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Abstract—Intuitively, data management and data integration tools should be well-suited for exchanging information in a semantically

meaningful way. Unfortunately, they suffer from two significant problems: They typically require a comprehensive schema design

before they can be used to store or share information and they are difficult to extend because schema evolution is heavyweight and

may break backward compatibility. As a result, many small-scale data sharing tasks are more easily facilitated by non-database-

oriented tools that have little support for semantics. The goal of the peer data management system (PDMS) is to address this need: We

propose the use of a decentralized, easily extensible data management architecture in which any user can contribute new data,

schema information, or even mappings between other peers’ schemas. PDMSs represent a natural step beyond data integration

systems, replacing their single logical schema with an interlinked collection of semantic mappings between peers’ individual schemas.

This paper describes several aspects of the Piazza PDMS, including the schema mediation formalism, query answering and

optimization algorithms, and the relevance of PDMSs to the Semantic Web.

Index Terms—Peer data management, data integration, schema mediation, Web, databases.
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1 INTRODUCTION

WHILE databases and data management tools excel at
providing semantically rich data representations and

expressive query languages, they have historically been
hindered by a need for significant investment in design,
administration, and schema evolution. Schemas must
generally be predefined in comprehensive fashion rather
than evolving incrementally as new concepts are encoun-
tered; schema evolution is typically heavyweight and may
“break” existing queries. As a result, many people find that
database techniques are obstacles to lightweight data
storage and large-scale data sharing tasks, rather than
facilitators. They resort to simpler and less expressive tools,
ranging from spreadsheets to text files, to store and
exchange their data. This provides a simpler administrative
environment (although some standardization of terminol-
ogy and description is always necessary), but with a
significant cost in functionality. Worse, when a lightweight
repository grows larger and more complex in scale, there is
no easy migration path to a semantically richer tool.

Conversely, the strength of HTML and the World Wide

Web has been easy and intuitive support for ad hoc

extensibility—new pages can be authored, uploaded, and

quickly linked to existing pages. However, as with flat files,

the Web environment lacks rich semantics. Initially, that

shortcoming spurred a movement toward XML, which

allows data to be semantically tagged. Unfortunately, XML

carries many of the same requirements and shortcomings as

data management tools: For rich data to be shared among

different groups, all concepts need to be placed into a
common frame of reference. XML schemas must be
completely standardized across groups or mappings must
be created between all pairs of related data sources.

More recently, the desire to complement the Web with
more semantics spurred the vision of the Semantic Web [1],
which calls for sharing of structured data at Web scale, with
queries spanning large numbers of Web sites. Much of the
research focused on the Semantic Web is based on treating
the Web as a knowledge base defining concepts and
relationships. In particular, researchers have developed
knowledge representation languages for representing mean-

ings—relating them within custom ontologies for different
domains—and reasoning about the concepts. The best-
known example is RDF and the languages that build upon
it: RDF Schema and OWL [2]. While there has been much
investigation of how to define the meaning of data locally,
the issues of large-scale data sharing have yet to be
addressed.

Data integration systems have been proposed as a partial
solution to the problem of large-scale data sharing [3], [4],
[5], [6], [7], [8], [9], [10]. These systems support rich queries
over large numbers of autonomous, heterogeneous data
sources by exploiting the semantic relationships between
the different sources’ schemas. An administrator defines a
global mediated schema for the application domain and
specifies semantic mappings between the sources and the
mediated schema. We get the strong semantics needed by
many applications, and data sources can evolve indepen-
dently—and, it would appear, relatively flexibly. Yet, in
reality, the mediated schema, the integrated part of the
system that actually facilitates all information sharing,
becomes a bottleneck in the process. Mediated schema
design must be done carefully and globally; data sources
cannot change significantly or they might violate the
mappings to the mediated schema; concepts can only be
added to the mediated schema by the central administrator.
The ad hoc extensibility of the Web is missing and, as a
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result, data integration systems provide limited support for
large-scale data sharing.

We believe that there is a clear need for a new class of
data sharing tools that preserves semantics and rich query
languages, but which facilitates ad hoc, decentralized
sharing, and administration of data and defining of
semantic relationships. Every participant in such an
environment should be able to contribute new data and
relate the data to existing concepts and schemas, define new
schemas that others can use as frames of reference for their
queries, or define new relationships between existing
schemas or data providers. We believe that a natural
implementation of such a system will be based on a peer-to-
peer architecture and, hence, call such a system a peer data
management system (PDMS). The vision of a PDMS is to
blend the extensibility of the HTMLWeb with the semantics
of data management applications.

Example 1.1. The extensibility of a PDMS can best be
illustrated with a simple example. Fig. 1 illustrates a peer
data management system for supporting a Web of
database research-related data. This will be a running
example throughout the paper, so we only describe the
functionality here. Unlike a hierarchy of data integration
systems or mediators, a PDMS supports any arbitrary
network of relationships between peers. The true novelty
lies in the PDMS’s ability to exploit transitive relation-
ships among peers’ schemas. The figure shows that two
semantic networks can be fully joined together with only
a few mappings between similar members of each
semantic network (in our example, we only required a
single mapping). The new mapping from Stanford to UW
enables any query at any of the five peers to access data
at all other peers through transitive evaluation of
semantic mappings. Importantly, the mappings can be
defined between the most similar nodes in the two
semantic networks; this is typically much easier than
attempting to map a large number of highly dissimilar
schemas into a single mediated schema (as in conven-
tional data integration).

