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LONG COMMON SUBSEQUENCES AND THE PROXIMITY
OF TWO RANDOM STRINGS*

J. MICHAEL STEELE

Abstract. Let (xl, x2,’", x,,) and (x,x,... ,x’) be two strings from an alphabet 4, and let Ln
denote their longest common subsequence. The probabilistic behavior of Ln is studied under various
probability models for the x’s and x"s.

1. Introduction. Long molecules such as proteins and nucleic acids can be thought
of schematically as sequences from a finite alphabet . From an evolutionary point
of view it is natural to compare molecules by considering their common ancestors,
and in schematic terms this reduces to the problem of considering the longest common
subsequence of two given sequences.

Sankoff (1972) gave an efficient algorithm for calculating the length of the longest
common subsequence. Subsequently, Sankoff and Cedergren (1973), and Sankoff,
Cedergren, and Lapalme (1976) considered a number of empirical cases and conducted
some Monte Carlo investigations. The first formal probabilistic analysis of the problem
of long common subsequences was initiated in Chvital and Sankoff (1975). To describe
their work we first introduce some notation.

By Xi and X’i, 1 -< < oo, we denote two sequences of independent, and identically
distributed random variables with values in ’. The random variable of main interest
is

Ln := max {k’ Xi XI, X2 X++,..., Xi Xk where

1-<i1<i2< "<ik<--n and 1 <-h </’2 <.. .<fl<=n}.

In words, Ln is the largest cardinality of any subsequence common to the sequences
(X, X2,’’’, Xn) and (X, X,..., X’,).

Under the assumption that I+gl- k and that Xg and X’g are both uniform on ,
Chvital and Sankoff proved the existence of the limit of the means,

(1.1) lim EL

Among other results, Chvital and Sankoff obtained upper and lower bounds on

Ck. These authors proved no results for Var L., but on the basis of a Monte Carlo
study they were led to conjecture Var L. o(n2/3).

Deken (1979) was able to sharpen the bounds on Ck, and also noted that as a
consequence of Kingman’s subadditive ergodic theorem (Kingman (1968)), that one
actually has

(1.2) lim
L.
--’-C a.s.

where c depends on the distributions of the processes {(X+, Y/)" 1 -< -< o}.
This result naturally entails Var Ln o(n2), but no further progress was made on

the variance problem.
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The present article takes up several aspects of the study of Ln. In the second
section, as an elementary application of an inequality of Efron and Stein (1981), it is
proved that Var Ln O(n). This makes only modest progress on the Chvital-Sankott
conjecture that Var Ln o(n2/3), but it still serves to supplement (1.2) with a rate of
convergence result.

The third section takes up the question of the behavior of Ln under more general
assumptions than independence. A simple complement of Kingman’s subadditive
ergodic theorem (Kingman (1973)) is derived and then applied to Ln. The coupling
method which is used here (or the Radon-Nikodrm method which is sketched) may
likely be of use in many other problems where subadditivity is available but stationarity
is absent.

The fourth section branches out from the explicit analysis of L. It addresses the
question of whether there exist statistics which are more tractable than Ln, but which
still reasonably measure the genetic proximity of long molecules. The principal new
candidate is T, the total number of common subsequences. Here one can compute
I_ETn exactly, but we note Tn has other drawbacks to its analysis.

The final section makes brief comment on some open problems and related
literature.

2. A variance bound. Let S(v, v2,’", 13n-1) denote any real-valued function
of n 1 vectors v td; and suppose V/, 1 =< < oo, is any sequence of independent,
identically distributed, random vectors in Ne. We then define new random variables
S=S(V,V2,’",Vi_,Vi/,’",V) for l<=i<=n, and we further set S.=
(I/n) /=1 $i. Tukey’s jackknife estimate for the variance of S is =x (Sg-S.)2, and
Efron and Stein (1981) have proved the very useful inequality,

(2.1) Var (S.) <- E (Si S.).
i=1

The main point of this section is to show that (2.1) leads to the bound

(2.2) Var L O(n),

under the general assumption that Vi =(Xg, X) are independent and identically
distributed. In fact, one can prove the following result.

