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ABSTRACT

ESSAYS ON FINANCIAL FRICTIONS, PROPAGATION OF SHOCKS AND

MACROECONOMIC VOLATILITY

Cristina Fuentes-Albero

Frank Schorfheide, Professor of Economics

I study the evolution of aggregate volatility in the US during the postwar period by as-

sessing the relative role played by financial shocks, technological progress, and changes

in the financial system. Balance-sheet variables of firms have been characterized by

greater volatility since the early 1970s. This Financial Immoderation has coexisted

with the so-called Great Moderation, which refers to the slowdown in volatility of

real and nominal variables since the mid 1980s. In the second chapter, I study the

moderation in real variables calibrating a real business cycle model with two technol-

ogy shocks. I consider several statistical specifications for technological progress. A

deterministic trend model outperforms in accounting for volatilities, but a stochastic

trend model accounts better for the correlation structure of the data. In the third

chapter, I account for the divergent patterns in volatility analyzing the role played

by financial factors. To do so, I estimate a DSGE model including financial rigidities,

allowing for structural breaks in a subset of parameters. I conclude that the Financial

Immoderation is driven by larger financial shocks and that the estimated reduction in

the size of the financial accelerator in the mid 1980s accounts for 30% of the decline in

the volatilities of investment growth and the nominal interest rate. In the last chap-

ter, I focus on analyzing financial shocks. Using the estimation output, I obtain that

the contribution of financial shocks to the variance of investment is increasing over

time, reducing the relative importance of the investment-specific technology shock.

The estimated reduction in the level of financial rigidities has a significant impact on

iv



the model implied propagation dynamics. Given that the model implies a negative

response upon impact of consumption in response to a positive business wealth shock,

I empirically characterize the effects of such a financial shock on consumption using

sign restrictions. I conclude that documenting the effects on consumption is not a

trivial matter since the results vary significantly depending on the variables used to

measure business wealth and the cost of external borrowing.
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Chapter 1

Introduction

In macroeconomics, economic fluctuations are modeled as shocks to the economy.

Therefore, studying the shocks driving business cycle fluctuations, as well as their

propagation mechanism in the economy, are topics of great interest for researchers.

In fact, business cycle literature has been among the most productive areas of eco-

nomic research over the last decades. The wave of contributions that followed the

seminal work by [47] focused on the role of real shocks as drivers of fluctuations at

business cycle frequencies. [19] conclude that technology shocks account for more

than half of the cyclical variance of output in the postwar period. The empirical suc-

cess of real business cycle (RBC) models has been questioned by [29] among others.

He suggests that the sources of business cycles are non-technology shocks, which is

hard to reconcile with a standard RBC model, but consistent with models featuring

monopolistic competition and sticky prices. Following [29]’s contribution, there was

an expansion of research on the sources of business cycles using a New Keynesian

perspective. Many of these contributions focused on characterizing the propagation

mechanism of monetary policy shocks.

The debate between defenders of technology and non-technology driven business

cycles was heated up by the distinction between neutral and investment-specific tech-

nology shocks proposed by [35]. For example, [36] conclude that investment-specific
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technology shocks account for 30% of output volatility. [26] uses a neoclassical growth

model to identify the short-run effects of neutral and investment-specific technology

shocks. He concludes that the investment-specific technology shock accounts for up

to 67% of the variation in output and 47% of that in hours. Recently, [43] estimate

a New Keynesian model and conclude that the investment-specific technology shock

is the main driver of US business cycle fluctuations in the postwar period. They sug-

gest that such a shock is a proxy for financial shocks or developments in the financial

sector.

Over the last few years, there has been a growing interest in introducing credit

market imperfections in standard macro models to analyze the role played by finan-

cial rigidities in the propagation of economic shocks. [8] and [5] consider frameworks

in which credit market imperfections arise because there is asymmetric information

between borrowers and lenders. This asymmetry translates into external borrowing

being more expensive than internal financing. This wedge is the so called external

finance premium which is the key relationship in the amplification and propagation

mechanism known as the financial accelerator. Once the effects of financial rigidities

on the propagation dynamics of technology and monetary shocks was well docu-

mented, researchers started to consider shocks originated in the financial sector as

potential drivers of the business cycle. For example, [53] construct and study shocks

to the efficiency of the financial sector. They conclude that the median contribution

of these shocks to the variance of investment and output is 45%.

My dissertation focuses on studying the evolution of aggregate volatility in the US

during the postwar period by assessing the relative role played by financial shocks,

technological progress, and changes in the financial system. The US economy over

the last 55 years has been characterized by two empirical regularities. On the one

hand, there has been a slowdown in the magnitude of business cycle fluctuations of

2



real and nominal variables since the mid 1980s. This empirical regularity was pop-

ularized by [57] as the Great Moderation. On the other hand, financial variables

have become more volatile since the early 1970s. I refer to this empirical regularity

as the Financial Immoderation. In the second chapter, I study the moderation in

real variables through the lens of a Neoclassical business cycle model. In the third

chapter, I focus on disentangling the role of financial factors in the divergent patterns

in volatility using a New Keynesian dynamic stochastic general equilibrium (DSGE)

model. In the last chapter, I analyze the propagation of financial shocks in the theo-

retical economy estimated in chapter 3. Given the lack of guidance on the response

of household consumption to a financial shock affecting firms’ ability to borrow, I

empirically document the effects of a shock to business wealth on consumption using

sign restrictions as proposed by [59].

The second chapter, Technology Shocks, Statistical Models, and the Great Moder-

ation, analyzes the cyclical features implied by a simple RBC model with two tech-

nology shocks à la [36]. In the spirit of [39], I analyze the performance of the model in

accounting for US business cycle features under trend stationary and difference sta-

tionary technology processes. Calibrating the model to US data, I conclude that the

deterministic trend model outperforms the stochastic trend model in accounting for

business cycle volatilities. The trend stationary model, however, underpredicts the

correlation of consumption and output at all lead and lags, which is at odds with the

data. The difference stationary version of the model overcomes those shortcomings.

Therefore, I can conclude that the difference stationary model is more successful in

matching the correlation structure of the data. The observed reduction in the volatil-

ity of the TFP shock and the price of investment suffices to deliver the magnitude of

the Great Moderation in both models.

The aim of the third chapter, Financial Frictions, the Financial Immoderation,
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and the Great Moderation, is to account for the immoderation of financial cycles and

the moderation of real and nominal cycles analyzing the role played by financial fac-

tors. To do so, I use a DSGE model that includes a financial accelerator mechanism

à la [5]. Financial rigidities arise form asymmetric information between borrowers

and lenders. Costly state verification implies that external borrowing is more ex-

pensive than internal financing. The difference is the external finance premium. I

enrich the model with financial shocks affecting the two channels of the external fi-

nance premium. The balance sheet channel refers to the negative dependence of the

premium on the amount of collateralized net worth. The asymmetric information

channel establishes that the premium is a positive function of the severity of the

agency problem.

I estimate the model economy using Bayesian techniques on a data set contain-

ing real, nominal, and financial variables. To account for the breaks in the second

moments of the data, I allow for structural breaks in the volatilities of shocks, mon-

etary policy coefficients, and average size of the financial accelerator mechanism. I

conclude that the widening of the financial cycle is driven by larger financial shocks

and that the estimated reduction in the size of the financial accelerator in the mid

1980s accounts for 30% of the decline in the volatilities of investment growth and the

nominal interest rate.

In the last chapter, I assess the relative importance of financial shocks as drivers

of the business cycle in the theoretical economy estimated in chapter 3. I conclude

that financial shocks are not only the drivers of balance sheet variables in the business

sector, but they also become the main sources of variability in investment during the

Great Moderation era, relegating technology shocks to a secondary role. In this chap-

ter, I also document the model implied propagation dynamics of financial shocks and

its evolution over time. I obtain that the estimated reduction in the level of financial

4



rigidity reduces the contemporaneous effects of financial shocks but it enhances their

persistence.

The model implied impulse response functions suggest that consumption and in-

vestment responses to a positive shock affecting business wealth are of opposite signs.

This can be interpreted as being at odds with the common understanding of an

expansionary financial shock. I estimate the effects of shocks to business wealth on

consumption by imposing sign restrictions on the impulse response functions of invest-

ment, business wealth, and the cost of external borrowing. I obtain that expansionary

financial shocks affecting net worth in the business sector have an ambiguous effect

on household consumption.

5



Chapter 2

Technology Shocks, Statistical

Models, and The Great

Moderation

2.1 Introduction

Technology driven business cycles have been in the core of the Real Business Cycle

(RBC) literature from its origins. For example, [54] claims that technology shocks

account for more than a half of the US business cycle fluctuations over the postwar

period. In [19], technology shocks account for about 75% of the volatility of output.

Such an empirical success has been questioned by [29] and [30] among others. They

claim that business cycle features are due mainly to non-technology factors. However,

[35] started a new wave of attention on technology-driven business cycles by allowing

for not only a neutral technology shock,I but also an investment-specific one. Recent

contributions to the empirical macro literature, such as [44], show that investment-

specific technology shocks are the main driver of the US business cycle.
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In this paper, I explore the performance of a simple model inspired by [36] un-

der different specifications for the two technology processes. The goal is to determine

which statistical model accounts better for the US business cycle features. In particu-

lar, I consider three different assumptions regarding the stochastic processes governing

technological change. The first statistical model assumes trend stationarity allowing

for any persistence level. In the second statistical model, impose difference station-

arity by assuming that technological progress is described as a random walk with

drift. Finally, I allow for autocorrelated errors in the unit root model. My analysis

is in the spirit of [39]. He explores several specifications for the Solow residual and

concludes that a trend stationary model accounts better for the US business cycle.

[41] revisits [39]’s work by estimating the RBC model using maximum likelihood. He

concludes that an increase in the persistence of technological progress improves the

performance of the model in accounting for the variance of output and consumption.

It deteriorates, however, the success at explaining the volatility of investment and

hours worked. I build upon these two papers by incorporating into the analysis the

investment-specific technology shock. As in [39], I perform a calibration exercise to

assess the ability of the model to describe the US business cycle over the last 50 years.

I conclude, as [39], that trend stationary models account better for the volatility

at business cycle frequencies of real variables. Difference stationary environments,

however, perform better in capturing the correlation structure of the data. I high-

light here that the model implied correlation between consumption and investment

under stationary technological progress is at odds with the data. Such correlation,

however, has a positive sign when technology shocks follow a random walk process.

The statistical model also has a relevant impact on the relative importance of neu-

tral and investment-specific shocks in accounting for the variance of real variables.
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In particular, the relative contribution of the investment-specific shock to the cycli-

cal variability of consumption, investment, capital, and hours worked is significantly

larger under trend stationarity.

The US economy has been characterized by milder fluctuations over the past two

decades. This phenomenon was dated by [45] and [49] and labeled as the Great

Moderation by [57]. Thus, it is challenging to analyze the explanatory power of the

statistical models of interest when the so called Great Moderation is at hand. I want

to determine whether the slowdown in the volatility of the two shocks under analysis

suffices to explain a significant part of the Great Moderation. [4] consider a basic RBC

model à la [38] with only one technology shock. They conclude that the slowdown in

the volatility of productivity shocks can account for about a 50% decline in business

cycle volatility.

My results suggest that ’good luck’ in the form of smaller innovations to the

technology processes can account for the bulk of the volatility slowdown in my model.

I estimate a reduction in the size of technology shocks of about 45%. All specifications

are able to generate a slowdown in cyclical volatility of significant magnitude. But

the stochastic trend model with autocorrelated errors outperforms the other two

statistical models at accounting for the Great Moderation.

The paper proceeds as follows. In section 2.2, I set up my baseline model. In

section 2.3, I proceed with my calibration exercises using the three statistical mod-

els under analysis. Section 2.4 presents several counterfactuals in order to analyze

the Great Moderation in the framework defined by my model economy. Section 2.5

concludes.
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2.2 The Model

The model is a simplified version of the one proposed by [36]. In particular, I ab-

stract from different capital goods and variable capital utilization. I do preserve the

existence of both neutral and investment-specific technology shocks.

I consider three statistical versions of the baseline model in order to assess which

one accounts better for the US business cycle features. First, I analyze a determin-

istic trend version of the model where the stochastic processes are trend stationary.

Second, I consider a stochastic trend model where the technology processes follow

a random walk with drift. Finally, I allow for some persistence in the innovation

of the investment-specific technology in a stochastic trend model. Therefore, in the

first case my economy is affected only by temporary shocks. In the second model,

all shocks are permanent. In the last model, I am considering both permanent and

transitory shocks. In particular, any neutral shock will be permanent, while any

investment-specific shock will have both permanent and transitory effects.

Since [51], there has been a large empirical literature about stochastic trends in

macro variables. Unit roots and stationary processes differ in their implications at

infinite time horizons, but for any given finite sample, there is a representative from

either class of models that can account for all the observed features of the data1. In

addition, the lack of power of univariate classical tests for unit roots2 is well known.

Therefore, I choose among the three specifications described above using the following

criterion: the most preferred statistical model will be the one able to account for a

larger proportion of the US business cycle properties.

1For a more detailed discussion on nonstationary time series see [37]
2I have performed ADF (Augmented Dickey-Fuller) tests on all of the variables of interest. I

were not able to reject the null of unit root for all the variables but (log) hours and (log) labor
productivity.
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In this economy, there is a continuum of households that maximize their expected

lifetime utility given by

E0

[
∞∑
t=0

βtU(Ct, Ht)

]
(2.1)

Both [39] and [41] use Hansen-Rogerson preferences3. I divert by using a specification

rather conventional in the empirical macro literature.

U(Ct, Ht) = lnCt −B
H

1+1/ν
t

1 + 1/ν
(2.2)

where Ct stands for consumption, Ht for hours worked, ν for the short-run (Frisch)

labor supply elasticity, and B is a preference weight. It is well known that the log

utility in consumption implies a constant long-run labor supply in response to a

permanent change in technology. Hence, I do not have to worry about trending hours

implied by the model even under the difference-stationary specification4.

The representative household supplies labor at the competitive equilibrium wage,

Wt, and rents capital, Kt, to firms at rental rate, Rt. The capital stock depreciates

at rate δ. Therefore the representative household maximizes (2.1) subject to

Ct + P k
t Xt = WtHt +RtP

k
t Kt (2.3)

(1 + η)Kt+1 = (1− δ)Kt +Xt (2.4)

where P k
t is the (relative) price of investment (using the consumption good as a

numeraire) and Xt stands for quality-adjusted investment. Note that while the budget

constraint, equation (2.3), is expressed in consumption units, the capital accumulation

equation, (2.4), is expressed in efficiency units. Population in this economy grows at

3I report in appendix 4.4 the analysis under Hansen-Rogerson preferences.
4See [9] for an interesting treatment of the stationarity of hours issue and [13] for an analysis of

the implications of different labor input measures in a SVAR framework.
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rate (1 + η).

There is also a continuum of firms that rent capital and labor services from house-

holds and produce consumption and investment goods. The representative firm solves

the following problem:

max Πt = Ct + P k
t Xt −WtHt −RtP

k
t Kt (2.5)

s.t. Ct +
Xt

Vt
= AtK

α
t H

1−α
t (2.6)

where At is the current level of (neutral) technology and Vt stands for the current level

of the investment-specific technology. Firms produce both consumption and invest-

ment goods only if Vt = 1
Pkt

. A raise in Vt implies a fall in the cost of producing a new

unit of capital in terms of output, which can also be interpreted as an improvement

in the quality of new capital produced with a given amount of resources. Note that

investment in consumption units is defined as It = P k
t Xt. Therefore, (2.6) is identical

to the familiar resource constraint.

Yt = Ct + It = AtK
α
t H

1−α
t

Let us consider three statistical specifications for the stochastic processes govern-

ing the technology levels in this economy. In the deterministic trend model, technol-

ogy processes are modeled as follows:

At = A0e
γat+εat

Vt = V0e
γvt+εvt

where εat and εat are autoregressive processes. The explicit structure of the errors is
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discussed in section 2.3.

In the stochastic trend version of the model, the processes are given by

At = At−1e
γa+εat

Vt = Vt−1e
γv+εvt

which implies that the log technologies evolve according to a random walk with drift.

In the baseline stochastic trend model, the errors are assumed to be white noise. In

the stochastic trend model with persistence, the log of investment-specific technology

level is assumed to follow a random walk with drift and moving average component.

Under all the specifications, my model economy exhibits long-run growth. There-

fore, I transform my economy so that I can work with a detrended version of the

original one. In the trend stationary model economy, the following variables are

stationary

Yt
qt
,

Ct
qt
,

It
qt
,

Wt

qt
,

Kt

(qv)t
, Ht, Rt

where q = e
1

1−αγa+ α
1−αγv and v = eγv .

Let us denote a stationary variable Z by Z̃. Therefore, the stationary equilibrium
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conditions for this statistical version of the model are given by:

Ỹt = C̃t + Ĩt (2.7)

Ỹt = A0e
εatK̃t

α
H1−α
t (2.8)

(1 + η)qvK̃t+1 = (1− δ)K̃t + V0e
εvt Ĩt (2.9)

1 = βEt

[(
eεvt−εvt+1

qv

)(
C̃t

C̃t+1

)
(1− δ +Rt+1)

]
(2.10)

Ht =

(
1

B

W̃t

C̃t

)ν

(2.11)

Rt = αV0e
εvt
Ỹt

K̃t

(2.12)

W̃t = (1− α)
Ỹt
Ht

(2.13)

Given the detrended version of my economy, I can solve for the steady state. Let

us denote the steady state value of a variable Z by Z∗.

Y ∗ = C∗ + I∗ (2.14)

Y ∗ = A0K
∗αH∗(1−α) (2.15)

(1 + η)qvK∗ = (1− δ)K∗ + V0I
∗ (2.16)

1 = β

(
1

qv

)
(1− δ +R∗) (2.17)

H∗ =

(
1

B

W ∗

C∗

)ν
(2.18)

R∗ = αV0
Y ∗

K∗
(2.19)

W ∗ = (1− α)
Y ∗

H∗
(2.20)

Let us consider now the two difference-stationary models. [6] showed in a model

with only one shock that any of the trending variables of these kinds of models can
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be decomposed into a permanent component that is a random walk with drift (a

stochastic trend) and a stationary stochastic process. In my case I have to take into

account that the two stochastic processes have a unit root5. Hence, given such a

statistical model, I have that the following variables are stationary

Ct
Qt

,
It
Qt

,
Yt
Qt

, Ht, Rt,
Kt+1

QtVt
,

Wt

Qt

where Qt = A
1

1−α
t V

α
1−α
t .

The stationary equilibrium conditions are:

Ỹt = C̃t + Ĩt (2.21)

Ỹt =

(
1

qtvt

)α
K̃t

α
H1−α
t (2.22)

(1 + η)K̃t+1 = (1− δ)
(

1

qtvt

)
K̃t + Ĩt (2.23)

1 = βEt

[(
1

qt+1vt+1

)(
C̃t

C̃t+1

)
(1− δ +Rt+1)

]
(2.24)

Ht =

(
1

B

W̃t

C̃t

)ν

(2.25)

Rt = α(qtvt)
Ỹt

K̃t

(2.26)

W̃t = (1− α)
Ỹt
Ht

(2.27)

where

qt =
Qt

Qt−1

= e
1

1−α (γa+εat)+
α

1−α (γv+εvt) (2.28)

vt =
Vt
Vt−1

= eγv+εvt (2.29)

5For detrending issues there is no difference between having just a random walk with drift or a
random walk with drift plus a moving average component.
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Given that the stationary version of the difference-stationary model satisfies the

usual assumptions, I can solve for the steady-state of this transformed economy. Then,

Y ∗ = C∗ + I∗ (2.30)

Y ∗ =

(
1

q∗v∗

)
(K∗)α(H∗)1−α (2.31)

(1 + η)K∗ = (1− δ)
(

1

q∗v∗

)
K∗ + I∗ (2.32)

1 = β

(
1

q∗v∗

)
(1− δ +R∗) (2.33)

H∗ =

(
1

B

W ∗

C∗

)ν
(2.34)

R∗ = αq∗v∗
Y ∗

K∗
(2.35)

W ∗ = (1− α)
Y ∗

H∗
(2.36)

where q∗ = e
1

1−αγa+ α
1−αγv and v∗ = eγv

2.3 Calibration

2.3.1 Data set

I use the data set constructed by [55]. They use data from NIPA-BEA, FAT-BEA,

BLS, and [20] to construct quarterly series of investment-specific technological change

and neutral technological change. Basically, they construct a series for the relative

price of investment (in terms of the consumption good) that spans from 1948.I to

2006.IV and then proceed with a growth accounting exercise to recover the neutral

technological change series. While the investment-specific process is approximated

by the inverse of the (relative) price of investment, the neutral technology process is

associated with the Solow residual of the economy.
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In the literature, there can be found different ways of computing the quarterly

Solow residual. [19] claim that as the BEA produces only annual estimates for the

capital stock, any quarterly series introduces additional noise in the measure of the

Solow residual. Therefore, they propose a ’conservative’ approach by omitting capital

when computing the neutral technology process. This approach has been widely used

in the literature, for a recent example see [4]. [34] establish that another justification

for omitting capital could be measurement errors. However, mismeasurement affects

the level of the capital stock but not its time series properties. Thus, other approaches

construct quarterly capital series by iterating on the law of motion for capital. Note

that as [35] point out, I have to be careful when constructing my capital stock series

since it must be in efficiency units. In the data base, capital stock series is constructed

recursively using the perpetual inventory method

Kt+1 = (1− δ)Kt +Xt

where Xt is the total nominal investment deflated by the quality-adjusted price of

investment. Therefore, Xt stands for investment in efficiency units. δ is the average

depreciation rate of the time-varying physical depreciation rates for total capital

available from [20]. The initial capital stock in efficiency units is calibrated using

the steady-state investment equation.

I first perform my calibration exercise matching moments of the whole sample,

ranging from 1948 to 2006. But, as I state in the introduction to this paper, the US

economy has been characterized by milder business cycle fluctuations since the mid

1980s. There is a consensus in the empirical macro literature on dating the Great

Moderation as a regularity starting in 1984. Therefore, I also conduct my analysis by

dividing the sample in 1984. In this way, I can test whether the empirical success of
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my model in delivering the business cycle features characterizing the US economy is

homogenous across subsamples. In addition, I can study the ability of the model in

delivering the observed slowdown in aggregate volatility.

