
Co-Design of Anytime Computation and Robust Control

Yash Vardhan Pant, Kartik Mohta, Houssam Abbas, Truong X. Nghiem, Joseph Devietti, Rahul Mangharam

Abstract— Control software of autonomous robots has strin-
gent real-time requirements that must be met to achieve the
control objectives. One source of variability in the performance
of a control system is the execution time and accuracy of
the state estimator that provides the controller with state
information. This estimator is typically perception-based (e.g.,
Computer Vision-based) and is computationally expensive.
When the computational resources of the hardware platform
become overloaded, the estimation delay can compromise con-
trol performance and even stability. In this paper, we define
a framework for co-designing anytime estimation and control
algorithms, in a manner that accounts for implementation
issues like delays and inaccuracies. We construct an anytime
perception-based estimator from standard off-the-shelf Com-
puter Vision algorithms, and show how to obtain a trade-off
curve for its delay vs estimate error behavior. We use this
anytime estimator in a controller that can use this trade-
off curve at runtime to achieve its control objectives at a
reduced energy cost. When the estimation delay is too large
for correct operation, we provide an optimal manner in which
the controller can use this curve to reduce estimation delay
at the cost of higher inaccuracy, all the while guaranteeing
basic objectives are met. We illustrate our approach on an
autonomous hexrotor and demonstrate its advantage over a
system that does not exploit co-design.

I. INTRODUCTION

Real-time control of physical systems, like autonomous

robots, raises a number of timing and control-related issues

at the interface between the controller that’s providing the

actuation and the estimator that’s providing periodic state

estimates to the controller. Some of these issues have to do

with the inaccuracies introduced by the software implemen-

tation of both controller and estimator on a given hardware

platform. Specifically, controllers are typically designed to

accomplish the functional goals of the system under simpli-

fying assumptions on the quality of the state estimate (e.g.,

no or fixed error), the estimation delay (e.g., no or fixed

delay), and the actuation jitter (e.g., no jitter). Conversely,

estimation algorithms are typically designed without regard

to how their estimates will be used and under what operating

conditions. In particular, an estimator will often run to
completion: that is, its stopping criteria are designed to

provide the best estimate, regardless of runtime or energy

consumption. The problem addressed here is that as the

real-time requirements on the closed-loop system become

*This work was supported by STARnet a Semiconductor Research Cor-
poration program sponsored by MARCO and DARPA, NSF MRI-0923518
and the US Department of Transportation University Transportation Center
Program

The Departments of Electrical and Systems Engineering and Com-
puter and Information Sciences, University of Pennsylvania, Philadelphia,
U.S.A. {yashpant,kmohta,habbas,nghiem,rahulm}@seas.upenn.edu,
devietti@cis.upenn.edu

Perception-
based

Estimator

Controller

State 
Estimate(Delay, Error) 

Contract

Control Action 
to Physical System

Measurement from Sensors

Physical System Estimation and Control

(e.g. Robot Position)

(e.g. Motor Speed)

(e.g. Autonomous Robot)

(e.g. Video Feed)

Fig. 1. Contract-based controller and estimator.

more stringent, this separation in the design and execution of

controller and estimator can lead to degraded performance,

as will be shown in Example 1. The goal of this paper is

to present a rigorous framework for the joint design of the

controller and estimator, in which the estimator explicitly

presents a range of execution time/estimate error operating

modes, and the controller switches between these modes in

real-time to maintain control performance and reduce energy

consumption.

Typical design practice determines the Worst-Case Exe-

cution Time (WCET) of the estimation task, and engineers

the system to satisfy deadlines under WCET conditions.

However, the actual execution time of such estimators is

heavily dependent on the actual data being processed. So

WCET considerations, whether computed online or offline,

produce a conservative design. Moreover, classical timing

analysis does not guarantee functional correctness of the

closed-loop system. In addition, the best estimate is not

always needed: sometimes a lower quality estimate, obtained

with a smaller energy cost, is sufficient to achieve the control

objectives. Finally, when obtaining better estimates requires

longer runtimes of the estimation task, it may actually be

detrimental to ask for the best estimate. For example, when

the computational resources are overloaded, there may be a

need to spend less time computing a state estimate.

Example 1: To illustrate the impact of estimation delay

δ and estimate inaccuracy ε on control performance, we

show a simple PID controlling the motion of a point mass

in the (x, y) plane. The position of the point mass must

follow a reference constant trajectory, whose x dimension

is shown in Fig. 2 (the same plot can be obtained for

the y position). We simulate three cases of estimation (and

therefore actuation) delay and error, where a larger delay

value δ implies a smaller estimation error ε. As can be noted

in Fig. 2, the effect of delay can be non-negligible. Moreover,

decreasing delay doesn’t necessarily imply better tracking

performance: the effect of the concomitant estimation error

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.12

43



Fig. 2. Effect of delay, error values on control performance.

must be taken into account. In this example, it can be seen

that the increasing error causes the tracking performance to

worsen. Running an estimation task with a fixed smaller

delay but larger estimation error does not necessarily solve

the problem of degraded performance, as can be seen in

Fig. 2. Therefore, there is a need to rigorously quantify

the trade-off between computation time and estimation error,

then exploit that trade-off to achieve the best control per-

formance under the problem constraints. Rather than always

running the estimation task to completion, it is useful to have

several estimation tasks with varying utilities (i.e., varying

delay/error trade-offs). These can then be used at runtime to

satisfy the control objectives. �
In this work, we develop the above remarks into a co-

design framework for a real-time control systems, where the

controller and estimator communicate via contracts. A con-

tract is a guarantee requested by the controller, and fulfilled

by the estimator, that the latter can provide an estimate with

a certain maximum error ε, and within a certain deadline δ.

Both the deadline and the error bound are part of the contract.

