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ABSTRACT 

PLASMODIUM INFECTIONS OF WILD APES AND HUMAN ZOONOTIC RISK 

Dorothy Elizabeth Loy 

Beatrice H. Hahn, MD 

 

Plasmodium falciparum and Plasmodium vivax cause over 95% of all human 

malaria infections. To control and potentially eliminate these pathogens, it is important to 

understand their origins and evolutionary history. The recent discovery of a multitude of 

Plasmodium species in apes revealed that P. vivax and P. falciparum evolved from 

parasites infecting African apes, but the zoonotic threat posed by ape parasites and the 

precise circumstances surrounding the emergence of Plasmodium in humans remain 

unknown. Thus, in this thesis, I asked two questions: Are humans exposed to ape 

parasites and what can be learned about the history of human P. vivax through analyses 

of related ape parasites. To address the first question, I asked whether humans living near 

Plasmodium-infected apes develop pre-erythrocytic infections in the absence of blood 

stage infections. Screening 504 Cameroonian fecal samples for ape Plasmodium species, 

I found no evidence of abortive liver infection. Next, to facilitate genome sequencing of 

ape P. vivax, I adapted selective whole genome amplification (SWGA) to P. vivax, 

achieving a dramatic increase in the proportion of P. vivax DNA in human samples without 

introducing systemic sequence errors. I then generated partial P. vivax genome 

sequences from six chimpanzees and one gorilla, which revealed that human strains of P. 

vivax exhibit ~10-fold less diversity and have a unique excess of nonsynonymous 

nucleotide polymorphisms. This suggests a recent bottleneck and greatly relaxed purifying 

selection in the human parasite lineage. Investigating potential host specificity 

determinants, I found that ape P. vivax parasites encode three reticulocyte binding protein 
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genes (rbp2d, rbp2e, and rbp3) whose orthologs are pseudogenes in human P. vivax 

strains. However, recombinant RBP2e and RBP3 proteins bound human, chimpanzee, 

and gorilla erythrocytes with similar efficiency. These results suggest that the P. vivax 

ancestor infected humans and apes in Africa, and that modern human P. vivax is derived 

from parasites that escaped Africa. Although many questions remain concerning the 

biology and zoonotic potential of ape malaria parasites, my studies show that comparative 

genomics, coupled with functional parasite studies, can yield new insights that are relevant 

to the prevention and eradication of human malaria. 
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1.1 Introduction 

Of the Plasmodium species known to commonly infect humans, P. falciparum and P. vivax 

cause the vast majority of malaria morbidity and mortality, and are the principal targets of 

malaria prevention and eradication efforts. P. falciparum is highly prevalent in sub-

Saharan Africa where it is responsible for an estimated 216 million clinical cases and over 

400,000 malaria-related deaths annually, predominantly in children under 5 years of age 

(World Health Organization, 2017).  P. vivax is rare in sub-Saharan Africa, but endemic in 

many parts of Asia, Oceania, as well as Central and South America where it causes an 

estimated 8.6 million cases of clinical malaria, which represent about half of all malaria 

cases outside Africa (World Health Organization, 2017). 

Given the devastating effects of malaria, the origins of the human Plasmodium 

parasites have long been a subject of interest. Descriptions of malaria-like illness can be 

found in ancient texts from China, India, the Middle East, Africa, and Europe, indicating 

that humans have been combatting Plasmodium infections through much of our recorded 

history (Carter and Mendis, 2002).  Indeed, variants in the human genome that are 

associated with resistance to Plasmodium infection and malaria-associated disease are 

estimated to be thousands of years old (Hedrick, 2011). One such variant is the sickle cell 

trait, which is common in African populations and protects against fatal P. falciparum 

malaria (Taylor et al., 2012). Similarly, a mutation that abolishes the expression of the 

Duffy antigen receptor of chemokines on the surface of red blood cells (the so-called “Duffy 

negative phenotype”) approaches fixation in west and central Africa and confers almost 

complete protection from P. vivax parasitemia (Miller et al., 1976; Howes et al., 2011). 

Together, these findings indicate that Plasmodium infections have impacted human health 

for millennia, but the prevailing view has been that this history goes back much further. 
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One long-standing hypothesis suggested that humans and chimpanzees each 

inherited P. falciparum-like infections from their common ancestor, and that these 

parasites co-evolved with their respective host species for millions of years (Escalante 

and Ayala, 1994). In contrast, P. vivax was believed to have arisen several hundred 

thousand years ago, following the cross-species transmission of a macaque parasite in 

Southeast Asia (Escalante et al., 2005; Jongwutiwes et al., 2005; Mu et al., 2005; Neafsey 

et al., 2012). However, both of these theories have recently been refuted following the 

characterization of a large number of additional Plasmodium parasites from African apes. 

Specifically, it is now clear that P. falciparum is a relatively new infection of humans, which 

arose after the acquisition of a gorilla parasite, likely within the past 10,000 years (Liu et 

al., 2010a; Sundararaman et al., 2016). Similarly, P. vivax did not emerge in Asia, but 

represents a bottlenecked lineage that escaped out of Africa before the spread of Duffy 

negativity rendered African humans resistant to P. vivax (Liu et al., 2014). In this chapter, 

I describe the findings that led to this new understanding and summarize what is known 

about the epidemiology, vector tropism, zoonotic potential, and pathogenicity of the ape 

precursors of the human parasites.  

 

1.2 Early studies of ape Plasmodium infections 

The first indication that African apes harbor Plasmodium infections was the finding of three 

morphologically distinct forms of parasites in the blood of wild-caught chimpanzees (Pan 

troglodytes) and western gorillas (Gorilla gorilla) in Cameroon (Reichenow, 1920).  

Microscopic characterization identified ape parasites that resembled human P. falciparum, 

P. malariae, and either P. ovale or (the similar) P. vivax, suggesting the existence of 

distinct Plasmodium species, which were classified as P. reichenowi, P. rhodaini, and P. 

schwetzi, respectively (Sluiter et al., 1922; Brumpt, 1939).  Moreover, P. falciparum and 
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P. reichenowi were found to differ substantially from the other Plasmodium species in both 

life cycle and gametocyte morphology, prompting their placement into a separate 

subgenus, termed Laverania (Bray, 1958; Coatney et al., 1971). The existence of two 

divergent clades of malaria parasites infecting primates was subsequently confirmed when 

the various Plasmodium species were first molecularly characterized (Figure 1-1). 

Comparing rRNA small subunit gene sequences, Escalante and Ayala (1994) showed that 

among the known species P. falciparum and P. reichenowi were each other’s closest 

relatives, and that both were only distantly related to other Plasmodium species. Assuming 

that rRNA gene sequences in Plasmodium species evolved at the same rate as had been 

estimated for some bacteria, it was inferred that P. falciparum and P. reichenowi had 

diverged ~10 million years ago, close to the time of the human-chimpanzee common 

ancestor. This led to the conclusion that human and chimpanzee parasites had co-

diverged with their respective hosts (Escalante and Ayala, 1994). Due to a lack of 

preserved material, gene sequences from P. schwetzi and P. rhodaini were never 

determined, and so their relationship to other malaria parasites remains unknown.  

Interest in ape Laverania infections was rekindled in 2009 when Ollomo and 

colleagues found parasites morphologically similar to P. reichenowi in the blood of two pet 

chimpanzees from Gabon (Ollomo et al., 2009). Analysis of mitochondrial DNA (mtDNA) 

sequences revealed that these parasites were related to, but divergent from, P. falciparum 

and P. reichenowi, suggesting the existence of a third Laverania species which they 

named P. gaboni (Ollomo et al., 2009). Follow-up studies of additional captive and wild 

apes confirmed a greater diversity of Laverania parasites, but interpretations differed as 

to the number of species and their host associations. Amplifying mtDNA and nuclear gene 

sequences of parasites from members of two chimpanzee subspecies, Rich and 

colleagues identified several distinct Laverania lineages, but chose to consider all of them 
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as “P. reichenowi”, even though one of these new lineages corresponded to P. gaboni 

(Rich et al., 2009). In contrast, Krief and colleagues classified a similar diversity of 

chimpanzee parasites into three species, termed P. reichenowi, P. billcollinsi, and P. 

billbrayi, where the latter corresponded to P. gaboni (Krief et al., 2010). These 

investigators also amplified P. falciparum mtDNA from the blood of captive bonobos (Pan 

paniscus), concluding that this ape species represents the likely source of the human 

infection (Krief et al., 2010). Finally, Prugnolle and colleagues developed non-invasive 

methods that permitted parasite detection in ape fecal samples, which identified diverse 

Laverania lineages not only in chimpanzees but also in western gorillas (Prugnolle et al., 

2010). However, these investigators classified all chimpanzee parasites as either P. 

reichenowi or P. gaboni, and concluded that P. falciparum-like sequences found in fecal 

samples of wild-living western gorillas indicated ongoing transmission from humans to 

gorillas (Prugnolle et al., 2010). The consensus of these studies was that wild-living apes 

harbor a much greater diversity of Laverania parasites than previously recognized. 

However, there was disagreement concerning the number of ape Laverania species as 

well as the origin of P. falciparum, with some investigators implicating chimpanzees (Rich 

et al., 2009; Duval et al., 2010; Prugnolle et al., 2010) and others bonobos (Krief et al., 

2010) as the likely original source of the parasites now infecting humans. 

 

1.3 Seven Laverania species in wild-living apes 

The seemingly discrepant results from these early studies were reconciled by 

comprehensive studies of Laverania infections in wild-living apes, which employed 

improved fecal-based detection methods and targeted different regions of both organelle 

and nuclear parasite genomes (Liu et al., 2010a). One technical advance was the use of 

limiting dilution PCR (termed single genome amplification or SGA), which in contrast to 
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standard (bulk) PCR precludes the generation of in vitro recombinants that confound 

phylogenetic analyses (Liu et al., 2010b). Using this approach to characterize the 

molecular epidemiology of ape malaria, Plasmodium infections were found to be 

widespread in both chimpanzees and western gorillas, including parasites that were 

closely related to human P. malariae, P. ovale and P. vivax (Liu et al., 2010a).  However, 

the great majority of parasite sequences grouped within one of three chimpanzee-specific 

or three gorilla-specific parasite lineages, with each clade being well supported and quite 

distinct from the others, pointing to the existence of six Laverania species in chimpanzees 

and gorillas (Figure 1-1).  Subsequent surveys of wild-living apes in Gabon (Boundenga 

et al., 2015) and Cote d’Ivoire (Kaiser et al., 2010) confirmed these findings, demonstrating 

that chimpanzees and western gorillas represent a substantial Laverania reservoir. 

Recently, a comprehensive survey of wild-living bonobos revealed the existence of a 

seventh Laverania species, termed P. lomaminensis (Figure 1-1; Liu et al., 2017). 
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Figure 1-1. Evolutionary relationships of Plasmodium species.  Colors highlight 
Plasmodium species that infect humans (red), chimpanzees (blue), bonobos (purple), and 
gorillas (green). Four groups of Plasmodium species are shown, with subgenus 
designations indicated for primate parasites.  The phylogeny was estimated by maximum 
likelihood analysis of 2.4 kb of the mitochondrial genome; the scale bar indicates 0.03 
substitutions per site. 
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Figure 1-2A summarizes current knowledge concerning the geographic distribution 

and host species association of ape Laverania infections at over 100 field sites across 

sub-Saharan Africa (Kaiser et al., 2010; Liu et al., 2010a; De Nys et al., 2013; Boundenga 

et al., 2015; Liu et al., 2016, Liu et al., 2017). All chimpanzee subspecies, including 

western (P. t. verus), Nigeria-Cameroon (P. t. ellioti), central (P. t. troglodytes) and eastern 

(P. t. schweinfurthii) chimpanzees, as well as western lowland gorillas (G. g. gorilla) are 

endemically infected with Laverania parasites, with fecal detection rates ranging from 24% 

to 40% (Table 1-1). The true prevalence rates are likely to be considerably higher, since 

the amount of Laverania DNA that is shed into fecal samples is substantially less than that 

from replicating parasites in the blood (Liu et al., 2010a; Sundararaman et al., 2016).  

Although Cross River gorillas (G. g. diehli) and eastern lowland gorillas (G. beringei 

graueri) have appeared to be free of Laverania infections, the numbers of individuals 

tested from these potential hosts are still too small to draw definitive conclusions (Liu et 

al., 2010a). Analyses of nearly 3,500 SGA-derived mitochondrial, apicoplast and nuclear 

DNA sequences from ape fecal and blood samples have confirmed the existence of seven 

Laverania species (Figures 1-1 and 1-3). Of these, P. reichenowi, P. gaboni, and P. 

billcollinsi are found in wild-living chimpanzees, while P. praefalciparum, P. blacklocki, and 

P. adleri are found in western gorillas and P. lomaminensis is found in bonobos. All seven 

Laverania species have been classified based on numerous SGA-derived organelle and 

nuclear gene sequences from many different field isolates (Liu et al., 2010a; Liu et al., 

2016, Liu et al., 2017).  Whole genome sequencing of P. reichenowi and P. gaboni 

parasites confirmed that they represent distinct species, with no evidence of interspecific 

hybridization (Otto et al.,2014; Sundararaman et al., 2016). While it has been argued that 

detection of parasite DNA in either feces or blood, in itself, is not proof of productive 

Plasmodium infection (Valkiunas et al., 2011), the high prevalence rates of Laverania 
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infections (Table 1-1) and their widespread distribution (Figure 1-2A) provide compelling 

evidence for significant ongoing transmission.  

Of note, five of the six Laverania parasites that infect chimpanzees and gorillas 

exhibit strict host specificity when infecting wild-living apes, including at field sites where 

Laverania species are co-circulating in sympatric chimpanzee and gorilla populations 

(octagons in Figure 1-2A). Single genome amplification, which yields a proportional 

representation of all parasites present in a sample, failed to detect even minor fractions of 

P. reichenowi, P. billcollinsi, P. adleri, P. praefalciparum, or P. blacklocki from the “wrong” 

host species in over a hundred Laverania infected chimpanzee and gorillas (Liu et al., 

2016).  In contrast, P. gaboni is able to infect multiple host species, as it has been amplified 

from numerous chimpanzee and bonobo fecal samples (Liu et al., 2017, see Figure 1-3A) 

though it has not been detected in gorilla fecal samples. In addition, the bonobo parasite 

P. lomaminesis has been amplified from a single chimpanzee sample, suggesting that its 

restriction to bonobos is not absolute (Liu et al., 2017, see Figure 1-3A). However, our 

failure to amplify P. lomaminesis from additional chimpanzee samples despite extensive 

screening of chimpanzees living near bonobos suggests that P. lomaminesis is not 

endemic in chimpanzees. Interestingly, this host species specificity can be broken when 

chimpanzees and gorillas are kept together in captivity (Duval et al., 2010; Pacheco et al., 

2013), and so it will be of great interest to decipher the aspects of host and/or vector 

biology that contribute to host species restriction in the wild.  
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Figure 1-2. Geographic distribution of (A) Laverania and (B) P. vivax infections in 
wild-living apes. Field sites are shown in relation to the ranges of the four subspecies of 
the common chimpanzee (P. t. verus, black, upper left inset, P. t. ellioti, purple; P. t. 
troglodytes, magenta; P. t. schweinfurthii, blue), the Cross River (G. g. diehli, yellow 
stripe), western lowland (G. g. gorilla, red stripe), and eastern lowland (G. b. graueri, cyan 
stripe) gorilla, as well as the bonobo (P. paniscus, orange) in sub-Saharan Africa 
(Caldecott and Miles, 2005). Field sites are labeled by a two-letter code (Liu et al., 2010a; 
Liu et al., 2014, Liu et al., 2017) or numbers (Boundenga et al., 2015), and those where 
ape malaria was detected are highlighted in yellow. Because chimpanzee and gorilla 
ranges overlap, we have colored the two letter code to indicate whether chimpanzees 
(black), gorillas (green), or both (red) were infected at a given field site. Triangles denote 
ape rescue centers and asterisks mosquito collection sites. Circles, squares, and 
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hexagons identify locations where fecal samples were collected from chimpanzees, 
gorillas, or both species, respectively. Ovals indicate bonobo sites. At the TA and KB sites, 
blood and tissue samples were obtained from injured or deceased habituated 
chimpanzees (Kaiser et al., 2010; Krief et al., 2010; De Nys et al., 2013). Diamonds in 
panel B indicate the capture sites of ape P. vivax infected sanctuary chimpanzees (black 
border) and gorillas (green border), respectively, and a star denotes the location where a 
European forester became infected with ape P. vivax (Prugnolle et al., 2013). Data were 
compiled from published (Kaiser et al., 2010; Liu et al., 2010a; De Nys et al., 2013; Paupy 
et al., 2013; Prugnolle et al., 2013; Liu et al., 2014; Boundenga et al., 2015; Liu et al., 
2017) and unpublished studies (Table 1-1). 
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Figure 1-3. Evolutionary relationships of ape and human Laverania parasites. The 
phylogenetic relationships of (A) mitochondrial cytochrome B (cytB; 956 bp) and (B) 
nuclear lactate dehydrogenase (ldh; 772 bp) gene sequences, as well as (C) concatenated 
mitochondrial protein (CoxI/CoxIII/CytB; 981 amino acids) sequences are shown. Ape 
parasite sequences are colored according to their host species (Pan troglodytes verus, 
light blue; Pan troglodytes troglodytes, red; Pan troglodytes schweinfurthii, dark blue; Pan 
troglodytes ellioti, orange; Gorilla gorilla gorilla, green; Pan paniscus, purple), and human 
parasite reference sequences are shown in black. A black circle denotes the Plasmodium 
reichenowi PrCDC reference sequence (Otto et al., 2014) derived from a chimpanzee 
captured in the Belgian Congo (now the Democratic Republic of the Congo) (Pan 
troglodytes schweinfurthii) (Coatney et al., 1971). (C) Four Plasmodium falciparum 
sequences from captive bonobos (Krief et al., 2010) and one Plasmodium praefalciparum 
sequence from a captive greater spot-nosed monkey (Prugnolle et al., 2011) are shown 
in purple and grey, respectively. Parentheses indicate Laverania spp. Phylogenies were 
generated using maximum likelihood methods. Asterisks at major nodes indicate 
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bootstrap values ≥ 65%, and the scale bars represent (A, B) 0.01 nucleotide substitutions 
per site, or (C) 0.001 amino acid replacements per site, respectively. Sequences were 
combined from multiple studies (Kaiser et al., 2010; Krief et al., 2010; Liu et al., 2010a, 
2016, 2017; Prugnolle et al., 2011). 
 

1.4 Origin of P. falciparum in western gorillas and emergence in humans 

Characterization of the various ape Laverania species identified one lineage in western 

gorillas that was comprised of parasites that were nearly identical to P. falciparum (Liu et 

al., 2010a; Prugnolle et al., 2010). This was initially interpreted as indicating that human 

parasites can infect gorillas (Prugnolle et al., 2010). However, with the characterization of 

mtDNA sequences from large numbers of additional wild-living gorillas, it became 

apparent that all extant P. falciparum strains from humans fall within the radiation of these 

gorilla parasites (Liu et al., 2010a).  Analyses of both mitochondrial (Figure 1-3A) and 

nuclear (Figure 1-3B) sequences confirmed these relationships, indicating that human P. 

falciparum resulted from the cross-species transmission of a parasite that had previously 

diversified in gorillas. This gorilla parasite lineage has been named P. praefalciparum to 

indicate its role in the origin of P. falciparum. To investigate how often P. praefalciparum 

crossed the species barrier to humans, we constructed a phylogenetic tree from 

concatenated mitochondrial protein sequences of these and closely related P. reichenowi 

parasites, which yielded evidence for only a single transmission event (Figure 1-3C). 

These findings are consistent with results from epidemiological surveys in Cameroon and 

Gabon, which demonstrated that humans living in the immediate vicinity of wild-living 

chimpanzees and gorillas do not harbor ape Laverania parasites (Sundararaman et al., 

2013; Delicat-Loembet et al., 2015). Thus, P. praefalciparum parasites appear incapable 

of infecting humans, suggesting that the particular gorilla parasite strain that was able to 

cross the host species barrier must have carried one or more highly unusual mutations 

that conferred an ability to colonize humans.  
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Although alternative hypotheses concerning the origin of P. falciparum have been 

proposed, none has stood the test of time. For example, the finding of a P. praefalciparum 

infection in a greater spot-nosed monkey (Cercopithecus nictitans) (Figure 1-3C) was 

taken to indicate that P. falciparum could have originated in monkeys (Prugnolle et al., 

2011). However, this theory ignored the fact that P. praefalciparum sequences had been 

amplified from numerous wild-living gorillas at 11 different field sites up to 750 km apart, 

whereas only a single captive infected monkey was reported (Sharp et al., 2011). Indeed, 

subsequent testing of nearly 300 wild-caught greater spot-nosed monkeys failed to identify 

a single P. praefalciparum infection, indicating that this monkey species is not a natural 

reservoir for this parasite (Ayouba et al., 2012). Similarly, amplification of P. falciparum 

sequences from captive bonobos was taken to indicate that the human malaria parasite 

originated in this ape species (Krief et al., 2010). However, phylogenetic analysis of these 

sequences revealed that they were completely interspersed with human P. falciparum 

(Figure 1-3C), which together with the finding of drug resistance mutations in the bonobo 

parasites (Krief et al., 2010), indicated that these apes had acquired parasites from the 

local human population. This is not without precedent, since human P. falciparum has on 

occasion been found to infect chimpanzees in captivity (Duval et al., 2010; Pacheco et al., 

2013).  

P. falciparum has long been suspected to exhibit unusually low levels of genetic 

diversity (Rich et al., 1998), but the underlying causes have remained unclear. Recent 

genome-wide comparisons of the chimpanzee parasites P. gaboni and P. reichenowi have 

shown that their within-species genetic diversity is about 10-fold higher than that seen in 

P. falciparum (Sundararaman et al., 2016). Thus, the extremely low diversity among extant 

P. falciparum strains is not a general characteristic of Laverania parasites. Recent 

selective sweeps of drug resistance mutations have reduced levels of polymorphism in 
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P. falciparum, but because resistant and sensitive strains continue to recombine in 

mosquitoes, diversity has only been reduced in the immediate vicinity of the selected loci 

(Nair et al., 2003; Volkman et al., 2007). Instead, the greatly reduced level of diversity 

across the entire P. falciparum genome most likely resulted from a recent severe 

population bottleneck, which is most plausibly explained by the gorilla-to-human cross-

species transmission event though subsequent bottlenecks secondary to human and 

mosquito adaptation may also have contributed to the observed genetic diversity. 

 

1.5 A sylvatic reservoir of P. vivax and African origin of P. vivax 

Although early studies indicated that chimpanzees and gorillas harbor P. vivax-like 

parasites, the number of sequences recovered was too limited to draw definitive 

conclusions (Kaiser et al., 2010; Krief et al., 2010; Liu et al., 2010a).  As for the Laverania 

species, elucidation of the molecular epidemiology of P. vivax in apes required a 

comprehensive analysis of wild-living populations across central Africa (Liu et al., 2014). 

Table 1-1 and Figure 1-2B summarize available data from published studies, showing that 

P. vivax is relatively common among central and eastern chimpanzees as well as western 

lowland gorillas, which together represent a considerable sylvatic P. vivax reservoir 

(Kaiser et al., 2010; Liu et al., 2010a; De Nys et al., 2013; Liu et al., 2014). In addition, P. 

vivax sequences have also been amplified from wild-living bonobos (Liu et al., 2017). 

However, amplification of P. vivax DNA sequences from fecal samples was considerably 

less efficient than from blood samples, most likely reflecting much lower parasite loads in 

fecal samples compared to blood (Liu et al., 2014). Thus, the observed fecal-based 

infection rates, which ranged from 2% to 8% for the various ape species and subspecies 

(Table 1-1), are expected to greatly underestimate the actual prevalence rates, perhaps 

by as much as an order of magnitude. The low sensitivity of fecal parasite detection may 
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also explain why P. vivax has not yet been detected in wild-living Nigeria-Cameroon 

chimpanzees or in Cross River gorillas. Indeed, P. vivax-like sequences were readily 

amplified from the blood of captive Nigeria-Cameroon chimpanzees, indicating that this 

subspecies is susceptible to P. vivax infection (Figure 1-4).  

Phylogenetic analyses of SGA-derived sequences showed that ape and human P. 

vivax were very closely related. In phylogenetic trees of mitochondrial (Figure 1-4A), 

nuclear (Figure 1-4B), and apicoplast (Figure 1-4C) sequences, human P. vivax 

sequences formed a single lineage within the radiation of the ape parasites. In contrast, 

parasite sequences derived from ape samples were interspersed, suggesting that P. vivax 

strains circulate freely between ape species. Of note, analysis of nearly 1,000 bushmeat 

samples failed to identify related sequences in samples from any of 16 different monkey 

species, strongly suggesting that P. vivax is restricted to apes (Liu et al., 2014).  
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Figure 1-4: Evolutionary relationships of ape and human P. vivax parasites. 
Phylogenies were derived from (A) mtDNA fragment D (2,539 bp), (B) nuclear DNA (ldh 
gene; 711 bp), and (C) apicoplast DNA (clpM gene; 574 bp). Parasite sequences are 
colored according to their host species (P. t. troglodytes, red; P. t. schweinfurthii, dark 
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blue; P. t. ellioti, orange; G. g. gorilla, green; Pan paniscus, purple; human, black); the red 
star denotes a parasite from a European who worked in an African forest. Mosquito (A. 
moucheti) derived sequences are shown in cyan. Reference sequences for P. cynomolgi, 
P. inui, P. fragile, and P. knowlesi are indicated.  A lineage of parasite sequences from 
wild chimpanzees, which is related to ape and human P. vivax, likely represents a new 
Plasmodium species, which has been designated P. carteri (black arrows). Phylogenies 
were generated using maximum likelihood methods.  Asterisks at major nodes indicate 
bootstrap values ≥ 65%, and the scale bars represent 0.01 nucleotide substitutions per 
site. Sequences were combined from multiple studies (Krief et al., 2010; Paupy et al., 
2013; Prugnolle et al., 2013; Liu et al., 2014, 2017). 
 

Until recently, the closest known relative of P. vivax was a parasite, P. cynomolgi, 

which infects macaques in Asia (Tachibana et al., 2012).  In phylogenetic trees, P. vivax 

and P. cynomolgi fall within a clade of parasites that includes at least eight other 

Plasmodium species infecting Asian macaques (Figure 1-1). The consensus view has thus 

been that P. vivax emerged in Southeast Asia following the cross-species transmission of 

a macaque parasite (Escalante et al., 2005; Jongwutiwes et al., 2005; Mu et al., 2005; 

Neafsey et al., 2012).  However, this hypothesis has always been at odds with two other 

observations. First, the high prevalence of the Duffy negative phenotype in sub-Saharan 

Africans, which suggested that this mutation arose in response to prolonged selection 

pressure from P. vivax (Carter, 2003) rather than another unidentified pathogen 

(Livingstone, 1984). Second, modern humans did not arrive in Asia until about 60,000 

years ago (Mellars, 2006); yet, P. vivax has likely diverged from macaque parasites much 

earlier than this (Escalante et al., 2005; Jongwutiwes et al., 2005; Mu et al., 2005; Neafsey 

et al., 2012). Thus, P. vivax would have had a rather convoluted history, requiring 

transmission from macaques to an early hominin, such as Homo erectus, followed by its 

diversification in that host before numerous lineages were transmitted to modern humans 

after they emerged from Africa. The discovery of P. vivax in large numbers of African great 

apes now resolves these inconsistencies, providing compelling evidence for an African, 

rather than an Asian, origin of human P. vivax.  
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The phylogenetic relationships of P. vivax strains suggest that all extant human P. 

vivax strains form a monophyletic clade within the radiation of ape parasites (Figure 1-4). 

This could be interpreted to mean that P. vivax originated in humans following a single 

transmission event.  However, the lack of host specificity of ape P. vivax in natural settings 

(Liu et al., 2014, Liu el al., 2017), along with the finding of a zoonotic ape P. vivax infection 

(Prugnolle et al., 2013), argues against this theory. Instead, it seems more likely, based 

on these short sequences, that extant human P. vivax represents a lineage that survived 

after spreading out of Africa. Human P. vivax strains that are currently found in 

Madagascar and parts of Africa are likely the result of a reintroduction of this parasite from 

Asia (Culleton and Carter, 2012).  

 While it could be argued that the ape P. vivax was brought to Africa by humans 

who migrated from Asia (Prugnolle et al., 2013), this hypothesis has been refuted by 

sequences indicating the existence of a related, but distinct, Plasmodium species that also 

infects African apes. This Plasmodium species, which is apparent in trees of 

mitochondrial, nuclear and apicoplast sequences (Figure 1-4), has been found in 

chimpanzees from two different locations in Cameroon (the BQ and DG field sites in Figure 

1-2) and represents the closest known relative of P. vivax. The most parsimonious 

interpretation of this finding is that the common ancestor of these two species was in 

Africa, indicating that the lineage existed there for a long time before P. vivax arose as a 

distinct species (Figure 1-4). We propose to designate this newly described species 

Plasmodium carteri, in honor of Richard Carter, who has long championed the hypothesis 

that P. vivax originated in Africa (Carter, 2003; Culleton and Carter, 2012). 

1.6 Zoonotic potential of ape parasites  

Despite the identification of suitable bridge vectors (Paupy et al., 2013; Makanga et al., 

2016), both experimental transmission and molecular epidemiological studies indicate that 
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ape Laverania parasites do not normally cause blood stage infections in humans. Attempts 

to inoculate humans with a parasite identified as “P. reichenowi” over 100 years ago did 

not result in parasitemia (Blacklock and Adler, 1922). More importantly, two recent field 

studies conducted in rural Cameroon and Gabon failed to identify ape Laverania infections 

in humans living in close proximity to infected chimpanzees and gorillas (Sundararaman 

et al., 2013; Delicat-Loembet et al., 2015). In contrast, experimental inoculation with P. 

schwetzi did result in patent parasitemia and clinical malaria in Duffy positive, but not Duffy 

negative, humans suggesting that the inoculum was likely ape P. vivax (Contacos 1970).  

Furthermore, natural infections of Duffy positive individuals can occur, as exemplified by 

the case of a Caucasian male who acquired this infection after working for 18 days in a 

forest in the Central African Republic (Figure 1-2B).  Parasite sequences amplified from 

this individual’s blood did not fall within the human P. vivax lineage, but instead clustered 

with parasites obtained from wild-living apes (Figure 1-4A), confirming acquisition by 

cross-species transmission from an ape (Prugnolle et al., 2013). These data indicate that 

ape Laverania parasites do not switch between host species, except under highly unusual 

circumstances, while ape P. vivax is much less host-specific and has the potential to infect 

Duffy positive humans, suggesting that human and ape P. vivax parasites represent a 

single species.  

 Importantly, however, none of these studies address the possibility that humans 

are exposed to ape parasites, which may cause a liver stage infection in the absence of a 

blood stage infection. Thus, it is currently unclear whether absence of blood stage 

infections in humans is a result of lack of exposure to mosquitoes carrying ape 

Plasmodium sporozoites, parasite-host incompatibility at the liver stage of infection, and/or 

parasite-host incompatibility at the blood stage of infection. In Chapter 2 of this 

dissertation, I use a fecal screen to search for ape Plasmodium infections in humans living 
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near infected apes, including hunter-gatherers who spend extensive time in or near ape 

habitat. Although studies in mice show that pre-erythrocytic Plasmodium DNA can be 

detected in stool, I did not detect evidence of abortive ape Plasmodium liver infections in 

the 504 Cameroonian humans screened. Instead, I identified a link between parasitemia 

and fecal Plasmodium DNA detection, suggesting that parasite DNA in fecal samples is 

derived from blood stage infections.  

 

1.7 Emergence of P. vivax in human populations 

While available organellar and nuclear sequences suggest an African origin of human P. 

vivax (Liu et al., 2014), nothing is known about the circumstances and mechanistic 

processes that led to the parasite’s emergence in humans. Yet, such information is critical 

to understand how ape parasites crossed the species barrier and whether such events 

are likely to occur again. The lack of in vitro culture systems poses a significant challenge 

to the functional analysis of ape Plasmodium parasites, but whole genome sequencing 

represents a critical first step towards understanding their biology (Otto et al., 2014; 

Sundararaman et al., 2016). In this dissertation, I present the results of comparative 

genomic analysis of ape and human P. vivax. In Chapter 3 I describe the adaptation of 

selective whole genome amplification (SWGA) to P. vivax-infected samples, and 

subsequently use this method in Chapter 4 to generate P. vivax genome sequences from 

six chimpanzees and one gorilla. Differences in the magnitude and pattern of 

polymorphism observed in ape and human P. vivax indicate that the human P. vivax 

lineage has undergone a recent bottleneck followed by rapid population expansion. 