This paper describes the main contributions of the Piazza
PDMS that we have been building at the University of
Washington. Most of the data integration literature is based
on the relational data model, largely because it is the
simplest and cleanest model in which to define properties

and analyze complexity; accordingly, we begin our descrip-
tion of the Piazza system using the relational context.
Section 2 presents the logical model underlying and it
defines the problem of semantic mediation in a PDMS.
Section 3 outlines some of the theoretical results concerning
query answering and mediation in a PDMS. Section 4
describes a query answering algorithm for Piazza and
explains some of the current research directions we are
pursuing for query optimization. One of these directions is
the development of techniques for mapping composition,
which we explain in the Appendix (which can be found on
the Computer Society Digital Library at http://computer.
org/tkde/archives.htm).

Although the relational model is ideal for defining
properties of the PDMS, in the real world, XML is the most
useful representation for sharing semantically rich data:
Most relational and semistructured data sources export to
XML and XML is also used for the RDF data format that has
been the focus of efforts in the Semantic Web. Thus, our
actual Piazza system uses XML as the data model. In
Section 5, we describe Piazza’s XML support; the Appendix
(which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm) ex-
plains how Piazza can provide an infrastructure for
supporting both XML and RDF-based Semantic Web
applications.

2 LOGICAL MODEL OF THE PDMS

We begin with a description of the logical model underlying
a PDMS (defined using the relational data model; Section 5
details how this definition changes for XML data).
Informally, a PDMS consists of a set of data sources (also
known as peers) and they are related through semantic
mappings. A PDMS can be viewed as a strict generalization
of data integration systems. In our discussion, we assume a
relational data model, we focus on select-project-join
queries with a set semantics, and we use the notation of
conjunctive queries. In this notation, joins are specified by
multiple occurrences of the same variable. Unless explicitly
specified, we assume queries do not contain comparison
predicates (e.g., 6¼ , < ). Views refer to named queries.

We assume that each peer defines its own relational peer
schema whose relations are called peer relations; a query in a
PDMS will be posed over the relations from a specific peer
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Fig. 1. A PDMS for the database research domain. Arrows indicate that there is (at least a partial) mapping between the relations of the peer

schemas. The figure illustrates how two semantic networks can be joined by establishing a single mapping between a pair of peers (UW and

Stanford in this case).



schema. Without loss of generality, we assume that relation
and attribute names are unique to each peer.

Peers may also contribute data to the system in the form
of stored relations. Stored relations are analogous to data
sources in a data integration system: All queries in a PDMS
will be reformulated strictly in terms of stored relations that
may be stored locally or at other peers. (Note that not every
peer needs to contribute stored relations to the system as
some peers may strictly serve as logical mediators to other
peers.) We assume that the names of stored relations are
distinct from those of peer relations.

Example 2.1. In our example PDMS in Fig. 1, only peer
relations are shown. The lines between peers indicate
that there is a mapping (described later) between the two
peers.

Stored relations containing actual data are provided
by the universities: the UPenn, UW, Stanford, and
Berkeley peers. DB-Projects is a virtual peer that
provides a uniform view over the domain. Stanford
and Berkeley, as neighboring universities, came to an
agreement to map their schemas directly. The flexibility
of the PDMS (due to its ability to evaluate transitive
relationships between schemas) becomes evident when
two PDMSs are joined. In our example, once a mapping
between the Stanford-Berkeley PDMS and the UPenn-
UW-DBProjects PDMS is established, queries over any of
the five peers will be able to access all of the stored
relations.

Note that our approach can support evolving schemas
very naturally. A new schema version can be treated as an
additional peer schema. In general, the new version is likely
to be very similar to the previous version, making the
problem of specifying a mapping between the versions
rather easy. In addition, the resulting mapping is likely to
be very accurate.

2.1 Mapping Language for PDMS

Obviously, the power of the PDMS lies in its ability to
exploit semantic mappings between peer and stored
relations. In particular, there are two types of mappings
that must be considered: mappings describing the data
within the stored relations (generally, with respect to one or
more peer relations) and mappings between peer schemas.
At this point, it is instructive to recall the formalisms used
in the context of data integration systems since we build
upon them in defining our mapping description language.

2.1.1 Mappings in Data Integration

Data integration systems provide a uniform interface to a
multitude of data sources through a logical, mediated
schema. Mappings are established between the mediated
schema and the relations at the data sources, forming a two-
tier architecture in which queries are posed over the
mediated schema and evaluated over the underlying source
relations. A data integration system can be viewed as a
special case of a PDMS.

Two main formalisms have been proposed for schema
mediation in data integration systems. In the first, called
global-as-view (GAV) [11], [3], [4], [5], the relations in the

mediated schema are defined as views over the relations in
the sources. In the second, called local-as-view (LAV) [6], [7],
[8], the relations in the sources are specified as views over
the mediated schema. In fact, in many cases, the source
relations are said to be contained in a view over the mediated
schema as opposed to being exactly equal to it. We illustrate
both below.