Using these contracts, we show how the controller can

throttle the execution time of the estimation task to preserve

good performance and to reduce energy consumption. Our

work focuses on estimators that incorporate computationally

intensive Computer Vision (CV) algorithms, such as those

used in autonomous robot navigation. We refer to these as

perception-based estimators. Our experiments validate that

the execution time of these algorithms is significant and far

exceeds the computation time of the control software, and

can have an effect on control performance.

Fig. 1 presents the proposed structure of contract-based

estimation and control. It shows a traditional feedback loop

incorporating estimator, controller and the physical system,

augmented with the (Delay, Error) contract between con-

troller and estimator. This contract forms the basis of the

proposed approach.

Summary of contributions. We present a contract-based

framework for the co-design of real-time controller and

estimator algorithms, consisting of:

• a well-defined interface between control and estimation,

Fig. 3. Autonomous hexrotor with downward-facing camera flying over
synthetic features.

in the form of operating modes or contracts on the

accuracy and delay provided by the estimator (Section

III),

• a controller design that can vary the accuracy and delay

of the estimation to achieve control objectives at a lower

energy cost (Sections IV, V), and

• a general procedure to compose run-to-completion esti-

mation algorithms into a contract-based estimator (Sec-

tion VI).

• We illustrate our approach on an autonomous flying

robot (shown in Fig. 13) and demonstrate performance

and energy gains using our approach over a classical

controller (Section VII).

II. RELATED WORK

Anytime algorithms [1] are a class of algorithms that

can be interrupted at any point during their execution and

still return a usable solution, usually with a monotonically

improving quality with time. Contract algorithms [2] are

one class of anytime algorithms where the interruption time

is pre-determined for any given execution. Our approach,

while similar to contract algorithms in the timing aspect,

differs significantly as the meaning of a contract expands to

including both time and quality of the solution (estimation

error in our case).

Anytime algorithms have notably been studied for graph

search [3], evaluation of belief networks [4] and GPU

architectures [5].

As overloaded real-time systems are becoming increas-

ingly common, anytime algorithms for control have become

a topic of research interest. Most notably, Quevedo and

Gupta [6], Bhattacharya and Balas [7], and Fontanelli et

al. [8] have contributed to the topic. Our approach differs

significantly from these works as the anytime computation

assumption is on the perception-and-estimation algorithm

and our controller is a robust controller which can switch

between different operating modes of the anytime estimator.

Also, while most of these works require either access to

the full state of the system or have a fast estimator giving

them the state estimate [7], our algorithm accounts for

the computation time/error of the perception-and-estimation

algorithms that are common in autonomous systems.

In real-time systems, recent work [9] uses Typical Worst

Case Analysis of the software and Logical Execution Time

44



State 
Estimate (Delay, Error) 

Contract
Physical System

Control Action uu

Contract-based Estimator

Controller

xxx

x
xx

x
xx

x x x x x

Sensor Measurement 

δ

ε Delay-error Curve
for Estimator

Offline Profiling

Pixel Classifier

Perception Toolchain

Connected
Components

Shape Classifier

Delay-error Curve

Timing and Accuracy
of Execution Paths PC1 PC2 PC3

SC1 SC2

CC1 CC2

(δ, ε) (δ′, ε′)

Fig. 4. Contract-based estimator and controller

semantics to provide the controller with knowledge of the

timing characteristics of the implementation. Our work, by

contrast, profiles the estimation software directly to obtain

timing and accuracy information. Whereas [9] is concerned

with formal verification of a given controller, we design
controllers to take advantage of delay/accuracy trade-offs

in real-time. The effect of increasing computation time of

a task on performance of a UAV has been explored in

[10] by using a resource allocation algorithm similar to

QRAM [11]. Our work differs from this as we consider the

execution time of a task, the estimator, which is directly

related to the control performance of a closed loop system

and also formulate a control problem around it that provides

mathematical guarantees on the performance of the closed

loop system.

Also, in the field of computer architecture approximate

computing approaches [12], [13], [14] have been studied,

seeking time or energy savings by performing a computation

approximately instead of precisely. While anytime algorithms

and approximate computing share a high-level goal, ap-

proximate computing approaches are run-to-completion and

also lack a feedback mechanism to permit computation and

resources to be balanced dynamically. Additionally the time

and energy scale that our approach works at is much higher

than what approximate computing looks at.

III. CO-DESIGN OF ESTIMATION AND CONTROL

In a traditional control system, the controller is unaware

of the implementation details of the estimation module

and the estimation module is unaware of the requirements

of the controller. For example, the design of a feedback

controller might not take into account the fact that obtaining

a state estimate from a video feed will take a non-negligible

amount of time, which we refer to as the estimation delay.

Conversely, the design of the perception and estimation

might not in general take into account the varying real-time

constraints that the controlled system must satisfy. In order to

improve performance of real-time closed loop systems using

computationally and power limited platforms, we propose the

co-design of estimation and control. The co-design involves

using a contract-based framework for both estimator and

controller. Namely, the controller requests the estimator to

provide a state estimate within a certain deadline δ seconds

and with a certain error bound ε. We refer to the tuple

(δ, ε) as the contract between controller and estimator. The

estimator then provides an estimate that respects the contract.

By requesting estimates with varying contracts during system

operation, the controller is able to adapt the closed-loop

system performance in real-time according to the current

condition of the physical system. For example, it can decide

when an estimate is needed fast (but usually with higher

error), and when a more accurate estimate is needed (but

with greater delay). Note, the (δ, ε) contract can also be

thought of as setting an operating mode for the perception-

and-estimation algorithm. A high-level view of this setup is

shown in Fig. 1.