2.3.2 Deterministic trend model

I consider the following statistical specification:

lnAt = lnA0 + γat+ εat

lnVt = lnV0 + γvt+ εvt

which has been estimated using the following econometric strategy:

1. Regress each technological change series on a constant and a linear time trend

lnAt = ϕa + γat+ εat (2.37)

lnVt = ϕv + γvt+ εvt (2.38)

2. Generate the corresponding residual series {ε̂at} and {ε̂vt}.

3. Estimate univariate autoregressive processes for those shocks

εat = ρaεat−1 + ξat (2.39)

εvt = ρv1εvt−1 + ρv2εvt−2 + ξvt (2.40)

where ξa ∼ N (0, σ2
ξa

) and ξv ∼ N (0, σ2
ξv

). The lag structure for the errors has

been chosen following the Akaike Information and the Bayesian Information

Criteria.
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The estimated parameters are reported in table 2. I observe that in the post-1984

period there has been a 48% reduction in the volatility of the innovation to the

neutral technology and a 40% reduction in the volatility of the innovation to the

investment-specific technology. I analyze in section 2.4 if such a reduction in innova-

tions’ volatilities suffices to explain the slowdown in the volatility of the real variables

of interest.

In my model the vector of parameters is given by

(α, γa, γv, β, δ, B, ν, η, µ, ϕa, ϕv, ρa, ρv1, ρv2, σξa , σξv)

where µ is a scaling parameter chosen so that steady state output is equal to 1. I can

estimate (α, γa, γv, η, ϕa, ϕv, ρa, ρv1, ρv2, σξa , σξv) from the data. In order to calibrate

the remaining parameters I consider the targets specified in table 1.

Given my specification, I cannot calibrate both ν and B. In fact, my calibrated B

will be conditional on the choice for the Frisch elasticity parameter. In the literature I

find values for such a parameter in a wide range encompassing values between 0.2 and

∞. To keep the analysis simple, I simulate my model considering a small grid for the

labor supply elasticity. In particular, ν = {0.5, 1, 1.5, 2}. The calibrated parameters

are reported in table 2.

Table 6 in appendix A.1 reports my results for the grid over the short-run elastic-

ity of labor supply, ν. The ability of my model to account for the US business cycle

features is sensitive to the value of the parameter governing the Frisch elasticity of

labor supply. Cyclical volatility of all variables but consumption and labor produc-

tivity are a positive function of the short-run elasticity of labor. In particular, the

volatility of investment in efficiency units, output, and hours worked are significantly

closer to the observed variability under ν = 2 than with ν = 0.5.
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The deterministic trend model is able to account for some relevant features of US

business cycles irrespective of my choice for ν. In particular, the model accounts for

the large fluctuations of investment compared to output and for the small fluctuations

of capital and consumption compared to output.

The standard deviation of hours implied by the model is smaller than the standard

deviation of labor productivity which is at odds with the data. This is, however, a

typical feature of RBC models with utility non-linear in hours. [39]’s deterministic

trend model was able to account for the pattern in the data by assuming that labor

is indivisible and that agents trade employment lotteries6.

The trend stationary model generates too much volatility in consumption in the

first subsample for any value of the Frisch elasticity. For ν = {1, 1.5, 2}, the model

overestimates capital volatility for the pre-1984 sample.

Finally, this statistical version of my baseline RBC model cannot generate enough

correlation between output and consumption. It generates, however, a large correla-

tion between labor productivity and output that is at odds with the data. Moreover,

the model cannot account for the change in sign in such a correlation in the second

sub-sample.

6The results under those assumptions for my model are reported in appendix A.6.1. I conclude
that if the stochastic processes are trend stationary, a model à la Hansen overstates the volatilities of
investment, output, capital, and hours. In such a setting, a model economy with only an investment-
specific technology shock is able to replicate the volatility of hours. I also conclude that under a
difference stationary framework my model economy is still not able to generate enough volatility for
all the variables at hand.
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2.3.3 Stochastic trend model

Random walk with drift

Following [46] when addressing the difference stationary specification, I restrict my

attention to the following class of parametric forms

Φ(L)(1− L)log(Xt) = γx + Θ(L)εxt

where Φ(L) and Θ(L) are lag polynomials whose roots are outside the unit circle.

The statistical model to be considered in this section is as follows

lnAt = lnAt−1 + γa + εat

lnVt = lnVt−1 + γv + εvt

which can be rewritten as

lnAt = lnA0 + γat+
t∑
i=0

εat−i

lnVt = lnV0 + γvt+
t∑
i=0

εvt−i

Note that any shock to the stochastic trend at time t has a permanent effect in the

log-level of the technology processes. Therefore, I am abstracting from transitory

shocks in this specification which implies that I am just analyzing a lower bound of

the effects of technology shocks.
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Following [26] and [25], I assume

 εat

εvt

 ∼ N

 0

0

 ,D

 (2.41)

where D is a diagonal matrix i.e.

D =

 σ2
a 0

0 σ2
v


My estimates are reported in table 3. Under this specification, I estimate a reduction

in the volatility of the innovations to the technology shocks of about 48%. In this

version of the baseline RBC model, my calibration targets are identical to the ones

in the previous subsection. The calibrated parameters are given in table 3.

In table 7 of appendix A.1, I report the results for the different values of the Frisch

elasticity. The results for the volatility of output, investment, capital, and hours are

also sensitive to the value of such a parameter. This statistical specification accounts

for the same qualitative features of the US business cycle as the deterministic trend

version.

The difference-stationary model does not overpredict the volatilities of consump-

tion and capital. In fact, this statistical version of the model generates lower volatil-

ities for all the variables than the trend stationary one. In addition, the stochastic

trend model is successful in accounting for the correlation of consumption and output.

But it shares with the deterministic trend model the remaining unmatched features.
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Random walk with drift and moving average component

Following [11], I allow for a moving average component in the unit root specification

for the investment-specific technology process. Thus, (2.41) can be substituted by

lnVt = lnVt−1 + γv + ρεvt−1 + ξt (2.42)

I do not modify my statistical specification for the neutral technology process

since there is no empirical evidence for the inclusion of a moving average component

in such a representation.

Note that (2.42) allows for both temporary and permanent shocks. In particular,

a fraction 1/(1− ρ) of any innovation to the investment-specific shock is permanent.

The remainder has a temporary effect.

My estimation results are reported in table 4. I also observe here a reduction

in the volatility of the innovations to the technology shocks of about 56% for the

investment-specific technology and 48% for the neutral one.

The results over the grid for the elasticity of labor supply with respect to real

wage are reported in table 8 in appendix A.1. This version of the stochastic trend

model shares all the ’virtues’ of the baseline stochastic trend model and improves

upon some of its shortcomings. For example, the volatility of hours is larger than in

the baseline difference-stationary model.

2.3.4 Comparing statistical models

From my previous analysis, I can conclude that irrespective of the value for ν, all the

statistical models are able to qualitatively reproduce the slowdown in volatility. While

the baseline difference-stationary model implies a reduction in the volatility of the
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variables at hand of about 52%, the trend-stationary model overpredicts the slowdown

for all the variables but output. Even though the baseline stochastic trend model

outperforms the other two statistical specifications, it over predicts the slowdown in

capital, hours, and labor productivity. The model implies a 48% reduction while in

the data I observe about a 35% slowdown.

To continue my analysis let us set the Frisch elasticity parameter equal to 1. I

have chosen only one value in the grid for expositional purposes. Table 9 reports how

much volatility each model is able to account for. I observe that the trend-stationary

model outperforms the difference-stationary models for the volatility of all variables

but labor productivity. Notice that the stochastic trend model with a moving average

component performs relatively better than the baseline stochastic trend model in the

first sub-sample under analysis.

In table 10, I report the variance decomposition for the different specifications

under analysis. It is remarkable that for the deterministic trend model the investment-

specific shock is the main contributor to the variance of consumption, capital, and

hours. Therefore, I conclude that if I were interested in matching volatility levels using

a simple level stationary RBC model, I should include not only the usual neutral

productivity shock but also an investment specific disturbance. Note that for the

stochastic trend versions of my model, the neutral shock accounts for the bulk of the

variance for all variables. Therefore, failing to include an investment shock will not

worsen the results as much as it would under a deterministic trend environment.

Figures A-1 and A-2 are the impulse response functions for the deterministic trend

version and the baseline stochastic trend one. The responses to a neutral innovation

only differ in the steady state to which each economy converges. Short run dynamics

of consumption, hours, and labor productivity in response to an investment-specific

shock are richer in a level stationary environment than in a difference stationary one.
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That would help to explain that the deterministic trend model accounts better for

macro volatilities.

Let us now analyze the performance of the statistical specifications of my RBC

model in terms of accounting for the correlation structure of the data. From table 11,

I can conclude that all versions do a similar job replicating the correlation between

all the variables of interest and output but consumption. While the stochastic trend

versions of the baseline model are able to account fairly well for the correlation be-

tween consumption and output, the deterministic trend version falls too short. All

the different specifications of the RBC model under analysis perform very poorly in

matching the low correlation between output and labor productivity. Moreover, none

of them is able to reproduce the change in sign I observe in the post-1984 period.

[39] concluded that the deterministic trend model is the best one accounting for

correlations of all the variables with output. Conversely, from my results I conclude

that the stochastic trend model outperforms the deterministic trend one.

Given the counterintuitive result obtained for the correlation between consump-

tion and output for the deterministic trend model, I have explored the cross-correlations

with output for five lags and leads, and the correlations of other pairs of variables.

Table 15 reports the cross-correlations with output for lags and leads. I conclude

that the results for all versions of the model are similar for all variables but con-

sumption. Not only the deterministic trend under predicts the correlation between

consumption and output for the current period, but also under predicts for all lags

and leads. The stochastic versions of the model, however, account for the relative

magnitude and signs at all lags and leads.

Table 12 reports the correlations for different pairs of variables. As expected,

none of the versions of the model can capture any of the correlations with labor

productivity. For all the other moments not involving consumption, the performance

24



of all the statistical specifications is fairly uniform. Let us give a closer look to the

correlations with consumption. First of all, the deterministic trend model predicts

negative correlations between consumption and investment in efficiency units and

hours which are at odds with the data. The stochastic specifications account correctly

for the sign of the moments of interest. Secondly, I should stress out here that

while the stochastic trend model with a moving average component can account for

the relative magnitude of the increase in the correlation between consumption and

investment, capital, and hours across subsamples, the baseline stochastic trend model

fails to do so except for capital.

Given the above, I can conclude that choosing one specification over the others

depends upon what I am attempting to explain. If I were interested in matching

volatilities I would choose, as [39], the deterministic trend model. However, I would

need to include in my RBC model not only a neutral productivity shock, but also

an investment-specific one. If I wanted to match correlations7, I would choose a

stochastic trend model. Finally, if I wanted to match the magnitude of the volatility

slowdown in the 1980s, I would also choose a stochastic trend model since the model

implied slowdown is the closest to the observed one.

2.4 The Great Moderation

So far, I have performed my analysis allowing for changes in all the structural pa-

rameters over the two subsamples of interest. In such a way I have shown that any

of the statistical versions of my RBC model is able to account for a slowdown in

macro volatilities. However, I am more interested in analyzing which percentage of

7Let us use the term correlation in a broad sense ie it refers not only to the correlation with
output, but also to the cross-correlations considering lags and leads, and the correlation for any
other pair of variables
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the performance of my model due only to ’good luck’.

Thus, to better assess the relative importance of each technology shock in explain-

ing the Great Moderation, I perform some counterfactuals in the spirit of the ones

performed by [4]. In particular, I proceed with three experiments in two scenarios.

In the first scenario, I calibrate the parameters of the model to match the targets for

the whole sample (i.e., I fix them equal to the first column of tables 2, 3, and 4). In

the second scenario, I allow for time variation in the coefficients of the laws of motion

for the technology processes.

In the first counterfactual I analyze the explicative power of the neutral tech-

nology shock. To do so, I set the volatility of the innovation to the investment-specific

technology to match its volatility for the entire sample. The standard deviation of

the neutral innovation, however, changes across subsamples. The second counter-

factual is analogous to the first one but I focus on the investment-specific technology

shock. Finally, in the third counterfactual I explore the explicative power of both

shocks jointly by letting their standard deviations vary across subsamples.

The results under time invariant coefficients are reported in table 16. For the

first experiment, I observe that while the stochastic trend models can reproduce

a large fraction of the slowdown observed in the data, the trend-stationary model

does only an acceptable job of accounting for the slowdown in output and labor

productivity volatilities. My main conclusion from this experiment is that smaller

neutral technology innovations suffice to explain a large proportion of the aggregate

stability observed in the mid 1980s if the model economy is difference stationary.

From the second counterfactual, I conclude that the role of the investment-specific

shock as a single actor is greatly reduced. For example, for the deterministic trend

case I have that although the investment-specific shock is 62% as volatile in the post-

1984 as in the pre-1984 period, this has a very small effect on the volatility of output,
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investment, and labor productivity. However, I observe a reduction of about 22% in

the volatility of consumption, capital, and hours. The relevance of the investment

shock to explain the slowdown in real variables in my difference stationary economy

is almost negligible.

Using the third experiment, I can quantify the relative importance of the inter-

action between the two shocks active in my model economy. Here all the models are

able to imply volatility slowdowns relatively similar to the ones in the data which

implies that the interaction between the two technology shocks is significant.

Let us now perform the same counterfactuals but allowing for time variation not

only in the volatilities of the innovation processes, but also in the laws of motion of the

technology processes. Results are reported in table 17. The results are qualitatively

similar to the ones explained previously. On the one hand, the investment shock

in a difference stationary economy is not sufficient to induce a slowdown in macro

volatilities of a similar magnitude to the ones observed in the data. The role of

such a shock is larger for a level stationary economy. It is remarkable that the role

of the investment shock is larger when the law of motion of the technology level is

time-varying than when it is assumed to be fixed across subsamples. From the last

experiment, I can conclude again that the stochastic trend model accounts better for

the magnitude of the slowdown than the deterministic trend one. In this environment,

the slowdown implied by the level stationary model is not only larger than the one

observed in the data, but also larger than the one implied by the model under time-

invariant laws of motion.

I conclude that while the neutral shock is the main driving force in the slowdown

in volatilities generated by my difference-stationary model, allowing for a larger finan-

cial flexibility in the form of milder investment-specific shocks substantially improves

its ability to reproduce the magnitude of the observed slowdown. Such a financial
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flexibility plays an even larger role in a level stationary economy since not only en-

hances the slowdown due to the neutral shock, but also it is the main driving force

in the slowdown of consumption, capital, and hours volatility. Therefore, the Great

Moderation in my setting is not due only to ’good luck’ but also to the interaction

between the two technology shocks.

2.5 Conclusion

I find that the choice of the statistical model for the stochastic processes in an RBC

model with two technology shocks is not a trivial one. In fact, one model would be

preferred to the others depending on the features of the business cycle the researcher

wants to match.

I conclude that even though the neutral technology shock is the main driving

force in replicating the Great Moderation, having both technology shocks translate

into a better accounting for such a macroeconomic phenomenon. Therefore, the cross

effects seem to be relevant. However, a bivariate specification of the innovations to

the technology processes does not translate into a significative improvement of the

performance of the model under analysis(see appendix A.6.2).

I have shown that in a simple RBC model the two technology shocks can explain

approximately 70% of the observed slowdown in volatilities of US macro variables in

mid 1980s. The remaining 30% could be explained as suggested in the literature by

a reduction in the standard deviation of other shocks such as preference shocks, by

an improved financial environment, or by good policy. Discriminating among those

alternatives requires a richer model which is beyond the scope of my analysis.
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Chapter 3

Financial Frictions, the Financial

Immoderation, and the Great

Moderation

3.1 Introduction

The U.S. economy over the 1954-2006 period has been characterized by two empirical

regularities. On the one hand, since the mid 1980s, fluctuations at business cycle

frequencies for real and nominal variables are milder. This decline in macroeconomic

volatility defines the so-called Great Moderation. On the other hand, financial vari-

ables have become more volatile over time. [42] document an increase in the volatility

of debt and equity financing in the nonfarm business sector contemporaneous with

the slowdown in the amplitude of the real cycle. In this paper, I reconsider the study

of the balance-sheet data for the nonfarm business sector along with other financial

variables, such as balance-sheet data for households, net private savings, and demand

deposits at commercial banks. I document that the widening of the financial cycle

29



starts in 1970. I label this second empirical regularity the Financial Immoderation.

I account for those divergent patterns in volatility by means of a structural model.

I consider a model featuring a standard set of real and nominal frictions as in [56]

extended to accommodate financial rigidities as in [5]. I enrich the theoretical en-

vironment by including financial shocks affecting the spillovers of credit market im-

perfections on the economy. This theoretical framework allows us to quantify the

relative role played by financial factors, monetary policy, and economic shocks in

shaping the evolution of aggregate volatility. To do so, I estimate my model using a

data set containing real, nominal, and financial variables. To account for the breaks

in the second moments of the data, I allow for structural breaks in the average level of

financial rigidity, coefficients in the monetary policy rule, and the size of shocks. As

a byproduct of my analysis, I can not only characterize the propagation mechanism

of financial shocks in the US economy, but also study its evolution over the last 50

years.

One of the main objectives of this paper is to quantify the relative role played by

financial factors in shaping macroeconomic and financial volatilities. However, the

workhorse dynamic stochastic general equilibrium (DSGE) model used in the litera-

ture abstracts from interactions between credit markets and the rest of the economy.

This benchmark macroeconomic model is based on the capital structure irrelevance

theorem by [50]; that is, the composition of agents’ balance sheets has no effect on

their optimal decisions. Nevertheless, episodes such as the Great Depression or the

current financial turmoil stand as compelling evidence of the linkage between the de-

velopments in the financial and real sectors. Along these lines, recent contributions to

the literature have focused on incorporating credit markets in the workhorse DSGE

model. For example, [5] and [40] stress the relevance of the balance sheet’s condition

in determining economic activity. The ability to borrow depends upon borrowers’
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wealth, which ultimately affects the demand for capital and the level of economic

activity they can engage in.

Following [16], I consider a theoretical framework with real and nominal rigidities

as in [56] enriched with frictions in the credit market à la [5]. In this environment,

asymmetric information between borrowers and lenders arises because the return to

capital depends not only on aggregate but also on idiosyncratic risk. While borrowers

freely observe the realization of their idiosyncratic productivity shock, lenders must

pay monitoring costs to observe the realized return of a borrower. To minimize

monitoring costs, lenders audit borrowers only when they report their inability to pay

the loan back under the terms of the contract. In order to be compensated for the

risk of default, lenders extend loans at a premium over the risk-free interest rate. The

composition of borrowers’ balance sheets determines the external finance premium at

which the loan is settled. The lower an entrepreneur’s net worth (collateral) with

respect to her financing needs, the higher the premium required in equilibrium. The

external finance premium is at the heart of the mechanics operating in the financial

accelerator emphasized by [5]. The financial accelerator hypothesis states that credit

market imperfections amplify and propagate economic shocks. For example, in an

economic downturn, borrowers’ wealth deteriorates because of the decline in asset

prices. Such a reduction in the value of collateral translates into a higher premium

requested by lenders. Relatively more expensive credit reduces the incentives to

engage in investment activities, depressing output production even further. The latter

generates an additional drop in asset prices, which feeds the chain again.

In a model à la [5], the external finance premium is driven by two channels:

the balance-sheet channel and the information channel. The balance-sheet channel

captures the dependence of external financing opportunities on the composition of

firms’ balance sheets. The information channel implies that the external finance
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premium is a positive function of the severity of the agency problem. I enrich the

DSGE model by introducing financial shocks affecting those two channels. Exogenous

shocks to the balance-sheet channel are introduced in the form of wealth shocks.

Shocks to the information channel are modeled as innovations affecting the parameter

governing agency costs. In this paper, I study the relative role played by those two

shocks in shaping the evolution of aggregate volatility. I also analyze the propagation

mechanism of the two financial shocks in the US economy.

I estimate the model economy using Bayesian techniques on a standard data set

of real and nominal variables extended to include a series for firms’ net worth. I need

to take a stand on defining the empirical equivalent to such a model variable. I focus

on the data provided by the Flow of Funds Accounts to define net worth as tangible

assets minus credit market liabilities for the nonfarm business sector, measured in real

per capita terms. As I have stated above, I perform the estimation exercise using the

whole data sample, but I allow for structural breaks in the variances of the shocks,

the coefficients in the monetary policy rule, and the average size of the financial

accelerator. Therefore, I consider three explanations for the Financial Immoderation

and the Great Moderation: changes in the size of shocks, changes in the conduct of

monetary policy, and changes in the US financial system.

The main empirical findings of the paper are the following. Financial factors

play a significant role in shaping financial and macroeconomic volatilities. Financial

shocks are the only driver of the variance of financial flows. Therefore, the increase

in fluctuations at business cycle frequencies for balance-sheet variables is driven by

larger financial shocks hitting the US economy.

I also find that while the average level of financial rigidities do not change in

the 1970s, the estimated decrease in the mid 1980s is more than 75%. This decline

accounts for more than 30% of the reduction in the cyclical volatility of investment
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and the nominal interest rate. The effect on the remaining variables is, however,

negligible.

This paper relates to two strands of the empirical macro literature. The first strand

addresses the study of the Great Moderation, that is, the evolution of volatilities at

business cycle frequencies during the second half of the last century. The second

strand considers the estimation of the financial accelerator model.

Since [45] and [49] dated the start of the Great Moderation, there has been a

growing literature on dissecting the possible sources of such a mildness in real business

cycle fluctuations. Recent contributions have focused on analyzing the link between

financial innovations and aggregate volatility. My paper is along the lines of [42]

and [21], who consider credit market frictions only for firms. In particular, I obtain

an estimated reduction in the average level of financial rigidities during the Great

Moderation similar to the ones provided by those two papers.

The literature on bringing the financial accelerator by [5] to the data through an

estimation exercise is less vast than the literature on the Great Moderation. Most of

the contributions estimate the theoretical environment using only nominal and real

variables and focusing on data from the Volcker-Greenspan era. To the best of my

knowledge, besides the study of the Great Depression by [16], the only reference using

pre-1980s data is the recent work by [33], whose sample spans 1973 to 2008. They do

not address, however, the break in second moments of the data observed in the mid

1980s.

The plan of the paper is as follows. Section 3.2 presents the empirical evidence

that motivates the paper. I describe the model in Section 3.3. Section 3.4 discusses

the choice of parameters allowed to change over time. I describe the estimation

procedure and report the estimation results in Section 3.5. Section 3.6 analyzes the

drivers of the divergent patterns in volatility. Section 3.7 concludes.
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3.2 Empirical Motivation

This section presents the empirical evidence that motivates the paper. It characterizes

real, nominal, and financial cycles over the period 1954-2006. I do not consider more

recent data for reasons of data accuracy. Revisions of NIPA data within a year of

publication and of Flow of Funds Accounts within two or three years of publication are

often considerable. In addition, at the end of the sample it is difficult to distinguish

trend breaks from cycles.