Example 2.2. The DB-Projects’ Member peer relation, which
mediates UPenn andUWpeers, may be expressed using a
GAV-like definition. The definition specifies thatMember
in DB-Projects is obtained by a union over the UPenn and
UW schemas. Note in our examples, that peer relations
are named using a peer-name:relation-name syntax:

DBProjects : MemberðprojName;memberÞ : �
UPenn : Studentðsid;member; Þ;
UPenn : ProjMemberðpid; sidÞ;
UPenn : Projectðpid; projName; Þ

DBProjects : MemberðprojName;memberÞ : �
UPenn : Facultyðsid;member; Þ;
UPenn : ProjMemberðpid; sidÞ;
UPenn : Projectðpid; projName; Þ

DBProjects : MemberðprojName;memberÞ : �
UW : Memberð;pid;member; Þ;
UW : Projectðpid; ; projNameÞ:

We may use the LAV formalism to specify the UW
peer relations as views over mediated DB-Projects
relations. This formalism is especially useful when
there are many data sources that are related to a
particular mediated schema. In such cases, it is more
convenient to describe the data sources as views over
the mediated schema rather than the other way
around. In our scenario, DB-Projects may eventually
mediate between many universities and, hence, LAV is
appropriate for future extensibility. The following
illustrates an LAV mapping for UW:

UW : ProjectðprojID; areaID; projNameÞ �
DBProjects : ProjectðprojID; projNameÞ;
DBProjects : ProjAreaðprojID; areaIDÞ:

The fundamental difference between the two formalisms is
that GAV specifies how to extract tuples for the mediated
schema relations from the sources and, hence, query
answering amounts to view unfolding. In contrast, LAV is
source-centric, describing the contents of the data sources.
Query answering requires algorithms for answering queries
using views [12], but, in exchange, LAV provides greater
extensibility: The addition of new sources is less likely to
require a change to the mediated schema.

Before proceeding, we note that all the languages we
discuss here are for mapping schemas, rather than data values.
For example, it is very common that a person or company
name may appear differently in two data sources. The topic
of object identification is currently a very active area of
research and beyond the scope of this paper. In commercial
systems (e.g., [13]), the problem has usually been addressed
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by concordance tables, which are binary tables relating the
different ways of referring to the same object.

2.1.2 Mappings for PDMS

We now present the relational-model version of PPL, the
Piazza Peer Language. Our goal in PPL is to preserve the
features of both the GAV and LAV formalisms, but to
extend them from a two-tiered architecture to our more
general network of interrelated peer and source relations.
Semantic relationships in a PDMS will be specified between
pairs (or small sets) of peer (and, optionally, source)
relations. Ultimately, a query over a given peer relation
may be reformulated over source relations on any peer in
the transitive closure of peer mappings.

First, we formally define our two types of mappings,
which we refer to as storage descriptions and peer
mappings.

Storage descriptions. Each peer contains a (possibly
empty) set of storage descriptions that specify the data stored
at a peer by relating its stored relations to its peer relations.
Formally, a storage description is of the form A : R ¼ Q,
where Q is a conjunctive query over the schema of peer A
and R is a stored relation at the peer. The description
specifies that A stores in relation R the result of the query Q
over its schema.

In many cases, the data that is stored is not exactly the
definition of the view, but only a subset of it. As in the
context of data integration, this situation arises often when
the data at the peer may be incomplete (this is often called
the open-world assumption [14]).1 Hence, we also allow
storage descriptions of the form A : R � Q. We call the
latter descriptions containment (or inclusion) descriptions
versus equality descriptions.

Example 2.3. A storage description might relate the stored
students relation at peer UPenn to the peer relations:

UPenn : studentsðsid; name; advisorÞ �
UPenn : Studentðsid; name; Þ;
UPenn : Advisorðsid; fidÞ;
UPenn : Facultyðfid; advisor; ; Þ:

This storage description says that UPenn:students stores
a subset of the join of Student, Advisor, and Faculty,
which reflects the fact that UPenn:students is unlikely to
contain information about all students in the world; it
will probably contain data on “local” students only.
Hence, if a UPenn:Affiliation peer relation with the
corresponding semantics was available, the above
storage description could be specified more precisely as
follows:

UPenn : studentsðsid; name; advisorÞ ¼
UPenn : Studentðsid; name; Þ;
UPenn : Advisorðsid; fidÞ;
UPenn : Facultyðfid; advisor; ; Þ;
UPenn : Affiliationðsid; 0 UPenn0Þ:

Peer mappings. Peer mappings provide semantic glue
between the schemas of different peers. We have two types
of peer mappings in PPL. The first are inclusion and equality
mappings (similar to the concepts for storage descriptions).
In the most general case, these mappings are of the form
Q1ð �AA1Þ ¼ Q2ð �AA2Þ (or Q1ð �AA1Þ � Q2ð �AA2Þ for inclusions),
where Q1 and Q2 are conjunctive queries with the same
arity and �AA1 and �AA2 are sets of peers. Query Q1 (Q2) can
refer to any of the peer relations in �AA1 ( �AA2, respectively).
Intuitively, such a statement specifies a semantic mapping
by stating that evaluating Q1 over the peers �AA1 will always
produce the same answer (or a subset in the case of
inclusions) as evaluating Q2 over �AA2. Note that, since PPL
allows queries on both sides of the equation, we can
accommodate both GAV and LAV-style mappings (and,
thus, we can express any of the types of mappings used in
data integration. This approach is also known as GLAV [12].

The second kind of peer mappings are called definitional
mappings. They are datalog rules whose relations (both head
and body) are peer relations, i.e., the body cannot contain a
query. Formally, as long as a peer relation appears only
once in the head of a definitional description, such
mappings can be written as equalities. We include defini-
tional mappings in order to obtain the full power of GAV
mappings. We distinguish definitional mappings for the
following reasons:

. As we show in Section 3, the complexity of answer-
ing queries when equality mappings are restricted to
being definitional is more attractive than the general
case.

. Definitional mappings can easily express disjunc-
tion, e.g., P ðxÞ : �P1ðxÞ and P ðxÞ : �P2ðxÞ means
that P is the union of P1 and P2 (while the pair of
mappings P ðxÞ ¼ P1ðxÞ and P ðxÞ ¼ P2ðxÞ means
that P , P1, and P2 are equal).

