
VERSA: Verification, Execution and Rewrite System
for ACSR

MS-CIS-95-34

Duncan Clarke

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

'This research was supported in part by ONR N00014-89-J-1131~1, NSF CCR-9415346, and
AFOSR F49630-95-1-0508

VERSA: Verification, Execution and Rewrite System for ACSR *

Duncan Clarke
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 30, 1995

Abstract

VERSA is a tool for the automated analysis of resource-bound real-time systems using the Algebra
of Communicating Shared Resources (ACSR). This document serves as an introduction to the tool for
beginning users, and as a reference for process and command syntax for users of all experience levels.
Coverage includes a complete description of process and command syntax, examples of usage, and tables
of operators, built-in functions and algebraic laws. Two detailed examples demonstrate the application of
VERSA to canonical examples from the literature.

This version of the VERSA user's guide reflects the 95.09.10 version of the tool. The latest version
of VERSA is available by anonymous f tp from ftp.cis.upenn.edu in directory pub/rtg, and through the
World-Wide Web via the Penn Real-Time Group home page http://www.cis.upenn.edu/"rtg/home.html.

*This research was supported in part b y ONR N00014-89-5-113151, NSF CCR-9415346, and AFOSR F49620-95-1-0508.

1

Contents A X-Windows In te r face 14

1 I n t r o d u c t i o ~ l 3 B Bui l t - In Funct ions 14
. min(ie1. ien) 14

2 Genera l S y n t a x 3 max(ie1. ien) 14
2.1 Format 3 s q r (i e) . 14

. 2.2 Comments 3 s q r t (ie . [round]) 14

. 2.3 Identifiers 3 uniqueDig i t s (n , radix) 14
2.4 Reserved Words 3 LeadingDigit (n . radix) 14

. T r a i l i n g D i g i t (n . radix) 14
3 Basic D a t a Types HasDigit (n . d . radix) 14

. 3.1 Integer Constants 4 rand(ceil) 14
. 3.2 Event Label Constants 4

3.3 Resource Name Constants 4 C Algebraic Laws 15
. 3.4 Process Constants 4 C1.loicel . . . Choice7 15

. Par1 ParG 15
4 Compos i t e D a t a Types Scope1 Scope6 16

. 4.1 Set Constants 4 ~~~l . . . ~~~6 16
. 4.2 Action Constants 4 Closel . . . Close6 16

. 4.3 Event Constants 4 ~~~l 16
. 4.4 Pair Constants 4

D Examples 17
5 O p e r a t o r s a n d Expressions D. l Two Bit Buffers 17

. 5.1 Expressions 4 2 D. ~h~ jobshop 18
. 5.2 Index Definitions 5

. 5.3 Operand Notation 5
. 5.4 Arithmetic (+integer) 5
. 5.5 Relational (+integer) 6

. 5.6 Boolean (-+integer) 6
. 5.7 Miscellaneous (+integer) G

. 5.5 Set. s (-set) 6
. 5.9 Prefix (-process) 7

. 5.10 Composition (+process) 7
. 5.11 Context (+process) 7

. 5.12 Miscellaneous (+process) 8
. 5.13 Precedence and Associativity 8

6 C o m m a n d s 9
. 6.1 Miscellaneous 9

. 6.2 Binding Process Variables 9
. 6.3 Queries 9

6.4 Process Eyuivalellce Checking 10
. 6.5 Process Interpretation 10
. 6.6 Interpreter Conlrnands 11

7 Preprocessor 11
. 7.1 Token Replacement 12

. 7.2 Macros 12
. 7.3 File inclusion 12

. 7.4 Conditional Compilation 12
. 7.5 Pragmas 12

1 Introduction 1. Begin with /*, end with */.

'This paper is intended as an introduction to the
VER.SA system for beginning users and a reference
for a.dvanced users. VERSA is a toolkit for modeling
syst,ems using ACSR, the Algebra of Comnlunicating
Shared Resources. ACSR is a real-time process alge-
bra tha t incorporates the interleaved event synchro-
nization model of CCS and a synchronous semantics
for time passage st,eps. Novel aspects of ACSR in-
clude explicit notions of resources, time, and priority.

VERSA facilitates the construction and analysis
of real-time systems using ACSR with the following

2. Begin with //, end with newline.

Legal anywhere a space is legal.

2.3 Identifiers

Identifiers are used as the names of process vari-
ables, event labels, resource names, index vari-
ables. and functions.

Legal characters - a-z A-Z 0-9 underscore (-),
apostrophe 0)

features:
- First character must be alphabetic.

Support for ACSR's full syntax and semantics. - There is no limit on identifier length.

Syntax and semantic checking of process expres- - Any apostrophes must occur last.

sions. Examples - P P2 P-i Delay P J P2' '

Support for indexed process names, event labels,
and resource names. 2.4 Reserved Words

Generalized operators for economically express- Process Components
irig operations on indexed process names, event
la.bels, and resource names. and i d l e inf i n f i n i t e

X'Ianipulation of ACSR process terms according
i n f i n i t y i n f t y NIL o r
r e c s c o ~ e t t a u

t,o a set of laws preserving strong bisimulation.

The sequence of characters NIL is reserved for
Equivalence checking and refutation for pairs of

every capitalization of i ts individual letters.
processes.