To ensure that the estimator can respect the contract

(alternatively, that the controller is only requesting contracts

that can be fulfilled by the estimator), the estimator is profiled

off-line. Namely, the estimator’s parameters are varied and

for each setting of the parameters, it is run on a profiling
data set. This yields a finite set of (δ, ε) values, each one

corresponding to a setting of the parameters. These values

can be plotted on a curve, which we call the error-delay
curve made up of discrete points, (δ, ε), represented by the

set Δ. Examples of such a curve are shown in Figs. 7 and

14. The detailed procedure for obtaining such a curve for a

perception based algorithms is given in Section VI.

At run-time, when the estimator receives a (δ, ε) contract

request from the controller, it can adapt its execution paths

to respect the contract, namely, to provide a state estimate

in real-time within the requested error bound ε, and within

the requested deadline δ.

In addition, the controller is designed with the knowledge

45



of the error-delay curve of the estimation algorithm, and

requests contracts from that curve. Thus, the error-delay

curve constitutes the interface between controller and es-

timator. This gives the controller the ability to leverage the

flexible nature of the estimation algorithm to maximize some

performance measure of control performance.

Fig. 4 shows the closed loop architecture in a system with

co-design of the estimator and controller. In the co-designed

system as presented in this paper, the controller can make the

estimation algorithm switch to lower or higher time (and/or

energy) consuming modes based on the control objective at

the current time step. The main components of the co-design

architecture are a contract based perception-and-estimation

algorithm, a robust control algorithm that computes an input

to be sent to the physical system being controller as well as

the operating mode for the contract time estimator, and the

interface between them. More details on these components

are in the following sections.

A. Contract based perception algorithms

A contract based perception-and-estimation algorithm can

operate at different deadlines and provide a usable solution

for the control algorithm to operate on. This flexible opera-

tion is achieved by composing the algorithm of functional

blocks that have different execution times and result in

different qualities of outputs.

An example is a Computer Vision (CV) based Object

recognition algorithm which is composed of different func-

tional blocks of varying execution time which result in

a different accuracy when linked together to provide the

functionality of an object recognition algorithm. E.g. the

pixel classifier in the first stage of such a CV algorithm

could be a Gaussian Mixture Model with 2, 4, or 6 compo-

nents, with more components providing better classification

performance (over-fitting is ruled out by cross-validation) at

the cost of more computation time. Functions with similar

characteristics like example above, when profiled extensively

offline and composed in the right order at run-time can be

used to compose a contract time anytime perception and

estimation algorithm. More details follow in section VI.

B. Interface between contract based perception and robust
control

For the control algorithm to be able to leverage the

flexible nature of the contract based perception algorithm,

it must have information about the computation time versus

output quality trade-off that the contract based perception

algorithm offers. An interface that achieves this is obtained

by representing the profiled behaviour of the contract based

algorithm to varying deadlines, as points on a perception

quality versus deadline (δ, ε) curve, e.g. in Fig. 7. With

this profiled curve available to the controller at runtime,

the exchange of information between the contract based

perception-and-estimation algorithm and the control algo-

rithm consists of the controller assigning a deadline (δ), or a

contract to the perception algorithm while expecting a bound

on the error (ε) of its output. The perception algorithm then

returns an output after internally deciding the composition to

best meet the deadline and the expected quality requirement.

Through extensive offline profiling, we guarantee with a

high degree of confidence that the contract based estimator

does not violate the contract. This helps in formulating

a control algorithm that provides mathematical guarantees

on the feasibility of constraints for the safe operation and

stability of the closed loop dynamic system as covered in

section V.

C. Robust Control with contract based perception algorithm

The control algorithm is designed to pick the best op-

erating point for the estimator, or the right (δ, ε) contract

to request from the perception and estimation algorithm.

This is done based on the current state of the physical

system to maximize a performance measure while being

robust to the varying computation time and the varying

estimation errors of the estimator with different contracts

as is provides estimates to the controller. In section V we

present a control algorithm that achieves this while also

guaranteeing feasibility of system constraints the stability of

the closed loop system.

IV. ROBUST CONTROL WITH CONTRACT-BASED

ESTIMATOR

In this section we present the mathematical formulation

to model the controller and physical system from Fig. 1,

and demonstrate how the controller can, in real-time, use

knowledge of the estimator’s error-delay curve to decrease

computation delay and power in an error-aware fashion.

A. System Model

Consider a hexrotor, which is an autonomous flying robot

with six rotors, shown in Fig. 13. The state x of the hexrotor

is made of its 3D position and 3D velocity. The input u
to the robot consists of the desired pitch and roll angles,

and the desired thrust. The hexrotor’s mission is to fly a

pre-defined pattern given by xref , where xref (t) gives the

desired position at each time t. The dynamics of the hexrotor,

relating the time-evolution of its state to the current state and

input, can be linearized and approximated by the following

Linear Time-Invariant (LTI) ODE:

ẋ(t) = Acx(t) +Bcu(t) + wc(t) (1)

where x ∈ R
n is the state constrained to lie in a set X ⊂ R

n,

u ∈ R
m is the control input constrained to lie in a set U ⊂

R
m, and wc ∈ R

n is the bounded process noise assumed

to lie in a set Wc ⊂ R
n. Ac ∈ R

n×n and Bc ∈ R
n×m are

matrices. LTIs model a wide range of systems, and our results

apply to arbitrary LTIs of the form given in (1) with compact

and convex constraint sets X,U and Wc. The sets X and U
are part of the problem statement and are either chosen by

the designer or determined by physical constraints.For the

hexrotor, X captures limits on the state such that the LTI

dynamics provide a good approximation of the true nonlinear

dynamics. The set U restricts the inputs to values that can

be supported by the rotors.

46



����� �����

�

�����
������� �������

�
���

�
�����

�
���
��

�
��

�
�
�����

��
���
��

���

Fig. 5. Time-triggered sensing and actuation. The figure shows the varying
execution time for the estimator and the blue area shows the execution time
for the controller, which is small.