Furthermore, both genome-wide analysis and functional protein studies suggest that the 

human P. vivax lineage has acquired remarkably few human-specific adaptations. Thus, 
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these studies provide insight into the zoonotic ape reservoir of malaria parasites and 

reveal the evolutionary history of P. vivax in humans. 
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2.1 Abstract 

African apes are endemically infected with numerous Plasmodium spp. including close 

relatives of human Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and 

Plasmodium malariae. Although these ape parasites are not believed to pose a zoonotic 

threat, their ability to colonize humans has not been fully explored. In particular, it remains 

unknown whether ape parasites are able to initiate exo-erythrocytic replication in human 

hepatocytes following the bite of an infective mosquito. Since animal studies have shown 

that liver stage infection can result in the excretion of parasite nucleic acids into the bile, 

we screened fecal samples from 504 rural Cameroonians for Plasmodium DNA. Using 

pan-Laverania as well as P. malariae- and P. vivax-specific primer sets, we amplified 

human P. falciparum (n=14), P. malariae (n=1), and P. ovale wallikeri (n=1) mitochondrial 

sequences from fecal DNA of 15 individuals. However, despite using an intensified PCR 

screening approach we failed to detect ape Laverania, ape P. vivax or ape P. malariae 

parasites in these same subjects. One fecal sample from a hunter-gatherer contained a 

sequence closely related to the porcupine parasite Plasmodium atheruri. Since this same 

fecal sample also contained porcupine mitochondrial DNA, but a matching blood sample 

was Plasmodium-negative, it is likely that this hunter-gatherer consumed Plasmodium-

infected bushmeat. Fecal Plasmodium detection was not secondary to intestinal bleeding 

and/or infection with gastrointestinal parasites, but indicative of blood parasitemia. 

Quantitative PCR identified 26-fold more parasite DNA in the blood of fecal Plasmodium-

positive than fecal Plasmodium-negative individuals (P=0.01). However, among blood-

positive individuals only 10% - 20% had detectable Plasmodium sequences in their stool. 

Thus, fecal screening of rural Cameroonians failed to uncover abortive ape Plasmodium 

infections, but detected infection with human parasites, albeit with reduced sensitivity 

compared with blood analysis. 



31 
 

2.2 Introduction 

Wild-living African apes are naturally infected with a wide variety of Plasmodium spp., 

including seven members of the Laverania subgenus as well as close relatives of human 

Plasmodium vivax, Plasmodium malariae and Plasmodium ovale (Ollomo et al., 2009; 

Rich et al., 2009; Krief et al., 2010; Liu et al., 2010a, 2014, 2016, 2017; Prugnolle et al., 

2010). While the impact of these infections on wild ape populations remains to be 

explored, their genetic characterization has provided important new insight into the origins 

and evolution of human malaria. For example, Plasmodium praefalciparum, a parasite that 

naturally infects gorillas, was found to have crossed the species barrier to humans several 

thousand years ago, giving rise to Plasmodium falciparum (Liu et al., 2010a). In contrast, 

human P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, 

gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation 

eliminated P. vivax in humans there (Liu et al., 2014). African apes also harbor parasites 

that are closely related to human P. malariae, Plasmodium ovale wallikeri and 

Plasmodium ovale curtisi as well as Plasmodium spp. that do not have a known human 

counterpart (Duval et al., 2009, 2010; Hayakawa et al., 2009; Kaiser et al., 2010; Liu et 

al., 2010a, 2014). However, the precise relationships between these ape and human 

parasites, including their host species association and prevalence, have yet to be 

determined. Given the magnitude of the sylvatic Plasmodium reservoir and the fact that 

ape parasite-transmitting Anopheles vectors also feed on humans (Paupy et al., 2013; 

Makanga et al., 2016), the possibility of spillovers into the human population has to be 

considered. 

Laverania infections are common and widespread in chimpanzees (Pan 

troglodytes) and western gorillas (Gorilla gorilla), with estimated prevalence rates ranging 

from 29% to 40% (Loy et al., 2017). Similarly, ape P. vivax infections are widely distributed, 
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although fecal detection rates are generally lower than for Laverania parasites, likely 

reflecting lower blood titers (Loy et al., 2017). Several studies have addressed whether 

Plasmodium-infected apes serve as a recurrent source of human infection. PCR screening 

of more than 5,000 blood samples from individuals in rural Cameroon and Gabon failed to 

identify human infection with ape Laverania parasites (Sundararaman et al., 2013; Delicat-

Loembet et al., 2015; Ngoubangoye et al., 2016). However, one case of a zoonotic ape P. 

vivax infection was documented in a (Duffy-positive) European forest worker (Prugnolle et 

al., 2013). Consistent with experimental transmission studies conducted nearly 100 years 

ago (Blacklock and Adler, 1922), these results indicate substantial barriers to the cross-

species transmission of ape Laverania spp., while non-Laverania parasites such as ape 

P. vivax appear to exhibit a more promiscuous host tropism (Prugnolle et al., 2010, 2013; 

Rayner et al., 2011; Loy et al., 2017; Liu et al., 2017).  

Laverania host specificity is determined, at least in part, by interactions of parasite 

ligands with receptors on the surface of host red blood cells (Martin et al., 2005; Wanaguru 

et al., 2013). However, barriers to erythrocyte invasion do not necessarily preclude 

infection of host hepatocytes. Among non-Laverania spp., an African monkey parasite, 

Plasmodium gonderi, can invade and replicate in hepatocytes of several New World 

monkey species, but fails to establish a productive blood stage infection in these same 

hosts (Sullivan et al., 2002). Similarly, the macaque parasite Plasmodium fieldi and human 

P. ovale can progress through the exo-erythrocytic stage of their life cycle without resulting 

in subsequent parasitemia in owl monkeys (Aotus vociferans) and squirrel monkeys 

(Saimiri boliviensi), respectively (Millet et al., 1994; Sullivan et al., 1998). Although these 

examples represent experimental infections of non-natural host species, they raise the 

possibility that similar non-blood stage initiating (abortive) liver infections could also occur 

under natural conditions. For example, it has been reported that exo-erythrocytic 
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replication of P. vivax may occur in Duffy-negative humans who are protected from blood 

stage infection, since some individuals were found to have antibodies to the P. vivax MSP1 

protein (Herrera et al., 2005; Culleton et al., 2009), which is expressed on liver schizonts 

(Szarfman et al., 1988; Suhrbier et al., 1989) and merozoites (Holder and Freeman, 1984). 

Thus, in addition to blood analyses, studies of zoonotic Plasmodium infections should 

include approaches that can detect exo-erythrocytic stages of parasite development. 

Following the bite of an infective mosquito, sporozoites of mammalian Plasmodium 

parasites migrate to the liver where they initiate asexual replication in hepatocytes that 

mature into schizonts, which then release merozoites into the blood stream (Prudencio et 

al., 2006; Vaughan and Kappe, 2017). Since direct analysis of liver stage infection requires 

invasive methods, we wondered whether there was a non-invasive alternative. Previous 

studies of Plasmodium yoelli-infected mice demonstrated the presence of parasite DNA 

in the liver, gall bladder and stool of sporozoite-inoculated animals several days before 

the onset of parasitemia, indicating that pre-erythrocytic parasite forms are excreted from 

the infected liver into the bile (Abkallo et al., 2014). In addition, Plasmodium knowlesi DNA 

was found in the stool of a macaque, which was inoculated with infected erythrocytes, 12 

days after parasite DNA was last detected in the blood, indicating protracted clearance 

possibly through accumulation of parasite nucleic acids in the gall bladder (Kawai et al., 

2014). We thus reasoned that fecal analyses might reveal human Plasmodium infections 

even if they did not progress to a productive blood stage and/or caused only transient 

parasitemia.  

Here, we used a sensitive PCR screening approach to test fecal samples from 504 

rural Cameroonians for ape Plasmodium parasites, including subsistence agriculturalists 

and hunter-gatherers at risk of exposure to transmitting forest mosquito vectors. Targeting 

both Laverania and non-Laverania spp., we amplified P. falciparum, P. malariae and P. 
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ovale wallikeri sequences from a subset of individuals. However, none of the fecal 

samples contained ape Plasmodium parasites. Moreover, all were negative for P. vivax, 

which has recently been reported to infect both Duffy-positive and negative individuals in 

Cameroon (Fru-Cho et al., 2014; Mbenda and Das, 2014; Russo et al., 2017; Zimmerman, 

2017). Thus, fecal analyses of humans living in close proximity to wild chimpanzees and 

gorillas failed to yield evidence of abortive ape Plasmodium infections. 

 

2.3 Materials and methods 

Study sites and sample collection. Study participants were recruited from nine villages 

in the Northwest (Ntambang, NT; Sabga, SA), South (Bidou I, BI; Ndtoua, ND) and East 

(Nkolbikong, NK; Missoume, MI; Njibot, NJ; Aviation, AV; Bosquet, BO) Administrative 

Regions of Cameroon (Figure 2-1A), all of which represented rural communities. 

Moreover, the villages in the South and East Administrative Regions were located in 

densely forested areas in close proximity to the habitat of wild chimpanzees and gorillas 

previously shown to be Plasmodium-infected (Figure 2-1B). Fecal samples were obtained 

from a total of 504 individuals including 37 Fulani pastoralists (individuals who raise 

livestock), 142 rainforest hunter-gatherers (individuals who forage for meat and plant 

materials), and 325 Bantu-speaking agro-pastoralists (individuals who grow crops and 

raise livestock). For 80 of these individuals, matching blood samples collected on the 

same day as the fecal samples were also available. All samples were obtained from 

asymptomatic subjects with no signs of clinical illness. Fecal samples (~5 g) were placed 

in sterile plastic containers without preservatives, frozen at -80 °C, and shipped to the US 

on dry ice. Blood samples (collected in EDTA tubes) were obtained from adults (~10 ml) 

and juveniles (~6 ml), but not from children 10 years of age or younger. For long-term 

storage, whole blood from a subset of individuals was also blotted onto Whatman filter 
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cards (GE Healthcare, USA). All samples were coded with an alphanumerical identifier to 

protect participant confidentiality. The study was approved by the Institutional Review 

Board of the University of Pennsylvania, the Cameroonian National Ethics Committee and 

the Cameroonian Ministry of Public Health. All subjects provided written informed consent 

for the collection and analysis of samples.  

 

Extraction of fecal and blood DNA. Fecal DNA was extracted from ~220 mg aliquots 

using a modified “bead beating” method (Salonen et al., 2010) and the PSP Spin Stool 

DNA Plus Kit (Stratec Biomedical, Germany). Blood was processed in the field to isolate 

leukocytes (Miller et al., 1988), and DNA was extracted using the Puregene kit (Quigen, 

Germany). This was done to maximize DNA utilization for studies other than malaria. For 

quantitative PCR (qPCR) analysis of P. falciparum in blood samples, DNA from whole 

blood was extracted from three filter paper punches (3 mm in diameter) using the QIAamp 

DNA Mini Kit (Qiagen, Germany). DNA quality was determined using a Nanodrop, and the 

concentrations were determined using Qubit fluorometric quantitation.  

 

Intensified PCR for Plasmodium detection. Fecal DNA was screened using highly 

cross-reactive primers previously shown to amplify a 956 bp mitochondrial cytochrome B 

(cytB) fragment of both Laverania and non-Laverania parasites (Liu et al., 2010a, 2017). 

Studies of wild apes have shown that fecal samples contain only very limited quantities of 

parasite DNA (Liu et al., 2010a). To increase the likelihood of parasite detection, we 

intensified our PCR screening by testing multiple aliquots of the same fecal DNA using the 

same primers and cycling conditions (Liu et al., 2017). Depending on the amount of 

starting material, we performed between 10 and 20 independent PCRs per sample. This 

intensified approach was also used to screen fecal DNA for P. vivax and P. malariae 



36 
 

sequences, although in each case only four DNA aliquots were tested due to limited 

sample availability. For P. vivax, lineage-specific primers were used to amplify a 295 bp 

fragment of the cytochrome oxidase 1 (cox1) gene (Liu et al., 2014), while for P. malariae 

a 600 bp cytB fragment was targeted for amplification (Liu et al., 2017). DNA from 

matched, leukocyte-enriched blood samples, which were available for nine fecal 

Plasmodium-positive and 70 fecal Plasmodium-negative subjects from five villages (AV, 

BI, BO, MI, ND), were screened by regular PCR for Laverania, P. vivax and P. malariae 

infections. This was also done for a paired dried blood spot DNA from one additional fecal-

positive individual. All amplicons were sequenced using Sanger technologies, and 

amplicons with ambiguous bases were subsequently Illumina MiSeq sequenced using 

Nextera library preparation followed by read mapping to the appropriate Plasmodium 

reference sequence for base calling and variant identification. 

 

Differentiation of ape and human P. malariae. To increase the number of P. malariae 

reference sequences, we selected stored blood and fecal samples of infected apes (Liu 

et al., 2010a, 2014, 2016) and humans (Sundararaman et al., 2013) from our specimen 

bank previously shown to harbor this parasite. Using single template PCR and published 

primer sets, we amplified 3.4 kb (Liu et al., 2010a), 2.5 kb (Liu et al., 2014), or 956 bp (Liu 

et al., 2010a) fragments of the P. malariae mitochondrial genome. Two single nucleotide 

variants (SNVs) were used to assess whether P. malariae parasites identified in the blood 

(n=18) and fecal (n=1) samples of rural Cameroonians were of likely human or ape origin. 

SNV1 was amplified using P. malariae-specific cox1 primers, which generated a 104 bp 

fragment. Fecal DNA (2.5 μl) was amplified in a 25 μl reaction volume using 40 μM dNTPs, 

20 pmol of forward (ApePm_SNP1_oF 5’-ATTTTATCTACAGCTGCTGAATTT-3’) and 

reverse (ApePm_SNP1_oR 5’-TGTAATTAATAATGACCATGTTGATA-3’) primers, 1x 
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PCR buffer, and 0.25 μl of Taq from the Expand Long Template enzyme kit (Roche, USA). 

First round cycling conditions included an initial hot start of 2 min at 94 °C, followed by 15 

cycles of denaturation (94 °C, 10 s), annealing (45 °C, 30 s) and elongation (68 °C, 2 min), 

followed by 35 cycles of denaturation (94 °C, 10 s), annealing (48 °C, 30 s) and elongation 

(68 °C, 2 min, with 15 s increments for each successive cycle), followed by a final 

elongation step of 10 min at 68 °C. A 1 μl aliquot of the first round product was amplified 

using forward (ApePm_SNP1_iF 5’-TATCCACCATTAAGTACTTCTCTTAT-3’) and 

reverse (ApePm_SNP1_iR 5’-ACCTAATGTTAATCCTTTTGATCTTA-3’) primers in the 

second round PCR. Second round cycling conditions included an initial denaturation step 

of 2 min at 94 °C, followed by 60 cycles of denaturation (94 °C, 10 s), annealing (52 °C, 

30 s) and elongation (68 °C 1 min), followed by a final elongation step of 10 min at 68 °C. 

SNV2 was amplified using pan-Plasmodium or P. malariae-specific cytB primer pairs as 

previously described (Liu et al., 2010a; Liu et al., 2017), or by targeting a 110 bp cytB 

fragment using primers ApePm_SNP2_oF (5’-TTTTACCATTTTATGCAATGTTAAAA-3’) 

and ApePm_SNP2_oR (5’-AAATGAAAATTTCTTGTGGTAATTGA-3’) in the first round of 

PCR, and ApePm_SNP2_iF (5’-AATACCTAGTAAAACAGCAGGTT-3’) and 

ApePm_SNP2_iR (5’-AATGAACACATAAACCATATAATTGG-3’) in the second round. 

Amplification conditions were the same as for SNV1. 

 

Mammalian species determination A subset of human fecal samples (n=27) was 

subjected to mitochondrial DNA (D-loop) analysis to confirm their host species origin as 

previously described (Gao et al., 1999). To test for bushmeat consumption, the same 

samples were also screened for mitochondrial DNA from the African brush-tailed 

porcupine (Atherurus africanus), targeting a 219 bp cytB fragment using primers 

Aafricanuscytb_1F (5’-CTCCTYAAAATCATTAACCACTCATT-3’) and Aafricanuscytb_1R 
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(5’-GTTGCTATCACYGTAAGTAGTAATA-3’) in the first, and Aafricanuscytb_2F (5’-

AATATCTCAGRATGATGAAACTTC-3’) and Aafricanuscytb_2R (5’-

ATATTTCAAGTTTCYGTGAATGTGTA-3’) in the second round of PCR. Amplification 

conditions were the same as for P. malariae SNV1. 

 

Fecal testing for intestinal parasites and occult blood. Fecal samples were analyzed 

by wet-mount fecal microscopy with and without iodine staining in the field to identify 

visible gastrointestinal parasites or parasite ova, including human whipworm (Trichuris 

trichiura), hookworm (Ancylostoma duodenale), giant roundworm (Ascaris lumbricoides), 

and amebiasis (Entamoeba histolytica). A subset of stored, frozen fecal samples (n=84) 

were later thawed on ice and screened for occult blood using the Hemosure test 

(Hemosure, USA), a qualitative immunochemical test that detects human haemoglobin in 

stool samples, according to the manufacturer’s recommendations. Positive and negative 

control samples were processed in parallel.  

 

Quantitative PCR to determine P. falciparum DNA levels in blood samples. To 

quantify P. falciparum DNA in blood samples, we developed a quantitative Taqman-based 

PCR assay targeting a 141 bp fragment of the parasite mitochondrial cytB region. DNA 

from dried blood spots, which were available from eight fecal Plasmodium-positive and 20 

fecal Plasmodium-negative individuals, was incubated in a 25 µl reaction volume 

containing 1x Taqman Fast Universal MasterMix (Invitrogen), 0.4 µM of both forward 

(cytb_qpcr1_F 5’-GAGAATTATGGAGTGGATGGTGT-3’) and reverse (cytb_qpcr1_R 5’-

AGACATAACCAACGAAAGCAGT-3’) primers, and a FAM-labeled Taqman probe (6FAM-

ACATGCACGCAACAGGTGCT-TAMRA). PCR conditions included incubation for 2 min 
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at 50 °C, followed by a hot start of 10 min at 95 °C, followed by 45 cycles of 15 s at 95 °C 

and 45 s at 58 °C. A qPCR standard curve was generated by diluting known quantities of 

P. falciparum 3D7 DNA in human genomic DNA. All samples were run in triplicate 

alongside positive and negative controls. Plasmodium falciparum copies were averaged 

and normalized by the amount of input DNA (ng).   

 

Phylogenetic analyses. Parasite and host mitochondrial sequences were aligned using 

CLUSTAL W (Thompson et al., 1994) implemented in Geneious 9.1.2 (Kearse et al., 2012) 

with regions that could not be unambiguously aligned removed from subsequent analyses. 

Maximum likelihood phylogenetic trees were estimated using PhyML (Guindon et al., 

2010) with evolutionary models selected by jModelTest (Darriba et al., 2012). 

 

Statistical analyses. Differences in gastrointestinal parasite detection between fecal 

Plasmodium-positive and -negative individuals were assessed using a one-sided Fisher’s 

exact test after correcting for multiple tests using a Bonferroni correction. Differences in 

hemoglobin detection between fecal Plasmodium-positive and fecal Plasmodium-negative 

individuals were also assessed using a one-sided Fisher’s exact test. Differences in fecal 

Plasmodium detection between children and adults were assessed using a one-sided 

Fisher’s exact test. Blood parasite loads (determined by qPCR) of fecal Plasmodium-

positive and -negative individuals were compared using a one-sided Mann-Whitney test. 

 

Accession numbers. All newly derived Plasmodium and host mitochondrial sequences 

have been deposited in GenBank under accession numbers MF693406 - MF693457 (also 

see Tables S3-1). 
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2.4 Results 

Intensified PCR identifies P. falciparum, but not ape Laverania parasites, in fecal 

samples from rural Cameroonians Previous analyses of humans from rural Gabon and 

Cameroon failed to identify evidence of zoonotic ape Plasmodium infections 

(Sundararaman et al., 2013; Delicat-Loembet et al., 2015; Ngoubangoye et al., 2016). 

However, since only blood samples were tested, the possibility of abortive (non-blood 

stage initiating) liver infection was not explored. Here, we analyzed fecal samples from 

504 Fulani pastoralists, rainforest hunter-gatherers and Bantu-speaking agro-pastoralists 

from nine rural communities in Cameroon (Table 2-1). Most of these communities were 

located in forested areas in the immediate vicinity of the habitat of wild apes (Figure 2-

1A), which were previously shown to harbor both Laverania and non-Laverania infections 

(Liu et al., 2010a, 2014). Although the intensity of Plasmodium transmission in the nine 

villages was not determined, this close proximity, in addition to the fact that most villagers 

from southern field sites spent many hours every day in or adjacent to the forest (Figure 

2-1B), suggested that these communities were at risk of exposure to Anopheles spp. that 

carry ape parasites. 

Fecal DNAs were first screened with highly cross-reactive primers previously 

shown to amplify a 956 bp mitochondrial cytB fragment from both Laverania and non-

Laverania parasites (Liu et al. 2010a, 2017). Because fecal samples frequently contain 

only limited amounts of Plasmodium DNA, we intensified our PCR screening to maximise 

parasite detection (Liu et al., 2017). Performing 10 to 20 independent PCRs for each DNA 

sample (depending on sample availability), we amplified human Plasmodium sequences 

from the stool of 15 individuals (Table 2-1). For three of these subjects, more than half of 

20 PCR replicates were positive, suggesting a relatively high fecal parasite burden (Table 
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2-2). However, for most other subjects fecal Plasmodium PCR was at or near the limits of 

detection, with five samples yielding only a single positive reaction (Table 2-2). 

 

Figure 2-1. Human sampling sites in Cameroon. (A) The locations of nine rural villages 
(yellow circles) are shown in relation to field sites (red hatched circles) where wild-living 
chimpanzees and gorillas have previously been shown to harbor Plasmodium parasites 
(Liu et al., 2010a, 2014; Loy et al., 2017). Villages are denoted by a two-letter code (NT, 
Ntambang; SA, Sabga; BI, Bidou I; ND, Ndtoua; NK, Nkolbikong; MI, Missoume; NJ, 
Njibot; AV, Aviation; BO, Bosquet). Major cities, national boundaries and rivers are shown 
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in black, yellow and blue, respectively. (B) Image of a representative village with a large 
population of hunter-gatherers (photograph by Meagan A. Rubel). 
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All amplicons were sequenced directly and subjected to phylogenetic analysis. Fecal 

samples from 14 individuals contained P. falciparum, one of which (BO-6) also contained 

P. malariae, while the remaining sample (BO-3) contained P. ovale wallikeri (Figure 2-2). 

Replicate PCRs from the same samples yielded identical sequences, except for BI-2 and 

BO-2, both of which yielded one amplicon that contained two P. falciparum variants in 

approximately equal proportions, differing by one and two nucleotides, respectively 

(Figure 2-2). Analysis of available blood samples confirmed the fecal results, identifying 

additional P. malariae co-infections in three individuals that were not detected by fecal 

analysis (Table 2-2). None of the 504 fecal samples yielded sequences from ape 

Laverania parasites. 

Table 2-1. Detection of Plasmodium DNA in fecal samples of subjects from 
rural Cameroon 

Village (Code) 
Fecal 

samples 
screened 

Plasmodium speciesa  

P. 
falciparum 

P. 
malariae 

P. ovale 
wallikeri 

Ape 
Laverania 

Ape 
P. vivax 

Ape 
P. 

malariae 
Other spp. 

Aviation (AV) 19 2 0 0 0 0 0 0 

Bidou I (BI) 68 3 0 0 0 0 0 0 

Bosquet (BO) 51 6 1b 1 0 0 0 0 

Missoume (MI) 31 1 0 0 0 0 0 0 

Ndtoua (ND) 65 2 0 0 0 0 0 1c 

Njibot (NJ) 20 0 0 0 0 0 0 0 

Nkolbikong (NK) 24 0 0 0 0 0 0 0 

Ntambang (NT) 174 0 0 0 0 0 0 0 

Sabga (SA) 52 0 0 0 0 0 0 0 

Total 504 14 1 1 0 0 0 1 
aPlasmodium species were identified by direct amplicon sequencing and phylogenetic analysis. 
bSample BO-6 contained both P. falciparum (956 bp cytB fragment) and P. malariae (956 bp and 600 cytB 
fragments) sequences. 
cSample ND-1 yielded a rodent Plasmodium sequence (295 bp cox1 fragment; see Figure 2-4). 
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Table 2-2. Relative parasite burden in Plasmodium positive human fecal 
samples  

Subject  Age Ethnicity 

Fraction of 
PCR positives 

using pan-
Plasmodium 

primersa 

Fraction of 
PCR positives 

using P. 
malariae 
primersa 

Fraction of 
PCR positives 
using P. vivax 

primersa 

Plasmodium 
species in 

fecal sampleb 

Plasmodium 
species in 
matching 

bloodb 

AV-1 32 Baka 1/20 0/4 0/4 Pf Pf 

AV-2 7 Maka 3/20 0/4 0/4 Pf n/a 

BI-1 44 Fang 1/20 0/4 0/4 Pf Pf 

BI-2 50 Fang 4/20 0/4 0/4 Pf Pf, Pm 

BI-3 11 Bagyeli 8/20 0/4 0/4 Pf Pf, Pm 

BO-1 20 Baka 1/20 0/4 0/4 Pf Pf 

BO-2 15 Baka 1/20 0/4 0/4 Pf Pf 

BO-3 7 Baka 4/20c 0/4 0/4 Powc n/a 

BO-4 5 Baka 16/20 0/4 0/4 Pf n/a 

BO-5 28 Baka 7/20 0/4 0/4 Pf Pf 

BO-6 7 Baka 3/20d 3/4 0/4 Pf, Pm n/a 

BO-7 8 Baka 20/20 0/4 0/4 Pf n/a 

MI-1 17 Maka 1/20 0/4 0/4 Pf Pf, Pm 

ND-1 30 Bagyeli 0/20 0/4 1/4e rodent spp. neg 

ND-2 6 Bagyeli 14/20 0/4 0/4 Pf n/a 

ND-3 60 Fang 4/20 0/4 0/4 Pf Pf 
aNumber of positive reactions per total number of PCR replicates of the same DNA sample. 
bPf, P. falciparum, Pow, P. ovale wallikeri, Pm, P. malariae, n/a, blood sample not available; neg, negative 
for Plasmodium sequences. 
cAll four positive PCR reactions yielded P. ovale wallikeri sequences due to primer cross-reactivity. 
dTwo of three positive PCR reactions yielded P. falciparum sequences, while the third yielded P. malariae 
sequences. 
eOne positive PCR reaction yielded a P. atheruri-like sequence (see Figure 2-4A). 
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Figure 2-2. Plasmodium spp. detected in the stool and blood samples of rural 
Cameroonians. The phylogenetic positions of Plasmodium sequences (956 bp cytB 
fragment) derived from fecal (blue) and blood (red) samples of rural Cameroonians are 
shown in relation to ape and human Plasmodium reference sequences (green and black, 
respectively). Samples are labeled according to their village of origin (see Figure 2-1 
legend for details), followed by a randomly assigned number. For each fecal and blood 
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sample, only distinct haplotypes are shown (two haplotypes from the same fecal sample 
are indicated as v1 and v2, respectively). Fecal samples for which matching blood 
samples were not available are indicated by stars. Brackets indicate Plasmodium spp. (Pf, 
Plasmodium falciparum; Po-related, Plasmodium ovale-related, Poc, Plasmodium ovale 
curtisi, Pow, Plasmodium ovale wallikeri, Pm-related, Plasmodium malariae-related, Pm, 
P. malariae; Pv, Plasmodium vivax). The tree was constructed using PhyML (Guindon et 
al., 2010) with TIM2+I as the evolutionary model. Bootstrap values ≥ 80% are shown (the 
scale bar represents 0.01 nucleotide substitutions per site). GenBank accession numbers 
for individual sequences are listed in Table S3-1.  
 

Fecal samples from rural Cameroonians contain P. malariae but not P. vivax 

sequences. To specifically search for non-Laverania parasites, all 504 human fecal 

samples were rescreened using P. vivax and P. malariae-specific primer pairs. Again, 

each fecal sample was subjected to repeat PCR testing, this time using four DNA aliquots 

per primer set. This analysis confirmed the presence of P. malariae in the fecal sample of 

subject BO-6, but failed to identify additional positive samples (Table 2-2). 

Plasmodium vivax-specific primers identified one positive sample, but sequence 

analysis of the respective amplicon identified a porcupine rather than a human parasite 

(see Section 3.3 below). Thus, despite the wide distribution of P. vivax among 

chimpanzees and gorillas in southern Cameroon (Liu et al., 2010a), and the recent finding 

of P. vivax infection in both Duffy-positive and -negative humans in the same region (Fru-

Cho et al., 2014; Mbenda and Das, 2014; Russo et al., 2017; Zimmerman, 2017), P. vivax 

sequences were not amplified from the fecal samples of any of these individuals. 

To investigate the possible host origin of the newly identified P. malariae and P. 

ovale wallikeri parasites, we constructed a phylogenetic tree from available cytB 

sequences (Figure 2-2). This analysis showed that both P. malariae and P. ovale wallikeri 

sequences failed to form host-specific lineages, most likely because existing genetic 

information is too limited to differentiate ape and human parasites (Figure 2-2). We thus 

performed additional PCR amplifications to increase the number (and in some cases the 
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length) of ape- and human-derived P. malariae sequences (this was not possible for P. 

ovale wallikeri due to a lack of positive samples). Using limiting dilution PCR, we amplified 

mitochondrial fragments (3.4kb, 2.5kb, 956 bp) from stored ape (n=9) and human (n=16) 

samples previously shown to contain this parasite (Liu et al., 2010a, 2014; Sundararaman 

et al., 2013). An alignment of this expanded sequence set revealed two SNVs spaced 

1,906 bp apart that distinguished human from most ape-derived P. malariae strains 

(Figure 2-3). All human-derived P. malariae parasites contained a T at position 276 in the 

cox1 gene (SNV1), and a T or A at position 690 in the cytB gene (SNV2), while nearly all 

P. malariae parasites from wild apes contained a C at these two positions (Figure 2-3); 

the single exception was a parasite from a habituated chimpanzee (Leo) sampled in the 

Tai Forest, which contained an A in cytB (SNV1 was not sequenced).  

Since two bonobos and three chimpanzees living in sanctuaries also harbored P. 

malariae strains with human-specific SNVs, it appears that captive apes are susceptible 

to infection with human P. malariae parasites, a finding consistent with experimental 

infections of chimpanzees (Rodhain, 1948). Whether humans can become infected with 

ape P. malariae under natural conditions remains unknown; however, the fact that the P. 

malariae strain in the BO-6 fecal sample was identical to all other human parasites, 

including P. malariae sequences amplified from matching blood samples, suggests that it 

is of human origin (Figure 2-3). 
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Figure 2-3. Single nucleotide variants distinguishing human and ape Plasmodium 
malariae parasites. A schematic representation of a portion of the P. malariae 
mitochondrial genome is shown (black line), with yellow boxes denoting cox1 and cytB 
coding regions. Blue lines indicate the locations of two single nucleotide variants (SNV1 
and SNV2) spaced 1,906 bp apart, which differentiate human (black) from most ape-
derived (green) P. malariae sequences. Newly derived P. malariae reference sequences 
from humans (Hu), bonobos (Pp), chimpanzees (ptv; Pan troglodytes verus; ptt; Pan 
troglodytes troglodytes; pte, Pan troglodytes ellioti) and gorillas (ggg, Gorilla gorilla gorilla) 
are shown, with newly derived sequences in bold and sequences from captive apes 
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indicated with a yellow triangle (see Table S3-1 for a more detailed description of each 
sequence). P. malariae sequences amplified from the fecal (blue) and blood (red) samples 
of rural Cameroonians are shown at the bottom. 

 

 

Detection of a porcupine Plasmodium parasite in the fecal sample of a hunter-

gatherer. Although the P. vivax-specific primers failed to uncover P. vivax infection, they 

amplified a 295 bp cox1 sequence (Figure 2-4A) which was very similar to the 

corresponding sequence of Plasmodium atheruri, a parasite that infects African brush-

tailed porcupines (Atherurus africanus) (Van Den Berghe et al., 1958; Pacheco et al., 

2011). Since this parasite was detected in the fecal sample of a hunter-gatherer (ND-1), 

we investigated whether the subject was productively infected with the rodent parasite 

(Table 2-2). Screening a blood sample collected on the same day, we failed to amplify P. 

atheruri or any other Plasmodium sequences from this individual. To exclude sample mix-

up, we subjected the ND-1 fecal sample to host mitochondrial analysis (Gao et al., 1999). 

Amplifying a hypervariable D-loop fragment, we confirmed that this and 26 other fecal 

samples from hunter-gatherers of the same ethnic group sampled at the same village 

contained human mitochondrial sequences (Figure 2-4B). Reasoning that the detected 

parasite may have infected consumed bushmeat, we designed porcupine-specific 

mitochondrial primers and used these to probe the same fecal samples. Interestingly, this 

analysis revealed porcupine mitochondrial DNA in the feces of eight hunter-gatherers, 

including subject ND-1 (Figure 2-4C). Since two different mitochondrial DNA haplotypes 

were identified, it is likely that these individuals consumed at least two porcupines in the 

days prior to fecal testing. This is not surprising given that porcupines are frequently 

hunted for food in this and other regions in western central Africa (Jori et al., 1998; Gaubert 

et al., 2015). Thus, the P. atheruri-like parasite, which was detected in the stool, but not in 
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the blood, of subject ND-1, most likely infected a prey animal whose sequences survived 

passage through the human digestive tract (De Nys et al., 2015). Since great apes are 

also hunted for bushmeat, a similar scenario would have to be excluded if ape parasite 

sequences were detected in human fecal samples.   