In summary, a PDMS N is specified by a set of peers
fP1; . . . ; Png, a set of peer schemas fS1; . . . ; Smg, and a
mapping function from peers to schemas, a set of stored
relations Ri at each peer Pi, a set of peer mappings LN , and
a set of storage descriptions DN . The storage descriptions
and peer mappings provided by a peer Pi may reference
stored or peer relations defined by other peers; thus, any
peer can extend another peer’s relations or use its data.

2.2 Semantics of PPL
Given the peer and stored relations, their mappings, and a
query over some peer schema, the PDMS needs to answer
the query using the data from the stored relations. To
formally specify the problem of query answering, we need
to define the semantics of queries. We show below how the
notion of certain answers [14] from the data integration
context can be generalized to our context. Our goal is to
formally define what the set of answers to a conjunctive
query Q posed over the relations of a peer A is. The
challenge arises because the peer schemas are virtual; in
fact, some data may only exist partially, if at all, in the
system.

Formally, we assume that we are given a PDMS N and
an instance for the stored relations, D, i.e., a set of tuples
DðRÞ for each stored relation R 2 ðR1 [ . . . [RnÞ. A data
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instance I for a PDMSN is an assignment of a set of tuples to
each relation in each peer (both the peer and stored
relations). We denote by IðRÞ the set of tuples assigned to
the relation R by I and we denote by QðIÞ the result of
computing the query Q over the extensional data in I. To
define certain answers, we will consider only the data
instances that are consistent with the specification of N :

Definition 2.1 (Consistent data instance). A data instance I
is said to be consistent with a PDMSN and an instanceD for
N ’s stored relations if:

1. For every storage description in DN , if it is of the
form A : R ¼ Q1 (A : R � Q1), then DðRÞ ¼ Q1ðIÞ
(DðRÞ � Q1ðIÞ).

2. For every peer description in LN :

. If it is of the form Q1ðA1Þ ¼ Q2ðA2Þ, then
Q1ðIÞ ¼ Q2ðIÞ,

. If it is of the form Q1ðA1Þ � Q2ðA2Þ, then
Q1ðIÞ � Q2ðIÞ, and

. If it is a definitional description whose head
predicate is p, then let r1; . . . ; rm be all the
definitional mappings with p in the head and let
IðriÞ be the result of evaluating the body of ri on
the instance I. Then, IðpÞ ¼ Iðr1Þ [ . . . [ IðrmÞ.

Intuitively, a data instance I is consistent withN andD if
it describes one possible state of the world (i.e., extension for
each of the peer relations) that is allowable given the data
and peer mappings and D. We define the certain answers to
be those that hold in every possible consistent data instance:

Definition 2.2 (Certain answers). Let Q be a query over the
schema of a peer A in a PDMS N , and let D be an instance of
the stored relations of N . A tuple �aa is a certain answer to Q if
�aa is in QðIÞ for every data instance that is consistent with N
and D.

Note that, in item 2 of Definition 2.1, we did not require
that the extension of p be the least-fixed point model of the
datalog rules. However, since we defined certain answers to
be those that hold for every consistent data instance, we
actually do get the intuitive semantics of datalog for these
mappings.

Query answering. Now, we can define the query
answering problem for PDMS: Given a PDMS N , an
instance of the stored relations D, and a query Q, find all
certain answers of Q.

3 COMPLEXITY OF QUERY ANSWERING

Before we present an algorithm for answering queries in
Piazza (the focus of Section 4), it is important to understand
how tractable query answering is in the PDMS model. In
this section, we briefly review some basic results relating to
the complexity of finding certain answers with our PDMS
mapping language (full details are given in [15]).

The computational complexity of finding all certain
answers is well understood for the data integration
context with a two-tiered architecture of a mediator and
a set of data sources [14]. Here, we show the complexity
of query answering in the global context of a PDMS when

the data integration formalisms are used locally. The
complexity will depend on the restrictions we impose on
peer mappings in PPL.

The focus of our analysis is on data complexity—the
complexity of query answering in terms of the total size of
the data stored in the peers. Typically, the complexity of
query answering is either polynomial, Co-NP-hard but
decidable, or undecidable. In the polynomial case, it is
possible to find a reformulation of the query into a query that
refers only to the stored relations and this reformulation is
then optimized and executed. In the latter two cases, it is
not possible to find all certain answers efficiently, but it is
possible to develop an efficient reformulation algorithm
that does not provide all certain answers, but that only
returns certain answers.

A key result. Cyclicity of peer mappings plays a very
significant role in the complexity of answering queries.

Definition 3.1 (Acyclic peer mappings). A set L of inclusion
peer mappings in PPL is said to be acyclic if the following
directed graph is acyclic. The graph contains a node for every
peer relation mentioned in L. There is an arc from the node
corresponding to R to the node corresponding to S if there is a
peer description in L of the form Q1ð�AA1Þ � Q2ð�AA2Þ, where R
appears in Q1 and S appears in Q2.

The following theorem characterizes two extreme cases
of query answering in PDMS:

Theorem 3.1. Let N be a PDMS specified in PPL.

1. The problem of finding all certain answers to a
conjunctive query Q, for a given PDMS N , is
undecidable.

2. If N includes only inclusion peer mappings and
storage descriptions and the peer mappings are acyclic,
then a conjunctive query can be answered in
polynomial time data complexity.