Generalized Process and Set Operators Interactive execution of the labeled transitmion
system corresponding to an ACSR process.

Choice P a r a l l e l Set

'The sections tha t follow present a complete de- Union I n t e r s e c t Complement
icription of VERSA'S input syntax. ACSR and
17ERSA semantics are treated informally. This paper ' *lgebraic Law Names

is a quick reference for VERSA. It is not intended as
a tutorial or formal treatment of ACSR. Choice# Par# Scope# Res#

Close# Rec# Rhide# Relab#

2 General Syntax The # symbol denotes any sequence of digits.
The first letter may be upper or lower case.

2.1 Format
Commands

Spaces, tabs , newlines and formfeeds are used as
separators. Extra such characters are legal and bindings bye ctsmp
can he used t o improve readability. debug echo e x i t

f o l d guarded q u i t

2.2 Comments t e r s e unbind unbindal l
unfold unwind verbose

Two types: whynot

3 Basic Data Types 4 Composite Data Types

'Tlir basic data types are iiiteger (decimal), event The built-in composite data types are set, action,
label, resource name, and process. This section event, and pair. This section presents the syntax for
prrsents the syntax for constants. constants.

3.1 Integer Constants 4.1 Set Constants

Digit,s 0-9 or the keyword i n f t y . Uilordered comma separated list of homogeneous
elements.

Keyword i n f t y is a special symbol representing
,x,, on ly allowed context is the tirne bound in a Allowed element types are event labels, resource

scope() operator. names, pairs, and resource, priority pairs.

Iieyrvord i n f t y has aliases i n f , i n f i n i t e , and Examples-Crd,wrt) €1 < (r , l) , (~ , l) ~

i n f i n i t y .
4.2 Action Constants

Examples -
007 12 scope(P,e,infty,Pe,NIL,Pi) Set of parenthesis enclosed resource name, prior-

ity pairs.

3.2 Event Label Constants Priority is expressed as an integer value.

Identifiers. The keyword i d l e is an alias for the action 0 .

Optionally prefixed with an apostrophe (') . Cor- Examples-idle <) < (r I B 5) , (r 2 , 7) 1

respoilds to bar over events in traditional process
algebra notation, as in E . 4.3 Event Constants

Optionally suffixed by a comma separated list of Parenthesis ellclosed event label, priority air.
integer indices enclosed in square brackets ([and Priority is as an integer value.
1) .

Exainples - (e , I) (inC341 ,27) (t a u , 0)
The keywords t a u and t represent the distin-
guished event label r.

Examples - i n 'Out t a u e [l, I]

3.3 Resource Name Constants

4.4 Pair Constants

Slash (/) separated pair of event labels or re-
source names.

Examples - P/p [341 R / R '
Identifiers.

Optionally suffixed by a comma separated list of 5 Operators and Expressions
integer indices enclosed in square brackets ([and
1) . 5.1 Expressions

Esaillples - cpu P r i n t e r c e l l C341 An expression consists of one or more operands
with an operator.

3.4 Process Constants Parenthesis may be used freely to improve read-
ability or override default operator precedences.

NIL is the only process constant.
Exarrlples -

Deadlocked process; performs no events or ac-
tions. - i + 7

- P+NIL

- R[x==(y*z)/wl I I S

5.2 Index Definitions

An index is an identifier that represents an inte-
ger variable.

The range of an index is defined by an index
definition.

Syntax - Cvar, (m a x I m i n , m a x [, s t e p [, cond l l))

var - The index being defined

min - An integer expression for the initial
value. (Default is 1).

inax -- An integer expression for the maximum
value.

step - A11 integer expression for the value by
which the index is incremented. (Default is

1).
cond - Boolean conditional evaluated for each

value of the index. If cond is false the index
value is not used. (Default is 1) .

Example - Ci , I, 100, j , i%2 == 0)
This index ranges from 1 to 100 by steps of j.
(Index i is a sub-index of an index j, the value of
which is used for the inciement of i.) Only even
values of i will be available to the context of this
index definition.

An index definition can define multiple indices.
A comma-separated list of individual index def-
initions is used. Index values are initialized and
computed from le f t - to-r ight .

Example- ~i,l,IO>,Cj,l,i>
Index i ranges from one to ten, and for each value
of i , index j ranges from one up to the value of i .

5.3 Operand Notation

Some operators require specific kinds of
operands. The following notation is used to in-
dicate difference~.

e Any expression or constant.

v Any expression that refers to a variable to
which a value can be assigned.

A prefix indicates expression type. For example,
re is any integer expression. The complete list of
type prefixes follows:

p - process

1 - event label

e - event

r - resource name

a - action

d - index definition

Pairs of a given label type are indicated by a p
suffix, for example lep for an event label pair or
rep for a resource name pair.

Sets of a given base type are indicated by an s
suffix, for example Ees for an event label set.

If several operands appear in an expression, then
they may be distinguished by appending num-
bers, for example p e l + pe2.