B. Time-Triggered Sensing and Actuation

For flight the hexrotor needs to determine its current

position and speed, i.e., it needs to produce an estimate of

its current state x. It does so by taking a video during flight

through a downward facing camera, detecting and tracking

features across frames, and deducing its own position relative

to these features. The camera captures a new frame every

T > 0 seconds, thus resulting in periodic measurements at

instants ts,k = kT , where k ∈ N.

The sampled measurement is fed to the estimator that

computes the state estimate x̂k := x̂(ts,k) with the desired

accuracy εk determined by the controller in the previous time
step. The controller then uses this state estimate to compute

the control input uk as well as decide on the state estimate’s

delay and accuracy contract (δk+1, εk+1) for the next step.

This control is applied to the physical system according to

(1) at instant ta,k = ts,k + δk + τk, where τk is the time it

takes to compute the input. See Fig. 5.

In our setting, the controller has access to the delay-error

curve Δ of the estimator, and makes contract selections from
that curve. This curve is obtained offline as explained in

Section III, and exemplified in Section VI. We remark that

in each step k ≥ 0, the estimation accuracy εk and hence the

delay δk are already decided in the previous step and known

to the controller. In the first step k = 0, the initial accuracy

ε0, the initial delay δ0, and the initial control input u−1 are

chosen by the designer.

C. Control Performance

The goal of the controller is twofold: it needs to ensure

that the reference pattern is adhered to as closely as pos-

sible, and that the energy consumed to fly this pattern is

minimized. Thus we may define two (stage) cost functions:

first, �(x, u) = (x − xref )
TQ(x − xref ) + uTRu defines a

weighted sum of the tracking error (first summand) and the

input power (second summand). Here, Q and R are positive

semidefinite matrices. Second, π(δ) captures the average

power consumed to perform an estimation of duration δ. This

power information is collected offline during the estimator

profiling phase. The paper’s formulation holds for much

more general stage cost functions. These stage cost functions

are chosen by the designer to achieve a desired control

performance.

The total cost function that the controller minimizes is

then J =
∑M

k=0 (�(xk, uk) + απ(δk)), where M ≥ 0 is the

duration of the system’s operation.

D. Discretized Dynamics

Because of time-triggered sensing and actuation, from

time ts,k to ta,k, the previous control input uk−1 is still

used. Then at ta,k the new control input uk is computed

and applied by the controller (see Fig. 5). For simplification,

we assume the computation time for the controller (τ ) to

be constant and lump it with the time for the estimator (δ).

This is justified experimentally for our problem (in Sec.VII-

B) where the time for the controller is negligible compared to

the time taken by the estimation algorithm. The discretized

dynamics are given by

xk+1 = Axk +B1(δk)uk−1 +B2(δk)uk + wk, k ≥ 0 (2)

in which

A = eAcT , wk =
∫ T

0
eAc(T−t)wc(ts,k + t)dt

B1(δ)=
∫ δ

0
eAc(T−t)Bcdt, B2(δ)=

∫ T

δ
eAc(T−t)Bcdt.

Here wk is the accumulated process noise during the interval,

and is constrained to lie in a compact convex set W because

wc(t) lies in the compact convex set Wc and T is finite.

Note that both the current control uk and the previous control

uk−1 appear in (2). Furthermore, the input matrices B1(δk)
and B2(δk) depend on the delay δk. The estimation accuracy

εk affects the state estimate x̂k used by the controller to

compute uk; therefore εk indirectly affects the dynamics via

the control input.

V. ROBUST MODEL PREDICTIVE CONTROL SOLUTION

In this section we give an overview of the Robust Adaptive
Model Predictive Controller (RAMPC) that we use in the

contract-based setup of Fig. 4. The mathematical details and

derivations are available in the online technical report [15].

Experiments confirm that the following controller can be run

in real-time, and its computation uses a negligible amount

of time relative to the estimation delay.

A. Solution overview

Recall the operation of the contract-based control and

estimation framework as presented in Section III and Fig. 4.

First, the estimator is profiled offline to obtain its delay-error

curve, which we denote by Δ. The curve Δ represents a finite

number of (δ, ε) contracts that the estimator can satisfy. At

every time step k, the controller receives a state estimate x̂k

and uses it to compute two things: first is the control input uk

to be applied to the physical system at time ta,k. The second

is the contract (δk+1, εk+1) ∈ Δ that will be requested

from the estimator at the next step. At k + 1, the estimator

provides an estimate with error at most εk+1 and within delay

δk+1. Finally, recall that J =
∑M

k=0 (�(xk, uk) + απ(δk))
combines tracking error and input power in the � terms, and

estimation power consumption in the π terms. The scalar

α quantifies the importance of power consumption to the

overall performance of the system.

The contract-based controller’s task is to find a sequence

of inputs uk ∈ U and of contracts (δk, εk) ∈ Δ such that

the cost J is minimized, and the state xk is always in the

47



set X . The challenge in finding the control inputs is that

the controller does not have access to the real state xk, but

only to an estimate x̂k. The norm of the error ek = x̂k − xk

is bounded by the contractual εk, which varies at each time

step.
Fix the prediction horizon N ≥ 1. Assume that the

current contract (under which the current estimate x̂k was

obtained) is (δk, εk), and that the previously applied input is

uk−1. To compute the new input value uk and next contract

(δk+1, εk+1), the proposed Robust Adaptive Model Predic-
tive Control (RAMPC) seeks to solve the following opti-

mization problem which we denote by PΔ(x̂k, δk, εk, uk−1):

J∗[0 : N ] = min
u,x,δ,ε

N∑

j=0

(�(xk+j , uk+j) + απ(δk)) (3)

Here, RAMPC needs to find the optimal length-N input

sequence u∗ = (u∗
k, . . . , u

∗
k+N ) ∈ UN , corresponding state

sequence x = (xk, . . . , xk+N ) ∈ XN , delay sequence

δ = (δk, . . . , δk+N ) and error sequence ε = (εk, . . . , εk+N )
such that (δk, εk) ∈ Δ, which minimize the N -step cost

J [0 : N ]. In the remainder of this section we discuss how to

make this problem tractable. As in regular MPC [16], once a

solution u∗ is found, only the first input value u∗
k is applied

to the physical system, thus yielding the next state xk+1 as

per (2). At the next time step k + 1, RAMPC sets up the

new optimization PΔ(x̂k+1, δk+1, εk+1, uk+1−1) and solves

it again.
To make this problem tractable, we first assume that

the mode is fixed throughout the N -step horizon, i.e.