I set the empirical characterization considering two structural breaks in the data:

1970 and 1984. Let us start by motivating the choice of 1984. Since the contributions

by [45] and [49], there has been a consensus in the empirical macro literature about

the existence of a break in the second moments characterizing real and nominal cycles

around 1984. [57] popularized it as the starting point of the Great Moderation.

The choice of the break in 1970 is based on several observations. First, analyzing

the evolution of the cyclical component of balance-sheet variables such as the debt-

to-net-worth ratio reported in Figure B-1, I conclude that the cycle becomes wider

in the 1970s. Moreover, both inflation and the federal funds rate are more volatile in

the 1970s and early 1980s. The high and volatile inflation over the period has been

the subject of careful study by researchers such as [15], [52], and [18], among others.

Second, the 1970s are convulsive years in US economic history. There were signif-

icant changes not only in the financial system but also in other areas of the economic

system. In the financial arena, the 1970s was the decade of the introduction of ATMs,

phone transfers for savings balances at commercial banks, NOW (negotiable order of

withdraw) accounts, money market certificates with yields tied to US Treasury secu-

rities, IRAs (individual retirement accounts), MMMF (market money mutual funds),

incorporation of the NYSE, a partial lifting of Regulation Q, the Securities Protection
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Act, the Financial Institutions Regulatory and Interest Control Act, the Electronic

Fund Transfers Act, the International Banking Act, the Bankruptcy Reform Act, etc.

At the same time, the US experienced the collapse of the Bretton Woods currency-

exchange mechanism, the appointment of Burns as chairman of the Federal Reserve

System after 19 years of Martin, the end of the Vietnam war, the oil crises, the stagfla-

tion episode, several government bailouts of the automobile and aviation industries,

and the start of the service economy. Therefore, testing for a break at the beginning

of the 1970s seems a natural candidate.

Tables 23 and 24 report Chow tests on the average squared residuals of regressing

an AR(1) with drift for the definition of the variables of interest used in the estimation

exercise and their cyclical component, respectively. I reject the null of parameter

constancy when testing for a break in 1970 for net worth, inflation, and the federal

funds rate for both definitions of the variables. I reject the null for all variables

except labor share using the two definitions at hand when the break is set in 1984.

Finally, I also reject the null for all variables except labor share when considering

the two breaks jointly. In particular, the log-likelihood ratio statistic is larger for this

scenario than when considering single breaks. Therefore, I can conclude that the data

are best represented by a scenario that allows for two breaks in second moments.

I report in Table 25 the ratio of standard deviations of the cyclical component

for a set of real, nominal, and financial variables. Although the focus of my paper

is on financial variables related to the nonfarm business sector, I analyze here a

broader data set, including net worth of households, net private savings, and demand

deposits at commercial banks. Following [42], I report in the first column of Table 25

the ratio of cyclical standard deviations when only a break in 1984 is considered.

All the variables included in my data set deliver the patterns described by [42]; that

is, there is a contemporaneous moderation in the real side of the economy and an
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exacerbation in the volatility of financial variables. The magnitude of the changes

is also along the lines of the results provided by those authors. The novelty of my

analysis is the consideration of two breakpoints. The second and third columns of

Table 25 report the relevant statistics to characterize the three subperiods of interest:

1954-1969, 1970-1983, 1984-2006. Therefore, in the remainder of this section I focus

my discussion on analyzing the information provided by the last two columns of the

table.

Let us start by comparing the standard deviation of the cyclical component in

the 1970-1983 sample period with that of the 1954-1969 era. The volatility of real

variables is, on average, 50% greater in the 1970s and early 1980s than in the pre-

1970 period. Nominal variables are also more volatile in the 1970-1983 sample period,

but the increase in their cyclical volatility is greater than the one observed for real

variables. In particular, the standard deviation of the cyclical component of both

inflation and nominal interest rates more than doubles in the 1970s and early 1980s

with respect to the 1950s and 1960s. Finally, all financial variables are also more

volatile over the second sample period. The more dramatic change is the one ex-

perienced by demand deposits at commercial banks whose variability triples in the

1970-1983 sample period.

In the last column of Table 25, I compare the standard deviations of the cyclical

components for the post-1984 period with that of the 1970-1983 sample period. The

volatility of consumption, investment, and output decreases by about 55%. This

result is what characterizes the Great Moderation per se. The slowdown in the

cyclical variability of hours and labor share is milder. Nominal variables, also in this

case, follow the pattern of change of real variables. Financial variables, however,

are more volatile in the 1984-2006 sample period. The most significant increases in

cyclical variability are the ones for net worth for the nonfarm business sector and net
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private savings. Both of them are 45% more volatile in the Great Moderation era than

in the Great Inflation period (1970-1983). Therefore, I can state that the post-1984

period is characterized by an additional increase in the volatility of financial variables

at business cycle frequencies.

I can summarize the empirical regularities present in the US aggregate data over

the 1954-2006 period as follows. The first subperiod, 1954-1969, is characterized by

relatively stable inflation and interest rates. The 1970-1983 sample period constitutes

the first stage of the Financial Immoderation. In this period, fluctuations at busi-

ness cycle frequencies of real, nominal, and financial variables become wider. The

last subperiod expands from 1984 to the end of the sample. It is characterized by

the coexistence of the second stage of the Financial Immoderation and the Great

Moderation.

3.3 The Model

My theoretical framework features real and nominal rigidities as in [56] and [12].

However, to assess the role played by financial frictions in the evolution of volatilities

in the US economy, I extend the framework including financial rigidities as in [5].

Financial frictions arise because there is asymmetric information between borrowers

and lenders. Following Townsend’s (1979)’s costly state verification framework, I

assume that while borrowers freely observe the realization of their idiosyncratic risk,

lenders must pay monitoring costs to observe an individual borrower’s realized return.

Since [16] integrated the financial accelerator mechanism of [5] in the workhorse

DSGE model, several studies have focused on assessing the empirical relevance of the

financial accelerator by comparing the model fit with that of the workhorse DSGE

model or on studying the propagation of real and nominal shocks. In this paper, I
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focus the analysis on two issues: the role of financial shocks and the model’s poten-

tial to account for breaks in the second moments of the data. I incorporate in the

theoretical framework a shock to firms’ wealth and a shock to agency costs. While

the former has been previously studied, the inclusion of the latter is a major novelty

of this paper.

My model economy is populated by households, financial intermediaries, entrepre-

neurs, capital producers, intermediate good firms, retailers, and government. En-

trepreneurs are the only agents able to transform physical capital into capital services

to be used in production. They purchase capital from capital producers and rent it to

intermediate goods firms. Capital acquisition can be finance using internal financing

and external borrowing. Financial intermediaries capture funds from households in

the form of deposits and lend them to entrepreneurs. Intermediate goods firms carry

out production by combining capital and labor services. Retailers generate the final

good of this economy by combining intermediate goods. The government conducts

both fiscal and monetary policy. In order to have non-neutrality of monetary policy, I

need to include a nominal rigidity in a monopolistically competitive sector. Assuming

entrepreneurs have market power would make it more difficult to solve for the debt

contract. Hence, I introduce sticky prices in the intermediate good sector instead.

3.3.1 Households

I assume there is a continuum of infinitely lived households whose length is unity.

They work, consume, invest savings in a financial intermediary in the form of de-

posits that pay a risk-free rate of return, purchase nominal government bonds, re-

ceive dividends from their ownership of firms, pay lump-sum taxes, and obtain (give)

wealth transfers from (to) entrepreneurs.The representative household chooses a plan
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for {Ct, Dt+1, Ht, NBt+1} to maximize her expected discounted lifetime utility

Et

∞∑
j=0

βjbt+j

[
ln(Ct+j − hCt+j−1)− θt+j

H
1+1/ν
t+j

1 + 1/ν

]
(3.1)

subject to

Ct +Dt+1 +
NBt+1

Pt
≤ Wt

Pt
Ht +Rt−1Dt +Rn

t−1

NBt

Pt
+ divt − Tt − Transt(3.2)

where Ct stands for consumption, h for the degree of habit formation, Dt+1 for today’s

real deposits in the financial intermediary, Ht for hours worked, ν for the Frisch

elasticity of labor, bt for a shock to the stochastic discount factor, θt for a labor supply

shifter, Pt for the price level of the final good, Wt

Pt
for real wage, Rt for the risk-free

real interest rate paid on deposits, Rn
t for the risk-free nominal interest rate paid on

government bonds, NBt for nominal government bonds, Tt for real taxes (subsidies)

paid to (received from) the government, divt for dividends obtained from ownership

of firms, and Transt for wealth transfers from/to the entrepreneurial sector. The

nature of these transfers is described in section 3.3.5.

The shock to the labor supply, θt, affects the intratemporal tradeoff between leisure

and consumption. It is assumed to evolve as

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + σθεθ,t (3.3)

with εθ,t ∼ N (0, 1) .

The intertemporal preference shock aims to capture exogenous fluctuations in

preferences due to changes in beliefs or in taste. In particular, the stochastic discount

factor fluctuates endogenously with consumption and exogenously with the shock bt,
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which is given by

ln(bt) = ρb ln(bt−1) + σbεb,t (3.4)

where εb,t ∼ N (0, 1).

Finally, as usual in the literature, I have assumed log-utility in consumption so

that the marginal rate of substitution between consumption and leisure is linear in

the former, which is necessary to ensure the existence of a balanced growth path.

3.3.2 Retailers

The retail sector is populated by infinitely lived and perfectly competitive firms pro-

ducing final goods, Yt, by combining a continuum of intermediate goods, Yt(s). Final

goods can be used for consumption and investment. Intermediate goods are trans-

formed into final goods by means of a [24] aggregator.

Yt =

[∫ 1

0

(Yt(s))
1

1+λt

]1+λt

(3.5)

where λt is the markup shock and 1+λt
λt

measures the elasticity of substitution between

differentiated intermediate goods. I assume that the markup evolves as follows

ln(λt) = (1− ρλ) ln(λ?) + ρλ ln(λt−1) + σλελ,t (3.6)

where ελ,t ∼ N (0, 1) and λ? stands for the value of the markup at the steady state.

Final goods firms take the prices of intermediate goods as given and choose Yt(s)

to minimize costs, given by
∫ 1

0
Pt(s)Yt(s)ds subject to the Dixit-Stiglitz aggregator.
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From the first-order condition, I have that the demand function for the sth interme-

diate good is given by

Yt(s) =

[
Pt
Pt(s)

] 1+λt
λt

Yt (3.7)

Integrating the above and imposing the zero-profit condition, I obtain the following

expression for the aggregate price index

Pt =

[∫ 1

0

Pt(s)
−1/λtds

]−λt
(3.8)

3.3.3 Intermediate goods sector

There is a continuum of infinitely lived producers of intermediate goods, indexed by

s ∈ [0, 1], operating under monopolistic competition. They produce intermediate

inputs, Yt(s), combining labor, Ht, and capital services, kt, using a Cobb-Douglas

technology. Labor services are obtained from households and capital services from

entrepreneurs.

Yt (s) = [Za,tHt (s)]1−α kt (s)α (3.9)

where Za,t stands for the neutral technology shock that evolves as follows

log (Za,t) = Υz + log (Za,t−1) + σZεZ,t (3.10)

Υz is the average growth rate of the economy and εZ,t ∼ N (0, 1).

Intermediate goods producers solve a two-stage problem. First, they decide on the

demand schedule for labor and capital services by minimizing total costs conditional

on factor prices. The optimization problem is given by

min
Ht(s),kt(s)

Wt

Pt
Ht (s) + rkt kt (s) (3.11)
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subject to

Yt (s) = [Za,tHt (s)]1−α kt (s)α

where rkt is the rental rate of capital. Therefore, the optimal capital-to-labor ratio is

given by

kt(s)

Ht(s)
=

α

1− α
Wt/Pt
rkt

and the real marginal cost by

χt(s) =

(
α

1− α

)1−α(
1

α

)α (Wt/Pt)
1−α (rkt )α
Za,t

Given that both the optimal capital-to-labor ratio and the real marginal cost depend

only on market prices, common parameters across intermediate producers, and the

economy-wide neutral technology shock, I conclude that those two variables are iden-

tical for all producers. Hence, I can proceed by assuming a representative agent in

the sector.

In the second stage, intermediate goods producers face a pricing problem in a

sticky price framework à la Calvo. At any given period, a producer is allowed to

reoptimize her price with probability (1− ξp). For simplicity, let us assume that

those firms that do not re-optimize set their price equal to their last optimized price.

When reoptimization is possible, an intermediate firm s will set the price P ?
t (s) that

maximizes the expected value of the firm

max
P ?t (s)

Et

∞∑
j=0

[
ξjpΛt,t+j

(
P ?
t (s)

Pt+j
− χt+j

)
Yt+j(s)

]
(3.12)

subject to

Yt(s) =

[
Pt(s)

Pt

]− 1+λt
λt

Yt (3.13)
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where Λt,j is the stochastic discount factor between t and t+ j for households.

Given that not all retailers are allowed to adjust their prices, the aggregate price

index is given by the following weighted average

Pt = [ξpP
1/λt
t−1 + (1− ξp)(P ?

t (s))1/λt ]λt (3.14)

3.3.4 Capital producers

Capital producers are infinitely lived agents operating in a perfectly competitive mar-

ket. Capital producers produce new physical capital stock, Kt+1, combining final

goods, It, with currently installed capital, Kt, using a constant returns to scale tech-

nology. The new capital is sold to entrepreneurs at price P k
t . I assume that one

unit of time t investment delivers ζt units of time t + 1 physical capital. ζt is the

investment-specific technology shock along the lines of [36].

ln(ζt) = ρζ,1 ln(ζt−1) + σζεζ,t εζ,t ∼ N (0, 1) (3.15)

I assume that capital producers repurchase used capital from entrepreneurs. Since

previously installed capital is an input for the production of new physical capital,

the marginal rate of transformation between old (conveniently depreciated) and new

capital is equal to one. This implies that the price of old and new capital is identical.

[5] assume there are increasing marginal adjustment costs in the production of

capital, so that they can obtain time variation in the price of capital. Such a variation

contributes to the volatility of entrepreneurial net worth. In my set-up, I can obtain

time variation in the price of capital through the investment-specific technology shock.

However, I assume adjustment costs to impute some discipline in the volatility of

investment. I follow [10] in assuming that capital producers are subject to quadratic
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capital adjustment costs specified as

[
ξ
2

(
It
Kt
− (Z∗ − 1 + δ)

)2

Kt

]
, where Z∗ is the

growth rate of the economy in the steady state.

The representative capital producer chooses the level of investment that maximizes

her profits, which are given by1

P k
t ζtIt − PtIt − Pt

ξ

2

(
It
Kt

− (Z∗ − 1 + δ)

)2

Kt (3.16)

Let Qt =
Pkt
Pt

be the relative price of capital,

Qt =
1

ζt

[
1 + ξ

(
It
Kt

− (Z∗ − 1 + δ)

)]
(3.17)

which is the standard Tobin’s q equation. In the absence of capital adjustment costs,

the relative price for capital, Qt, is equal to the inverse of the investment-specific

shock. The quantity and price of capital are determined in the market for capital. The

supply of capital is given by equation (3.17). The demand curve will be determined

by the entrepreneurial sector (equation 3.20).

The aggregate capital stock of the economy evolves according to

Kt = (1− δ)Kt + ζtIt (3.18)

3.3.5 Entrepreneurs and financial intermediaries

Entrepreneurs are finitely lived risk-neutral agents who borrow funds captured by

financial intermediaries from households. Borrowing and lending occur in equilib-

rium because entrepreneurs and households are two different types of agents. As I

1Note that one unit of t+ 1 capital is produced by the following technology (1− δ)Kt + ζIt. Old
capital is bought at price P kt . Therefore, the cost term cancels out the revenue term.
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have stated above, financial rigidities arise because there is asymmetric information

between borrowers and lenders. While entrepreneurs can freely observe the realiza-

tion of their idiosyncratic risk, financial intermediaries must pay an auditing cost to

observe it. To minimize monitoring costs, lenders will audit borrowers only when

they report their inability to pay the loan back under the terms of the contract. I

assume that the auditing technology is such that, when monitoring occurs, the lender

perfectly observes the borrower’s realized return. Monitoring or bankruptcy costs

are associated with accounting and legal fees, asset liquidation, and interruption of

business.

Since financial intermediaries may incur these costs in the event of default by

a borrower, loans are made at a premium over the risk-free interest rate. Such an

external finance premium captures the efficiency of financial intermediation. The

external finance premium is affected by two channels: the balance-sheet channel and

the information channel. The balance-sheet channel implies that as the share of

capital investment funded through external financing increases, the probability of

default also rises. Lenders request compensation for the higher exposure to risk

with a higher premium. The information channel is linked to the elasticity of the

external finance premium with respect to the entrepreneurial leverage ratio. This

channel states that the larger the rents generated by asymmetric information, the

more sensitive the premium is to the leverage ratio. Therefore, the external finance

premium is an increasing function of the level of financial rigidity, which is measured

by the agency cost. I enrich the model by introducing financial shocks affecting both

the balance-sheet and the information channels of the external finance premium.

In a costly state verification set-up, entrepreneurs try to avoid the financial con-

straint by accumulating wealth. However, the assumption of a finite lifetime implies
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that financial intermediation is necessary; that is, entrepreneurs cannot be fully self-

financed. In addition, the deceased fraction, γ, of the population of borrowers trans-

fers wealth to the pool of active entrepreneurs. This transfer of resources guarantees

that any active entrepreneur has nonzero wealth so she can gain access to external

financing.

Individual entrepreneur’s problem

Entrepreneurs own the capital stock, Kt, of the economy. At the beginning of the

period, an entrepreneur is hit by an idiosyncratic shock, ωjt , that affects the pro-

ductivity of her capital holdings. This idiosyncratic shock is at the center of the

informational asymmetry, since it is only freely observed by the entrepreneur. For

tractability purposes, I assume ωjt , for all j, is i.i.d lognormal with c.d.f. F (ω),

parameters µω and σω, such that E[ωj] = 1. After observing the realization of the

idiosyncratic shock, entrepreneurs choose the capital utilization rate, ujt , that solves

the following optimization problem

max
ujt

[
ujtr

k,j
t − a

(
ujt
)]
ωjtK

j
t (3.19)

where, around the steady state, a (·) = 0, a′ (·) > 0, a′′ (·) > 0 and u? = 1. Therefore,

capital services, kjt , rented to intermediate goods producers are given by kjt = ujtω
j
tK

j
t .

The capital demand for entrepreneur j is given by her expected gross returns on

holding one unit of capital from t to t+ 1

Et

[
Rk,j
t+1

]
= Et

[
rk,jt+1 + ωjt+1(1− δ)Qt+1

Qt

]
(3.20)

where ωjt+1(1− δ)Qt+1 is the return to selling the undepreciated capital stock back to
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capital producers.

As I pointed out before, I can write the equilibrium conditions for intermediate

goods producers in terms of aggregate variables. Therefore, I have

rk,jt = ωjt
αχt(s)Yt(s)

kt(s)
= ωjt

αχtYt
kt

= ωjt r
k
t

and, hence,

Et

[
Rk,j
t+1

]
= Et

[
ωjt+1R

k
t+1

]
(3.21)

where Rk
t+1 is the aggregate gross return on capital.

Debt contract

Conditional on survival, an entrepreneur j purchases physical capital, Kj
t+1, at relative

price Qt. An entrepreneur can finance the purchasing of new physical capital investing

her own net worth, N j
t+1, and using external financing, Bj

t+1, to leverage her project.

Therefore, she can finance her investment in capital goods as follows:

QtK
j
t+1 = Bj

t+1 +N j
t+1 (3.22)

Given that the entrepreneur is risk neutral, she offers a debt contract that ensures

the lender a return free of aggregate risk. The lender can diversify idiosyncratic risks

by holding a perfectly diversified portfolio. A debt contract is characterized by a

triplet consisting of the amount of the loan, Bj
t+1, the contractual rate, Zj

t+1, and a

schedule of state-contingent threshold values of the idiosyncratic shock, ω̄jn,t+1, where

n refers to the state of nature. For values of the idiosyncratic productivity shock

above the threshold, the entrepreneur is able to repay the lender at the contractual

rate. For values below the threshold, the borrower defaults, and the lender steps in
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and seizes the firm’s assets. A fraction of the realized entrepreneurial revenue is lost

in the process of liquidating the firm. In this case, the financial intermediary obtains

(1− µt+1)ωjn,t+1R
k
n,t+1QtK

j
t+1 (3.23)

where ωjn,t+1R
k
n,t+1 stands for the ex post gross return on capital for a given en-

trepreneur j (see equation 3.21) and µt+1 for the marginal bankruptcy cost. In the

literature, the marginal bankruptcy cost is assumed to be a constant parameter. I

assume, however, that it is a drifting parameter so that exogenous changes in the level

of financial rigidities affect the business cycle properties of the model. In section 3.3.5,

I describe in detail the relevance of this assumption and the stochastic specification

chosen.

For a given state n, the threshold value for the idiosyncratic productivity shock is

defined as

ω̄jt+1R
k
t+1QtK

j
t+1 = Zj

t+1B
j
t+1 (3.24)

where Zj
t+1 is the contractual rate whose dynamics, ceteris paribus, are governed by

those of ω̄jt+1. Hence, I set up the debt contract only in terms of the idiosyncratic

productivity threshold. From this equation, I can determine the payoffs for the bor-

rower and lender as a function of the realized idiosyncratic risk. If ωjt+1 ≥ ω̄jt+1, then

the entrepreneur can satisfy the terms of the contract. She pays the lender Zj
t+1B

j
t+1

and keeps
(
ωjt+1R

k
t+1QtKt+1 − Zj

t+1B
j
t+1

)
. If ωjt+1 < ω̄jt+1, the entrepreneur declares

bankruptcy; that is, she defaults on her loans. In this case, the financial intermediary

liquidates the firm, obtaining (1− µt+1)ωjt+1R
k
t+1QtKt+1 and leaving the lender with

zero wealth.