Figure 2-4. Detection of a porcupine parasite in human stool. (A) The phylogenetic 
position of a Plasmodium sequence (295 bp cox1 fragment) amplified from the fecal 
sample of a human hunter-gatherer (blue) is shown in relation to rodent and human 
Plasmodium reference sequences (black). (B) Confirmation that fecal samples from 27 
hunter-gatherers (blue) are of human origin. Newly derived mitochondrial sequences (500 
bp D-loop fragment) are shown in relation to published human and chimpanzee reference 
sequences (black). (C) Fecal samples of nine hunter-gatherers (blue) contained porcupine 
mitochondrial DNA. Amplified sequences (219 bp cytB fragment) are shown in relation to 
reference sequences for African brush-tailed (Atherurus africanus) and crested (Hystrix 
cristata) porcupines (black). All trees were constructed using PhyML (Guindon et al., 2010) 
with TIM1+I (A), TPM3uf+I+G (B) and HKY+G (C) as the evolutionary models. Bootstrap 
values ≥ 80% are shown (the scale bars represents 0.05 nucleotides substitutions per 
site). GenBank accession numbers for individual sequences are listed in Table S3-1. 
 

Fecal detection of Plasmodium DNA is indicative of concurrent parasitemia. To 

determine whether any of the other individuals who were fecal Plasmodium-positive 

lacked a corresponding blood infection, we screened all subjects for whom blood samples 

were available (blood was not collected from six fecal-positive children). Using pan-
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Laverania-, P. malariae- and P. vivax-specific primers, we identified P. falciparum in all 

paired blood samples (Figure 2-2), three of which (MI-1, BI-2, and BI-3) also contained P. 

malariae parasites (Table 2-2). None of the blood samples was P. vivax-positive. All blood-

derived P. falciparum sequences were identical to the corresponding fecal parasite 

sequences (Figure 2-2). Thus, for all subjects for whom matching fecal and blood samples 

could be tested, we found that the detection of Plasmodium DNA in the fecal sample was 

indicative of a concurrent blood stage infection. 

 

Fecal Plasmodium testing underestimates blood stage infections. The fact that all 

fecal PCR-positive individuals (except for subject ND-1) were also blood stage-infected 

suggested that fecal Plasmodium DNA derived from blood parasites. However, it remained 

unclear to what extent fecal-negative individuals had blood stage infections. To address 

this question, we screened blood samples from a representative subset of fecal-negative 

individuals (n=70) from the five villages where fecal-positive individuals were identified 

(AV, BI, BO, MI, ND). Using all three Plasmodium primer sets, we identified parasite 

sequences in a large fraction (53%) of these individuals. The most common infection was 

P. falciparum, which was detected in the blood of 28 of the 70 fecal-negative individuals 

(Table 2-3). Plasmodium malariae, P. ovale wallikeri and P. ovale curtisi were also 

detected, many as coinfections with P. falciparum (Table 2-3). Of note, all blood-derived 

P. malariae sequences contained the human-specific SNVs, and none of the 70 blood 

samples was P. vivax-positive. These results show that the great majority of blood stage-

infected individuals do not have detectable parasite DNA in their stool, suggesting that 

PCR-based fecal screening is of limited utility for malaria epidemiological studies.  
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Table 2-3. Plasmodium species in the blood of fecal Plasmodium negative 
individuals 

Village Samples 
screened 

Plasmodium speciesa 

Pf Pm Poc Pow Pv Pf/Pmb Pf/Pocb Pf/Powb 

AV 10 3 0 0 0 0 1 0 0 

BI 25 6 3 1 0 0 4 2 1 

BO 25 3 5 0 0 0 4 0 0 

MI 5 0 0 0 0 0 0 0 0 

ND 5 3 0 0 0 0 1 0 0 

Total 70 15 8 1 0 0 10 2 1 
aPlasmodium species were identified by direct amplicon sequencing and phylogenetic analysis. Pf, P. 
falciparum; Pm, P. malariae; Pow, P. ovale wallikeri; Poc, P. ovale curtisi; Pv, P. vivax. 
bDual infections 

 

Fecal Plasmodium detection is not secondary to gastrointestinal bleeding. The 

finding that most blood-positive individuals were fecal Plasmodium-negative raised the 

possibility that fecal parasite DNA was secondary to intestinal bleeding. Gastrointestinal 

parasites are known to cause bloody stools and are frequently detected in humans from 

Cameroon (Tchuem-Tchuente et al., 2012; Karagiannis-Voules et al., 2015). To examine 

whether bleeding caused by intestinal parasites was a primary reason for fecal 

Plasmodium positivity, we compared the percentage of Plasmodium-positive and -

negative stool samples that were also positive for gastrointestinal parasites for individuals 

from five villages (AV, BI, BO, MI, ND). Although fecal Plasmodium-positive individuals 

tended to have higher rates of whipworm (Trichuris trichiura), hookworm (Ancylostoma 

duodenale or Necator americanus), and giant roundworm (Ascaris lumbricoides) 

infections than fecal Plasmodium-negative individuals, these differences were not 

statistically significant (Table 2-4). Separate analyses of adults and children yielded the 

same result (not shown). Thus, the presence of Plasmodium DNA in fecal samples was 

not secondary to infection with gastrointestinal parasites.  
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Table 2-4. Prevalence of gastrointestinal parasites in Plasmodium fecal 
positive and negative subjects 

 Fecal Plasmodium positive  Fecal Plasmodium negative  

Intestinal 
Parasite 

Number of 
samples 

Number 
positive % positive  

Number 
of 

samples 

Number 
positive 

% 
positive p valuea 

Whipworm 15 6 40  218 56 26 0.90 
Giant roundworm 15 8 53  218 59 27 0.17 
Amebiasis 15 0 0  218 9 4 1.0 
Hookworm 15 3 20  218 13 6 0.36 
Any parasite 15 10 67  218 88 40 0.22 
ap values were calculated using a one-tailed Fisher’s exact test with Bonferroni correction. 
 

 

To examine whether intestinal bleeding due to any cause was associated with fecal 

Plasmodium detection, we examined the 15 Plasmodium-positive stool samples as well 

as 69 Plasmodium-negative stool samples from 37 blood-positive and 32 blood-negative 

individuals for occult blood. Two of the Plasmodium-positive and two of the Plasmodium-

negative fecal samples were Hemosure positive; however, these differences were not 

statistically significant regardless of whether all (2/15 versus 2/69; Fisher’s exact test, P = 

0.14) or only the parasitemic individuals (2/15 versus 0/37; Fisher’s exact test, P = 0.08) 

were included in the analysis. Thus, while gastrointestinal bleeding may in some instances 

increase the likelihood of fecal Plasmodium detection, occult blood does not explain the 

presence of parasite sequences in most stool samples. 

 

Fecal Plasmodium detection is associated with parasitemia. Comparing the age 

distribution of fecal PCR-positive individuals, we noted that parasite detection was 

disproportionately higher in fecal samples of children (6/15, 40%) than in the stool of adults 

(9/204, 4%) (Fisher’s exact test, P < 0.0001). Since even among asymptomatic individuals 

parasitemia tends to decrease with age (Baird, 1998; Bousema et al., 2004; Balaraine et 
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al., 2009; Zhou et al., 2016), we hypothesized that fecal Plasmodium positivity may be 

associated with higher parasite titers in the blood. To examine this possibility, we 

developed a qPCR assay and used it to determine the copy number of P. falciparum in 

dried blood spot samples available for eight fecal-positive and 20 fecal-negative 

individuals. Testing all samples in triplicate, we found 26-fold more parasite DNA in the 

blood of fecal-positive than fecal-negative subjects (Figure 2-5). Thus, individuals with 

high Plasmodium blood titers were more likely to have detectable parasite DNA in their 

stool than individuals with low parasitemia.   

 

Figure 2-5. Fecal Plasmodium-positive individuals have higher blood parasitemia than 
fecal Plasmodium-negative individuals. Blood parasite loads were determined for fecal 
Plasmodium-positive (n = 8) and -negative (n = 20) individuals by Taqman quantitative 
PCR. Values are expressed as copies of P. falciparum per ng of whole blood DNA derived 
from dried blood spots (DBS). Each sample was tested in triplicate. Two samples that 
were below the limit of detection were set to background DNA levels (0.05).  Error bars 
shows standard deviation from the mean and the P value was calculated using a one sided 
Mann-Whitney test.  
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2.5 Discussion 

To examine the zoonotic potential of ape Plasmodium parasites, we screened fecal 

samples from humans living in close proximity of wild chimpanzees and gorillas for 

evidence of abortive liver infection. We reasoned that while receptor/ligand 

incompatibilities at the erythrocyte invasion stage may protect humans from blood stage 

infection, similar barriers may not exist to prevent invasion of hepatocytes. Despite using 

a highly sensitive PCR approach, we found no evidence for such a scenario. Although we 

amplified P. falciparum, P. malariae, and P. ovale wallikeri from human stool, none of the 

504 samples tested was positive for ape Plasmodium DNA. This finding is unlikely the 

result of insensitive detection methods. Assuming that ape Plasmodium sporozoites 

delivered by a mosquito bite would infect at least five hepatocytes, liver stage schizonts 

should produce at least 150,000 merozoites (Shortt et al., 1951). Assuming further that at 

least 5% of these merozoites are cleared into the biliary system, this would yield ~75 

parasites per gram of fecal material (the average adult excretes ~250 g of feces per day; 

Rose et al., 2015). Since we extracted ~0.22 g of fecal material and screened over 45 l 

of the resulting DNA, ~45 mitochondrial genomes (assuming 20 copies per parasite) 

should have been present and readily amplified. Indeed, we detected a porcupine parasite 

after passage through the human gastrointestinal tract, indicating sufficient PCR sensitivity 

to find even rare sequences. However, the likelihood of amplifying exo-erythrocytic 

parasite DNA from human fecal samples depends primarily on the local transmission 

intensity, especially since abortive liver infections would only be detectable for a couple of 

days following an infective mosquito bite. In the absence of such information, we cannot 

exclude that our failure to detect ape parasites reflects a lack of human exposure to 

infective mosquitoes. Alternatively, ape parasites may be unable to replicate in the human 

liver and/or pre-erythrocytic parasite DNA may not be shed into the human stool. Until 
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entomological inoculation rates (EIRs) for Anopheles spp. that transmit ape Plasmodium 

parasites are determined for these communities, it is impossible to differentiate between 

these possibilities.   

Previous studies of human communities in rural Cameroon reported P. falciparum 

EIRs to range between 17 and >500 infected bites per person per year (Njan Nloga et al., 

1993; Meunier et al., 1999; Antonio-Nikidjio et al., 2005; Atangana et al., 2010). We thus 

expected a sizable fraction of our study population to have been exposed to mosquitoes 

carrying this parasite in the days prior to the fecal collection. Since only 15 of 504 

individuals contained human Plasmodium sequences in their stool, we examined parasite 

titers in matching blood samples. This analysis revealed that all individuals with parasite 

DNA in their fecal samples were also blood stage-infected. While this alone does not argue 

against the shedding of pre-erythrocytic parasite DNA, the fact that fecal-positive 

individuals also had higher parasite titers in their blood strongly suggests that most fecal 

parasite DNA derives from infected erythrocytes. This is consistent with the observations 

that fecal and blood Plasmodium copy numbers rose concurrently in experimentally 

infected mice (Abkallo et al., 2014) and that a monkey solely infected with parasitized 

erythrocytes also had detectable Plasmodium DNA in its stool (Kawai et al., 2014). 

Moreover, Laverania parasites, which replicate to high blood titers, are more readily 

amplified from fecal material than non-Laverania parasites such as P. vivax, which exhibit 

only low levels of parasitemia (Liu et al., 2014). Although P. yoelli DNA was detected in 

the liver, gall bladder and stool of experimentally-infected mice several days before the 

onset of parasitemia, the sporozoite dose used in these studies (1,500 - 25,000 per 

mouse; Abkallo et al., 2014) was much higher than what would be delivered by a typical 

infective mosquito, which injects on average fewer than 100 sporozoites per bite (Medica 
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and Sinnis, 2005). Thus, it is possible that most, if not all, of the parasite DNA detected in 

fecal samples of naturally infected primates is derived from blood stage infection. 

The routes by which Plasmodium DNA is shed into the human stool are not 

understood. One possibility is gastrointestinal bleeding, but the detection of occult blood 

in the stool of fecal Plasmodium-positive individuals was not significantly higher than that 

of fecal Plasmodium-negative individuals. Thus, while potentially contributing to parasite 

detection in some individuals, gastrointestinal bleeding is unlikely to be the primary cause 

for fecal Plasmodium DNA positivity. A more plausible scenario is excretion into the biliary 

system, as has been proposed for P. yoelli-infected mice (Abkallo et al., 2014). Given the 

central role of the liver in removing damaged erythrocytes from the circulation (Theurl et 

al., 2016), it is likely that parasitized red blood cells are cleared into the bile proportional 

to their numbers in the blood. This scenario is consistent with the fact that higher 

parasitemia levels are associated with higher Plasmodium detection rates in fecal 

samples.  

Most indigenous people in central Africa are protected from P. vivax malaria 

because their erythrocytes lack the Duffy antigen receptor for chemokines (DARC), which 

is used by P. vivax merozoites to invade red blood cells (Miller et al., 1976). However, 

since ape P. vivax has been identified in a Duffy-positive European forest worker 

(Prugnolle et al., 2013), we reasoned that rural Cameroonians might acquire ape P. vivax 

liver infections, even if their Duffy-negative phenotype protected them from blood stage 

infection. This hypothesis was further supported by the recent finding of P. vivax in some 

Duffy-negative individuals in Cameroon, which could have, at least theoretically, been 

derived from the introduction of an ape parasite (Fru-Cho et al., 2014; Mbenda and Das, 

2014; Russo et al., 2017; Zimmerman, 2017). To examine this possibility, we used 

species-specific primers to screen all 504 human fecal samples for P. vivax sequences. 
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Despite the wide distribution of ape P. vivax among chimpanzees and gorillas in 

Cameroon (Liu et al., 2014) as well as previous reports of P. vivax-specific seroreactivity 

in Duffy-negative individuals from the Republic of Congo (Culleton et al., 2009), we failed 

to amplify ape or human P. vivax sequences from any of the specimens tested, including 

80 matched blood samples. Since the Duffy-negative phenotype is unlikely to protect 

humans against liver stage infection (Herrera et al., 2005; Culleton et al., 2009), our 

findings indicate that Cameroonian forest dwellers are either not exposed to ape P. vivax, 

which seems unlikely, or that abortive liver infection does occur, but is not detectable by 

fecal analyses. The resolution of this question may require development of new methods 

such as serological assays capable of detecting immune responses that are specific for 

ape P. vivax antigens. 

We also examined the host species origin of P. malariae parasites that were 

detected in one fecal and 18 blood samples from our study cohort. Amplifying a 956 bp 

cytB fragment, we realized that this sequence was not sufficiently diverse to differentiate 

ape- and human-specific P. malariae lineages (Figure 2-2). We thus generated longer 

mitochondrial fragments from additional P. malariae-containing samples, identifying two 

single nucleotide variants that differentiated human from most ape P. malariae parasites. 

Both fecal- and blood-derived P. malariae sequences from humans contained a T at 

position 276 in the cox1 gene (SNV1), and a T or A at position 690 in the cytB gene 

(SNV2), while P. malariae sequences from all but one wild ape contained Cs at these two 

positions (Figure 2-3). These data suggest that most wild apes harbor P. malariae strains 

that are distinct from those infecting humans and that the rural Cameroonians were 

infected with human, and not ape, parasites. However, it remains unknown whether 

human and ape P. malariae parasites represent two distinct Plasmodium spp., and if so, 

whether ape P. malariae strains would infect humans in natural settings. The same is true 
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for ape- and human-derived P. ovale parasites, which are even less well characterized 

due to the paucity of naturally occurring infections. 

Non-invasive fecal-based methods have been instrumental in characterizing the 

molecular epidemiology of ape malaria parasites, identifying numerous new Plasmodium 

spp. that were not previously known to exist (Kaiser et al., 2010; Liu et al., 2010a, 2014, 

2017; Prugnolle et al., 2010). Ape Laverania parasites, in particular, are readily detected 

in endemic areas such as Cameroon, with 18% to 25% of fecal samples from both 

chimpanzees and gorillas yielding parasite sequences when screened by diagnostic PCR 

(Liu et al., 2010a; Prugnolle et al., 2010). In light of these data, the fact that we detected 

Plasmodium DNA in only 3% of human fecal samples was surprising. Although we 

extracted DNA from a smaller fecal aliquot than is usually used for wild apes, this 

difference cannot account for the nearly 10-fold difference in detection frequency. The 

reason(s) for the much higher fecal parasite detection rates in wild apes is not known, but 

may be due to higher overall prevalence rates similar to what has been observed in wild 

macaques (Zhang et al., 2016), higher blood titers, more frequent gastrointestinal 

bleeding, or a combination of these factors. It is also possible that apes are much more 

frequently bitten by infective mosquitoes, which might result in the fecal shedding of larger 

quantities of pre-erythrocytic parasite DNA.  

In summary, we report here the absence of ape Plasmodium sequences in fecal 

samples of rural Cameroonians at risk of exposure to such parasites. While our results 

failed to provide evidence for abortive liver infections, they do not rule out that such 

infections are, in fact, occurring. This is particularly true for ape P. vivax, which is prevalent 

in wild apes and has been shown to productively infect humans. One fundamental 

question, therefore, is whether liver-derived merozoites, which lack the ability to parasitize 

erythrocytes, are cleared through excretion into the biliary tract or through other pathways 
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such as phagocytic cells in the liver or other organs. A second fundamental question is 

how often and under what circumstance humans are bitten by mosquitoes that carry ape 

Plasmodium sporozoites. Given the critical role of non-invasive testing in identifying ape 

malaria parasites and its potential to probe barriers of cross-species infection, further 

experimentation, including longitudinal studies in macaques, will be required to determine 

the sources, kinetics and mechanisms of fecal parasite shedding. Ultimately, the utility of 

fecal testing in detecting exo-erythrocytic parasite DNA will have to be addressed in 

humans, possibly in the context of P. falciparum and P. vivax vaccination studies that use 

mosquito bites to challenge immunised individuals (Roestenberg et al., 2009; Herrera et 

al., 2011; Bijker et al., 2013; Spring et al., 2014; Dunachie et al., 2015; Arevalo-Herrera et 

al., 2016). Such studies, in combination with investigations of the distribution, ecology, 

and biting behavior of the mosquito vectors that transmit ape Plasmodium parasites, will 

greatly aid in determining the zoonotic potential of these parasites and the associated 

human infection risk. 
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3.1 Abstract 

Whole genome sequencing (WGS) of microbial pathogens from clinical samples is a highly 

sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug 

resistance mechanisms of many infections.  However, WGS of organisms which exhibit 

low densities in their host is challenging due to high levels host genomic DNA (gDNA), 

which leads to very low coverage of the microbial genome.  WGS of Plasmodium vivax, 

the most widely distributed form of malaria, is especially difficult because of low parasite 

densities and the lack of an ex-vivo culture system.  Current techniques used to enrich P. 

vivax DNA from clinical samples require significant resources or are not consistently 

effective.  Here, we demonstrate that selective whole genome amplification (SWGA) can 

enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for 

high quality WGS, allowing genetic characterization of isolates that would have otherwise 

been prohibitively expensive or impossible to sequence.  We achieved an average 

genome coverage of 24x with up to 95% of the P. vivax core genome covered by ≥5 reads.  

Single nucleotide polymorphism (SNP) characteristics and drug resistance mutations 

seen were consistent with other P. vivax sequences from a similar region in Peru, 

demonstrating that SWGA produces high quality sequences for downstream analysis.  

SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates 

from clinical samples that can be applied to other neglected microbial pathogens. 

 

3.2 Introduction 

Malaria is a mosquito-borne infection caused by protozoan parasites of the Plasmodium 

genus.  Of the six Plasmodium species known to infect humans (Calderaro et al., 2013; 

Singh et al., 2004; Sutherland et al., 2010), P. vivax is the most widely distributed, causing 

approximately half of all clinical cases of malaria outside of Africa (World Health 
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Organisation, 2017).  Whole genome sequencing (WGS) of Plasmodium parasites from 

clinical samples has revealed important insights into the biology, epidemiology, and 

mechanisms of drug resistance of malaria (Borrmann et al., 2013; Chan et al., 2012; 

Flannery et al., 2016; Hester et al., 2013; Manske et al., 2012; Miotto et al., 2013; Pearson 

et al., 2016; Winter et al., 2015).  For P. vivax, WGS of clinical isolates has the potential 

to uncover mechanisms underlying some of the unique aspects of this parasite’s biology, 

such as distinguishing between reinfection and relapse due to activation of dormant liver 

parasites.  However, WGS of P. vivax from clinical samples is challenging, mainly due to 

low parasite densities in clinical samples compared to P. falciparum and the lack of a 

robust ex-vivo culture system.   

Multiple techniques have been developed to enrich Plasmodium genomic DNA 

(gDNA) from clinical samples, including leukocyte depletion (Auburn et al., 2012; Pearson 

et al., 2016; Venkatesan et al., 2012), hybrid selection with RNA baits (Bright et al., 2012; 

Hupalo et al., 2016) short-term ex-vivo culture (Auburn et al., 2013), adaptation to growth 

in splenectomized monkeys (Carlton et al., 2008; Neafsey et al., 2012) and single cell 

sequencing (Nair et al., 2014).  The majority of these techniques require significant labor 

and resources.  While leukocyte depletion is the most cost-effective, it requires sample 

processing within 6 hours of sample collection, which is not feasible at many field sites, 

and is not always effective.  Two recent studies that performed WGS on over 400 clinical 

isolates of P. vivax (Hupalo et al., 2016; Pearson et al., 2016) employed hybrid selection 

and leukocyte depletion to enrich P. vivax gDNA from clinical samples.  Pearson et al. 

(2016) used leukocyte depletion on 292 clinical samples and had to eliminate 144 (49%) 

of their samples from further population genetics analysis due to low quality, which often 

occurs due to contaminating human DNA.  Hupalo et al. (2016) used hybrid selection to 

enrich their samples, with 31 out of 170 sequences (21%) removed from further analysis 
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due to low quality.  Although more frequently successful, the hybrid selection technique 

requires either expensive synthetic RNA baits or a large amount of pure P. vivax DNA to 

create the RNA baits, which is difficult to obtain.  In addition, hybrid selection can introduce 

bias, since is approximately half as efficient at capturing regions with GC content >50% 

(Bright et al., 2012). 

An alternative method is selective whole genome amplification (SWGA).  SWGA 

has been used to enrich DNA of the ape Plasmodium parasites P. reichenowi and P. 

gaboni, from whole blood samples with submicroscopic DNA levels (Larremore et al., 

2015; Sundararaman et al., 2016) as well as P. falciparum genomes from dried blood 

spots (Guggisberg et al., 2016) for WGS.  SWGA preferentially amplifies the genomes of 

pathogens from complex mixtures of target and host DNA (Leichty and Brisson, 2014) 

(Figure 3-1).  SWGA does not require separation of target DNA from background DNA, 

making it an attractive option for pathogens that cannot be amplified in culture.  DNA 

amplification is carried out by the highly processive, strand displacing phi29 DNA 

polymerase and a set of pathogen specific primers that target short (6-12 nucleotide) 

motifs that are common in the pathogen genome and uncommon in the host genome.  The 

strand displacement function of phi29 results in the amplification of genomic regions where 

primers bind frequently, leading to the preferential amplification of genomes with frequent 

primer-binding sites.  Here, we show that SWGA efficiently enriches P. vivax gDNA from 

unprocessed human blood samples and dried blood spots for cost-effective, high-quality 

whole genome sequencing.    
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Figure 3-1. Selective whole genome amplification (SWGA) of Plasmodium vivax 
genomic DNA (gDNA) from human blood samples.  (A) SWGA primers bind frequently 
to Plasmodium vivax gDNA and infrequently to human gDNA.  (B) When phi29 encounters 
double stranded gDNA, it displaces the newly synthesized strand, opening new primer 
binding sites on the synthesized gDNA, leading to selective amplification of templates with 
frequent primer binding sites. (C) Post-SWGA, the percentage of P. vivax DNA has 
increased relative to host DNA. 
 

3.3 Results 

Primer design and optimization using P. vivax infected whole blood samples. To 

perform SWGA on P. vivax gDNA from unprocessed human blood samples, we designed 

primers that specifically amplified this parasite’s DNA using a previously published 

approach for P. falciparum (Sundararaman et al., 2016).  Briefly, we identified the most 

frequently occurring motifs of 6-12 nucleotides in length in the P. vivax Salvador-1 (Sal-1) 

reference genome.  We selected the top 10,000 primers of each length, yielding a total of 

70,000 primers for further analysis.  We filtered these primers based on characteristics 
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such as melting temperature (18–32°C), ability to homodimerize (no greater than 3 

consecutive matches), binding frequency on the human genome and Sal-1 genome (less 

frequent than once every 500,000 bp and more frequent than once every 50,000 bp, 

respectively), and infrequent binding of the human mitochondrial genome (less than 4 

binding sites).  Next, we removed primers predicted to bind the Sal-1 subtelomeres.  These 

filters resulted in a pool of 222 primers.  We separated these primers into 6 sets that were 

predicted not to form heterodimers, and identified the top set (pvset1) of 10 primers using 

a selection algorithm described previously (Sundararaman et al., 2016).  gDNA from an 

unprocessed P. vivax infected whole blood sample (MRL2) was subjected to SWGA with 

primer set pvset1 prior to shotgun sequencing (Figure S3-1).  SWGA significantly 

increased the percent of reads that mapped to the P. vivax Sal-1 reference genome from 

0.7% to 73.5% (Figure S3-1A) and improved the genome coverage obtained from ~80 

million base pairs of sequencing from 1.5% to 58% (Figure S3-1B). 

We observed that genome coverage obtained per base pair sequenced was lower 

than that achieved with SWGA of P. falciparum gDNA using the same primer set design 

methods (Sundararaman et al., 2016). Visual inspection of the P. vivax genome coverage 

from samples subjected to SWGA revealed that coverage gaps were typically in regions 

with comparatively higher GC content (Figure 3-2A).  The P. falciparum genome is 

extremely AT-rich with only 19.4% of bases consisting of Gs or Cs, while the GC content 

for the P. vivax genome is 42.3% (Carlton et al., 2008).  The P. vivax genome also has an 

isochore structure: internal chromosomal areas have a high GC-content and subtelomeres 

and centromeres have a lower GC-content (McCutchan et al., 1984).  Since phi29 DNA 

polymerase pauses more frequently during strand displacement and primer extension in 

regions with high GC content of DNA (Morin et al., 2012), we hypothesized that differences 
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in base composition could explain the more uneven amplification of the P. vivax genome 

compared to that of P. falciparum.  

Figure 3-2. Plasmodium vivax chromosomal coverage following SWGA using 
primer set pvset1 (A) or pvset1920 (B).  The base compositions of chromosomes 2 and 
6 were visualized in Geneious (version 9.1) using the P. vivax Sal-1 reference genome; 
green and blue lines represent percent AT and GC content, respectively, plotted for 25 bp 
windows across the chromosome (scale shown above the graph).  Shown in blue and red 
below is the corresponding MiSeq read coverage depth using primer sets pvset1 and 
pvset1920, respectively.  Coverage plots were generated using IGVTools (version 2.3.40) 
and are shown on a log scale with maximum read depth indicated in the upper left corner 
of the plot. 

 

We thus designed primer sets specifically targeting regions of the P. vivax Sal-1 

reference genome with high GC content and poor coverage using the swga program 

(Clarke et al., 2017), a program that identifies and scores SWGA primer sets (Figure S3-

2).  Primers were designed to bind regions of the P. vivax Sal-1 genome that had even 

AT/GC composition, were longer than 195,000 bp, and had low sequence coverage when 

amplified with pvset1.  We identified 1,939 primer sets (consisting of up to 15 primers) with 

minimal human genome binding and maximal P. vivax genome binding and scored them 

based on evenness of binding as well as mean distance between primer binding sites in 
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the foreground and background genomes.  The primer set with the best score, pvset1920, 

was chosen for subsequent testing. SWGA of an unprocessed human blood sample with 

pvset1920 yielded an overall superior P. vivax genome coverage compared to SWGA with 

pvset1 (Figure 3-3).  Visual inspection of these post-SWGA P. vivax sequences revealed 

that pvset1920 achieved improved coverage particularly in regions with high GC content 

(Figure 3-2B), with troughs in coverage in genomic regions of lower GC content, which 

include the centromeres and subtelomeres. 

 

Figure 3-3. Testing of SWGA primer sets on DNA from an unprocessed, P. vivax-
infected blood sample. (A) Unamplified DNA (black) and DNA amplified with SWGA 
primer set pvset1 (blue) or pvset1920 (red) was sequenced on a MiSeq (Illumina).  The 
percent of MiSeq reads that mapped to the P. vivax Sal-1 reference genome in Geneious 
(39) (version 9.1) was plotted for both unamplified and SWGA-amplified samples.  (B) The 
1x P. vivax genome coverage is shown relative to the total sequencing depth (in millions 
of base pairs sequenced) for samples subjected to SWGA with pvset1920 or pvset1, and 
for unamplified DNA. 

 



76 
 

Having developed a method that worked well for SWGA of P. vivax gDNA from 

whole blood, we tested whether the method could also be applied to gDNA extracted from 

dried blood spot samples.  Dried blood spots are a common method of storing patient and 

parasite DNA that utilizes a smaller volume of blood and does not require immediate cold 

storage.  DNA extracted from dried blood spots can have variable quality depending on 

the method of collection and storage (Schwartz et al., 2015).  SWGA has been used to 

enrich P. falciparum DNA from dried blood spots for WGS (Guggisberg et al., 2016), with 

an average of 48.1% +/- 3.5% of the genome covered at ≥5x for samples with an average 

parasite density of 73,601 parasites/µl +/- 19,399 (1.5% parasitemia).  Since P. vivax 

clinical samples generally have lower parasite densities, we wondered if it would be 

feasible to obtain significant genome coverage on P. vivax from dried blood spots with 

SWGA.  We extracted DNA from blood spots obtained from symptomatic patients in Peru 

and performed SWGA with pvset1920, achieving 73% and 42% of genome coverage at 

1x on initial testing for samples with high (Sample C, 56,790 parasites/µl; 1.1%) and low 

(Sample L, 2572 parasites/µl; 0.05%) parasitemia, respectively (Figure S3-3). 

We finally tested whether an enzymatic digest to remove contaminating human 

DNA could further improve P. vivax genome coverage.  Modification-dependent restriction 

endonucleases (MDREs), such as MspJI and FspEI, which specifically recognize cytosine 

C5 methylation or hydroxymethylation (Cohen-Karni et al., 2011), have been used to 

selectively degrade human DNA in P. falciparum clinical samples.  Enzyme digest of DNA 

extracted from clinical samples with >80% human contamination has previously been 

shown to enrich P. falciparum DNA ~9-fold for more efficient WGS (Oyola et al., 2013).  

However, when we performed a digest with MspJI and FspEI enzymes on gDNA extracted 

from whole blood obtained from patients with P. vivax infection, we observed either no 
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change, or markedly decreased genome coverage in the 5 enzyme-digested samples 

(Figure S3-4).   

 

SWGA and WGS of P. vivax from patient samples. To test the utility of SWGA for 

variant calling and population genetics analysis of P. vivax from unprocessed clinical blood 

samples, we used primer set pvset1920 to perform SWGA on P. vivax gDNA from 18 

whole blood and 4 dried blood spot samples collected from symptomatic patients with P. 

vivax infection in Peru.  Since the whole blood samples had not been leukocyte-filtered, 

they had significant contamination with human DNA, with less than 1.5% of reads mapping 

to the Sal-1 reference genome in unamplified samples (not shown).  For all samples, 

SWGA significantly increased the proportion of reads that mapped to the P. vivax Sal-1 

reference genome, resulting in a higher genome coverage and a higher percent of callable 

total and core genome regions (covered by ≥5 reads) (Table 3-1).  Comparison of the 

SWGA-amplified samples to 10 leukocyte-filtered samples from a field study in Peru which 

were sequenced to a similar depth (1.5 billion bp +/- 0.2 sequenced for SWGA samples 

vs. 1.5 +/- 0.5 billion bp for leukocyte-filtered samples) showed that SWGA yields a 2-fold 

increase in the percent of sequencing reads that map to the P. vivax genome and an 

average 5x P. vivax core genome coverage of 60.1% +/- 26.0 compared to 43.7% +/- 41.4 

for leukocyte-filtered samples (Flannery et al., 2016).  For the 4 dried blood spot samples, 

we achieved an average 5x core genome coverage of 54.0 +/- 34.6%. 