5.4 Arithmetic (-+integer)

Addition: +

Usage - i e l + i e 2

Example - i+l

Subtraction: -

Usage - i e l - i e 2

Example - j -1

Negation: -

Usage - - i e

Example - - j

Multiplication: *
Usage - i e l * i e 2

Example - i*2

Division: /

Usage - i e l / i e 2

Example - j / 2

Remainder: %

Usage - i e l % i e 2

Example - k%2

Exponentiation: **
Usage - i e l ** i e 2

Example - m**3 r -- integer

5.5 Relational (+integer) 5.7 Miscellaneous (+integer)

The logical value "false" is represented by integer 0 ,
and "true" by any non-zero value. The values of re-
lational and boolean expressions are 0 for false and 1
for true.

Equal: ==

Usage - iel == ie2

Example - {i ,O,10,1, (j%2)==0}

Not Equal: !=

Usage - iel ! = ie2

Example - { i , O , l O , l , i ! = j)

Less Than: <

Usage - iel < ie2

Example- { i , 0 , 1 0 , 1 , i < j }

Less Than or Equal: <=

Usage - iel <= ie2

Example - { i , ~ , l ~ , l , i < = j - 1)

Greater Than: >

Usage - iel > ie2

Example - {i ,0 ,10 ,1 ,2*i>j}

Greater Than or Equal: >=

Usage - iel >= ie2

Example - { i , ~ , 10, 1 ,2*i>=j-1)

5.6 Boolean (+integer)

Negation: !

Usage - ! ie

Example- { i , O , l O , i , ! (i < j + k) }

Disjunction: o r

Usage - iel o r ie2

Example - { i , 0 ,10, I , (i<3) o r (i>6)}

Coiljunction: and

Usage - iel and ie2

Example -{ i , l , 9 , l , (i%2) and (i < j))

Function Call: FuncNameO

Usage - FuncName(ie1, . . . , ien)
The built-in function indicated by Func-
Name (see Appendix B) is applied to the
argument list.

Example - Set Ce [sqr t (i)] i , I , 1001

5.8 Sets (+set)

Set Generator: Set [I

Usage - Set [Eel,. . ., len ndl
Generates a set of event labels.

Example - Set[e[i] {i, 1,5)]

Usage - s e t Crel,. . ., ren ndl
Generates a set of resource names.

Example -
SetCrCi, j l ,sCil { i , 1 , 5) , { j , i , 5) 1

Usage - Set [lepl, . . ., lepn ndl
Generates a set of event label pairs.

Example -
Set [in Ci+2l / e Cil {i, 1,5)1

Usage - Set [repl, . . ., repn ndl
Generates a set of resource name pairs.

Example -
s e t [cpu [i*2l /r [il {i , I , 511

Union: Union[]

Usage - UnionCesl,. . .,em]
Forms the union of two or more sets con-
taining elements of the same base type.

Example -
unionCCr1, Se t Cs Cil C i , 1,511 1

Intersection: I n t e r s e c t [I

Usage - I n t e r s e c t Cesl,. . .,esnl
Forms the intersection of two or more sets
containing elements of the same base type.

Example -
In t e r sec t [(r Cil ,r [21 ,r C311 ,Cr C21, s1l

Complement: Complement [I

Usage - Complement Cesl, es21
Forms the complement of set esl with re-
spect to universe es2. The elements of esl
and es2 must be of the same base type.

Example -
complement C(r C311, Se t Cr [il C i , 1, 511 1

5.9 Prefix (+process)

Event Prefix: .
Usage - ee. pe
A process that synchronizes on ee and con-
tinues as the process pe.

Example - (e , i) .P

Action Prefix: :

Usage - ae: pe
A process that executes the time-consuming
action ae and continues as the process pe.

Example- { (r , l) , (s , 2) } : Q

5.10 Composition (-+process)

Choice: +

Usage - pel + pe2
A process that chooses to continue as pel or
pe2 depending on one or more of the follow-
ing: (1) event and resource offerings of the
environment; (2) priority arbitration; and
(3) nondeterministic choice among alterna-
tives.

Example- (e , i) . P + Q

Generalized Choice: Choice [I

Usage - Choice Cpe del
The choice process that results from com-
posing the process expressions pe that result
for index values defined by de. Similar to
the following ACSR notation: zr2i, Pi.
Example - choice [P [il {i,1, lo}]

Parallel Composition: I I (or I)

Usage - pel I I pe2
The process that result from executing pel
and pe2 simultaneously. Events are inter-
leaved or synchronize to produce T events.
Time consuming actions must execute con-
currently.

Example- ((e , l) .PI+{}:P~) I I Q

Generalized Parallel Composition: P a r a l l e l Cl

Usage - P a r a l l e l Cpe del
The choice process that results from com-
posing the process expressions pe that result
for index values defined by de. Similar t o
the following ACSR notation: nrzi, Pi.
Example -
~ a r a l l e l C (e C i 1 , I) . Q {i, 1, lo)]

5.11 Context (+process)

Temporal Scope: Scope()

Usage - scope(pe1 , l e , ie ,pe2,pe3,pe4)
Process pel is executed for up to ie time
units. If pel executes an event labeled with
le before ie time units elapse then the scope
is terminated and the process continues as
pe2. If pel is executed for exactly ie time
units without the scope being terminated
the scope is terminated and the process con-
tinues as pe3. The scope can be terminated
at any time before ie time units elapse by
executing an event or action offered by pea.
In that case, the process continues as pea.