The terms of the debt contract are chosen to maximize expected entrepreneurial
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profits conditional on the return of the lender, for each possible state of nature, being

equal to the real riskless rate. That is, the participation constraint is given by the

zero profit condition for the financial intermediary.

max
{ω̄jn,t+1,K

j
t+1}

∑
n

Ξn

[∫ ∞
ω̄jn,t+1

ωdF (ω)−
[
1− F (ω̄jn,t+1)

]
ω̄jn,t+1

]
Rk
n,t+1QtK

j
t+1 (3.25)

st ([
1− F (ω̄jn,t+1)

]
ω̄jn,t+1 + (1− µt+1)

∫ ω̄jn,t+1

0

ωdF (ω)

)
Rk
n,t+1QtK

j
t+1

= Rt

(
QtK

j
t+1 −N

j
t+1

)
(3.26)

where Ξn stands for the probability of reaching state n, F
(
ω̄jn,t+1

)
is the default prob-

ability, Rt

(
QtK

j
t+1 −N

j
t+1

)
is the cost of funds, (1−µt+1)

∫ ω̄jn,t+1

0 ωRk
n,t+1QtK

j
t+1dF (ω)

is the payoff if the entrepreneur defaults on the loan, and
[
1− F (ω̄jn,t+1)

]
ω̄jn,t+1R

k
n,t+1

QtK
j
t+1, which is equal to

[
1− F (ω̄jn,t+1)

]
Zj
t+tB

j
t+1, stands for the revenue if the loan

pays. Therefore, the left-hand side in equation (3.26) is the expected gross return on

a loan for the financial intermediary.

Let %jt+1 =
Bjt+1

Nj
t+1

be the debt-to-wealth ratio, Γ(ω̄jt+1) =
∫ ω̄jt+1

0
ωf(ω)dω + ω̄t

∫∞
ω̄jt+1

f(ω)dω, the expected share of gross entrepreneurial earnings going to the lender,

1 − Γ(ω̄jt+1), the share of gross entrepreneurial earnings retained by borrowers, and

µt+1G(ω̄jt+1) = µt+1

∫ ω̄jt+1

0
ωf(ω)dω, the expected monitoring costs. Then I can rewrite

the standard debt contract problem as

max
{ω̄jn,t+1,%

j
t+1}

∑
n

Ξn{
[
1− Γ

(
ω̄jn,t+1

)] Rk
n,t+1

Rt

(1 + %jt+1)

+Ψ
(
ω̄jn,t+1

) [Rk
n,t+1

Rt

[
Γ
(
ω̄jn,t+1

)
− µt+1G

(
ω̄jn,t+1

)]
(1 + %jt+1)− %jt+1

]
}
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where Ψ
(
ω̄jn,t+1

)
is the Lagrange multiplier linked to the participation constraint.

From the first-order condition with respect to the debt-to-wealth ratio

0 = Et

[(
1− Γ

(
ω̄jt+1

)) Rk
t+1

Rt

+ ψ
(
ω̄jt+1

)([
Γ
(
ω̄jt+1

)
− µt+1G

(
ω̄jt+1

)] Rk
t+1

Rt

− 1

)]
,

I can conclude that the schedule of threshold values for the idiosyncratic productivity

shock depends upon aggregate variables so that it is common for all entrepreneurs.

I can proceed, hence eliminating the superscript in ωt+1. From the participation

constraint for the financial intermediary, it directly follows that the debt-to-wealth

ratio, %jt+1, is identical for all j. Therefore, I perform the remainder of the analysis

dropping all superscripts.

I derive the supply for loans from the zero profit condition for the financial inter-

mediary

Rk
t+1

Rt

[Γ(ω̄t+1)− µt+1G(ω̄t+1)] =

(
QtKt+1 −Nt+1

QtKt+1

)
(3.27)

The above states that the external finance premium, Et

[
Rkt+1

Rt

]
, is an increasing

function of the debt-to-assets ratio and of the severity of the agency problem between

borrowers and lenders. Equation (3.27) provides one of the foundations of the financial

accelerator mechanism: a linkage between the entrepreneur’s financial position and

the cost of external funds, which ultimately affects the demand for capital.

The other main component of the financial accelerator is the evolution of en-

trepreneurial net worth. Note that the return on capital and, hence, the demand

for capital by entrepreneurs depends on the dynamics of net worth. Let Vt be en-

trepreneurial equity and W e
t be the wealth transfers made by exiting firms to the pool

of active firms. Then, aggregate entrepreneurial net worth (average net worth across
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entrepreneurs) is given by the following differential equation

Nt+1 = xtγVt +W e
t

= xtγ

[
Rk
tQt−1Kt −Rt−1Bt − µtRk

tQt−1Kt

∫ ω̄t

0

ωf(ω)dω

]
+W e

t

= xtγ
[
Rk
tQt−1Kt −Rt−1Bt − µtG (ω̄t)R

k
tQt−1Kt

]
+W e

t

where xt is a wealth shock,
[
Rk
tQt−1K

j
t −Rt−1Bt

]
is the gross return on capital net of

repayment of loans in the nondefault case, and µtG (ω̄t)R
k
tQt−1Kt is the gross return

lost in case of bankruptcy. Therefore, equity stakes for entrepreneurs that survive to

period t are given by the aggregate return on capital net of repayment of loans.

Wealth shocks can be interpreted as shocks to the stock market that generate

asset price movements that cannot be accounted for by fundamentals. [16] suggest

that shocks to entrepreneurial wealth capture the so-called irrational exuberance. I

can also consider wealth shocks as a reduced form for changes in fiscal policy that

have redistributive effects between firms and households. Exogenously driven changes

in the valuation of entrepreneurial equity need to be financed by another sector of

my model economy. I assume that the household sector receives (provides) wealth

transfers from (to) the entrepreneurial sector, which are defined as

Transt = Nt+1 − γVt −W e
t = γVt (xt − 1) (3.28)

where γVt + W e
t is the value that entrepreneurial equity would have taken if there

were no wealth shocks.
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Financial shocks

In a model with informational asymmetries, financing capital acquisitions with inter-

nally generated funds is preferred to external borrowing since it is less costly. The

difference between external and internal financing is the so-called external finance

premium. In my environment, this premium is defined as the expected discounted

return to capital

Et

[
Rk
t+1

Rt

]
= Et

[(
1

Γ (ω̄t+1)− µt+1G (ω̄t+1)

)(
QtKt+1 −Nt+1

QtKt+1

)]
(3.29)

The external finance premium is determined by two channels: the balance-sheet

channel, through the debt-to-assets ratio

QtKt+1 −Nt+1

QtKt+1

,

and the information channel, through the elasticity of the external finance premium

with respect to the leverage ratio, which is given by

1

Γ (ω̄t+1)− µt+1G (ω̄t+1)

The external finance premium is the key relationship of the financial accelerator, since

it determines the efficiency of the contractual relationship between borrowers and

lenders. I enrich the theoretical framework by assuming that this essential mechanism

is affected exogenously by two financial shocks: a wealth shock and a shock to the

marginal bankruptcy cost.

The balance-sheet channel states the negative dependence of the premium on the

amount of collateralized net worth, Nt+1. The higher the stake of a borrower in the
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project, the lower the premium over the risk-free rate required by the intermediary.

I introduce shocks to this channel through an entrepreneurial equity shifter. These

types of wealth shocks were first introduced by [32]. Recently, they have been explored

by [17], [53], and [33].

Recently, [23] has explored shocks to the elasticity of the risk premium with respect

to the entrepreneurial leverage ratio. He solves the model discarding the contribution

of the dynamics of the idiosyncratic productivity threshold to the dynamics of the re-

maining variables.2 Hence, those shocks can refer to shocks to the standard deviation

of the entrepreneurial distribution, to agency costs paid by financial intermediaries to

monitor entrepreneurs, and/or to the entrepreneurial default threshold. He cannot,

however, discriminate among the sources of the shock. [17] solve the model com-

pletely so that they can introduce a specific type of shock affecting the efficiency of

the lending activity. In particular, they propose riskiness shocks affecting the stan-

dard deviation of the entrepreneurial distribution. A positive shock to the volatility

of the idiosyncratic productivity shock widens the distribution so that financial in-

termediaries find it more difficult to distinguish the quality of entrepreneurs.

I introduce exogenous disturbances affecting the elasticity of the premium with re-

spect to the leverage ratio by assuming the marginal bankruptcy cost is time-variant.

The information channel, therefore, establishes that the external finance premium is

a positive function of the severity of the agency problem measured by the marginal

bankruptcy cost, µt. An increase in the level of financial rigidity implies an enlarge-

ment of the informational asymmetry rents which translates into a higher premium on

external funds. To the best of my knowledge, only [48] have explored time variation

2[5] perform simulation exercises under a parameterization that implied a negligible contribution
of the dynamics of the cutoff. However, most of the contributions to the financial accelerator
literature have adopted this result as a feature of the model. Therefore, they proceed by setting
those dynamics to zero.
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along this margin. They estimate a partial equilibrium version of the BGG model

using a panel of 900 US nonfinancial firms over the period 1997:1 to 2003:3. They find

evidence of significant time variation in the marginal bankruptcy cost. In particular,

they conclude that time variation in the parameter of interest is the main driver of

the swings in the model-implied external finance premium. I assume that the shock

to entrepreneurial wealth follows the following process

ln(xt) = ρx ln(xt−1) + σxεx,t, εx,t ∼ N (0, 1) (3.30)

and the shock to the marginal bankruptcy cost

ln(µt) = (1− ρµ) ln(µ?) + ρµ ln(µt−1) + σµεµ,t, εµ,t ∼ N (0, 1) (3.31)

The unconditional mean of the process governing the agency problem between bor-

rowers and lenders, µ?, determines the average level of financial rigidity in the model

economy. This parameter governs, then, the size of the financial accelerator. In

particular, µ? stands for the steady-state level of the marginal bankruptcy cost.

3.3.6 Government

Government spending is financed by government nominal bonds sold to households

and by lump-sum taxes.

NBt+1 + PtTt = PtGt +Rn
t−1NBt (3.32)
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where the process for public spending Gt is given by Gt = gYt, with the government

spending-to-output ratio, g, being constant. The monetary authority follows a Taylor-

type interest rate rule. I assume the authority adjusts the short-term nominal interest

rate responding to deviations of inflation and output growth from the target, i.e., their

steady-state values.

(
Rn
t

Rn?

)
=

(
Rn
t−1

Rn?

)ρR ( πt
π?

)(1−ρR)ψπ
(

∆Yt
Υz

)(1−ρR)ψy

eσRεR,t (3.33)

with ρR > 0, (1 − ρR)ψπ > 0, (1 − ρR)ψy > 0, and εR,t ∼ N (0, 1). If ψπ > 1, then

monetary policy is consistent with stabilizing inflation. If ψy > 0, then monetary

policy is consistent with stabilizing output growth.

3.3.7 Competitive equilibrium

Definition 3.1. A competitive equilibrium is defined by a sequence of prices

{Pt, Pt(s),Wt, Rt, R
k
t , R

n
t , Qt, Zt+1}∞t=0,

decisions rules for

{Ct, NBt, Dt+1, Ht, It, Yt(s), Yt, ut, Kt+1}∞t=0,

and laws of motion for {Nt+1, Kt+1}∞t=0 such that all of the above optimality conditions

are satisfied, the monetary authority follows its policy rule, and all markets clear.

Let us state here the final goods market clearing condition (total resources con-

straint)

Yt = Ct + It +Gt + a (ut)Kt + µtG(ω̄t)R
k
tQt−1Kt (3.34)
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and the credit market clearing condition

Dt+1 = Bt+1 = QtKt+1 −Nt+1 (3.35)

3.4 Structural Breaks in Parameters

Traditional approaches to the Great Moderation have focused on two explanations for

the slowdown in real and nominal volatilities: smaller shocks hitting the US economy

and tougher reaction to inflation by the monetary authority. Those two hypotheses

are, however, insufficient to account for the empirical evidence since the mid 1980s.

On the one hand, smaller shocks cannot account for more volatile financial cycles.

On the other hand, it is hard to reconcile that better monetary policy translates

into more stable real and nominal cycles and a destabilization of the financial cycle.

Among other researchers, [42] highlight the potential relevance of changes in the US

financial system to account for the contemporaneous divergence of volatility patterns.

In this paper, I test the relative role that changes in the size of the shocks hitting

the economy, changes in monetary policy, and changes in the financial system played

in the two stages of the Financial Immoderation and the Great Moderation. To do so,

I allow for structural breaks in three sets of parameters intimately linked to each of

these potential explanations: variance of the innovations, monetary policy coefficients,

and the average level of financial rigidity. I use, however, a relatively näıve approach in

treating structural breaks. I assume economic agents do not face an inference problem

to learn endogenously about the regimes. When forming rational expectations about

the dynamic economy, they take regime changes as completely exogenous events and

assume that the current regime will last forever. Thus, once a structural break in

parameters happens, agents learn about it immediately and conveniently readjust
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their choices. This simplifying assumption facilitates the estimation when, as in my

case, breaks in the steady state of the economy are allowed.

In this section, I first discuss how breaks in parameters affect the system matrices

of the state space representation of the solution to the linear rational expectations

(LRE) model. The system of log-linearized equilibrium conditions can be represented

as

Γ0 (%) s̃t = Γ1 (%) s̃t−1 + Ψ (%) εt + Π (%) ηt (3.36)

where s̃t is a vector of model variables expressed in deviations from steady state,

εt is a vector of exogenous shocks, ηt is a vector of rational expectations errors with

elements ηxt = x̃t−Et−1 [x̃t], and % is the vector of structural parameters. The solution

to the LRE model can be cast in state space form as

Transition equations : st = [I − Φ(%)] s̄+ Φ(%)st−1 + Φε(%)εt (3.37)

Measurement equations : yt = B(%)st (3.38)

where st = s̃t + ln(s̄) and s̄ is the state vector evaluated in the steady state. Breaks

in any parameter affect %. However, while changes in monetary policy affect Φ(%)

and variations in the size of exogenous shocks shift Φε(%), structural breaks in the

average level of financial rigidities have an impact on Φ(%) and s̄. That is, changes in

µ? not only affect the coefficient matrices but also the steady state of the economy.

This poses a challenge in the estimation exercise, since I need to conveniently adapt

the filter used to evaluate the likelihood of the data.

In the remainder of the section, I discuss how structural breaks in the parameters

of my choice help the model to account for the empirical evidence. For example, in my

theoretical framework, an increase (decrease) in the size of a disturbance generates a
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nonnegative (nonpositive) change in the volatility of all model variables. Therefore,

an enlargement in the variability of the shocks hitting the economy could account for

the empirical evidence of the 1970s and early 1980s since the volatility of all variables

of interest moved in the same direction.

Recent US economic history highlights the relevance of monetary policy to the

level and stability of inflation. That is, changes in the degree of response to objec-

tives by the monetary authority will have a larger impact in shaping nominal cycles.

In particular, I should expect a loosening of the monetary authority’s reaction to

deviations of inflation from the target during the Burns-Miller era and a tightening

in the Volcker-Greenspan era.

Changes in the average level of bankruptcy costs imply changes in the level of

financial frictions due to asymmetric information. An increase (decrease) in the av-

erage marginal bankruptcy cost enhances (weakens) the transmission of exogenous

shocks to entrepreneurial wealth and costs of capital. Consequently, the responses

of investment and output to shocks are more active (muted), since the sensitivity of

borrowing costs to leverage increases (decreases). Given that the 1960s, 1970s, and

early 1980s were years of profound changes in the US financial system, I should expect

a decrease in the unconditional average of the level of financial rigidities in the model

economy.

3.5 Parameter Estimates

I estimate the model with standard Bayesian estimation techniques using eight macroe-

conomic quarterly US time series as observable variables: the growth rate of real per

capita net worth in the nonfarm business sector, the growth rate of real per capita

gross value added (GVA) by the nonfarm business sector, the growth rate of real per
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capita consumption defined as nondurable consumption and services, the growth rate

of real per capita investment defined as gross private investment, log hours worked,

the log of labor share, the log difference of the GVA deflator, and the federal funds

rate. A complete description of the data set is given in Appendix 4.4. The model is

estimated over the full sample period from 1954.4 to 2006.4.

All the series enumerated above except net worth in the nonfarm business sector

are standard in the data sets used in the empirical macro literature. I discuss in further

detail the inclusion of such financial variable in my set of observable variables. My

theoretical framework describes the evolution of three financial series: entrepreneurial

wealth, debt, and the external finance premium. Therefore, the estimation exercise

could aim to match the behavior of all of those. Net worth for a firm is generally

defined as total assets minus total liabilities. However, in order to be consistent with

the model, I define net worth as tangible assets minus credit market liabilities. First,

the model is a model of tangible assets purchased by firms so that it has nothing to say

about financial assets held by entrepreneurs. Second, external financing in the model

relates only to that obtained in credit markets. Hence, I do not consider trade and

taxes payable nor miscellaneous liabilities provided in the Flow of Funds Accounts.

An alternative measure for entrepreneurial wealth used by [17] is stock market data.

This measure contains information only for publicly traded firms, which are a smaller

set of firms than the one linked to the aggregate macroeconomic variables of my data

set. In addition, in my model there is no role for equity finance.

Following the reasoning provided in the previous paragraph, my definition of debt

is given by credit market liabilities in the nonfarm business sector. This information

is contained in the series for entrepreneurial wealth. Therefore, if I am to consider

only one financial variable in my empirical analysis, it seems reasonable to include

net worth, since its informational content includes that of the dynamics of debt.
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The external finance premium is essentially an unobservable variable. Hence, any

empirical counterpart to be used in the estimation exercise is a proxy for the model

concept of interest. [5] suggest considering the prime lending rate and the 6-month

Treasury bill rate in defining the external finance premium. [16] define the external

finance premium as the premium on Baa bonds. Recently, [33] have used individual

security-level data to construct a corporate credit spread index. They use such a

credit spread as a proxy for the fluctuations in the unobservable external finance

premium. I refrain from using a proxy for the external finance premium for several

reasons. First, constructing a measure for such a variable using individual firm data

is beyond the scope of this paper. Second, I focus on the analysis of the nonfarm

business sector, which includes both corporate and noncorporate US firms. Therefore,

using corporate credit or bond spreads and real variables for the nonfarm business

sector introduces a discrepancy between financial and macroeconomic variables that

would make it harder to evaluate the goodness of fit of my analysis. Third, in my

theoretical framework, external financing is modeled using a simple debt contract.

However, as long as it is the only form of external financing, the external finance

premium is interpreted in the literature (see De Graeve, 2008) as pertaining to all

forms of external finance. Therefore, there is no choice of approximation to this model

variable that is free of controversy.

3.5.1 Prior distribution of the parameters

In this section, I discuss the prior information on the parameters used in the estima-

tion exercise (see Table 26). First, I provide a thorough description of my prior choice

for the parameters linked to the financial accelerator. Then, I discuss the priors on

the remaining parameters. My prior choice for these parameters is fairly standard in
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the literature. I use identical priors across subsamples for those parameters subject to

structural breaks. I let the data speak about the size of the structural break without

imposing any additional a priori information.

As is standard in the literature, I use degenerate priors on the default probability,

F (ω̄), and the survival probability, γ. [3] report historical default rates for US bonds

over the period 1971-2005 and deliver an average equal to 3%. This is the value for

the annual default rate widely used in the literature on the financial accelerator to pin

down the quarterly default probability. I obtain the survival probability, γ, from the

steady state of the economy given that I set the debt-to-wealth ratio to its historical

average. The value for γ is 98.54%, which implies that firms live, on average, 17

years. This tenure is close to the median tenure reported by [48] from a panel of 900

nonfinancial firms.

Conversely, I use an informative prior for the unconditional average of finan-

cial rigidity, µ?. Such a parameter captures the steady state value of the marginal

bankruptcy cost. Therefore, it must lie inside the unit interval. A beta distribution

guarantees that the parameter of interest belongs to the 0-1 interval. In order to

determine the location parameter of the beta prior distribution, I consider micro evi-

dence on bankruptcy costs. [2], using data from 26 firms, concludes that bankruptcy

costs are about 20% of the firm’s value prior to bankruptcy and in the range 11-17%

of firm’s value up to three years prior to bankruptcy. [1] analyze 201 firms that com-

pleted Chapter 11 bankruptcies during the period 1982-1993 to determine that the

mean liquidation costs are 36.5%. Using those two results, [8] conclude that the in-

terval empirically relevant for the marginal bankruptcy cost parameter is [0.20, 0.37].

[48] estimate a partial equilibrium version of the model by [5] using panel data over

the period 1997 to 2003. As a byproduct of their estimation, they obtain the model

implied time series for the marginal bankruptcy cost. Their estimates lie in the range
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of 7% to 45%. Therefore, I assume the beta distribution for the unconditional average

level of financial rigidity is centered at 0.28. I choose the diffusion parameter to be

equal to 0.05 so that the 95% credible set, [0.13, 0.41], encompasses most of the values

provided in the literature.

My priors on the autoregressive coefficients of the stochastic exogenous processes

are beta distributions with mean 0.6 and standard deviation 0.1. The priors on the

innovations’ standard deviations are quite diffuse. In particular, I assume inverse

gamma distributions centered at 0.01 with 4 degrees of freedom. The covariance

matrix of the innovations is diagonal.

Following [56], I assume Gaussian priors on the monetary policy coefficients. I

center the prior for the response of the monetary authority to deviations of inflation

from the target at 1.50. I consider a diffuse enough prior by setting the standard

deviation equal to 0.35. The coefficient governing the response to deviations of output

growth from the target is assumed to be Normal, around a mean 0.5 with standard

deviation 0.1. The persistence of the monetary policy rule is assumed to follow a beta

distribution, with mean 0.6 and standard deviation 0.2.

I assume Gaussian priors for Υz and log(H?) centered at zero and at its empirical

historical average respectively and with standard error of 0.01. I use a diffuse gamma

distribution for the net annualized inflation rate in the steady state with mean 3 and

standard deviation 1. I assume that the capital share in the Cobb-Douglas production

function, α, is described by a normal distribution with mean 0.3 and standard devia-

tion 0.05. The price markup at the steady state follows a beta distribution centered

at 0.15 and standard deviation of 0.02. I choose a beta distribution for the Calvo

parameter with a location parameter equal to 0.75 and dispersion of 0.1. The capital

adjustment cost parameter is assumed to follow a gamma distribution with location

and diffusion parameters equal to 2 and 1, respectively. The gamma prior for the
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Frisch elasticity is centered at the balance growth path of ν = 2, but I consider a

disperse prior by setting its standard deviation to 1. The habit parameter is assumed

to have a beta distribution with mean 0.6 and standard deviation 0.1. The elastic-

ity of capital adjustment costs follows a gamma centered at 0.5 and with standard

deviation 0.3.