There was a trend towards improved mean coverage and percent of the genome 

callable in samples with higher parasite densities (Figure S3-5).  This is consistent with 

previous SWGA results for P. falciparum  (Sundararaman et al., 2016), and results from 

other P. vivax enriching methods, such as hybrid selection (Bright et al., 2012).  Samples 
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subjected to SWGA yielded similar ≥5x genome coverage per sequenced base pair when 

compared to direct sequencing of a leukocyte-filtered patient sample (Figure 3-4A).  The 

percent of the 14 large chromosomes of P. vivax considered callable for samples that 

underwent SWGA fell within the range of that obtained by direct sequencing of leukocyte-

filtered samples (Figure 3-4B).  Additionally, post-SWGA sequences yielded similar mean 

base quality when normalized across 100 base pair windows of varying percent GC-

content in the reference genome compared to leukocyte-filtered samples (Figure 3-5).  
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Table 3-1. Sequencing statistics for P. vivax sequences from clinical samples that 
underwent selective whole genome amplification (SWGA).   

18 blood samples (SWGA) 

Sample Parasite density a 
Total bp 

sequenced 
(billions) 

Percent 
aligned 
readsb 

Mean 
coverage (x)b 

Percent  
genome 

callableb.c  

Percent core 
genome 

callableb,d 
1 45680 (0.9%) 1.42 89.5 37.1 71.7 83.6 
2 34268 (0.7%) 1.68 80.9 37.9 72.9 85.1 
3 28474 (0.6%) 1.41 88.3 30.4 66.6 76.3 
4 25680 (0.5%) 1.50 65.1 13.8 40.2 42.1 
5 19241 (0.4%) 2.00 71.9 44.1 79.9 95.4 
6 13064 (0.3%) 1.84 83.7 43.8 76.1 90.4 
7 11438 (0.2%) 1.52 79.5 20.3 32.7 34.5 
8 9961 (0.2%) 1.36 75.4 31.0 74.6 87.3 
9 8842 (0.2%) 1.84 74.2 29.6 72.9 84.7 
10 7382 (0.1%) 1.23 72.6 23.7 65.6 73.6 
11 6258 (0.1%) 1.41 82.8 25.1 59.5 67.7 
12 5135 (0.1%) 1.82 54.9 18.0 34.8 37.0 
13 2942 (0.06%) 1.16 40.7 12.9 52.1 57.9 
14 1873 (0.04%) 1.44 17.0 5.7 13.7 14.1 
15 1652 (0.03%) 1.52 53.2 23.5 52.0 57.3 
16 1471 (0.03%) 1.26 44.0 12.9 21.5 22.9 
17 537 (0.01%) 1.92 22.5 11.1 38.1 40.7 
18 495 (0.01%) 1.44 28.6 10.0 30.0 30.5 
Averagee 12466 +/- 13107.2 1.5 +/- 0.2 62.7 +/- 23.2 23.9 +/- 11.8 53.1 +/- 20.9 60.1 +/- 26.0 

4 dried blood spot samples (SWGA) 
DBS-4 50330 (1.0%) 1.97 79.4 34.8 74.4 87.4 
DBS-3 35730 (0.7%) 1.91 46.8 20.9 69.5 80.3 
DBS-2 5932 (0.1%) 0.93 11.0 3.0 25.8 24.2 
DBS-1 3885 (0.08%) 1.57 17.7 4.2 23.2 24.1 
Averagee 23962 +/- 22826.4 1.6 +/- 0.5 38.7 +/- 27.1 15.7 +/- 13.1 48.2 +/- 27.5 54.0 +/- 34.6 

10 blood samples (Leukocyte filtration) f 
Mdio01 N/A 2.43 25.7 6.35 8.2 5.5 
Mdio02 N/A 0.80 16.2 1.65 1.3 0.6 
Mdio03 N/A 2.04 19.9 8.23 57.2 61.2 
Mdio04 N/A 1.52 14.2 1.97 18.7 9.6 
Mdio05 N/A 1.56 49 22.3 78.1 91.7 
Mdio06 N/A 1.62 55.4 28.1 79.6 93.4 
Mdio07 N/A 1.46 20.7 4.23 15.8 11.3 
Mdio08 N/A 1.50 30.3 10.6 67.3 74.9 
Mdio09 N/A 0.74 18.3 1.74 1.6 0.8 
Mdio10 N/A 1.26 43.5 16.1 76 88.1 
Averagee N/A 1.5 +/- 0.5 31.4 +/- 14.8 10.1 +/- 9.2 40.4 +/- 34.0 43.7 +/- 41.4 
a Parasites per microliter (parasitemia) as determined by microscopy. 
bSequencing statistics were determined using the Genome Analysis Toolkit’s 
(GATK) DepthofCoverage tool.   
cCovered by ≥5 reads 
dThe core genome was defined by coordinates determined in the large scale P. 
vivax sequencing study by Pearson et al. (2016) 
eThe standard deviation from the mean is shown.  
fLeukocyte-filtered sequencing statistics presented here were from P. vivax 
clinical samples obtained from a previously published study in Peru (Flannery et 
al, 2015). 
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Figure 3-4. Comparision of P. vivax genome coverage generated from samples 
treated with SWGA versus leukocyte filtration.  (A) 5x P. vivax genome coverage is 
shown relative to total sequencing depth (in millions of base pairs sequenced) for a sample 
amplified with pvset1920 (Sample 5) and for a leukocyte-filtered sample (Mdio6).  Both 
samples were sequenced on an Illumina HiSeq. (B) The percent of the 14 chromosomes 
callable (covered by ≥5 reads) for samples that underwent SWGA (colored lines) or 
leukocyte filtration (black dashed lines) was compared between multiple samples. 
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Figure 3-5. GC-bias plots for P. vivax genomes generated following leukocyte 
filtration (A) or SWGA (B). 
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Variant analysis. To examine the utility of post-SWGA sequences for variant analysis, 

we called 45,821 single nucleotide polymorphisms (SNPs) from the whole blood and dried 

blood spot samples that were subjected to SWGA.  For the whole blood samples, an 

average of 14,463 SNPs was identified per sample, which is consistent with prior studies 

of P. vivax field isolates (Flannery et al., 2016). Compared to leukocyte-filtered samples, 

SNP characteristics such as SNP rate, transition to transversion (Ti/Tv) ratio, and 

nonsynonymous to synonymous ratio were near identical in the samples that underwent 

SWGA (Table 3-2). 

 

Table 3-2. SNPs in SWGA versus leukocyte filtered whole genome sequences   

Sample 
preparation 
method 

SNP characteristics SNP effects 
Transition/ 
transversio

n ratio 
Exonic Intronic Intergenic 

SNP 
per 

base 

Nonsynonymous 
to Synonymous 

Ratio 
SWGAa 1.41 20,865 

(40%) 3,714 (7%) 25,178 
(49%) 0.002 1.63 

Leukocyte 
filtration  1.36 18,365 

(40%) 3,029 (7%) 23,157 
(50%) 0.002 1.74 

aSamples for SWGA were obtained from Iquitos, Peru and samples for leukocyte 
filtration were from a previously published study in Madre de dios, Peru (10). 
 

In addition, the proportion of SNPs that were exonic, intronic, intergenic, or at 5’ 

and 3’ untranslated regions were similar between the two methods of P. vivax enrichment.  

We also detected SNPs in several known drug resistance genes previously detected in 

samples from Peru (Flannery et al., 2016) and Colombia (Winter et al., 2015) in the whole 

blood and dried blood spot samples (Table 3-3, Table S3-1), further validating the utility 

of sequences derived from SWGA for variant calling.  This includes several intronic 

mutations around a putative chloroquine resistance transporter (pvcrt), in addition to 

coding mutations in dihydrofolate reductase (pvdhfr), multidrug resistance protein 1 
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(pvmdr1), multidrug resistance protein 2 (pvmrp2), and dihydropteroate synthetase 

(dhps). 

 

Table 3-3. Nonsynonymous SNPs in known drug resistance genes  

Locus Chr Position Ref Alt Amino 
Acid Samplesa  

pvcrt-0 
(PVX_087980) 1 

331151 T C Intron 17 (18) 
331819 G A Intron 11 (18) 
332453 T C Intron 18 (18) 
332874 A C Intron 18 (18) 

pvdhfr 
(PVX_089950) 5 964763 C G,A Ser58Arg 12 (12) 

964939 G A Ser117Asn 16 (16) 

pvmdr1 
(PVX_080100) 10 

363223 A G Thr958Met 12 (12) 
363374 T G Met908Leu 11 (11) 
365435 C A Val221Leu 1 (12) 

pvmrp2 
(PVX_124085) 14 

2043859 G C Gln1407Glu 11 (13) 
2045050 C T Val1010Met 14 (15) 
2047090 G A Pro330Ser 1(15) 
2047233 C A Arg282Met 13 (14) 
2047816 C G Glu88Gln 3 (18) 

dhps 
(PVX_123230) 14 1257856 G C Ala383Gly 9 (15) 

1258389 C T Met205Ile 10 (12) 
aSamples shows the number of samples confidently genotyped (in parentheses) 
and the number bearing the indicated allele. 
 

We also compared sample clonality estimates of post-SWGA sequences to microsatellite 

analyses on the same unamplified samples.  We estimated the clonality of the 6 post-

SWGA sequences with the highest coverage using the Fws statistic, a measure of within-

host diversity previously used to characterize multiplicity of infection in Plasmodium 

falciparum patient samples (Auburn et al., 2012; Manske et al., 2012) (Table 3-4).  An Fws 

score of ≥ 0.95 indicates low within-host diversity and infection with a single parasite, while 

Fws ≤ 0.70 is suggestive of a multiclonal infection.  Microsatellite analysis on these same 

6 unamplified samples indicated that all were clonal, except for sample 9, where the 



84 
 

presence of 2 microsatellite markers at more than one position suggested that it could be 

a multiclonal sample.  However, for all 6 post-SWGA sequences, Fws ≥0.95 suggesting 

that all were clonal infections.  Thus, while SWGA does not introduce errors that lead to a 

falsely low Fws, it may lead to underestimations of clonality in multiclonal samples. 

 

Table 3-4. Clonality estimates post-SWGA 

Sample Fws Heterozygous 
SNPs 

Microsatellite markers before SWGA 
v23 v24 v25 v28 v30 v33 

1 0.98 377 266 170 102 85 149 153 
2 0.97 446 266 170 102 85 149 163 
5 0.97 372 266 171 102 86 150 153 
6 0.98 326 266 170 102 86 149 153 
8 0.98 300 282 167 102 94 136 134 
9 0.97 354 282 163 99,94 86,118 143,150 151 

 

Finally, we constructed a neighbor-joining tree using core genome SNPs to 

determine the relatedness of our samples to one another and to other P. vivax isolates 

from Peru and around the world (Figure 3-6).  In this tree, our samples, which were from 

the Iquitos region of Peru, clustered with one another, and were most closely related to 

leukocyte-filtered samples from another region of Peru (Flannery et al., 2016).  They also 

exhibited the expected degree of relatedness to previously published P. vivax sequences 

derived from other leukocyte-filtered (Pearson et al., 2016), hybrid-selected (Hupalo et al., 

2016), and monkey-adapted (Neafsey et al., 2012) clinical samples from diverse areas of 

the world, further validating the use of post-SWGA sequences from downstream analyses. 
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Figure 3-6. Neighbor joining tree of Plasmodium vivax clinical samples from 
different regions of the world.  The tree was constructed with core genome-wide SNP 
data from P. vivax samples that underwent selective whole genome amplification (Peru-
SWGA-1 through Peru-SWGA-18) and P. vivax clinical samples from previously published 
studies that underwent leukocyte filtration (Pearson et al., 2016) (Thailand-PD0169, 
Thailand-PD0168, Thailand-PD0166, Thailand-PD-0167, PNG-0050, PNG-0065, PNG-
0068, Vietnam-PV0025, Vietnam-PV0053, Vietnam-PV0056, Vietnam-PV0061), hybrid 
selection (Hupalo et al., 2016) (Colombia-30102100437, Colombia-490, Colombia-438-A, 
Colombia-30101099036, Thailand-VKTS-36, Thailand-VKBT-73, Thailand-VKBT-58, 
Thailand VKBT-71, Thailand-VKBT-100, PNG-73, PNG-58, PNG-012, PNG-014, PNG-
025), or adaption to growth in splenectomized monkeys (Neafsey et al., 2012) (BrazilI, 
IndiaVII) prior to sequencing.  Bootstrap values are shown on each corresponding branch.   
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3.4 Discussion 

In this study, we validate SWGA as a cost-effective, robust method to enrich P. vivax 

gDNA from unprocessed whole blood and dried blood spot clinical samples to improve the 

efficiency and decrease the cost of subsequent WGS.  This is a method that can be 

applied to clinical samples infected with other malaria species, such as P. malariae, P. 

ovale curtisi, and P. ovale wallikeri, where parasite densities are low, and where there is 

no routine ex-vivo culture (Ansari et al., 2016), though species-specific primer sets would 

likely be required.  SWGA utilizes readily available reagents, does not require processing 

at the time of sample collection, and can be performed in a simple, overnight reaction.  

While several methods have been used successfully to enrich P. vivax gDNA for WGS 

from infected whole blood samples, most are resource and labor intensive.  Short-term 

ex-vivo culture of P. vivax isolates or adaptation to growth in monkeys produce a large 

amount of P. vivax DNA, but require significant resources.  Single cell sequencing allows 

for highly sensitive dissection of multiclonal samples, however this approach requires 

cryopreserved samples and specialized laboratory equipment (Nair et al., 2014). While 

leukocyte filtration is cost-effective and efficient, it is not always possible to perform at field 

sites with limited infrastructure, because samples require refrigeration within 6 hours to 

minimize white blood cell lysis and reduce irreversible contamination from human DNA. 

Hybrid selection is less labor intensive, but the production of the RNA baits used for 

capture requires either large amounts of P. vivax Sal-1 DNA or costly commercially-

synthesized RNA bait.  

Using SWGA, we achieved a higher than average callable P. vivax genome 

compared to leukocyte-depleted clinical samples sequenced at a similar depth.  SWGA 

generally yielded the highest genome coverage for clinical samples with the highest 

parasite densities, consistent with our experience with P. falciparum (Sundararaman et 
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al., 2016). For the 12 samples with parasite density >5,000 parasite/µl (0.1% parasitemia), 

we were able to call on average 71.5% of the core genome, compared to 37% for the 6 

samples with parasite densities <5,000 parasite/µl.  Increased sequencing effort is needed 

to obtain maximal genome coverage for samples with lower parasite densities (Figure S3-

8).  In these cases, the low genome coverage is likely the result of stochastic amplification 

of a small number of starting P. vivax genomes, which leads to very deep coverage of 

some genomic regions and little or no coverage of others (Sundararaman et al., 2016). If 

maximal genome coverage is desired, sequential SWGA reactions with pvset1920 

followed by pvset1 increases coverage slightly (3-5% 1x genome coverage) (Figure S3-

6).  Additionally, performing multiple independent SWGA reactions on a sample and 

combining the sequencing reads can improve genome coverage (4-12% 1x genome 

coverage) (Figure S3-7).  Since multiple rounds of SWGA or pooling the products from 

multiple reactions increases workload and expenses for a small improvement in genome 

coverage, we opted for a single amplification reaction with pvset1920 for our samples.  

However, these protocol modifications may be useful if high genome coverage is needed 

from samples with low parasitemia. 

One potential limitation of SWGA of P. vivax from clinical samples is the ability to 

amplify all clones in a multiclonal sample.  One of our samples appeared to be multiclonal 

by microsatellite analysis of the unamplified gDNA; yet, Fws analysis of the post-SWGA 

sequence suggested that the sample was comprised of a single clone.  It is possible that 

in this case a majority clone was amplified preferentially over minority clones.  Another 

possibility is that the microsatellite markers assessment may overestimate clonality.  

Analyses of additional multiclonal samples will be necessary to address this question.  

Another important limitation of SWGA is that copy number variant (CNV) detection is not 

possible on post-SWGA sequences.  The uneven distribution of primer-targeted motifs in 
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the target genome results in peaks and troughs in mean genome coverage that can 

confound CNV detection methods. Finally, SWGA requires long strands of gDNA for 

efficient amplification of the target genome and is unlikely to work well on degraded or 

ancient DNA samples. 

Whole genome analysis has the potential to reveal much about the biology and 

epidemiology of P. vivax infections.  For example, comparison of recurrent infections using 

WGS can help distinguish relapse due to reactivation of hypnozoites from reinfection or 

drug resistance, an epidemiological distinction of public health importance. SWGA 

enables high quality and cost-effective WGS of P. vivax from unprocessed blood samples 

that would otherwise be impossible or prohibitively expensive to sequence.  Advanced 

technologies such as SWGA will greatly facilitate future P. vivax whole genome 

sequencing projects, thereby improving our ability to understand and combat the most 

widespread form of malaria.  

 

3.5 Materials and methods 

Patient Sample Collection and Preparation. The P. vivax infected DNA sample used 

for initial testing of selective amplification primer sets (MRL2) was provided by the Malaria 

Reference Laboratory of the London School of Hygiene and Tropical Medicine, London, 

UK.  The six dried blood spot samples used in this study were collected from patients with 

symptomatic P. vivax infection in Peru.  Parasitemia was quantified with real time PCR 

and gDNA was extracted using a QIAamp DNA Blood Mini Kit (Qiagen).   

Eighteen whole blood samples used for additional testing and further sequencing 

analysis were derived from whole blood samples collected from patients with symptomatic 

P. vivax infections from two sites around Iquitos, Peru during a study conducted by the US 

Naval Medical Research Unit No. 6 (Durand et al., 2014). Thick blood smears were 
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examined to identify the parasite species and to determine the level of parasitemia.  

Parasite density was calculated by counting the number of asexual parasites per 200 white 

blood cells in the thick smear (Assuming an average of 6,000 white blood cells per µl).  

Each blood smear was examined by two microscopists independently and was examined 

by a third microscopist in the event of a discrepancy.  The final parasite density was 

calculated as the average of density readings from the two concordant microscopists.  

Whole blood samples were collected in the field using EDTA-containing vacutainer tubes.  

Samples were frozen and transported to the central lab until further processing.  DNA was 

isolated from thawed whole blood using QIAamp DNA Blood Mini Kit (Qiagen) following 

the manufacturer’s recommendation and as described elsewhere (Baldeviano et al., 

2015).  Samples were subsequently resuspended in TE buffer and gDNA was quantified 

using a Qubit 2.0 fluorometer.   

 

Primer design. The initial set of pvset1 primers was designed as described 

(Sundararaman et al., 2016).  Primer set pvset1920 was designed using the swga 

program, which scores primer sets based on selectivity and evenness of binding 

(measured using the Gini index), and thus automates and improves primer selection.  The 

source code of swga, along with download links and documentation are available at 

https://www.github.com/eclarke/swga. pvset1920 was designed to specifically amplify 

longer regions (>195,000 bp) of the P. vivax reference genome (Sal-1) that were GC rich 

(48.5-50.6%) and yielded low genome coverage following SWGA with pvset1.  A total of 

1,939 primer sets were identified that exhibited a minimum background binding distance 

of 25,000 bp and a maximum foreground binding distance of 37,000 bp.  These were 

scored using swga’s composite primer scoring algorithm (Gini score*foreground 

https://www.github.com/eclarke/swga
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mean/background mean) and the set with the lowest score (pvset1920) was chosen for 

testing. 

pvset1 consists of 10 primers: 5’- CGTTG*C*G-3’ 5’-TTTTTTC*G*C-3’, 5’-

TCGTG*C*G-3’, 5’-CGTTTTTT*T*T-3’, 5’-TTTTTTTC*G*T-3’, 5’-CCGTT*C*G-3’, 

CGTTTC*G*T-3’, 5’-CGTTTC*G*C-3’, 5’-CGTTTT*C*G-3’, 5’-TCGTTC*G*T-3’, with 

asterisks indicating phosphorothioate bonds that are necessary to prevent degradation by 

phi29. pvset1920 set consists of 12 primers: 5’-AACGAAGC*G*A-3’, 5’-ACGAAGCG*A*A-

3’, 5’-ACGACGA*A*G-3’, 5’-ACGCGCA*A*C-3’, 5’-CAACGCG*G*T-3’, 5’-

GACGAAA*C*G-3’, 5’-GCGAAAAA*G*G-3’, 5’-GCGAAGC*G*A-3’, 5’-GCGGAAC*G*A-

3’, 5’-GCGTCGA*A*G-3’, 5’-GGTTAGCG*G*C-3’, and 5’-AACGAAT*C*G-3’. 

 

Selective Whole Genome Amplification. 30-70 ng of input DNA was added to a 50 µl 

reaction containing 3.5 uM SWGA primers, 30 U phi29 DNA polymerase enzyme (New 

England Biolabs), phi29 DNA buffer (New England Biolabs), 1% bovine serum albumin, 

and water.  The reaction was carried out on a thermocycler consisting of a ramp down 

from 35°C to 30°C (10 minutes per degree), 16 hours at 30°C, 10 minutes at 65°C, and 

hold at 4°C.  The samples were diluted 1:1 with DNAse-free, RNAse-free water and 

purified with Ampure XP beads (Beckman-Coulter) at a 1:1 ratio per the manufacturer’s 

protocol.  When performed, a second round of selective amplification contained 100-200 

ng of the Ampure XP purified product from the first reaction. 

 

Methylation digest. 125-500 ng of gDNA extracted from P. vivax infected whole blood 

samples was digested with 5 units of FspEI (New England Biolabs) and 5 units of MspJI 

(New England Biolabs) enzymes in a 30 µl reaction.  A mock digest with an identical 

amount of gDNA and no enzymes was run in parallel.  Samples were digested for 2 hours 
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at 37°C then were heat inactivated at 80°C for 15 minutes.  For coverage analysis, 

rarefaction analysis was performed on Illumina MiSeq sequencing reads derived from 

samples digested with MspJI or FspEI (digest and SWGA) or mock digested with no 

enzyme prior to SWGA with primer set pvset1920.  Coverage obtained by mapping 

200,000 MiSeq sequencing reads (~25 million base pairs of sequencing depth) was 

compared between digested and mock digested damples.  P value was obtained using a 

two tailed t-test. 

 

Whole genome sequencing. SWGA products and unamplified DNA used for primer set 

testing were sequenced on an Illumina MiSeq using a modified Nextera library preparation 

method. For Hiseq runs, next generation sequencing libraries of SWGA products were 

prepared using the Nextera XT DNA preparation kit (Illumina) per the manufacturer’s 

protocol.  These samples were pooled and clustered on a Hiseq 2500 (Illumina) in Rapid 

Run mode with 100 base pair paired end reads. For the coverage analysis of leukocyte-

filtered samples, fastq files from a prior study of P. vivax field samples (Flannery et al., 

2016) were used.   

Raw fastq files were aligned to the Sal-1 reference genome (PlasmoDB version 

13, http://plasmodb.org/common/downloads/release-13.0/PvivaxSal1/fasta/data/) using 

the Burroughs-Wheeler Aligner (version 0.7.8) (Li, 2013.) and samtools (version 0.1.19) 

(Li, 2011; Li et al., 2009) as previously described in the Platypus pipeline (Manary et al., 

2014). Picard (version 2.0.1) was used to remove unmapped reads and the Genome 

Analysis Toolkit (GATK) (McKenna et al., 2010) was used to realign the sequences around 

the indels.   Picard’s CollectGcBiasMetrics tool was used to generate the GC bias plots.  

GATK’s DepthOfCoverage tool was used to determine the percent of the total and core 

genome covered by ≥5 reads, mean coverage, and coverage over the core genome.  The 



92 
 

coordinates of the P. vivax core genome, which excludes subtelomeric and hypervariable 

regions with significantly higher read mapping errors, was obtained from a recent analysis 

of hundreds P. vivax sequences from clinical isolates (Pearson et al., 2016). 

For rarefaction analyses, sequences were aligned with smalt (Wellcome Trust 

Sanger Institute) and mapped with custom scripts in R (https://www.r-project.org/).  To 

visualize base compisition across chromosomes, plots were created in Geneious (version 

9.1) (Kearse et al., 2012) using the Sal-1 P. vivax reference sequences and 25 bp 

windows.  Plots of chromosome coverage were created with IGVTools (version 2.3.40) 

(Robinson et al., 2011; Thorvaldsdóttir et al., 2013). 

 

Variant Calling and Analysis. We followed the GATK’s best practices to call variants 

(Auwera et al., 2014; DePristo et al., 2011). The aligned sequences were run through 

GATK’s HaplotypeCaller in “reference confidence” mode to create genomic GVCF files for 

each sample.  This reference confidence model highlights areas of the genome that are 

likely to have variation and produces a comprehensive record of genotype likelihoods and 

annotations for each site.  The samples were joint genotyped using the GenotypeGVCFs 

tool. Variants were further filtered based on quality scores and sequencing bias statistics 

based on default parameters from GATK.  SNPs were filtered out if they met any of the 

following criteria: Quality Depth (QD) < 2.0, Mapping Quality (MQ) < 50.0, Phred-scaled 

p-value using Fisher’s exact test to detect strand bias (FS) >60.0, Symmetric Odds Ratio 

(SOR) >4.0, Z-score from Wilcoxon rank sum test of Alternative vs. Reference read 

mapping qualities (MQRankSum) < -12.5, ReadPosRankSum (RPRS) < -8.0. Variants 

were annotated using snpeff (version 4.2) (Cingolani et al., 2012). 

Fws of samples with the highest genome coverage was estimated using moimix 

(http://dx.doi.org/10.5281/zenodo.58257) a package available through R.  The package 

http://dx.doi.org/10.5281/zenodo.58257
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calculates Fws statistic using the equation Fws = 1 - (Hw/Hs), where Hw is the within-host 

heterozygosity and Hs is the population-level heterozygosity (Auburn et al., 2012; Manske 

et al., 2012). The core P. vivax genome, as defined by Pearson et al. (2016) was used for 

core genome analysis.  For microsatellite genotyping, five neutral microsatellite loci of 

significant variability in the Peruvian Amazon were typed in a previous study (Durand et 

al., 2014).  If there was more than one marker at any given locus, the sample was 

considered multiclonal, per prior genotyping studies  (De Souza et al., 2015; Imwong et 

al., 2006; Karunaweera et al., 2008). 

A neighbor joining tree was constructed using SNPs from the core P. vivax genome 

from sequences obtained in this study, along with sequences from previously published 

studies that are available in the NCBI Short Read Archive.  The mdio samples were from 

a previous study conducted by our lab in Peru (Flannery et al., 2016) and the rest of the 

sequences were obtained from two recent large scale P. vivax sequencing studies (Hupalo 

et al., 2016; Pearson et al., 2016). In order to assess the phylogenetic relationships of 

sequenced isolates we constructed a multiple sequence alignment from filtered SNPs 

called in GATK using an in-house perl script. This alignment was used as input 

for Maximum Likelihood phylogenetic analysis in the Randomized Axelerated Maximum 

Likelihood program (Stamatakis, 2014) (RAxML) with 500 pseudoreplicates using the 

generalized time reversible model and the resulting tree was visualized in dendroscope  

(Huson and Scornavacca, 2012) 

 

Ethics approval and consent to participate. The sample from Malaria Research 

Laboratories (MRL) was an anonymized DNA sample previously collected by the MRL 

and provided under the MRL’s remit to undertake epidemiological surveillance relevant to 

imported malaria in the UK.  The protocol for the collection of field samples was approved 
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by the Institutional Review Board of the US Naval Medical Research Center (Protocol 

NMRCD.2005.0005) and the National Institutes of Health of Peru (Protocol 009-2004) in 

compliance with all applicable Federal regulation governing the protection of human 

subjects.  All adult subjects provided written informed consent and all children 8-17 years 

old provided verbal assent to participate in the study. 

 

Availability of data and materials. The P. vivax genome Illumina sequencing reads of 

the 22 samples used for variant analysis in this study will be available on the National 

Center for Biotechnology Information’s Short Read Archive with the accession number: 

PRJNA344889.    
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3.7 Supplemental figures and tables 

 

Figure S3-1. Testing of SWGA primer sets on an unprocessed, P. vivax-infected 
blood sample. (A) Unamplified DNA (black) and DNA amplified with SWGA primer set 
pvset1 (blue) was sequenced on a MiSeq (Illumina). The percentage of MiSeq reads that 
mapped to the P. vivax Sal-1 reference genome in Geneious (version 9.1) was plotted for 
both the unamplified and SWGA-amplified sample. (B) Rarefaction analysis compares the 
≥1× P. vivax genome coverage relative to total sequencing depth (in millions of base pairs 
sequenced) with and without SWGA. 
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Figure S3-2. Flowchart describing the process of SWGA primer set selection for P. 
vivax. *, selected regions are >195,000 bp in length with an average 48.5 to 50.6% GC 
composition. 
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Figure S3-3. Testing of SWGA primer set pvset1920 on DNA from P. vivax patient-
derived dried blood spots. Genomic DNA from two dried blood spots with either a 
relatively high (sample C, 56,790 parasites/µl) or low (sample L, 2,572 parasites/µl) 
parasite density was subjected to SWGA with pvset1920 and sequenced on a MiSeq 
(Illumina). The percentages of the P. vivax genome with ≥1× coverage are shown relative 
to total sequencing depth (in millions of base pairs sequenced). 
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Figure S3-4. Comparison of SWGA following either a mock digestion or 
methylation-dependent restriction digest. Genomic DNA extracted from five P. vivax-
infected patient samples was subjected to a mock digest or digest with the methylation-
dependent restriction enzymes MspJI and FspEI. The percentage of the P. vivax reference 
genome covered (1×) by mapping 200,100 MiSeq (Illumina) reads (approximately 25 
million bp of sequencing depth) from each sample with or without digest is shown. 
Statistical significance was calculated using a two-tailed t test.  
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Figure S3-5. Sequencing statistics for P. vivax clinical samples with various 
parasite densities. The percentage of reads that map to P. vivax Sal-1 (blue circles), the 
mean P. vivax genome coverage (green squares), and the percentage of the P. vivax 
genome covered by ≥5 reads (red triangles) are shown for all 18 samples amplified by 
SWGA, with sample parasitemia indicated on the x axis. Sequencing statistics were 
determined using the Genome Analysis Toolkit (GATK) DepthOfCoverage tool.  
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Figure S3-6. P. vivax genome coverage for samples with high, medium, and low 
parasite densities. The percentages of the P. vivax reference genome covered at ≥1× 
are shown relative to the total sequencing depth generated on an Illumina HiSeq (in 
millions of base pairs sequenced) for samples with high (red), medium (green), and low 
(blue) parasite densities. 
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Figure S3-7. Impact of multiple independent SWGA reactions per sample on P. vivax 
genome coverage. Each panel represents the results obtained for a single patient sample 
(samples 16, 7, and 14). The percentage of the P. vivax reference genome covered at ≥1× 
is shown relative to the total sequencing depth generated on an Illumina MiSeq (in millions 
of base pairs sequenced) for each individual SWGA reaction (red) or pooled reads from 
the two independent SWGA reactions (black).  
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Figure S3-8. Combinatorial testing of SWGA primer sets on three P. vivax-infected 
patient samples. Each panel represents the results obtained for one of the three 
individual patient samples (samples 6, 2, and 4) after one round of SWGA with primer set 
pvset1920 (red) or pvset1 (blue), after two rounds of SWGA with the same primer set (dark 
red for pvset1920 and dark blue for pvset1), or after two rounds of SWGA with different 
primer sets (yellow for pvset1920 followed by pvset1 and light blue for pvset1 followed by 
pvset1920). For all primer set combinations, the percentage of the P. vivax reference 
genome covered at ≥1× is shown relative to the total sequencing depth (in millions of base 
pairs sequenced) generated on a MiSeq (Illumina). 
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Table S3-1. Drug resistance mutations in Plasmodium vivax sequences from dried 
blood spot DNA subjected to SWGA.   
Locus Chr Position Ref Alt Amino Acid Samples*  
pvcrt-0 
(PVX_087980) 

1 331151 T C Intron 3 (4) 
331819 G A Intron 1 (4) 
332453 T C Intron 4 (4) 
332874 A C Intron 4 (4) 

pvdhfr 
(PVX_089950) 

5 964762 G A Ser58Asn 1 (4) 
964763 C G,A Ser58Arg 3 (3) 
964939 G A Ser117Asn 3 (3) 

pvmdr1 
(PVX_080100) 

10 363223 A G Thr958Met 4 (4) 
363374 T G Met908Leu 2 (3) 

pvmrp2 
(PVX_124085) 

14 2043859 G C Gln1407Glu 1 (3) 
2044327 T A Asn1251Tyr 1 (3) 
2045050 C T Val1010Met 4 (4) 
2047233 C A Arg282Met 2 (2) 
2047816 C G Glu88Gln 2 (4) 
2047893 C T Cys62Tyr 1 (4) 

dhps 
(PVX_123230) 

14 1257856 G C Ala383Gly 1 (4) 
1258389 C T Met205Ile 2 (3) 

*The number of samples confidently genotyped (in parentheses) and the number 
bearing the indicated allele. 
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4.1 Abstract 

Wild-living African apes are endemically infected with parasites that are closely related to 

human Plasmodium vivax, a leading cause of malaria outside of Africa. This finding 

suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in 

humans there. To elucidate the emergence of human P. vivax and its relationship to the 

ape parasites, we analyzed genome sequence data of P. vivax strains infecting six 

chimpanzees and one gorilla from Cameroon, Gabon and Côte d’Ivoire. We found that 

ape and human parasites share near-identical core genomes, differing by only 2% of 

coding sequences. However, compared with the ape parasites, human strains of P. vivax 

exhibit about 10-fold less diversity, and have a relative excess of nonsynonymous 

nucleotide polymorphisms, with site frequency spectra suggesting they are subject to 

greatly relaxed purifying selection. These data suggest that human P. vivax has 

undergone an extreme bottleneck, followed by rapid population expansion. Investigating 

potential host specificity determinants, we found that ape P. vivax parasites encode intact 

orthologs of three reticulocyte binding protein genes (rbp2d, rbp2e, rbp3), which are 

pseudogenes in all human P. vivax strains. However, binding studies of recombinant 

RBP2e and RBP3 proteins to human, chimpanzee and gorilla erythrocytes revealed no 

evidence of host-specific barriers of red blood cell invasion. These data suggest that, from 

an ancient stock of P. vivax parasites capable of infecting both humans and apes, a 

severely bottlenecked lineage emerged out of Africa and underwent rapid population 

growth as it spread globally. 