THEOREM 1. For each n, suppose there is defined a function S(Xl, x2, , x) from
(Nd) tO . Suppose also that Vg, 1 <= < oe, is any sequence of independent random
vectors in Na, and for 1 <- <= n, 1 <- n < oo set

(2.3) Sg, =S(V, V,..., V_, V/,..., V).

If E(Si,, Si,n)2 is bounded for all 1 <- < f <-_ n and 1 <- n < co, then

(2.4) Var S(V, V,..., Vn)= O(n).

Proof. Let the bound on E(Si, --S,n)2 be B. Fix n, define S. (i/n) Y/=I Si,, and
let

D, =S(V1, V2,..., V,_x)-S.
(2.5)

_----i (,(VI, V2,’ Vn-I)-,(V1, V2,’’ ", V/-I, V/+I, Vn)).
F/i=1

By Schwarz’ inequality,

(2.6) Var S(V1, V,..., V)<-Var(S.)+VarDn+2(VarS.)/2(VarDn)’/,
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and

(2.7) Var D, <= ED2 <- B.

Since E(Si,n- Sj,n)2 _-<B one also has E((Si,n-S.)2)<-B. So inequalities (2.1), (2.6), and
(2.7) entail

(2.8) Var S(V1, V2, Vn-l)<-nB +B +2(nB)l/EB1/2=B(nl/2+ 1)2.

This completes the proof of the theorem with a very specific form of the O(n’i
term.

Returning to Ln we note that, for V (X,X) and s {1, 2,...}, Theorem 1
is applicable to S V1, V2,’ ’, Vn) Ln (V1, V2, ’, Vn) -= Ln. Since

(2.9) O<-L( VI, V2,..., Vn)-L( V1, V,..., Vi_,, V+,,..., Vn)-< 1,

it is trivial that (2.8) can be taken with B 1. In summary we have the following bound.
COROLLARY 1. /f (Xi, X ale i.i.d, with values in s x s then

(2.10) Var Ln-1 (n 1/2 + 1)2.
By the usual Borel-Cantelli and subsequence arguments together with (2.9) and

(2.10) one can prove a rate result.
COROLLARY 2. We have for all e > 0 that

(2.11) Ln -ELn o(n 3/4+e) with probability one.

Since the techniques for proving (2.11) are well known and since the result is
not the best possible, there is no reason to include the proof. This is nevertheless the
first rate result available on Ln, since such rates cannot be obtained in general from
the subadditive ergodic theorem (cf. Hammersley (1978, p. 670)).

3. Nonstationary sequences. By Deken’s observation we know Kingman’s
theorem implies that Ln/n converges almost surely under the assumption that the V,
1 -< < o form a stationary sequence. The point of this section is to give a very simple
illustration of how Kingman’s theorem can also be used for nonstationary processes.
Naturally, one must appeal to some underlying asymptotic stationarity, but the result-
ing class of results seem useful enough to merit recording. In particular, one should
compare the present result to the "substationary" subadditive ergodic theorem of
Abid (1979). That result apparently does not suffice for the application to Ln given
here, it is considerably more complicated.

By a subadditive sequence of functions on E we denote a sequence hn :En R
which satisfies

(3.1) h,,+n(ex, e2,’",en+,,)<-_hm(el, e2,"’,em)+hn(e,+,en+2,"’,en+,,).

As an example, we note that if E=gx and ei=(ai, a ), then letting
hn(e,e2,"" ,en) denote the length of the longest common subsequence of
(a, a2,’’ ’, an) and (a, a&,..., a’,) one has (3.1). Because of the applications we
have in view, we will also focus on monotone subadditive functions, i.e., those functions
which satisfy (3.1) as well as

(3.2) hn-m(Xm+l, Xm+2,"" ,Xn)<-hn(xl, x2, ,Xn) forallm _-<n and{xa, x,... ,xn}.