Example -
scope(rec X.{}:X,

d-y , l o ,
NIL,TimesUp,NIL)

Resource Closure: [I

Usage - [pel res
The process formed by augmenting every
action a of pe with (r,O) for every r E res
such that a has no resource name, priority
pair with resource r.

Example- C{(r,i),(t,3)):~l{r,s,t)
The first action of this process would be
{ r 3 , S O } . Subsequent ac-
tions of P would be augmented in the same
way.

Event Restriction: \

Usage - pe \ les
The process formed by prohibiting pe from
executing events labeled with event labels
from les.

Example -
((e,l) .P I I ('e,i).Q)\{e,f ,g>
The process can only perform the action
(r ,2) and continue as (PIIQ)\{e, f , g } be-
cause the offered events are restricted.

Resource Hiding: \\

Usage - pe \\ rns
The process formed by eliminating all re-
source, priority pairs labeled with resource
names from rns from the actions of pe.

Example - (€(r,l),(s,l)I:P)\\Cs>
The first action of this process would be
{(r ,I)). Subsequent actions of P would be
modified in the same way.

Total Resource Hiding: \\€*I

Usage - pe \\ €*I
The process formed by eliminating all re-
source, priority pairs from the actions of pe.

Example- (~(r,l),(s,I)I:P)\\€*I
The first action of this process would be {).
Subsequent actions of P would be modified
in the same way.

Usage - pe % [leps, reps1
The events of pe are relabeled according to
the pairs of leps and the resources names
appearing in actions of pe are relabeled ac-
cording to the pairs of reps.

Exarnple -
((e, 1). {(r, i)}:~)%[{init/e},{~~~/r}l
The first event of this process would be
(init, I). The action following this event
would be { (CPU ,I)) . Subsequent events
and actions of P would be modified in the
same way.

5.12 Miscellaneous (+process)

Recursion: rec

Usage - rec pu. pe
Standard recursion on process variable pu.

Example -
rec X. a again,^) .X + (stop,1) .NIL)

Usage - LawName(pe)
The law indicated by L a w N a m e (see Ap-
pendix C) is applied to process pe.

Example - Choicei(((e, 1). P)+NIL)
Law Choice1 eliminates N I L f r o m
choice, so t h e resulting process is
(e,l).P.

Folding: fold(

Usage - fold(pe , pv
Every occurrence of the process bound to pu
that occurs as a subprocess of pe is replaced

by Pv.
Example- fold((e,l).PJ+Q,P)
If the process (e , 1) . P J is bound to P then
the result of this folding operation is the
process P+Q.

Unfolding: unfold()

Usage - unfold(pe , pul, . . .,pun)
For each process variable pv in pul,. . .,pun,
every occurrence of pu in pe is replaced by
the process expression bound to pu.

Example - unf old(P+Q ,P)
If the process (e, 1) . P ' is bound to P then
the result of this unfolding operation is the
process (e,l) .PJ+Q.

5.13 Precedence and Associativity
Precedence - In the chart below, the operators
within a group have equal precedence. Higher
precedence operator groups are higher in the
chart.

Associativity - In the absence of explicit paren-
theses, associativity rules are used to determine
how to group operators and operands (left-to-
right, or right-to-left), when the operators are in
the same group.

Examples -

- a*b/c is equivalent to (a*b)/c because of
left-to-right associativity.

- (e ,2) . 0 : P and (e ,2) . ({I : P) are equiva-
lent because of right-to-left associativity.

Law Application: L a w N a m e O

** Exponentiation LEFT-TO-RIGHT Usage - pv = pe ;
* Mul t i~ ly LEFT-TO-RIGHT The process pe is bound to the process vari- - "

/ Divide able pv. If pv is already bound the old bind-
% R.emainder ing is saved and can be restored with an .,
\ Event restriction LEFT-TO-RIGHT unbind command.
. Event prefix RIGHT-TO-LEFT E x a m p l e P = (e , i) . P ' ;
: Action ~ re f ix

I I Composition LEFT-TO-RIGHT
+ Addition, choice LEFT-TO-RIGHT
- Subtract
< Less than LEFT-TO-RIGHT
> Greater than

<= Less than or equal
>= Greater than or equal
- - -- Equal LEFT-TO-RIGHT
! = Not equal

and Logical and LEFT-TO-RIGHT
o r Logical or LEFT-TO-RIGHT

6 Commands

6.1 Miscellaneous

Termination:

Usage: q u i t , e x i t , or bye.

Display Mode:

Usage: t e r s e
Set terse output mode. Eliminates all non-
essential messages.

Usage: verbose
Set verbose output mode. Enable all user-
oriented messages.

Usage: debug
Set debug output mode. Enables all user-
oriented messages and generates copious
amounts of data useful for debugging the
VERSA system.

Usage: echo
Toggles echoing of input lines. If echo mode
is on all input is copied to standard output.
If echo mode is off input lines read from
#include 'ed files will not be displayed.

6.2 Binding Process Variables

Generative:

Usage - pv = pe de ;
Multiple bindings may be registered, de-
pending on how many index values are gen-
erated by de. Process variable pv must be
indexed by exactly the index variables de-
fined by de.

rn Example -
4 [i] = ('psYes, I) .NIL

{ i , 1, 100 , i , s q r t (i) * s q r t (i) = = i) ;
This process generator binds only those
9 [il for which i is a perfect square.