(δk+j , εk+j) = (δ, ε) for all 1 ≤ j ≤ N . Thus for every value

(δ, ε) in Δ, we can setup a different problem (3) and solve it.

Let J∗
(δ,ε) be the corresponding optimum. The solution with

the smallest objective function value yields the input value

u∗
k to be applied and the next contract (δ∗, ε∗).
Because RAMPC only has access to the state estimate,

we extend the RMPC approach in [17], [18]. Namely, the

problem is solved for the nominal dynamics which assume

zero process and observation noise (wk+j = 0) and zero

estimation error (x̂k+j = xk+j) over the prediction horizon.

Let x be the state of the system under nominal conditions.

To compensate for the use of nominal dynamics, RMPC

replaces the constraint (xk+j , uk−1+j) ∈ X × U := Z
by (xk+j , uk+j) ∈ Zj(εk, ε), where Zj(εk, ε) ⊂ Z is Z
‘shrunk’ by an amount corresponding to ε, as explained in the

technical report [15]. Intuitively, by forcing (xk+j , uk−1+j)
to lie in the reduced set Zj(εk, ε), the bounded estimation

error and process noise are guaranteed not to cause the

true state and input to exit the constraint sets X and U .

The tractable optimization for a given (δ, ε), denoted by

P(δ,ε)(x̂k, δk, εk, uk−1), is then

J∗
(δ,ε) = min

u,x

N∑

j=0

(�(xk+j , uk+j) + απ(δk)) (4)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

(xk+j , uk+j) ∈ Zj(εk, ε)

Algorithm 1 summarizes the RAMPC algorithm.

Algorithm 1 Robust Adaptive MPC algorithm with Anytime

Estimation.

1: (δ0, ε0) and u−1 specified by designer

2: Apply u−1

3: for k = 0, 1, . . . ,M do
4: Estimate x̂k with guarantee (δk, εk)
5: for each (δ, ε) ∈ Δ do
6: J∗

(δ,ε) ← Solve P(δ,ε)(x̂k, δk, εk, uk−1)
7: end for
8: (δ∗, ε∗, u∗

k) ← argmin(δ,ε)J
∗
(δ,ε)

9: Apply control input uk = u∗
k and estimation mode

(δk+1, εk+1) = (δ∗, ε∗)
10: end for

We prove the following result in the technical report [15]:

Theorem 5.1: If at the initial time step there exists a

contract value (δ, ε) ∈ Δ, an initial state estimate x̂0 ∈ X ,

and an input value u−1 ∈ U , such that P(δ,ε)(x̂0, δ0, ε0, u0−1)
is feasible then the system (2) controlled by Alg. 1 and

subjected to disturbances constrained by wk ∈ W robustly

satisfies the state constraint x ∈ X and the control input

constraint u ∈ U , and all subsequent iterations of the

algorithm are feasible.

VI. CONTRACT BASED PERCEPTION ALGORITHMS

In Section III, we postulated the existence of an Estima-

tion Error vs Computation Delay curve Δ. This curve is

used at every time step by the controller to determine the

operating point (δ, ε) for the next time step. In this section

we demonstrate in detail how such a curve may be obtained

for particular applications and how points along the curve

are realized at runtime by the contract based perception

algorithms.

A. Profiling And Creating an Anytime Contract Based
Perception-and-Estimation Algorithm

The first step towards profiling a contract-based estimator

is to identify the individual components (or algorithms) of

the perception tool chain. The second step is to identify

parameters of each component, such that modifying the

values of these parameters leads to a change in the execution

time and accuracy of the component’s output. This may

be as simple as changing the number of iterations in a

loop [12] or finding alternate implementations with different

resultant execution times δ and estimation error ε. We call

these parameters knobs of the component. We implement

this procedure on a Computer Vision (CV)-based object

recognition tool chain. An overview of the tool chain is

shown in Fig. 6.

The CV tool chain takes in a video stream and tracks an

Object Of Interest (OOI) across the frames. The first stage

of the chain is a pixel classifier that assigns to each pixel

of the image (after potential pre-processing) the probability

of its being a pixel of interest, i.e., of belonging to an OOI

or being a part of the background. A binary image is then

48



PC1 PC2 PC3

SC1 SC2

CC1 CC2

β1 β2

γ1γ2

Pixel
Classifier

Connected
Components

Shape
Classifier

(δ, ε) (δ′, ε′)

τ1 τ2 τ3 t

t

t

tt

τ1 + β1 + γ1

δ

τ3 + β1 + γ2

δ′

Fig. 6. Illustration of the various components used to compose the contract
based perception algorithm and their representation as real-time tasks. For
a given (δ, ε) contract, knob settings are chosen at run-time resulting in a
schedule to execute these sequential components, or tasks, to respect the
contract.

obtained which assigns the value 1 to pixels of interest, and

0 to all others. Next, filtering and a Connected Components

(CC) algorithm is run on the binary image to get rid of noise

in the classification process and segment its 1-valued pixels

into disconnected objects. A shape classifier is then run on

each object to determine whether it is of interest or not.

In our implementation, the pixel classifier is a Gaussian

Mixture Model (GMM) classifier, whose knob is the num-

ber of components in the GMM. Fewer Gaussians in the

GMM yield a faster but less accurate classifier while more

Gaussians will result in a higher execution time but provide

better classification performance. Knob values that cause

data overfit are discarded by a cross-validation stage as is

standard.