We will say that a stochastic process {X} on the discrete state space E has a
stationary ergodic coupling if there is a stationary ergodic process {X }= on the same
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probability space such that Zi (Xi, XI is a coupling, i.e., such that the stopping time
r min {i: Xi X } is finite with probability one, and Xi X for all _-> r.

It is well known that couplings are a convenient and powerful way of expressing
the asymptotic properties of stochastic processes (see, e.g., Griffeath (1978)). The
next result illustrates this ease of application.

THEOREM 2. Suppose that hn is a positive and monotone sequence of subadditive
functions on E. If (Xi}7= is a stochastic process with state space E for which there is
stationary ergodic coupling, then

h,, (X, X, X,,
lim c a.s.(3.3)
h-,o n

for some constant c.

Proof. Let {X }i--1 denote the stationary ergodic process to which {X}_-I may
be coupled, and let r be the coupling time, i.e., -=min {i: Xi =X}. The doubly
indexed process Yst=ht-s(X’s/a, Xs/2, ",Xt) is easily checked to have the
properties"

(3.4a) Ysu <- Yt + Ytu whenever s < < u.

(3.4b) The joint distributions of the shifted process {Ys+.t+} are the same as those
of the unshifted process,

(3.4c) The expectations gt ETo satisfy gt >=-At for some A and for all t.

The properties (3.4a-c) are exactly the hypotheses of Kingman’s theorem
(Kingman (1973)), so by its conclusion we have

Y0,,
(3.5) lim ’.=limh,(X,X,...,X’,)n=c a.s.

Here, to conclude that the limit is indeed a constant we have made use of the
fact that Kingman’s theorem assures that the limit is shift invariant and we have
assumed that {XI }_- is ergodic.

Now we have by (3.1), (3.2), and the definition of r that

h,(Xl, X2, X,) <-_ h,(Xa, Xz, X,) + h,_,(X’,+, X,+, X,
(3.6)

<- h,(Xl, X2, X,) + h, (X’l, X’2, X’ ).

Since -< oo with probability one, (3.4) and (3.6) yield

(3.7) lim hn (X1, X2," ", Xn) .
To handle the limit infimum we need only consider the analogous inequality with the
variables reversed, i.e.,

h, (X’a, X’, X’ <= h,(X X’2, X’, + h (X, X2, X, ),

and we obtain

c -< lim
h, (X, X, X,

to complete the proof.
COROLLAr 1. If V, 1 <= < oe, is an irreducible, aperiodic, positive recurrent

Markov chain with state space x sg then no matter what the initial distribution
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7r(v)=P(V1 v), one has with probability one

lim L,(V1, V2,’", V,)/n =c

for some constant c.

Proof. To prove the corollary one only has to exhibit an appropriate coupling;
and, in this case, the existence of such a coupling is well known (see, e.g., Hoel, Port,
and Stone (1972)).

One can also prove the above corollary without recourse to coupling; one can
use an absolute continuity argument. Under the hypotheses of the corollary there is
a stationary measure rr’. Moreover, the initial measure zr is absolutely continuous
with respect to rr’ (since by the irreducibility and positive recurrence 7r’(al, a2)>0,
for all (a, a2)E M M). If {V:I-<_ < o0} is the process with initial distribution
and the same transition function as { V: 1 =< < o0}, it is further true that the measure
f9 for the infinite process {V: 1-<_i<oo} is absolutely continuous with respect
to that ’ for {V" 1 =< < o0}. Since L(V, V,. ., V’) satisfies the hypotheses of
Kingman’s subadditive ergodic theorem, {a:lim,_,ooL(V’,V,...,V’,,)/n=c}
is a set of ’ measure one. By absolute continuity of <<’ the set
{to: lim,_, L(Vx, V2," , V)/n =c} has measure one. This is precisely the con-
clusion of the corollary. [-1

4. Alternative statistics. The random variable L(V, V2,.. , V) certainly is an
interesting measure of genetic proximity, but it appears to be hard to handle. In such
a situation it is natural to look for suitable alternatives.