Unbinding:

Usage - unbind pv ;
The current binding of process variable pv
is removed. If pv was already bound at
the time of its most recent binding, the old
binding is restored. Binding and unbinding
implement pus11 and pop operations on a
LIFO stack of bindings with its head bound
to pv.

The lteyword unwind is an alias for unbind.

Usage - unbindall ;
Remove all bindings.

6.3 Queries

General Information:

Usage - ?
Displays a general help message summariz-
ing commands and syntax.

Bindings:

Usage - bindings ?
Displays all current process bindings.

Simple:
Identifier Types:

Usage - i d e n t ?
Displays the type (if any) of the identifier.
If the identifier is a bound process variable
its binding is displayed.

Event/Action Comparisons:

Comparison operators (c o p) are ==, ! =, <,
<=, >, and >=.

Usage - (e e l I a e l) cop (e e 2 I ae2) ?
The preemption relation is applied to the
pair of operands to determine whether one
preempts the other. That result is condi-
tioned by the comparison operator and an
appropriate message is output.

Example - (e ,3) > (e , l)
A message is output indicating that the
query is true. Event (e ,3) preempts event
(e , l > .

Guardedness:

Usage - guarded(pe , pv) ?

Tests whether all occurrences of process
variable pv are guarded by prefix operators
in process pe and outputs an appropriate
message.

Usage - guarded(pe) ?

Tests whether every process variable that
occurs in pe is guarded by a prefix operator
and outputs an appropriate message.

Refutation:

identical structure with the exception
of process variable naming and refer-
encing. Time to complete is propor-
tional to the size of the abstract syntax
trees.

3. Pr ior i t i z ed S t r o n g Equivalence: La-
beled Transition System (LTS) mod-
els are constructed for each of the pro-
cesses and a state minimization algo-

6.4 Process Equivalence Checking

Equivalence:

Usage - p v l == p v 2 7
The processes bound to p v l and p v 2 are
compared to determine whether they are
equivalent according to any of the follow-
ing notions of equivalence:

1. I d e n t i t y : The abstract syntax tree rep-
resentations of the two processes are
compared node by node to determine
whether the two processes have identi-
cal syntax. Time to complete is linear
in the size of the abstract syntax trees.

2. U n i q u e F ixpo in t I n d u c t i o n : The ab-
stract syntax tree representations of
the two processes are compared to de-
t,ermine whether the two processes have

rithm is applied to the two state ma-
chines to determine whether or not
they are bisimilar. Time to complete is
exponential in the size of the abstract
syntax trees for finite state processes.
For infinite state processes the test does
not terminate.

4. Pr io r i t i z ed W e a k Equ iva l ence : LTS
models are constructed for each of the
processes. All r-labeled event edges
are removed according to an algorithm
that mimics the algorithm for comput-
ing the e-closure of a finite state au-
tomaton. A state minimization algo-
rithm is applied to the two r-free LTS's
to determine whether or not they are
bisimilar. Time to complete is expo-
nential in the size of the abstract syn-
tax trees for finite state processes. For
infinite state processes the test does not
terminate.

Usage - whynot ?

If the most recent equivalence test returned
a result of false for the prioritized strong
equivalence test this command will output
a shortest path to the first state in each LTS
where the processes diverge.

Usage - whynot- ?
If the most recent equivalence test returned
a result of false for the prioritized weak
equivalence test this command will output
a shortest path to the first state in each T-

free LTS where the processes diverge.

6.5 Process Interpretation

Executing the LTS:

Usage - pu ! limit-Set the trace length limit to cm.
An LTS is constructed for the process
bound to pv and interpreter mode is en- Interpreter State Management:

tered. The commands accepted in inter- trace-Display the current trace.
preter mode are described in Section 6.6.

trace--Display the current trace without
Executing the r-free LTS: listing r labeled events.

Usage - pv^ ! clear-Clear the current trace without

An LTS is constructed for the process changing the interpreter's current node.

bound to pv. All r-labeled event edges save-Save a pointer to the current node
are removed according to an algorithm that and a copy of the current trace to a LIFO
mimics the algorithm for computing the 6- stack.
closure of a finite state automaton. In- restore-Reset the execution state to the
terpreter mode is entered for the r-free state and trace saveed most recently.
LTS. The commands accepted in inter-
preter mode are described in Section 6.6. Queries:

6.6 Interpreter Commands
show-Display the outgoing edges of the
current node.

Interpreter commands are accepted in a special mode show edge-Display the outgoing edges of
t.hat is activated by the commands listed in Section the node reachable via edge number edae. "
6.5. Interpreter mode allows the user to interactively

show limit-Display the current value of
step through the LTS (or T-free LTS) corresponding

the trace length limit. t,o a process. The commands available in interpreter
lnode are listed below. The default value for optional show stack-Display stack of saveed
numeric parameters is one. nodes and traces.

General:

? or help-Display a general help message
summarizing commands and syntax.

quit-Exit interpreter mode.