The filtering and Connected Components algorithm are

lumped into one stage and have a two-valued knob to

choose between a 4-connected and 8-connected component

implementation. The shape classifier is also a GMM, but the

knob for it is the number of shape features (like eccentricity

and lengths of major and minor axes). In our experiments

the number of knob settings for the entire chain is K =

(#Gaussians for pixel classifier, #neighbors for CC, #features

for shape classifier), and has a total of 3×2×2 = 12 values.

Note that for any given component in the chain, the

relation between knob value and quality of output is not

necessarily monotonic. The pixel and shape classifiers are

machine learning algorithms that need to be trained on a

training set before being used and like all machine learning

algorithms, their output quality for a given knob setting will

depend on the actual data set. The same is a fortiori true

of the quality of the output of the entire chain. This is also

90th percentile execution time (s)
0 0.1 0.2 0.3 0.4 0.5

E
[p

er
ce

pt
io

n 
er

ro
r] 

(p
ix

el
s)

200

400

600

800

1000

Fig. 7. Profiled delay-error curve for the object detection tool chain run
at different parameter settings.

reflected in Fig. 7 which shows the mean perception error1

and the 90th percentile execution time for the different knob

settings.

The final step is to profile all the possible combinations

of knobs by running the tool chain on a test data set. This

profiling gives us: a) the output quality (or accuracy) of

the perception-and-estimation tool chain under consideration,

and b) information about execution times for the stages of

the perception tool chain under different knob settings. This

information gathered offline is useful for making decisions

at run-time. Fig. 7 shows the profiled performance of the CV

tool chain.

B. Run-time execution of the contract-based perception al-
gorithm

Having profiled the components of the contract-based

perception algorithm, we can make run-time decisions for

knob settings in order to realize a given (δ, ε) contract.

This is the equivalent of selecting different versions of

tasks (knobs for stages) and scheduling them in sequential

order to best perform the object recognition task while

meeting the given time contract or deadline. Fig. 6 shows the

different task versions for each knob in the different stages

and the resulting schedule based on the knob settings for

the stages. The offline profiling allows us to set the knobs

such that we can achieve a feasible schedule for the given

deadline, δ while maximizing the utility, or the expected

accuracy of the perception algorithm.

C. Visual Odometry

Another algorithm we consider and later use in Section

VII is the Semi-Direct Monocular Visual Odometry (SVO)

[19]. The visual odometry algorithm detects corners in an

image and tracks them across video frames to perform self-

localization of a moving robot. These estimates are used in

the closed loop control system that flies the hexrotor, hence

it is important for the visual odometry to run at or faster

than frame rate in order to provide a timely state estimate

to the control algorithm The number #C and quality of

corners detected in a frame directly affects the runtime of the

1Error is the distance between the true centroid and the estimated centroid
of the OOI

49



90 th  percentile execution time, ( �) (ms)
20 30 40 50 60 70

E
rr

or
 B

ou
nd

, (
�)

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028
#C=50
#C=100
#C=150
#C=200
#C=250
#C=350
#C=550

Fig. 8. Error-delay curve for the SVO algorithm running on the Odroid-U3
with different settings of maximum number of features (#C) to detect and
track. The vertical line shows the cut-off for maximum delay and the SVO
settings that are allowable for closed loop control of a hexrotor at 20Hz.

corner detector and the resulting quality of the state estimate.

Generally speaking, detecting more corners requires a longer

runtime, and results in better self-localization as long as we

are analysing a feature rich scene, i.e., assuming acceptable
quality of the detected corners. Thus the number #C of

corners is a knob which can be varied to obtain an error-

delay curve for self-localization with the visual odometry

algorithm. If the scene is not rich enough in features, and

a sizeable fraction of the #C corners are of poor quality

(i.e., unstable or hard to track across frames), then we can

expect the self-localization error to actually increase as the

poor quality of the unstable corners detected adds noise to

the visual odometry estimates.

Fig. 14 shows the error-delay curve of self-localization

error using the SVO. The curve was obtained on an Odroid-

U3 [20], which is the same processor as the one used on the

hexrotor for on-board computation. For each value of the

knob #C (i.e., each requested number of corners), we ran

the visual odometry algorithm on a video sequence recorded

by the downward facing camera on the hexrotor while flying

certain pre-set patterns. Ground truth for computing the self-

localization error was obtained using a Vicon motion capture

system which provides position estimates with better than

millimeter level precision. As we repeat each flight several

times, this results in a distribution of (δ, ε) values for each

value of #C. We retained the 90th percentile values for δ
and ε, since these can be used as the worst-case estimates

and delays by the controller of Ssction IV. It can be seen

that a larger number of requested corners produces a smaller

estimation error and longer runtime. Starting at 250 corners,

the error increases, however. We hypothesize this is due to

the decreasing quality of the corners being returned by the

corner detection algorithm.

execution time (ms)
0 20 40 60 80

cd
f: 

F(
ex

ec
ut

io
n 

tim
e)

0

0.2

0.4

0.6

0.8

1

#C=50
#C=100
#C=150
#C=200
#C=250
#C=350
#C=550

Fig. 9. Cumulative distribution of profiled execution times for visual
odometry running on the Odroid-U3 for varying maximum number of
corners from the SVO algorithm.

VII. CASE STUDY: REAL-TIME FEEDBACK CONTROL OF

A HEXROTOR WITH CONTRACT BASED ESTIMATION AND

ROBUST CONTROL

A. Experimental setup

To evaluate our methodology on a real platform, we ap-

plied it to a hexrotor tasked with repeatedly following a given

circular trajectory. We use SVO (Section VI) as estimator

and RAMPC as the controller. The obtained execution time

distributions for SVO are shown in Fig.15. Details of the

experimental setup are in the online technical report [15].