To introduce one such alternative let (X, X., , X) and (X, X, , X’)
denote two sequences of values from s. By A, B we denote subsets of {1, 2,. ., n},
say A {i, i2,’", ih} and B {]1, f2,""’, fk} if [A] ]B] k. Next we set

1 if Xi=X}, X=X},..., Xg=X,
(4.1) O (A, B) 0 otherwise.

The statistic of interest in this section is

(4.2) T, E p (A, B),
A,B

where the sum is over two pairs of subsets of {1, 2,..., n} and it is understood that
p(A, B)is taken to be zero if the cardinalities of A and B differ, i.e., IAI IBI,

If the Xi, 1 -< < oo and the XI, 1 -< < oo are all independent, and P(Xi ai) pj,
P(X ai)= p. for all i,/’, it is easy to see that

2 k

(4.3) ETn= (nk) (
k=0

This explicit formula is quite a contrast to the mystery surrounding ELn under
similar hypotheses. A number of qualitative properties of ET, are also evident from
(4.3). In particular, if we set pi --pi for 1 _-< _-<lsl- a and take finite, then

k

(4.4) b (/) E,T p
k=O

is easily checked to be a Schur-convex function, i.e., b(/)-<_b(/5’) whenever /5 is
majorized by/5’. (For an elaboration of this terminology see Hardy, Littlewood and
Polya (1951), and for an elaboration of the many consequences of Schur convexity
see the treatise by Olkin and Marshall (1979)).
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Despite the mathematical simplicity of Tn as evidenced by (4.3) and (4.4), it
provides only a partial surrogate for Ln. In the first place T, tends to be very large,
and there is no efficient algorithm for finding T,. Thus, from a computational view
point, L, is a superior statistic. Also, as yet, there is no information at all about the
variance of T, or of its limit properties.

5. Open problems. The main open problems concern the expectations

(5.1) O,(p)=EL,,

under the hypotheses of independence and identical distribution as applied in (4.4).
For one explicit conjecture, it seems inevitable that 0(P) is Schur convex (just

as b(p) was proved to be). Perhaps it would be easier to consider the limit,

,.(p)
(5.2) (p)- lim

Again, it must be true that O(p) is Schur convex, but so far even this has not been
proved.

The older problems concern the numerical values of (p). Perhaps progress can
be made on this problem by taking a more algorithmic point of view. Is there an
efficient algorithm for computing the approximate value of (p) or O(p) with a
guaranteed error bound?

Given the results of 2, it is very interesting to see if one can improve (2.10) to
show VarL o(n). This would be the first really nontrivial step toward the Chvital-
Sankof conjecture, and it would seem to require some genuinely new combinatorial
insight to settle the point one way or the other.

Finally, the main scientific problem is to find a replacement for L which still has
a genetic justification. The null distributions of Ln seem likely to be always out of
reach, and major progress will be made when L finds a suitable substitute. The
statistic T is a resonable first choice, but it leads to its own problems. For example,
what is the order of the growth of Var T?

In the search for surrogates for L, it may be critical to consider the variety of
problems to which it has been applied. In addition to the application to molecule
comparisons noted previously, there is a natural application in communications. In
particular, Bradley and Bradley (1978) have applied Ln in the study of bird songs.

There are also a variety of potential uses in computer science, and for an
introduction there it seems useful to refer to the papers of Aho, Hirschberg and
Ullman (1976), Okuda, Tanaka and Kasai (1975), Selkow (1977) and Wagner and
Fischer (1974). In at least some of these papers in which L has been used, it seems
there must exist a more tractable substitute.

Acknowledgment. The observation that absolute continuity provides a second
proof of Corollary 1 in 3 is due to Steve Lalley who kindly commented on an earlier
draft of this article.
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