The proof of this theorem appears in [15]. The
difference in complexity between the first and second
bullets shows that the presence of cycles is the culprit for
achieving query answerability in a PDMS (note that
equalities automatically create cycles). In a sense, the
theorem also establishes a limit on the arbitrary combina-
tion of the formalisms of LAV and GAV.

The second bullet points out a powerful schema
mediation language for PDMS for which query answering
can be done efficiently. It shows that LAV and GAV style
reformulations can be chained together arbitrarily and
extends the results of [16], which combined one level of
LAV followed by one level of GAV.

In [15], we also show how the complexity is affected by
allowing comparison predicates, identify a few cases where
query answering in cyclic PDMS is tractable, and establish
the complexity of the PDMS consistency problem. In
summary, while the arbitrary use of the data integration
formalisms in a PDMS, query answering is undecidable, we
have identified a large and useful subset of PPL for which
query answering is tractable. Our results are based on an
open-world assumption [14] in which peers have incom-
plete rather than full information. The closed-world
assumption, which is necessary for supporting negation in
mappings and queries, is known to make the problem of
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finding all certain answers much harder (co-NP hard in the
size of the data [14])—even for two peers (and, in fact, even
without negation).

4 QUERY REFORMULATION ALGORITHM

In this section, we describe an algorithm for query
reformulation for PDMSs. The input of the algorithm is a
set of peer mappings and storage descriptions and a
query Q. The output of the algorithm is a query expression
Q0 that refers to stored relations only. To answer Q, we need
to evaluate Q0 over the stored relations. The precise method
of evaluating Q0 is beyond the scope of this paper, but we
note that recent techniques for adaptive query processing
[17] are well-suited for our context. Furthermore, in this
discussion, we assume that all the peer mappings are
available at a single location and, hence, all the reformula-
tion is done in a single place. We are currently investigating
methods for distributed query reformulation.

The algorithm is sound and complete in the following
sense: Evaluating Q0 will always only produce certain
answers to Q. When all the certain answers can be found
in polynomial time (according to Section 3), Q0 will produce
all certain answers. Q0 is called the maximally contained
rewriting of Q [6]: It is a query over the sources that
produces all the answers to Q that are possible from any
such query.

Before we describe the algorithm, we first provide some
intuition on its working and the challenges it faces.
Consider a PDMS in which all peer mappings are
definitional (similar to GAV mappings in data integration).
In this case, the algorithm is a simple construction of a rule-
goal tree: Goal nodes are labeled with atoms of the peer
relations, and rule nodes are labeled with peer mappings.
We begin by expanding each query subgoal according to
the relevant definitional peer mappings in the PDMS. When
none of the leaves of the tree can be expanded any further,
we use the storage descriptions for the final step of
reformulation in terms of the stored relations.

At the other extreme, suppose all peer mappings in the
PDMS are inclusions in which the left-hand side has a single
atom (similar to LAV mappings in data integration). In this
case, we begin with the query subgoals and apply an
algorithm for answering queries using views (e.g., [12]). We

apply the algorithm to the result until we cannot proceed

further and, as in the previous case, we use the storage

descriptions for the last step of reformulation.
The first challenge of the complete algorithm is to

combine and interleave the two types of reformulation

techniques. One type of reformulation replaces a subgoal

with a set of subgoals, while the other replaces a set of

subgoals with a single subgoal. The algorithm will achieve

this by building a rule-goal tree, while it simultaneously

marks certain nodes as covering not only their parent node,

but also their uncle nodes. We illustrate the algorithm by an

example below.

Example 4.1. To illustrate the rule-goal tree,2 Fig. 2 shows
an example for a simple query. We begin with the query,
Q, which asks for researchers who have worked on the
same project and also coauthored a paper. Q is expanded
into its three subgoals, each of which appears as a goal
node. The SameProject peer relation (indicating which
researchers work on the same project) is involved in a
single definitional peer description (r0), hence we
expand the SameProject goal node with the rule r0 and
its children are two goal nodes of the ProjMember peer
relation (each specifying the projects an individual
researcher is involved in).

The Author relation is involved in an inclusion peer

description (r1). We expand Author(r1,w) with the rule

node r1 and its child becomes a goal node of the relation

CoAuthor. This “expansion” is of a different nature

because of the LAV-style reformulation. Intuitively, we

are reformulating the Author(r1,w) subgoal to use the
left-hand side of r1. The right-hand side of r1 includes

two subgoals of Author (with the appropriate variable

patterns), so we also mark r1 as covering its uncle node.

(In the figure, this annotation is indicated by a dashed

line.) Since the peer relation Author is involved in a single

peer description, we do not need to expand the subgoal

Author(r2,w) any further. Note, however, that we must

apply description r1 a second time with the head
variables reversed since CoAuthor may not be symmetric

(because it is � rather than ¼ ).
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2. More precisely, we actually build a rule-goal DAG, as illustrated in the
example.

Fig. 2. Reformulation rule-goal tree for Emergency Services domain. Dashed lines represent nodes that are included in the unc label (see text).



At this point, since we cannot reformulate the peer
mappings any further, we consider the storage descrip-
tions. We find stored relations for each of the peer
relations in the tree (S1 and S2), and produce the final
reformulation. Reformulations of peer relations into
stored relations can also be either in GAV or LAV
style. In this simple example, our reformulation
involves only one level of peer mappings, but, in
general, the tree may be arbitrarily deep.