B. Experimental Evaluation

After profiling the performance of the perception and

estimation algorithm and formulating the Robust Adaptive

MPC controller for the hexrotor linearized around hover

and modelled as an LTI system (Eq. 1), we experimentally

evaluate the tracking performance and estimated energy

consumption based on actual flights around a pre-defined

trajectory. For comparison, we use a Model Predictive Con-

troller with the same cost function and initial feasible sets as

in our Robust MPC formulation. The MPC controller is an

appropriate baseline against which to measure the benefits of

our co-design method, as it is a similar control algorithm that

does not leverage co-design and is unaware of the estimator

algorithm that gives it a state estimate.

For the evaluation, we fly in a predefined circular trajec-

tory, repeating the experiment 10 times to gather enough

data to conclusively measure the performance of RAMPC for

different values of α and MPC with fixed modes of (δ, ε).
Note that since the controller was a sampled discrete-time

controller working with simulated 20Hz camera updates, this

realistically restricts us to using modes of estimator operation

with delay δ less than 1/20s, i.e. modes corresponding to 50,

100, 150 and 200 maximum corners (see Fig. 14). These

modes and their estimated power consumption is in Table

I. Note, #C represents the maximum number of corners

requested, ε shows the worst case error bound on the state

estimate, δ is the 90th percentile execution time for that

mode, and P represents the expected power consumption in

that mode as profiled offline. Note, the computation time

for both the RAMPC and the MPC was less than 1ms,

50



Samples (at 20Hz)
100 110 120 130 140 150 160 170

J tru
e

0.5

1

E
st

im
at

or
 M

od
e

0

2

RAMPC (� =0)
MPC Mode 0
Mode

Fig. 10. Tracking cost at each time step for MPC (fixed mode 0 estimator)
and RAMPC with α = 0. Note how the RAMPC performs better (lower
cost) than the MPC and there is dynamic switching of estimator modes at
runtime leading to improved performance for the RAMPC.

so we neglect it in comparison to the time for estimation.

This power consumption is the computation power used by

a particular mode in excess to the idle power for the Odroid

used for profiling, which was 1.5W.

TABLE I

ESTIMATION MODES USED IN THE EXPERIMENT.

Mode #C εεε δδδ (ms) PPP (W)
0 50 24.88 0.028 0.778
1 100 29.82 0.0237 0.862
2 150 34.66 0.0230 0.870
3 200 38.01 0.0113 0.951

C. Experimental Results

Once the flights are complete, to get a more accurate

picture of how the controllers really performed, we use the

following function to measure tracking performance at each

time step.

Jtrue(t) = (x(t)−xref (t))
TQ(x(t)−xref (t))+u(t)TRu(t) (5)

Note that since we have access to the true position and

velocities (x(t)) of the hexrotor with the Vicon system,

we can obtain the true tracking cost. Table II shows the

mean of the above function over the 10 flights for both

MPC across all fixed modes and RAMPC with different

values of α. It also shows the estimated energy consumption

based on the time spent in each mode (which can be seen

in Table III for RAMPC). RAMPC shows better tracking

performance (lower mean Jtrue) than MPC in all cases,

except for α = 0.2, thus demonstrating the improved control

performance that can be obtained by dynamically switching

between estimation modes in-flight at runtime.

Fig. 10 shows how the tracking cost (Jtrue) evolves

over time for RAMPC (with α = 0) and MPC (fixed

mode 0) for a portion of the hexrotor flight. The estimator

modes selected by RAMPC are overlaid in orange. Fig.

Computation energy for perception and estimation (Joules)
42 44 46 48 50 52 54 56

M
ea

n 
(J

 tru
e

)

0.85

0.9

0.95

1

1.05

1.1

RAMPC
MPC

�=0.2

�=0.1

�=0.05
�=0

�=0.001

�=0.01

Mode 0
Mode 1

Mode 2
Mode 3

Fig. 11. Tracking cost vs estimated computation energy for executing the
perception and estimation algorithm. Depending on which fixed mode of
the estimator is chosen, MPC operation consumes a different amount of
energy. Using RAMPC as the controller, the different energies are due to
different runtime scheduling of estimator modes based on based α. It is
worth noting that RAMPC with co-design outperforms standard MPC on
tracking performance across the entire range of energy consumption.

10 demonstrates that RAMPC has uniformly lower tracking

cost than MPC, enabled by RAMPC’s dynamic switching

of estimator modes at runtime. Note that RAMPC exhibits

better tracking performance throughout the flight and not just

in this portion, and also outperforms MPC at other modes

(see Table II).

Figure 11 shows that RAMPC provides better tracking

performance while using less energy to do so. For any fixed

energy budget (a point on the x-axis), RAMPC delivers lower

tracking cost (y-axis) than MPC. While MPC’s tracking

error is relatively constant across modes, RAMPC is able to

balance tracking error with energy consumption by varying

the α parameter. RAMPC’s switching between estimation

modes improves not only the control performance but also

energy efficiency.

TABLE II

TRACKING PERFORMANCE AND COMPUTATION ENERGY

Controller Est. Mode/ ααα E[Jtrue]E[Jtrue]E[Jtrue] σ(Jtrue)σ(Jtrue)σ(Jtrue) Energy(J)Energy(J)Energy(J)
MPC 0/ − 1.0903 0.104 43.89
MPC 1/ − 1.0878 0.087 49.02
MPC 2/ − 1.0760 0.098 49.60
MPC 3/ − 1.0762 0.088 54.15

RAMPC −/0 0.8836 0.079 49.28
RAMPC −/ 0.001 1.0029 0.093 48.90
RAMPC −/ 0.01 1.0280 0.089 48.69
RAMPC −/ 0.05 1.0302 0.096 46.33
RAMPC −/ 0.1 1.0601 0.086 46.01
RAMPC −/ 0.2 1.0776 0.083 44.49

Fig. 12 shows the degradation (increased mean Jtrue) in

tracking performance and reduction in energy consumption

as the weight α for the computation power in the cost

function is increased. As energy becomes more important,

RAMPC smoothly balances tracking cost and energy con-

sumption. Table III quantifies how RAMPC makes this trade-

off, by showing the fraction of time spent in the 4 modes

with RAMPC as α changes. While time is split between

modes 0 and 3 with α = 0, more and more time is spent in

51



�
0 0.05 0.1 0.15 0.2

M
ea

n 
(J

 tru
e

)

0.8

0.9

1

1.1

C
om

pu
ta

tio
n 

en
er

gy
 (J

ou
le

s)

44

46

48

50

Fig. 12. RAMPC tracking cost and estimated computation energy for the
perception and estimation algorithm as a function of α.

the low-power (but less accurate) mode 0 as α increases.