 

4.2 Introduction 

Plasmodium vivax causes over 8 million cases of human malaria per year, with the vast 

majority occurring in Southeast Asia and South America (World Health Organisation, 
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2017). P. vivax is rare in humans in Africa due to the high prevalence of the Duffy negative 

mutation (Howes et al., 2011), which abrogates expression of the Duffy antigen receptor 

for chemokines (DARC) on erythrocytes. Since DARC serves as a receptor for P. vivax, 

its absence protects Duffy negative humans from P. vivax infection (Miller et al., 1976), 

although this protection is not absolute (Zimmerman, 2017). Until recently, P. vivax was 

thought to have emerged in Asia following the cross-species transmission of a macaque 

parasite (Cornejo and Escalante, 2006; Mu et al., 2005). However, the finding of closely 

related parasites in wild-living chimpanzees and gorillas suggested an African origin of P. 

vivax (Liu et al., 2014). Indeed, parasite sequences closely resembling P. vivax have been 

detected in western (Pan troglodytes verus), central (P. t. troglodytes) and eastern (P. t. 

schweinfurthii) chimpanzees, eastern (Gorilla beringei graueri) and western (Gorilla gorilla 

gorilla) lowland gorillas, and most recently in bonobos (Pan paniscus) (Kaiser et al., 2010; 

Liu et al., 2017, 2014, 2010; Prugnolle et al., 2013). Phylogenetic analyses of available 

sequences revealed that ape and human parasites were near-identical, with human 

P. vivax sequences forming a monophyletic lineage that usually fell within the radiation of 

the ape parasites (Liu et al., 2014). These findings suggested that P. vivax infected apes 

including humans in Africa, until the spread of the Duffy negative mutation largely 

eliminated the parasite in humans there. However, definitive conclusions could not be 

drawn since all analyses of ape P. vivax genomes to date have rested on a small number 

of gene fragments amplified almost exclusively from parasite mitochondrial DNA present 

in ape fecal samples. 

Understanding the origin of human P. vivax and its relationship to the ape parasites 

is important for several reasons. First, only six Plasmodium species, out of several 

hundred so far described to infect vertebrate hosts (Faust and Dobson, 2015), have 

successfully colonized humans (Scully et al., 2017). Thus, the circumstances that 
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surround the emergence of each of these human pathogens is of interest, especially since 

most, if not all, have non-human primate parasites as their closest relatives (Liu et al., 

2014, 2010; Rutledge et al., 2017). Second, it is currently unclear whether the ape 

parasites represent a separate species, distinct from P. vivax. Although sequences from 

human P. vivax parasites form a monophyletic clade in phylogenetic trees, this may be a 

reflection of their geographic separation and not the existence of host-specific infection 

barriers. Indeed, ape P. vivax has been shown to cause malaria in a Duffy positive 

European traveler (Prugnolle et al., 2013), and human P. vivax has been transmitted to 

wild-living monkeys in South America, generating what has been called Plasmodium 

simium (Buery et al., 2017). If cross-species infection and recombination of ape and 

human P. vivax were possible, as appears to be the case for P. simium and P. vivax in 

South America (Brasil et al., 2017; Buery et al., 2017), this could have implications for 

malaria eradication efforts. Finally, ape and human P. vivax strains may have acquired 

adaptations that limit parasite transmission between different host species. Such findings 

could explain why the macaque parasites Plasmodium knowlesi and Plasmodium 

cynomolgi can infect and cause malaria in humans, but do not appear to be commonly 

transmitted between different human hosts (Brock et al., 2016). 

To elucidate the events that led to the emergence of human P. vivax, we sought 

to obtain genome sequences of parasites infecting chimpanzees and gorillas. A similar 

approach has recently uncovered processes that may have allowed the gorilla precursor 

of P. falciparum to cross the species barrier to infect humans (Otto et al., 2018; 

Sundararaman et al., 2016). However, obtaining blood samples from Plasmodium infected 

apes is challenging due to the endangered species status of these hosts. Moreover, ape 

P. vivax, like its human-infecting counterpart, exhibits only low levels of parasitemia (Liu 

et al., 2014) and has not been cultured. Although removal of host leukocytes from whole 
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blood samples (Pearson et al., 2016) and parasite nucleic acid capture (Hupalo et al., 

2016) have improved the recovery of human P. vivax genomes, these approaches are not 

readily applicable to ape parasites. We thus adapted a previously developed selective 

whole genome amplification (SWGA) method (Sundararaman et al., 2016) to generate P. 

vivax genome sequences from unprocessed chimpanzee and gorilla blood samples 

obtained in different parts of Africa. Analysis of these genomes revealed that the ape 

parasites are about 10 times more diverse than global representatives of human P. vivax 

(Hupalo et al., 2016), indicating that the human parasite has undergone a severe genetic 

bottleneck. Ape P. vivax genomes were found to have intact orthologs of three reticulocyte 

binding protein genes that are pseudogenized in all human P. vivax strains, but functional 

studies of two of the encoded proteins revealed no evidence of species-specific receptor 

interactions. The P. vivax ancestor therefore likely infected both humans and apes in 

Africa, before being eliminated in humans there by the spread of the Duffy negative 

mutation. Thus, the current human-infecting parasites represent a lineage that had 

escaped out of Africa. 

. 

4.3 Results 

Genome assemblies of chimpanzee P. vivax. Leftover blood samples from routine 

health examinations of chimpanzees cared for at the Sanaga Yong (SY) Chimpanzee 

Rescue Center in Cameroon were screened for Plasmodium infection using nested PCR 

with pan-Plasmodium and P. vivax-specific primers. Two samples, SY56 and SY43, were 

positive for ape P. vivax, with limiting dilution PCR detecting one strain in SY56 and up to 

five variants in SY43, with two strains predominating. Since these two samples lacked 

other Plasmodium species, they were suitable for selective whole genome amplification 

(SWGA) without the risk of generating inter-species recombinants (Leichty and Brisson, 
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2014; Sundararaman et al., 2016). SWGA uses the highly processive phi29 DNA 

polymerase and specific primers to preferentially amplify pathogen sequences from 

complex mixtures of target and host DNA, and has been used successfully in the past to 

generate Plasmodium sequences from blood smear negative, unprocessed blood 

samples (Sundararaman et al., 2016). Since SWGA can result in stochastic amplification 

when target templates are rare (Cowell et al., 2017; Sundararaman et al., 2016), each 

sample was amplified on more than one occasion using different primer sets, with and 

without digestion of sample DNA with methylation-dependent restriction enzymes to 

degrade host DNA (see SI Appendix, Table S4-1). Individual SWGA reactions were pooled 

and sequenced on Illumina and PacBio platforms (see SI Appendix). 

Draft genomes of the chimpanzee P. vivax strains PvSY56 and PvSY43 were 

generated using iterative reference-guided assembly to the human PvP01 reference 

genome (Auburn et al., 2016), followed by gap filling steps. In addition, PvSY56 reads that 

did not map to the PvP01 core genome were de novo assembled to obtain subtelomeric 

contigs. The resulting assemblies yielded 21.9 Mbp and 21.2 Mbp of sequence for PvSY56 

and PvSY43, respectively (Table 4-1). Because sample SY43 contained at least five P. 

vivax strains (Liu et al., 2014), the PvSY43 genome represents a consensus of these 

variants. Annotations were transferred from PvP01, with additional genes predicted in the 

de novo contigs. Since a large number of genes contained frameshifts in homopolymer 

tracts, we manually corrected annotations spanning these presumed sequencing errors to 

maintain an open reading frame. Overall, PvSY56 and PvSY43 shared a highly conserved 

core genome with human P. vivax. More than 98% of PvP01 core genes (as defined in 

19) were identified in each chimpanzee P. vivax assembly (Table 4-1), with 88% present 

as full-length genes. Although 10 human P. vivax core genes were absent from both 

PvSY56 and PvSY43, ape P. vivax reads at least partially covered these coding regions, 
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implicating assembly difficulties rather than differences between ape and human P. vivax 

genomes for their absence. Assembly issues likely also account for the small number of 

genes in subtelomeric and internal hypervariable regions that could be annotated for 

PvSY56 and PvSY43, respectively (Table 4-1). 

 

Table 4-1. Genome features of ape P. vivax  
 PvSY56 PvSY43* PvP01† 
Host species Chimpanzee  Chimpanzee  Human 
Country  Cameroon Cameroon Indonesia 
Chromosomal assembly (bp)§ 21,928,114 21,224,756 24,177,188 
Mean depth of coverage¶ 319 240 N/A 
Chromosomal contigs 7,112 6,604 14 
G + C content (%) 44.1 44.6 43.3 
Core# protein-coding genes (% of PvP01) 4,883 (98.8) 4,908 (99.3) 4,941 (100) 
     Full length# (% of PvP01) 4,391 (88.9) 4,350 (88.0) N/A 
     Partial (% of PvP01) 492 (10.0) 558 (11.3) N/A 
Genes in hypervariable regions|| 415 276 1,702 
*The genome assembly of PvSY43 represents a consensus sequence of at least two major and 
three minor chimpanzee P. vivax variants (Fig. 2C and D; see SI Appendix, Fig. S5). 
†Chimpanzee P. vivax genomes were compared to the human P. vivax reference PvP01 (Auburn 
et al., 2016). 
§Number of unambiguous bases.  
¶Calculated by dividing the number of nucleotides in reads mapped to the assemblies by the 
expected genome size in PvP01. 
#Genes classified as full-length comprised at least 90% of the length of the corresponding PvP01 
ortholog. 
||Protein-coding genes in subtelomeric and internal hypervariable regions were defined as 
described (Pearson et al., 2016).  
 

Polymorphism in ape and human P. vivax. Comparison of coding sequences between 

the PvSY56 and PvSY43 assemblies revealed that they differ at 0.61% of sites, which 

contrasts with a difference of only 0.11% between the two human P. vivax reference 

genomes, PvSalI and PvP01 (see SI Appendix, Figure S4-1A). Since PvSY56 and 

PvSY43 were both derived from chimpanzees housed at the same sanctuary, we 

reasoned that they might not represent the full extent of ape P. vivax diversity (the two 

human reference strains were sampled on two different continents in Latin America and 
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Southeast Asia). This prompted us to obtain P. vivax genome sequences from additional 

infected apes. Using SWGA followed by IIlumina sequencing, we amplified ape P. vivax 

from blood samples of two additional SY chimpanzees (SY81 and SY90), from a wild-

living western chimpanzee (Sagu) from Cote d’Ivoire (Kaiser et al., 2010), and from a 

western lowland gorilla (Gor3157) sampled in Cameroon (see SI Appendix, Table S4-2). 

We also mined the read database from a blood sample of a P. malariae-infected sanctuary 

chimpanzee from Gabon (Rutledge et al., 2017), which we had noted contained a 

substantial number of ape P. vivax reads. Reads from each sample were mapped to the 

PvSY56 assembly and single nucleotide polymorphisms (SNPs) were identified. The 

extent of genome coverage varied considerably among the six chimpanzee samples; 

however, we were able to recover between 695 and 3,006 core genes (see SI Appendix, 

Table S4-2), with 65% of genes analyzed being covered in four or more parasite genomes 

(see SI Appendix, Figure S4-2). The gorilla P. vivax strain, which was derived from a 

partially degraded bushmeat sample, yielded only 10 genes despite repeated 

amplification, and was thus not included in the diversity analysis. For comparison, we 

included sequences from seven additional human P. vivax strains (Hupalo et al., 2016), 

each from a different country (India, Myanmar, Papua New Guinea, Thailand, Colombia, 

Mexico, Peru), and identified SNPs using the same methods. Diversity values were then 

calculated across a common set of 4,262 core genes for which we obtained sequences 

from two or more strains for both ape and human P. vivax (Table 4-2). The results revealed 

a mean pairwise nucleotide sequence diversity (π) among the six chimpanzee P. vivax 

strains of 0.694%, about eight times higher than the value (0.085%) for the global sample 

of human strains (Table 4-2, Figure 4-1A; see SI Appendix, Figure S4-1B). Removal of 

the PvSY43 sequence did not decrease this difference (see SI Appendix, Figure S4-1C), 

indicating that inclusion of this multiply infected sample did not artificially inflate the 



117 
 

diversity of the chimpanzee P. vivax parasites. Similarly, there was no evidence that 

SWGA increased chimpanzee P. vivax diversity. Analysis of transition/transversion ratios 

at 4-fold degenerate sites yielded near identical results for chimpanzee (1.08) and human 

(1.06) P. vivax, excluding a technical artifact (Cowell et al., 2017; Sundararaman et al., 

2016). Thus, the P. vivax strains currently circulating in humans appear to have undergone 

a stringent population bottleneck in the recent past. 

 

Table 4-2. Nucleotide polymorphism in ape and human P. vivax 
 

n* πall
† π0

‡ π4 § 
NS 

polymorphisms¶ 
S 

polymorphisms¶ NS/S 
Ape P. vivax 6 0.00694 0.00354 0.01599 31,880 47,020 0.68 
Human P. vivax 9 0.00085 0.00061 0.00143 10,479 7,657 1.37 
*n = number of strains included in the analysis (see SI Appendix, Fig. S2 for gene coverage among the 
different strains). 
†Mean pairwise diversity at coding sites from 4,262 genes (6.5 million sites)  
‡Mean pairwise diversity at 0-fold degenerate sites from 4,262 genes (4.0 million sites) 
§Mean pairwise diversity at 4-fold degenerate sites from 4,262 genes (0.7 million sites) 
¶Number of nonsynonymous (NS) and synonymous (S) polymorphisms were calculated by counting the 
number of SNPs that changed (NS) or did not change (S) the protein sequence of the respective reference. 
 

 

Figure 4-1. Nucleotide sequence diversity in ape and human P. vivax. (A) Pairwise 
nucleotide sequence diversity (π) calculated across a common set of 4,259 core genes 
for six chimpanzee and nine human P. vivax strains (as in Table 4-2, but three genes with 
fewer than 35 aligned sites were excluded). Median and mean (weighted by gene length) 
π values are indicated by solid and dashed lines, with box and whiskers indicating the 
interquartile range and 99th percentiles, respectively. Plots including outliers are shown in 
the SI Appendix, Fig. S1B. (B) Density plots of neutrality index (NI) values shown on a log2 
scale for ape (red) and human (black) P. vivax genes. Values are shown for 1,582 genes 
with non-zero values of NI in both populations. (C) Site frequency spectra of 
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polymorphisms at 4-fold degenerate (blue) and 0-fold degenerate (orange) sites extracted 
from SNP data of human P. vivax samples from Southeast Asia (20). 
 

The nature of the nucleotide polymorphisms also differed substantially between 

chimpanzee and human P. vivax strains. Among the chimpanzee parasites the majority of 

polymorphisms were synonymous, with the ratio of nonsynonymous to synonymous SNPs 

(NS/S) being 0.68. In contrast, the majority of polymorphisms among the human strains 

were nonsynonymous, with a NS/S ratio of 1.37 (Table 4-2). The ratio of NS/S among 

polymorphisms can be compared to (i.e., divided by) the NS/S ratio among interspecies 

differences to yield the neutrality index (Rand and Kann, 1996). This neutrality index, or 

NI, assumes that synonymous changes, both within and between species, are selectively 

neutral, and has an expected value of one when nonsynonymous changes are also 

neutral. We thus compiled a set of 3,912 genes that were comparable among ape and 

human P. vivax strains as well as between these parasites and the macaque parasite P. 

cynomolgi (their closest relative with an available genome sequence). The overall NI value 

for ape P. vivax strains was close to the neutral expectation (NI = 0.95; see SI Appendix, 

Table S4-3). In contrast, the overall value for human P. vivax strains was much larger (NI 

= 1.91), indicating a large excess of nonsynonymous polymorphisms among human 

strains, relative to the expectation derived from patterns of divergence between species. 

Comparison of the ratios of nonsynonymous and synonymous changes, between 

within-species polymorphisms and between-species fixed differences, forms the basis of 

the McDonald-Kreitman (MK) test for adaptive evolution of individual genes (McDonald 

and Kreitman, 1991). The discrepancy in overall NI values for ape versus human P. vivax 

strains indicates that MK tests are likely to produce different results depending on which 

P. vivax strains are used. For the chimpanzee P. vivax strains, only two genes yielded 

significant results after correction for multiple testing, both with NI<1 indicating a significant 
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excess of fixed, potentially adaptive, nonsynonymous differences: one was found to be 

orthologous to PVP01_1201800, which is an immunogenic member of the tryptophan-rich 

antigen family of P. vivax (Chuquiyauri et al., 2015; Wang et al., 2015), while the other 

(orthologous to PVP01_1406200) encodes a conserved Plasmodium protein of unknown 

function. For the human P. vivax strains, five genes yielded significant MK test results, but 

all with NI>1, indicating an excess of nonsynonymous polymorphisms (see SI Appendix, 

SI Dataset). Such results are usually interpreted as evidence of balancing selection 

maintaining polymorphism, but the large overall NI value for the human strains suggests 

that there is a more pervasive factor, such as past demography, that is influencing these 

genes. Figure 4-1B shows the distributions of NI values for 1,582 individual genes with 

non-zero values in both ape and human P. vivax. These results indicate that the difference 

between ape and human P. vivax is not due to a subset of unusual genes, but rather that 

the entire distribution is shifted from being centered around 1.0 in ape P. vivax, to being 

centered around 2.0 in human P. vivax (Figure 4-1B; see SI Appendix, SI Dataset). 

To investigate this in greater detail, we examined the frequencies of 

nonsynonymous and synonymous polymorphisms per site. We obtained different results 

depending on the methodology used, primarily because different methods use different 

approaches to estimate the numbers of sites available for synonymous changes. To avoid 

this problem, we included only 4-fold and 0-fold degenerate sites where, due to the 

structure of the genetic code, either all or none of the possible changes are synonymous. 

Among ape P. vivax strains, the nucleotide diversity at 0-fold degenerate sites (0.00354) 

was 22% of that at 4-fold degenerate sites (0.01599), whereas among human P. vivax 

strains, the value at 0-fold degenerate sites (0.0061) was 43% of that at 4-fold degenerate 

sites (0.00143) (Table 4-2; see SI Appendix, Figure S4-1D and E). Thus, while 

chimpanzee parasites were 11 times more diverse than human parasites at 4-fold 
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degenerate sites, they were only 6 times more diverse at 0-fold degenerate sites, 

indicating that nonsynonymous polymorphisms in human P. vivax strains are almost twice 

as numerous as expected. 

A large number of human P. vivax genome sequences have been characterized 

(Hupalo et al., 2016; Pearson et al., 2016), and so it is possible to investigate the 

frequencies at which SNPs are segregating within the population. Synonymous 

polymorphisms are expected to be neutral, and so their site frequency spectrum (SFS) 

should reflect past demography. By comparison, many nonsynonymous polymorphisms 

are expected to be slightly deleterious, and their SFS should thus be more skewed towards 

lower frequencies. To examine a large number of parasite sequences from a single 

geographic region, we focused on SNP data from MalariaGen samples from Southeast 

Asia (Pearson et al., 2016). Ancestral and derived alleles at each site were identified by 

comparison with two outgroups: the chimpanzee P. vivax strain PvSY56 and a P. 

cynomolgi reference strain. The unfolded site frequency spectra obtained for SNPs at 0-

fold and 4-fold degenerate sites are almost identical (Figure 4-1C). Thus, the unusually 

large fraction of nonsynonymous polymorphisms among human P. vivax sequences 

appears to reflect mutations that are segregating as effectively neutral alleles. 

  

Relationship of P. vivax strains from humans and apes. In previous analyses of a 

small number of partial gene sequences, we found that sequences from human P. vivax 

parasites always formed a monophyletic clade, which usually fell within the radiation of 

sequences from chimpanzee and gorilla samples (Liu et al., 2014). This was observed for 

mitochondrial and apicoplast sequences as well as for three nuclear genes, while for a 

fourth nuclear gene ape and human P. vivax sequences formed sister clades (Liu et al., 

2014). Here we found that, across their genome, chimpanzee parasites were much more 
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divergent from the human parasites than they were from each other. For example, across 

3,957 core genes, the chimpanzee parasite genomes (PvSY56 and PvSY43) differed from 

one another at 0.6% of sites, but from the human P. vivax reference genomes (PvSalI and 

PvP01) on average at 2.2% of sites. This relationship is summarized in a neighbor-joining 

tree constructed from a matrix of pairwise genetic distances from an alignment of 232 

nuclear genes available for all six chimpanzee parasites (Figure 4-2A). Although this tree 

may not reflect the true evolutionary history of any one particular gene (due to 

recombination), the overall relationships were confirmed by phylogenetic network analysis 

(see SI Appendix, Figure S4-3A), which showed that the four chimpanzee parasites 

sampled at the same location (SY) in Cameroon are on average a little more closely 

related to each other than they are to the strains identified in Gabon (GA02) and Cote 

d’Ivoire (Sagu). Inclusion of P. vivax sequences from the gorilla sample restricted the 

analysis to six genes and only five chimpanzee parasites. For these genes the gorilla 

P. vivax strain was quite divergent (Figure 4-2B, see SI Appendix Figure S4-3B), differing 

almost as much from the chimpanzee strains (on average 1.8%) as from the human strains 

(on average 2.4%). Whether the human P. vivax lineage falls within the radiation of the 

ape strains, or groups as a sister clade, depends on the position of the root of these trees. 

The closest available outgroup is P. cynomolgi, which is much more distant from the 

P. vivax sequences than they are from each other, and may not root the tree reliably. 
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Figure 4-2. Evolutionary relationships of ape and human P. vivax strains (A) An unrooted 
neighbor-joining tree constructed from a matrix of pairwise genetic distances from an 
alignment of 232 nuclear genes is shown for nine human (black) and six chimpanzee (red) 
P. vivax strains (the inset shows the human P. vivax strains in greater detail). (B) As in 
(A), but based on 6 nuclear genes with coverage in one gorilla P. vivax strain (green). The 
same human and chimpanzee P. vivax strains were included, except for PvSY81, which 
did not cover these genes. (C and D) Maximum likelihood trees for fragments of nuclear 
genes PVP01_1418300 (C) and PVP01_1418500 (D) with P. cynomolgi and P. knowlesi 
included as outgroups. Sequences of P. carteri parasites are shown in blue. ‘Pv’ denotes 
sequences from genome-wide analyses, shown in bold if generated by SWGA or derived 
from published data (see SI Appendix, Table S4-2); all other sequences except for P. 
cynomolgi and P. knowlesi were generated by SGA and include a code identifying their 
geographic origin (see SI Appendix, Fig. S5), ape subspecies (P.t.t., P. t. troglodytes; 
P.t.e., P. t. ellioti; G.g.g., Gorilla gorilla gorilla), and sample number. Bootstrap values ≥70 
are shown for clades with two or more non-identical tips. Fragment lengths in PvP01 are 
indicated above the trees. The scale bars indicate substitutions per site (also see SI 
Appendix, Figure S4-3 for phylogenetic network analysis). 

 

To investigate further the relationships among ape and human P. vivax strains, we 

focused on the 10 genes that could be recovered from the single gorilla sample (see SI 
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Appendix, Table S2). Including both P. cynomolgi and P. knowlesi as outgroups, we found 

that four genes yielded a tree topology in which the human strains fell within the radiation 

of ape strains, while the six other genes yielded tree topologies in which human and ape 

parasites represented sister clades (see SI Appendix, Figure S4-4). To increase the 

number of geographically diverse ape P. vivax sequences, we used single genome 

amplification (SGA) to screen an existing collection of P. vivax positive ape blood and fecal 

samples for five of these genes (see SI Appendix, Figure S4-5). Each DNA preparation 

was diluted such that only single DNA templates were amplified, which precludes in vitro 

recombination. For three of these genes, this analysis also yielded sequences from 

Plasmodium carteri, a rare parasite species thus far only found in two wild chimpanzees, 

which is distinct from, but most closely related to, the P. vivax clade (Liu et al., 2014; Loy 

et al., 2017). When these additional sequences were included in the phylogenetic 

analyses, four of the five trees showed the human strains within the radiation of ape 

strains, including two where the previous topology depicted ape and human strains as 

sister clades, with three of these four trees including gene sequences for P. carteri (Figure 

4-2C; see SI Appendix, Figure S4-6). Thus, inclusion of gorilla P. vivax and/or P. carteri 

changed the topology from sister clades to a nested relationship. For the remaining gene, 

human and ape parasite sequences remained as sister clades, but only a single gorilla 

parasite sequence was available for analysis and P. carteri sequences could not be 

amplified (Figure 4-2D). These results indicate that the inferred relationships among 

P. vivax strains from apes and humans depend in large part on the number of available 

sequences, especially from gorilla parasites, as well as on the presence of a closely 

related outgroup. 
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Ape P. vivax strains maintain open reading frames for reticulocyte binding protein 

genes that are pseudogenized in human P. vivax. Adaptation of Plasmodium parasites 

to new host species has been associated with gains and losses of genes encoding 

proteins involved in red blood cell invasion (Scully et al., 2017). We therefore compared 

the repertoire of P. vivax invasion genes in the genomes of human and chimpanzee 

parasites. Like human P. vivax, the chimpanzee parasite genomes contained genes 

encoding the Duffy binding protein (DBP) and a related erythrocyte binding protein (DBP2, 

or EBP) (Hester et al., 2013), but no additional DBP-like genes were identified.  

Variation in the complement of reticulocyte binding proteins (RBPs) is thought to 

influence the ability of Plasmodium parasites to invade erythrocytes (Cowman et al., 2017; 

Scully et al., 2017). Human P. vivax, which exclusively invades reticulocytes, has full-

length open reading frames for five rbp genes (rbp1a, rbp1b, rbp2a, rbp2b, rbp2c), all of 

which were conserved in the two chimpanzee P. vivax genomes PvSY56 and PvSY43. 

Two shorter rbp genes annotated in human P. vivax (rbp2p1 and rbp2p2) are believed to 

encode proteins that lack a C-terminal transmembrane domain; one of these (rbp2p1) 

appears to be present in all human P. vivax strains and also in P. cynomolgi, while rbp2p2 

has been found only in a subset of human P. vivax strains (Hietanen et al., 2016). We 

identified orthologs of both of these partial genes in the chimpanzee P. vivax genomes 

(Figure 4-3A), indicating that variation in the presence of rbp2p2 among human P. vivax 

strains is the result of a deletion after the divergence of human and ape parasites, rather 

than a recent gene duplication. The finding of partial rbp2p1 and rbp2p2 genes in both 

ape and human P. vivax, and of rbp2p1 in P. cynomolgi, suggests that their encoded 

proteins have a conserved function. However, looking for positive selection (Yang, 2007) 

in invasion genes (dbp, ebp, rbp1a, rbp1b, rbp2a, rbp2b) on the branch leading to human 

P. vivax failed to yield evidence of human specific adaptation. 
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The human P. vivax genome also contains three rbp pseudogenes, termed rbp2d, 

rbp2e and rbp3. Seemingly functional orthologs of rbp2e and rbp3 are present in the 

genomes of the monkey parasites P. cynomolgi, P. knowlesi and P. inui, while P. fragile 

has an intact rbp2e gene but a rbp3 pseudogene (Figure 4-3A). So far, rbp2d has only 

been identified in P. vivax. The two chimpanzee P. vivax genomes PvSY56 and PvSY43 

contained full length intact open reading frames corresponding to each of these three 

human P. vivax pseudogenes, indicating that the loss of function occurred after the 

divergence of human and ape parasites (Figure 4-3A). 

Since the pseudogenization of rbp2d, rbp2e, and rbp3 seems to be unique to the 

human lineage of P. vivax, we considered the possibility that these genes may be intact 

in some human strains. We mapped sequencing reads from 374 published human P. vivax 

strains (Hupalo et al., 2016; Pearson et al., 2016) to the rbp2d, rbp2e and rbp3 reference 

genes and analyzed those that yielded greater than a three-fold read coverage of the 

entire coding sequences. In each gene, we found at least one inactivating mutation that 

was present in all human parasite samples, as well as numerous additional mutations that 

likely occurred subsequent to the initial pseudogenization event (Figure 4-3B). The 

accumulation of additional frameshifts and stop mutations, some of which occur very close 

to the 5’ end of the coding sequence, suggests that these genes do not encode truncated 

proteins.  
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Figure 4-3. The rbp gene family in ape and human P. vivax. (A) A midpoint-rooted 
maximum likelihood phylogenetic tree is shown depicting the relationships of human 
(black) and chimpanzee (PvSY56 and PvSY43, red) P. vivax rbp genes with their 
orthologs in P. knowlesi, P. cynomolgi, P. inui, P. fragile and human P. malariae (purple). 
P. vivax, P. cynomolgi and P. knowlesi genes are labeled according to their published 
names; genes from P. inui, P. fragile and P. malariae are labeled according to the clade 
in which they are placed. Pseudogenes are indicated with yellow stars. The inset shows 
the relationship of rbp1a sequences among representative human and three sequenced 
chimpanzee P. vivax strains, rooted using P. cynomolgi (see SI Appendix for details). (B) 
Locations of frameshift (purple) and premature stop (black) mutations in rbp2d, rbp2e, and 
rbp3 sequences assembled from published human P. vivax strains (20, 21), relative to the 
full length coding sequence from chimpanzee P. vivax (light green). Each bar represents 
a set of mutations that occurred in two or more human P. vivax strains for which a full 
length sequence was assembled (128, 162, and 227 sequences for rbp2d, rbp2e, rbp3, 
respectively); the percentage of sequences containing the respective mutations is shown 
on the right, with “other” summarizing all mutations that occurred only once. 

 

To examine whether the other chimpanzee P. vivax strains (PvSY81, PvSY90, 

PvSagu and PvGA02) contained any of the rbp2d, rbp2e, and rbp3 inactivating mutations, 

we mapped available sequencing reads to their respective genes. We also used SGA to 
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amplify the same regions from P. vivax positive gorilla samples. Although in most 

instances the coverage of the rbp2d, rbp2e, and rbp3 genes was incomplete, none of the 

recovered sequences contained the frameshift and stop codon mutations found in all 

human P. vivax strains (see SI Appendix, Figure S4-7). This was also true for SGA-derived 

gorilla parasite sequences from the multiply infected bushmeat sample SAggg3157, which 

contained a number of polymorphism, none of which disrupted the respective reading 

frame. Thus, both chimpanzee and gorilla P. vivax parasites appear to maintain three 

genes encoding RBPs that have been lost in all human P. vivax strains, which could 

influence their ability to infect different host species. 

 

Recombinant RBP2e and RBP3 do not exhibit species-specific red blood cell 

binding. The pseudogenization of rbp2d, rbp2e and rbp3 in all human P. vivax strains 

raised the possibility that these proteins bind gorilla- and/or chimpanzee-specific 

erythrocyte receptors that are no longer used by the human parasite. Recombinant 

proteins comprising the amino-terminal domain of RBPs encoded by human P. vivax 

(RBP2a160-1000 and RBP2b161-969) have been used to characterize their erythrocyte binding 

properties (Gruszczyk et al., 2018b, 2016). These studies showed that RBP2b binds the 

reticulocyte-specific Transferrin Receptor 1 (TfR1), also termed CD71 (Gruszczyk et al., 

2018b), while RBP2a binds an unknown receptor present on both normocytes and 

reticulocytes (Gruszczyk et al., 2016). To examine the function of chimpanzee P. vivax 

RBP2d, RBP2e, and RBP3 proteins, we expressed their amino-terminal domains in 

bacteria for subsequent erythrocyte binding studies. Although RBP2d165-967 could not be 

purified due to protein aggregation, RBP2e156-957 and RBP3149-968 were efficiently 

expressed and exhibited an alpha-helical and beta-sheet content similar to human P. vivax 

RBP2b (see SI Appendix, Figure S4-8). Because some RBPs bind only reticulocytes, we 



128 
 

s to enrich these cells from blood samples obtained from four humans, four chimpanzees 

and one gorilla using a Percoll density gradient as previously described (Gruszczyk et al., 

2018b, 2016). Despite repeated attempts, this approach yielded only partial reticulocyte 

enrichment for the ape blood samples, possibly due to differences in erythrocyte density 

between the different species (see SI Appendix, SI Methods). Nonetheless, some 

enrichment of ape reticulocytes (up to 1.8%) was achieved as determined by thiazole 

orange (TO) staining. 