Finally, three more parameters are fixed in the estimation procedure: government

spending share, depreciation rate, and discount rate. The exogenous government

spending to GVA ratio is set to the historical average g? = 0.20. The depreciation

rate, δ, is set to 0.025 so that the annual depreciation rate is 10%. The value for

households’ discount rate, β, is chosen so that, in the steady state, the nominal risk-

free interest rate matches the historical quarterly gross federal funds rate. Therefore,

β =
(1 + π?/400) exp{Υz}

Rn?

where π? and Υz are set equal to their observed average.

3.5.2 Posterior estimates of the parameters

The estimation procedure is as follows. First, I obtain the posterior mode by maximiz-

ing the posterior distribution, which combines the prior distribution of the structural

parameters with the likelihood of the data. By assuming εt ∼iid N (0,Σε) in equa-

tion 3.37, I can use the Kalman filter to evaluate the likelihood function. I modify the

Kalman filter to accommodate for changes in the system matrices. A full description

of the modification used in the estimation exercise is given in Appendix 4.4. Sec-

ond, I use the random walk Metropolis-Hastings algorithm to obtain draws from the

posterior distribution. In particular, I run 3 chains of 500,000 draws using a burn-in

period of 20% of the draws.

63



Tables 28 and 29 report the posterior median and the 95% credible intervals

obtained by the Metropolis-Hastings algorithm. Let us first analyze Table 28, which

contains those parameters not allowed to change over time. Some of the estimates

are fairly standard, such as the inflation rate in the steady state, log hours in the

steady state, the average growth rate, the adjustment cost parameter, the elasticity

of capital utilization costs, the markup in the steady state, the backward looking

parameter of the monetary policy rule, and the autoregressive coefficients. The first

three parameters of the previous enumeration are close to their historical averages.

The remaining ones are close enough to the widely accepted values in the literature

so I do not discuss them further. I just highlight here that while the shock to the

information channel of the external finance premium is highly persistent, ρµ = 0.97,

the wealth shock is much less persistent, ρx = 0.52.

The posterior median estimate for the Frisch elasticity, ν = 1.03, is inside the

bounds found in the literature but slightly higher than the values obtained in DSGE

models with sticky wages. Since I have a flexible labor market, I need a large enough

Frisch elasticity to match the dynamics of hours worked. The median estimate for the

capital share, α = 0.28, lies in between the values recently obtained in the DSGE lit-

erature (Smets and Wouters, 2007 and Justiniano, Primiceri, and Tambalotti, 2009),

and the standard values used in the RBC literature.

The estimated degree of habit formation, h = 0.34, is lower than the traditional

0.60 advocated in the literature. The estimated Calvo parameter , ξ̂p = 0.40, implies

that the nominal friction is not too relevant, since firms re-optimize their prices every

six and a half months approximately. since the financial accelerator mechanism not

only amplifies but also propagates the shocks hitting the economy, I do not need a

high degree of habit formation or of nominal rigidity to match the persistence of the

data.
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Table 29 reports the estimates for those parameters allowed to change in 1970

and 1984. The first group of parameters is formed by the average level of financial

rigidity, µ?, the size of the shock to the marginal bankruptcy cost, σµ, and the size

of the neutral technology shock, σz. These three parameters are characterized by

presenting only one structural break in 1984. The neutral technology shock post-

1984 is 50% smaller than in the previous decades. The size of the structural break

estimated in 1984 implies a significant change in the nature of the process governing

agency costs.

On the one side, the estimated reduction in the size of the unconditional mean of

the process is above 75%. This result is along the lines of [42], who obtain that after

the mid 1980s, the model economy is in a virtually frictionless environment, and [21]

who estimates an 80% reduction in monitoring costs in a model based on [8]. The

reduction in the average level of financial rigidities accounts not only for the decrease

in bankruptcy costs linked to the Bankruptcy Reform Act of 1978 (see White, 1983)

but also for other changes in the US financial system. The decades under analysis are

characterized by the IT revolution, waves of regulation and deregulation, development

of new products, and improvements in the assessment of risk. All these factors define

the level of financial rigidity in terms of the model economy. Therefore, the Great

Moderation period is characterized by easier access to credit, which accounted for a

reduction in µ?. On the other side, the size of the shock post-1984 is four times larger

than in the pre-1984 period. Therefore, the unconditional average of the process gov-

erning the level of financial rigidity is smaller but the variability of the disturbance to

the process is larger. I can reconcile these two results by noting that a reduction in µ?

increases the average recovery rate for financial intermediaries. Hence, intermediaries

are willing to enlarge their exposure to risk, which is captured by the increase in σµ.

The second set of parameters in Table 29 contains only the size of the shock to
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the balance-sheet channel of the external finance premium. The size of the wealth

shock is an increasing step function. Larger balance-sheet shocks affecting the model

economy reflect the increasing sensitivity of the system to asset price movements.

This result does not come as a surprise, since the US data have been characterized by

several price ”bubbles” over the last few decades: the dramatic rise in US stock prices

during the late 1990s or the housing bubble during the early 2000s, for example. One

possible interpretation of wealth shocks is that they stand for asset price changes not

driven by fundamentals.

The remaining standard deviations of innovations increase in the 1970s and de-

crease in the last sample period. The investment-specific and the intertemporal pref-

erence shock are smaller, in the post-1984 than in the pre-1970 sample period. The

post-1984 values of the monetary policy shock, the intratemporal preference shock,

and the markup shock are, however, in the same neighborhood as those taken in the

pre-1970 sample period. That is, the 1970s and early 1980s were an ”exception,” in

the sense of [7], for these parameters.

Finally, I describe the results for the monetary policy reaction function parameters.

The mean of the long-run reaction to deviations of inflation from the target is larger

than the standard values in the literature. As pointed out elsewhere in the literature,

the monetary authority chooses a looser reaction to inflation in the 1970s. Post-1984,

however, there is a tightening in the response to inflation. As long as the reaction to

inflation post-1984 is similar to the one pre-1970, I can say, in simplistic terms, that it

seems Volcker overcame Burns-Miller’s will in terms of inflation by reusing Martin’s

recipes. The monetary authority responds strongly to changes in the growth rate of

output (changes in the output gap) over the whole sample period. The authority

started to respond more tightly in the 1970s and kept that level in the post-1984 era.
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3.5.3 Model evaluation

In this section, I evaluate the model fit using two approaches. First, I provide a

relative measure of fit by performing Bayesian model comparison. Second, I assess

the absolute fit of the model using a posterior predictive check.

In Bayesian econometrics, model comparison is performed using the marginal like-

lihood of the data or marginal data density. This statistic is defined as the weighted

average of the likelihood where the weights are given by the prior

p (Y |Mi) =

∫
p (Y |%,Mi) p (%|Mi) d%

where Mi stands for model i. Table 27 reports the differences of log-marginal data

densities with respect to a model without breaks in parameters. I conclude that the

model with breaks in the three set of parameters not only outperforms with respect

to the model with no breaks but also to any partial model in which only one set

of parameters is allowed to be subject to structural breaks. Therefore, I conclude

that the data at hand are best represented by the theoretical framework that allows

for structural breaks in the size of shocks, the average level of financial rigidity, and

monetary policy coefficients.

I study the absolute model fit of the data using the posterior distribution. In

particular, I compare model-implied statistics with those as in the data. I generate

samples of the same length as the data (after a burn-in period of 100 observations)

from the model economy using 1000 posterior draws. Table 30 reports the median of

the model-implied moments and the 90% credible intervals for raw data and Table 31

that for the cyclical component.

The model overpredicts the volatility of net worth growth, consumption growth,
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and inflation across subsamples. It overpredicts the volatility of all variables except

the nominal interest rate and hours for the post-1984 period. Let us analyze the

performance of the model in accounting for relative standard deviations with respect

to the standard deviation of output growth. The model matches the relative stan-

dard deviations of net worth growth, investment growth, consumption growth, and

inflation over this period fairly well. Moreover, the model is able to generate relative

standard deviations of the magnitude of the observed ones in all sample periods of

interest. Let us analyze, for example, the relative standard deviation of the net worth

growth rate. Pre-1984 this variable is less volatile than output; post-1984 it is almost

twice as volatile. The model is able to capture such a change in relative volatilities.

Moreover, the model displays an increase in the relative volatility of net worth growth

in the 1970-1983 sample period as observed in the data. Finally, the model is able

to deliver the main characteristics of the generalized immoderation in the 1970s and

the subsequent moderation in the mid 1980s in real and nominal variables and the

additional immoderation on the financial side of the economy. The model is not able

to capture, however, the enlargement of the volatility of the raw series for hours in

the post-1984 period and the slowdown in the volatility of labor share in the 1970s.

In the literature characterizing the business cycle, model fit is performed using

the moments of the cyclical component of the variables. Therefore, I compute the

cyclical component of the observable variables in log-levels and the model-implied

series using the Hodrick-Prescott filter.

The model overpredicts the volatility of net worth, labor share, and inflation and

it underpredicts that of hours for all periods. It also fails to deliver the large increase

in the cyclical volatility of output and consumption in the 1970s. The main failure is,

however, that the model delivers the result that the standard deviations for net worth

in the pre-1984 subsamples are larger than these of output. But my environment is
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successful in many other dimensions. It captures the fact that hours are less volatile

than output pre-1984 but more volatile afterwards. In accounting for the ratio of

standard deviations across subperiods, the model is even more successful than in the

case for the raw series. In particular, the model delivers changes in volatilities in

the same direction as in the data for all variables. Moreover, the magnitude of the

increases in volatility in the 1970-1983 sample period and the decreases in the last

sample period are closer to the observed ones.

I can conclude that the model proposed in this paper fits the data fairly well. It

delivers moments in consonance with the data both for the raw and filtered series.

Therefore, my model is a good candidate for analyzing the US business cycle.

3.6 Assessing the Drivers of the Financial Immod-

eration and the Great Moderation

In this section, I analyze the contribution of each of the potential candidates, size

of the shocks, monetary policy stance, and severity of financial rigidities, to the

model-implied changes in business cycle properties. To do so, I perform two sets of

counterfactual exercises: one for the first stage of the Financial Immoderation and

another for the second stage and the Great Moderation.

Counterfactuals 1-4 refer to the first stage of the Financial Immoderation. I

perform simulations using the following procedure:

1. Simulate the model economy for 200 periods (after a burn-in of 100 observations)

using the parameter vector characterizing the 1954-1969 sample period.

2. Simulate the model economy for 200 periods (after a burn-in of 100 observations)

using the parameter vector characterizing the 1970-1983 sample period.
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3. Compute the ratio of standard deviations.

4. Simulate the model economy for 200 periods (after a burn-in of 100 observations)

using the parameter vector of the counterfactual.

5. Compute the ratio of standard deviations with respect to those obtained in

step 1.

6. Compute the percentage of the ratio obtained in step 3 attributable to the

counterfactual.

7. Repeat the above 10,000 times.

8. Compute 90% credible intervals.

In Table 32, I report the observed and model-implied ratios of standard deviations

of the cyclical component. The first three columns focus on the comparison between

the 1954-1969 and 1970-1983 sample periods. The last three columns consider the

ratio of standard deviations of the post-1984 period with respect to the 1970s and

early 1980s computed following the procedure described above. Table 33 delivers the

percentage of the total increase or decrease in standard deviation generated by the

model that can be accounted for by the corresponding counterfactual.

In Counterfactual 1, I analyze the role played by the estimated changes in 1970 in

the response of the monetary authority to deviations of inflation and output growth

from the target. In particular, I simulate the model economy as described above,

using a parameter vector with the same entries as the one characterizing the 1954-1969

sample period but with the monetary policy coefficients of the 1970-1983 parameter

vector. The contemporaneous loosening in the response to inflation and the tightening

in the response to output observed in the 1970s and early 1980s account for the
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following percentages of the model-implied increase in cyclical volatility: 46% for

inflation, 32% for the nominal interest rate, 15% for labor share, 3% for hours worked,

and 5% for net worth.

In Counterfactual 2, I study the relative significance of the estimated 3% increase

in the level of financial rigidity. Such an increase in agency costs accounts for an

average of 5% of the model-implied increase in the volatility of the cyclical component

of net worth, output, investment, consumption, hours, and the nominal interest rate.

I analyze the role played by the financial shocks in the immoderation of the 1970s

and early 1980s in Counterfactual 3. The change in the size of financial shocks

accounts completely for the increase in the cyclical volatility of net worth. It also

accounts for the following percentages of the widening of business cycle fluctuations:

8% for output, 18% for investment, 6% for consumption, 6% for hours, 2% for labor

share, and 5% for the nominal interest rate.

Counterfactual 4 assesses the relative importance of changes in the remaining

shocks of the economy. The estimated changes in the size of the shocks account for

9% of the increase in the cyclical volatility of net worth, 100% of that in investment

variability, 88% of investment, 94% of consumption, 94% of hours, 83% of labor share,

40% of inflation, and 53% of the nominal interest rate.

I conclude that the change in behavior of the monetary authority explains a large

fraction of the increase in the variability of nominal variables observed in the 1970s

and early 1980s. The immoderation observed in real and financial variables is driven

by larger shocks hitting the US economy. In particular, the increase in the size of the

wealth shock suffices to deliver the increase in the cyclical volatility of net worth.

In Counterfactuals 5-8, I study the drivers of the empirical evidence of the post-

1984 sample period, which is characterized by a contemporaneous enlargement of the

financial cycle and a smoothing of real and nominal cycles. I proceed as described
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above but the baseline parameter vector is the one linked to the 1970-1983 period

and the parameter vector used in step 2 of the procedure is the one for the 1984-2006

sample period.

In Counterfactual 5, I study the relative contribution of the tightening of mon-

etary policy in response to inflation to the Great Moderation and the widening of

the financial cycle. Stricter monetary policy accounts for 41% of the model-implied

reduction in the cyclical volatility of inflation, 22% of the decrease in the variability

of the nominal interest rate, 15% of the slowdown in the volatility of labor share, and

3% of the increase in the standard deviation of the cyclical component of net worth.

It has, however, a negligible effect on the variability at business cycle frequencies of

investment, consumption, and hours.

I analyze the role played by the reduction in the unconditional average level of

financial rigidity in Counterfactual 6. A model with a smoother financial sector

accounts for 34% of the model-implied slowdown in investment and nominal interest

rate volatility. It also accounts for 9% of the decrease in the cyclical volatility of

inflation. The effect on the remaining variables is almost negligible.

I study the effect of the estimated increase in the size of financial shocks in the

mid 1980s in Counterfactual 7. It has a negligible effect on the volatility of the

labor share and inflation. However, it generates an increase in the magnitude of the

cyclical variation for the remaining variables. The most remarkable changes are the

70% increase in the volatility of investment and the 93% increase in that of net worth,

which stands for 150% of the total model-implied immoderation.

Counterfactual 8 analyzes the effect of the decrease in the size of all the remaining

shocks in the model economy. I obtain the result that smaller real and nominal shocks

overpredict the slowdown in output and the volatility of hours worked. These changes

in the size of shocks account for the fraction of the reduction in the amplitude of
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the nominal cycle not accounted for by the tightening of monetary policy and the

relaxation of financial rigidity.

From the counterfactual exercises, I conclude that the behavior of the monetary

authority has a significant impact on shaping the nominal cycle. Changes in the finan-

cial system are relevant for the variability of investment and nominal interest rates.

The remaining swings in the amplitude of fluctuations at business cycle frequencies

are driven by changes in the size of shocks hitting the economy.

3.7 Conclusions

I have studied two empirical regularities characterizing the US aggregate data over

the last 55 years. The Great Moderation is related to the significant slowdown in

the amplitude of the real and nominal cycles since the mid 1980s. The Financial

Immoderation refers to the enlargement of the cyclical volatility of financial variables

present since 1970. In this paper, I have made inference on the size of the structural

breaks in parameters needed to account for the evolution of the second moments of

the data in a model featuring nominal, real, and financial frictions. In particular, I

have focused on breaks in the size of shocks, monetary policy coefficients, and the

average size of the financial accelerator to disentangle the role played by changes in

luck, in the conduct of monetary policy, and in the financial system respectively.

I conclude that while changes in the conduct of monetary policy account for a

relevant proportion of the changes in the volatility of nominal variables, its effect

on the variability of the remaining variables is small. Financial factors are relevant

in shaping the business cycle properties of financial variables, investment, and the

nominal interest rate. The estimated reduction in the size of the financial accelerator

allows the model to account for 30% of the slowdown in the volatility of investment
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and the nominal interest rate. In the next chapter of this thesis , I illustrate the

growing relative significance of financial shocks in accounting for the variability of

these variables in detriment of technology shocks.

My study reaffirms the growing convention in the literature on integrating credit

market imperfections in otherwise standard macroeconomic models. I have docu-

mented the importance of including financial shocks in the analysis. Moreover, I

highlight the relevance of taking into account structural breaks in the data, since my

conclusions, in terms of assessing the main drivers of the cycle or characterizing the

propagation dynamics of shocks, may differ significantly.
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Chapter 4

Financial Shocks: Model Implied

versus Empirical Propagation

Dynamics

4.1 Introduction

Standard dynamic stochastic general equilibrium (DSGE) models, such as [14] and

[56], abstract from interactions between credit markets and the rest of the economy.

Those models are based on the capital structure irrelevance theorem by [50]; that

is, the composition of agents’ balance sheets has no effect on their optimal decisions.

Nevertheless, episodes such as the Great Depression or the 2007-2009 financial turmoil

stand as compelling evidence of the linkage between the developments in the financial

and real sectors. Along these lines, recent contributions to the literature have focused

on incorporating credit markets in the workhorse DSGE model. For example, [5] and

[40] stress the relevance of the balance sheet’s condition in determining economic

activity. The ability to borrow depends upon borrowers’ wealth, which ultimately
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affects the demand for capital and the level of economic activity they can engage in.

Subsequent contributions to the literature on macroeconomic models with finan-

cial frictions have explored the transmission of shocks originated in the financial

sector. In the model estimated in chapter 3, I introduce two financial shocks: a shock

to business wealth and a shock to the marginal bankruptcy cost. In this chapter, I

study the relative importance of these shocks in explaining the variance of the vari-

ables of interest. I also use the estimation output to characterize the model implied

responses to financial shocks.

I conclude that the relevance of financial shocks in accounting for investment

volatility increases over time. While before the Great Moderation, technology shocks

(neutral and investment-specific) are the main drivers of investment variance, ex-

plaining more than 40%, after the mid 1980s, they account for only 24%. Financial

shocks, however, explain 42% of investment variance at business cycle frequencies in

the Great Moderation era. If I abstract from financial shocks, their relative contri-

bution to investment variability is absorbed by technology shocks. Therefore, I can

conclude that failing to include financial shocks results in an overstatement of the

relative role played by technology shocks.

The estimated reduction in the average level of financial rigidities in the mid 1980s

has important implications for the propagation mechanism of financial shocks. On the

one hand, a smaller financial accelerator induces more muted responses to financial

innovations; that is, the amplification mechanism linked to imperfections in the credit

market gets reduced. On the other hand, a reduction in financial frictions enhances

the persistence of the responses to financial shocks in the US economy.

The investment-based channel of models of the financial accelerator such as [5]

and [8] suggests that the response of investment to an expansionary (contractionary)

financial shock is positive (negative). But there is no consensus among empirical
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macro researchers on the response of consumption to financial shocks affecting firms’

ability to borrow. Using the model described in chapter 3, I obtain that expansionary

financial shocks generate different responses upon impact depending on the nature of

the financial shock. For example, a positive wealth shock delivers a negative response

upon impact for consumption, but an expansionary shock to the marginal bankruptcy

cost implies a positive response.

The negative response upon impact of consumption to a positive shock to the

value of firms could be considered as a striking implication of the model. However,

the responses of consumption and investment to a shock affecting firms’ wealth are

also of opposite signs in [17] and [53]. To the best of my knowledge, the only paper

able to deliver a positive response upon impact of consumption after a positive wealth

shock affecting the business sector is [33]. It is hard to assess which model does

actually account better for the evidence since there has not been a careful empirical

documentation of the effects of financial shocks on real variables.

In this chapter, I directly address the empirical assessment of the effects on con-

sumption of a financial shock affecting business wealth. To do so, I estimate a vec-

tor autoregressive model on consumption, investment, business wealth, and financial

spreads. I identify the financial shock using sign restrictions as proposed by [59]. I

assume that a shock to business wealth generates responses of identical sign in busi-

ness wealth and investment and of opposite sign in credit spreads. I remain silent on

the response of consumption to the financial shock since the objective of the paper is

to assess such a response.

From my empirical analysis, I conclude that the response of consumption to a

financial shock affecting business wealth is not only ambiguous, but also it may dra-

matically vary depending on the series used to measure business wealth and the

external finance premium. After a positive shock to business wealth, only 6% of the
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responses satisfying the identification restrictions imply a negative response upon im-

pact of consumption when business wealth is measured using data provided by the

Flow of Funds Accounts and the external finance premium is proxied by the corpo-

rate spread. However, 55% of the responses imply a negative response of consumption

when business wealth is measured by the industrial Dow Jones index and I use the

prime lending spread1 as the proxy for the cost of external financing for firms. More-

over, the percentage of contractionary responses of consumption to an expansionary

business wealth shock varies significantly across subsamples. However, I can state

that financial shocks can generate responses of opposite signs for investment and con-

sumption since there is no scenario under which we obtain zero negative responses

upon impact for consumption.

The plan of the paper is as follows. In section 4.2, I discuss the model implied

impulse response functions and the variance decomposition for the variables used in

the estimation exercise. Section 4.3 reports the empirical assessment of the effects of

financial shocks on consumption. I conclude in section 4.4.

4.2 Financial Shocks in a DSGE Model with

Financial Frictions: Relative Importance and

Propagation Dynamics

In this section, I focus on the study of the two financial shocks introduced in the

model economy of chapter 3. To do so, I analyze the variance decomposition and the

impulse response functions.

1The prime lending spread is defined as the difference between the prime lending rate and the
three-month T-bill.

78



4.2.1 Variance decomposition

Table 34 indicates the variance decomposition at business cycle frequencies for output,

investment, consumption, net worth, hours worked, labor share, inflation, and the

nominal interest rate. I compute the spectral density of the observable variables

implied by the DSGE model and use an inverse difference filter to obtain the spectrum

for the level of output, investment, consumption, and net worth (see Appendix 4.4).

I define business cycle fluctuations as those corresponding to cycles between 6 and 32

quarters.