4.1 Optimizations

The second challenge we face is that the rule-goal tree may
be huge. First, the tree may be very deep because it may
need to follow any path through semantically related peers.
Second, the branching factor of the tree may be large
because data is replicated at many peers. Hence, it is crucial
that we develop effective methods for pruning the tree and
for generating first solutions quickly. It is important to
emphasize that, while many sophisticated methods have
been developed for constructing rule-goal trees in the
context of datalog analysis (e.g., [18], [19]), the focus in these
works has been developing termination criteria that provide
certain guarantees, rather than optimizing the construction
of the tree itself.

Several optimization methods can immediately be
borrowed from the techniques developed for evaluation of
datalog and logic programs, but lifted from the data level to
the expression level: 1) memoization of nodes and 2) detec-
tion of dead ends and useless paths [15].

A more subtle case in which useless paths can be
detected is as follows: Suppose we have two sibling goal
nodes with labels p1ð �XXÞ and p2ð �YY Þ and suppose that p1
appears in a single inclusion peer description of the form
V ð �ZZÞ � p1ð �XXÞ; p2ð �YY Þ and that predicate p2 appears on the
right-hand side of numerous inclusion peer mappings. In
this case, the only way to reformulate p1 will be through V ,
and V already satisfies the subgoal p2ð �YY Þ. Hence, there is no
need to explore any of the other ways of reformulating p2:
They are all redundant.

Finally, it is likely that many paths in the PDMS will be
traversed frequently and, therefore, we would like to
develop a set of techniques that may judiciously precompose
a select set of mapping chains in the network. Composition,
in this context, means the following: Given semantic
mappings between data sources A and B, and between B
and C, is it possible to generate a direct mapping between A
and C that is equivalent to the original mappings? Here,
equivalence means that, for any query in a given class of
queriesQ and for any instance of the data sources, using the
composed mapping yields exactly the same answer that
would be obtained by the two original mappings.

The composition problem is also relevant to a number of
static analysis questions that arise in a PDMS. First, by
precomputing the composition of mappings, we can also
remove redundancies from the resulting reformulation,
leading to significant runtime savings. Second, we would
like to find redundant paths in the network: Two paths
between a pair of nodes A and B are equivalent if, given any
query on A, reformulating the query along both paths will
result in equivalent queries on B. Third, we note that data
from source A can be used in source B only if the necessary

concepts are modeled in each of the nodes on the path
betweenA andB. As a result, when paths in the network get
longer, we may witness information loss. Hence, we would
like to determine whether a path between A and B can
possibly be useful for some query and if not, find the weak
links and try to improve the mappings there. The problem of
mapping composition is discussed in detail in the Appendix
(which can be found on the Computer Society Digital Library
at http://computer.org/tkde/archives.htm).

5 THE PIAZZA PDMS

Early in this paper, our focus has been understanding query
answering in the PDMS from a formal perspective. Our goal
has been to establish the semantics of our system
implementation, which we call Piazza. Our prototype
Piazza system is designed to be a scalable foundation for
data sharing applications.

In this section, we discuss two aspects of our Piazza
implementation that are of special interest. First, we
overview our architecture for query answering in the
PDMS. Second, in any practical system designed to
integrate data, XML makes a much better interchange
format than relational data. We provide an overview of the
XML version of Piazza’s PPL language.

5.1 System Architecture and Implementation

A Piazza PDMS consists of a set of nodes (physical peers)
connected in an overlay network on the Internet. Following
the logical PDMS model, every peer may have a peer
(mediated) schema and it may optionally provide source
data and query processing capabilities. Finally, a peer may
specify schema mappings. We note that, in contrast to P2P
file sharing systems, we assume the PDMS to be a relative
stable environment: Joining a PDMS is a heavyweight
operation and data contributors are unlikely to be modem
users, so we expect that peers will seldom leave (and if they
do, they will notify the system).

Query reformulation is performed at the node that
receives the query—this allows enumeration of all possible
rewritings and detection of redundant rewritings. The
reformulator assumes a global system catalog that provides
access to all of the mappings that involve a particular peer
relation. At each step in the rule-goal tree expansion, the
catalog is consulted to expand the frontier. We currently use
a centralized catalog and cache the mappings at each peer
for performance and robustness. The rewritings from the
reformulator are ultimately pipelined to the query proces-
sor at the originating node and it is responsible for
delegating portions of the query plan to other nodes.

We believe that this area has many opportunities for
future work. We plan to reimplement the catalog using
distributed hash table techniques (e.g., [22], [23]), which will
increase scalability and robustness. We hope to investigate
improvements to the rewriting algorithm, both in terms of
optimizations and in terms of distributing the work. Finally,
we hope to investigate adaptive approaches to distributing
the query processing itself across the PDMS.

5.2 Mapping XML Data

Earlier in this paper, we presented the relational version of
PPL, our peer-mapping language. We now briefly describe
the language we use for mapping between XML nodes in a
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Piazza overlay network, which is more complex due to the
richer XML data model. The algorithm for using these
mappings for query answering is described in [24] and that
paper also discusses issues relating to soundness and
completeness of answers.

Each Piazza node has an XML Schema that defines the
terminology and the structural constraints of the node. We
make a clear distinction between the intended domain of
the terms defined by the schema at a node and the actual
data that may be stored there. Clearly, the stored data
conforms to the terms and constraints of the schema, but the
intended domain of the terms may be much broader than
the particular data stored at the node. For example, the
terminology for publications applies to data instances
beyond the particular ones stored at the node. As in the
relational case, mappings play two roles. The first is as
storage descriptions that specify which data is actually stored
at a node. This allows us to separate between the intended
domain and the actual data stored at the node. For example,
we may specify that a particular node contains publications
whose topic is computer science that have at least one
author from the University of Washington. The second role
is as peer mappings, which describe how the terminology and
structure of one node correspond to those in a second node.
The language for storage mappings is a subset of the
language for schema mappings, hence our discussion
focuses on the latter.