To examine binding to ape red blood cells, we first tested the two previously 

characterized human P. vivax RBP proteins, RBP2a160-1000 and RBP2b161-969 (Gruszczyk 

et al., 2018b, 2016). Ape and human red blood cells were incubated with each 

recombinant protein and binding was assessed using protein-specific polyclonal rabbit 

antibodies, followed by a fluorophore-labeled anti-rabbit antibody (Gruszczyk et al., 

2018b, 2016). Reticulocytes were stained with thiazole orange (TO) prior to flow cytometry 

(Figure 4-4A). Consistent with previous results, we observed robust binding of RBP2a to 

both human normocytes (10.3% of TO negative cells; Figure 4-4B) and reticulocytes 

(32.4% of TO positive cells; Figure 4-4C). Interestingly, a similar binding profile was also 

observed for gorilla and chimpanzee red blood cells (Figure 4-4; see SI Appendix, Figure 

S4-9). As expected, RBP2b exhibited a strong preference for reticulocytes, binding 19.9% 

of human reticulocytes (Figure 4-4C), but only a minor fraction (0.9%) of human 

normocytes (Figure 4-4B), likely reflecting incomplete reticulocyte staining and/or non-

specific binding. RBP2b also bound chimpanzee and gorilla reticulocytes, albeit at a 

reduced level (Figure 4-4C). Although the TfR1 proteins of chimpanzees and gorillas differ 

from their human counterpart by a few amino acids (see SI Appendix, Figure S4-10), none 

of these residues were identified to represent RBP2b contact sites (Gruszczyk et al., 

2018a). Thus, the decreased binding of RBP2b to ape reticulocytes is unlikely the result 
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of sequence differences between chimpanzee, gorilla and human TfR1 proteins and may 

instead reflect differences in TfR1 expression levels, post-translational modifications, or 

other factors. 

 

Figure 4-4. Binding of RBPs to ape and human red blood cells. (A) Dot plots are shown 
that depict the binding of human P. vivax RBP2a and RBP2b proteins and chimpanzee P. 
vivax RBP2e and RBP3 proteins to human (first row), gorilla (second row), and 
chimpanzee (third row) red blood cells, respectively, along with antibody-only controls of 
human red blood cells (fourth row). RBP binding was detected using an RBP-specific 
polyclonal rabbit antibody and an anti-rabbit (Alexa Fluor 647 labelled) secondary antibody 
(y-axis), and reticulocytes were identified by staining with thiazole orange (TO) (x-axis). 
Flow cytometry gates separating normocytes from reticulocytes, and protein binding from 
no protein binding, are shown by vertical and horizontal lines, respectively. Numbers 
indicate the percentage of total cells within the respective gate. (B) Percentage of gorilla 
(green), chimpanzee (red) and human (black) normocytes bound by the respective RBP. 
(C) Percentage of gorilla, chimpanzee and human reticulocytes bound by the respective 
RBP. Experiments were performed as three technical replicates with the background 
signal from the antibody-only control subtracted from each binding result. 
 

Having validated the experimental system, we next tested the binding of 

chimpanzee P. vivax RBP2e156-957 and RBP3149-968 to ape and human red blood cells. We 
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found that neither of these two proteins bound particularly well to ape red blood cells, 

although RBP2e consistently yielded a higher signal than RBP3 (Figure 4-4B and C). Like 

the human P. vivax RBP2a and RBP2b proteins, RBP2e and RBP3 appeared to bind 

reticulocytes more efficiently than normocytes (Figure 4-4; see SI Appendix, Figure S4-9). 

However, there was no clear evidence for host specificity. Although RBP3 bound gorilla 

reticulocytes slightly more efficiently than chimpanzee and human reticulocytes, this result 

has to be interpreted with caution since only a single gorilla sample containing very few 

reticulocytes was available for testing (Figure 4-4A). Indeed, when red blood cells from a 

macaque were tested, RBP2e and RBP3 were found to also bind to reticulocytes from this 

host species (see SI Appendix, Figure S4-9). To determine whether the low level of RBP2e 

and RBP3 binding was due to inefficient reticulocyte enrichment, we tested an additional 

chimpanzee blood sample with a particularly high reticulocyte count. Although Percoll 

gradient enrichment of this sample yielded twice as many reticulocytes (4%), this higher 

fraction did not improve RBP2e and RBP3 binding (see SI Appendix, Figure S4-11). Thus, 

the maintenance of the rbp2e and rbp3 genes in chimpanzee P. vivax cannot be readily 

explained by invoking interaction with a host-specific erythrocyte receptor.  

 

4.4 Discussion 

It has recently become apparent that wild-living African apes, including western and 

eastern gorillas as well as chimpanzees and bonobos, harbor malaria parasites that 

appear to be very closely related to P. vivax strains infecting humans in Asia and 

Central/South America (Liu et al., 2017, 2014; Prugnolle et al., 2013). Since these results 

were based on a small number of mostly mitochondrial DNA fragments, we have now 

generated two near complete and several partial genome sequences from ape-infecting 

parasites. Analyses of these sequences show that ape and human parasites are indeed 
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very closely related, with the human P. vivax sequences forming a monophyletic lineage 

either within or as a sister group to the ape parasites. The new data also reveal that ape 

and human P. vivax strains exhibit distinct patterns of genetic diversity, reflecting very 

different demographic histories. The parasites infecting humans and apes are largely 

allopatric, but there is as yet no evidence that they represent distinct Plasmodium species. 

Thus, P. vivax in African apes represents a substantial, and genetically diverse, parasite 

reservoir from which future human infections could arise, even if eradication of current 

human strains were successful. 

Recent papers have emphasized that, across the genome, the global genetic 

diversity of human P. vivax is somewhat greater than that of P. falciparum (Hupalo et al., 

2016; Neafsey et al., 2012). Here we find that the level of neutral genetic diversity among 

P. vivax parasites from chimpanzees is about 10 times higher than that of human P. vivax 

strains. P. falciparum isolates also exhibit about 10 times less genetic diversity than is 

seen in closely related Laverania species (Otto et al., 2018; Sundararaman et al., 2016). 

This is consistent with both human parasites having undergone severe genetic 

bottlenecks. In the case of P. falciparum, this most likely occurred at the point when a 

gorilla parasite made the cross-species jump into humans (Liu et al., 2010; Loy et al., 

2017). For P. vivax, it is also possible that the ancestral parasites infected only non-human 

apes, and that one of these crossed the species barrier and gave rise to the population of 

parasites currently infecting humans. Alternatively, ancient P. vivax may have infected all 

African ape species, including humans (Liu et al., 2014). In the latter case, the bottleneck 

would likely have occurred when P. vivax migrated with human out of Africa, prior to the 

spread of the Duffy negative mutation that eliminated P. vivax from humans in most (or at 

that time, perhaps all) of sub-Saharan Africa. While it is difficult to distinguish between 

these two scenarios on the basis of genetic data, we believe that the second scenario is 
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the more likely. Ape P. vivax seems to circulate freely between chimpanzees and gorillas 

in the wild (Liu et al., 2014) and has caused disease in a Duffy-positive human (Prugnolle 

et al., 2013). Consistent with this, the very high frequency of the Duffy-negative mutation 

suggests a long history of P. vivax exerting selective pressure on humans in Africa (Carter, 

2003). It is likely that the geographic areas in which this mutation is most frequent (Howes 

et al., 2011) were influenced over a long timescale by the distribution of ape P. vivax to 

which humans were exposed. 

The nature of the genetic diversity also differs markedly between the populations 

of P. vivax parasites that infect apes and humans. Among human strains, there is an 

unusually high fraction of nonsynonymous polymorphism. Moreover, these 

nonsynonymous polymorphisms exhibit site frequency spectra that are almost identical to 

those seen for synonymous mutations, implying that they are segregating as if effectively 

neutral. Similar observations have been made for polymorphism in P. falciparum (Chang 

et al., 2012), where this has been attributed, at least in part, to the fact that the parasite 

undergoes repeated bottleneck events in every life cycle at the obligate transmission 

events between host and vector, with rapid expansion in the human host (Chang et al., 

2013). Here, we find that the ratio of nonsynonymous to synonymous mutations among 

the much more numerous polymorphisms among ape P. vivax strains is similar to the ratio 

at sites of divergence between P. vivax and its macaque relative P. cynomolgi. Thus, the 

unusual pattern of polymorphism in human P. vivax cannot reflect its life cycle, but is more 

likely the consequence of the population having undergone a rapid expansion subsequent 

to the spread out of Africa. 

 Looking for possible human specific adaptive changes, we performed McDonald-

Kreitman tests on approximately 4,000 core genes, comparing polymorphisms within ape 

P. vivax with fixed differences between ape P. vivax and human P. vivax. After correcting 
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for multiple tests, we found no gene that exhibited a significant excess of non-synonymous 

fixed differences. We also looked for positive selection in invasion genes on the branch 

leading to human P. vivax, but found no evidence of human specific adaptation. Although 

this does not exclude that a small number of human adaptive changes have occurred, the 

time when human P. vivax became specialized to humans and no longer infected apes 

seems too short to expect significant differences.  

 The pseudogenization of three reticulocyte binding proteins (rbp2d, rbp2e, and 

rbp3) in all human P. vivax strains could be taken to indicate human-specific adaptation 

after the parasite migrated out of Africa and no longer encountered chimpanzees or 

gorillas. However, our erythrocyte binding results are not consistent with this scenario. We 

observed equivalent binding of RBP2e to ape and human red blood cells, and only a 

modest increase in RBP3 binding to gorilla reticulocytes compared to human reticulocytes. 

Overall, the chimpanzee P. vivax-derived RBP2e and RBP3 proteins bound red blood 

cells much less well than the human P. vivax-derived RBP2a and RBP2b proteins, which 

could be due to low affinity interactions, improper folding of the recombinant proteins, or 

the absence of other parasite proteins required for receptor engagement. We also 

considered the possibility that RBP2e and RBP3 are not involved in erythrocyte binding, 

or that the core receptor binding domains were not included in the expressed proteins. 

However, others have shown that the P. knowlesi orthologs of RBP3 and RBP2e, termed 

PkNPBXa and PkNPBXb, both bind red blood cells (Semenya et al., 2012), and that the 

binding domain of PkNPBXb maps to a region included in our RBP2e construct (Semenya 

et al., 2012). Moreover, deletion of PkNBPXa severely reduced the ability of P. knowlesi 

merozoites to invade human red blood cells in vitro (Moon et al., 2016), despite the fact 

that all human-infecting P. vivax strains have lost RBP3. It could be argued that the large 

number of RBP genes in P. vivax (eight full-length and two partial genes) compared with 
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P. knowlesi (two full-length genes and one pseudogene) provides functional redundancy 

that compensates for the loss of rbp genes in human P. vivax. However, this would also 

apply to ape P. vivax, where pseudogenes have not been found. Instead, the loss of rbp 

genes may be slightly deleterious and incur a fitness cost. In ape P. vivax, such an 

inactivating mutation would be expected to be selected against and thus not spread in the 

population. However, in human P. vivax the same mutation could be effectively neutral, 

as many nonsynonymous mutations appear to be, and so it could survive and drift to 

fixation. Whether this explains the loss of rbp2d, rbp2e, and rbp3 in human P. vivax 

remains unknown. However, we found no evidence that rbp2e and rbp3 genes are 

maintained in ape P. vivax parasites because they interact with chimpanzee- and/or 

gorilla-specific erythrocyte receptors that are absent from human red blood cells. 

Despite their common origin in Africa, ape and human P. vivax populations have 

likely had little or no geographic overlap subsequent to the escape of the human-infecting 

lineage out of Africa. Under the bottleneck scenario, the most recent common ancestor of 

human P. vivax was in the lineage that emerged from Africa. This may have been 

coincident with the emergence of modern humans from Africa, perhaps around 75,000 

years ago (Pagani et al., 2016). Molecular clock estimates have placed the P. vivax most 

recent common ancestor (MRCA) at least 50,000-70,000 years ago (McManus et al., 

2017; Mu et al., 2005), but these relied on rate assumptions that may not be accurate. We 

have argued that the MRCA of P. falciparum strains may have existed within the last 

10,000 years (Sundararaman et al., 2016), despite molecular clock estimates that place 

the origin of that species much earlier. Similarly, the MRCA of human P. vivax may have 

left Africa in a more recent wave of human migration, although its higher levels of genetic 

diversity (Hupalo et al., 2016) suggest that human P. vivax is older than P. falciparum. 

Once out of Africa, P. vivax spread through Asia and Europe, and probably from Europe 
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into the Americas (Carter, 2003; Gelabert et al., 2016). Strains of P. vivax now present in 

Madagascar and East Africa, in areas where non-human apes are absent, likely reflect 

reintroductions from Asia (Culleton et al., 2011). Given this historical isolation of ape and 

human P. vivax strains, substantial gene flow between the two populations is unlikely. The 

mixture of topologies found for different genes, where some show separation of the ape 

and human parasite lineages, while others have the human parasites nested within the 

radiation of the ape parasites, likely reflects an ongoing process of lineage sorting in the 

absence of introgression. However, this does not mean that the two populations have 

become isolated species. Both ape and human P. vivax exhibit broad natural tropism 

(Buery et al., 2017; Liu et al., 2014; Loy et al., 2017; Prugnolle et al., 2013), and it therefore 

seems very likely that ape and human strains could infect the same hosts, and undergo 

genetic exchange, if their geography overlapped. In recent years, reports of P. vivax 

infection of African humans have been increasing, including instances of infection of Duffy-

negative individuals (Zimmerman, 2017). It will be important to monitor these cases to 

determine whether any reflect zoonotic transmissions from apes, and whether there is any 

sign of introgression between ape- and human-infecting strains. 

 

4.5 Materials and methods 

Sample collection, DNA extraction, and Plasmodium screening. Blood samples were 

obtained from chimpanzees at the Sanaga-Yong Chimpanzee Rescue Center following 

routine veterinary examination. Blood was also collected from a wild-living habituated 

chimpanzee from the Tai Forest in Cote d’Ivoire during emergency surgery (Köndgen et 

al., 2011). The gorilla blood sample (Gor3157, also referred to as SAggg3157) was 

obtained from confiscated bushmeat in Cameroon. All samples were shipped in 

compliance with Convention on International Trade in Endangered Species of Wild Fauna 
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and Flora regulations and country-specific import and export permits. DNA was extracted 

from whole blood samples using the QIAmp Blood DNA Mini Kit or the Puregene Core 

Blood Kit (Qiagen), and screened for Plasmodium using both pan-Plasmodium primers 

and P. vivax-specific primers, as described (Liu et al., 2014, 2010). Amplicons were 

sequenced using Sanger or MiSeq technologies (see SI Appendix, Materials and 

Methods). 

 

Selective whole genome amplification. Near full-length and partial P. vivax genomes 

were amplified from unprocessed chimpanzee and gorilla blood as described (Cowell et 

al., 2017; Sundararaman et al., 2016) using multiple rounds of SWGA with different primer 

sets, with and without prior digestions with MspJI and FspEI to selectively degrade host 

DNA (see SI Appendix, Table S4-1). 

 

Illumina and PacBio sequencing. Short insert libraries were prepared from pooled 

SWGA products of samples SY43 and SY56 using a KAPA HyperPlus Kit and MiSeq 

sequenced. Pooled SWGA products were also linearized with S1 nuclease (Promega), 

needle sheared to reduce fragment size, and subjected to PacBio SMRT Cell sequencing 

(University of Delaware Sequencing Core). SWGA products from samples SY81, SY90, 

Sagu, and Gor3157 were Illumina sequenced to obtain partial P. vivax genomes. 

 

Assembly of chimpanzee P. vivax draft genomes. Illumina sequencing reads were 

error-corrected using SPAdes (Bankevich et al., 2012), mapped to the chimpanzee 

reference genome, and unmapped reads were mapped to the P. vivax P01 reference 

genome (Auburn et al., 2016). Regions with low coverage or poor paired-read support 

were removed and gaps closed using FGAP (Piro et al., 2014) with proovread-corrected 
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PacBio reads (Hackl et al., 2014), followed by iterations of GapFiller (Nadalin et al., 2012) 

and IMAGE (Tsai et al., 2010). The PvSY56 draft genome was further improved by de 

novo assembly of subtelomeric reads using SPAdes (Bankevich et al., 2012). Annotations 

were transferred to the final assembly using RATT (Otto et al., 2011), and predicted using 

Companion (Steinbiss et al., 2016) in the de novo assembled subtelomeres, followed by 

manual correction. Sets of orthologous genes from PvSY43, PvSY56, PvP01 and PvSalI 

were masked using segmasker (http://nebc.nox.ac.uk/bioinformatics/docs/blast+.html) to 

exclude low-complexity regions, and aligned using TranslatorX/MUSCLE (Abascal et al., 

2010). Outgroup sequences, where available, were added to these alignments using 

MUSCLE. Divergence between sequences was calculated in R using ape (Paradis et al., 

2004) with no correction for multiple substitutions (‘raw’ model). 4-fold and 0-fold 

degenerate sites were extracted if the classification was true for all sequences in the 

alignment. 

 

Single nucleotide polymorphism (SNP) calling. In addition to sequencing SWGA 

products, we also mined publicly available databases for human (Hupalo et al., 2016) and 

chimpanzee (Rutledge et al., 2017) P. vivax reads. SNPs were called following best 

practices for the Genome Analysis Toolkit with hard filtering (Auwera et al., 2014), using 

PvSY56 and PvP01 as ape and human P. vivax reference sequences, respectively. 

Regions classified as low-complexity by dustmasker, genes in subtelomeric and internal 

hypervariable regions (Pearson et al., 2016), and all vir and phist genes were excluded. 

Sites with a coverage of at least five reads were considered callable, with genes containing 

fewer than 60% of sites of the reference excluded. Only sites callable for all strains were 

analyzed. Site frequency spectra were generated from high-quality SNP calls for all high-

coverage South East Asian P. vivax strains in the MalariaGen Genome Variation project 
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(Pearson et al., 2016). 4-fold and 0-fold degenerate sites were identified in the PvSalI 

reference sequence using custom R scripts, and derived alleles at polymorphic sites were 

identified using the est-sfs unfolder (Keightley and Jackson, 2018) with PvSY56 and PcyM 

as outgroups. 

 

Single genome amplification (SGA) of geographically diverse P. vivax strains. Ape 

P. vivax and P. carteri sequences were amplified as described from stored ape blood and 

fecal samples previously shown to be positive for these parasites (Liu et al., 2014). 

Fragments of five genes were targeted using newly designed primers. 

 

Identification of reticulocyte binding protein (rbp) genes. Chimpanzee P. vivax rbp 

genes were identified during annotation of the PVSY56 and PvSY43 genomes. rbp 

orthologs from P. malariae strain PmUG01 (Rutledge et al., 2017), P. knowlesi strain H 

((Pain et al., 2008), 2015 update), P. cynomolgi strains B and Berok (Pasini et al., 2017; 

Tachibana et al., 2012), P. inui strain San Antonio 1 and P. fragile strain Nilgiri (PlasmoDB) 

were identified from annotations and using P. vivax rbp genes as query sequences. 

Human P. vivax sequencing reads (Hupalo et al., 2016; Pearson et al., 2016) were 

downloaded and mapped to rbp2e (PVP01_0700500), rbp2p1 (PVP01_0534400), rbp2p2 

(PVP01_101590), rbp3 (PVP01_1469400), and rbp2d (PVP01_1471400 and 

PVX_101585), with a consensus sequence called for all positions with ≥3-fold coverage. 

The position of frameshifts and stop codons was identified relative to the ape P. vivax 

sequence (see SI Appendix, Materials and Methods). 
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Reticulocyte binding protein (RBP) expression and red cell binding assays. 

Chimpanzee P. vivax rbp2d, rbp2e, and rbp3 sequences were codon optimized, 

synthesized, and cloned into pET-32a(+) (Novagen), yielding constructs RBP2d165-967, 

RBP2e156-957 and RBP3149-968, respectively. Proteins were expressed using E. coli SHuffle 

T7 (New England Biolabs) and purified using a HisTrap (GE Healthcare) column. After 

hexa-histidine tag cleavage and purification through a Q-Sepharose HiTrap column (GE 

Healthcare), fractions containing the respective proteins (determined by SDS PAGE) were 

concentrated and further purified by size exclusion chromatography. RBP2d165-967 could 

not be purified due to protein aggregation. Expression and purification of two human P. 

vivax RBP proteins, RBP2a160-1000 and RBP2b161-969, were performed as described 

(Gruszczyk et al., 2018b, 2016). 

Whole blood from five chimpanzees (New Iberia Research Center, Lafayette, 

Louisiana), one gorilla (Lincoln Park Zoo, Chicago, Illinois), and one rhesus macaque 

(BioIVT, Westbury, New York) was collected in ACD collection tubes (BD Biosciences). 

All ape blood samples represented left over specimens obtained during routine health 

screenings (the macaque blood was purchased). Blood was also obtained from healthy 

human volunteers at the University of Pennsylvania under IRB protocol #813699. White 

blood cells were first removed by leukocyte filtration and reticulocyte were subsequently 

enriched by spinning red blood cells (50% hematocrit) through a 65-75% (v/v) isotonic 

Percoll cushion and collecting the cell band at the interface. To assess RBP binding, 

recombinant protein was incubated with red blood cells for one hour, followed by detection 

with an RBP-specific polyclonal rabbit antibody and an anti-rabbit (Alexa Fluor 647 

labelled) secondary antibody (ThermoFisher). Between each incubation step, cells were 

washed in 180 μl PBS containing 1% BSA (Sigma). Cells were stained in the dark with BD 

Retic-Count reagent for 30 mins at room temperature, spun, and resuspended in 1.2 ml 
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of PBS prior to analysis on an Accuri flow cytometer. Experiments were performed as 

three technical replicates with the background signal from the antibody-only control 

subtracted from each binding result. 
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Accession codes. Chimpanzee P. vivax whole genome sequences and all short-read 

data have been deposited in the GenBank BioProject database under project number 

PRJNA474492, with genome annotations for PvSY43 and PvSY56 available upon 

request. Limiting dilution PCR-derived sequences have been deposited in GenBank under 

accession codes MH443154-MH443228. 

 

4.7 Supplemental Information Appendix 

Ape samples. Whole blood samples (5-10 ml) were obtained from sanctuary 

chimpanzees (Pan troglodytes) cared for at the Sanaga Yong (SY) Chimpanzee Rescue 

Center in Cameroon as previously described (Liu et al., 2010; Sundararaman et al., 2016), 

including from members of the central (P. t. troglodytes) and Nigeria-Cameroonian (P. t. 

ellioti) subspecies. These samples were obtained for veterinary purposes only or 

represented leftover specimens from yearly health examinations. None of the 

chimpanzees exhibited symptoms of malaria at the time of sampling. Blood was preserved 

in RNAlater (1:1 vol/vol) without further processing at room temperature until shipment to 

the United States and long term storage at -80°C. Blood from a wild-living habituated 

chimpanzee (“Sagu”) in the Tai Forest (P. t. verus) was obtained during an emergency 

field immobilization for treatment of a respiratory condition as described (Köndgen et al., 

2011) and immediately frozen in liquid nitrogen prior to shipment to Germany and storage 

at -80°C. A small amount of blood (frozen directly without preservation) was also available 

from a western gorilla (Gorilla gorilla) of unknown geographic origin (Gor3157), which was 

killed by hunters and confiscated by the anti-poaching program of the Cameroonian 

Ministry of Environment and Forestry (Liu et al., 2016; Sundararaman et al., 2016). Ape 

fecal samples were selected from an existing bank of chimpanzee, bonobo, and gorilla 

specimens previously shown to contain P. vivax parasite DNA (Liu et al., 2017, 2014, 
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2010). These specimens were collected non-invasively from non-habituated apes living in 

remote forest areas, with a two-letter-code indicating their field site of origin (Figure S4-

5). Additionally, dried blood spots were available from two chimpanzees and one gorilla 

housed at the Mfou National Park Wildlife Rescue Center in Cameroon, which were 

previously shown to be P. vivax positive (Liu et al., 2014). DNA was extracted from whole 

blood and dried blood spots using the QIAmp Blood DNA Mini Kit or the Puregene Core 

Blood Kit (Qiagen). Fecal DNA was extracted using the QIAamp Stool DNA mini kit 

(Qiagen). All specimens were subjected to host mitochondrial DNA analysis to confirm 

their species and subspecies origin (Liu et al., 2017, 2014, 2010). Sample collection was 

approved by the Ministry of Environment and Forestry in Cameroon and by the Ministry of 

the Environments and Forests in Cote d’Ivoire. All samples were shipped in compliance 

with Convention on International Trade in Endangered Species of Wild Fauna and Flora 

regulations and country-specific import and export permits.  

 

PCR screening for Plasmodium infection. Ape blood and fecal samples were screened 

for Plasmodium sequences by diagnostic PCR using both pan-Plasmodium and P. vivax-

specific primer sets as previously described (Liu et al., 2017, 2014, 2010). Briefly, nested 

PCR was used to amplify a 956 bp fragment of the cytochrome b gene (pan-Plasmodium 

primers) and a 295 bp fragment of the cytochrome oxidase I gene (P. vivax-specific 

primers) of the parasite mitochondrial genome. Amplicons were subjected to Sanger or 

Illumina sequencing, and phylogenetic analysis was performed to determine the species 

of the amplified Plasmodium sequences. Because the blood sample from the chimpanzee 

Sagu was previously reported to be positive for P. vivax (Kaiser et al., 2010), it was not 

rescreened for this study. 
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Selective amplification of ape P. vivax genomes. To generate P. vivax genome 

sequences from unprocessed ape blood, we used selective whole genome amplification 

(SWGA), which utilizes the highly processive phi29 DNA polymerase to preferentially 

amplify pathogen sequences from complex mixtures of target and host DNA (Leichty and 

Brisson, 2014; Sundararaman et al., 2016). Six sets of P. vivax specific primers were 

used (Table S4-1), of which pvset1 and pvset6 (also termed pvset1920) have previously 

been reported (Cowell et al., 2017). The remaining four sets (pvset2-5) were newly 

designed to increase overall P. vivax genome coverage. Using custom scripts 

(Sundararaman et al., 2016), we initially identified sequence motifs (6-12 bp in length) that 

occurred frequently in the P. vivax SalI reference genome (Carlton et al., 2008), but only 

infrequently in the human genome. These were filtered to remove primers that exhibited 

extreme melting temperatures, were predicted to form homodimers, and/or bound the SalI 

mitochondrial genome or its subtelomeric regions more than three times. The resulting 

primer sets, including pvset1 (5’-CGTTG*C*G-3’, 5’-TTTTTTC*G*C-3’, 5’-TCGTG*C*G-3’, 

5’-CGTTTTTT*T*T-3’, 5’-TTTTTTTC*G*T-3’, 5’-CCGTT*C*G-3’, 5’-CGTTTC*G*T-3’, 5’-

CGTTTC*G*C-3’, 5’-CGTTTT*C*G-3’, and 5’-TCGTTC*G*T-3’) and pvset2 (5’-

CGAAAAAA*A*A-3’, 5’-CGCAA*C*G-3’, 5’-GCGAAA*T*G-3’, 5’-CGCAC*G*A-3’, 5’-

GCGAAAA*A*A-3’, 5’-AACGAAAA*A*A-3’, 5’-AACGAA*C*G-3’, 5’-ACGAAA*C*G-3’, 5’-

CGAACG*A*A-3’, and 5’-CGAAAC*G*G-3’), exhibited high coverage of the P. vivax 

genome and low coverage of the human genome (asterisks indicate the location of 

phosphorothioate bonds necessary to prevent degradation by the phi29 polymerase). Two 

additional sets, including pvset3 (5’-CTTCGAA*C*G-3’, 5’-GCGAAAC*G*T-3’, 5’-

GGCGAAAAA*A*A-3’, 5’-TCGCGAA*A*A-3’, 5’-TTTCGCG*T*A-3’, and 5’-

TTTCGTG*C*G-3’) and pvset4 (5’-CGAAGCGG*A*G-3’, 5’-CTTCGAA*C*G-3’, 5’-
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GCGAAAC*G*T-3’, 5’-GGCGAAAAA*A*A-3’, 5’-TCGCGAA*A*A-3’, 5’-TTTCGCG*T*A-3’, 

and 5’-TTTCGTG*C*G-3’), were generated using the program swga (Clarke et al., 2017), 

which is designed to select primer sets that bind evenly across the reference genome. 

After noticing preferential amplification of AT-rich subtelomere regions in SWGA products, 

we designed two final primer sets using only GC-rich regions of the SalI reference 

sequence as the foreground genome (Cowell et al., 2017), resulting in pvset5 (5’-

AGCGAAAAAA*A*A-3’, 5’-AGCGAAC*G*T-3’, 5’-CAAACGGG*T*G-3’, 5’-

CGAACGA*A*T-3’, 5’-CGAAGCGG*A*G-3’, 5’-CGAATGGG*G*G-3’, 5’-CGAGCGA*A*C-

3’, 5’-CGTTTGG*C*G-3’, 5’-GCGGGAAAA*A*A-3’, 5’-GCGTGTA*C*G-3’, 5’-

TACGACG*A*G-3’, and 5’-TTCAGCG*C*G-3’) and pvset6 (5’-AACGAAGC*G*A-3’, 5’-

ACGAAGCG*A*A-3’, 5’-ACGACGA*A*G-3’, 5’-ACGCGCA*A*C-3’, 5’-CAACGCG*G*T-3’, 

5’-GACGAAA*C*G-3’, 5’-GCGAAAAA*G*G-3’, 5’-GCGAAGC*G*A-3’, 5’-

GCGGAAC*G*A-3’, 5’-GCGTCGA*A*G-3’, 5’-GGTTAGCG*G*C-3’, and 5’-

AACGAAT*C*G-3’). 

 SWGA was performed as described (Cowell et al., 2017; Sundararaman et al., 

2016) by amplifying whole blood DNA (100-750 ng) in a 50 μl reaction with 1x phi29 Buffer 

(New England Biolabs), 1 mM dNTPs (Roche), 3.5 μM of SWGA primers (an equimolar 

mix of primers in the set), 1% BSA and 30 units of phi29 polymerase (New England 

Biolabs). SWGA conditions included a 1 h ramp-down step (35oC to 30oC), followed by an 

amplification step for 16 h at 30oC, followed by a phi29 denaturation step for 10 min at 

65oC. SWGA products were diluted 1:1 in water, purified using AMPure Beads (Beckman 

Coulter), and stored at 4oC. To mitigate the stochastic nature of SWGA at low template 

concentrations (Sundararaman et al., 2016), genomic DNA from each ape-derived sample 

was amplified on multiple independent occasions with different primer sets (Table S4-1). 

Because pretreatment with restriction enzymes that selectively degrade host DNA can 
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improve SWGA efficiency (Sundararaman et al., 2016), some DNA aliquots were digested 

with the methylation sensitive enzymes MspJI and FspEI (5 units each) for 2 hours at 37°C 

prior to SWGA amplification (Table S4-1). To obtain sufficient quantities of parasite 

genomic DNA for sequencing, ape-derived DNA samples were subjected to multiple 

rounds (up to 4) of successive SWGA amplification, some of which were performed with 

alternating primer sets to improve genome coverage (Cowell et al., 2017).  

 

Illumina and PacBio sequencing. To generate chimpanzee P. vivax draft genomes, we 

used SWGA amplicons from samples SY43 and SY56 for Illumina and PacBio 

sequencing. These chimpanzee blood samples were selected because they were PCR 

positive for P. vivax cytb and cox1 regions, but lacked Laverania sequences. For Illumina 

sequencing, we pooled second and fourth round SWGA products to prepare short insert 

libraries using the KAPA HyperPlus kit (Roche) with an enzyme fragmentation time of 3 

minutes. Fragmentation products were purified with AMPure Beads (Beckman Coulter), 

followed by dual-sided solid phase reversible immobilization (SPRI) to select for fragments 

550 bp in length. The resulting libraries were sequenced on an Illumina MiSeq platform 

using V2 chemistry. For PacBio sequencing, second and third round SWGA products were 

pooled for library preparation. Briefly, amplification products (7.5-40 μg) were incubated 

with S1 nuclease (15 units) for 30 min at 37°C for DNA linearization, purified using AMPure 

beads, and passed through a 26 gauge blunt end needle to reduce DNA fragment size 

from >60,000 bp to ~15,000 bp. DNA was purified, eluted in 40 μl of water, and sent to the 

University of Delaware Sequencing Core where fragments of 7,000-18,000 bp length were 

size-selected using BluePippin (Sage Biosciences) prior to SMRT Bell library preparation 

and PacBio SMRT Cell sequencing. 
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Assembly of PvSY43 and PvSY56 draft genomes. Illumina MiSeq reads from 

chimpanzee blood samples SY43 and SY56 were error corrected using SPAdes 

(Bankevich et al., 2012) and then mapped to the chimpanzee reference genome using 

smalt (http://www.sanger.ac.uk/science/tools/smalt-0). Unmapped reads were extracted 

and converted to fastq files using SAMtools (Li et al., 2009) and BEDtools (Quinlan and 

Hall, 2010), respectively. PacBio reads from samples SY43 and SY56 that were longer 

than 1,500 bp and 1,000 bp, respectively, were filtered to remove chimpanzee reads using 

BLASR (Chaisson and Tesler, 2012). The resulting non-chimpanzee reads were corrected 

using proovread (Hackl et al., 2014).  