The main driver of output variance is the neutral technology shock. The relative

significance of this shock decreases over time from 67% to 39%. The markup shock

and the intratemporal shock become more relevant over time. In particular, their

contribution to the variance of output doubles from the 1954-1969 sample period

to the Great Moderation era. Since the markup shock determines the variance of

the labor share and the labor supply shifter is the main driver of the variance in

hours, I can conclude that the dynamics of output have shifted from being determined

by capital to being determined by labor services. The variance of consumption is

mainly shaped by the neutral technology shock pre-1984 but driven by a richer set

of shocks afterwards, since the largest contributor accounts only for 31% of the total

variance. Nominal interest rate variance is driven by the investment-specific shock,

the shock to the stochastic discount factor, and the wealth shock, in decreasing order

of relevance. The relative contribution of the two financial shocks increases post-1984

from accounting for 12% of the cyclical variance of the interest rate to 20%. Such an

increase in the proportion of the variance of the federal funds rate accounted for by

financial factors is taken away from the contribution of the intertemporal preference

shock. The variance of inflation is explained to a large extent by the monetary
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policy shock. This result is at odds with the standard results in the literature in

which the relative contribution of the monetary policy shock is small. One of the

usual main contributors to the variance of inflation is the markup shock. But, in

my environment, the markup shock completely drives the variance of labor share.

Therefore, the model faces a tradeoff when using the realization of the markup shock

to match up the dynamics of either the labor share or the inflation rate. In my set-up,

the model solves the issue by drawing the dynamics of the labor share through the

markup shock and the dynamics of the inflation rate using the monetary shock, which

is irrelevant for any other variable.

The cyclical variance of net worth is driven by the wealth shock. Even though the

size of the shock to the marginal bankruptcy cost increases dramatically post-1984,

the relative contribution of this shock to the variance of net worth decreases over

time.

The most remarkable entry in Table 34 is the variance decomposition of invest-

ment. First, the contribution of the investment-specific technology shock is smaller

than in the literature. This result is not just an artifact linked to the assumption of

adjustment costs in capital instead of in investment. I use the specification for the

adjustment costs proposed by [10]. However, they note that the variance of invest-

ment is explained to a large extent by the investment-specific technology shock. In

my case, the lesser relevance of the investment-specific shock is due to the presence

of financial shocks. An environment identical to the current one but without finan-

cial shocks would deliver a relative contribution of the investment shock above 50%.

In the first subsample, the contributions of the two technology shocks and the two

financial shocks are 42% and 35% respectively. In the 1970s and early 1980s, those

contributions are 49% and 26% ,respectively. Post-1984, financial shocks are the main

driver of investment variance, accounting for 42%. Technology shocks account only
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for 24% of the variance of investment.

From the above, I conclude that the relative contribution of technology shocks, in

particular, of the investment-specific technology shock, is overstated in the literature.

Once financial shocks are ain play, the contribution of technology shocks is signifi-

cantly smaller, since they no longer account for financial factors in a reduced-form

style.

4.2.2 Impulse response functions

The propagation of real and nominal shocks in the context of a model of the financial

accelerator has already been studied in the literature. Therefore, in this section, I

focus only on the study of the propagation dynamics of financial shocks. For both the

wealth shock and the innovation to the marginal bankruptcy cost, I plot the responses

in the first 40 quarters in terms of percentage deviations with respect to the steady

state. Each plot contains three impulse response functions (IRFs). The dotted line

is the IRF computed using the parameter vector characterizing the 1954-1969 sample

period. The solid line is the IRF for the 1970s and early 1980s. The dashed line is

the IRF of the post-1984 period.

Wealth shock

Figure C-1 reports the impulse response functions following a wealth shock that, upon

impact, induces an increase in entrepreneurial net worth equal to a 1% deviation from

its steady-state value. The size of the shock is constant across subsamples so I can

better analyze changes in the propagation mechanism of this financial shock. The

response upon impact for net worth is identical because of all the defining elements

of entrepreneurial wealth are predetermined when the wealth shock is realized. The
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main messages from the figure are: (i) the impulse response functions in the 1954-

1969 and 1970-1983 sample periods are almost identical for net worth, consumption,

investment, output, hours worked, and the external finance premium; (ii) responses

upon impact for all variables, except net worth, are smaller in the 1984-2006 sample

period; and (iii) the responses become more persistent post-1984.

Let us first analyze the impulse response functions for the pre-1984 sample peri-

ods. The response of net worth is very persistent, which is the source of the large

contribution of the wealth shock to the low frequency fluctuations of entrepreneurial

wealth. A positive wealth shock that increases the value of collateral reduces the

probability of default so that financial intermediaries are willing to lend at a lower

premium. Therefore, the response of the external finance premium upon impact is

negative. This immediate improvement in credit markets has a significant amplifica-

tion effect on investment so that the response of investment upon impact more than

doubles the initial response of net worth. The initial response of output is positive

but smaller than the boost in investment because consumption decreases upon im-

pact and the total resources constraint needs to be satisfied. The negative response

of consumption upon impact is linked to the general equilibrium effects of my model.

A nonfundamental increase in entrepreneurial wealth is financed through a reduction

in household wealth. The reduction in total disposable income is not large enough

to generate a decrease in consumption of the same magnitude as the increase in en-

trepreneurial wealth. This is due to the fact that other sources of household wealth,

such as labor income, react positively to the wealth shock, since hours worked in-

crease upon impact. The positive response of inflation and the nominal interest rate

suggests that the wealth shock displays the features of a standard demand shock:

quantities and prices move in the same direction, leading to a tightening of monetary

policy.
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The responses of labor share, inflation, and nominal interest rates for the 1954-

1969 and 1970-1983 periods are not as similar as the IRFs for the other variables. The

IRF of labor share undertakes very small values, the largest one being 0.008%. The

differences between the responses in the 1950s-1960s and the 1970s-early 1980s are

driven by small differences in the IRFs of output and hours worked across subsamples.

The larger response of inflation upon impact in 1970s-early 1980s is due to a less active

response to deviations of inflation from the target by the monetary authority. That is,

inflation is left to vary more ad libitum. I can explain the larger response upon impact

of interest rates in the 1970-1983 period by noting that the monetary authority also

responds to deviations of output growth from its steady-state value and that such a

response is tighter over this period than in the 1950s and 1960s.

In the Great Moderation era, the response of net worth to the same wealth shock

peaks at a higher value and a quarter later. From the second quarter onward, the

response function post-1984 always lies above those for the pre-1984 sample peri-

ods. This can be easily reconcilable from the definition of aggregate net worth.

Lower average agency costs alleviate the deadweight loss associated with bankruptcy,

µtG(ω̄t)R
k
tQt−1Kt, which implies that for the same initial increase in wealth, the

effects are more long-lasting, since more resources are accumulated from period to

period. Higher persistence induced by the lower dependence on the financial acceler-

ator mechanism translates into more persistent responses for all variables except labor

share. Therefore, the persistence implied by the financial accelerator is a negative

function of the size of financial rigidity. The responses for all variables except net

worth are also characterized by a significantly smaller response upon impact. This

is driven by the smaller size of the financial accelerator mechanism. Lower levels

of credit market imperfections reduce the elasticity of the external finance premium

with respect to the leverage ratio. Therefore, the amplification effect linked to the
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improvement in credit market conditions is more muted.

Shock to the marginal bankruptcy cost

Figure C-2 reports the impulse response functions to shocks to the marginal bankruptcy

cost. I focus on a negative shock that generates a reduction upon impact in the ex-

ternal financial premium of 0.06% in the pre-1984 sample period. Such a shock also

generates a response upon impact of similar magnitude to the one generated by the

wealth shock in the post-1984 sample period. I define the innovation under analysis

so as to make the comparison with the impulse response functions to a wealth shock

reported in the previous section easier.

As in the previous section, I first discuss the IRFs for the pre-1984 period. A

negative shock to agency costs creates an incentive for entrepreneurs to select con-

tractual terms with a larger debt-to-net worth ratio, since the deadweight loss linked

to bankruptcy is smaller. There are two opposing effects operating as a result of

higher debt-to-net worth ratios. On the one hand, both the default probability and

the default productivity threshold increase, offsetting the effect of lower bankruptcy

costs in determining entrepreneurial net worth. I label this effect the default effect.

On the other hand, there is a mass effect that stays for the increase in capital invest-

ment linked to a larger set of resources available. Larger amounts of capital holdings

imply a larger equity value through an increase in total capital returns. Given that

the response upon impact of entrepreneurial net worth is negative, the default effect

dominates the mass effect. After a few quarters, however, the mass effect becomes

the dominant one, since the response of the debt-to-net worth ratio is decreasing

given that the IRF for the external finance premium is increasing. The response of

net worth is increasing until quarter 38 and very persistent. Figure C-3 reports the

IRFs for the 1954-1969 sample period considering 200 quarters. I observe that net
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worth, consumption, and output need more than 150 quarters, i.e., 38 years, to get

back to their steady-state values. I can conclude that the effects of a shock to the

marginal bankruptcy cost have an ”almost permanent” flavor. I use quotation marks

because given that the model economy is stationary, a transitory shock does not imply

a permanent effect per se, but it can have a very long-lasting one.

The response of investment upon impact is above 3.5%, which is larger than the

response I obtained to a wealth shock. This result is driven by the mass effect ex-

plained above. Irrespective of the relative dominance of this effect in terms of shaping

the response of entrepreneurial wealth, the increase in the pool of resources available

for purchasing capital enhances investment activity in the economy. In particular,

note that after a wealth shock, the debt-to-net worth ratio does not increase, which

explains the difference in the response of investment after the two financial shocks.

Consumption responds to the expansionary shock positively. Hours worked, how-

ever, decrease upon impact. The enlargement in investment raises future productivity

and, hence, future wages. Households perform intertemporal substitution by decreas-

ing current hours and increasing them in the future when wages are higher. As a

consequence of the reduction of hours upon impact, output responds negatively to

an expansionary shock to agency costs. However, as with net worth, after a few pe-

riods output’s response is positive, large, and long-lasting. The positive slope of the

response of output over the first 40 quarters or so is driven by the positive slope of

the responses of both consumption and hours worked.

Given the expansionary effect on investment of the shock at hand, inflation in-

creases upon impact. As before, the difference in the initial response in the 1950s-

1960s versus the 1970s-early 1980s is driven by monetary policy. In the latter sub-

period, inflation floats more significantly without meeting a strong enough response

from the monetary authority.
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The response of the nominal interest rate is negative pre-1984 and positive after-

wards. The federal funds rate, in my model, responds to both deviations of inflation

and output growth from their respective steady-state values. The initial negative

response of output in the pre-1984 subperiods translates into negative output growth

upon impact of the shocks. The monetary authority responds by decreasing the in-

terest rate. The positive response of inflation requires an increase in the federal funds

rate. However, the reduction in output growth dominates the increase in inflation,

forcing the monetary authority to use an expansionary monetary policy. However,

post-1984, the response of output upon impact is negligible. Therefore, the rise in

inflation, even though it is 50% smaller than in the 1970s and the early 1980s, dom-

inates monetary policy-making. The risk-free nominal interest rate, then, increases

upon impact.

Given the significant decline in the size of the financial accelerator, the post-1984

impulse response functions are all characterized by smaller responses for all variables.

Comparison of impulse response functions

In this section, I compare the impulse response functions to the two expansionary

financial shocks. Let us focus on the responses for the 1954-1969 sample period.

The same rationale follows for the other sample periods of interest. Both financial

shocks generate the sample response upon impact for the external finance premium.

The responses upon impact of net worth, output, consumption, and hours worked,

reported in Figure C-4, are very different. Therefore, I can learn about the source of

the responses.

While net worth responds positively upon impact to a wealth shock, its initial

response to a shock to the marginal bankruptcy cost is negative. In the latter, the

response upon impact is determined by the dominance of the default effect over the

86



mass effect. After a wealth shock, the default probability decreases, the default pro-

ductivity threshold decreases, and the recovery rate remains unchanged. Therefore,

irrespective of the response of the debt-to-net worth ratio, the response of net worth

is always positive upon impact.

The response upon impact of consumption to an expansionary financial shock is

a function of the nature of the financial shock. A change in entrepreneurial wealth

driven by an equity valuation shifter, such as my wealth shock, modifies consump-

tion in the reverse direction, since exogenously driven variations in entrepreneurs’

net worth are financed by the household sector. However, consumption responds to

an expansionary financial shock as to any expansionary shock hitting the economy

whenever the financial shock affects the marginal bankruptcy cost.

Hours worked respond to a positive technology shock in a framework with sticky

prices when the financial shock decreases the marginal monitoring cost. The sign of

the response to a wealth shock is identical to the one implied by an expansionary

technology shock in a standard RBC model. Consequently, the signs of the responses

of output to expansionary wealth shocks are determined by those of the responses of

output.

4.3 What are the Effects of Financial Shocks on

Consumption? An Empirical Assessment

4.3.1 Data and statistical model

There is a lot of diversity in the literature on financial frictions about the financial

series used to perform estimation exercises. [42] and [28] use data from the Flow of

Funds accounts provided by the Board of Governors of the Federal Reserve System.
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[17] use several financial variables in their estimation exercise: as a measure of real

net worth for entrepreneurs, the value of the Dow Jones industrial average scaled by

the GDP deflator; bank reserves; external finance premium defined as the difference

between Baa and Aaa yields on corporate bonds; and the spread between the 10-year

government rate and the federal funds rate. [33] use a proxy for the external finance

premium based on a sample of credit spreads constructed from bond data provided

by Lehman/Warga and Merril Lynch. [5], however, set the risk spread at the steady

state considering the historical average of the difference between the prime loan rate

and the six-month T-bill.

In this paper, I estimate four-variate Bayesian vector autoregressive (VAR) models

including consumption growth, investment growth, business wealth growth, and a

proxy for the external finance premium. While consumption is defined as durable

consumption plus services provided by NIPA, investment is constructed using gross

private investment. Both variables are corrected by the size of the nonfarm business

sector in the economy. I consider two different measures of business wealth: (i) net

worth defined as tangible assets minus credit market liabilities using the Flow of

Funds Accounts provided by the Board of Governors and (ii) the real counterpart

of the Industrial Dow Jones index. I perform the analysis considering the two most

common proxies in the literature for the premium on external borrowing faced by

the business sector: the corporate bond spread and a measure of the prime lending

spread. The corporate bond spread is defined as the Baa rate over the Aaa rate. I

define the prime lending rate as the difference between the prime loan rate and the

3-month T-bill. In order to make my purely empirical analysis comparable with the

results obtained under the theoretical framework estimated in Chapter 3, I use data

from 1954:IV to 2006:IV.

Let me assume that the m×1 vector yt is described by the following reduced form
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representation of a vector autoregressive (VAR) model

yt = Φ1yt−1 + ...+ Φpyt−p + ut (4.1)

where ut are the one-step ahead forecast errors with variance-covariance matrix Σ

so that ut ∼iid N (0,Σ). I can add a constant and a time trend to the above repre-

sentation. I assume that the prediction errors, ut, are a function of m fundamental

innovations, vt, which are assumed to be mutually independent with unit variance,

Et [vtv
′
t] = Im. I need to find an identifying matrix, A, that defines a one-to-one

mapping from the vector of structural shocks, vt, to the reduced form residuals, ut.

Therefore, the matrix A is such that ut = Avt and Σ = E [utu
′
t] = AE [vtv

′
t]A

′ = AA′.

Because of the orthogonality assumption for the structural innovations and the sym-

metry of Σ, I need to impose at least m(m−1)
2

restrictions on A in order to achieve

identification.

4.3.2 Sign restriction identification: Methodology

[59] proposes an agnostic identification procedure based on sign restrictions on the

impulse response functions implied by the VAR model. Before describing the identi-

fication strategy, let us obtain the representation for the impulse response function.

Let us rewrite the VAR defined in equation 4.1 in companion form

Yt = ΦYt−1 + ut (4.2)

The impulse responses to fundamental shocks are given by
∂Yt+j
∂vt

= ΦjA. I aim to

identify the columns of A associated to financial shocks. The matrix A is unique up

to an orthonormal transformation, that is, for any ΩΩ′ = Im I have Σ = AΩΩ′A.
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As [27] describe, there are two approaches to pin the matrix Ω down: Givens and

Householder transformations.

An orthonormal matrix Ω for anm−variate VAR can be obtained as the product of

m(m−1)
2

Givens matrices so that there are m(m−1)
4

combinations of rotations of different

elements. Rotations are always bivariate so in an m-dimensional system rows m and

n are rotated by

Ωm,n =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 cosϕ . . . − sinϕ 0

. . . . . . . . . 1 . . . . . .

0 0 sinϕ . . . cosϕ 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 0 1



(4.3)

For expositional purpose, let us consider m = 3, then the orthonormality restric-

tions can be imposed using the following

Ω =


cosϕ1 sinϕ1 0

− sinϕ1 cosϕ1 0

0 0 1




cosϕ2 0 sinϕ2

0 1 0

− sinϕ2 0 cosϕ2




1 0 0

0 cosϕ3 sinϕ3

0 − sinϕ3 cosϕ3


(4.4)

with {ϕ1, ϕ2, ϕ3} ∈ [0, 2π]. Note that the matrix Ω does not span the space of all

orthonormal matrices but only the subspace of orthonormal matrices with a unit

determinant.

Householder transformation are based on delivering an orthonormal matrix Ω
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by generating draws from a standard Gaussian distribution and computing the QR

decomposition. [59] shows that for an arbitrary decomposition Ã of the matrix Σ, any

structural impulse vector a from the identifying matrix A can be represented as Ãα,

where α is a vector belonging to the hypersphere of unit radius in Rm2. The natural

candidates for the arbitrary decomposition Ã of the identifying matrix A are the QR

decomposition (Householder transformation) and the Cholesky decomposition of the

matrix Σ.

I use a Bayesian approach to estimate the VAR model. Under this framework,

sign restrictions are equivalent to assign a zero probability to reduced-form param-

eters that deliver impulse response functions that do not satisfy the identification

restrictions. I use a Minnesota prior for the reduced-form VAR parameters and an

independent uniform prior on α. Therefore, given Gaussian errors in (4.1), I can con-

clude that the posterior distribution for Φ and Σ is of the Inverted Wishart-Normal

family. I obtain posterior draws from the posterior for the VAR coefficients and draws

from the space of possible impulse vectors. I make inference using the joint draws

that satisfy the identifying sign restrictions for the impulse response functions. The

posterior sampler can be described as follows:

1. Obtain draws for Φ,Σ using a Gibbs sampler. Take n1 draws. Compute Ã =

chol(Σ).

2. For each draw,

(a) generate a draw for α from the m-dimensional unit sphere by drawing α̃

from an m-dimensional standard normal distribution and normalizing its

length to unity.

α =
α̃

‖α̃‖
(4.5)

2Essentially, α is a column of the Ω matrix.
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(b) construct the impulse vector a = Ãα.

(c) compute the impulse response functions.

(d) if the sign restrictions for the k = {0, 1, ..} horizons are satisfied, store the

impulse response functions. Otherwise, discard.

3. Repeat steps 2a-2d n2 times.

In my case, I perform the estimation exercise for all the variables but the proxy for

the external finance premium in growth rates. But, I impose the sign restrictions on

the variables in levels, that is, I impose the constraints on the accumulated impulse

response functions. Not only my theoretical model but also any economic model would

suggest that a shock reinforcing the value of firms has two effects. On the one hand, it

reduces the cost of borrowing since the value of the collateral is larger. On the other

hand, it enhances investment spending. Therefore, I can identify an expansionary

shock to business wealth by imposing a positive response during two quarters for net

worth and investment, and a negative response during two quarters for the credit

spread. The choice of the number of periods during which the sign restrictions are

imposed is not trivial. It would be of great interest to perform robustness checks using

different values for k. Note that I have left unspecified the response of consumption

since my object of interest is to assess empirically how consumption responds to a

shock to the value of firms. The sign restrictions used to identify the financial shock

under analysis are given in Table 36.

4.3.3 Results

In the appendix, I report the median and the 95% credible interval set for the points

on the impulse response functions satisfying the sign restrictions. I perform the
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analysis not only using the whole sample, but also dividing it up using the breakpoints

identified in Chapter 3. Table 37 delivers the percentage of responses satisfying the

identification restrictions that imply a negative response upon impact of consumption.

From the table, the main conclusion is that there is ambiguity about the sign of the

response of consumption to a financial shock affecting business wealth.

Let us first consider the data set in which net worth is measured using data

from the Flow of Funds accounts (FOFA) and the proxy for the external finance

premium is the corporate bond spread. In this case, 10% of the responses satisfying

the identification restrictions deliver a negative response upon impact of consumption

when considering the whole sample under analysis. By subsamples, I obtain that while

in 1970-1983 only 2% of the responses are negative upon impact, both in 1954-1969

and 1984-2006 more than 30% of the responses satisfying the sign restrictions generate

responses of opposite signs for consumption and investment. Figure C-5 reports the

impulse response functions for the whole sample and figure C-8 the ones for the

subperiod 1970-1983. I can highlight several differences when comparing those two

sets of impulse response functions: (i) the 95% bands for consumption in the 1970-

1983 subsample are in the positive real line, (ii) investment peaks at a higher value

and stabilizes at a larger value in the 1970-1983 subsample due to the fact that, as

both investment and consumption responses are positive, the enhancement of output

after a financial shock is larger which boosts investment even further, and (iii) while

it takes 10 quarters to cross the zero point for the corporate spread response for the

whole sample, it only takes 6 quarters in the 1970-1983 subperiod.

When net worth is measured using FOFA but the cost of external funding is

measured with the prime lending spread, I obtain that 57% of the responses satisfying

the restrictions deliver a negative response upon impact for consumption during the

1970-1983 sample. This result sharply differs from the 2% obtained when the external
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finance premium was measured using the corporate bond spread. Comparing the

impulse response function for consumption in figure C-9 with that using the corporate

bond spread (figure C-8), I observe that while in the former, the median response is

always negative; in the latter, the 95% credible bands are positive. Therefore, I can

conclude that assessing the effects of financial shocks on consumption is not a trivial

matter since it significantly depends upon the choice of observable variables in the

empirical analysis.

If I measure business wealth with the firm’s value in the stock market, that is,

with the real counterpart of the industrial Dow Jones index and the cost of external

borrowing using the corporate bond spread, I obtain that the percentages of responses

upon impact of opposite sign for consumption and investment across subsamples range

from 30 to 49%. Figure C-6 reports the impulse response functions for the whole

sample under this framework.

Finally, when I use the Dow Jones as proxy for business wealth and the prime

lending rate as proxy for the cost of borrowing, I obtain that 55% of the responses

satisfying the identification restrictions imply a negative response upon impact of con-

sumption when using the whole sample. In the 1970-1983 subperiod, that percentage

is equal to 65%. During 1954-1969, however, only 10% of the responses deliver a

response upon impact of consumption of the opposite sign to the response of invest-

ment. I deliver the impulse response functions for the whole sample in figure C-7. It

is remarkable that the median response for consumption is below zero for almost 5

quarters.