Following the data integration literature, which uses a
standard relational query language for both queries and
mappings, we might elect to use XQuery [25] for both our
query language and our language for specifying mappings.
However, we found XQuery inappropriate as a mapping
language. First, an XQuery user thinks in terms of the input
documents and the transformations to be performed. The
mental connection to a required schema for the output is
tenuous, whereas our setting requires thinking about
relationships between the input and output schemas.
Second, the user must define a mapping in its entirety
before it can be used. There is no simple way to define
mappings incrementally for different parts of the schemas,
to collaborate with other experts on developing subregions

of the mapping, etc. Finally, XQuery is an extremely
powerful (in fact, Turing-complete) query language and,
as a result, some aspects are difficult or even impossible to
reason about.

Our approach is to define a mapping language that
borrows elements of XQuery, but is more tractable to reason
about and can be expressed in piecewise form. Mappings in
the language are defined as one or more mapping definitions

and they are directional from a source to a target: We take a
fragment of the target schema and annotate it with

restricted XQuery expressions that define what source data
should be mapped into that fragment. The mapping
language is designed to make it easy for the mapping
designer to visualize the target schema while describing
where its data originates.

Conceptually, the results of the different mapping
definitions are combined to form a complete mapping from
the source document to the target, according to certain
rules. The results of different mapping definitions can often
be concatenated together to form the document, but, in
some cases, different definitions may create content that
should all be combined into a single element; Piazza “fuses”

these results together based on the output element’s unique
identifiers (similar to the use of Skolem functions in
languages such as XML-QL [26]). A complete formal
description of the language is given in [24]. Here, we
describe the main ideas of the language and illustrate them
through examples.

Each mapping definition begins with an XML template
that matches some path or a subtree of a legal instance of
the target schema, i.e., a prefix of a legal string in the target
schema’s grammar. Elements in the template may be
annotated with restricted XQuery expressions that bind

variables to XML nodes in the source; for each combination
of bindings, an instance of the target element will be
created. Once a variable is bound, it can be referenced
anywhere within its scope, which is defined to be the
enclosing tags of the template. Variable bindings can be
output as new target data or they can be referenced by other
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Fig. 3. An example of three peer (data source) schemas (two are XML sources and one is an RDF source with an OWL ontology). Source1.xml

contains books with nested authors; Source2.xml contains authors with nested publications. Indentation illustrates nesting and a * suffix

indicates “0 or more occurrences of...,” as in a BNF grammar. Source3.rdf is a set of OWL class and property definitions with a slightly simplified

notation.



query expressions to correlate data in different areas of the
mapping definition.

Fig. 3 shows an example of two peer XML schemas,
Source1.xml and Source2.xml. Fig. 4a defines a simple
mapping from the schema of Source2.xml of Fig. 3 to
Source1.xml. We make variable references within {} braces
and delimit query expression annotations by {: :}. This
mapping definition will instantiate a new book element in
the target for every occurrence of variables $a, $t, and $typ,
which are bound to the author, title, and publication-type
elements in the source, respectively. We construct a title and
author element for each occurrence of book. The author
name contains a new query expression annotation
ð$a=full-nameÞ, so this element will be created for each
match to the XPath expression (for this schema, there
should only be one match).

The example mapping will create a new book element for
each author-publication combination. This is probably not
the desired behavior since a book with multiple authors will
appear as multiple book entries, rather than as a single book
with multiple author subelements. To enable the desired
behavior in situations like this, Piazza reserves a special
piazza:id attribute in the target schema for mapping
multiple binding instances to the same output: If two
elements created in the target have the same tag name and
ID attribute, then they will be coalesced—all of their
attributes and element content will be combined. This
coalescing process is repeated recursively over the com-
bined elements.

Example 5.1. See Fig. 4b for an improved mapping that does
coalescing of book elements. The sole difference from the
previous example is the use of the piazza:id attribute. We
have determined that book titles in our collection are
unique, so every occurrence of a title in the data source
refers to the same book. Identical books will be given the
same piazza:id and coalesced; likewise for their title and

author subelements (but not author names). Hence, in the

target, we will see all authors nested under each book

entry. This example shows how we can invert hierarchies

in going from source to target schemas.

Sometimes, we may have detailed information about the
values of the data being mapped from the source to the
target—perhaps, in the above example, we know that the
mapping definition only yields book titles starting with the
letter “A.” Perhaps more interestingly, we may know
something about the possible values of an attribute present
in the target but absent in the source—such as the publisher.
In Piazza, we refer to this sort of metainformation as
properties. This information can be used to help the query
answering system determine whether a mapping is relevant
to a particular query, so it is very useful for efficiency
purposes.

Example 5.2. Continuing with the previous schema, con-

sider the partial mapping:

<pubs>

<book piazza:id={$t}>

{: $a IN document(“Source2.xml”)/authors/

author,

$t IN $a/publication/title/text(),

$typ IN $a/publication/pub-type/text()

WHERE $typ = “book”

PROPERTY $t >= ‘A’ AND $t < ‘B’

:}

<title piazza:id={$t}>{$t }</title>

<author piazza:id={$t}>

<name>{: $a/full-name/text() :}</name>

</author>

[: <publisher>

<name>{: PROPERTY $this IN

{“PrintersInc”, “PubsInc”} :}</name>

HALEVY ET AL.: THE PIAZZA PEER DATA MANAGEMENT SYSTEM 795

Fig. 4. Simple examples of mappings from the schema of Source2.xml in Fig. 4 to Source1.xml’s schema. (a) Initial mappring. (b) Refined mapping

that coalesces entries.



