piquant aspects of the phase diagrams.

The most striking multicritical point might be that
shown in Fig. 4 at P = 4/3 and z = 1/6. At this point,
as we have already noted, the fluctuation matrix of Eq.
(24) is totally independent of wave vector. (In that sense
it may be called an "infinite degeneracy" point. ) Here
the instability temperature, Tp is unity. To reach this
point (P = 4/3, z = 1/6, T = 1), one must satisfy Eq.
(28) so that

16cosh [p/(2kgyT)] = 6p (96)

2 2
P = —+ —/9+ 15p2

5 15 (97)

and this will apply as long as p ) g8/3. This point
occurs in Fig. 4, since Eq. (97) is satisfied by P = 2 and
p = 3. Here we have again put p = 0 to enhance the

By taking p, = 0 (and therefore p = g8/3), we elim-
inate cubic terms in Landau theory and we may then
indeed have a situation similar to that of the kagome
antiferromagnet, where wave vector selection occurs
through thermal fiuctuations. (In that case a ~3 phase
was favored. )

A lower-order multicritical point (noted by CM) occurs
when the unstable wave vector is the v 3 wave vector.
As indicated Fig. 4 and Sec. III, this requires z = P/8
and the instability temperature, according to Eq. (40), is
T = (15P/8) —(3/2). Combining this with Eq. (28), we
see that if p = 0, then
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chance that the transition is a continuous one. (In this
case, x = 1/4, which is point B in Fig. 4.) Unfortunately,
our numerical methods are not ideally suited to studying
such a multicritical point, especially since it is vital to
test for the occurrence of incoxnmensurate states. (If p =
/8/3, this point becomes the infinite degeneracy point
considered above. )

Yet another multicritical point that has some inter-
est is that which occurs in Fig. 14 (for p = 3) where
the (HB,s), d90, and 120' phases coexist. This point is
not at zero temperature, as one can verify using the re-
sults given in Table III. However, if the parameters are
suitably adjusted we can obtain a similar, but simpler,
multicritical at zero temperature at which the HB,s, the
120', and the 90' phases coexist. Prom the results in
Table III one can see that the 90' phase is undistorted
providing p & p„where

p, = —cx+ [5u + 9aP+ (9P /2)j'i (98)

(To determine p„set BE/Bc~, x
——0 for the d90 phase. )

We assume that p is larger than p and we set a = —1.
Then from Table III we obtain the potentials for the var-
ious phases: AHp, = 1 —(3/2)P, Ogp —1 —(P/2)—
(4p/3) —(2y/3), and Ax2O ——(3/2) —(3P/4) —p —(p/3) .
The three potentials are simultaneously equal at a critical
value of p (denoted p, ) providing

P = (4q/3) —2, (99)

VI. SUMMARY

In this paper we have studied the model proposed by
Choi and Mele (CM) for alkali-metal doping of crys-
talline polyacetylene. In this model the anisotropic inter-
action between polyxner chains (characterized by a dipo-
lar coupling constant o. and a quadrupolar coupling con-
stant P) is supplemented by a steric interaction between
polymer chains and dopants (with coupling constant p)
such that the dopants tend to form triangular galleries.
In this model, the polyacetylene chains are replaced by
rotors on a two-dimensional lattice.

We treated the above model by a variety of numerical
and analytic techniques, mostly based on mean-field the-

in which case p, = —3. But for this point to actually oc-
cur, the d90 phase must not intervene. This requires that
p ) p, and that Eq. (99) be satisfied. These conditions
that the multicritical point where the HB,s, 120', and
90' phases coexist at T = 0 require that 2 ( p ( 20/7.
(Thus this multicritical point does not quite occur in Fig.
14.) Near this multicritical point the 120' phase remains
stable in a wedgelike region ending at the point p = —3
and T = 0 on the phase diagram. In this case, a spin-
wave-type calculation could enable one to draw the phase
diagram, as was done in a similar situation in Ref. 8.

There are further interesting points on the p, = 0 axis,
where the particle-hole symmetry relation indicates the
existence of multicritical points. We will not explore
these here.

ory. We brie6y summarize conclusions to be drawn from
this work.

(1) The main conclusion of Choi and Mele, namely
that doping causes frustration which is relieved by struc-
tural modification, is verified.

(2) As the doping is increased, we find an unexpect-
edly rich sequence of phases involving compositional and
orientation order. For instance, in the phase diagrams of
Figs. 14 and 15, for two different values in the parameter
space xx-P-p, we find seven distinct ordered phases.

(3) As might be expected for competing interactions,
most of the transitions are discontinuous. Changing the
number of low-energy galleries is not usually done in
a continuous fashion. However, distortions from ideal
structures were identified. Such distortions were shown
numerically to give rise to continuous phase transitions,
e.g. , see Fig. 14 at p, = —0.4 and T 1.5 and also at
p, = —2 and T 0.5.

(4) An exact symmetry relation, similar to the usual
particle-hole symmetry in the Hubbard model, was iden-
tified for the first time. This relation relates the grand
potential at chemical potential (of dopants) p to a trans-
formed state at chemical potential —p in which all rotors
are rotated through 90'. In some situations this relation
implies the existence of a phase transition at p = 0.

(5) A reanalysis of higher-order terms in the Lan-
dau expansion shows that the herringbone sine phases
(both commensurate and incommensurate) do not sup-
port terms which are third order in the order parameter.
This fact, together w'ith our numerical implementation of
mean-field theory, shown in Figs. 14 and 15, makes it un-
likely that the incommensurate sine phase occurs. In any
event since the relevant fourth-order term (v, in Fig. 8)
in the Landau expansion is negative, if such a phase does
occur, it is very likely to occur with simultaneous con-
densation at all wave vectors in the star of the unstable
wave vector.

(6) The incommensurate cosine ordered phases do sup-
port third-order terms in the Landau expansion. These
make it almost certain that one has simultaneous con-
densation of all wave vectors in the star. They also make
our numerical determination of the phase diagram very
uncertain, and, in fact, quite likely to be wrong. Thus, it
seems likely that such incommensurate states do occur,
although our analysis of them is not quantitative. (Qual-
itatively speaking, the cosine phase have galleries more
adaptive to dopants than do the sine phase, as can be
seen &om Flg. 6.)

(7) A very simple argument, given in Eq. (95), shows
that for the special case p, = 0 (where the galleries are
essentially half filled), there are no odd order terms in
the Landau expansion.

(8) A nuxnber of potentially interesting multicritical
points were identified in this model, as discussed in Sec.
VD. For instance, at one of these the generalized sus-
ceptibility matrix is independent of wave vector. This
"infinite" degeneracy is even more severe than in the
case of the kagome antiferromagnet because here all
branches are the susceptibility are wave vector indepen-
dent. There is also a zero-temperature multicritical point
whose degeneracy is lifted by thermal Huctuations as in
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other anisotropic rotor models. Finally, the multicriti-
cal point (identified previously by CM) where sine and
cosine ordering occur simultaneously is discussed. The
point they mentioned has a further degree of degeneracy
because it occurs at p, = 0, where odd order terms in the
Landau expansion are not allowed.

(9) We also point out that although this model is physi-
cally attractive for low doping, it probably needs to mod-
ified for higher doping. On the triangular lattice neigh-
boring galleries form a honeycomb lattice with adjacent
galleries quite close together. Probably some short-range
repulsion should be included to prevent adjacent galleries
from being occupied. (Such an interaction would com-

pete with the removal of frustration which the current
model attributes to such a configuration. )
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