TABLE III

FRACTION OF TIME SPENT IN DIFFERENT ESTIMATOR MODES AS α

CHANGES FOR RAMPC

ααα Mode 0 Mode 1 Mode 2 Mode 3
0 0.461 0.009 0.020 0.510

0.001 0.494 0.001 0.029 0.467
0.01 0.512 0.005 0.039 0.444

0.005 0.692 0.000 0.156 0.152
0.1 0.691 0.000 0.218 0.091
0.2 0.897 0.000 0.098 0.005

VIII. CONCLUSION

In this paper we presented a contract-based methodology

for co-design of estimation and control for autonomous sys-

tems. The basic idea is that the control algorithm requests a

delay and estimation error (δ, ε) contract that the perception-

and-estimation algorithm realizes. The control algorithm we

designed aims to set time-varying contracts to maximise a

performance function while respecting feasibility constraints

and stability under the time varying execution delay and

estimation error from the estimator. We also illustrate how

the contract-based perception-and-estimation algorithm is

designed offline and used at run-time to best meet the

(δ, ε) contracts set for it. Through a case study on a flying

hexrotor, we showed the applicability of our scheme to real-

time closed loop system. The experimental results show the

good performance of our scheme and how it outperforms

regular Model Predictive Control which does not leverage co-

design. A key result showed how our closed loop solution

is more energy efficient than MPC while achieving better

tracking performance. A focus of ongoing research is to

overcome the necessity of the contracts always being met by

the estimator. Another focus is on an automated tool chain to

profile perception algorithms commonly used in autonomous

systems.

ACKNOWLEDGEMENTS

We would like to thank Kuk Jang for his help in creating

several of the diagrams in this paper.

REFERENCES

[1] M. Boddy and T. Dean, “Solving Time-dependent Planning Problems,”
Joint Conf. on AI, pp. 979–984, 1989.

[2] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
Magazine, vol. 17, no. 3, 1996.

[3] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Search in Dynamic Graphs,” Artif. Intell., vol. 172, no. 14,
pp. 1613–1643, 2008.

[4] M. Wellman and C. L. Liu, “State-Space Abstraction for Anytime
Evaluation of Probabilistic Networks,” Conf. on Uncertainty in AI,
1994.

[5] R. Mangharam and A. Saba, “Anytime Algorithms for GPU Architec-
tures,” in Proc. of the IEEE Real-Time Systems Symposium, 2011.

[6] D. Quevedo and V. Gupta, “Sequence-based anytime control,” IEEE
Trans. Autom. Control, vol. 58, no. 2, pp. 377–390, Feb 2013.

[7] R. Bhattacharya and G. J. Balas, “Anytime control algorithm: Model
reduction approach,” Journal of Guidance and Control, vol. 27, no. 5,
pp. 767–776, 2004.

[8] D. Fontanelli, L. Greco, and A. Bicchi, “Anytime control algorithms
for embedded real-time systems,” in Hybrid Systems: Computation
and Control. Springer, 2008, pp. 158–171.

[9] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis
of timing effects on closed-loop properties of control software,” in
Real-Time Systems Symposium (RTSS), 2014 IEEE, Dec 2014, pp.
53–62.

[10] D. de Niz, L. Wrage, N. Storer, A. Rowe, and R. Rajukar, “On
Resource Overbooking in an Unmanned Aerial Vehicle,” IEEE/ACM
Third International Conference on Cyber-Physical Systems, 2012.

[11] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource
Allocation Model for QoS Mgmt.” IEEE RTSS, 1997.

[12] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11, 2011.

[13] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages and Applications,
2013.

[14] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Es-
maeilzadeh, A. Hassibi, L. Ceze, and D. Burger, “General-purpose
code acceleration with limited-precision analog computation,” in Proc.
of the 41st Annual International Symposium on Computer Architecu-
ture, ser. ISCA ’14, 2014.

[15] Y. V. Pant, K. Mohta, H. Abbas, T. X. Nghiem, J. Devietti, and
R. Mangharam, “Co-design of anytime computation and robust control
(supplemental),” Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA, Tech. Rep. UPenn-ESE-
15-324, May 2015, http://repository.upenn.edu/mlab papers.

[16] E. Camacho and C. Bordons, Model predictive control. Springer
Verlag, 2004.

[17] A. Richards and J. How, “Robust model predictive control with
imperfect information,” in American Control Conference, 2005, pp.
268–273.

[18] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, pp. 1019–1028, 2001.

[19] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in Robotics and Automation (ICRA),
2014 IEEE Intl. Conf. on. IEEE, 2014.

[20] “ODROID-U3,” http://odroid.com/, accessed: 2015-05-13.
[21] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and

predictive control,” Ph.D. dissertation, University of Cambridge, 2000.
[22] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[23] J. Mattingley and S. Boyd, “Cvxgen: a code generator for embedded
convex optimization,” Optimization and Engineering, 2012.

[24] “ODROID Smart Power,” http://odroid.com/, accessed: 2015-05-13.

52