Edge Traversal:

s t e p [edge]-Advance along edge number
edge to a new node.

back [steps]-Backtrack by steps edge
traversals.

cont [edge]-Starting with edge, advance
along edges until a choice arises or the trace
length limit is met.

rand-Advance along edges making choices
according to a uniformly distributed ran-
dom variable whenever a node with multi-
ple output edges is encountered. Continue
until the trace length limit is met.

seed seedval-Seed the random number
generator with seedual.

show stats-Display statistics for the
reachable state space of the LTS includ-
ing node count, edge count, counts of dead-
locked states, zeno states, states capable of
stopping the clock, and CPU time to com-
pute the LTS.

show time-Display a count of time con-
suming steps contained in the current trace.

show deadlock[s]-Display the process
term for each deadlocked node and a short-
est path from the start node to each dead-
locked node.

7 Preprocessor

A # as the first character on a line designates a pre-
processor control line. Control lines are terminated
by a newline. Use a backslash just before the newline
to continue a control line.

l i m i t steps-Set the trace length limit to
steps.

7.1 Token Replacement 7.4 Conditional Compilation

#define zdentifier string

Example - #define DELAY 10

Substitutes 10 for every occurrence of DELAY as
a. token.

#undef identifier

Example - #undef DELAY

Cancels previous #define for identifier DELAY, if
any.

7.2 Macros

Note-To avoid precedence conflicts, enclose a macro
parameter in parenthesis everywhere it occurs in a
macro definition.

#define identifier1 (identifier2,. . .) string

Example - #define isodd(N) (((N)%2)==1)

Substitutes (((arg)%2)==1) for isodd(arg1,
replacing each occurrence of N by arg.

Example - #define pause(T , NEXT) \
scope(rec X . C l : X , \

dummy, (TI, \
NIL,(NEXT),NIL)

The backslashes are used to continue the macro
definition across multiple lines. This macro cre-
ates a process expression that executes the time
consuming action 0 for T time units and contin-
ues as NEXT.

Conditional compilation control lines are used to
compile different code depending on externally de-
fined conditions. Conditional compilation blocks can
be nested freely.

i f def identifier

Example - # i f def MODE

True if MODE is currently defined by #define.

i f ndef identifier

Example - #ifndef MODE

True if MODE is not currently defined by #define.

#e l se
. . .
#endif

If preceding #ifdef or #ifndef test is -

- True - Lines between #e l se and #endif
are ignored.

- False - Lines between the test and a #e l se

or, lacking a #e lse , the #endif , are ig-
nored.

#endif terminates the conditional compilation.

Example -
#ifndef STDLIB-ACSR
#include < s t d l i b . a c s r >
#endif

7.3 File Inclusion 7.5 Pragmas

#include <filename> Pragmas implement debugging directives that pro-
duce printed output describing the internal state of

Example - #include c s t d l i b . acsr> the lexical analyzer or parser.
Replaces this line with the contents of the file
s t d l i b . ac s r . The angle brackets specify that #pragma identifier string

s t d l i b . a c s r should be found in a directory . The following identifiers are recognized:
found in the path defined by the ACSRLIB en-
vironment variable. Does not search the current symtab-dump - Display the contents of the
working directory. symbol table.

#include "filename" mactab-dump - Display the contents of the
macro table.

Example - #include "spec. acsr"
t e x t - Parse string as though it were regular

Replaces this line with the contents of the file input.
spec. ac s r . When "spec. ac s r " is used instead
of <spec. acsr> , spec. a c s r is sought in the cur- s an i ty - t e s t - Test integrity of processes.

rent working directory. msg - Copy string to standard error output.

References

[I] D. Clarke, I. Lee, and H. Xie. VERSA: A tool for
the specification and analysis of resource-bound
real-time systems. Journal of Computer and Soft-
ware Engineering, 3(2), April 1995.

[2] R. Cleaveland, J . Parrow, and B. Steffen. The
Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems.
TOPLAS, 15:36-72, 1993.

[3] Formal Systems (Europe) Ltd., 3 Alfred Street-
Oxford OX1 4eH-UK. Failures Divergence Re-
finement: User Manual and Tutorial, April 1993.

[4] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[5] I. Lee, P. Br6mond-Gritgoire, and R. Gerber. A
Process Algebraic Approach to the Specification
and Analysis of Resource-Bound Real-Time Sys-
tems. Proceedings of the IEEE, 82(1):158-171,
January 1994.

[6] Insup Lee, Duncan Clarke, and Hong-Liang Xie.
The algebra of communicating shared resources
and its toolkit. In Sang H. Song, editor, Advances
in Real-Time Systems, chapter 12, pages 275-298.
Prentice Hall, 1995.

[7] H. Lin. Pam: A process algebra manipulator. In
Proc. Third Workshop on Computer Aided Veri-
fication, LNCS 575. Springer Verlag, July 1991.

[8] H. Lin. Pam user manual. Technical Report 9/91,
School of Cognitive and Computing Sciences, Uni-
versity of Sussex, 1991.

[9] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

A X- Windows Interface

An X-Windows interface has been implemented on
top of the VERSA implementation described in the
main body of this paper. It supports only the un-
indexed portion of the ACSR process syntax.