</publisher> :]

</book>

</pubs>

The first PROPERTY definition specifies that we know
this mapping includes only titles starting with “A.” The
second defines a “virtual subtree” (delimited by [: :])
in the target. There is insufficient data at the source to
insert a value for the publisher name, but we can define a
PROPERTY restriction on the values it might have. The
special variable $this allows us to establish a known
invariant about the value at the current location within
the virtual subtree: Here, it is known that the publisher
name must be one of the two values specified. In general,
a query over the target looking for books will make use
of this mapping; a query looking for books published by
BooksInc will not. Moreover, a query looking for books
published by PubsInc cannot use this mapping since
Piazza cannot tell whether a book was published by
PubsInc or by PrintersInc.

6 RELATED WORK

The idea of mediating between different databases using
local semantic relationships was explored in federated
databases and cooperative databases (e.g., [30], [31], [32],
[33]). There, it was assumed that each database in the
federation stored data and the focus was on mapping
between the stored relations in the federation. Our work
differs in several ways. First, the scale of a PDMS is
assumed to be much larger and its structure more ad hoc.
Joining and leaving a PDMS should be much easier than in
a federated database. As a consequence, the relationships
between the peers are much looser. Second, peers can play
different roles—some provide data, others provide integra-
tion services between other peers, and some provide both.
As a result, we need to be able to map both relationships
among stored relations and among conceptual relations
(i.e., extensional versus intentional relations). Third, our
focus is on algorithms for chaining through multiple peer
mappings in order to locate data relevant to a query.

In [34], we described some of the challenges involved in
building a PDMS, focusing on intelligent data placement, a
technique for materializing views at nodes in the network in
order to improve performance and availability. In [35], the
authors study a variant of the data placement problem and
focus on intelligently caching and reusing queries in an
OLAP environment. Recently, [36] described local relational
models as a formalism for mediating between different peers
in a PDMS and a sound and complete algorithm for
answering queries using the formalism, but do not describe
the expressive power of the formalism compared to
previous ones in the data integration literature.

Edutella [37] represents an interesting design point in the
XML-RDF interoperability spectrum. Like Piazza, it is built
on a peer-to-peer architecture (based on JXTA) and it
mediates between different data representations—but it
provides query and storage services for RDF, using a
variety of underlying stores. Thus, an important focus of the
project is on translating the RDF data and queries to the
underlying storage format and query language.

Several other projects in the database community are
developing peer-to-peer architectures, with slightly differ-
ent emphases. The Chatty Web [38] focuses on gossip
protocols for exchanging semantic mapping information,
where mappings are selection-projection queries that they
evaluate for information loss. Hyperion [39] focuses on
problems relating to mappings between objects in different
relations, which is another important aspect of mapping
between sources. PeerDB [40] takes another approach to
mapping between peers: Instead of schema mappings,
PeerDB employs an Information Retrieval-based approach
to query reformulation. A peer relation (and each of its
columns) is associated with a set of keywords. PeerDB
reformulates a query over one schema into other peers’
schemas by matching the keywords associated with the two
schemas. Keywords can be matched directly between any
pair of schemas, so chaining of reformulation steps is not
required; however, keyword matching may give irrelevant
query reformulations, so the user must decide which
queries are to be executed.

In the KR community, work on the OBSERVER [41] and
Kraft [42] systems have explored a number of issues in
distributed ontologies, including mappings from structured
sources and approximate mappings between concepts in
ontologies.

7 CONCLUSIONS

The concept of the peer data management system empha-
sizes not only an ad hoc, scalable, distributed peer-to-peer
computing environment (which is compelling from a
distributed systems perspective), but it provides an easily
extensible, decentralized environment for sharing data with
rich semantics. This is in contrast to data integration
systems, which have a centralized mediated schema and
administrator and which, in our experience, impede small,
point-to-point collaborations. It also complements the
knowledge representation work of the Semantic Web by
providing a mechanism for translating between different
ontologies’ data representations.

We described some of the main the highlights of the
Piazza PDMS, including

1. a solution to schema mediation in peer data based on
a language that uses previous mediation formalisms
at the local level to form a network of semantically
related peers,

2. a characterization of the theoretical limitations on
answering queries in a PDMS,

3. an algorithm for answering queries in such a system,
and

4. results concerning the composition of semantic
mappings.

We also argued that a PDMS can provide a basis for
building applications for the Semantic Web and we showed
how to extend Piazza to the XML data model.

Though we have not described these in this paper, we
have implemented a prototype of Piazza and built a small
Web of database-research related Web sites. We are
currently focusing on developing and testing effective
methods for query optimization in Piazza and the manage-
ment and propagation of updates in a PDMS. In addition,
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we believe that the management of large collections of
semantic mappings raises interesting challenges. Our work
on query composition lays the basis for studying several
fundamental properties of such networks. We are also
interested in studying how one can boost a collection of
such mappings to improve the ability of nodes to obtain
relevant data from other distant nodes in the network.
Finally, peer data management is a very rich domain that
creates a wealth of new problems, such as how to replicate
data and how to reconcile inconsistent data.

The Appendix to this paper, which can be found on the

Computer Society Digital Library at http://computer.org/

tkde/archives.htm, describes the problem of mapping

composition and discusses using a PDMS as an infrastruc-

ture for the Semantic Web.
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