The non-chimpanzee MiSeq reads were iteratively mapped (10 times) with 

correction to the human P. vivax PvP01 reference sequence in Geneious (version 9) to 

generate a preliminary chimpanzee P. vivax consensus sequence (Kearse et al., 2012). 

Errors were identified based on low read support as described (Sundararaman et al., 

2016), the assembly was separated into contigs by splitting at assembly gaps, and contigs 

<100 bp were removed using Geneious (Kearse et al., 2012), SAMtools (Li et al., 2009), 

BEDtools (Quinlan and Hall, 2010) and custom scripts. The resulting contigs were then 

mapped to the PvP01 reference genome using ABACAS (Assefa et al., 2009). Gaps were 

closed using FGAP (Piro et al., 2014) with proovread-corrected, non-chimpanzee PacBio 

reads. After initial gap closure, regions with low read support were again removed. Finally, 

gaps were filled using IMAGE (Tsai et al., 2010) and GapFiller (Nadalin et al., 2012), 

followed by removal of likely duplications and inversions at the edges of gaps and a final 

error correction with iCORN (Otto et al., 2010).  

 The PvSY56 genome assembly was improved by de novo assembly of 

subtelomere and internal hypervariable regions. Orthologs of genes that bounded the 

subtelomeres and internal hypervariable regions in PvSalI (Pearson et al., 2016) were 
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identified in PvP01 and PvSY56, and the subtelomeres and internal hypervariable regions 

of these genomes were then defined as the sequence between the boundary gene and 

the nearest chromosome end, or the sequence between and including the two internal 

boundary genes, respectively. For de novo assembly, corrected Illumina reads from 

sample SY56 were mapped using smalt (http://www.sanger.ac.uk/science/tools/smalt-0) 

to a version of PvP01 in which the subtelomeres and internal hypervariable regions were 

masked. Reads that did not map to the masked genome were extracted using SAMtools 

(Li et al., 2009) and BEDtools (Quinlan and Hall, 2010). Since these contained a large 

number of Pseudomonas reads, we removed these by mapping to the Pseudomonas 

yamanorum genome (GenBank accession number: LT629793). The resulting reads were 

assembled using SPAdes (Bankevich et al., 2012). De novo contigs were retained if they 

were at least 2 kb in length and either could be mapped to PvP01 subtelomeres by 

ABACAS or had a blastn hit (e-value <10-4) to any of four human P. vivax genome 

assemblies (PvSalI, PvP01, PvC01, PvT01) (Auburn et al., 2016). These were ordered to 

the PvP01 genome using Companion (Steinbiss et al., 2016). Ordered de novo contigs 

that provided a better assembly of the subtelomeres or internal hypervariable regions than 

the initial PvSY56 assembly were exchanged. 

 

Genome annotation. Annotations were transferred from the human P. vivax PvP01 

reference sequence to the PvSY56 and PvSY43 genome assemblies using RATT (Otto 

et al., 2011), with additional genes in PvSY56 subtelomeres predicted using Companion 

(Steinbiss et al., 2016). All annotations on the chromosomes were visually inspected, and 

manually corrected where necessary. In roughly 10% of genes, we noted one or two base 

pair insertions or deletions in homopolymer tracts. Since these small indels were restricted 

to homopolymer regions but found throughout the genome, we reasoned that they 
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represented sequencing errors. We thus manually corrected the annotation to maintain 

the reading frame. Additional ad hoc manual corrections were performed when alignments 

indicated an error and mapped reads supported either sequence correction or removal. 

 

Partial ape P. vivax genome sequences. To generate genome sequences from 

additional ape P. vivax strains, we subjected diagnostic PCR positive chimpanzee (SY81, 

SY90, Sagu) and gorilla (Gor3157) blood DNA to SWGA analysis (Table S4-1). The 

resulting amplification products were prepared for sequencing using Nextera protocols 

and sequenced using the IIlumina MiSeq and/or MiniSeq platforms. Reads were mapped 

to the respective host reference genome (chimpanzee or gorilla) using smalt 

(http://www.sanger.ac.uk/science/tools/smalt-0) and unmapped reads were extracted 

using SAMtools (Li et al., 2009) and BEDtools (Quinlan and Hall, 2010).  

 We also mined a publicly available read database from a blood sample of a 

P. malariae-infected sanctuary chimpanzee from Gabon (GA02), which we noted 

contained a substantial number of ape P. vivax reads (Rutledge et al., 2017). Sequencing 

reads (ERS434565) were mapped to concatenated reference sequences of the 

chimpanzee P. reichenowi strain CDC (Otto et al., 2014), the human P. vivax strain P01 

(Auburn et al., 2016), and the human P. malariae strain UG01 (Rutledge et al., 2017) using 

smalt (http://www.sanger.ac.uk/science/tools/smalt-0). Reads that mapped to P. vivax 

were used for this study. 

 

Variant calling. For human P. vivax, we included genome data from previously 

sequenced field isolates from different geographic regions (SRA accession numbers 

SRP046091, SRS805942, SRP046182, SRP046094, SRP045997, SRP046126, 

SRP046031) that were not monkey adapted and classified as high-quality single infections 
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by the authors (Hupalo et al., 2016). For ape P. vivax, we analyzed genome data from four 

chimpanzee-derived samples (PvSY81, PvSY90, PvSagu, PvGA02) and one gorilla-

derived sample (PvGor3157), with uncorrected Illumina sequencing reads from PvSY43 

and PvSY56 also included to aid validation of variants. Variants were called using the 

Genome Analysis Toolkit (GATK) version 4.0 (Auwera et al., 2014). Sequencing reads 

were mapped to either PvSY56 (ape P. vivax samples) or PvP01 (human P. vivax 

samples) using bwa (http://bio-bwa.sourceforge.net), with duplicate reads removed and 

base quality scores recalibrated. ‘Known variants’ for base quality score recalibration 

(BQSR) were generated for each reference genome by a bootstrap procedure of variant 

calling, hard filtering with GATK suggested generic filters, and BQSR using the filtered 

variants, which was repeated until variants called in subsequent iterations showed little 

difference. The de-duplicated, recalibrated bam files were used to generate genomic 

variant call format files for each sample using HaplotypeCaller, with the 

OverClippedReadFilter applied. Variants were called jointly in human P. vivax and ape P. 

vivax samples, excluding insertion-deletion polymorphisms. Single nucleotide 

polymorphisms (SNPs) were hard-filtered using a set of annotations and values selected 

to minimize the number of SNPs removed at 4-fold degenerate sites, while minimizing the 

number of subtelomeric SNPs retained (QualByDepth <2.0, FisherStrand >50.0, 

RMSMappingQuality <45.0, StrandOddsRatio >2.5, GenotypeQuality_Mean <35.0, 

Quality <30.0, MappingQualityRankSumTest <-2.0 or >2.0, ReadPosRankSumTest <-6.0 

or >10.0, BaseQualityRankSumTest <-6.0 or >10.0). Dustmasker (BLAST+ suite) 

(Camacho et al., 2009) was used with default settings to identify low-complexity regions 

within each reference, which were then excluded in all samples. Since the reference 

genome for ape P. vivax was PvSY56, sites that were called as SNPs with PvSY56 reads 

were assumed to be errors in the PvSY56 assembly and excluded. The ability to call sites 
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was assessed using CallableLoci (minimum mapping quality 20, minimum depth 5, 

OverClippedReadFilter applied). Uncallable sites and sites with heterozygous SNP calls 

in a given sample were excluded from that sample. 

 

Orthologous gene alignments. Gene coding sequences were extracted from the 

chimpanzee PvSY43 and PvSY56 genome assemblies, the human P. vivax reference 

strains PvP01 and PvSalI, the P. cynomolgi reference strain PcyM (Pasini et al., 2017) 

and the P. knowlesi reference strain PknH (Pain et al., 2008). Low-complexity regions 

were masked using segmasker (BLAST+ suite) (Camacho et al., 2009). Groups of 1:1 

orthologs were identified from the RATT annotation transfer for PvP01, PvSY43 and 

PvSY56, and from PlasmoDB ortholog groups. Genes in subtelomeric or internal 

hypervariable regions, genes that were annotated as pseudogenes or had internal stop 

codons, and all vir and phist genes were excluded from the analysis. Orthologous gene 

sequences were aligned from the P. vivax genome assemblies using 

TranslatorX/MUSCLE (Abascal et al., 2010) and genes with unusually high divergence 

were inspected and manually corrected when necessary. Orthologs from P. cynomolgi 

and P. knowlesi were added to these alignments where available, excluding the 2% and 

3% of genes with the highest divergence, respectively. To add additional ape and human 

P. vivax strains to the alignment, gene sequences were generated from SNP calls by 

changing the reference sequence to the alternative allele at variant sites. Sites that were 

excluded from SNP calling were masked. Sequences of genes with >60% of sites callable 

and no internal stop codons were added to the alignments, following the alignment of the 

appropriate reference sequence. Ambiguous and masked sites as well as assembly gaps 

in any sequence were masked in all sequences. 

 



151 
 

Polymorphism analysis. Nucleotide diversity and divergence were calculated from gene 

alignments using the dist.dna function with the ‘raw’ model in the ape R package (Paradis 

et al., 2004) and custom scripts. Synonymous (Ps) and nonsynonymous (Pn) 

polymorphisms were counted by determining the effect of each variant allele on the codon 

in the reference genome (PvSY56 or PvP01). If a site had multiple alternative alleles, each 

of these was counted as a separate SNP. Synonymous and nonsynonymous fixed 

differences were counted by comparing codons between P. cynomolgi strain M and 

PvSY56 or PvP01, after exclusion of sites that were polymorphic in ape P. vivax or human 

P. vivax, respectively, and assuming the mutation path with the smallest number of 

nonsynonymous changes. The neutrality index [NI = (Pn/Ps)/(Dn/Ds)] of each gene was 

calculated from the number of polymorphisms within ape and human P. vivax and the 

number of fixed differences (Ds and Dn) from the P. cynomolgi strain PcyM. Density 

distributions of log2(NI) were generated in R for genes that had a defined log2(NI) value in 

both ape and human P. vivax. McDonald-Kreitman tests were performed in R, using a two-

tailed Fisher exact test (fisher.test), followed by correction of the p-values for multiple 

testing (p.adjust, method=fdr). 

Site frequency spectra were generated from SNP calls from the MalariaGen P. 

vivax Genome Variation project, using a subset of Southeast Asian field isolates 

(Cambodia, Indonesia, Laos, Myanmar, Malaysia, Papua New Guinea, Thailand and 

Vietnam) for which ≥ 80% of variant loci had been called. 173 samples met this inclusion 

criterion. Heterozygous calls were counted as one occurrence of the reference and one of 

the alternative allele. The number of allele calls varied between sites because of missing 

data and heterozygous SNPs. To standardize the number of calls per site without losing 

large amounts of data, we down-sampled to 168 calls per site, excluding sites with fewer 
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calls (this threshold was chosen such that 95% of sites were retained). 4-fold and 0-fold 

degenerate sites were identified in the SalI reference sequence, as this was the reference 

utilized in the MalariaGen SNP data set (Pearson et al., 2016). Alignments of orthologous 

genes from PvSalI, PvSY56 and PcyM were generated with TranslatorX/MUSCLE and 

used with the est-sfs (Keightley and Jackson, 2018) unfolder to identify the derived allele 

at each site and calculate the frequency spectrum. 

 

Single genome amplification. To increase the number of geographically diverse ape 

parasite sequences, we subjected P. vivax positive ape blood and fecal samples to single 

genome amplification (SGA), which utilizes end-point-diluted template DNA and thus 

generates Plasmodium sequences devoid of PCR-induced sequence artifacts (Liu et al., 

2014, 2010). Five nuclear gene regions were targeted to complement existing genome 

data, including PVP01_1216000 (610bp), PVP01_1418300 (476 or 491bp), 

PVP01_1418500 (809 or 815bp), PVP01_1418600 (351bp), and PVP01_1418800 

(576bp). These regions were amplified using first round primers Pv6000F1 (5'-

ATGGAAAGGCAGGGCGACGC-3' and Pv6000R1 (5'- 

GCTGCACAGGTAGGAGATGTACT-3'), Pv8300F1 (5'-

AACGTGGAGATGTAATTCCTGCC-3' and Pv8300R1 (5'-

TTGTGTGCATTTTCGAGCAGGCTG-3'), Pv8500F1p (5'-

ATGGAGGACGAGACGGAGAAC-3') and Pv8500R1 (5'-

CTGAAATAGATGTAGTTGTAGAAGG -3'), Pv8600F1 (5'-

AAGAMAAACATTTTGGAAAACGCAG-3') and Pv8600R1 (5'-TCAAAACTCC 

ATGGGGATGTTCTGC-3'), as well as Pv8800F1 (5'-

TGTACGACTCGATGAGTTACTTCC-3') and Pv8800R1 (5'-

TCACAGGAAGACCGTCGAAAACG-3'), respectively. Samples were multiplexed using 
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2.5 μl of end-point diluted DNA in a 25 μl reaction volume containing 0.5 μl dNTPs (10mM 

of each dNTP), 2.5 μmol of each first round primer, 2.5 μl PCR buffer, 0.1 μl BSA solution 

(50μg/ml), and 0.25 μl expand long template enzyme mix (Expand Long Template PCR 

System, Sigma). Cycling conditions included an initial denaturing step of 2 min at 94°C, 

followed by 15 cycles of denaturation (94°C, 10 sec), annealing (45°C, 30 sec), and 

elongation (68°C, 1 min), followed by 35 cycles of denaturation (94°C, 10 sec), annealing 

(48°C, 30 sec), and elongation (68 °C, 1 min; with 10-sec increments for each successive 

cycle), followed by a final elongation step of 10 minutes at 68°C. For second round PCR, 

2 µl of the first round product were amplified using second round primers Pv6000F2 (5'- 

TAGAGGAGCAAGAGCGAGTGC-3') and Pv6000R2 (5'-

TTCGACTCCTGCATTTGCCACTTG-3'), Pv8300F2 (5'-TTAACACGGAGGA 

GGCCACAGAATG-3') and Pv8300R2 (5'-CTCTCTCGTTTGTCTGCCTTCTTCC-3'), 

Pv8500F2p (5'-CAGAACTTGAAATGTCCAGGGAG-3') and Pv8500R2 (5'-

AGCTGCCAGTTGTGCTTGTCT 

GCG-3'), Pv8600F2 (5'-GCAAAGGACATGACGCAAAGTG-3') and Pv8600R2 (5'-

TTTCATCAAACGTGCATCTCTTGG-3'), as well as Pv8800F2 (5'-

CTTATTTTGCTACGAAGATTTGGG-3') and Pv8800R2 (5'-

GCAATATATCCGCCTCTCTCCTC-3'), respectively. Cycling conditions included an initial 

denaturation step of 2 min at 94°C, followed by 60 cycles of denaturation (94°C, 10 sec), 

annealing (52°C, 30 sec), and elongation (68°C, 1 min), followed by a final elongation step 

of 10 minutes at 68°C. Amplification products were sequenced directly without interim 

cloning.  

 We also used SGA to amplify regions of ape P. vivax rbp genes, which in human 

P. vivax contained inactivating mutations. Four fragments were targeted, including rbp2d_ 
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frameshift (81bp), rbp2e_frameshift (120bp), rbp2e_stop (61bp), and rbp3_stop (52bp). 

These regions were amplified using first round primers anfsRBP2d_1F (5'-

AATGATGCAAAGAATTTTATTTCGGAT-3' and anfsRBP2d_1R (5'-

ACGCTTTCCTTTTCACTATCAATT-3'), anfsRBP2e_1F (5'- 

TGCAAGAAAACCATCTCGCT-3' and anfsRBP2e_1R (5'-

TGCTCTCTTCATTTCTTCGTCA-3'), anstopRBP2e_1F (5'-

ACAAAGCAAAAGGGCGAAGT-3') and anstopRBP2e_1R (5'- 

AGCGGATTCTTTGTGACTCCT-3'), as well as anstopRBP3_1F (5'- 

AATGAAGGGGAACTGAAAGGT-3') and anstopRBP3_1R (5'-

TTTCTTTCGCCGCACTATGG-3'), respectively. PCRs were multiplexed using 2.5 μl of 

end-point diluted sample DNA in a 25 μl reaction volume, containing 0.5 μl dNTPs (10mM 

of each dNTP), 2.5 μmol of each first round primer (4 pairs), 2.5μl PCR buffer, 0.1 μl BSA 

solution (50μg/ml), and 0.25 μl expand long template enzyme mix (Expand Long Template 

PCR System, Sigma). Cycling conditions included an initial denaturing step of 2 minutes 

at 94°C, followed by 50 cycles of denaturation (94°C, 10 sec), annealing (48°C, 30 sec), 

and elongation (68°C, 30 sec), followed by a final elongation step of 10 minutes at 68°C. 

For second round PCR, 2 l of the first round product were amplified using second round 

primers anfsRBP2d_2F (5’-AGATGATCTGAATAAACGTTTCACA-3’) and 

anfsRBP2d_2R (5’-ACAAATTCGTCAACGTTAAGTGT-3’), anfsRBP2e_2F (5’-

AGGACAACACATATGCAGTTACT-3’) and anfsRBP2e_2R (5’-

ACTTTTATGGTCACCGTAGATACA-3’), anstopRBP2e_2F (5’- 

ACACATGATATTGATGCACTCAAAGA-3’) and anstopRBP2e_2R (5’-

TCTTGATTTGTCTCACTATTCTCTGT-3’), as well as anstopRBP3_2F (5’- 

ACAATGTGTGTAAGAATATTGAGACCA-3’) and anstopRBP3_2R (5’- 

TGGGACACATTTTCTATACAGGCT-3’), respectively. Cycling conditions included an 
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initial denaturation step of 2 minutes at 94°C, followed by 50 cycles of denaturation (94°C, 

10 sec), annealing (52°C, 30 sec), and elongation (68°C, 30 sec), followed by a final 

elongation step of 10 minutes at 68°C. Amplification products were sequenced directly 

without interim cloning. 

 

Phylogenetic analyses and rbp gene comparisons. To examine the evolutionary 

relationships of ape and human P. vivax strains, phylogenetic trees were constructed from 

(i) nuclear gene sequences generated by SGA from infected ape blood or fecal DNA, (ii) 

PvP01, PvSalI, PvSY56, PvSY43, P. cynomolgi and P. knowlesi genome assemblies, and 

(iii) SNP data by changing the reference sequence to the alternative allele at variant sites. 

Sequences were aligned with TranslatorX/MUSCLE and the alignments manually 

corrected, including truncation to the SGA amplicon where appropriate and removal of 

ambiguously aligned regions. Trees were generated using PhyML with a GTR+G model 

of nucleotide evolution, 10 random starts and best of NNI/SPR trees, and bootstrap values 

calculated from 100 replicates. For neighbor-joining trees, matrices of pairwise genetic 

distances were calculated from alignments of genes that were covered in all strains, and 

unrooted trees were generated from these matrices in R with ape ‘nj’. Phylogenetic 

networks were generated from the same alignments in SplitsTree4 (Huson and Bryant, 

2006) using SplitDecomposition with uncorrected p-distances. 

Ape and human P. vivax rbp genes were identified from genome annotations. For 

rbp1a, sequences generated from SNP data were also included. For other Plasmodium 

species, rbp genes were identified from annotations in the P. malariae strain PmUG01 

(PmUG01_07014300, PmUG01_07014200, PmUG01_08058500, PmUG01_12081700, 

PmUG01_14085600) (Rutledge et al., 2017), the P. knowlesi strain H (PKNH_0700200, 

PKNH_1472300) (Pain et al., 2008), the P. cynomolgi strains B and Berok 
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(PCYB_071060, PCYB_081060, PCYB_053840, PCYB_071010, PCYB_053850, 

PCYB_147650, JQ422038) (Tachibana et al., 2012), the P. inui strain San Antonio 1 

(C922_04999, C922_01465) (PlasmoDB) and the P. fragile strain Nilgiri (AK88_00929, 

AK88_00936) (PlasmoDB). Blastn search using P. vivax rbp genes also identified two non-

annotated pseudogenes (an ortholog of rbp2a in the P. cynomolgi strain B, and nbp1 in P. 

knowlesi) as well as pseudogenes annotated as multiple gene fragments (rbp1a, rbp2a 

and rbp2e orthologs in P. inui; rbp1b and rbp3 orthologs in P. fragile). Sequences were 

aligned with TranslatorX/MUSCLE, and alignments manually corrected. A tree was 

constructed for the most conserved region of this alignment (corresponding to nucleotides 

478-7938 in PvP01 rbp1a) using PhyML with a GTR+G model of nucleotide evolution, 10 

random starts and best of NNI/SPR trees, and bootstrap values calculated from 100 

replicates. For tests of selection, branch-site models were fitted to the data using codeml 

in the PAML package (Yang, 2007), using alignments excluding P. ovale spp. and P. 

malariae, which were considered too divergent. The fit of the null model (no selection) was 

compared with the fit of the model with selection along the branch of the PhyML maximum-

likelihood phylogenetic tree leading to human P. vivax (foreground branch), by comparing 

twice the difference in log-likelihood (2∆lnL) with a Χ2 distribution with one degree of 

freedom. 

 Published human P. vivax reads (Hupalo et al., 2016; Pearson et al., 2016) were 

downloaded from the SRA database and mapped to rbp2d (PVP01_1471400 and 

PVX_101585), rbp2e (PVP01_0700500), rbp3 (PVP01_1469400), rbp2p1 

(PVP01_0534400), and rbp2p2 (PVX_101590) sequences using smalt 

(http://www.sanger.ac.uk/science/tools/smalt-0). Mapped reads were extracted, 

converted to fastq files using SAMtools (Li et al., 2009) and BEDtools (Quinlan and Hall, 

2010), and then imported into Geneious (version 9) (Kearse et al., 2012) to again be 
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mapped to the references. Because a truncation of rbp2d has been identified in some 

human P. vivax field isolates (Hietanen et al., 2016), including PvP01, reads were mapped 

to both the SalI and PvP01 alleles of rbp2d, and the correct allele for each human P. vivax 

sample was chosen by visual inspection of read mapping. A majority consensus sequence 

was called for all positions with ≥3-fold coverage. Alignments of genes with complete 

coding sequences were made to chimpanzee P. vivax rbp genes and the positions of 

frameshifts and pseudogenes were noted. After identification of the ancestral stop or 

frameshift mutation, consensus sequences from samples with fewer than 3-fold coverage 

in some regions of the genes were inspected to verify that the ancestral mutation was 

indeed in all sequenced human P. vivax strains.  

 

Recombinant RBP expression and polyclonal rabbit antibody production. 

Chimpanzee P. vivax rbp2d, rbp2e and rbp3 gene sequences were generated by aligning 

PvSY43 and PvSY56 sequencing reads to human P. vivax reference sequences. Deduced 

amino acid sequences spanning positions 100 to 1,000 of RBP2d (from PvSY43), RBP2e 

(from PvSY56), and RBP3 (from PvSY56) were codon optimized for expression in 

Escherichia coli, and the synthesized genes were purchased from Eurofins Genomics 

(RBP2d and RBP3) and GenScript (RBP2e). These were then used to generate shorter 

gene fragments (RBP2d165-967, RBP2e156-957, RBP3149-968) predicted to express stable 

recombinant proteins, which included the respective binding domain based on homology 

to human P. vivax RBP2a and RBP2b (van den Ent and Löwe, 2006). RBP2d165-967, 

RBP2e156-957 and RBP3149-968 were cloned into the pET-32a(+) vector (Novagen), which 

expresses proteins with a hexa-histidine tag (C-terminus) but also contains a tobacco etch 
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virus (TEV) protease cleavage site to allow removal of this tag. All clones were sequence 

confirmed.  

Proteins were expressed using E. coli strain SHuffle T7 (New England Biolabs) and 

Terrific Broth (TB) supplemented with 100 μg/ml of carbenicillin. Flasks containing 1 liter 

of medium were incubated in a Multitron shaker (Infors HT) at 37°C at 200 rpm. At OD600 

of ~1.0, isopropyl-(β)-D-thiogalactopyranoside (IPTG, Astral) was added to a final 

concentration of 1.0 mM and protein expression was allowed to continue for 20 hours at 

16°C. Cells were harvested by centrifugation at 6,000 x g, resuspended in freezing buffer 

containing 50 mM TrisHCl pH 7.5, 500 mM NaCl and 10% (v/v) glycerol supplemented with 

cOmplete EDTA-free protease inhibitor cocktail (Roche), flash-frozen in liquid nitrogen and 

stored at -80°C until further processing.  

For protein purification, bacterial cell pellets were thawed on ice and resuspended 

in freezing buffer supplemented with 0.5 mg/ml of DNase and 1.0 mg/ml of lysozyme 

(Sigma-Aldrich). Cells were sonicated and centrifuged at 30,000 x g for 45 minutes at 4°C, 

and the resulting supernatant was added to a 5 ml HisTrap column (GE Healthcare). All 

unbound material was washed off using at least 10 column volumes of washing buffer (50 

mM TrisHCl pH 7.5, 500 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole). Bound protein 

was eluted from the column using the same buffer, but with the imidazole concentration 

increased to 300 mM. The eluted fractions were pooled and dialyzed in the presence of 

TEV protease in a buffer containing (i) 20 mM CAPS pH 10.0 and 100 mM NaCl for 

RBP2d165-967, (ii) 20 mM TrisHCl pH 8.5 and 100 mM NaCl for RBP2e156-957, and (iii) 20 

mM TrisHCl pH 8.0 and 100 mM NaCl for RBP3149-968. The resulting sample was added to 

a 5 ml Q-Sepharose HiTrap column (GE Healthcare), with unbound material washed off 

using at least 10 column volumes of the buffer. The protein was eluted using a gradient 
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(0-50%) of (i) 20 mM CAPS pH 10.0 and 1.0 M NaCl for RBP2d165-967, (ii) 20 mM TrisHCl 

pH 8.5 and 1.0 M NaCl for RBP2e156-957, and (iii) 20 mM TrisHCl pH 8.0 and 1.0 M NaCl 

for RBP3149-968. Collected fractions (2.5 ml) were analyzed on SDS PAGE and those 

containing protein were concentrated using Vivaspin 15 Turbo centrifugal concentrators 

with a molecular weight cut-off 5 kDa (Sartorius) and injected onto S200 Superdex 16/600 

size exclusion column (GE Healthcare) preequilibrated with (i) 20 mM NaHEPES pH 7.5, 

500 mM NaCl, 5 mM β-mercaptoethanol and 5% (v/v) glycerol for RBP2d165-967, (ii) 20 mM 

TrisHCl pH 8.5, 300 mM NaCl and 10% (v/v) glycerol for RBP2e156-957, and (iii) 20 mM 

TrisHCl pH 8.5, 300 mM NaCl and 10% (v/v) glycerol for RBP3149-968. Fractions containing 

pure proteins (2 ml) were pooled, concentrated and flash-frozen in liquid nitrogen. 

RBP2e156-957 and RBP3149-968 yielded monodisperse peaks; however, RBP2d165-967 was 

heavily aggregated despite using high salt and a reducing agent in the buffer. To examine 

protein folding, circular dichroism (CD) data (Figure S4-8) were collected using a CD 

spectrometer Model 410 (Aviv Biomedical) and analyzed as described (Gruszczyk et al., 

2016). Expression and purification of RBP2a160-1000 and RBP2b161-969 has been described 

previously (Gruszczyk et al., 2018b, 2016). 

Polyclonal rabbit antibodies were generated by the Walter and Eliza Hall Institute 

(WEHI) Antibody Facility. Rabbits were immunized 5 times with 150 μg of the respective 

recombinant protein. The first immunization was administered in Complete Freund’s 

adjuvant and the remainder in Incomplete Freund’s Adjuvant. Rabbit IgG fractions were 

purified from serum using Protein G sepharose. These studies were approved by the WEHI 

Institutional Animal Care and Use Committee. 

 

RBP binding assays. 30-100 ml of whole blood was collected in 10 ml ACD blood 

collection tubes (BD Biosciences) from five chimpanzees (New Iberia Research Center, 
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Lafayette, Louisiana), one gorilla (Lincoln Park Zoo, Chicago, Illinois), and one rhesus 

macaque (BioIVT, Westbury, New York). All ape blood samples represented left over 

specimens obtained during routine health screenings and were approved by the 

respective Institutional Animal Care and Use Committees. The macaque blood was 

purchased. Blood was also obtained from healthy human volunteers at the University of 

Pennsylvania under IRB protocol #813699 with informed consent (kindly provided by R. 

Collman). Whole blood was centrifuged at 1,500 x g for 20 minutes (maximum acceleration 

and low brake speed). Buffy coats containing leukocytes were removed and red blood 

cells were resuspended in their respective plasma or in PBS. Resuspended red blood 

cells were passed through a SepaCell R-500 II filter (Fenwal) or an Acrodisc filter with 

leukosorb media (PALL) to remove remaining leukocytes. Reticulocytes were enriched by 

carefully layering 5.5 ml of red blood cells diluted in plasma (50% hematocrit) over 6 ml of 

a 65-75% (v/v) isotonic Percoll cushion. The percent Percoll was varied to achieve 

maximum reticulocyte enrichment for each sample after testing a small aliquot on a 70% 

(v/v) isotonic Percoll cushion. Blood layered over Percoll was centrifuged at 1,650 x g for 

20 min (maximum acceleration and low brake speed) and the resulting cell band at the 

Percoll interface was removed, pooled, washed three times in PBS, and stored in RPMI 

(Gibco). Although this protocol achieved reticulocyte enrichment for human blood samples 

(up to 60%), this was not the case for ape and monkey blood samples. Although different 

centrifugation speeds (1,200 – 2,100 x g), Percoll densities (65-75%), and PBS 

formulations (Gibco 1x and 10x DBPS, Ambion 10x PBS pH 7.4, and human tonicity 

(HT)PBS) were tested, we were unable to achieve reticulocyte enrichment of more than 

2% for the great majority of ape and monkey samples, as measured by thiazole orange 

staining by flow cytometry (BD Retic-Count; BD Biosciences). The exception was a blood 

sample from an anemic chimpanzee, which yielded 4.0% reticulocyte enrichment. For 
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each chimpanzee and macaque, we selected the fraction with the highest percentage of 

reticulocytes for subsequent binding studies. The single gorilla blood sample was of limited 

quantity and thus only subjected to leukocyte filtration with no reticulocyte enrichment 

performed. Human control samples were diluted until the percentage of enriched 

reticulocytes matched those of the ape and monkey samples (0.5 – 4% by flow cytometry).  

 For binding assays, 800,000 red blood cells were incubated with 5 μg of 

recombinant protein in 100 μl of PBS with 1% (w/v) BSA at room temperature for one hour 

after gentle mixing. Cells were then washed with 180 μl PBS containing 1% BSA, spun at 

4,000 x g for 1 minute, resuspended in 180 μl PBS containing 1% BSA, and incubated 

with a polyclonal rabbit antibody (1 μg) raised against the respective protein. Following 

incubation at room temperature for one hour, cells were washed again, and then incubated 

with a secondary (Alexa Fluor 647 labeled) chicken anti-rabbit antibody (1 μg). After a final 

wash, 100 µl of room temperature thiazole orange (TO) (Retic-Count Reagent; BD 

Biosciences) was added and incubated for 30 min. Supernatant was removed and cells 

were resuspended in 1.2 ml PBS immediately prior to analysis on an Acurri flow cytometer. 

Antibody only controls were run in parallel, omitting the protein in the first incubation but 

otherwise following the same protocol. Approximately 200,000 events were captured for 

each sample. Data were analyzed using FlowJo software, gating on erythrocytes, then 

single cells, then TO-positive (reticulocyte) or TO-negative (normocyte) populations. 