The most valuable features of the X-Windows in-
terface are (1) a point-and-click rewrite system that
significantly improves the usability of the law appli-
cation operators described in the main body of this
paper; and (2) a point-and-click interface to the in-
terpreter that displays a small portion of the LTS and
allows the user to select the edges that are traversed
with the mouse pointer.

The X-Windows interface includes a help function
that provides complete information on its use.

B Built-In Functions

This section describes the VERSA system's built-in
functions for operating on integer values.

Minimum: m i n (i e l , . . . , ien)
Computes the minimum of its list of two or more
arguments.

Maximum: max(i e l , . . . , ien)
Computes the maximum of its list of two or more
arguments.

Square: s q r (ie
Computes the square of i e .

Square Root: sqrt (ie [round])
Computes the integer square root of i e , rounding
according to round. If round is zero is
returned. If round is one is returned. If
round is not specified & is truncated.

Count Unique Digits: U n i q u e D i g i t s (i e l , i e 2)
Computes the count of unique digits in i e l inter-
preted as a radix i e 2 integer.

Leading Digit: L e a d i n g D i g i t (i e l , i e 2)
Computes the leading digit of i e l interpreted as
a radix i e 2 integer.

Trailing Digits: T r a i l i n g D i g i t s (i e l , i e 2)
Interprets i e1 as a radix i e 2 integer and returns
all but the first digit.

Test for Digit: H a s D i g i t (i e l , i e 2 , i e 3)
Interprets i e l as a radix ze3 integer and checks
whether it contains digit ie2. Returns one if true,
zero if false.

Uniform Random Number: r a n d (i e f)
Returns a uniformly distributed random integer
from the interval [0, i e l) .

C Algebraic Laws

Choice1
Choice2
Choice3
Choice4
Choice5
Choice6
Choice7
Par 1
Par2
Par3
Par4
Par5

P + N I L = P
P + P = P
P + Q = Q + P

(P + Q) + R = P + (Q + R)
A l : P l + A 2 : P 2 = A 2 : P 2 i f A 1 ~ A z

(a11 n1).P1 + (az, nz).Pz = (az, n2).P2 if (a1, n1) 4 ((32, n2)
A : P + (r ,n) .Q = (r ,n) .Q if n > 0
NILllNIL = NIL
(A : P)IINIL = NIL
(a, n).PIINIL = (a, n).(PIINIL)

PIIQ = QllP
(PIIQ)IIR = PII(QIIR>

(CA~ : Pi + C (a j . n j) . ~ j) 1 1 (C Bk : Rk + C (b l , m r) . ~ ,)
i € I i € J k € K {EL

Table 1: ACSR Laws (Part 1 of 2)

Scope1

Scope2

Scope3

Scope4

Scope5

Scope6
Res 1
Res2

Res3
Res4

Res5
Res6
Close1
Close2
Close3
Close4
Close5
Close6

Recl

A : P ~ ~ , (Q , R , s) = A : (P & - , (Q , R , S)) + S ~ ~ ~ > O

(a , n) . P ~ ~ ~ (& , R , S) = (a , n) . (P A ~ , (& , R , S)) + S i f t > 0 A a # b

(a , n) .P Abt (Ql R, S) = (r , n).Q + S if t > 0 A a = b

P nbo (Q , R , S) = R

(Pi +~2)Abl (Q I R , S) = pi nbl (Q , R , S) + p2nbt (Q,R,s)
N I L & (Q ,R , s) = s
NIL\F = NIL

(P + Q)\F = (P\F) + (&\PI
(A : P)\F = A : (P\F)
((a , n).P)\F = (a , n).(P\F) if a $! F A Si f! F

((a , n).P)\F = N I L if a E F V Z E F

(P\Fl)\F2 = P\(Fl u Fz)

(lPlI)\F = [P\FII
[NILIr = NIL

[P + &] I = [PII + [Q I I
[A1 : P] I = (A1 U Az) : [P] I where A2 = { (r , 0)lr E I - ,o(Al))

[(a, ,).PI, = (a , .).[PI1
[[P] I] J = [P] I L J J

[P\FII = ([PII)\F
recX.P = P[recX .P /X]

Table 2: ACSR Laws (Part 2 of 2)

D Examples

D.1 Two Bit Buffers

TBB = (in,l).TBBl;
TBBl = (in,l).TBBZ + (OU~,I).TBB;
TBB2 = (out,l).TBBl;

SYS = (OBBLI (OBBR)\{sync);
OBBL = (in,l).(sync,2).0BBL;
OBBR = ('sync,2).(out,l).OBBR;

Processes TBB and SYS provide two alternative formulations of a two bit buffer. They are adapted from
a (,X'S rxalnple found in [9]. TBB is a purely sequential formulation of a two bit buffer tha t receives one or
l,wo i r~pu t s by synchronizing on in and generates outpllt by synchronizing on out. If zero hits are currently
Ileld only in is possible. If one bit is held either in or out is possible. If two bits are held the buffer is full
so only out is ~~oss ib le . SYS is a n alternative formulation tha t uses concurrency instead of explicit sequential
st,rrlctlsre to realize the buffer.