94



4.4 Conclusion

I have analyzed the model implied dynamics in response to the financial shocks in-

troduced in the third chapter of this thesis. I conclude that financial factors are

relevant in shaping the business cycle properties of financial variables, investment,

and the nominal interest rate. Financial shocks are not only the only drivers of the

variance of net worth, but also the main drivers of investment variance in the Great

Moderation era. The relative contribution of technology shocks to the variance of

real variables decreases significantly over time. The estimated reduction in the size

of the financial accelerator changes the propagation mechanism of financial shocks to

the economy. The responses upon impact are smaller for both financial shocks and

the responses to a wealth shock are more persistent.

I obtain that the model implied response upon impact of consumption to an

expansionary financial shock affecting business wealth is negative. Although this

result is widespread in the literature on the financial accelerator, it seems to be at

odds with the popular understanding of an expansionary shock.

The best way of assessing the goodness of fit of my model in this dimension is by

comparing my results with the empirical responses. To the best of my knowledge,

there is no empirical characterization of the effects of a shock to business wealth on

household consumption in the literature. I do perform such an analysis in this chapter

using sign restrictions and several measures of business wealth and the external finance

premium.

I conclude that assessing the effects of financial shocks on consumption is not

a trivial issue since my results depend significantly upon the choice of observable

variables to proxy both firms’ value and the cost of borrowing. In any case, I can state

that the response of consumption to a financial shock of the nature I am interested in
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is ambiguous since I always obtain a non-zero percentage of responses of consumption

and investment of opposite signs.

It would be of great interest to address the empirical characterization of the re-

sponse of consumption to a shock to business wealth using the measures of the external

finance premium constructed by [33] using micro data.

96



Appendices

Appendix A Chapter 2

Appendix A.1 Tables and figures

Table 1: Calibration Targets

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

H∗ 0.31 0.31 0.31
Y ∗ 1 1 1

(K/V
Y

)∗ 10.288 10.502 9.953
(X
K

)∗ 0.0277 0.0276 0.0279
( I
Y

)∗ 0.28 0.29 0.28
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Table 2: Deterministic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36
γa 0.000131 0.001413 -0.000824
γv 0.006760 0.005311 0.009438
β 0.995 0.992 0.998
δ 0.0135 0.0131 0.0121
η 0.0034 0.0037 0.0030
µ 0.0086 0.0091 0.0074
ϕa 4.67 4.59 4.83
ϕv -0.16 -0.07 -0.65
ρa 0.98 0.97 0.96
ρv1 1.77 1.71 1.73
ρv2 -0.77 -0.76 -0.73
σξa 0.0073 0.0086 0.0045
σξv 0.0033 0.0037 0.0023
ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}
B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}

Table 3: Baseline Stochastic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36
γa 0.000619 0.001489 -0.000734
γv 0.00643 0.00493 0.008762
β 0.9894 0.9897 0.9889
δ 0.01348 0.01401 0.01267
η 0.0034 0.0037 0.0030
µ 0.92443 0.91670 0.93694
σa 0.0074 0.0087 0.0045
σv 0.0054 0.0060 0.0030
ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}
B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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Table 4: Stochastic Trend with a Moving Average Component: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36
γa 0.000619 0.001489 -0.000734
γv 0.006404 0.004911 0.008739
β 0.9894 0.9897 0.9889
δ 0.01352 0.01404 0.01271
η 0.0034 0.0037 0.0030
µ 0.92439 0.91667 0.93692
ρ 0.618159 0.6359218 0.5071769
σa 0.0074 0.0087 0.0045
σv 0.0025 0.0028 0.0012
ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}
B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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Table 22: Multivariate Analysis Results: ratio of standard deviations

σpost/σpre
Data Model

DTM

c 0.58 0.37
i 0.53 0.48
y 0.48 0.59
k 0.65 0.67
h 0.69 0.63
y/h 0.68 0.41

STM

c 0.58 0.53
i 0.53 0.54
y 0.48 0.52
k 0.65 0.52
h 0.69 0.54
y/h 0.68 0.51
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Figure A-1: Impulse response functions with respect to a neutral technology shock

IRF for 1SD in NEUTRAL innovation

0 20 40 60 80 100
0

0.005

0.01

0.015
Consumption

0 20 40 60 80 100
0

0.005

0.01

0.015
Capital

0 20 40 60 80 100
0

0.01

0.02

0.03
Investment

0 20 40 60 80 100
0

0.005

0.01

0.015
Output

0 20 40 60 80 100
-1

0

1

2

3
x 10

-3 Hours

0 20 40 60 80 100
0

0.005

0.01

0.015
Labor Productivity

 

 

DT

ST

shocks for ν = 1.

116



Figure A-2: Impulse response functions with respect to an investment-specific tech-
nology shock

IRF for 1SD in INVESTMENT SPECIFIC innovation
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Appendix A.3 Balance Growth Path

From the feasibility constraint I can conclude that output, consumption, and invest-

ment grow at the same rate

Yt = Ct + It

Yt
Yt−1

=
Ct
Ct−1

Ct−1

Yt−1

+
It
It−1

It−1

Yt−1

gY = gC
Ct−1

Yt−1

+ gI
It−1

Yt−1

Therefore, gY is constant if and only if gY = gC = gI . Let us consider the investment

equation

(1 + η)Kt+1 = (1− δ)Kt + VtIt

(1 + η)
Kt+1

Kt

= (1− δ) +
VtIt
Kt

(1 + η)gK = (1− δ) +
VtIt
Kt

gK is constant if and only if (V × I) grows at the same rate as K which requires that

gK = gIgV .

Let us analyze the production function

Yt = AtK
α
t H

1−α
t

gY = gAg
α
Kg

1−α
H

Given that hours are stationary, that is, gH = 1, I have that gY = gAg
α
K , where
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gK = gY gV . Therefore,

gY = g
1

1−α
A g

α
1−α
V

In the deterministic trend model, gY = e
1

1−αγa+ α
1−αγv and gV = eγv , which implies

that gK = e
1

1−α (γa+γv). In the stochastic trend model, gY = A
1

1−α
t V

α
1−α
t and gK =

A
1

1−α
t V

1
1−α
t .

Appendix A.4 Log-linearization around the steady state

Let us define x̂t = ln(X̃t/X
∗), then the log-linearized system of equations for the

deterministic trend model is given by:

ŷt =
C∗

Y ∗
ĉt +

I∗

Y ∗
ît

ŷt = αk̂t + (1− α)ĥt + εat

qvk̂t+1 = (1− δ)k̂t + V0
I∗

K∗
[eεvt(1 + ît)− 1]

0 = Et

[
ĉt − ĉt−1 + εvt − εvt+1 +

(
R∗

1− δ +R∗

)
r̂t+1

]
ĥt = ν(ŵt − ĉt)

r̂t = ŷt − k̂t + εvt

ŵt = ŷt − ĥt

The log-linearized system of equation for the stochastic trend model is given by:

ŷt = ĉt
C∗

Y ∗
+ ît

I∗

Y ∗

ŷt = −α(q̂t + v̂t) + αk̂t + (1− α)ĥt
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k̂t+1 = (1− δ)
(

1

q∗v∗

)[
k̂t − (q̂t + v̂t)

]
+ ît

I∗

K∗

0 = Et
[
ĉt − ĉt−1 − (q̂t+1 + v̂t+1) + r̂kt+1]

]
r̂kt =

(
R∗

Rk∗

)
r̂t

ĥt = ν(ŵt − ĉt)

r̂t = ŷt − k̂t + q̂t + v̂t

ŵt = ŷt − ĥt

q̂t =
1

1− α
εat +

α

1− α
εvt

v̂t = εvt

The above is a system of 11 equations and 11 unknowns: {ĉt, ît, ŷt, k̂t, ĥt, b̂t, r̂t, r̂kt , q̂t, v̂t, }.

To proceed with estimation I need to also consider the following conditions:

q∗ = e
1

1−αγa+ α
1−αγv

v∗ = eγv

R∗ =
q∗v∗

β
− (1− δ)

Rk∗ = (1− δ) +R∗ =
q∗v∗

β
I∗

K∗
= 1− (1− δ) 1

q∗v∗

K∗

Y ∗
=

1

αq∗v∗
R∗

C∗

Y ∗
=

(
1− δ
q∗v∗

− 1

)
K∗

Y ∗
+ 1

I∗

Y ∗
= 1− C∗

Y ∗

H∗ =

(
1

B∗

) ν
1+ν
[
(1− α)

Y ∗

C∗

] ν
1+ν
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Appendix A.5 Stochastic trend model: closed form solution

In the economy under analysis both welfare theorems hold, therefore I can solve the

planner’s problem which is given by

maxCt,HtU = E

[
∞∑
t=0

βt

(
lnCt −B

H
1+1/ν
t

1 + 1/ν

)]
s.t.

Ct + It = AtK
α
t H

1−α
t

Kt+1 = (1− δ)Kt + VtIt

At = At−1e
γa+εat

Vt = Vt−1e
γv+εvt

A0, V0, K0 given

I will proceed first by combining the resource constraint and the law of motion for

capital. Thus, my equilibrium conditions are given by the Euler equation, the labor

supply, and the new resources constraint. Secondly, as my economy is non-stationary

I need to transform it to be able to solve my model. All variables but hours and

capital grow at rate Qt = A
1

1−α
t V

α
1−α
t . Capital grows at rate QtVt = A

1
1−α
t V

1
1−α
t and

hours are stationary. Therefore, the equilibrium conditions for the transformed model
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economy are given by3:

1 = βEt

 C̃t

C̃t+1

(1− δ)e−
1

1−α (γa+γv+εat+1+εvt+1)

+ αe−
α

1−α (γa+γv+εat+1+εvt+1)K̃α−1
t+1 H

1−α
t+1



BH
1/ν
t = (1− α)

Ỹt/Ht

C̃t

C̃t + K̃t+1 = (1− δ)e−
1

1−α (γa+γv+εat+εvt)K̃t + e−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t

Let us assume there is full depreciation (i.e. δ = 1). Thus, the above reduces to:

1 = βEt

[
C̃t

C̃t+1

(
αe−

α
1−α (γa+γv+εat+1+εvt+1)K̃α−1

t+1 H
1−α
t+1

)]
(6)

BH
1/ν
t = (1− α)

Ỹt/Ht

C̃t
(7)

C̃t + K̃t+1 = e−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t (8)

Appendix A.5.1 Baseline system: An exact solution

My guess for policy function for capital will be

K̃t+1 = αβe−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t (9)

3Maybe it is more intuitive to write the Euler equation as

1 = βEt

[
e−

1
1−α (γa+εat+1+α(γv+εvt+1)) C̃t

C̃t+1

(
(1− δ)e−γv−εvt+1 + αeγa+εat+1K̃α−1

t+1 H
1−α
t+1

)]
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Then, from (8) I have that the policy function for consumption is given by:

C̃t = e−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t (1− αβ) (10)

Let us plug (9) and (10) in (6)

1 = βEt

[
e−

α
1−α (εat+εvt−εat+1−εvt+1) K̃

α
t H

1−α
t

K̃α
t+1H

1−α
t+1

αe−
α

1−α (γa+γv+εat+1+εvt+1)K̃α−1
t+1 H

1−α
t+1

]

= αβEt

[
1

K̃t+1

e−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t

]

which implies

K̃t+1 = αβe−
α

1−α (γa+γv+εat+εvt)K̃α
t H

1−α
t

since K̃t+1 is a choice variable at time t not an unknown variable dated at time

t + 1. Therefore, as my guess satisfies the equilibrium conditions, I can ensure the

policy function for capital is of the form given by (9). Consequently, the guess for

the consumption policy rule is also part of the solution to my model. Note that I

constructed such a guess by using (9) and the resources constraint. Note that both

policy rules depend on model parameters, current realizations of shocks (I assume

current shocks are observed before current decisions are taken), capital at time t

which is a predetermined variable (chosen at time t− 1), and current labor decision.

Therefore, to completely characterize the policy rules of interest it remains to provide

the labor supply policy function. To do so let us consider (7) and plug (10) so that:

BH
1/ν
t =

W̃t

C̃t

=
(1− α)Ỹt/Ht

(1− αβ)Ỹt
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Thus,

Ht =

(
1− α

B(1− αβ)

) ν
1−ν

(11)

which is a constant.

Therefore, by substituting (11) in (9) and (10) I have my policy rules as functions

of model parameters and current state variables.

Appendix A.5.2 Log-linearized system: An approximate solution

Let us consider the following log-linearized system (under the assumption of full

depreciation).

ŷt =
C∗

Y ∗
ĉt +

I∗

Y ∗
ît (12)

ŷ = − α

1− α
(εat + εvt) + αk̂t + (1− α)ĥt (13)

k̂t+1 =
I∗

K∗
ît =

I∗/Y ∗

K∗/Y ∗
ît (14)

0 = E
[
ĉt − ĉt+1 −

1

1− α
(εat+1 + εvt+1) + rt+1

]
(15)

ĥt = ν(ŵt − ĉt) (16)

r̂t = ŷt − k̂t +
1

1− α
(εat + εvt) (17)

ŵt = ŷt − ĥt (18)

Plugging (14) into (12) I obtain

ŷt =
C∗

Y ∗
ĉt +

K∗

Y ∗
k̂t+1 (19)

Substitute (17) in (15)

0 = E
[
ĉt − ĉt+1ŷt+1 − k̂t+1

]
(20)
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My guesses for policy rules are given by:

k̂t+1 = − α

1− α
(εat + εvt) + αk̂t + (1− α)ĥt (21)

ĉt =
1

C∗/Y ∗

(
1− K∗

Y ∗

)
k̂t+1 (22)

Plugging (21) and (22) into (15)

0 = E
 1

C∗/Y ∗

(
1− K∗

Y ∗

)− α

1− α
(εat + εvt − εat+1 − εvt+1) + α(k̂t − k̂t+1)

+ (1− α)(ĥt − ĥt+1)

− α

1− α
(εat+1 + εvt+1) + αk̂t+1 + (1− α)ĥt+1+

α

1− α
(εat + εvt − αk̂t − (1− α)ĥt)



0 = E
[(

1− K∗

Y ∗

)
ŷt −

C∗

Y ∗
ŷt −

(
1− K∗

Y ∗

)
ŷt+1 +

C∗

Y ∗
ŷt+1

]

where (
1− K∗

Y ∗

)
ŷt −

C∗

Y ∗
ŷt −

(
1− K∗

Y ∗

)
ŷt+1 +

C∗

Y ∗
ŷt+1 = 0 (23)

since

1 =
C∗

Y ∗
+
K∗

Y ∗
(24)

Therefore, I can conclude that the policy functions for capital and consumption are

given by (21) and (22) respectively. I need to provide also a policy rule for hours.

Intuitively, the policy rule should be equal to zero. Remember that in the exact

solution hours were constant over time. Therefore, the deviation from steady state
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should be zero. I show below that given (22), ĥt = 0 for all t.

ĥt = νŵt − νĉt = ν(ŷt − ĥt)− νĉt

ĥt =
ν

1− ν
(ŷt − ĉt)

=
1

C∗/Y ∗

[
C∗

Y ∗
+
K∗

Y ∗
− 1

]
k̂t+1

= 0

Appendix A.6 Extensions

Appendix A.6.1 Hansen-Rogerson Preferences

So far my analysis have only considered the intensive margin of the labor input. Here

I will assume another specification for household’s preferences so that I will analyze

the extensive margin of the labor input. To do so let us assume the following:

1. Labor is indivisible.

2. Agents can trade employment lotteries.

3. Households have a constant relative risk-aversion utility function with a coeffi-

cient of risk-aversion equal to 1.

Therefore, (2.2) will be substituted by

U(Ct, Ht) = lnCt −BHt (25)

which implies that the short-run Frisch elasticity of labor supply is infinite.

It is obvious that the (detrended) equilibrium conditions under all the statistical

models are identical but the one associated with the labor supply. In particular,
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(2.11) and (2.25) will be substituted by

W̃t

C̃t
= B (26)

I need to recalibrate only the parameter linked to the weight of hours in the utility

function i.e. B. In fact, I have that

B = (1− α)
Y ∗

C∗
1

H∗
(27)

I simulate my model only for the deterministic trend case and the baseline stochas-

tic trend one. I perform my analysis only for the whole sample.

First, I allow for the presence of both technology shocks. Then, I perform two

counterfactuals in order to asses the relative importance of each technology shock in

accounting for the business cycles features observed in the US data. On the one hand,

I shut down the investment specific shock and investigate the volatilities implied by

my model. On the other hand, I shut down the neutral shock and perform the same

analysis.

From table 19 I conclude that the volatilities of all the variables at hand are

larger than in the divisible labor economy. Moreover, the Hansen-Rogerson economy

overstates the volatilities of investment, output, capital, and hours when both shocks

are at hand. It is remarkable that, as in [39], the volatility of hours is larger than the

volatility of labor productivity.

The model performs better, in terms of accounting for volatilities, when there is

only an investment-specific shock than when there is only a neutral one. In fact,

a model with Hansen-Rogerson preferences and only an I-shock is able to replicate

almost perfectly the standard deviation of hours.

127



From table 19, I conclude that a stochastic trend model is not able to generate

enough volatility in this scenario either. Under this specification, the neutral shock

is the one able to account for the bulk of the volatility for all the variables at hand.

Appendix A.6.2 Multivariate analysis

I have performed univariate analysis of the error structure associated to the different

specifications for the technology processes.I am interested here in exploring a multi-

variate error structure in order to analyze the interaction between both innovations.

Deterministic Trend Model

I will consider the following specification

lnAt = ϕa + γat+ εat (28)

lnVt = ϕv + γvt+ εvt (29)

and I assume  εat

εvt

 = Γ1

 εat−1

εvt−1

+ Γ2

 εat−2

εvt−2

+

 ξat

ξvt

 (30)

where  ξat

ξvt

 ∼ N (0,Σξ) (31)

I will restrict my attention to the performance of the model under a unit Frisch

elasticity. My estimates are reported in the following table. All the vector autore-

gressive processes estimated satisfy the stability condition i.e. there is no root that

lies outside the unit circle.
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The results obtained from the stochastic simulation of my model economy are

summarized in the table 21. Let us compare these results with those in table 7. The

direction of change for the volatilities of the different variables of interest is not uni-

lateral. For example, while the volatility of consumption is larger in the multivariate

setting, the volatility of capital is lower. The performance of the deterministic trend

model, however, improves in accounting for the volatility slowdown of investment,

capital, and hours.

Stochastic Trend Model

Let us consider the following

lnAt = lnAt−1 + γat+ εat (32)

lnVt = lnVt−1 + γvt+ εvt (33)

and I assume  εat

εvt

 = Γ1

 εat−1

εvt−1

+

 ξat

ξvt

 (34)

where  ξat

ξvt

 ∼ N (0,Σξ) (35)

The results from the estimation of the above specification are reported in table

20. The moments implied by this specification are in table 21. Comparing these

results with those reported in table 7 I conclude that the multivariate specification

implies even lower volatilities for all the variables at hand for all the periods. The

performance in terms of replicating the magnitude of the Great Moderation, however,

does not change significantly.
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From this analysis, I conclude that there is no a significative gain from using a

multivariate specification for the innovations.

130



Appendix B Chapter 3

Appendix B.1 Tables

Table 23: Chow’s Breakpoint Test: AR(1) with drift

1970 1984 1970-1984
F LR F LR F LR

∆ Net worth 6.51** 6.47** 10.18*** 10.03*** 5.52*** 10.90***
∆ Output 3.29* 3.30* 24.20*** 23.11*** 12.69*** 24.28***

∆Investment 2.87* 2.87* 15.32*** 14.92*** 7.80*** 15.25***
∆Consumption 1.47 1.48 10.75*** 10.58*** 5.65*** 11.16***

Hours 0.11 0.11 7.59*** 7.53*** 4.94*** 9.80***
Labor share 0.60 0.61 0.18 0.18 0.30 0.61

Inflation 2.92* 2.93* 10.99*** 10.81*** 16.66*** 31.33***
Federal Funds Rate 3.54* 3.55* 6.24*** 6.21*** 12.10*** 23.21***

Notes: F refers to the F-statistic, which is distributed as F (k, T − 2k) where k is the number of
parameters to be tested and T the total number of observations. The critical values are 2.73 at 10%
significance level, 3.89 at 5%, and 6.76 at 1% when I test for one break. For two breaks, the critical
values are 2.33 at 10%, 3.04 at 5%, and 4.71 at 1%. LR refers to the log-likelihood ratio statistic,
which is distributed as χ2 with (m− 1)k degrees of freedom, where m is the number of subsamples.
The critical values when there is only one break are 2.71 at 10% significance level, 3.84 at 5%, and
6.64 at 1%. For two breaks, the critical values are 4.61 at 10%, 5.99 at 5%, and 9.21 at 1%. If the
statistic is above the critical value, the null hypothesis of no structural change can be rejected. The
symbol * indicates I can reject the null of parameter constancy at 10%, **, at 5%, and ***, at 1%.
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Table 24: Chow’s Breakpoint Test: Cyclical component. AR(1) with drift

1970 1984 1970-1984
F LR F LR F LR

Net worth 4.01** 4.01** 6.03** 6.00** 3.29** 6.58*
Output 2.66 2.67 20.45*** 19.69*** 10.79*** 20.82***

Investment 1.92 1.93 13.54*** 13.24*** 7.08*** 13.89***
Consumption 0.86 0.86 14.50*** 14.14*** 8.36*** 16.31***

Hours 0.54 0.54 11.23*** 11.04*** 6.62*** 13.02***
Labor share 0.82 0.83 0.06 0.06 0.46 0.94

Inflation 3.68* 3.69* 11.50*** 11.30*** 18.77*** 34.98***
Federal Funds Rate 3.88** 3.88** 7.47*** 7.41*** 14.17*** 29.93***

Table 25: Ratio post- to pre- standard deviation: Cyclical component

1984−2006
1954−1983

1970−1983
1954−1969

1984−2006
1970−1983

Output 0.49 1.55 0.41
Investment 0.60 1.47 0.51

Consumption 0.54 1.74 0.44
Hours 0.74 1.47 0.63

Labor share 0.88 1.23 0.80
Inflation 0.46 2.58 0.34

Federal funds rate 0.65 2.81 0.47
Net worth business 1.67 1.32 1.47

Debt business 1.41 1.71 1.13
Net worth households 1.23 1.94 1.04
Net private savings 1.55 1.16 1.44
Demand deposits 1.57 3.09 1.14

Notes: The cyclical component is extracted using the Hodrick-Prescott filter for the
quarterly frequency (λ = 1600).
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Table 27: Marginal Data Densities Comparison

Model MDD(model)-MDD(no breaks)
Breaks in 1970 and 1984

Only µ? -4
Only ψi 37
Only σj 34
µ?, ψi, σj 52

Notes: The marginal data density or marginal likelihood of the data is defined as
the expectation taken over the likelihood with respect to the prior distribution of the
parameters: p (Y |Mi) =

∫
p (Y |%,Mi) p (%|Mi) d%. MDD above refers to the natural

log of the marginal data density.