Binding signal for each sample was obtained for both reticulocyte and normocyte 

populations by subtracting the florescence value of the corresponding antibody-only 

control from the sample value. RBP binding experiments were performed three times per 

sample on different days, with the average of these values reported. 
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SI Figures 

 
Figure S4-1. Sequence diversity between ape and human P. vivax. (A) Nucleotide 
sequence diversity (π) calculated for all coding sites in 3,955 genes of two chimpanzee 
(PvSY43 and PvSY56) and two human (PvSalI and PvP01) P. vivax strains. (B) Nucleotide 
sequence diversity (π) for all coding sites in 4,259 genes of six chimpanzee and nine 
human P. vivax strains (Table S4-2). (C) Nucleotide sequence diversity (π) for all coding 
sites in 3,904 genes of five chimpanzee and nine human P. vivax strains, after removal of 
the multiply infected PvSY43 sample. (D, E) Nucleotide sequence diversity calculated for 
chimpanzee and human P. vivax strains as in (B), but considering only 4-fold degenerate 
sites (D, 3,837 genes) or 0-fold degenerate sites (E, 4,259 genes). For all plots, the 
interquartile range is shown as a box, with the upper and lower 99th percentiles indicated 
by whiskers (outliers are shown as black dots). For each alignment set, genes with fewer 
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than 35 aligned sites were excluded (2 genes in A, 3 genes in B and E, 3 genes in C, 425 
genes in D) to avoid plotting spurious extreme values from very short sequences (these 
genes were retained in Table 4-2). 
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Figure S4-2. Chimpanzee P. vivax core genes used for diversity analyses. The 
number of genes (y-axis) that could be compared for two or more chimpanzee P. vivax 
strains (x-axis) is indicated. PvSY56 and PvSY43 genes were included if they covered 
90% or more of the length of the corresponding ortholog in the human PvP01 reference. 
Genes from the other chimpanzee parasites were included if the number of callable sites 
covered at least 60% of sites in the corresponding PvSY56 gene (with ≥5 reads mapped).  
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Figure S4-3. Phylogenetic network analysis of ape and human P. vivax strains. (A) 
A phylogenetic network was constructed using split decomposition from pairwise 
distances in an alignment of 232 nuclear genes. Nine human (black) and six chimpanzee 
(red) P. vivax strains are shown (the inset shows the human P. vivax strains in greater 
detail). The topology confirms the overall relationships of human and chimpanzee P. vivax 
depicted in Figure 4-2A. (B) As in (A), but based on 6 nuclear genes with coverage in a 
gorilla P. vivax strain (green). The same human and chimpanzee P. vivax strains were 
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included except for PvSY81, which did not cover these genes. The network suggests that 
some recombination has occurred between gorilla and ape parasites in these genes, but 
supports the overall topology shown in Figure 4-2B. 
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Figure S4-4. Phylogenetic relationships of ape and human P. vivax using whole 
genome and SNP data. Maximum likelihood trees, rooted with P. knowlesi, are shown 
for 10 nuclear genes (gene names and lengths for the PvP01 reference are indicated). P. 
vivax sequences from humans, chimpanzees and gorillas are shown in black, red and 
green, respectively. The monkey parasite species P. cynomolgi (strain M) and P. knowlesi 
(strain H) were included as outgroups (purple). Bootstrap values ≥70 are shown. The scale 
bar represents 0.02 substitutions per site.  
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Figure S4-5. Geographical origin of P. vivax-positive ape samples. Study sites are shown 
in relation to the natural ranges of chimpanzees (Pan troglodytes verus, black; P. t. ellioti, 
purple; P. t. troglodytes, red; P. t. schweinfurthii, blue), bonobos (Pan paniscus, orange), 
western lowland gorillas (Gorilla gorilla gorilla, dashed red) and eastern lowland gorillas (Gorilla 
beringei graueri, dashed blue) (Caldecott and Miles, 2005). Circles denote forest sites, while 
triangles indicate the location of sanctuaries, with colors denoting whether chimpanzee (red) 
or gorilla (green) P. vivax sequences were obtained (BQ, Belgique; DG, Diang; EK, E’kom; GT, 
Goualougo Triangle; KA, Kabuka; MO, Mfou National Park Wildlife Rescue Center; MT, Minta; 
NK, Ndongo; SY, Sanaga Yong Chimpanzee Rescue Center; TA, Tai Forest). The chimpanzee 
infected with PvGA02 was previously reported (Rutledge et al., 2017) to have been sampled 
in Park of La Lékédi (LL). 
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Figure S4-6. Phylogenetic relationships of ape and human P. vivax. Maximum 
likelihood trees rooted with P. knowlesi are shown for fragments of three nuclear genes 
(PVP01_1216000, PVP01_1418600, PVP01_1418800; the fragment size in PvP01 is 
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indicated). P. vivax sequences from humans, chimpanzees and gorillas are shown in 
black, red and green, respectively. Sequences generated by SWGA or derived from 
published data (see Table S4-2) are shown in bold. SGA-amplified sequences from ape 
fecal and blood samples include a two-letter code to denote the field site (Figure S4-5), 
lower case letters to indicate their species origin (ptt: P. t. troglodytes, red; pte: P. t. ellioti, 
red; pts: P. t. schweinfurthii, red; ggg: G. g. gorilla, green), a the sample number, as well 
as SGA dilution and well position (e.g., EKggg1179_SGA2.5 represents an SGA derived 
sequence amplified from a 1:2 dilution of fecal DNA from a western lowland gorilla sample 
1179 and identified at position 5 of a plate of multiple PCR reactions). Sequences of P. 
carteri, a parasite species closely related to P. vivax that has thus far only been identified 
in wild-living chimpanzees, are shown in blue. GenBank accession numbers for SGA 
sequences are listed in Table S4-4. The monkey parasite species P. cynomolgi (strain M) 
and P. knowlesi (strain H) were included as outgroups (purple). Bootstrap values ≥70 are 
shown for clades containing at least two non-identical tips. The scale bar represents 0.02 
substitutions per site.  
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Figure S4-7. Ape P. vivax encode three intact rbp genes that are pseudogenized in 
human P. vivax. Alignments are shown for chimpanzee (red), gorilla (green) and human 
(black) P. vivax rbp2d, rbp2e and rbp3 gene sequences (numbers indicate the nucleotide 
position within the respective gene). ‘Pv’ denotes sequences from genome-wide analyses 
(Table S4-2) which were generated by mapping sequencing reads to the PvSY56 
reference and calling bases covered by ≥3 reads. All gorilla P. vivax sequences were 
derived by single genome amplification (SGA) from the same multiply infected sample 
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(SAggg3157) and represent individual parasites. Nucleotides that differ from the PvSY56 
reference are highlighted, with dots indicating sequence identity. Inactivating mutations 
that cause frameshift and premature stop codons in all published human P. vivax strains 
are boxed. 
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Figure S4-8. Circular dichroism spectra of recombinant RBP proteins from 
chimpanzee P. vivax strains. Far UV circular dichroism spectra of two newly expressed 
chimpanzee P. vivax proteins PvRBP2e156-957 (red) and PvRBP3149-968 (green) are 
compared to the CD spectrum of the human P. vivax PvRBP2b161-969 protein (blue) as 
previously reported (Gruszczyk et al., 2018b). The mean residue molar ellipticity (θ, y-
axis) is plotted relative to the wavelength (nm; x-axis). The three spectra superimpose, 
suggesting proper folding of the newly expressed proteins. 
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Figure S4-9. Binding of chimpanzee and human P. vivax RBP proteins to red blood 
cells from different host species. The binding of human P. vivax RBP2a and RBP2b 
and chimpanzee P. vivax RBP2e and RBP3 proteins to normocytes (A) and reticulocytes 
(B) from one gorilla (G), four chimpanzees (C1-C4), four humans (H1-H4), and one 
macaque (M) is shown. Columns indicate the percentage of red blood cells (RBCs) that 
bound the respective RBP proteins after subtracting background binding in the absence 
of protein. Error bars represent one standard deviation. All red blood cell preparations 
were tested three times in independent technical replicates. 
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Figure S4-10. Alignment of human and ape transferrin receptor 1 (TfR1) protein 
sequences. An alignment of the deduced amino acid sequences of human (GRCh38, 
NC_000003.12), chimpanzee (Pan troglodytes verus, XM_003310191.3), bonobo (Pan 
paniscus, XM_003806407.2), gorilla (Gorilla gorilla gorilla, XM_004038250.2), and 
orangutan (Pongo abelii, NM_001131591.1) TfR1 sequences is shown. Residues that 
differ from the human sequence are highlighted, with dots indicating sequence identity. 
Alanine mutagenesis of TfR1 residues that were identified to form stacking interactions or 
salt bridges with RBP2b are boxed (Gruszczyk et al., 2018b), with border color indicating 
the degree to which the mutation abrogated invasion complex formation (no effect, green; 
moderate effect, orange; severe effect, red). 
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Figure S4-11. Binding of chimpanzee and human P. vivax RBP proteins to 
reticulocyte-enriched chimpanzee and human red blood cells. (A) Dot plots are 
shown that depict the binding of human P. vivax RBP2a and RBP2b and chimpanzee P. 
vivax RBP2e and RBP3 proteins to chimpanzee (first row) and human (third row) red blood 
cells, respectively. Both the chimpanzee and the human blood sample contained a large 
fraction of reticulocytes (the human sample was diluted so that equivalent numbers of 
reticulocytes were tested in the binding assays). The x-axis depicts thiazole orange (TO) 
staining of reticulocytes; the y-axis indicates protein binding as detected using an RBP-
specific polyclonal rabbit antibody, followed by a secondary chicken (Alexa 647 labeled) 
anti-rabbit antibody. The position of gates denoting normocytes versus reticulocytes as 
well as protein binding versus no protein binding are shown by vertical and horizontal 
lines, respectively. Numbers indicate the percentage of total cells within the respective 
gate. Antibody-only negative controls in which no protein was added are shown in the 
second (chimpanzee cells) and fourth (human cells) rows, respectively. (B, C) The 
percentage of chimpanzee (red) and human (black) normocytes (B) and reticulocytes (C) 
that bound the respective RBP proteins are shown. Three independent replicates were 
performed and background signal from the antibody-only control was subtracted (see SI 
Appendix, Materials and Methods). 
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Table S4-1. Select whole genome amplification and sequencing of ape P. vivax 
genomes  

*P. vivax genomes were amplified by SWGA from whole blood DNA of four sanctuary chimpanzees 
(SY43, SY56, SY81, SY90) housed at the Sanaga Yong (SY) Chimpanzee Rescue Center, one 
wild-living habituated chimpanzee (Sagu) from the Tai forest, and one western lowland gorilla 
bushmeat sample (Gor3157) confiscated by the Cameroonian Ministry of Environment and 
Forestry. 
#pvset, set of P. vivax-specific SWGA primers (see text for primer sequences). 
†Aliquots of whole blood DNA were digested with the methylation dependent restriction enzymes 
MspJI and FspEI prior to SWGA to selectively degrade host DNA (Sundararaman et al., 2016). 
‡Illumina sequencing was performed on MiSeq or MiniSeq platforms. 
§PacBio sequencing was performed on a PacBio RS II platform. 
 
  

Blood 
Sample* Digest† pvset1# pvset2# pvset3# pvset4# pvset5# pvset6# Illumina‡ PacBio§ 

SY43 + +    +  + + 
SY56 + + + +  + + + + 
SY81 + +    + + +  
SY90 + +    + + +  
Sagu  +  +  + + +  
Gor3157 + +   + + + +  
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Table S4-2. Host species and geographic origin of ape and human P. vivax isolates 
 
P. vivax  
strain 

Host  
species* 

 
Country  

Genes  
analyzed 

 
Reference 

PvSY43 P.t.t. Cameroon 3,973 This study 
PvSY56 P.t.e. Cameroon 4,262 This study 
PvSY81 P.t.t. Cameroon 695 This study 
PvSY90 P.t.e. Cameroon 2,159 This study 
PvSagu P.t.v. Cote d’Ivoire 2,542 This study 
PvGor3157 G.g.g. Cameroon 10 This study 
PvGA02# P.t.t. Gabon 3,005 Rutledge et al., 2017 
PvColombia human Colombia 4,257 Hupalo et al., 2016 
PvIndia human India 4,258 Hupalo et al., 2016 
PvMexico human Mexico 4,258 Hupalo et al., 2016 
PvMyanmar human Myanmar 4,258 Hupalo et al., 2016 
PvPeru human Peru 4,259 Hupalo et al., 2016 
PvPNG human Papua New Guinea 4,260 Hupalo et al., 2016 
PvThailand human Thailand 4,254 Hupalo et al., 2016 
PvSalI human El Salvador 4,241 Carlton et al., 2008 
PvP01 human Indonesia 4,262 Auburn et al., 2016 
*P.t.t., Pan troglodytes troglodytes; P.t.e., P. t. ellioti; P.t.v., P. t. verus; G.g.g., Gorilla gorilla 
gorilla;  
#PvGA02 sequences were derived from a read database generated from the blood of a sanctuary 
chimpanzee (GA02) that was coinfected with ape P. malariae and P. vivax (Rutledge et al., 2017). 
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Table S4-3. Polymorphisms between chimpanzee and human P. vivax and P. 
cynomolgi 
 Polymorphisms  

in P. vivax 
Fixed differences from  

P. cynomolgi 
 NS* S* NS/S NS† S† NS/S NI‡ 

Chimpanzee P. vivax# 27,209 41,177 0.66 266,011 383,274 0.69 0.95 
Human P. vivax# 8,858 6,715 1.32 276,851 400,376 0.69 1.91 
*The number of nonsynonymous (NS) and synonymous (S) polymorphisms was calculated by 
counting the number of SNPs that changed (NS) or did not change (S) the amino acid sequence of 
PvSY56 (ape P. vivax) or PvP01 (human P. vivax). 
†The number of nonsynonymous (NS) and synonymous (S) differences was calculated between P. 
cynomolgi strain M and PvSY56 (ape P. vivax) or PvP01 (human P. vivax); sites that were 
polymorphic in ape or human P. vivax were excluded. 
‡NI, neutrality index. 
#A common set of 3,912 genes was compared among six chimpanzee and nine human P. vivax 
strains as well as between these parasites and the P. cynomolgi strain M. 
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5.1 Exposure of humans to ape Laverania and P. vivax parasites 

In the past decade, characterization of ape Plasmodium species has led to the discovery 

that the two most prevalent human malaria parasites, P. falciparum and P. vivax, both 

have an African ape origin (Liu et al., 2014, 2010). Yet despite extremely high prevalence 

rates in ape communities, multiple studies have failed to detect ape Plasmodium strains 

in human blood samples obtained from individuals living or working near infected apes 

(Délicat-Loembet et al., 2015; Ngoubangoye et al., 2016; Sundararaman et al., 2013). 

However, screening blood samples for parasite DNA does not address the possibility that 

individuals may be exposed to ape parasites through bites of infected mosquitoes and 

may develop pre-erythrocytic (i.e. liver stage) infection that fails to produce a blood stage 

infection. In Chapter 2, I used a PCR-based screen of human fecal samples to attempt to 

detect pre-erythrocytic ape Plasmodium infections. Despite using an intensified PCR 

approach, I did not detect any ape Laverania species or ape P. vivax. While one 

interpretation of this result is that humans are not exposed to ape parasites or do not 

develop liver-stage infection, it is also possible that failure to amplify ape parasite 

sequences from human fecal samples is due to an inability to detect pre-erythrocytic 

parasite DNA in human stool (in contrast to results of experimental infections in mice 

(Abkallo et al., 2014)). Indeed, I found several links between blood stage parasitemia and 

fecal Plasmodium detection, suggesting that fecal parasite DNA is derived from blood 

stage infections. Going forward, it will be necessary to determine whether liver stage 

parasite DNA is detectable in fecal samples of humans, perhaps by collecting and 

analyzing fecal samples during controlled human malaria exposure in the context of 

clinical trials. 

As no screen of human fecal or blood samples has detected infection with ape 

Plasmodium species, such infections are likely extremely rare events. However, it is not 
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clear whether this is due to biological differences that impact susceptibility to ape 

Plasmodium infection or whether humans are rarely (if ever) exposed to ape parasites. 

Thus, characterization of the transmission dynamics of ape Plasmodium species is critical 

for assessing the zoonotic risk posed by these parasites. Specifically, it is necessary to 

characterize the species of Anopheles mosquitoes that transmit the ape parasites, their 

host species preferences, and the extent to which humans are exposed to infectious 

mosquitoes (Molina-Cruz and Barillas-Mury, 2016). To date, studies of ape Plasmodium 

vectors have focused on sampling mosquitoes near ape sanctuaries or in national parks 

and have identified three Anopheles species that transmit ape parasites (Makanga et al., 

2016; Paupy et al., 2013). However, a critical missing piece of data is the frequency at 

which humans are exposed to these mosquitoes. Thus, future work should characterize 

the biting times, host species preferences, and geographic distributions of the vectors of 

ape Plasmodium. Additionally, entomological surveys of villages that are geographically 

close to infected apes could determine whether humans are routinely exposed to ape 

parasites. Finally, it will be critical to assess whether the most common vectors of human 

malaria (i.e. Anopheles gambiae, Anopheles dirus, and Anopheles albumanis (Molina-

Cruz et al., 2016)) can transmit ape Plasmodium species, as this will impact the ability of 

the parasites to spread in densely populated cities should they emerge in human 

populations. 

 Human exposure to ape Plasmodium species could also be assessed by 

identifying antibody responses that are specific to the ape parasites. Interestingly, Duffy-

negative individuals have detectable antibody response to blood stage P. vivax antigens, 

despite being protected from blood stage infection (Culleton et al., 2009; Herrera et al., 

2005). Thus, humans exposed to ape Plasmodium species might have antibody 

responses to blood stage antigens in the absence of blood sage infections. Whole genome 
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sequencing of ape Laverania parasites and ape P. vivax have revealed several 

erythrocyte invasion genes that are unique to ape parasites, such as rbp2d in ape P. vivax 

(see Chapter 4) and eba165 in Laverania species (Otto et al., 2014; Sundararaman et al., 

2016). Thus, one avenue to test for exposure to ape parasites would be to ascertain 

whether antibody response to any of these proteins is sufficiently sensitive and specific to 

enable screening of humans for past exposure to ape parasites. Alternatively, it may be 

possible to utilize whole genome sequencing data to identify molecules that are both 

immunogenic in P. falciparum and P. vivax infections and also highly divergent in ape 

parasites. If a panel of such molecules could be identified and confirmed to be specific for 

ape parasite exposure, it would be possible to assess the magnitude of human exposure 

to ape Plasmodium species even if the parasites fail to result in productive blood stage 

infections.  

While studies of wild apes suggest that the host species restriction of most 

Laverania parasites is strict (Liu et al., 2016; Sundararaman et al., 2016), there is evidence 

that these parasites can cross species barriers under some circumstances. In ape 

sanctuaries housing both chimpanzees and gorillas, the gorilla parasites P. 

praefalciparum and P. adleri were detected in chimpanzees and the chimpanzee parasite 

P. reichenowi was detected in a gorilla (Ngoubangoye et al., 2016). Yet these parasites 

have never been identified in the “wrong” host species in the wild, despite screening 

hundreds of fecal samples (Liu et al., 2016). This suggests that the biological barriers to 

cross-species transmission of ape parasites can be overcome in certain environmental 

conditions. Thus, changing climate and land use patterns could increase the risk of 

spillover of ape parasites into humans. In Southeast Asia, natural transmission of 

nonhuman primate malarias have only recently been appreciated (Singh et al., 2004; Ta 

et al., 2014), and fragmentation of forests is thought to be partially responsible for the 
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rising incidence of P. knowlesi in humans (Brock et al., 2016; Fornace et al., 2016). As 

such, even though there is no evidence that ape Plasmodium parasites routinely cause 

disease in humans at the present time, it is important to continue to monitor for cross-

species transmission, especially in regions where forest fragmentation or other social, 

economic, or political factors lead to increased exposure of humans to vectors of ape 

Plasmodium.  

 

5.2 P. malariae and P. ovale-like parasite species in African great apes 

While the geographical distribution and host species association of P. vivax and the 

Laverania parasites have been well characterized (Liu et al., 2017, 2016, 2014, 2010), 

less is known about the P. malariae- and P. ovale-like parasites of African great apes. 

Partial genome sequences of chimpanzee P. malariae strains indicate that chimpanzees 

are infected with genetically diverse parasites that are distinct from those infecting humans 

(Rutledge et al., 2017). In Chapter 2 of this dissertation, I generated P. malariae 

mitochondrial sequences from apes and humans and identified two SNVs that differ in 

parasites isolated from humans versus wild apes. None of the P. malariae strains from 

human samples contained the P. malariae SNVs found in wild chimpanzees or gorillas. 

However, both sets of SNVs were found in sanctuary chimpanzees. This suggests that 

human P. malariae parasites can infect chimpanzees (at least in captivity), and is 

consistent with the relatively relaxed host tropism of this parasite species, which infects 

several species of South American monkeys in the wild (Alvarenga et al., 2017; Collins 

and Jeffery, 2007). The P. ovale-like parasites in apes are less well characterized. Short, 

mitochondrial P. ovale wallikeri sequences have been obtained from one chimpanzee 

(Duval et al., 2009) and one gorilla (Mapua et al., 2018). These short sequences are 

identical to human parasites, but given this limited data it is impossible to know whether 
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the P. ovale wallikeri parasites in apes represent a distinct population or whether there is 

ongoing zoonotic transmission (Mapua et al., 2018). In contrast, the sequences most 

closely related to P. ovale curtisi in apes differ from human sequences at multiple 

nucleotide positions over a short sequence (Duval et al., 2009; Kaiser et al., 2010), 

suggesting the existence of a distinct population in apes. Additional data is needed to 

determine whether P. malariae and P. ovale strains circulate freely between ape and 

human hosts, or whether there are distinct populations in different host species. This will 

lead to a better understanding of the origin of these malaria parasites in humans and their 

zoonotic reservoir in African great apes. 

 In addition to the P. ovale-like and P. malariae-like parasites in apes, there are 

other ape parasite species in the Plasmodium subgenus about which almost nothing is 

known. This includes P. carteri, a parasite related to P. vivax that has thus far only been 

detected in two chimpanzees (Loy et al., 2017), and a species termed P. malariae-related 

(distinct from ape P. malariae) which has been amplified from a chimpanzee and a bonobo 

(Liu et al., 2017). Both species were discovered through off-target effects of primers 

designed to amplify Laverania or P. vivax parasites from ape fecal samples. Given the 

relatively relaxed host tropism of this clade of parasites, better characterization of all 

members of the Plasmodium subgenus in apes is warranted. However, such studies are 

severely limited by the very small number of infected samples available for analysis. 

Specifically screening existing banks of ape fecal samples and nonhuman primate blood 

samples for these parasites could reveal their distribution and host-species association. 

However, high quality DNA samples are required to generate sequences longer than a 

few hundred basepairs. Thus, whole genome sequencing of these parasites will likely be 

impossible unless infected blood samples can be obtained from sanctuary animals or 

through collection of sanguinivorous insects that have fed on infected apes. 
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5.3 Evolutionary history of P. vivax in humans 

P. vivax-like parasites have been identified in chimpanzees, gorillas, and in bonobos 

(Kaiser et al., 2010; Liu et al., 2017, 2014). Phylogenetic analysis of short sequences 

derived from ape and human parasites suggested an African origin of P. vivax (Liu et al., 

2014), yet the precise relationship of ape and human parasites and the circumstances 

surrounding the emergence of P. vivax in humans remained unknown. Reasoning that 

comparative genomics of ape and human P. vivax could lead to insights into the origins of 

P. vivax in humans, I optimized selective whole genome amplification (SWGA) of P. vivax 

to facilitate sequencing of parasite genomes from asymptomatic apes. In Chapter 3, I 

showed that SWGA can dramatically increase the proportion of P. vivax DNA in 

unprocessed human whole blood and dried blood spot samples. While primers targeting 

the entire P. vivax genome biased amplification towards the AT-rich subtelomeres (likely 

a result of phi29’s increased replication efficiency in AT-rich genomic regions), I was able 

to overcome this issue by designing primers to target GC-rich regions of the genome.  

Application of this method to P. vivax-infected ape samples resulted in amplification of 

partial to near-complete genomes from samples with low parasitemia, without introduction 

of systemic sequencing errors. Thus, SWGA is a flexible method that is suited to a variety 

of eukaryotic genomes including those with mixed AT/GC content. 

Performing genome wide comparison of the magnitude and character of diversity 

in ape and human P. vivax strains, I found that ape parasites are approximately 10-fold 

more diverse than human parasites and that human, but not ape, P. vivax has a relative 

excess of nonsynonymous polymorphism. The latter observation suggests this unusual 

pattern of polymorphism in human P. vivax is not a byproduct of the parasite life cycle 

(which is characterized by bottlenecks during transmission between hosts followed by 
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rapid multiplication within hosts), as has been suggested (Chang et al., 2013, 2012). 

Instead, this pattern must reflect evolutionary forces unique to the human parasite 

population. The most likely explanation is that the human parasite lineage has undergone 

rapid population expansion, which has resulted in relaxed selection pressure and 

maintenance of slightly deleterious mutations. If this is indeed the explanation, it suggests 

that all human Plasmodium species studied to date have undergone the same expansion, 

as an excess of nonsynonymous polymorphism is observed in human P. falciparum, P. 

vivax, and P. malariae populations (Chang et al., 2013, 2012; Rutledge et al., 2017), yet 

not in any of the ape parasite species analyzed to date (data from ape P. vivax presented 

here; unpublished data from P. gaboni and P. reichenowi from O. A. MacLean). Future 

studies should seek to identify the timing of and circumstances surrounding the dramatic 

population expansions of human malaria parasites. 

 

5.4 No evidence of positive selection unique to the human P. vivax lineage 

Unlike ape P. vivax, which is transmitted between chimpanzees, bonobos, and gorillas, 

human P. vivax has been exclusively infecting a single species (humans) for thousands 

of years. Reasoning that the human lineage of P. vivax may therefore have accumulated 

human-specific adaptations, I tested for evidence of selection in the human lineage using 

McDonald-Kreitman tests on over 4,000 genes. However, I did not detect a signal of 

positive selection (a relative excess of fixed, nonsynonymous differences) in any of the 

genes analyzed. This result does not rule out the possibility that some genes in human P. 

vivax may have acquired mutations that improve their ability to infect human hosts, as a 

small number of nonsynonymous changes can be adaptive yet fail to meet the threshold 

required for significance in the McDonald-Kreitman test. However, it is possible there is a 

true paucity of host-specific adaptations due to the relatively short time in which human P. 
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vivax strains have been exclusively circulating in humans.  Indeed, this is consistent with 

the fact that natural and experimental transmission studies indicate that P. vivax is able to 

infect multiple host species: some chimpanzees develop parasitemia upon injection with 

human P. vivax parasites (Rodhain, 1956), splenectomized chimpanzees are readily 

infected with human P. vivax (Sullivan et al., 1996) and ape P. vivax can cause malaria in 

Duffy-positive humans (Prugnolle et al., 2013). Host species adaptation can be further 

explored in vitro if human P. vivax is adapted to long-term culture, as this would facilitate 

side-by-side comparisons of invasion efficiency and growth dynamics within ape and 

human erythrocytes.  

 

5.5 Loss of three invasion genes in human P. vivax 

While no genes exhibited signals of positive selection unique to the human P. vivax 

lineage, I did find that human P. vivax has lost three reticulocyte binding protein (RBP) 

genes (rbp2d, rbp2e, and rbp3) that are maintained in ape P. vivax parasites. 

Hypothesizing that these proteins were lost in human P. vivax because they bind poorly 

or not at all to human erythrocyte receptors, I expressed recombinant RBP2e and RBP3 

proteins and assessed their binding to red blood cells from humans and chimpanzees, as 

well a single gorilla and a macaque. Surprisingly, neither protein bound ape cells better 

than human cells. This suggests that they were not lost in human parasites because they 

bind poorly to their human receptor orthologs or because they bind receptors unique to 

chimpanzee and/or gorilla erythrocytes. 

I was also surprised to observe that the ape P. vivax-derived RBP2e and RBP3 

proteins both bound a much smaller fraction of erythrocytes compared to human P. vivax-

dervied RBP2a and RBP2b. While it’s possible that this suggests expression of a domain 

insufficient for receptor binding and/or improper protein folding, RBP2e bound very well to 
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macaque red blood cells and both proteins adopted secondary structure similar to that of 

RBP2a and RBP2b. One possible explanation is that the interaction between the proteins 

and their ape receptors is a low affinity interaction or that the receptors are expressed at 

low levels on a small number of cells. If erythrocyte receptors are identified for RBP2e and 

RBP3, the first hypothesis could be tested using surface plasmon resonance and/or more 

sensitive binding assays which utilize recombinant host protein and pentamerized 

recombinant RBPs to quantify protein interactions (Bushell et al., 2008). Identification of 

the receptors would also allow characterization of their abundance and distribution on ape 

and human erythrocytes. Alternatively, RBP2e and RBP3 may require additional proteins 

to bind host receptors, as is the case for P. falciparum Rh5 which binds only weakly to 

human erythrocytes in the absence of its essential interaction partners (Reddy et al., 2015; 

Volz et al., 2016; Wanaguru et al., 2013; W. H. Tham unpublished observation). This 

possibility could be explored by harvesting native RBP2e and RBP3 proteins from P. vivax 

(or, more feasibly, P. knowlesi or P. cynomolgi parasites) and using the RBPs to pull down 

other parasite proteins for identification through mass spectrometry.  

While analysis of recombinant RBP binding to ape and human erythrocytes 

suggests that these proteins do not impact host species specificity, in vitro adaptation of 

Plasmodium species to non-native host cells is often accompanied by gains or losses of 

invasion genes (Scully et al., 2017), including loss of rbp2e during adaptation of P. 

knowlesi to cynomolgus erythrocytes (Moon et al., 2016). Additional studies will be 

required to resolve this apparent discrepancy. The recent adaptation of P. cynomolgi to in 

vitro culture (J. Straimer, unpublished data) opens up new avenues for experimentation 

with this protein family, as P. cynomolgi has a large complement of RBPs orthologous to 

those found in P. vivax. For example, it is now possible to use gene-editing technologies 

such as CRISPR/Cas9 to delete rbp2e and rbp3 in cultured P. cynomolgi parasites to 
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determine whether this impacts invasion efficiency of monkey and/or human red blood 

cells. This would help clarify whether the loss of these RBPs in human P. vivax was 

adaptive or whether their loss was slightly deleterious but maintained due to the relaxed 

purifying selection within the human P. vivax population. 

 

5.6 P. vivax parasites in gorillas and bonobos 

One limitation of my analysis of ape P. vivax is the fact that, while ape P. vivax has been 

detected in chimpanzees, bonobos, and gorillas, most (6 out of 7) of the samples I 

analyzed were from chimpanzees. While I was able to obtain one P. vivax-infected gorilla 

sample (Gor3157), amplification of P. vivax was highly stochastic and yielded coverage of 

only 10 genes. While phylogenetic trees of short sequences from chimpanzees and 

gorillas fail to show host-species specific clades (Liu et al., 2014), in many cases I found 

that the most divergent P. vivax sequences were obtained from gorilla samples. Indeed, 

in the 10 genes analyzed, the Gor3157 strain was nearly as divergent from chimpanzee 

parasites as it was from human parasites. Additional sequences from gorilla parasites are 

required to determine whether gorillas are infected with a P. vivax population that is distinct 

from chimpanzee-infecting strains. At the present time, all P. vivax sequences from 

bonobos are very short (Liu et al., 2017), so it is not possible to determine how bonobo 

parasites compare to the strains in chimpanzees and gorillas. In addition, it will be 

important to investigate whether the rbp genes that contain open reading frames in 

chimpanzee but not human parasites are fully intact in gorilla- and bonobo-infecting 

parasites. Thus, characterization of gorilla and bonobo P. vivax strains will allow better 

estimation of the diversity of ape parasites may reveal unappreciated differences in 

transmission dynamics and host-species susceptibility of ape P. vivax.  
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5.7 P. vivax transmission in modern African humans 

P. vivax was long thought to be completely absent in African humans due to the high 

prevalence of the protective Duffy-negative phenotype, yet there are now numerous 

reports of P. vivax malaria Africa (Howes et al., 2015; Zimmerman, 2017). Sequences 

obtained from a small subset of P. vivax strains from Duffy-positive individuals suggest 

that African P. vivax represents a reintroduction of human parasite strains from outside 

Africa (Koepfli et al., 2015; Rodrigues et al., 2014). However, most of the analyzed 

samples were collected in Madagascar or from the horn of Africa, neither of which are 

populated with apes. While P. vivax has been reported in humans in countries with ape 

populations, the sequencing data available for these strains is either nonexistent or limited 

to extremely short DNA fragments. As such, it is impossible to determine what proportion, 

if any, of these cases represent ape-derived parasites. Future research should therefore 

focus on obtaining informative sequences from P. vivax strains infecting African humans, 

especially in countries with large ape populations. Diagnostic fragments need not be long: 

mitochondrial genome sequences are easily obtained from infected blood samples and 

are adequate for distinguishing ape and human P. vivax strains (Liu et al., 2014). 

Importantly, P. vivax in Africa is not confined to Duffy-positive humans. Recently it 

has become clear that human P. vivax is able to infect Duffy-negative individuals (Gunalan 

et al., 2018; Zimmerman, 2017). It is not known, however, whether the sudden appearance 

of P. vivax in Duffy-negative humans is a result of parasite adaptation to Duffy-negative 

hosts, or whether this represents better surveillance and/or more sensitive screening 

methods for P. vivax. One way to address this question would be to test the ability of P. 

vivax strains from Duffy-negative individuals to infect Duffy-negative cells in vitro, 

compared to strains obtained from Duffy-positive individuals. However, this would require 

a large number of parasites and ability to perform short term in vitro culture near collection 
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sites, and is likely not feasible at this time. On the other hand, whole genome sequencing 

of P. vivax from Duffy-negative individuals is relatively straightforward, especially as 

SWGA is an effective tool for generating genome sequences from samples with low 

parasitemia (as is often the case in these infections). Genome sequencing could reveal 

whether the P. vivax strains isolated from Duffy-negative individuals are closely related to 

each other and/or whether there are genetic features (such as genes gained or lost, 

shared polymorphisms, or locally reduced genetic diversity suggestive of recent selective 

sweep) that are found at significantly higher frequency in this P. vivax population. 

 

5.8 Conclusions 

The work presented in this dissertation clarifies the history of P. vivax in human 

populations and provides further evidence that African humans rarely (if ever) acquire 

zoonotic malaria infections from great apes. Additionally, in light of the fact that these 

parasites have not been adapted to in vitro culture, the ape P. vivax genomes presented 

here represent a vital resource for exploring P. vivax biology. Thus, this work provides a 

foundation for exploration of the mechanisms that underlie cross species transmission and 

host species adaptation of malaria parasites. 
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