VERSA can be used t o demonstrate the equivalence of these two formulations as follows:

:-) #include "2bb.acsrM
:-) TBB == SYS?

ufi failed--following pair could not be matched:
<(in,l).TBBl,(OBBL 1) OBBR)\{sync)>

--following pair was matched:
<TBB , SYS>

false (by prioritized strong equivalence)
true (by prioritized weak equivalence)

:-) whynot?
prefix: --(in,l)-->
unmatched TBB :
--(in,l)-->
--(out,l)-->

unmatched SYS :
--(tau,(2+2))@sync-->

The "#includen command reads the process descriptions from a file named 2bb. acsr. The "TBB == SYS?"
c.o~nmand ir~it.iates equivalence checking of the TBB and SYS processes. The first result t ha t is printed is
1 . 1 1 ~ out,cori~c of the unique fixpoint induction test. The test fails because TBB and SYS disagree on their
re~pect~ive first operators. The next result is the outcome of the prioritized strong equivalence test. Since
t,hat t,cst fa.iled, the next result t ha t is printed is thc outcome of the prioritized weak equivalence test , which
sr~ccc~c~tlcd. Proccsses TBB and SYS are equivalent by prioritized weak equivalence (the notion of bisimulation
tollat disregards internal T events).

Tile "whynot?" corninand demonstrates the equivalence refutation feature. I t lists edges tha t can be
traversed t o arrive a t states tha t are not bisiinilar according lo the definition of prioritized strong equivalence.
The outpl~t , s l~ows that after a n in event TBB and SYS differ because TBB is ready for another in or out
ir~rrnrdia.tely, t)ut SYS must first synchronize internally on i ts sync event.

D.2 The Jobshop

#define JOBRANGE 1,3

#define EASY I
#define HARD 2
#define OTHER 3

Sem = :Sem + (get, 1) .reC Sem'. ((put, I). Sem + {(Semaphore, 1)) :Semj) ;

Jobber = choice [(in[job], 1). Start [job] {job, JOBRANGE)] + {I: Jobber;
Start [job] = IFELSE(j ob==EASY, €1: Finish [job] ,

IFELSE(j ob==HARD ,Usehammer [job] ,
Usetool [job])) {job, JOBRANGE);

Usetool [job] = usehammer [job] + Usemallet [job] +
(tau, I). C):Usetool[jobl (job , JOBRANGE);

Usehammer[job] = ()geth,l).():{):('puthJl).~inish[jobl +
(1 : Usehammer [job] {job,JOBRANGE);

usemallet [job] = (lgetrn, 1) . {): €1: ('putm, 1) .~inish[job] +
{):usemallet [job] {job,JOBRANGE);

~inish[job] = ('out [DONE(job)] , I). Jobber (job, JOBRANGE);

Jobshop = [~obshop'l {Hammer, Mallet);
Jobshop1 = (Jobber I I Jobber I I HamSem 1 I ~al~em)\{geth,puth,getm,putm);

I'rocess Jobshop is an ACSR implementation of the job shop example found in [9]. The #define of
JOBRANGE defines the range of values that represent jobs. The next three #defines break JOBRANGE into
three distinct types of jobs, EASY, HARD, and OTHER. The DONE macro translates a job into a completed job.

The IFELSE macro uses ACSR's priority relation to define an if/then/else construct. If the value of the
I~oolean predicate PRED is non-zero (i.e. true) then process Pi is prefixed with a priority 2 * 1 + 1 = 3 internal
event. Otherwise process P1 is prefixed with priority 2 * 0 + 1 = 1 internal event. The "else" process P2 is

always prefixed with a priority 2 internal event. According to the semantics of the choice operator if PRED is
true (T, 3).P1 will be executed, otherwise (T, 2).P2 will be executed.

Process Sem is a general purpose binary semaphore with idling. Initially Sem can idle for one time unit
or receive a get request to allocate the semaphore. Once the semaphore is allocated it remains allocated
and any idling steps include the Semaphore resource until a put request is received. Process HamSem uses
rc3naming of events and resources to create a Hammer resources whose access is controlled by geth and puth
events. Process MalSem creates a similar Mallet resource.

Process Jobber describes a single worker in the job shop. A job is received by synchronizing on an
inCjob1 event, or the jobber idles for one time unit. If a job of type job was received, the process continues
as start [job]. Note how generalized choice (i.e. Choice[...]) and indexing are used to simulate value
passing with indexed events. Start evaluates the job type and (1) completes "easy" jobs in one time unit
without the use of any tools; (2) proceeds as Usehammer if the job is "hard;" or (3) proceeds as Usetool if
t,he job falls somewhere in between.

Process Usetool a t tempts to use eit>her the hailliner or the mallet t o coillplete the job, depending on which
t,ool (if any) is available. If no tool is available, Usetool idles for one time unit and tries again. Processes
Usehammer and Usemallet allocate and use their respective tools, or idle one t ime unit if the tool is not
illlillediately available. Process F i n i s h marks the job as complete a.nd outputs the job with a n ou t event.

Process Jobshop creates a job shop with two jobbers by composing Jobber processes in parallel with
Hammer and Malle t controlling processes. The g e t and pu t operations for the two resources are restricted to
irlsure t,hat tmhe resources can only be allocated locally, and no external resources are allocated. The Jobshop
is closed in the Hammer and Malle t resources to insure tha t Hammer and Malle t are used exclusively by the
two Jobber processes.