Table 28: Posterior estimates

Name Name
Median 95%C.I. Median 95%C.I.

α 0.28 [0.27, 0.30] ρr 0.44 [0.26, 0.58]
λ? 0.25 [0.22, 0.28] ρζ 0.94 [0.92, 0.97]
h 0.34 [0.27, 0.41] ρµ 0.97 [0.95, 0.98]
ν 1.03 [0.49, 1.79] ρλ 0.88 [0.84, 0.92]
a′′ 0.82 [0.31, 1.55] ρθ 0.98 [0.97, 0.99]
π? 2.72 [2.34, 3.12] ρb 0.90 [0.87, 0.93]

ln(H?) 0.03 [0.01, 0.05] ρx 0.52 [0.44, 0.60]
ξp 0.40 [0.33, 0.46] 100Υz 0.54 [0.42, 0.66]
ξ 4.55 [2.59, 7.01]
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Table 29: Posterior estimates

Name Pre 1970 1970-1983 Post 1984
Median 95%C.I. Median 95%C.I. Mean 95%C.I.

µ? 0.24 [0.19, 0.28] 0.24 [0.19, 0.30] 0.05 [0.03,0.06]
σµ 1.67 [1.23, 2.18] 1.62 [1.19, 2.14] 7.18 [4.77, 10.7]

100σZ 1.52 [1.27, 1.82] 1.56 [1.29, 1.88] 0.82 [0.71, 0.95]
100σx 0.75 [0.63, 0.89] 0.91 [0.75, 1.08] 1.52 [1.30, 1.79]
100σζ 1.11 [0.75, 1.69] 1.64 [1.15, 2.32] 0.90 [0.72, 1.11]
100σb 1.70 [1.32, 2.19] 2.38 [1.77, 3.10] 1.25 [0.98, 1.57]
100σR 0.52 [0.39, 0.70] 0.85 [0.62, 1.14] 0.47 [0.35, 0.63]
100σθ 1.48 [1.06, 2.11] 1.82 [1.28, 2.65] 1.37 [1.06, 1.81]
100σλ 3.58 [2.86, 4.42] 4.66 [3.71, 5.79] 3.77 [3.18, 4.47]
ψπ 2.65 [2.24, 3.06] 1.84 [1.58, 2.14] 2.43 [2.03, 2.90]
ψy 0.31 [0.18, 0.45] 0.48 [0.32, 0.64] 0.47 [0.32, 0.63]
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Appendix B.2 Figures

Figure B-1: Debt to net worth ratio. Cyclical component.
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Appendix B.3 Data

I use US data from NIPA-BEA,CPS-BLS, the FRED database, and the Flow of Funds

Accounts from the Federal Reserve Board for the period 1954.4-2006.4.

Appendix B.3.1 Data used in estimation

• Growth rate of real per capita gross value added by the nonfarm business sector.

Data on nominal gross value added are available in NIPA Table 1.3.5. I have de-

flated such a series using the the implicit price index from table 1.3.4. I divide

the new series by the Civilian Noninstitutional +16 (BLS ID LNU00000000)

series to obtain per capita variables. The data provided by the BEA are annu-

alized so I divide by 4 to obtain quarterly values for the measures of interest.

• Growth rate of real per capita investment. Investment is defined as gross private

domestic investment from NIPA Table 1.1.5. I deflate the nominal variables

using the GDP deflator provided by NIPA Table 1.1.4. I weight the resulting

series using the relative significance of the nonfarm business sector in total GDP.

Finally, I do the same correction described above to render the investment series

in per capita quarterly terms.

• Growth rate of real per capita consumption. Consumption is defined as the sum

of personal consumption expenditures of nondurables and services from NIPA

Table 1.1.5. I deflate the nominal variables using the GDP deflator provided by

NIPA Table 1.1.4. I weight the resulting series using the relative significance

of the non-farm business sector in total GDP. Finally, I do the same correction

described above to have the series in per capita quarterly terms.
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• Growth rate of net worth. I define net worth as the real per capita weighted av-

erage of net worth for the corporate and noncorporate nonfarm business sector.

To ensure the measure of net worth from the data is close enough to the series

the model can actually account for, I define net worth as tangible assets minus

credit market instruments at market value. On the one hand, I use tangible

assets only as a measure for assets because, in my model, collateral is related

only to physical capital and inventories; that is, there is no role for financial

capital. On the other hand, I evaluate net worth at current (market) prices,

since such a variable in my theoretical framework stands for the value of the

collateral perceived by lenders. Credit market liabilities from the Flow of Funds

Accounts (the weighted sum of series FL104104005.Q from Table B.102 and se-

ries FL114102005.Q from Table B.103) stand for entrepreneurial debt. Tangible

assets are given by the weighted sum of series FL102010005.Q from Table B.102

and series FL112010005.Q from Table B.103.

• Hours worked is defined, following [56], as the log level of the BLS series

PRS85006023 divided by 100 and multiplied by the ratio of civilian popula-

tion over 16 (CE16OV) to a population index. The population index is equal to

the ratio of population at the corresponding quarter divided by the population

in the third quarter of 1992. This transformation is necessary, since the series

on hours is an index with 1992=100.

• Labor share is defined as the ratio of total compensation of employees (NIPA

Table 2.1) corrected by the size of the non-farm business sector to the gross

value added by the nonfarm business sector.

• Inflation is defined as the log difference of the price index for gross value added

by the nonfarm business sector (NIPA Table 1.3.4).
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• The Federal funds rate is taken from the Federal Reserve Economic Data (FRED).

Appendix B.3.2 Data used in the empirical evidence section

In addition to the series described above, I also consider the following ones

• Net private savings : Data on nominal net private savings are available in the

NIPA Table 5.1. I have deflated such a series using the implicit price index from

Table 1.3.4. I divide the new series by the Civilian Noninstitutional +16 (BLS

ID LNU00000000) series to obtain per capita variables. The data provided by

the BEA are annualized, so I divide by 4 to obtain quarterly values for the

measures of interest. I weight the resulting series using the relative significance

of the nonfarm business sector in total GDP.

• Debt in the nonfarm business sector : I define debt as the real per capita

weighted average of credit market liabilities for the corporate and noncorpo-

rate nonfarm business sector. Debt is defined as the weighted sum of series

FL104104005.Q from Table B.102 and series FL114102005.Q from Table B.103.

• Net worth of households (and nonprofit organizations): It is given by the real

per capita transformation of the series FL152090005 from Table B.100 from the

Flow of Funds Accounts.

• Demand deposits : It stands for real per capita demand deposits at commercial

banks provided by the series DEMDEPSL in the FRED database. Data are

available from 1959.
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Appendix B.4 Methodology

Appendix B.4.1 MCMC Algorithm

1. Posterior Maximization: The aim of this step is to obtain the parameter

vector to initialize my posterior simulator. To obtain the posterior mode, %̃, I

iterate over the following steps:

(a) Fix a vector of structural parameters %′.

(b) Solve the DSGE model conditional on %′ and compute the system matrices.

I restrict myself to the determinacy region of the parameter space.

(c) Use the Kalman filter to compute the likelihood of the parameter vector

%′, p(Y T |%′).

(d) Combine the likelihood function with the prior distribution.

2. Compute the numerical Hessian at the posterior mode. Let Σ̃ be the inverse

of such a numerical hessian.

3. Draw the initial parameter vector, %(0), from N (%̃(0), c2
0Σ̃) where c0 is a scal-

ing parameter. Otherwise, directly specify a starting value for the posterior

simulator.

4. Posterior Simulator: for s = 1, ..., nsim, draw ϑ from the proposal distribu-

tion N
(
%(s−1), c2Σ̃

)
, where c is a scaling parameter4. The jump from %(s−1) is

accepted with probability

min{1, r
(
%(s−1),ϑ|Y )}

4The scale factor is set to obtain efficient algorithms. [31] argue that the scale coefficient should
be set c ≈ 2.4

√
d, where d is the number of parameters to be estimated. However, I will fine tune

the scale factor to obtain a rejection rate of about 25%
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and rejected otherwise. Note that

r
(
%(s−1),ϑ|Y ) =

L(ϑ|Y )p(ϑ)

L(%(s−1)|Y )p(%(s−1))
(36)

5. Approximate the expected value of a function h(%) by

1

nsim

nsim∑
s=1

h(%(s))

Appendix B.4.2 Kalman Filter

Let us cast the log-linearized dynamic system in state-space form:

• Transition equation:

st = (I − T ) ln(s̄) + Tst−1 +Rεt

= J + Tst−1 +Rεt

where T = Φ(%), R = Φε, ε ∼ (0, Q), st stand for the vector of DSGE state

variables in log levels, and ln(s̄) is the vector of steady-state log-values of these

state variables. Let s = rows(st).

• Measurement equation:

yt = Zst

where Z = B(%) and I have imposed the assumption of zero measurement error

in the system.
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Linearity and Gaussian errors allow us to use the Kalman filter to evaluate the

likelihood function. I give an overview here of such a filter; for a complete description,

please see Chapter 13 in [37].

1. Initialization: The filter is initialized with the unconditional distribution of

the state vector.

• Initial mean:

ŝ0|0 = ln(s̄)

• Initial variance: P0|0 is given by the solution to the following discrete

Lyapunov equation

P0|0 = TP0|0T
′ +RQR′

2. Forecasting step

ŝt|t−1 = J + T ŝt−1|t−1

Pt|t−1 = TPt−1|t−1T
′ +RQR′

ŷt|t−1 = Zŝt|t−1

Ft|t−1 = ZPt|t−1Z
′

3. Evaluation of the log-likelihood

4. Updating step

ŝt|t = ŝt|t−1 + Pt|t−1Z
′F−1
t|t−1(yobst − ŷt|t−1)

Pt|t = Pt−1|t−1 − Pt−1|t−1Z
′F−1
t|t−1Z

′Pt−1|t−1
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So far, I have assumed that the system matrices were all constant. The Kalman

filter, however, is also suitable for state-space models in which those matrices vary

over time. The filter needs simply to be modified so that the appropriate matrix is

used at each t. Given that the state-space system under analysis is a reduced-form

representation of a structural model, I should be careful when extending the filter to

allow for breaks in the system matrices. Note that if I allow for structural breaks in the

size of the shocks and/or the monetary policy coefficients, the system matrices vary

but there is no effect on the definition of the steady state of the economy. However,

if there is a break in a parameter defining the steady state of my model economy,

the econometrician needs to make sure she is using the same information set as the

economic agents.

Let us assume there is a shift in the steady state of the economy so that I go from

s̄1 to s̄2. This implies a shift in the entries of T and, hence, J . I need to introduce

the following modification in the forecasting step

• If t < t?,

ŝt|t−1 = J1 + T1ŝt−1|t−1

Pt|t−1 = T1Pt−1|t−1T
′
1 +RQ1R

′

• If t = t?,

ŝt|t−1 = J2 + T2 (ln(s̄2)− ln(s̄1)) + T2ŝt−1|t−1

Pt|t−1 = T2Pt−1|t−1T
′
2 +RQ2R

′
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• If t > t?,

ŝt|t−1 = J2 + T2ŝt−1|t−1

Pt|t−1 = T2Pt−1|t−1T
′
2 +RQ2R

′

Appendix B.4.3 Variance decomposition

My data set contains the following series

{∆Y,∆I,∆C,∆N, log(H), log(LS), log
(

1 +
π

400

)
, log

(
1 +

Rn

400

)
}

I am interested, however, in the second moments and dynamic properties of

log(Y ), log(I), log(C), log(N), log(H), log(LS), log
(

1 +
π

400

)
, log

(
1 +

Rn

400

)
}

Therefore, I use an inverse difference filter for the first four components on the

spectrum implied by the DSGE model. The spectral density is obtained using the

state-space representation of the DSGE model and 500 bins for frequencies in the

range of periodicities of interest. In particular, I compute the variance decomposition

at business cycle frequencies, that is, I focus on those periodic components with cycles

between 6 and 32 quarters.
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Inverse difference filter

Let Xt be univariate data in log-levels and Yt = (1− L)Xt. Note that

Xt = (1− L)−1 Yt

=
∞∑
h=0

LhYt−h

=
∞∑
h=0

exp(−iωjh)Yt−h

Then, the spectral density of Xt is given by

sX (ω) =

∣∣∣∣∣
∞∑
h=0

exp (−iωjh)

∣∣∣∣∣
2

sY (ω)

which can be approximated by

sX (ω) =

∣∣∣∣ 1

1− exp (−iωjh)

∣∣∣∣2 sY (ω)

at any frequency by 0.

Appendix B.5 Log-linearized equilibrium conditions

Let Ỹt = Yt
Za,t

for C, I,K,G,W/P,Mt+1/Pt, NBt+1/Pt, Dt+1, div, T,Nt+1. Let ς̂ =

log
(
ς
ς?

)
where ς? is the steady state value of the variable ς.

1. Trend variable

Ẑt = εa,t
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2. Household’s FOC with respect to NBt+1

̂̃
Λt = R̂n

t + Et

[̂̃
Λt+1 − π̂t+1 + Ẑt+1

]

where Λt is the Lagrange multiplier linked to the budget constraint.

3. Household’s FOC with respect to Ht

b̂t + θ̂ +
1

ν
Ht =

̂̃
W t +

̂̃
Λt

4. Household’s FOC with respect to Dt+1

̂̃
Λt = R̂t + Et

[̂̃
Λt+1 − Ẑt+1

]

5. Household’s FOC with respect to Ct

̂̃
Λt =

Z? − βhρb
Z? − βh

b̂t −
Z?h

(Z? − h) (Z? − βh)
Ẑt −

(Z?)2 + βh2

(Z? − h) (Z? − βh)
̂̃
Ct

+
Z?h

(Z? − h) (Z? − βh)
̂̃
Ct−1 +

βZ?h

(Z? − h) (Z? − βh)
Et
̂̃
Ct+1

6. Price of capital (from capital producers)

Q̂t = ξ
Ĩ?Z?

K̃?

(̂̃
I t + Ẑt −

̂̃
Kt

)
− ζ̂t

7. Capital accumulation

̂̃
Kt+1 =

1− δ
Z?

( ̂̃
Kt − Ẑt

)
+

Ĩ?

K̃?

(
ζ̂t +

̂̃
I t

)
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8. New Keynesian Phillips curve

π̂ = κχ̂t + βEtπ̂t+1 + κ
λ

1 + λ
λ̂t

where κ = (1−ξp)(1−ξpβ)

ξp
and χt is the real marginal cost.

9. Government constraint ̂̃
Gt =

̂̃
Y t

10. Taylor rule

R̂n
t = ρRR̂

n
t−1 + (1− ρR)ρππ̂t + (1− ρR)ρY

(̂̃
Y t −

̂̃
Y t−1 + Ẑt

)
+ εR,t

11. Definition of effective capital

̂̃
kt = ût +

̂̃
Kt − Ẑt

12. Optimal capital utilization

r̂kt =
(a′′)?

(rk)?
ût

13. Production technology

̂̃
Y t = α

̂̃
kt + (1− α)Ĥt

14. Optimal capital-to-labor ratio for intermediate goods producers

̂̃
kt − Ĥt =

̂̃
W t − r̂kt
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15. Real marginal cost

χ̂t = (1− α)
̂̃
W t + αr̂kt

16. Expected gross return on capital

Et

[
R̂k
t+1

]
=

(
rk
)?

(Rk)?
Et

[
r̂kt+1

]
− Q̂t +

1− δ
(Rk)?

Et

[
Q̂t+1

]

17. Supply for loans

[
K̃? − Ñ?

Ñ?

](
R̂k
t+1 −Rt

)
+
Rk?

R?

K̃?

Ñ?
[Γω (ω̄ss)− µGω (ω̄ss)] ω̄ssω̂t+1

−R
k?

R?

K̃?

Ñ?
µG(ω̄ss)µ̂t+1 = Q̂t +

̂̃
Kt+1 −

̂̃
N t+1

18. Net worth

Ñ?

γ
̂̃
N t+1 =

(
[1− µ?G(ω̄?)]Rk? −R?

) K̃?

Z?

(
Q̂t−1 +

̂̃
Kt − Ẑt

)
+ (1− µ?G(ω̄?))Rk? K̃

?

Z?
R̂k
t −

(
N̂? − K̂?

) R?

Z?
R̂t−1

−µ?G(ω̄?)Rk? K̃
?

Z?
µ̂t − µ?Gω(ω̄?)Rk? K̃

?

Z?
ω̄? ̂̄ωt +

R?Ñ?

Z?
̂̃
N t

19. First-order condition with respect to the debt-to-wealth ratio
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µ?
[

µ?Ψµ(ω̄?, µ?)G(ω̄?) + Ψ(ω̄?, µ?)G(ω̄?)

1− Γ(ω̄?) + Ψ(ω̄?, µ?) (Γ(ω̄?)− µ?G(ω̄?))

]
Etµt+1

= Et

[
R̂k
t+1 −Rt

]
−
[
Rk?

R?

[
R?

Rk?

Ψω(ω̄?, µ)

Ψ(ω̄?, µ)
− Ψω(ω̄?, µ)

Ψ(ω̄?, µ)
(Γ(ω̄?)− µ?G(ω̄?))

]]
ω̄?Et ̂̄ωt+1

20. Market clearing conditions

(a) Credit market

D̃? ̂̃Dt+1 = Q̃?K̃?

(
Q̂t +

̂̃
Kt+1

)
− Ñ? ̂̃N t+1

Debt ̂̃
Bt+1 =

̂̃
Dt+1

(b) Total Resources

̂̃
Y t =

C̃?

Ỹ ?

̂̃
Ct +

Ĩ?

Ỹ ?

̂̃
I t +

G̃?

Ỹ ?

̂̃
Gt

+
µ?G (ω̄?)Rk?Q?K̃?

Ỹ ?Z?

[
R̂k
t + Q̂t−1 +

̂̃
Kt − Ẑt +

Gω(ω̄?)

G(ω̄?)
ω̄?ω̂t

]
+µ?Rk?G (ω̄?) K̃?

Ỹ ?Z?
µ̂t + rk?

K̃?

Ỹ ?
ût

21. Some definitions

F (ω̄) =

∫ ω̄

0

1

ωσω
√

2π
e
− ln(ω)+0.5σ2

ω
2σ2
ω dω

Fω (ω̄) =
1

ωσω
√

2π
e
− ln(ω)+0.5σ2

ω
2σ2
ω
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Fωω (ω̄) = − 1

ω
Fω (ω̄)

[
1 +

ln(ω) + 0.5σ2
ω

σ2
ω

]
G (ω̄) =

∫ ω̄

0

ωf(ω)dω = 1− Φ

(
0.5σ2

ω − ln (ω̄)

σω

)
Gω (ω̄) = ω̄Fω (ω̄)

Γ (ω̄) =

∫ ω̄

0

ωf(ω)dω + ω̄

∫ ∞
ω̄

f(ω)dω = ω̄ (1− F (ω̄)) +G (ω̄)

Γω (ω̄) = 1− F (ω̄)

Ψ (ω̄, µ) =
Γω (ω̄)

Γω (ω̄)− µGω (ω̄)

Ψµ (ω̄, µ) =
Gω (ω̄) Ψ (ω̄, µ))

Γω (ω̄)− µGω (ω̄)

Ψω (ω̄, µ) =
1

(1− F (ω̄)− µω̄Fω (ω̄))2

− Fω (ω̄) [1− F (ω̄)− µω̄Fω (ω̄)]

− [1− F (ω̄)] [−Fω (ω̄)− µFω (ω̄)− µω̄Fωω (ω̄)]
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Appendix C Chapter 4

Appendix C.1 Tables

Table 34: Variance decomposition at business cycle frequencies

Output
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 1 2 67 4 6 17 2 0
1970-1984 0 3 56 8 8 21 3 1
Post-1984 0 4 39 6 14 31 5 0

Investment
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 22 13 7 35 4 2 17 0
1970-1984 7 19 4 45 4 2 18 1
Post-1984 26 16 4 20 6 5 22 0

Consumption
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 1 6 60 11 1 14 7 0
1970-1984 1 7 47 18 1 15 10 0
Post-1984 1 12 31 15 2 20 19 0

Net Worth
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 6 92 1 0 0 0 1 0
1970-1984 4 93 1 0 0 0 1 1
Post-1984 1 99 0 0 0 0 0 0

Notes: It corresponds to periodic components of cycles between 6 and 32 quarters.
BC refers to shocks to the marginal bankruptcy cost and MP to monetary policy
shocks
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Table 35: Variance decomposition at the business cycle frequency

Hours
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 1 8 1 14 18 52 6 1
1970-1984 1 7 1 19 18 47 6 2
Post-1984 0 7 0 9 23 51 9 1

Labor share
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 0 0 1 0 95 0 0 4
1970-1984 0 0 2 0 86 1 0 11
Post-1984 0 0 1 0 95 0 0 3

Inflation
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 0 3 15 8 1 4 11 59
1970-1984 0 2 11 8 1 5 14 58
Post-1984 1 1 10 3 3 8 6 68

Nominal rate
BC Wealth Neutral I-shock Markup Intra Inter MP

Pre-1970 0 15 3 41 0 1 39 1
1970-1984 0 12 1 44 0 0 41 1
Post-1984 6 14 1 48 0 0 29 1

Notes: It corresponds to periodic components of cycles between 6 and 32 quarters.
BC refers to shocks to the marginal bankruptcy cost and MP to monetary policy
shocks
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Table 36: Sign restrictions.

k Consumption Investment Net worth Spread
0 ? + + -
1 ? + + -

Table 37: Percentage of IRFs delivering a negative response upon impact of consump-
tion

Net worth Spread Whole 1954-1969 1970-1983 1984-2006
FOFA corporate 6 35 2 31
FOFA prime 33 18 57 10

Dow Jones corporate 30 45 30 49
Dow Jones prime 55 10 65 22
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Appendix C.2 Figures
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